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ABSTRACT OF THE DISSERTATION

Decarbonizing the Electric Grid:
Computational Advances in Power System Planning and Scenario Analysis

by
Osten Peter Anderson

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2024
Dr. Nanpeng Yu, Chairperson

The push for multi-sector decarbonization in the electric grids around the world
has created the need for significant investment in the electrical grid. Over the next two
decades, the bulk power system will be transformed from being historically dominated by
gas-fired generation to dominated by wind, solar, and energy storage resources. Due to the
large costs associated with investment and operation, and the importance of maintaining
reliability in this critical infrastructure, a comprehensive investment plan is crucial.

This dissertation looks at the California power system decarbonization problem
through several lenses. The first concerns a novel formulation for decarbonization planning
which incorporates more detailed modeling of gas-fired generation, and an advanced solution
algorithm which enables its practical utility. Then, several novel methods for temporal
sampling in these models are proposed. Finally, two case studies are considered. The first
examines the impact of smart charging for medium- and heavy-duty battery electric

vehicles on the decarbonization plan. The second concerns scenario analysis around climate

vii



change pathways. At the same time, a novel method for ensuring reliable power system

investments, with specific regard to decarbonized portfolios, is proposed.
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Chapter 1

Introduction

1.1 Background and Motivation

As the impacts of climate change worldwide are accelerating, so too are the mea-
sures taken in response. Governments have taken collective action on mitigating anthro-
pogenic climate change, such as the Paris Agreement [99]. One of the primary aims of these
efforts is reducing the level of greenhouse gas (GHG) emissions. This considers emissions
from all sources, such as electricity generation, transportation, buildings, and manufactur-
ing.

The energy sector has been identified as one of the most critical components of de-
carbonization. Not only is the power system one of the primary sources of carbon emissions,
it is also a promising candidate for decarbonization due to the associated technical consider-
ations. In California specifically, electricity accounted for 16% of statewide GHG emissions
in 2021 [89]. Whereas sectors like aviation and manufacturing currently have limited mature

options for decarbonization, the power system has mature technologies for decarbonization



which have been increasingly deployed over the last decade. There is already considerable
penetration of wind, solar, and other zero-emission generation, and rapidly increasing pen-
etration of battery energy storage in California [91]. While not a trivial task, power system
decarbonization is feasible for most locales.

In California alone, the cost of building, operating, and maintaining the bulk power
system will exceed hundreds of billions of dollars over the next two decades. As a result,
even a small percentage improvement in the total investment and operation cost for the
decarbonization plan could yield savings of hundreds of millions of dollars in investment
and operational expenses. This is critical, as California has some of the most expensive
electricity in the US [101], and these potential savings would be passed on to ratepayers.
In practice, most load in California is served by a number of investor-owned utility com-
panies (IOUs), and these utilities make individual investment decisions. However, these
utilities are regulated by the California Public Utilities Commission (CPUC). IOUs work
closely with the CPUC to plan investments, as the proposed investments are paid through
electricity rate increases which must be approved by the regulatory agency. Studies carried
out by the CPUC and the California Energy Commission (CEC) thus inform how IOUs are
regulated. These studies can also help shape broader policy goals, concerning adoption of
new technologies, planning for extreme weather events, and so on.

California’s legislature has passed several laws governing the transition of Califor-
nia’s electrical grid to a low-carbon future. Senate Bill 100 2018 (SB100) mandates that
all retail electrical sales come from non-carbon sources by 2045 [58]. Senate Bill 350 2015

(SB350) requires that the greenhouse gas emissions associated with the operation of the



electrical grid be reduced to 80% below 1990 levels by 2050 [57]. Consequently, a compre-
hensive investment plan is essential to identify the most cost-effective approach to achieve

these goals.

1.2 Contributions

This dissertation focuses on the topic of power system decarbonization in California
through multiple thrusts. Each thrust either carries the goal of improving on the status
quo in power system planning in general, or examining the impact of a specific real-world
scenario with respect to decarbonization planning. With each, a case study of the California
electrical grid decarbonization problem is examined.

This problem belongs to the fields often referred to as capacity expansion planning,
generation expansion planning, or bulk power system planning. Although these fields are not
new, they have received increased attention over the recent decade. Across the world, power
systems are in rapid flux, due both to economic development and decarbonization, and these
fields are important aids to decision making. Simultaneously, increasing computational
performance has opened new opportunities for improving the modeling of these systems.
Accordingly, there has been considerable research interest on these topics over recent years.
Although there is substantial variation in the approaches found in the literature, the most
common formulation presents a co-optimization of power system investment and operation.
Computational burden remains a significant bottleneck towards improving these models

further.



A primary contribution of this dissertation is the development of a decarbonization
planning model for California’s electrical grid that incorporates more detailed modeling of
gas-fired power plants than the status quo. Traditional capacity expansion models neglect
the complex operating characteristics of such generators due to computational complexity.
However, accurate modeling of these generators is crucial, especially over the next two
decades. The operation of these generators is a primary source of GHG emissions associated
with electricity generation, and carbon emission limits imposes a decreasing upper bound
on their operation. Inaccurate modeling of these generators could lead to inaccuracies in
the investment in clean technologies needed to meet climate goals. In order to handle the
computational complexity associated with this more detailed modeling, an advanced
solution methodology is deployed. This model, and the related solution methodology, serve
as the underpinning of all studies in this dissertation.

This dissertation examines two novel methods for temporal sampling in the con-
text of power system planning. The computational complexity associated with long-term
planning models often necessitates the reduction in the temporal dimension. Instead of
representing all 8760 hours in a year, models typically represent fewer than 1000 hours.
As such, selecting the appropriate time has a substantial effect on the output of such a
model. The first novel method proposes sampling representative days using weather-based
features (load and renewable generation) and operational features. The second method con-
cerns sampling of representative periods of intermediate length, in order to properly model

inter-day dynamics of energy storage.



Two case studies considering concrete policy and environmental scenarios are pre-
sented. The first case study looks at the potential savings from a bulk grid perspective
of allowing smart vehicle charging of medium and heavy-duty electric trucks in California.
Both flexible charging and vehicle-to-grid charging are considered. Two electric truck oper-
ation scenarios are examined to provide a robust view of the potential avoided infrastructure
investment. In the second case study, scenarios considering climate change and socioeco-
nomic development are examined. At the same time, a method for improving the manner
in which renewable and storage technologies contribute towards power system reliability is
proposed. This novel planning formulation allows for direct simulation of extreme weather
events within the planning model. Doing so avoids an over-reliance on gas-fired generation

for satisfying reliability needs in the context of power system planning.

1.3 Organization

The remainder of the dissertation is structured as follows. Chapter 2 introduces de-
carbonization planning, discusses related works in optimization and power system planning,
and formulates the optimization model. Chapter 3 introduces the Lagrangian relaxation-
based solution methodology. Chapter 4 presents numerical testing results as well as com-
parisons to the existing linearized model results. Chapters 2 through 4 represent the core
decarbonization model. Chapter 5 through 7 represent extensions of this model. Chapter 5
introduces two novel approaches to selecting representative periods. Chapter 6 investigates
the impacts of smart charging for medium- and heavy-duty battery electric vehicles on Cal-

ifornia’s decarbonization pathway. Chapter 7 examines the impacts of climate change on



California’s decarbonization pathway, and presents a novel technique for ensuring resilient
power system planning in the context of climate change and decarbonization. Chapter 8

concludes the dissertation.



Nomenclature

Sets

t, T Index, set of hour w,

W Index, set of week y, Y

Index, set of year

u, U Index, set of thermal unit

s, §  Index, set of storage resource

r,R  Index, set of renewable resource

h, H Index, set of large hydro resource

z, Z Index, set of balancing authority zone

[, L  Index, set of line

U, Subset of thermal resources in zone z

S: Subset of storage resources in zone z

R, Subset of renewable resources in zone z
H, Subset of large hydro resources in zone z



Loads and Generation

L.(¢) Load in zone z at time ¢t (MW)

vu(?)
|20
j20)
pr(®)
UTy
DT,
RU,
RDy
SUy

SDy

By

Si(®)

/11,2

On/off status of unit « at time ¢ (1, 0)

Power output of unit « at time ¢ (MW)

Power output of renewable resource  at time 1 (MW)
Power output of large hydro resource # at time 1 (MW)
Minimum uptime of unit « (hours)

Minimum downtime of unit « (hours)

Ramp up rate of unit u (MW/hour)

Ramp down rate of unit « (MW /hour)

Startup power limit of unit « (MW)

Shutdown power limit of unit « (MW)

Minimum output of unit u (MW)

Maximum output of unit u (MW)

Minimum output of hydro resource # (MW)
Maximum output of hydro resource 7 (MW)
Ramping limit of hydro resource 2 (MW /hour)
Weekly energy budget of hydro resource # (MWh)
Flow on line / at time ¢t (MW)

Incidency of line / on zone z



F Minimum (negative) flow on line / (MW)

Fi Maximum flow on line / (MW)

IC,  Installed capacity of renewable resource » (MW)
PF.(¢#) Production factor of renewable resource r at time ¢

p&r(f) Curtailment of renewable resource r at time ¢ (MW)

4t Cost of curtailment of resource » ($/MWh)

SUC,(¢) Startup cost of unit u at time ¢ ($)

SDCy(¢) Shutdown cost of unit » at time ¢ ($)

GCS, Generation cost slope of unit u (5/MWh)

GClI, Generation cost intercept of unit « ($/hour)
Storage

vs(t)  Storage charge (0)/discharge (1) status at time ¢
pi(t) Storage rate of charge at time 1 (MW)

pd(H) Storage rate of discharge at time 1 (MW)

e Storage max rate of charge (MW)

pd Storage max rate of discharge (MW)

Cs Storage max state of charge (MWh)

e

Storage min state of charge (MWh)
Cs(t) Storage state of charge at time  (MWh)

ne Storage charge efficiency



nd  Storage discharge efficiency

Os Storage self discharge

ve(t) MHD BEV charge (0)/discharge (1) status at time ¢
pd?) MHD BEV charge at time 1 (MW)

pd() MHD BEV discharge at time ¢ (MW)

Pe MHD BEV charger power rating (MW)

C.(t) MHD BEJV state of charge at time 1 (MWh)

Ce MHD BEV maximum state of charge (MWh)

C, MHD BEV minimum state of charge (MWh)

¢4P°t  Hour of depot arrival

(drive. Hour of drive start

POt State of charge at depot arrival (MWh)

cdrive: State of charge at drive start (MWh)

Investment

IU,(y) Install status of unit « in year y

IUg(y) Planned install status of unit « in year y
IUb(y) Build flag for unit « in year y

IU(y) Retirement flag for unit « in year y

ICs(y) Installed capacity of storage resource s in year y
10



ICr(y) Planned capacity of storage resource s in year y
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ICt(y) Built capacity of storage resource s in year y

ICE(y) Installed energy capacity of storage resource s in year y
ICEP(y) Planned energy capacity of storage resource s in year y
ICE®(y) Built energy capacity of storage resource s in year y
IC(y) Installed capacity of renewable resource r in year y
ICp(y) Planned capacity of renewable resource r in year y
IC’(y) Built capacity of renewable resource r in year y

Cj" Generation costs in year y

C"  Maintenance costs in year y

Cy" Investment costs in year y
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Chapter 2

Decarbonization Planning

2.1 Introduction

From a modeling perspective, power system planning problems are frequently mod-
eled as a mixed-integer linear programming (MILP) problem to exploit the capability of
existing optimization solvers such as Gurobi [43], Xpress [126], and CPLEX [49]. Over
the 20-year decarbonization planning horizon, decisions regarding resource dispatch are
co-optimized with decisions associated with the construction and the retirement of energy
resources. While many renewable and storage resources can be modeled using continuous
variables, thermal unit behavior (commitment, decommission, and investment) can only
be accurately captured with binary variables. This requirement, combined with the exten-
sive time horizon, leads to an issue known as combinatorial complexity - as the planning
horizon increases linearly, the associated complexity increases superlinearly (e.g., exponen-

tially). Consequently, when using off-the-shelf commercial software, large MILP planning

13



problems can quickly become increasingly challenging to solve, with no guarantee that even
a feasible solution can be found within a reasonable CPU time.

Currently, the lack of tractability resulting from large time-scale and the inherently
discrete nature of the planning problems is typically addressed by relaxing binary restric-
tions, thereby reducing the MILP problem into a Linear Programming (LP) problem. One
example of this is E3’s RESOLVE, a resource planning model used by the California Pub-
lic Utilities Commission as well as by three major California utilities: Southern California
Edison, Pacific Gas & Electric, and San Diego Gas & Electric. While LP-relaxed problems
may still theoretically be NP-hard, the practical performance of such methods as simplex or
barrier methods leads to much-reduced CPU times. However, LP-relaxed versions cannot
accurately capture the behavior of thermal units and tend to overestimate their opera-
tional flexibility. Consequently, an investment plan based on these simplifications may lead
to higher costs or even reliability issues when subjected to the constraints of real-world
operations.

In this chapter, we address the California decarbonization planning issue by for-
mulating it as a MILP problem. This approach provides a more accurate model of thermal
plants’ operations as compared to previous simplifications. Instead of oversimplifying the
model, we tailor a surrogate Lagrangian relaxation technique to decompose the problem into
manageable subproblems. This method significantly reduces the combinatorial complexity
and uses Lagrangian multipliers for iterative coordination of the subproblems. By using
the proposed method, investment plans are more consistent with real-world power system

operations. The results are compared with RESOLVE, a model used by California state

14



agencies for decarbonization studies. We find that RESOLVE routinely underestimates the
investment required to meet intermediate emissions targets. Further, our model results in

lower overall costs on the order of billions through the investment horizon.

2.2 Related Work

While the decarbonization planning problem is relatively new, it is closely con-
nected to the generation expansion problem, which has been the subject of study for decades.
Further, as the focus shifts to renewable generation resources, the lines between these prob-
lems have blurred in the literature. This section will review related literature in both
decarbonization and generation expansion planning (GEP), as well as works related to the

proposed surrogate Lagrangian relaxation solution methodology.

2.2.1 Generation Expansion Planning

The decarbonization planning problem is essentially a modification of the GEP,
with more emphasis on the construction of green technology and subject to constraints on
emissions. Thus, these problems will be reviewed together. GEP approaches generally fall
into two groups: reduction in model complexity and alternative optimization methods.
Reduction in model complexity refers to relaxations made to the full MILP formulation
used within GEP. Within this group, there are a few common streams. The first technique
is the relaxation of integrality requirements of binary commitment and investment decisions
[47, 118, 113]. The general drawback of LP-relaxation-based methods is an overestimation of

the flexibility of thermal and pumped storage units. The second technique is the omission
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of detailed technical constraints within the unit commitment formulation. Examples of
simplifications include clustered rather than individual modeling of thermal units [73] and
the omission of thermal unit operational constraints such as ramping constraints [77, 122,
41]. Furthermore, models may even neglect temporal dependencies opting for load duration
curves or similar metrics instead [1, 85, 55]. As a result, two situations may occur: infeasible
or non-cost-effective operations. In the former case, the fleet of build-out units satisfying
the forecasted peak load may still not satisfy all constraints, such as emissions limits, once
more granular operational constraints are imposed on thermal units. In the latter case,
feasible solutions may turn out much more expensive during realistic operations due to the
need to satisfy more granular operational constraints.

Several open-source generation expansion packages such as Gridpath [87], GenX
[95], and ReEDS [96] have also been developed. The packages differ in handling MILP
versus LP, clustered versus non-clustered scenarios, and the granularity of unit commit-
ment. Some offer a choice in the level of detail for unit commitment. However, despite
allowing detailed generator-level integer unit commitment modeling, these packages do not
enhance computational tractability, limiting their application over a significant number of
time periods.

This work closely follows Energy + Environmental Economics’ (E3) RESOLVE
model’s data and general composition [34]. The RESOLVE model is used by the California
Public Utilities Commission to perform integrated resource planning to meet California’s
long-term energy policy goals. However, the RESOLVE model presents a linearized and

clustered version of unit commitment, in which units are clustered by similar technology.
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This simplification massively increases computational efficiency, but has the potential to
overestimate the flexibility of thermal units. In clustered unit commitment, individual
units’ feasible sets are not captured by design making it impossible to accurately apply
constraints such as minimum up- and down-time to each unit. Using continuous variables
instead of binary ones can result in physically impossible outcomes, such as committing “half
of a unit,” which is not feasible in reality. This overestimated operational flexibility will
likely lead to sub-optimal investment solutions when the full set of constraints are applied in
real-world operations. In this work, we overcome these issues by developing a more detailed
operational model and adopting a decomposition and coordination methodology for efficient

problem solving.

2.2.2 Optimization Methods: Heuristics and Decomposition

Alternative optimization methods include both heuristic methods and decompo-
sition methods, like Benders’ decomposition. Heuristic methods have been used to find
satisfactory solutions to complex problems where traditional optimization methods may
be inefficient or impractical and have been particularly useful when solving large-scale and
complex problems. Unlike exact algorithms, such as those employed in software like CPLEX
or Gurobi, heuristic methods seek “good enough” solutions within a reasonable timeframe.
Notable examples of these methods include genetic algorithm [53], NSGA-II [46] and par-
ticle swarm optimization [70, 67]. One of the shortcomings of heuristic methods is the lack
of a lower bound to provide a measure of the solution quality - how close a solution is to
the global optimal. Moreover, heuristic and metaheuristics methods such as particle swarm

optimization may generally suffer from getting trapped at local optima; by the very na-
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ture of heuristics, there is generally no systematic or theoretically justified way to improve
solutions.

Another approach to improving computational tractability is the use of Benders’
decomposition. This method has been deployed for transmission expansion planning in sev-
eral studies [51, 72, 40]. In [105], Benders’ decomposition is applied to generation expansion
planning, although it still relies on a genetic algorithm and thus inherits issues of heuris-
tics methods. In general, Benders’ decomposition has been less common for generation
expansion as compared to transmission expansion. It should be noted that these alterna-
tive solution techniques are often coupled with reduction in model complexity as described

above.

2.2.3 Optimization Methods: Lagrangian Relaxation

Lagrangian relaxation is an optimization technique that is related to the techniques
described above. It has been applied to a range of problems, including unit commitment.
This section will review a range of techniques within the family of Lagrangian relaxation to
demonstrate the advantages of the selected technique.

Traditional Lagrangian relaxation-based methods faced difficulties such as the high
computational effort required to obtain subgradient directions; even if obtained, subgradi-
ent directions tend to change drastically and lead to zigzagging of multipliers and slow
convergence. Additionally, standard LR utilizing subgradient methods for multiplier up-
dates requires the optimal dual value knowledge for convergence as in Polyak stepsizing

[78].
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Recently, surrogate Lagrangian relaxation (SLR) [16] has addressed most of these
issues, enabling multiplier updates with only “good-enough” subproblem solutions obtained

&

at a time that satisfy the “surrogate optimality condition.” This procedure essentially
improves the incumbent solution of a relaxed problem (rather than finding the exact optimal
solution) in a computationally efficient way due to the drastic reduction of complexity,
while still guaranteeing convergence, and reducing the zigzagging of multipliers. From the
subproblem-coordination standpoint, the method eliminates the need for optimal dual
value knowledge. Moreover, several advancements have been made to the SLR framework,
including surrogate absolute-value Lagrangian relaxation (SAVLR) [14] which accelerates
convergence through piece-wise linear penalties. These methods have demonstrated success

in solving various complex problems in power systems such as unit commitment [108, 123]

and beyond [16, 14].

Table 2.1: Comparison of characteristics of LR methods using Polyak’s stepsize as well as
Polyak’s seminal work

Method Require optimal Multhller.
dual value updating directions
Polyak’s seminal .
work (1969) [78] Yes Subgradient
Surrogate subgradient _
method [133] Yes Surrogate subgradient
Surrogate “level-based No Surrogate subgradient

Lagrangian relaxation [17]

The surrogate “level-based” Lagrangian relaxation (SLBLR) technique has been
recently developed [17], which uses the Polyak stepsize formula with efficient level-value
adjustments while guaranteeing convergence of level values to the true optimal dual value

leading to overall convergence. This user-friendly approach is robust and reduces the need
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for domain knowledge. SLBLR has successfully addressed major issues of previous meth-
ods, specifically obviating the need to know the optional function value while still exploiting
the geometric (fastest possible) convergence inherent in the Polyak formula. Key features
of SLBLR include the decomposition (or “partial optimization” with respect to subsets of
decision variables) of the problem into subproblems and the exponential reduction of com-
plexity, enabling efficient coordination through iterative updates of multipliers. Table 2.1
compares the key characteristics of three important Lagrangian relaxation techniques. Due
to these characteristics, SLBLR is identified as a technique of particular promise for solving
large-scale MILP planning problems. In general, these Lagrangian relaxation-based meth-
ods can frequently achieve performance enhancements over commercially available software
by a factor of 2-3 times, and as high as 4 orders of magnitude [19].

Lagrangian relaxation-based methods have demonstrated the ability to efficiently
exploit the drastic reduction of complexity upon decomposition as well as to efficiently
coordinate the subproblems to obtain near-optimal solutions for operation optimization
problems in a computationally efficient manner. Lagrangian relaxation is well-suited and
is expected to be beneficial for coordinating multiple subsystems and supporting decision-
making in complex problems like California’s large-scale power system investment for de-
carbonization as well. For these reasons, SLBLR will be used to solve the decarbonization

model developed in Chapter 3.

20



2.3 Technical Method

In this section, we present a two-timescale formulation for the power system plan-
ning problem. At the hourly level, we formulate a unit commitment problem, responsible
for committing and dispatching resources to meet load and ancillary service requirements.
Meanwhile, the yearly level modeling focuses on investment decisions, governing the con-
struction or retirement of resources. Subsection 2.3.1 presents the formulation for single-
week unit commitment. Subsection 2.3.2 then integrates the single-week unit commitment

formulation into the multi-week, multi-year planning model.

2.3.1 Single-Week Unit Commitment

Unit commitment (UC) will be considered over a time period 7 with 1-hour res-
olution. Every UC variable is indexed temporally by (y, w, ) — a tuple consisting of year,
week, and hour. For the sake of conciseness, in this subsection, we formulate all constraints
that are generic for any year and week. Thus, we omit y, w indices and let (y, w, £) = (o).
In the planning model formulation, these constraints will be enforced over ally € Y, w € W.
To circumvent the need to define the initial status of units in UC, time periods will be con-
sidered to be consist of a circular set of hours 7, in a fashion echoing that of the RESOLVE
package [93]. That is, all constraints that link hours are enforced between the end of the
period back to the beginning, as shown in Fig. 2.1.

This idea is operationalized by using the modulo operator to track hours. Gen-
erally, circular time is calculated as () = mod (¢ — 1+ T, T), ensuring time values stay

within the period’s range. For constraints which link hours, such as ramping constraints,
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Figure 2.1: Visualization of the circular representation of time.

hours extending past the regular period loop back to the start. This circular approach is
only applied to the time variable z. During normal periods (where ¢ ranges from 1 to 7'),
t is simply equal to itself. This time linkage is enforced within each period w, but there is

no time linkage between periods and each w is considered disjoint from others.

Generation Resources

The generation fleet consists of five basic types of generation resources: thermal
units, renewable resources, firm resources, storage resources, and large hydro resources.
These formulations are based on the formulations presented in [93], [120], and [81]. These
types of resources and their constraints will now be discussed.

Thermal Units. Thermal units include various types of gas-fired power plants such as

combined-cycle gas turbines, fast-start peaking power plants (“peakers”), steam turbines,
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aeroderivative combustion turbines, and coal-fired plants. The outputs of thermal units are

subject to generation capacity constraints:

Pou(®) < pu(®) < Pvu(D), YVte TLue U, (2.1)

minimum up- and down-time constraints:

T(tﬂTu)
vu(n) = UTyvi(t) —vi(t —1)], YVt € TTu € U, (2.2)
n=t+1
T(tﬂTu)
[1 —vu(n)] 2 DTu[vui(t —1) —vu(0)], Vi€ Tu € U, (2.3)
n=t+1

and ramp-rate constraints that include ramp up- and down-rate constraints:
pu®) < pulz(t = 1)) + RUu(z(t — 1))
+ SULvu(8) = vz (t = D)1 + Pu(1 = wu(D), Vi€ Tu € U, (2.4)
shutdown ramp-rate constraints:
pu® £ Pavu(z (t + 1)) + SDu[vi(t) — vz (t + 1))], Vi€ Tu € U, (2.5)
and startup ramp-rate constraints:

pu(®) = pu(z(t — 1)) — RDuwu(2)

— SDvu(z(t — 1) = vu()] — Pu[1 —vu(z(t — 1)), Vi € Tu € U (2.6)

Thermal units incur fuel costs as well as startup/shutdown costs. The fuel costs
are modeled as a linear function of the commitment status and generation level: GCI, -

vu(?) + GCSy - pu(t). Additionally, there are fixed costs for starting up (suc,) and shutting
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down (sdc,). These fixed costs are applied each time the unit is turned on or off:

SUC(1) = max(0, vi(t) — vu(z(t — 1)) - sucy, Vt € T,u € U, (2.7)

SDCu(£) = max(0, vu(z(t — 1)) — vu(D)) - sdcw, VYt € T.u € U. (2.8)

Renewable Resources. Renewable resources are utility-scale solar and wind farms, and
an agglomeration of behind-the-meter customer solar. Renewable resources are described
by generation shape generally represented as a certain percentage of the resource’s rated
capacity PF;(¢) in a given hour, depending on the solar irradiance or wind speed. The power
output of a renewable resource is equal to this amount minus any curtailment. Curtailment

incurs a cost related to the loss of production tax credits <t as:

pr(t) = IC - PF(t) — peri(f), YVie T,r € R (2.9)

Firm resources. Firm resources, such as nuclear, small hydro, biofuel, geothermal, and
combined heat and power, are grouped together with renewable resources in our model.
These firm resources generate a consistent amount of power every hour. Unlike other types
of resources, they are neither schedulable nor curtailable.

Large Hydro Units. Large hydro units are dispatchable hydro resources, which are

subject to weekly energy budget constraints:

I
pr(t) X 1 hour < B, Vh € H, (2.10)
teT
ramp limits:
pr(®) — RLy < pu(z(t+ 1)) < pu() + RLy, YVt € T, h € H, (2.11)
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and generation capacity constraints:

Ppn<pu®) <Pn VteTheH (2.12)

Storage Resources. Storage resources include pumped and battery storage. These re-
sources can charge using overgeneration and discharge to serve undergeneration. Storage
resources are defined and limited by their power rating (MW) and energy rating (MWh).
To enforce minimum duration, particularly for pumped storage resources, storage resources
have a binary discharge (1) or charge (0) status. Charge and discharge rates are modeled

separately to account for efficiency losses, and are subject to minimum:
0< p;(t) <(- vs)pE,s VieTs€S (2.13)
and maximum rate constraints:
0< p;i(t) < vspﬂ,s VieT,seS (2.14)

Storage resources are subject to battery capacity limits - a minimum and maximum

state of charge constraint:
C,<C(<Cs VieTse€S. (2.15)
Storage resource state of charge balance is governed by:

Cd=Q—-09C Lzt — 1))+ p@Dn° s_Pd(J)_lndx 1hour,Vte T,s € S (2.16)

Zones and Lines

A zonal unit commitment model is employed to represent the California Indepen-

dent System Operator (CAISO) and the Western Interconnection, encompassing distinct
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zones: CAISO, three balancing authorities within California (LADWP, IID, BANC), and
two out-of-state aggregations (NW, SW). Each zone is interconnected with at least one
other zone through transmission lines, with power transfer between zones modeled as deci-
sion variables. This approach, often referred to as a ’transportation’ transmission model,
omits the need for detailed power flow analyses, reducing the computational complexity of
the problem while facilitating a comprehensive representation of the interconnected system.

The incidence of line / on zone z is captured by /;, taking o values for non-
incidence, and values of 1 and -1 to denote reference directions of line / into and out of
zone z, respectively. Transmission is associated with a transmission cost ¢ which captures
wheeling costs, and can be derived from Open Access Transmission Tariffs [94]. The power

flows are subject to line capacity constraints:

FI<fio<F, YteTle€L (2.17)

Load and Reserve Requirements

The ancillary service requirements must be satisfied with resources in CAISO. Each
reserve product is modeled individually. Superscripts fr, sr, If T, reg T denote frequency
response, spinning reserve, load following up, and regulation up products, while If |, reg |
denote the load following down and regulation down products. The exact amount of each
product in this formulation is specific to CAISO, but the formulation is readily adaptable
to the reserve requirements of other system operators. Products can only be supplied up to

the headroom and footroom available for thermal units:

P + p(0) + pYT (0) + prea T () < Povu() — pud), Yt € T,u € U, (2.18)
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pff 0) +przg¢(t) < pud) — Pold), Vi€ Tue U, (2.19)
and hydro units:
I +p(0) + p’fTh(z) + preghT () < Pr—pu(), Vi€ T he H, (2.20)
p;fzi(t)+pr;9¢(z) <pu®) — P ,h‘v’te T,h € H (2.21)
Thermal provision of frequency response is limited to 8% of the current output as:
pi() £ 0.08pu(1), Vie T,ue U. (2.22)

For products other than frequency response, ramping limits must also be obeyed for thermal
units:

P + piJ @+ pres ") <RUW, Vie Tuel, (2.23)
piff () + przgj’(t) < RD,/6, Yt€ T,u € U, (2.24)
and hydro units:
PO+ P (0 +ps' () < RLw6, V1€ TheH (2.25)
pllfl”i () + pr;ﬂ(t) < RLi/6, Yt € T, h € H. (2.26)

Storage can provide each product up to the headroom and footroom of both power capacity:

@) +po(0) + pfT () + prea T () < pd() — pA(0) + pe(1), Vi€ T,s € 5, (2.27)
S S S S S S S
P + preat (1) < pe(d) — pe(d) + pd(0), Vi € T, s € S, (2.28)
S S S S S

and energy capacity:

20 + p(0) + YT @)+ prea T () € C(f) = C, Vi e Tos € 8, (2.29)
S S S S
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PP @O +pet() <G —Cl), YieTseS (2.30)

S S
Up to half of the load following down can be provided via curtailable renewable resources:
P <os5LF L (), YieT,rer (2.31)

up to the available footroom:

P (0 < IC. - PE&) — port(t) — p(H), Vi € T,r € R (2.32)
r r

For every hour, 770MW must be held for frequency regulation. Regulation up,
regulation down, and spinning reserve each require 1% of the CAISO load. Load following

up and down requirements are based upon renewable penetration scenario analysis carried

out by E3:
| | | I
P+ PO+ pf) = 770MW, t€ T,z = o, (2.33)
ueu, heH, SES,
| I [ I |
i) + @) + () 2 0.01L(), t € T,z = 0, (2.34)
uel, heH, SES,
L L L
pt+  petO+  peg’ ()= 0.01L(0) 1€ Tz=0, (2.35)
uel, heH, SES;
¢ L ¢ L l
PO+ preg (D +  prey () 2 0.01LA0), t€ T,z =0, (2.36)
uel, heH, SES,
L 0 L T L 0
i+  ph@O+ pri@=2LF T () teTz=o, (2.37)
uel, heH, SES;

l o |2 L A\’ o l
o+ pho+  pri@+  pr@=LF |l () reTz=0  (2.38)
uelU, heH, seS, reR,
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Each zone within the ISO area must satisfy the zonal power balance constraints

(2.39) as:
L L [ I [ I
pu® + [pUP) — pe)] + pr(®) + pr(D)
ueU, SES; reR, heH,

L
+ i) =L(0), te T,z € Z (2.39)
leL

Unit Commitment Objective

The objective of unit commitment is to minimize the startup and shutdown costs,

fuel costs, transmission costs, and renewable curtailment costs as:

< _
Cgen = SUC(t) + SDCu(t) + (GCLy - vi(£) + GCSy - pu(?)) X 1 hour

teT ueU |
L L L
+ Si1(o) - ct + ceurt -pCl;”(t) X 1 hour. (2.40)
teT leL teT rerR

With this, we can write the unit commitment optimization problem as the mini-
mization of the cost 2.40 subject to all operational constraints.
min Coen (2.41)

s.t., (2.1) — (2.39)
In the next section, we take this basic formulation and transform it into a broader planning
model by optimizing over a set of years and weeks, and allowing for resource investment

alongside dispatch.

2.3.2 Decarbonization Planning

The objective of decarbonization planning is to minimize the total cost associ-

ated with meeting carbon emissions and renewable generation goals from power generation
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through 2045. The total cost encompasses both annual energy expenses (including main-
tenance) and the capital costs of constructing new capacity of zero-carbon resources and
lower-carbon power plants.

In the present study, it is assumed that the development of new resources will be
restricted to the CAISO territory. However, the problem formulation remains broadly ap-
plicable. The portfolio of potential resources encompasses wind, solar, and energy storage
at various sites, as well as geothermal, biomass, and several categories of gas-fired power
plants. Decisions regarding the retirement of existing thermal units may also be consid-
ered, with certain technologies, such as coal and nuclear, already possessing predetermined
decommissioning schedules. In this section, all constraints will be enforced for each year
Vy € Y, and for CAISO only z = 0 where zonal subsets of resources are concerned.

First, let us define the build status of thermal units. Let /U.(y) represent the
binary operational status of unit « in year y, where 1 indicates the unit is operational and
may be turned on. /U3(y) denotes the planned status of unit u, where 1 signifies the unit is
operational, and o indicates the unit is decommissioned or not yet constructed. /U2(y) and
1Ut(y) define whether the unit is built and retired, respectively, in year y. Consequently,

the relationship between the planning layer and the unit commitment layer is expressed as:

IU0) = v, w, ), Yue U we W, te T, (242)

which constrains the unit commitment status v, to turn on only if it is operational as:

v
[U0) = TURG) + (UPEY) — TUTY)). (2.43)

Y=1
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Installation of additional capacity of renewable generation units (indexed by r)
and storage units (indexed by s) is considered to be a continuous variable and the logic

capturing the installation capacity follows that of (2.43) as:

1
IC(y) = ICB(y) + (ICPGY) — ICTEY)), (2.44)
Y=1
L
ICE{(y) = ICER(y) + (ICEb(Y) — ICE™(Y)). (2.45)
Y=1

New capacity of these types can be installed in discrete amounts on the order of tens of
watts, which is effectively continuous compared to the scale at which these resources are
installed. Storage capacity has two components, one each for energy capacity (MWh),
denoted as ICE, and power capacity (MW), denoted as /C. The total installed capacity
of each renewable resource is defined in a similar way to that of the thermal units, with the

chief difference being the decision variables become continuous instead of binary:

v
IC(y) = ICR(y) + (ICPCY) — IC(Y)). (2.46)

Y=1
The installed capacities of these units impact the unit commitment formulation in different
ways. The maximum rate of charge/discharge is equal to the rated capacity, represented as
p;(y) = p‘igy) = ICs(y). The maximum/minimum state of charge corresponds to the rated
energy capacity, multiplied by a percentage factor associated with the operational range,
denoted as Cs(y) = ICEs(y) - €. For batteries, these values typically range between 0.1
and 0.9 for degradation considerations [132], while for pumped storage, they are closer to 0

and 1 [114]. Regarding renewables, /C,(y) defines IC, for the specified year in (2.9).
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Let the cost of energy generation for year y be denoted as (9e. This cost is
composed of the same components as the function being minimized in the unit commitment
given by (2.40). Within the planning problem, unit commitment is performed for a sample
of several weeks per year. Each sampled week is assigned a weight w,, that conveys its
representative factor to the annual load profile, with the sum of these weights amounting
to 52, corresponding to the number of weeks in a year. The yearly unit commitment cost is
calculated as the weighted sum of the weekly unit commitment costs. It is also weighted by
the yearly weight w,, which encodes the number of years represented by y. Consequently,
the cost of generation in year y and week w in (2.40) is expressed as G/, and the annual

generation costs can be written as:

qen = a)y Ow * )ujen. (2.47)
wew

Yearly maintenance costs are considered as a function of the installed capacity and the cost
of maintaining a given technology. Renewables have a single cost component expressed in
$/MW. Thermal units have a single cost component in $/unit. Storage has two maintenance
cost components, for rated energy ¢, and rated power ¢, expressed in $/MWh and

$/MW, respectively. The cost of maintenance for the year y is then:

L | I
qn-l = wy' IUu}y ‘ Clm —+ ICEs,y ‘ C;n’E
uelU seS
L L L
+ ICsJy - an’P"' ]Ck,ycmk"' ICh]y ‘ Cn}.l . (2.48)
seS keK heH

Lastly, let us consider the investment costs for constructing new resources. Annualized
costs are assessed for every year after a resource is constructed. Each thermal technology is

associated with an annualized capital cost per unit, denoted as c§}. Similarly, storage and
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renewable technologies have an annualized capital cost per megawatt (5/MW), represented
as cyy "Pand ce, respectively. Additionally, storage has an annualized capital cost for
y,r

energy capacity, expressed as c$/2":

| L L
co_ |y UG - e+ (ICP()) - coan?
y u y,s s s
y=y uelU seS
L L )
+ (CEY(Y) - cc@F + (IC(y)) - ¢ . (2.49)
seS re€R
The objective function of decarbonization planning is:
I_ .
min O = min Cge" + C’g + C"LU ) (2.50)
yey

The planning process in decarbonization is subject to various constraints, which are central
to formulating effective strategies. These constraints comprise emissions targets, renewable
energy penetration, and system reliability. In this study, the analysis focuses solely on the
constraints utilized by CAISO, excluding other balancing authorities. Thus, for notational
clarity, the subscript z denoting zone will be used, with the specification that z = 0 for these
planning constraints.

Emission Limits. Carbon emissions are generated when energy is produced by thermal
plants. CAISO is subject to an emissions constraint specifying that the emissions associated
with all generation within CAISO, as well as emissions associated with imports, must be
less than the emissions target for year y, E,. Given the emissions associated with unit
u in tons/MW as e,, and the emissions associated with imports ¢;, we can examine the

relationship between emissions and energy generation:
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L L L L )

E, > ww * ew ' pu(y,w, ) + el -max(0, A fi(y, w, 1)) . (2.51)
wew teT uelU, leL
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Only imports count towards the emission constraint, and exports should not count to reduce
the emissions. Thus, the contributing emissions are lower-bounded by o.

Renewable Portfolio Standards. In addition to the net-zero emissions target by 2045,
renewable portfolio standards (RPS) impose interim requirements on the proportion of elec-
tricity generation from carbon-free resources, based on a percentage of CAISO’s annual load.
The majority of renewable energy sources qualify for RPS, with the notable exceptions of
combined heat and power (CHP) and nuclear power, which are grouped with renewables due
to their similar generation attributes. The following constraint ensures that the renewable

portfolio standards (RPS) are met for each year y € Y as:

L L [ I L L .
RPS,, - ow LO,w )< Ww pr(y, w, t) - RPSeligible, (2.52)
v ¥

wew teT wew reRteT

where binary variable RPS¢gible indicates whether a renewable source in the set R meets

L L .
the RPS criteria. Accordingly, RPS, - ,,ew @w ter Lo(y, w, 1) represents the required

amount of electricity generation from eligible renewable resources for the year y, based on
a percentage (RPS,) of the total annual load in CAISO.
Planning Reserve Margin. CAISO must also satisfy reliability requirements, partic-
ularly the planning reserve margin (PRM). These requirements ensure that the portfolio,
even with high renewable penetration, can meet energy demands. The PRM guarantees that
the peak load, with some additional headroom, in a given year is satisfied by the installed
capacity. Each resource contributes to the PRM by a fraction of its installed capacity.

For thermal units and large hydro capacity, it is modified by the net qualifying ca-
pacity fraction (NQC). Wind and solar are modified by the effective load-carrying capacity

(ELCC), a fraction that decreases as renewable penetration increases. Essentially, ELCC
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encodes the complex nature of variable generation, such as the behavior that increasing
installation of renewables, particularly solar, may have little effect on the peak net load,
which occurs in California in the early evening when solar generation is rapidly decreasing.
The ELCC is approximated by a 3-dimensional piece-wise linear surface, with axes repre-
senting the capacity of wind and solar, respectively. This ELCC surface is visualized in Fig.
2.2. Each solar or wind resource in CAISO contributes to the total axis value by its capacity

and a multiplier, denoted as mulois.
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Figure 2.2: Visualization of the ELCC surface.

The resulting 3D surface is comprised of flat segments referred to as facets, which
together create the overall shape of the ELCC representation. The facets simplify the

complex relationships between wind, solar, and ELCC by breaking down the surface into a
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series of linear segments, making it easier to analyze and understand the impact of different
resource capacities on the overall system [34].

Then, the ELCC value of each facet is characterized by an intercept and slope on
each axis. In the optimization, the final value for this piece-wise linear ELCC is determined
by setting the ELCC as the minimum of each facet value. With Ryins and Rsoier denoting the
subsets of CAISO wind and solar resources, the following equation computes the ELCC

for each year y based on the capacity of wind and solar resources in CAISO:

IQliz,wind D
ELCCy < C ICy,r'multax";)r O - slopeywindf

IQlfz,solar
+ 1 ICy,r - multgis L Xiopey, sotar s + intercepty s, f € Facets. (2.53)

Similarly, storage contributes through the 4-hour capacity. The ELCC of storage resources
is characterized by a two-dimensional piecewise linear surface:
ELCCys < interceptysy

\
SES.

| B ICE
+ min(IC y,s, Y:s

W) “mult ys . slopeysf, f € Facets. (2.54)

The following equation ensures that the planning reserve margin (PRM) for each
year y is met, taking into account the contributions from different types of resources, such
as thermal units, storage, wind, and solar:

gl hEH,
PRM, < IU, .Pu.NOCy + ELCCys + ELCCy + ICyNQCh. (2.55)
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Chapter 3

Computational Techniques

The problem formulated in the previous chapter belongs to the class of MILP
problems. MILP problems suffer from combinatorial complexity — because of binary de-
cision variables, as the problem size increases, the number of possible solutions increases
super-linearly thereby leading to a drastic increase in the computational effort. In this
chapter, to efficiently solve the problem, the recently proposed decomposition and coordi-
nation approach SLBLR [17] is deployed to exploit the super-linear reduction of complexity
upon the decomposition and the geometric convergence potential inherent to Polyak’s step-
sizing formula for the fastest coordination possible to obtain near-optimal solutions in a
computationally efficient manner.

The decomposition is operationalized by relaxing coupling zonal power balance
constraints (2.39). Given the additivity of the constraints and the objective function, the
relaxed problem is separable into individual unit subproblems. Subproblem solutions are

first coordinated through the iterative update of Lagrangian multipliers A. After the mul-
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tipliers have converged sufficiently, the primal problem is solved while fixing the majority of
the binary variables to their subproblem optimal values. The process for solving subproblems
is described next.
Relaxed Problem. After relaxing coupling constants, the relaxed problem is broken into
subproblems decomposed by groups of thermal units. While solving each subproblem, all
other thermal units’ commitment status, power levels, and build status are fixed at their
value in the previous iteration. Each subproblem is optimized with respect to all the
variables (both discrete and continuous) associated with the group of thermal units selected,
including commitment status, dispatch, reserve product supply, and investment.

After relaxing zonal power balance (2.39), which couples thermal units, the relaxed

problem becomes:

minL= min 5L A. R4 R . (3.1)
{p,v,I} 1

s.t,(2.1) —(2.38), Vye Y,we W,

(2.43) — (2.46), (2.51) — (2.55), Vy € Y,

where R = [r/(y,w, 1), Vz € Zy € Y,w € W,t € T] is a vector of zonal power balance

constraint violations across all zones and timepoints. The violation is given by r,(y, w, 1) =

L L L
ueu, i W, )+ ses, (D40, w 1) = ps0 w, D1+ yer, P W, )+ hem, PRy, v, D) +

L
e iy, w, ©) — L(y, w, £). A is a vector of Lagrangian multipliers, and c is a penalty

coefficient acting on the absolute value of constraint violations. For notational brevity,
let p represent all power-related variables (including line flows), v represent all binary

commitment variables, and I represent all investment variables.
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The solution process is presented in Algorithm 1. Subproblems are formulated
by selecting Qx - a group of units to be optimized with respect to at iteration £ and
by fixing decision variables collectively denoted as {p, v, I} that do not belong to Q are
fixed at previously obtained values {p*™t, vk™1, I¥"1}, In particular, all units are split at
random into groups, and these groups are iterated through during the subproblems. In each
iteration, all non-thermal-unit variables are also solved.

After one subproblem is solved, the multipliers are updated along “surrogate”
subgradient directions, which are violation levels of relaxed constraints, with an appropriate

stepsize as follows:
Ak = ARt 4 gk - RE (3.2)

Here “tilde” (7) indicates that the constraint violations are obtained approximately
without optimizing the relaxed problem with respect to all the units at a time. Penalty
coefficient ¢ acts on the absolute value of constraint violations. Care must be taken to
update ¢ since if ¢ is initialized “too large” or grows “too quickly,” it can hamper the
convergence of multipliers thus severely impacting the iteration time. Further discussion of
the role of ¢ and strategies for updating it can be found in [123, 82].

The nature of the problem can contribute to slow convergence since renewable
resources are generally dispatched at identical costs. While each renewable project has
a unique investment cost, generation is associated with zero marginal cost. Therefore,
with high penetration, a large amount of renewable resources respond identically to the

multipliers. The dispatch of these resources may jump between maximum and minimum,

40



and multipliers may oscillate and overshoot optimal multipliers. The mechanism by which
this occurs will be elucidated through an example.

Consider a single-hour simplified illustrative example where renewable generation
exceeds load, and disregard the penalty coefficient ¢ for simplicity. The optimization prob-
lem min L will minimize R by curtailing all generation, for any positive value of the multi-
plier A. Conversely, with a negative A, there is no curtailment, resulting in overgeneration.
While this is a simplified example, similar behavior is exhibited for the dispatch and con-
struction of resources. Essentially, Lagrangian multipliers serve as “price signals,” causing
renewable resources with similar costs to exhibit similar responses. This can lead to solu-
tions jumping and, consequently, to the zigzagging of multipliers.

To alleviate the solution jumping issue, specifically, to suppress the jumping of
solutions, each continuous power variable is restricted within A = 500MW of its value from
the previous subproblem. Experimental results suggest that the value of A is not
particularly sensitive, with values in the range of 250MW to 1000MW having similar effect
in experiments. This parameter is best set experimentally, as it depends on the number of
projects, size of projects, relative costs of projects, load, and so on. The suggested range
for this parameteris 0.5% to 2% of the average load. If this parameter is too small, dispatch
variables will lag behind updated multipliers and not react in proportion, but if it is too
large, convergence of multipliers will be poor due to large dispatch oscillations. The
procedure also alleviates zigzagging since with suppressed jumping of solutions, the
corresponding multiplier-updating directions tend not to change drastically (i.e., become

smoother) eventually leading to a smoother update of multipliers. From the multiplier
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convergence perspective, to alleviate the overshooting issue, proper stepsize selection plays
an important role as explained ahead.

Stepsize Update. The step size, denoted as s, plays a pivotal role in the proposed algo-
rithm’s convergence. Following the methodology outlined in [17], the step size is computed

as follows:

gk

- (3-3)

sk=(y

In this equation, { and y are hyperparameters that are chosen to balance the
trade-off between convergence speed and algorithm stability. While in the original work
of Polyak [78] y < 2, which would be appropriate for standard Lagrangian relaxation that
utilizes subgradient directions for multiplier update, in further “surrogate” extensions of LR
[133, 17], y < 1. Moreover, since level value ¢« represents the current overestimation of the
dual value, {'is chosen in a way to reduce stepsizes (e.g., { = 1/2). Since the method solves
one subproblem at a time, y is chosen to be the reciprocal of the number of subproblems.
Overall, as compared to standard LR, this method allows for a more frequent update of
multipliers along smoother directions with smaller steps leading to the alleviation of the
“overshooting” issue mentioned above.

The step size is initially set using an overestimation of the optimal dual value. The
value of ¢  is not static, rather, as detailed in [17], it undergoes periodic adjustments based
on a level-based resetting mechanism, which detects the lack of multiplier convergence.
This resetting process is designed to lower ¢  to approach the actual (dual) optimal value
in light of new information obtained during the iterative procedure, thereby refining the

overestimation of the dual value and guiding the algorithm toward the optimal multipliers.
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In essence, this approach to updating the step size is grounded in dynamism and adaptivity.
By making use of gathered information and tuning the step size accordingly, we can expedite
convergence and enhance the efficiency and robustness of the overall algorithm. For more

information, interested readers are refered to [17, 62].

Algorithm 1: Surrogate “Level-Based” Lagrangian Relaxation
initialize A=0,¢,9 o (y

for k=1.. do

select subproblem units Q ;

solve subproblem min Lk with Ak (3.1) =& Rk;
if /R*/ < threshold then

break ;

end

if A not converging then
reset ¢

end

— 71k
S"%(-y-q’iil‘;
/RA

Ak+1%Ak+Sk'Rk;

end

Solve primal problem with heuristic partially-fixed binary variables

Feasible Solution. Although the method is guaranteed to converge towards the optimal
(dual) solution [62], obtaining zero constraint violations through multipliers alone is often

difficult or impossible. As a result, a heuristic is necessary to find a feasible solution to the
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primal problem. Once the multipliers have converged such that the constraint violations are
sufficiently low, the primal problem is solved by fixing the commitment status of most units
to the values obtained in the relaxed problem. The above heuristic presents a fundamental
trade-off: constraining fewer variables in the primal problem requires greater computational
effort but may lead to lower overall costs. Nevertheless, as empirical evidence suggests in
the chapter ahead, by solving the entire primal problem but with respect to only a small
number of units, the primal problem is much easier to solve and can generally be solved to

near-optimality.
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Chapter 4

Results

4.1 Numerical Study

4.1.1  Experimental Setup

The decarbonization model is based on the Western Interconnection. The model
incorporates CAISO and 5 other zones: LADWP, BANC, IID, and aggregations of non-
California balancing authorities in the Northwest and Southwest. The data used within the
model is taken from the RESOLVE implementation published by CPUC [34]. To reduce
computational complexity, rather than model every year, and every hour of every year,
it is typical to model representative periods. We model 8 weeks per year, and biennially
from 2023 to 2045. The model has 91.1 million continuous variables and 11.8 million
binary variables, roughly 40x more total variables than in RESOLVE. We use Gurobi on a
workstation with an AMD Ryzen Threadripper 3970X CPU to solve the subproblems and

primal problem. The total solution process takes less than 48 hours. Each iteration accounts
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for approximately 25 minutes, although the exact time varies considerably and tends to slow
as the multipliers converge. Fig. 4.1 shows the average absolute value of the power balance
constraint violation over iterations. A feasible solution is attained at 75 iterations. At this
point, the constraint violations are low enough that a solution to the primal problem can
be recovered. As a direct comparison, the model is also deployed on the same set of
representative days as RESOLVE. The solution process in this case takes approximately 24
hours, with a feasible solution obtained at 120 iterations. Finally, the models are compared
over representative days with a higher emissions scenario, representing an emissions limit
of 38 MMT by 2030, instead of 30 MMT as in the other scenarios. A feasible solution is
obtained at 9o iterations and 18 hours. Due to the number of modeled timepoints being
substantially reduced, at 37 days per year as opposed to 56 days per year in the case of
representative weeks, the time for each iteration is much shorter. Although these solution
times are slower than continuous relaxation-based solution models, which can often be run
in less than 12 hours, these solution times are not unreasonable in the context of long-term
planning.

To reduce computational complexity, rather than modeling unit commitment for
full years, representative weeks are sampled and used instead. The sampling method follows
the method used in RESOLVE studies [48]. We diverge from RESOLVE by modeling repre-
sentative weeks rather than representative days, and the advantages will be demonstrated
in the results. Histogram bins » € B are created from features of the data, most importantly
the distributions of hourly loads. Then, an optimization problem is solved to select weeks

and corresponding weights which minimizes the Manhattan distance of bin frequency in the

46



Average Absolute Value Violation (GW)
(&)}

4
3
2]
14
(I) 1|0 2|0 3|0 4IO 5|0 6|0 7IO
Iteration

Figure 4.1: Minimization of constraint violation as Lagrangian multipliers converge.

full year to the representative weeks.

L L )
min Y earlyFreqy — ww * WeeklyFrequp (4.1)

beB weweeks

The optimization horizon is through 2045, and financing through 2065. Due to the
sampling of weeks and years, it is necessary to weight the weekly and yearly components
to ensure that costs assessed over different timescales are accurately balanced. In essence,
weights ensure that the costs according to representative periods and years are scaled to
approximate full timespace costs. The capital costs in (2.49) are amortized. Then, these
costs are assessed for every subsequent year to the decision in the optimization horizon.
Note that this also accounts for residual value of new capacity. All costs are in real dollars,

but the yearly weight should capture the time value of money, with an assumed discount
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rate of 5%, and the number of real years represented by the sampled year:

L o)

1.05 ) (Y(L/+1) - Yy) (4'2)

a)yz

We compare the investment decisions of the proposed model with those of RE-
SOLVE. Maintenance and investment cost comparisons can readily be made. However,
for operational cost comparisons, it is necessary to analyze RESOLVE'’s investment deci-
sions under the detailed MILP unit commitment model. For both models, in each year,
investment decisions are fixed and unit commitment is solved, with a modified emissions
constraint as described in (4.3). This modified constraint allows for violations of the emis-
sions limits £, penalized by a large value M. The exact value is not critical, and the
optimization should tend towards minimizing emissions even without this penalty, because
investment decisions are not considered here and carbon-free resources generate with zero
marginal cost. The same SLBLR method is used to solve these dispatch problems. In each
case, the difference between the integer feasible solutions and the linear-relaxed objective
value ranges from 0.5% to 1.5% of the linear-relaxed objective value, and no pattern ob-
served towards any set of solutions achieving lower gaps. This metric can be considered
similar to the MIP gap, used by commercial solvers like Gurobi to quantify the quality of a
mixed-integer solution. However, it is not equivalent, because the lower bound used by the

MIP gap is updated during branch-and-bound, while the lower bound is fixed in the above
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metric.

min Coen + M - Evio 4.3)
y y

s.t,(2.1) —(2.39), Vw € W,

| I L L
Ey+ EYo > Ow " eu* pu(y, w, )
wew teT uel,
L )

+ e - max(0, Afily, w, 1)
leL

4.1.2 Results

We first compare the fleet of RESOLVE to the fleets of our model when optimized
over both the same representative days as RESOLVE, and the proposed representative
weeks. Cost comparisons are presented using both the proposed representative weeks and
RESOLVE'’s representative days. The proposed method with representative weeks will be
generally referred to as SLBLR, with the suffix of “day” or “week” added where the
distinction is necessary. In each of these cases, operational costs are determined using (4.3)
over representative weeks. Including the SLBLR Day case in these comparisons allows for
a better demonstration of which component of the improvement comes from more detailed
MILP modeling and which component comes from more extensive modeling of weeks.

With the goal of decarbonization by 2045 in mind, a comparison of CAISO fleets
in 2045 is shown in Figure 4.2. Compared to RESOLVE, our model builds fewer solar and
storage resources. However, this is not the case throughout the optimization horizon.

Figure 4.3 shows the fleet composition from 2023 to 2045. Our model begins investing in
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Figure 4.2: Comparison of CAISO fleet in 2045.

additional capacity, especially solar, much earlier than RESOLVE, and holds more total
capacity than RESOLVE until 2045.

The likely explanation for the lower build of renewable resources in RESOLVE
during this transitional years is that the overestimated flexibility of thermal resources un-
derestimates the running costs of thermal units, as well as their emissions. In fact, RE-
SOLVE’s investment decisions, when applied to the SLBLR model, cannot satisfy emissions
constraints between year 2027 and 2045, and overemits anywhere from a few thousand to
several million tons of GHG per year. Due to this underestimation, RESOLVE chooses to
defer investment in renewables to later years. As evidence of the cost underestimation of
running gas generators, Table 4.1 shows the shutdown, startup, and fuel costs for CAISO gas
generators in 2022, before substantial investment occurs. The costs shown for RESOLVE
are with respect to their linearized, clustered unit commitment formulation. RESOLVE

underestimates fuel costs by roughly 20% and, vastly underestimates startup and shutdown
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costs. Thus, this may explain why RESOLVE’s investment plan leans more heavily on gas
units. Similarly, RESOLVE drastically underestimates the emissions in 2022, although it is
still within emissions limits. California Air Resources Board estimates emissions of roughly
40MMT from in-state electricity production in 2020, which is much more aligned with our
model than RESOLVE. The takeaway is that if RESOLVE results are used to inform policy
decisions, it may be difficult to meet intermediate emissions targets due to under-investment
in renewable energy and storage.

By a similar token, the differences in wind vs solar investment may be explained
by the more accurate modeling of gas generators. When gas generators are modeled more
faithfully, wind may have a more complementary load shape. Even today, ramping poses
difficulties during early evening hours in which load is increasing and solar generation is
rapidly decreasing. With solar capacity more than doubled, this effect will become even

more pronounced.
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Figure 4.3: Comparison of CAISO fleet over time.
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Table 4.1: Comparison of CAISO 2022 Baseline Generation Costs
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Figure 4.4: Battery state of charge for an exemplary week in 2045.



The storage state of charge for an exemplary week in August 2045 is shown in Fig
4.4. As expected, the state of charge is at its maximum in the late afternoon and its
minimum in the early morning. A feature of note is that the state of charge maximum and
minimum vary by roughly 30GWh. This indicates that energy is being shared between days,
behavior which is enabled by modeling longer representative periods. In contrast, if energy
sharing is not allowed, as in the case of modeled days in RESOLVE, the state of charge
must be equal at the beginning and end of the day. Also of note is that our model builds 5
less GW of storage, but only 6GWh less energy capacity. In 2045, our model builds battery
storage with approximately 8 hour duration vs 7 hour in RESOLVE, and pumped storage
with 100 hour duration vs 90 hour in RESOLVE.

Yearly costs are shown in Fig 4.5. Our model maintains lower operation costs in
almost every year. Investment spending is higher in early years, but increases at an overall
lower rate, resulting in lower investment costs in the second half of the study period. Costs
shown in Fig 4.5 are yearly, including financing of investment from earlier years, and not
adjusted for discount rate. As shown in Table 4.2, with generation, investment, and
maintenance costs included but neglecting emission violations, our model presents a
savings of 1.2%, or 4 billion dollars through 2065. This includes all costs for CAISO as well
as operating costs for the other WECC zones. As a reminder, investment in non-CAISO
zones is exogenous, and CAISO investment has a limited impact on outside operating costs.

When considering CAISO costs alone, our model saves 1.9%.
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Figure 4.5: Yearly cost breakdown for CAISO.

Table 4.2: Comparison of Total System Costs. 2022 $, Billions.

System Cost CAISO Costs
Total Total | Op. | Maint. | Invest.
RESOLVE 341.35 205.86 | 32.42 | 65.38 | 108.06

SLBLR, Day 336.47 202.53 | 26.23 | 52.96 | 123.35
SLBLR, Week 337.36 201.93 | 22.73 | 56.01 | 123.19

Table 4.3: Comparison of total CAISO costs under range of per ton carbon costs. 2022 §,
Billions.

Total CAISO Costs
Tax SO $30 $100
RESOLVE | 205.86 | 207.51 | 211.38
SLBLR, Day |202.53|203.07 | 204.31
SLBLR, Week | 201.93 | 201.93 | 201.93
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As exceeding emissions targets comes at the direct benefit of avoided investment
in renewables and storage, it is critical to examine the total cost with some component for
the cost of over-emissions. These costs are calculated using the optimal objective values
and the emission violations E;io with a tax cv©, as:

[ I

Cjen + Cr; + CITI}U +wy - cvio . Evig. (44)
yey

Table 4.3 shows the total CAISO costs under different values of a carbon tax per ton of
GHG emissions over the limit. Two carbon tax rates are shown to essentially bookend the
cost of exceeding emission targets. A carbon tax of $30 roughly corresponds to the 2022
California cap-and-trade clearing price [100]. A carbon tax of $100 roughly corresponds to
the Department of Energy’s Carbon Negative Shot goal for direct air capture cost per ton
[102]. Due to sampling days vs weeks and increasing the total number of modeled days
roughly 50% from 37 to 56, the average load in the representative weeks scenario is slightly
higher than the representative days. Emissions constraints are binding constraints in most
years in all three models. Thus, it is unsurprising that our own SLBLR Day investment
decisions have emissions violations in the representative week evaluation. Crucially, the

SLBLR Day scenario has less than 1/3rd of the total violation of RESOLVE.

Table 4.4: Comparison of total CAISO costs with representative days under range of per
ton carbon costs. 2022 S, Billions.

Total CAISO Costs
Tax $o $30 | $100

RESOLVE | 204.34 | 205.96 | 209.73

SLBLR, Day | 194.84 | 194.84 | 194.84
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To demonstrate that these results are consistent across varied problem instances,
two further comparisons will be made. In each, all input parameters are identical between
RESOLVE and SLBLR. The first compares the investment plans of RESOLVE and SLBLR
when operated over representative days in (4.3). The comparison of RESOLVE to SLBLR
optimized over representative days provides a more isolated comparison of the value of
more rigorous generator modeling. The results of this experiment considering a range of
carbon taxes are presented in Table 4.4. In this scenario, again our model produces no
violation of emissions, while RESOLVE investments result in several million tons of GHG
overemitted each year. Even neglecting any cost of overemission, our more detailed model
has a nearly 5% lower total cost, primarily due to increased investment and correspondingly
lower operating costs. With a $100 carbon cost, the gap grows to over 7%. The second
comparative scenario is again over representative days, but with a higher emissions limit. A
similar pattern is present in this case. RESOLVE has several million tons of overemissions,
and SLBLR has savings of 2.0% to 4.2% depending on carbon tax cost. As is intuitive, the
costs with a less aggressive emissions limit is less expensive in both cases. Again, the
message is the same: the simplifications to generator modeling underestimate both emissions
and fuel costs. This both underestimates the requirement for and value of renewable and
storage resources.

Finally, the performance of the proposed method is validated against the per-
formance of other optimization techniques towards solving the full MILP model. First, a
state-of-the-art package enabling Dantzig-Wolfe and Benders’ decomposition of MILP prob-

lems [35] was used. These methods are the closest competitors to surrogate Lagrangian
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relaxation methods, as they also allow for decomposition of difficult MILP into more man-
ageable subproblems. Even a reduced model, with 5 instead of 12 modeled years, fails to
find a feasible solution within 48 hours. Next, the model was implemented using the Opy-
timizer Python package [31]. This package implements many metaheuristic optimization
algorithms. In a time limit of 48 hours, genetic algorithm, particle swarm optimization, and
simulated annealing are unable to find a feasible solution. As a further point of comparison,
the original surrogate Lagrangian relaxation [133] fails to find a feasible solution within 48
hours. As such, we conclude that the SLBLR method is particularly suited to solving this

type of large planning model, over many of the other advanced optimization techniques.

4.2 Conclusions

This concludes the discussion of the core decarbonization model. In Chapter 2, a
MILP decarbonization model for California is developed. To overcome the issue of combi-
natorial complexity with integer variables, SLBLR is implemented in Chapter 3, and allows
us to optimize over nearly 100 million variables including 12 million binary variables in
under 48 hours. In Chapter 4, we show that the existing, linearized model underestimates
operational costs of gas generators, leading to a substantially different investment plan. By
doing so, we develop an investment plan that saves California 4 billion dollars over the
investment horizon. Further, our model suggests more substantial and early investment in
renewable generation and storage is required to meet intermediate emissions targets. This
result may inform policymakers that a more aggressive approach is needed than previous

work sponsored by state commissions.
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The following chapters will extend this decarbonization model to examine novel
approaches to representative period selection, integration of smart charging for medium-

and heavy-duty vehicles, and climate change scenarios.
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Chapter 5

Novel Approaches to

Representative Period Selection

A key component of any planning study is representative period selection. Plan-
ning models, including the one developed in Chapter 2, usually involve two-time scales: one
for annual investment decisions and another for hourly generation dispatch simulations. The
complexity of solving the optimization problem increases significantly when attempting to
model all 8760 hours in a year, potentially leading to slow or intractable computations.

To mitigate this challenge, one solution is to use representative periods, which
can significantly alleviate the computational load. For instance, rather than modeling all
8760 hours annually, one can solve 37 representative days, reducing the modeled hours by
almost 90%. The main goal in selecting these representative days is to capture the essential
aspects of the entire yearly system behavior while substantially reducing the computational

intricacies involved.
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This chapter will present two novel approaches to representative period selection.
These approaches have similar goals but different focuses. The following section will review
existing works on the topic of representative period selection, and identify two gaps in the

literature which these works seek to fill.

5.1 Related Work

The problem of representative period selection in power system planning has re-
ceived much attention in the literature. The majority of the work on this topic has been
built around the framework of time series clustering. The authors in [110] compare a va-
riety of clustering methods. The authors in [75] present a comparison of clustering and
downsampling approaches. In [117], a clustering method is proposed which requires that
each cluster consist of a contiguous set of days, while a downsampling-based approach is
proposed in [64]. These clustering-based approaches all share the common drawback that
they are only suitable for the selection of representative days, and not periods of multiple
days in length, as will be discussed in detail later.

Some works seek to model a year continuously to better model long-term storage
[76, 112]. In these works, the temporal reduction is achieved by holding an operating state
for multiple hours. However, within the CEM, this approach severely affects ramping
modeling. The ramping requirements, particularly those originating from the so-called
’duck curve’ due to high solar penetration, are a critical aspect that needs to be modeled.
Representative hour approaches have also been proposed [65, 9], but suffer the same loss of

chronology and thus the ability to track energy storage and ramping.
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The method used in Chapter 4 is a histogram-based approach [48]. This method
was used in this study to isolate the deviations from the reference study to the selection of
weeks and the improved generator modeling. This method ensure that the sampled
periods accurately represent the loading levels of a full year, but neglect the importance of
variability of renewables. This method also neglects chronology, and accounts for loading
levels as equivalent regardless of when they occur during the day.

There are limited studies that utilize other features for clustering. In [59], clus-
tering based on investment cost is proposed, along with a technique for extreme period
selection. The authors in [79] examine the trade-off between temporal and technical mod-
eling detail and propose period selection based on RE variability.

While a considerable amount of research effort has been devoted to the representa-
tive period selection problem, the majority of it has focused on clustering algorithm design.
In contrast, there is little work dedicated to the selection of power grid features to be used
within the clustering algorithm. Indeed, the majority of representative period selection
methods use a greenfield approach, assuming no existing capacity, which is an impractical
assumption for real power systems. Furthermore, these approaches overlook features highly
relevant to capacity expansion planning, such as transmission congestion, RE curtailment,
and load shedding. The first study, in Section 5.2, addresses this gap.

On the other hand, these works are all dedicated towards selection of representative
days. The selection of longer representative periods poses unique challenges due to the

clustering framework relied upon. With the interday variability of renewable energy and
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growing importance of energy storage, the ability to model longer periods is vital, as it

enables energy to be shared between days. Section 5.3 presents a study addressing this gap.

5.2 Representative Period Selection for Robust Capacity Ex-

pansion Planning in Low-carbon Grids

This study integrates additional operational features into a general time series
clustering framework to select representative periods, thus improving the efficiency and
accuracy of the clustering process. By enhancing the clustering framework with these
tailored operational features, we strive to provide a more robust and insightful analysis of
the underlying temporal patterns used in capacity expansion in the presence of high RE

penetration and extreme events.

5.2.1 Technical Method
Feature Selection

In practice, CEMs do what the name suggests: determine optimal strategies for
adding energy resource capacity. The current resource fleet within a system might be sub-
optimal or insufficient for future years, as a result of a variety of drivers including the
following examples. Environmental regulations may limit the use of gas-fired generators.
Increasing loads could necessitate additional capacity. High fuel costs may also make it
more economically viable to invest in additional energy storage or renewable resources.
Therefore, it is crucial to consider the characteristics of the existing capacity when selecting

representative days. While existing methods for representative period selection have disre-
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garded this aspect, our objective is to incorporate the attributes of the existing capacity
into the process of choosing representative days.

To this end, we propose including features that encode the existing capacity, but
are typically not considered during clustering. This section identifies these features and
justifies their inclusion. These features are referred to as operational features, as they are
outputs of system operation, in contrast with demand and generation, which are inputs to
operation. Namely, these features are load shedding, transmission congestion, and renewable
curtailment.

Load shedding, sometimes known as rolling blackouts, refers to interrupting some
portion of loads, generally as a last resort for load balancing. Load shedding events are
increasingly associated with extreme weather events, like heat waves or cold snaps. Load
shedding is associated with considerable economic cost, as well as potential loss of life, as
evidenced by the 2021 Texas power crisis [26]. Load shedding is a key metric for resource
adequacy and can be avoided with proper planning. Inclusion of this feature in represen-
tative day selection could help select periods that stress the existing resource fleet, thus
leading to more robust capacity sizing.

Curtailment refers to disconnecting RE generation to prevent overgeneration. Cur-
tailment occurs when renewable generation exceeds demand, and this excess cannot be
exported or used to charge energy storage systems. Including curtailment will better ac-
count for days where renewable capacity is already sufficient, as well as select periods which

demonstrate the value in expanding storage capacity.
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Congestion refers to a $/MWh transmission cost. Congestion exists when there is
more demand for transmission capacity than there is physical capacity. Including this fea-
ture should help select periods which would be relevant to expanding transmission capacity
by identifying periods with excess RE generation which could be exported to other areas.

Each of these operational features can be readily obtained from the output of a
production cost model (PCM). Because these features can be obtained by running a PCM
in discontinuous days, the computational complexity associated with long timescales that

necessitates the use of representative days in the CEM is irrelevant.

Dimensionality Reduction

Often, capacity expansion models consider wide geographic areas. Thus, there are
load forecasts at many nodes, as well as renewable generation profiles at different locations.
Each time step further inflates the dimensionality of each sample. Attempting to cluster
without reducing the spatial dimensionality of these features could produce sub-optimal
results. For load, renewable generation profiles, and congestion, this is done in the straight-
forward method of averaging the time series over the spatial dimension. Some operational
features should be highly sparse. In particular, curtailment should be zero in most hours,
and load shedding should be even less common. For this reason, the spatial dimension of
these features is reduced by taking the maximum. Each feature is normalized to zero mean,
unit variance before it is clustered. With each feature reduced to a time series of length
8760, we can construct the feature matrix x € R36524™6 by reshaping the time series and
concatenating each feature. Each element x,, € R24™6 represents the multivariate time

series for a given day.
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Extreme Events

The goal of representative day selection is to find a subset of days that best cap-
ture the annual behavior of load and generation. However, this goal conflicts with the need
to simulate extreme periods. Extreme weather events may only occur for a small fraction
of days each year, and thus are unlikely to be selected during typical representative period
selection. Within power system planning, extreme events are an extremely important con-
sideration. If enough generation capacity is not held, the reliability of the system during
extreme weather patterns could be compromised. Similarly, if there are periods of abnor-
mally low renewable generation, the system could struggle to cope with demand. With
climate change and an increasing push for decarbonization, these extreme events will be-
come even more important. Several works have proposed methods for selecting extreme
events based on peak load, peak ramping, or other features [104, 59]. Through the numeri-
cal study, we will show that inclusion of operational features in clustering implicitly selects
these representative periods. In particular, the inclusion of load shedding as a feature in

representative period selection effectively captures the inadequacy of existing capacity.

Clustering

To select representative days, the periods are clustered using k-means. Given N
samples, the goal of k-means is to generate K clusters with centers ux and assign a cluster

label to each multivariate time series x;,.

K
min | 1xn — wil |2 (5.1
k=1n=1
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where 7, is a binary variable that indicates that sample x, belongs to cluster &
and must satisfy (5.2),
K

k=1 Vn€eEN (5.2)
k=1

Although the optimization problem in (5.1) is NP-hard, computationally efficient
heuristics exist and are implemented in widely-used Python packages, such as scikit-learn
[74]. Clusters will be represented by their medoid in the capacity expansion model. This
is necessitated by the dimensionality reduction discussed in Section 5.2.1, precluding a
backwards map from the low-spatial dimension representation used in clustering to the high-
spatial dimension used in the CEM. The medoid is selected after clustering as the sample
with the smallest Euclidean distance to the centroid. The weight of each representative

period is chosen as the cluster cardinality.

5.2.2 Experimental Validation
Experimental Setup

The proposed clustering technique is validated using a CEM and PCM for the
Western Interconnection. Only single-year planning is considered, and the year modeled
will be referred to as the target year. First, the PCM is solved for the target year using the
existing generation capacity. Then, the features described in Section 5.2.1 are extracted and
used within the proposed clustering technique. Finally, the representative days correspond-
ing to the cluster medoids are used to run the CEM for the target year. To evaluate the

performance of the investment decisions made with the representative periods, the PCM is
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then run again with updated investments. Fig. 5.1 demonstrates the flow of the numerical
study.

Proposed Representative Simulation Model for
Period Selection Method Validation

Load, Generation Forecasts

Capacity Expansion Model
Investment Decisions

Y

Production Cost Model
Feature Extraction

h 4

Production Cost Model

v Evaluation
N
Clustering <
Representative Period
Selection
/

Figure 5.1: Flow of proposed method and numerical validation.

The CEM is the planning model derived in Chapter 2, and the PCM is equivalent
to the single-week unit commitment model derived in 2.40.

Planning models, like the one derived in Chapter 2, typically include a planning
reserve margin (PRM) constraint, requiring that the fleet be able to provide some margin
greater than the maximum projected load. As a result, regardless of clustering performance,
the investment decisions will produce a fleet that can most likely satisfy all load require-
ments. In some cases, if this constraint is particularly tight, the final resource investment
plan may be predominantly determined by investment costs, thus diminishing the value of

improved representative day selection. In other words, system operation may determine
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the optimal fleet up to some MW of capacity, but any requirement for capacity above that
may be determined only by which resource is cheapest per capacity. In the numerical study,
results will be shown both with PRM omitted and with a minimal PRM, equal only to the
maximum load and not a margin above, as is typical.

To demonstrate the performance of the proposed technique, we compare the in-
vestment decisions obtained using the proposed clustering method to those using only tra-
ditional features, namely the load and renewable generation profiles. The performance of
investment decisions is evaluated using two metrics: cost and reliability. Reliability is eval-
uated using both the number of load shedding events and MWh of load shedding. Cost is
the combined cost of maintenance, investment, and operation. Within the PCM, load
shedding is available at $50,000 per MWh. Investment costs are amortized to allow for

single-year planning.

Results

We evaluate the performance of the algorithm through two lenses: load shedding
and total cost. We also look to the blend of resources to evaluate how representative day
selection affects valuation of one resource group versus another. The proposed method is
compared to a base method, in which the clustering step only accounts for load, solar, and
wind. This method is representative of what is commonly utilized in the literature, and
performs similarly to many other selection methods [110]. Fig. 5.2 shows the behavior of
the clustering method with respect to the net load in 2030. The proposed method captures
a more diverse set of net load conditions, whereas the base method tends to select fewer

extreme points.
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To better understand the impacts of the proposed method, results will be shown

under several planning scenarios, with several target years. K-means heuristics are not
deterministic and are highly dependent on initialization. To address this, most implemen-
tations run the algorithm multiple times and choose the result with the lowest cost function.
Still, the selected days and weights can vary, so the numerical study is repeated three times
for each scenario and averaged. Unless stated otherwise, 20 representative days are selected.
The two PRM scenarios will be shown with target years of 2025, 2030, and 2045.

We also show the results for 2025 in which economic retirement is not allowed and for 2045
in which economic retirement is required for 50% of all in-CAISO units. No such constrained
retirement will be demonstrated for 2030. The justification for including these scenarios is
as follows. Without PRM, the effect of representative day selection on resource adequacy
should be more obvious. With PRM, there should be a smaller effect on resource adequacy

and a greater effect on system costs.
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Table 5.1: Total cost comparison of base and proposed method investment decisions (Mil-

lions $)
Year | Pen Method PRM | No PRM Con§tra1ned
Retirement
Base 13,372 13,354 12,468
Yes Proposed 12,412 12,407 12,442
2025 Improvement | 7.18 % 7.09 % 0.21%
Base 12,461 12,472 12,466
No Proposed 12,412 12,407 12,442
Improvement | 0.39 % 0.52 % 0.19%
Base 14,507 14,666 -
Yes Proposed 14,503 14,255 -
Improvement | 0.03% | 2.80%
2030
Base 14,448 14,141 -
No Proposed 14,470 | 14,239 -
Improvement | -0.16 % | -0.69 %
Base 23,713 23,649 23,481
Yes Proposed 23,414 21,323 21,351
2045 Improvement | 1.26% 9.84% 9.07%
Base 23,545 22,011 21,052
No Proposed 23,414 21,323 21,351
Improvement | 0.56% 3.13% 2.74 %
Net Load of Selected Days
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Figure 5.2: Average hourly net load of full year and selected representative days.
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Table 5.1 shows the total cost for each target year with the proposed method and
the base method. The base method often requires considerable load shedding, which greatly
increases the total cost. To give a point of comparison without this effect, costs are shown
both with and without the load shedding penalty component, denoted by ‘pen’. Note that
for the proposed method, the penalty and no penalty values often are equal as there is no
load shedding. In every case with load shedding penalty, the proposed method leads to
lower or nearly identical costs. Omitting the load shedding costs, the proposed method
generally has comparable costs to the base case. This indicates that the proposed method
produces more realistic capacity plans, which, in turn, lead to a reduction in load shedding,
with only moderately higher investment costs.

Fig. 5.3 shows the costs for 2030 without PRM, both with and without load
shedding penalty. As expected, the capacity plan resulting from representative days with
the base features requires more load shedding in the PCM. This load shedding is a result
of lower capacity, which in turn has lower investment costs. However, the capacity plan
resulting from the proposed method, has only slightly higher investment costs. With load
shedding costs ignored, the total costs are only 0.69% higher for the proposed method.
Investment costs are 2.6% higher, but are offset by lower operational costs and much lower
load shedding costs. With load shedding costs accounted for, the total cost is drastically
lower.

Fig. 5.4 shows components of capacity expansion by resource class for 2030. Intu-

itively, the scenarios with PRM have increased investment regardless of the representative
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Figure 5.3: Operation and capital costs for 2030 without PRM.

day selection. The proposed method leads to greater investment in both energy storage and

renewable generation. The methods have roughly equal retirement of gas-fired generators.
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Figure 5.4: Capacity expansion decisions in 2030.

Fig. 5.5 shows the sensitivity of the number of representative days for 2030.
Regardless of the number of representative days, the proposed method leads to lower load
shedding, both in the number of events and the average MWh of shedding per event. As
previously suggested, this indicates that the inclusion of the proposed operational features

implicitly selects extreme conditions more effectively.

5.2.3 Conclusion

In this section, we proposed a novel method to select representative days that can
be used in capacity expansion models. The proposed method better accounts for existing
capacity by considering key novel operational features during the clustering step. By in-

cluding these features, the resulting capacity expansion plan exhibits improved load-serving
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Figure 5.5: Sensitivity of number of representative days on load shedding.
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capability and cost savings as compared to the base-feature case. The proposed method was
validated on a capacity expansion model based on decarbonization goals in CAISO. Sev-
eral planning scenarios and horizons were studied. In all scenarios, the proposed method
resulted in lower load shedding in the full-space production cost model, as well as lower or

comparable costs even when the cost of load shedding is neglected.

5.3 Selection of Intermediate-Length Representative Periods

The references cited in 5.1 primarily concentrate on the selection of representative
days and offer general assertions regarding the algorithm’s ability to choose periods of vary-
ing lengths, such as a representative day or week. However, let us consider the case where
the desired period is of an intermediate length, such as 3 days. The time series clustering
framework upon which the majority of representative period selection algorithms are built,
requires the full time series to be divided into subsequences. Clustering these subsequences
becomes highly dependent on the starting point. In particular, the load exhibits significant
differences in both shape and magnitude between weekdays and weekends. For example,
the Euclidean distance of a Friday-Saturday-Sunday subsequence to a Saturday-Sunday-
Monday subsequence would likely be large because the loads of Friday would be compared
to Saturday and the loads of Sunday would be compared to Monday. On the other hand,
clustering of overlapping subsequences, obtained by sliding a window across the full time
series with a stride shorter than the subsequence length, has been established to return
essentially random results [54]. Even in the case of representative weeks, there are con-

siderable drawbacks. Generally speaking, capacity expansion problems tend to reduce the
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annual temporal coverage to roughly 10% or less. In the case of days, this permits 37 days,
but in the case of weeks, this permits only 5 weeks. Intuitively, one would expect that
representing a full year is more difficult given 5 choices than 37 choices.

Considering the limitations of existing clustering methods, along with the need to
capture interday variability in CEMs subject to high levels of energy storage and renewables
penetration, the selection of representative periods longer than one day becomes imperative.
Indeed, enabling interday sharing of energy through storage modeling is a crucial, yet often
ignored, aspect that would become particularly valuable during days of low generation from
renewable resources.

While the selection of a representative period length is fundamentally an experi-
mental design decision, there exists a noticeable gap in research when it comes to effectively
choosing a period longer than a day but shorter than a week. To bridge this knowledge
gap, we introduce a novel snippet algorithm specifically designed for selecting representa-
tive periods that extend beyond a single day. By comparing subsequences instead of full
sequences, the proposed snippet algorithm is able to select representative periods of arbi-
trary length from complex datasets. The proposed algorithm draws significant inspiration
from [50]; however, we have made several tailored adjustments to accommodate the unique

domain to which our proposed algorithm is applied.
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5.3.1 Technical Method

Overview of time series snippets

The discussion of time series snippets below provides a concise overview of the
algorithm that served as the inspiration for the proposed method in Section 5.3.1. The time
series snippets algorithm is built on top of the matrix profile distance (MPdist) [37] measure,
which is in turn built on top of the matrix profile [131]. MPdist compares two-time series
and considers them to be similar if they have similar subsequences. At its most basic level,
the distance is the j-th smallest Euclidean distance between subsequences. More specifically,
the goal of time series snippets is to select, from a time series 7 with length ¢, subsequences
of length s that best generalize the full-time series. First, the full-time series is separated
into non-overlapping subsequences S; with i € [0, #/s— 1]. Each of these subsequences then
has an MPdist profile MPdist; compared to the full-time series. If each MPdist; were plotted,
the goal would be to select the & profiles that minimize the area under the curve of the
combined profiles, as shown in Fig. 5.6. To select these representative subsequences, a
greedy algorithm is proposed, choosing the subsequence that gives the greatest reduction in
the cumulative distance in each iteration.

The key contribution of these matrix profile-related methods is that they scale
well to extremely long time series. The problem of representative period selection for power
system planning typically considers one year of data at hourly frequency, for a time series of
length 8760, which is extremely short in that context. Further, we do not need to calculate

the distance measure for every subsequence, as we can exploit the known daily periodicity
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Representative Period Selection
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N

Figure 5.6: Visualization of distance profiles and minimization of area under the curve of
selected profiles.

of our time series. For this reason, we can calculate a distance measure similar to the
MPdist without relying on algorithms related to the matrix profile. This also enables
us to utilize overlapping subsequences as S;. Finally, the problem size allows us to select
the representative snippets through convex optimization rather than relying on a greedy

algorithm.

Proposed Method

LetT=A{T[o],... T[htbp!],..., T[t — 1]} represent the yearly multivariate time
series of length ¢ and T [Abp!] be the tuple of measurements at hour / € [0, — 1]. This tuple
typically encompasses load, solar generation, and wind generation information; however,
the proposed method remains agnostic to the input features, providing adaptability in the
analysis. Let also S = {So, ... S}, ... Sm—1} be the set of subsequences, and « the stride of the

window that generates subsequences of length s. The subsequence S;j is then defined
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as:
Si=T[j-u:j-u+s] (5.3)

There will be m = = + 1 total subsequences, thusj € [0, m — 1]. These will be the candidate
subsequences used for selecting representative periods. Similarly, we can define non-
overlapping subsequences of 7', which we will refer to as segments. There willbe n = ¢

such segments, thusi € [0, n — 1]. The segment T; is then defined as:
Ti=TL-u:(G+1)ul (5.4)

A visual representation of the definitions can be seen in Fig. 5.7. For clarity, i will be

reserved to index the time series segments 7; and ; to index the subsequences ;.

To] | T(1) | T[2] | T(3] | T(4] | T(5] | T(6] | T(7) | 78] | TY9] |T(n0] |T11]

So S3
To] | T[1] | T[2] T(6] | T[7] | T[8]
\ 4 + \ 4
u=2 —> S1 s= Sy
79 | T[3] | T4 I8 | T[9] | T[10)

Figure 5.7: Visualization of an example time series 7 and subsequences S; with u = 2,
s=3.
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Inspired by the MPdist, let D be a matrix of distances with shape n X m. For
our case, we will assume u and s are chosen such that »n, m, and s/u are integers. We
also have domain knowledge of periodicity. Each of the features, especially load and solar
generation, have strong 24-hour cycles. It is unlikely that an afternoon subsequence from
one day would be similar to a nighttime subsequence from another day. Further, this is
physically meaningless in the context of capacity expansion. For this reason, whereas the
MPdist compares subsequences for every timestep, we apply stride u = 24 in calculating
the distances. In essence, this compares each day in the multivariate subsequence to each

day in the full multivariate time series, and assigns a distance correspondingly.

Di; =min [|S[x-u:+1)-u]l =T}, x€ o0° (5.5)
X u

The goal is then to find a subset of those candidate days which best captures the
patterns for the year as a whole. This goal is the same as the one visualized in Fig.
5.6. Time series snippets were originally proposed with a greedy algorithm that iteratively
selects the subsequence which minimizes the cumulative sum of distances to the full time
series, necessitated by the long time series the algorithm was designed for. Because our

time series is rather short, we can instead formulate this problem as a mixed integer linear
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program and find the solution using any suitable optimization solver.

min = dist; (5.6)
a
=0

S

!
dist; = md;j- Dij, Vi€ [o,n)

Jj=0
i
mdij =1, Vi€ [0,n)

Jj=0

mdij < a;, Vi€ [0,n), Vj€ [0,m)

dist € Rt, md € [0,1]"™, « € [0, 1]™,
where k is the desired number of representative periods; ¢; is a binary indicator select-
ing subsequence S; as a representative period; dist; is the minimum distance between the
selected representative periods to 7;; and md;; is a binary indicator signifying that sub-
sequence S;j has the smallest distance to day 7;. Within CEM, representative periods are

typically weighted by the amount of the year that they account for. The weights associated

with each representative period are a function of md;j, and can be written then as:

|
wj = md;j/(s/u), (5.7)

=0

where s/u ensures the weights sum to 365.

5.3.2 Experimental Validation
Experimental Setup

To the authors’ knowledge, no work has made a dedicated attempt to address

the sampling of intermediate-length representative periods in capacity expansion planning.
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This absence poses a challenge when comparing the proposed method with widely used
state-of-the-art approaches. We will compare the performance of the proposed algorithm
to a popular method for selecting representative days, and show that our algorithm is at
least comparable with the state-of-the-art for this task. The proposed method will also be
used to compare single-day planning to multi-day planning. The goal of this comparison
is to show the value in simulating representative periods longer than one day, particularly
in sizing energy storage. Our goal is not necessarily to show the optimality of a particular
representative period length, but rather to demonstrate the differences between period
lengths on investment plans and operational cost.

The following general experimental design will be used to validate the proposed
method. First, the representative days are selected and used within the CEM. Then, the
investment decisions are fixed, and the model is solved again as a production cost model.
The production cost model (PCM) is ran for the full year in two-week stages, and results
from this will be referred to as fullspace results. The choice of two weeks is somewhat
arbitrary, with the key being that this length is considerably longer than each of the candi-
date representative period lengths to avoid giving bias towards any particular length. The

models described in 5.2.2 will be used.

Results and Discussions

First, we compare our method to a popular approach for representative day se-
lection: k-means clustering using load, wind, and solar profiles with medoid cluster center
representation used in the CEM. We use our proposed algorithm with subsequence length

s = 24 to select 21 representative days. Our algorithm has a total cost (investment, main-
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tenance, fullspace operations) of 14.560 billion US dollars as compared to 14.611 billion
US dollars. [110] compared many clustering techniques for power system planning, and
established that there are not clear patterns on which technique is best, and many have
comparable performance. With this in mind, we can suggest that even for representative
day selection, our proposed method is at least comparable with one of the most commonly
used representative day selection approaches.

With the validity of the proposed method established, we now seek to defend the
motivation behind selection of longer representative periods. This will be explored via
investment, fullspace operation cost, emissions, and the investment portfolio, considering
representative periods of 1 to 5 days, i.e. with subsequence length s € [24, 48, 72, 96, 120].
In each case, periods are adjusted to model a total of 35 or 36 days, nearly 10% of the

annual days.
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Figure 5.8: Fullspace emissions

Fullspace emissions are shown in Fig. 5.8. None of the scenarios meet fullspace
emissions limits. The primary driver of emissions is investment in renewable generation
and energy storage. Once these technologies are purchased, their use incurs no additional
operational costs in the unit commitment model. However, the PCM is myopic in terms
of emissions, and may take actions which lead to lower costs but higher emissions, such as
export generation from thermal units in CAISO. As the fullspace model is run in discontinu-
ous segments for reasons of computational tractability, it is impossible to effectively enforce
emissions limits. It is difficult to say which, if any, of these fleets would be able to satisfy
the emissions limits. Still, it is notable that 3-day representative periods present the lowest
emissions, and longer, and thus fewer, periods have substantially higher emissions. This

suggests that by modeling an intermediate-length period, interday energy storage can be
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leveraged to lower emissions. However, as the length of period grows, the number of periods
must shrink. Without a sufficient number of periods, it is difficult to select periods which
represent the annual behavior sufficiently well. This is illustrated by the higher emissions
in the 4 and 5-day cases, which sample 9 and 7 periods respectively.

The duration of installed storage, and installed power and energy capacity of
storage as a function of representative period length for 2030 and 2045 are shown in Fig.
5.9. With regards to storage duration, the key takeaway is that increasing the length of
representative period allows for utilization of storage for interday energy sharing, and the
duration increases for lengths between 1 and 3 days. However, the tradeoff between number
and length of representative seems to impact the ability of the surrogate days to effectively
represent the full year, leading to less predictable effects with lengths over 3 days. With
regards to the power and energy capacity of storage, a similar pattern is evident. Between
lengths of 1 and 3 days, the installed capacities generally increase, and then begin to decrease
again. This result is in line with the emissions result.

Fig. 5.10 shows the cost by year for each scenario. As one would expect from the
emissions violations visualization, d = 4 and d = 5 have the lowest overall cost due to less
build of renewable technologies. Most notable is that the d = 3 result is very close to the d
= 1 result despite larger investment. This suggests that by representing longer periods, it
is better able to capture the fullspace value of interday energy sharing. Thus, the cost of
additional investment is offset by lower operating costs. Specifically, the total costs for

2030 are 1.1% higher but have 7.1% lower emissions.
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Figure 5.9: Impact of representative period length on duration and capacity of installed
energy storage.
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Figure 5.10: Investment and operation costs of differing representative periods
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Fig. 5.11 shows an elbow plot of the objective function of (5.6). Intuitively, for
a given number of total modeled days & X s/u, the objective is best for more, shorter
representative periods. The gap between the lines is larger at the lower total modeled days
and begins to converge at higher. This characteristic explains why, for a fixed total modeled

days, the representation degrades with higher period length.
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Figure 5.11: Elbow plot of objective function (5.6) at different representative period lengths.

5.3.3 Conclusion

In this section, we proposed a novel algorithm for selecting representative periods.
The algorithm is particularly directed towards selecting periods longer than a single day,
and is well suited for planning in systems with high penetration of variable renewable energy
and reliance on energy storage. The method chooses representative days which minimize a

distance measure to the timeseries of the full year. The proposed method was validated on
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a CEM based on California’s decarbonization targets. The proposed method is competitive
with the state-of-the-art for representative day selection, and we demonstrate the impact

of representative period length on investment strategy.

5.4 Conclusion

This chapter proposed two novel methods for representative period selection. The
first method focuses on unique operational features within the framework of time series
clustering to support more robust capacity expansion planning. The second method con-
cerns the selection of representative periods of intermediate length, with the goal of better
modeling of interday energy sharing. The next chapter will utilize the second method, and
present a case study considering the adoption of smart charging of medium- and heavy-duty

battery electric vehicles.
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Chapter 6

Impact of Smart Charging on

Decarbonization Pathways

6.1 Introduction

California has set ambitious decarbonization goals across multiple sectors, includ-
ing transportation with the California Air Resources Board’s Advanced Clean Fleet reg-
ulation, and electric power generation with Senate Bill 100 and Senate Bill 350. As a result,
these sectors are expected to change rapidly over the next two decades. It is crucial that
these transitions be planned in tandem to ensure cost-effectiveness and reliable power
system operation.

It is well established that transportation and energy generation are becoming in-
creasingly linked fields as part of the response to climate change. Transportation electrifi-

cation is a key component of the energy transition, and vehicle charging load is expected
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to become a large share of the energy demand as penetration of electric vehicles increases.
This transition is occurring together with the shift from carbon-based to renewables-based
power generation.

Adoption of battery electric vehicles (BEV) is expected to both increase electricity
demand as well as impact the load patterns. A topic of recent interest has been leveraging
the charging flexibility of BEVs to reduce the impacts on power grid operation. A major
component of this is flexible charging, or V1G, which is the ability to control vehicle charg-
ing, typically to shift charging from a peak time to an off-peak time to lower stress on the
grid or to adjust the charging power with respect to pricing and demand response signals
from the electric utilities. Even further is V2G or bi-directional charging. In this case,
vehicles can discharge to the grid, to provide energy shifting or ancillary services.

From the perspective of large-scale implementation of flexible and bidirectional
charging, there are inherent advantages to medium- and heavy-duty (MHD) BEV over light
duty (LD) BEVs. The number of MHD BEVs is projected to be much fewer; in 2035
the projected LD BEV stock in California is over 15 million, whereas the MHD BEV is
approximately 400,000. The smaller number of MHD BEVs and chargers makes it inherently
easier to control and coordinate. Simultaneously, MHD BEVs are associated with larger
battery capacities than LD BEVs. MHD BEV are also likely to be operated with more
sophisticated planning in fleets, and may be less likely to be affected by the randomness
of the driving behaviors. MHD BEV adoption may also be shifted towards larger logistics
companies with the capital to purchase these vehicles, and operating a large number of

vehicles may influence the incentives of enrolling in flexible charging or V2G operations.
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These unique characteristics make MHD BEVs a more enticing candidate than LD BEVs
for pursuing flexible charging and V2G operations.

In this study, the adoption of MHD BEVs is considered exogenous to the decar-
bonization planning problem. It is assumed that the MHD BEV stock over years aligns with
the existing California policy requirements, such as CARB’s Advanced Clean Fleet Regu-
lation [88]. As such, enabling V1G or V2G services could help avoid installing additional
renewable generation or storage capacity with relatively little added cost and difficulty.

A great deal of literature has focused on the economic benefit of V1G and VaG.
However, the majority of these works have focused on short-term costs and the economic
benefit to the BEV owner. In [121], the potential revenue for BEV owners in California is
examined while paying attention to future grid behavior, including wide adoption of BEVs
and future grid changes. The value of BEVs has been examined for both managing load,
including V2G [8] and peak shaving [61] and for providing ancillary services, like frequency
regulation [115]. The authors in [116] look at a range of potential value streams for ViG
and V2G services.

Somewhat less work has been done to quantify the economic benefit of enabling
V1G and V2G services from the perspective of power system planning. These works gen-
erally optimize investment planning alongside dispatch and BEV charging scheduling to
provide lower infrastructure costs and avoid buildout of generation and energy storage ca-
pacity. Ramirez et al [84] present a co-optimization of power system planning with dispatch
of flexible charging with LD BEVs with a UK-based test system. Yao et al [128], Suski

et al [109], Hajebrahimi et al [44], and Gunkel et al [42] present similar co-optimizations
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with case studies in China, the Maldives, Canada, and the EU, respectively. In [32], an
analysis of the potential savings of V1G and V2G, including ancillary services, is analyzed
for LD BEVs in California. Xu et al [127] look at the potential emissions reductions of these
services, including life-cycle analysis of BEVs.

Similarly, most works have focused on LD BEVs, rather than MHD BEV. As
discussed above, these groups have rather distinct behavior, which affects both their the-
oretical value and practical implementability. In this work, we focus on this gap in the
literature, and examine the value of V1G and V2G in California’s decarbonization pathway,
specifically with respect to electrification of medium- and heavy-duty vehicles.

In this chapter, we examine the potential savings and implicit costs of V1G and
V2G services through the lens of California’s energy transition investment planning. We
start with the mixed-integer linear program (MILP) decarbonization planning model devel-
oped in Chapter 2 and incorporate a clustered representation of MHD BEV based on the
timing of charging and driving. The same surrogate Lagrangian relaxation-based technique
is implemented to provide computational tractability of the large MILP model. We analyze
the results of the three charging regimes under two MHD BEV driving scenarios, and show
arange of potential savings as high as 16 billion dollars. We also examine some of the costs
related to charging services to show that the cost savings these services provide are robust.
The remainder of the chapter will be organized as follows. Section 6.2 will integrate of MHD
BEV into the planning formulation. Section 6.3 will discuss results and policy implications.

Section 6.4 will present the conclusions.
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6.2 Technical Method

The planning formulation is broadly unchanged from the one developed in Chapter

2. This section will describe the integration of MHD BEV in the unit commitment.

6.2.1 Flexible MHD BEV Charging

MHD BEV with flexible or bidirectional charging capability, is modeled similarly
to storage resources, with the major exception that a large amount of discharge happens
exogenously through driving, during which these resources are not connected to the power
grid. To integrate MHD BEV into the planning framework, these resources are modeled as
dispatchable by a central system operator, rather than a virtual power plant controlled by
price signals. Each vehicle is associated with a charge start time, charge end time, starting
state-of-charge, and ending state-of-charge. It is assumed that the vehicle is plugged in and
available for charging for the entire duration that it is at the depot. These values essen-
tially determine the vehicles charging needs, as well as potential V2G provisions. Modeling
vehicles individually would make the problem computationally intractable; thus, vehicles
are grouped by their start and end hour to form virtual power plants. The power and
energy capacity parameters of the clusters are obtained as the summation of the individual
parameters of the MHD BEVs in the cluster. MHD BEVs are modeled as a demand-side
resource.

The control of MHD BEV clusters within optimization is operationalized by three

variables: state of charge C.(7), charge power p°(¢), and discharge power pd(7). These three
e e

variables are subject to limits based on the capacity of the cluster, as well as the timing at
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which the cluster is connected to the grid at the depot for charging vs disconnected from the
grid for driving. Discharge through driving is exogenous, and p.(¢) = 0 when the vehicle is
not at the depot. If V2G is not considered, discharge is not allowed and pd(r) =0, Ve T.

The definition of a period 7" allows for multiple days to be modeled consecutively,
and the same charge events occur each day. To account for this, we define the set of days
in the period D, where |D| = |T |/24 denotes the number of days in the period. We also
define a time wrap 7, to account for charging which occurs overnight. For each day, the
variable state of charge at the time of depot arrival and departure is set equal to the input

state of charge at the start (6.1) and end of charging (6.2).

Ce(tderot + d - 24) = Cderot NVd € D, e € E (6.1)
e e
Ce(rdrive + - 24) = Cdrive N/d € D, e € E (6.2)
e e
A = 24 if depot > ydrive g]ge O (6.3)
e e e

While the vehicle is at the depot, bounds of charge (6.4) and discharge rate (6.5), and
bounds on state of charge are enforced (6.6). State of charge is also tracked with provisions

for charger efficiency (6.7).

0<=p(z(t+d-24)) <=Q —ve(t))Ps Ve € E de D,t € [rderot rdrive + {A] (6.4)
e e e e

0 <=pUz(t+d-24)) <=vl)Ps Ve € E,dE€ D,t € [tdepot, rdrive 4 {A] (6.5)
e e

e e

Co <=Ce(t(f)) <=Cs Ve € E,d € D, t € [tdepot drive 4 (A] (6.6)
e e e

Ce(z(t + 1) = Ce(z(0) + pce(r(t)nce— pi(T(t))”i’

Ye€ E,d€ D, e [depot drive 4 (A — 1] (6.7)
e e e
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These BEV clusters can then be integrated into the broader unit commitment,
and thus planning, through the power balance constraints. Zonal power balance constraints
ensure that the generation and net line flows meet the load. Each zone must satisfy these
constraints as:

L L L L
pi®d) + [pU) —pe]l+  pr() + pr(®)

ueU, SES, reR, heH,

L L
+ i) = LD+ [pf) —pi®D] (6.8)

leL e€eE,

This formulation assumes that BEV can be perfectly controlled by a central oper-
ator. There are no provisions for virtual power plant control through price signals or user
decisions to opt out of certain charging actions. In line with the focus on California, we

assume that only CAISO has BEV flexible and bi-directional charging.

6.3 Numerical Study

This section will quantify the impact of V1G and V2G on Decarbonization plan-
ning. Subsection 6.3.1 will introduce two MHD BEYV driving and charging datasets and
processing them into planning model inputs. Then, we will present the results of the study,
both in terms of cost savings and the overall impact on power system investment. Finally,
we will examine some of the relevant costs, namely battery degradation and charging infras-
tructure, associated with V1G and V2G to draw conclusions about the value of adopting
these services.

The decarbonization model is a zonal representation of the Western Interconnec-

tion. The model focuses on CAISO, but also represents 3 small balancing authorities in
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California (LADWP, BANC, IID) and 2 aggregations of balancing authorities outside Cal-
ifornia in the Northwest and Southwest. Data is primarily taken from the RESOLVE im-
plementation published by the California Public Utilities Commission [93]. Representative
periods are selected using the sampling method in [5]. We use 10 representative periods of
3-day length. Investment is modeled in 5-year frequency from 2025 through 2045. Financing

is considered through 2065.

6.3.1 Specifications for MHD BEV

Accurate modeling of V1G and V2G services requires projections of both the
number of MHD BEVs and the operating characteristics of each vehicle, such as drive
duration and miles traveled. In general, there is a great deal of uncertainty associated with
long term planning models, due to the reliance on projections of future load, technology
costs, and so on. This is compounded by the fact that this planning model is reliant both
on the adoption of MHD BEV as well as the usage characteristics. While datasets exist on
the driving and parking characteristics of gas and diesel trucks, it is not known if the use
cases of MHD BEV will be the same.

To address this, we examine the impact of V1G and V2G MHD BEVs utiliz-
ing the simulated trip patterns in the HEVI-LOAD tool and we build an additional sce-
nario informed by the temporal patterns extracted from a historical truck driving dataset,
FleetDNA [98].

The two scenarios share the same technical underpinnings, such as MHD BEV
population, charger size, and kWh/mile driving efficiency. The principle difference between

the two scenarios is the temporal distribution of charging availability, as demonstrated by
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the comparison of drive start times in Fig. 6.1. By presenting both scenarios, it is possible
to get a look at a larger picture of the range in potential cost savings of ViG and V2G
and investigate the sensitivity with respect to the trip temporal patterns. These scenarios
also raise additional questions regarding the total cost and savings associated with enabling
these services.

The HEVI-LOAD scenario (Scenario HL) relies on the results of the HEVI-LOAD
tool, which [119] is an agent-based driving and charging simulation tool for MHD zero-
emission vehicles (ZEVs) developed by the Lawrence Berkeley National Laboratory in col-
laboration with the California Energy Commission (CEC). HEVI-LOAD takes multiple data
sources as input and resolves the integrated driving, parking, and charging/refueling behav-
iors of the future MHD ZEVs. Individual trucks are referred to as agents whose behaviors
are constructed and calibrated utilizing multiple data sources, such as adoption projection,
travel demand, telematics data, power-train specifications, etc. Trip origin and destinations
are provided at the traffic analysis zones (TAZ) level for better geospatial granularities. The
overall trip statistics in terms of vehicle miles traveled (VMT), energy consumption rate
(kWh/mile), and vehicle stock by segment have been validated with existing state policies.
HEVI-LOAD creates a virtual environment that replicates real-world transportation scenar-
ios with fine-grained representation of electrification scenarios. However, the high geospatial
resolution that HEVI-LOAD charging profiles provide are obfuscated in this study to match
the load zones as we consider only CAISO-level load.

The additional scenario with varied temporal patterns (Scenario FD) is informed

by the Fleet DNA dataset. This dataset is composed of thousands of historical drives
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across a variety of vehicle classes, vocations, and days. Each entry has several hundred
associated fields, but for our purposes, the key information extracted is drive start time,
drive end time, and VMT. Then, for each drive, the efficiency mapping in Table 6.1 is used
to convert VMT to kWh consumption. We assume that each vehicle charges to 100% before
departing. The SoC at depot arrival can be calculated as the difference between the capacity
and consumption. This dataset is combined with the California Energy Commission’s 2023
AATES truck adoption projections [90]. Similarly to the approach in [10], we bootstrap
from the Fleet DNA dataset according to the population projections by class and vocation.
There are several key assumptions. Of course, bootstrapping assumes that the distribution
of drive timing and distance present in Fleet DNA is the same as future MHD BEV drives
in California. We assume that every vehicle drives and charges every day. It is also assumed

that all charging occurs at the depot and there is no en-route charging.

Table 6.1: MHD BEV Technical Assumptions

Charger Size | Capacity | Efficiency
(kw) (kwWh) | (kWh/mile)
Class 2-3 150 100 0.6
Class 4-6 150 300 1.05
Class 7 150 400 1.1
Class 8 150 600 1.8

As previously mentioned, modeling each vehicle individually would make compu-
tations intractable. For both scenarios, it is necessary to cluster the individual vehicles,
and the same approach is used. We assume that if the vehicle is not driving, it is plugged
in at the depot, and vice-versa. As dispatch is modeled hourly, vehicle charge start times

are rounded to the next hour and vehicle charge end times are rounded to the previous
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Figure 6.1: Comparison of drive start times between two scenarios.

hour. This rounding is to prevent an overestimation in the time flexibility of vehicles. First,
clusters are generated by enumerating all possible combinations of start and end hour. Each
vehicle is assigned to a cluster. If the cluster size accounts for less than 0.1% of all vehicles,
this cluster is not modeled with ViG or V2G and left with a fixed charging profile, as this
cluster would increase the associated complexity of the problem while only mildly impacting
the solution due to the small number of associated controlled vehicles. This results in 87
clusters for Scenario HL, comprising in total 92% of all vehicles and 168 clusters for Scenario

FD, comprising in total 94% of all vehicles.
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As a result of the assumptions made in Scenario FD, and the methodology of
Scenario HL, the two scenarios have some key differences in addition to the trips’ temporal
patterns. In Scenario HL, approximately 1 out of 3 vehicles charge each day, as many
vehicles make short trips and do not need to charge. Scenario FD does not account for this,
and charges each vehicle daily. However, because the underlying assumptions on VMT per
day and truck efficiency are similar, the total daily MHD BEV load is extremely similar,
within 1%. This means in Scenario FD, the vehicles have considerably higher starting SoC,
as well as a much larger number of vehicles connected resulting in considerably higher total
power and energy capacity. The results will reflect this, and the ensuing discussion will
consider both the pros and cons of this detail in terms of cost.

We consider 3 charging regimes for both scenarios: a baseline case in which all
charging is fixed, V1G, and V2G. For Scenario HL, fixed charging profiles are provided by
HEVI-LOAD. For Scenario FD, the fixed charging profile is generated using the assumption
that 50% of vehicles charge immediately at full power and 50% charge with the lowest power

to fully charge by departure. For simplicity, all chargers are assumed to have 150kW rating.

6.3.2 Results

The key consideration related to ViG and V2G with respect to decarbonization
planning is quantifying how enabling these services lower the cost of power system de-
carbonization through lower investment, and potentially lower operation costs. Figure 6.2
shows the cumulative added capacity in year 2045. In general, V1G and V2G are associated

with lower build of renewable and storage resources.
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Figure 6.2: Comparison of installed resources in 2045.

By enabling V1G and V2G services, it is possible to avoid some of the installation
of renewable and storage capacity that are needed in the base scenario to meet emissions
targets. Accordingly, there are slightly less retirements of thermal units, which are kept
online to meet the planning reserve margin.

The mechanism by which these services lower investment costs is straightforward.
Figure 6.3 shows the gross load for an exemplary day in 2035 under fixed charging, Vi1G,
and V2G. Load is shifted from hours with lower renewable generation to hours with higher
renewable generation. In the case of V2G, MHD BEV are able to provide power injections

at critical hours to further reduce the need for energy storage. Most MHD BEV spend the
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bulk of the day driving, and thus are unable to charge when there would be most excess
generation. As such, charging is mostly correlated to periods with lower variable renewable
generation, and the cost savings comes mostly as avoided storage investment. This behavior
is demonstrated by the visualization of net load for each regime in Fig. 6.4. V2G flattens the
net load peak in the early morning, and recovers energy through the afternoon by charging

batteries of stationary vehicles when renewable generation is plentiful.
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Figure 6.3: Scenario FD gross load considering fixed charging, V1G, and V2G.

Figure 6.5 shows the MHD BEV load for each hour, averaged over the year 2035.
The shape of V1G and V2G load is broadly similar, with the key difference that V2G is

providing power to the grid for early morning hours, between 4am and 8am, then charging
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Figure 6.4: Scenario FD net load for an exemplary day in 2035.

quickly between 8am and 10am, when the bulk of vehicles are leaving. There is a large
spike in charging load in the morning, as other system loads are generally lower and solar
generation ramps up. This spike is even larger for V2G, as the vehicles provide power in
the very early morning.

The total costs as well as costs broken down by component are shown in Table 6.2.
As a resulted of the avoided investment in storage, there are substantially lower investment
and maintenance costs. These services also help lower operational costs by lowering the use

of thermal units. Scenario HL V1G and V2G present 3.5% and 4.6% savings over baseline
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Figure 6.5: Scenario FD MHD BEV hourly load averaged over year 2035.

in California costs, respectively. Scenario FD V1G and V2G present 1.8% and 3.0% savings.

The cost savings of V1G and V2G over fixed charging are shown per vehicle, per
year in Table 6.3. These costs are not discounted for the time value of money. In the worst
case, V1G saves a few hundred dollars per vehicle per year. In the best case, V2G saves

several thousand dollars for each vehicle each year.
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Table 6.2: Costs, billions 20255

Scenario HL Scenario FD
Fixed | V1G | V2G | Fixed | V1G | Va2G
Total Cost 397.5 | 384.4 | 381.0 | 401.8 | 397.1 | 391.8
CA Cost 247.8 | 239.2 | 236.3 | 251.7 | 247.1 | 244.2
Maint. Cost | 67.0 | 658 | 659 | 67.2 | 67.0 | 67.137
Inv. Cost 152.3 | 145.5 | 142.5 | 156.0 | 151.9 | 149.1
CA Op. Cost | 28.5 | 279 | 27.9 | 284 | 28.2 | 28.0

Table 6.3: Levelized Cost Savings over Fixed Charging (S per vehicle-year, Non-discounted)
2025 | 2030 | 2035 | 2040 | 2045
HL Vi1G | 2765 | 1337 | 1243 | 1378 | 997
HL V2G | 4317 | 1840 | 1510 | 1822 | 1350

FDViG | 871 | 592 | 431 | 457 | 724
FD V2G | 1277 | 1204 | 933 | 1005 | 999

6.3.3 Policy Implications

The decision to enable V1G and V2G services does not exist in a vacuum, and it is
crucial to quantify potential costs related to these services. The main two considerations are

the cost of battery degradation and the cost of charging infrastructure.

Degradation

Battery degradation is quantified using the BLAST model [97]. This model takes
an input SoC time series and returns a total degradation %. We run this model for each 5
year investment interval. The goal is to understand how V1G and V2G services impact
battery degradation over default operation. Understanding how the batteries degrade over
this interval helps evaluate the overall cost and value of these services.

Each cluster of MHD BEV is evaluated for degradation independently. The SoC

time series is created by stacking the MHD BEV SoC time series of each representative
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period by their respective weights to make a yearly time series, then stacking that time
series to obtain a 5-year-long time series corresponding to the investment frequency. We
calculate the degradation given 3 battery chemistries (lithium-iron-phosphate, nickel-cobalt-
aluminium, and nickel-manganese-cobalt) and take the average as the final degradation %.
This percentage can then be converted to a total degraded kWh given the kWh capacity of
each cluster.

Degradation cost is estimated by making the assumption that, at the end of the
interval, batteries can be refurbished by replacement of cells to restore battery health. Thus,
cost is linear with degradation. Of course, the cost of battery degradation is more complex
than this, but this method provides an effective way of comparing the relative degradation
between BEV charging regimes and scenarios.

We assume a battery degration cost of $100/kWh. In 2022, the cost of battery
packs reached $150/kWh [92]. The cost of battery packs are expected to drop further,
with projections covering a significant range. [29] predicts grid stationary battery costs will
see a reduction of 16% to 47% by 2030. [39] estimates a lithium-ion battery pack cost of
725/kWh (in 2022 $) by 2030. Thus, $100/kWh should be fairly conservative.

We examine the degradation for the Scenario FD. We present degradation for a
base scenario, V1G, and V2G. Scenario FD is a good candidate for quantifying degradation
because each vehicle is controlled. There is not a rigorous way of measuring degradation
in Scenario HL, because during the optimization, roughly 1 in 3 vehicles charge each night.
From the vehicle perspective, some MHD BEV are charging every night and some are

charging less frequently. From the perspective of the grid, it does not matter which vehicles
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are plugging in. As a consequence, this does not permit rigorous tracking of each vehicle’s
SoC.

The cost of degradation as well as the average relative battery capacity at the end
of each 5-year interval is shown in Table 6.4. The impact of degradation is relatively mild.
The vast majority of the degradation seems to be due to aging. Batteries experience on
average an extra 0.2% of degradation for V1G vs the baseline case, and an additional 0.3%
again for V2G. The critical consideration is the increase in degradation costs over baseline.
Operating vehicles will necessarily incur degradation, but it is critical to understand what
costs are incurred by ViG and V2G services. The cost associated with degradation is
increased by 0.1 billion USD for ViG and 0.2 billion USD for V2G, as compared to the
baseline. Although these costs are considerable, they are an order of magnitude less than
the potential savings. As such, increased degradation is a relevant consideration, but it is

not a critical risk to the business case for V1G and V2G services.

Table 6.4: Battery degradation

Baseline | V1G | V2G
Degradation Cost (Billions) 7.5 7.6 7.7
Residual Discharge Capacity % 81.9 817 | 814

Cost of Chargers

In terms of BEV supply equipment costs, the most relevant factors are the cost of
ensuring vehicles have sufficient access to chargers, and the cost of enabling bidirectional

charging over unidirectional charging.
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At time of writing, there are very limited number of V2G ready chargers on the
market. Bidirectional chargers are substantially more expensive that unidirectional charg-
ers, but it is difficult to estimate how much of that cost difference is driven by the lack of
commercialization. While numerous studies examine the cost of BEV supply equipment,
there are no concrete comparisons of the cost of bidirectional and unidirectional MHD BEV
supply equipment. To estimate the potential cost of bidirectional chargers vs unidirectional
chargers, we consider two elements which are necessary for enabling bidirectional charging.
The first is an islanding switch, which can be opened to prevent energy flowing into lines,
for example, when lines must be serviced. The cost of this switch is likely negligible if it is
installed at the time that the charging depot is constructed. The other cost is an inverter
required to convert the DC current of the MHD BEV battery to AC used by the grid. We
estimate this cost using the cost of solar inverters, approximately $50 per kW [83]. The
total cost of this equipment adds $1.1B to the V2G cost of Scenario HL in Table 6.2. These
costs reduce substantially the potential savings of V2G. We should emphasize that the up-
charge associated with V2G is purely speculative. Depending on the cost of bidirectional
equipment, V2G could pose a better or worse business case.

The two scenarios are generated under different basic charging behavior assump-
tions, and these assumptions impact the cost related to charging in a major way. Scenario
HL is an agent-based approach, in which vehicles only charge when necessary. As such,
approximately 1 in 3 vehicles charge on a given day, and the number of chargers can be
provided accordingly. A key assumption of Scenario FD is that each vehicle charges each

day. We consider two cases which bookend the spectrum on which this could be enabled.
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The first is providing every vehicle in Scenario FD with a dedicated charger. The cost of a
150kW DC fast charger is estimated at $142,200 for hardware and installation [30]. For each
investment interval, we calculate the cost of installing a dedicated charger for each vehicle
in Scenario FD and installing only the necessary chargers in Scenario HL. In Scenario HL,
we assume that a dedicated charger is installed for each vehicle charging in a given day. In
total, the cost of chargers in Scenario HL would be $20.6B and $61.6B for Scenario FD.
The second is providing only the necessary number of chargers. An emerging concept is to
connect multiple vehicles to a single charger. If a charger is rated at 150kW, it may be able
to connect to multiple vehicles simultaneously and provide either lower power to all, or full
power to individual vehicles at different times. This service could be enabled without per-
forming substantial hardware upgrades, only by providing some additional switchgear and
plugs. If we take inspiration from this, we can suggest that in Scenario FD, the number of
chargers needed is proportional to the peak hourly charging demand. This brings the num-
ber of necessary chargers down substantially, to approximately 1 charger per 4 vehicles in
most years. Accordingly, the cost of installing chargers drops to $14.5B. Although installing
chargers is essential with or without V1G and V2G, the range in potential charger costs is
extremely large, and is bigger than the potential savings associated with these services. Be-
cause of this, minimizing the number of necessary chargers is a very relevant consideration

alongside lowering chargers costs with V1G and V2G.
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6.4 Conclusion

In this chapter, we examined the potential costs and savings of enabling V1G and
V2G services for MHD BEVs in California. Using a large scale MILP model, we calculate
the savings of these services from the perspective of a central power system planner. Two
scenarios are used to understand the driving and charging behavior of vehicles. We also
estimate costs linked to these services. We show that battery degradation is not insignificant,
but is associated with costs an order of magnitude lower than potential savings. We estimate
that the cost of enabling bidirectional charging could be a very relevant element, and could
weaken the business case of V2G over V1G. Carefully identifying the number of necessary

chargers is of utmost importance, as costs associated with chargers could be very large.
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Chapter 7

Impact of Climate Change on

Decarbonization Pathways

7.1 Introduction

California has set aggressive targets for power system decarbonization through
Senate Bill 100 and Senate Bill 350, establishing limits on the minimum generation from
renewable resources and maximum emissions from power generation. These targets are
meant to address California’s contributions towards climate change mitigation. However,
climate change in turn also poses adaptation challenges for these decarbonization goals.

Climate change, and the societal response to it, have a range of potential impacts
on the electrical grid. The level of electrification that occurs in response to multi-sector
decarbonization, such as transportation and buildings, will massively impact both the shape

and magnitude of load patterns [33]. Simultaneously, climate change itself may impact
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the level of heating ventilation and air conditioning (HVAC) demand and the efficiency of
electric assets as temperatures rise. Weather, and thus both load and renewable generation,
will likely become even more volatile towards the middle of the century. This study seeks to
address some of the challenges that climate change poses to the decarbonization pathways
of California’s electrical grid.

We examine the impacts of climate change and associated increase in uncertainty
through two lenses. The first is climate change pathways. We look at a set of scenarios that
span a broad but plausible range of climate scenario uncertainty, climate model uncertainty,
and socioeconomic and policy scenario uncertainty. These scenarios are derived from models
in the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate model archive, also
utilized by the Intergovernmental Panel on Climate Change (IPCC). The second is a new
approach towards ensuring resilient capacity planning, which leverages joint load-renewable
generation forecasts in the face of climate change.

Large investments in electrical resources are expected over the coming decades to
meet decarbonization targets. As such, capacity expansion modeling or generation expan-
sion planning have been increasingly important for planning these investments, with models
such as RESOLVE [34], Gridpath [87], and REEDS [96] used by various state agencies and
load-serving entities. Due to computational limitations in capacity expansion modeling, it
is typical to reduce the temporal dimension by modeling representative periods instead of
all 8760 hours per year [5]. The goal of selecting representative periods is to choose a set of
periods which, in tandem, best represent the year as a whole. However, some of the most

stressful periods on a power grid account for only a few days per year, or may not even occur
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each year. Because these fringe cases account for so little of the yearly behavior, they will
not naturally be selected as representative periods. However, they still must be planned for
to ensure enough generation capacity is held to reliably operate the grid. Thus, it is neces-
sary to enforce some constraint on reliability. Typically, this is done via a planning reserve
margin (PRM) constraint [86]. However, this constraint is overly rigid, as the parameters of
this constraint are determined exogenously to the generation portfolio optimization. Thus,
this constraint could lead to generation portfolios that are either overly cautious, or fail to
respond to periods of low renewable generation.

Ensuring power system planning produces generation portfolios that are reliable
has been a task of increasing importance. In the past, the generation mix was dominated
by thermal units, which can generate at full-capacity except for outages or derates. This
simplified reliability planning because it ensured dispatchability in resources and allowed
grid operators to adjust output on demand. As the penetration of variable renewable energy
increases, reliability planning is becoming increasingly difficult due to the unpredictability
of meteorological patterns and the timing of generator availability (lack of dispatchable
resources). A large amount of work in recent years has been devoted towards this task as
well as studying the effects of rare weather events on reliability.

PRM requirements ensure a specified amount of generation capacity is held, and
are sized according to the projected peak demand. Each resource in a system contributes
towards the requirement as a fraction of its nameplate capacity. In the typical formulation
of this approach, this fraction conveys how much of the resource’s capacity is equivalent to

firm capacity, such as in [36] and California Public Utilities Commission (CPUC) resource
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adequacy requirements before 2018 [25]. However, for highly variable resources like wind,
solar, and energy storage, distilling this complex variability into a single fraction is difficult.
The behavior of wind, solar, and load are highly coupled due to the underlying weather
dependency. The combined contributions of wind, solar, and energy storage are non-linear,
as the contribution of storage is limited by both power and energy. To address this non-
linearity, the effective load-carrying capacity (ELCC) has been proposed, and adopted by
regulators including CPUC [20]. The ELCC allows for more accurate quantification of the
load-carrying contributions of variable energy by accounting for the impact of renewable
energy on net load. While the development of ELCC has improved PRM constraints, the
parameters of this formulation are still determined exogenously, leading to inherent loss of
accuracy. An overview of modern reliability studies focusing on the ELCC of renewables
is given in [103]. In [86], the authors discuss the recent trend in exceeding PRM require-
ments, primarily due to techno-economic factors, as well as the impacts on planning studies
accounting for the required and actual implemented margins. Ssengonzi et al. [107] an-
alyze the ELCC of renewables across the United States, but neglect storage, which has a
synergistic effect when coupled with variable renewables. Cole et al. [28] study resource
adequacy contributions under a range of variable resource penetrations. Bera et al. [7]
present a study of resource adequacy focusing on the sizing of energy storage in systems
with high renewable penetration.

It is common to apply a Monte Carlo simulation approach to evaluating resource
adequacy, as in [45] and the current approach used by the California Public Utilities Com-

mission [23]. While these approaches are effective at evaluating resource adequacy of a fleet
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after the system planning step, it is impossible to perform system planning over such a
large temporal domain without significantly sacrificing the level of modeling detail used to
represent dispatch, as is done in [69].

There is also a developing body of work around the selection of extreme events
within representative period selection. For example, Scott et al. [104] select extreme weather
periods as initial cluster centers in representative period selection. A range of approaches
to representative period selection with extreme periods is examined in [56]. In [60], extreme
days are added as representative periods in a second optimization step based on the costs
associated with dispatch of the portfolio in the first optimization step. The authors in
[129] select extreme periods as those periods with peak load. An iterative approach to
ensuring reliability is proposed in [111], with each iteration adding the day with maximum
lost load as a representative period, until the portfolio satisfies reliability metrics. These
works, however, do not study the inclusion of extreme periods as a direct replacement to
industry-standard PRM, making the comparison of these methods difficult.

In the study, we demonstrate that PRM-based reliability constraints are inflexible,
and thus may lead to suboptimal generation fleets from planning solutions. In the case study
of the California electric grid, PRM results in substantial overemphasis of thermal capacity
for reliability needs. Many of the references above acknowledge the complex interactions
between various classes of resources. We address these nuances through direct simulation
of challenging dispatch conditions which we call resiliency periods. The proposed method is
shown to meet the level of required reliability threshold at cost savings as high as 14 billion

dollars through 2045. The remainder of the chapter will be organized as follows. Section
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7.2 will present the formulation of the planning model, including the proposed resilient

planning method. Section 7.3 discusses the numerical study and experimental results.

7.2 Technical Method

The decarbonization model used in this chapter is broadly the same as the one
developed in Chapter 2. We will begin by repeating the formulation of the PRM constraint

for context, and then describe the proposed method for enabling climate resilient planning.

7.2.1 Policy Constraints - Reliability

Due to the computational complexity associated with modeling 8760 hours per
year, temporal downsampling is ubiquitous, and is often achieved by modeling representative
periods. The goal of selecting representative periods is to choose a set of periods which, in
tandem, best represent the year as a whole. However, some of the most stressful periods,
and thus most important for reliability, on a power grid may be less frequent than a few
days per year. Given that representative period selection is often limited to fewer than 37
days (i.e. 10% of the year), there is very low likelihood that these low-frequency, high-
importance events will be selected as representative periods. However, accounting for these
low-frequency periods is critical to ensure enough generation capacity is held to reliably
operate the grid. Typically, this is integrated through a PRM constraint.

PRM constraints (7.1) ensure that the generation fleet for a given year can satisfy
some factor above the forecasted peak load. Resources typically count towards the PRM

requirement through a net qualifying capacity (NQC) or an ELCC. Thermal units, and firm
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generation, generally have an NQC close to 1, as they can typically generate at full capacity
except for rare occasions when unavailable due to maintenance or other circumstances. The
contributions of solar, wind, and storage, are either modeled through NQC in the simplistic
case or ELCC. These resources are generally associated with rather low NQC due to the
high variability of generation. In more detailed representations, contribution of variable
resources is modeled as a function of decreasing value with increasing penetration. For
example, California’s gross load typically experiences daily summer peak around 5pm local
time. With the proliferation of both behind-the-meter and utility-scale solar PV, the net
load peak has shifted closer to 7pm, at which time solar generation is rapidly decreasing.
Essentially, this resource is saturated at the peak load time, and installing more solar will

have little to no effect on the peak net load.

uLUz - hLI'Iz
PRMy < IU, wPu.NOCy + ELCCys + ELCCy + ICyrNQCh, z = 0. (7.1)

As a reminder, the optimization formulation is written as the minimization of
investment, maintenance, and operation costs, subject to all operational and investment
constraints:

min O
s.t,(21)—(2.39) Vye Y,we W, (7.2)
(2.43) — (2.46), (2.51) — (2.55) Vy € Y.
7.2.2 Proposed Method: Resiliency Days
As discussed in Section 7.2.1, reliability requirements are often modeled by a yearly

constraint on the fleet makeup. The goal of this constraint is to serve as a surrogate for
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modeling periods with extremely severe load conditions. There is an inherent loss of fidelity
associated with distilling a dispatch problem into a constraint weighting capacities of re-
sources by predetermined factors, especially considering the high variability of renewable
resources. This modeling approach is very rigid and it fails to rigorously account for the
correlation between load and renewable generation. As demand is expected to be served
dominantly by a mix of variable renewables and storage, this is an extremely important ele-
ment. This approach also fails to account for complex dispatch behaviors, such as ramping
of thermal units.

Instead of constraining the fleet through predetermined factors, we propose the
direct simulation of extreme load serving conditions. We adopt the name “resiliency peri-
ods” to refer to these extreme periods, as a complementary to representative periods. While
representative periods seek to embody the most typical behaviors of the power system, re-
siliency periods seek to embody the most extreme periods in order to directly ensure that
enough capacity is held to meet these demands. Similar to PRM, the rarity of resiliency
period events means these do not need to be considered for operating costs or emissions
constraints.

To do so, we create new sets corresponding to the resiliency period #; and hour
within each resiliency period 7. Resiliency periods do not necessarily need to have the same
length as representative periods. For example, resiliency periods could model days (/ T,/ =
24), while representative periods could model weeks (/77 = 168). As with representative
periods, resiliency periods link time within, but not across periods. The index of year is the

same, as we wish to enforce the resiliency requirements for each investment interval. The
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optimization (77.2) can be rewritten to incorporate these periods and omit PRM as:

min O

s.t,(21)—(2.39) Vie Twe W,y ey, (7.3)
(21)—(2.39) Ve T, w e W,y€ Y

(2.43) — (2.46), (2.51) — (2.52) Vy € Y.

With this as the basic formulation behind using resiliency periods to enforce re-
silient planning, we can move on to discuss the selection of resiliency periods.

In general, the method described above can be used agnostic to the manner in
which the resiliency periods are selected. However, we suggest that they should reflect the
accepted standards which inform PRM calculations. For example, California uses the 1-in-
10 standard, stating that the expectation of loss of load should not exceed 1 event in 10
years.

Due to the increasing importance of renewable resources, we propose the use of
net load as the metric by which periods are selected. Taking inspiration from the recently
proposed concept of compound energy droughts [12], we propose the use of net load over
various timesteps to properly capture the effects of variability in renewable energy.

Net load is a combination of data (load, renewable generation factors) and model

outputs (total installed capacity of resources), so an iterative approach is required. First,
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the base model is solved while omitting reliability constraints (7.1):

min O
s.t,(21)—(2.39) Vie Twe W,y ey, (7.4)

(2.43) — (2.46), (2.51) — (2.52) Vy € Y.

This provides baseline capacities of the various resource, which is necessary as it establishes
a proper relationship between load in units of MW and unitless renewable generation factors.

Net load is then defined as:

L
NL,(y, d ©) = L?) — IC(y) - PF:(y, d, () (7.5)

reRr,

For each year y € Y, hourly net load metrics should be calculated. For this discussion, we

will assume resiliency periods are selected as 24-hour days. The discussion here is

immediately adaptable to periods of arbitrary length. We rely on a set of days d € D

which allow for a probabilistic interpretation of load and generation shapes. The size, and
members, of D essentially bound the loss of load expectation. The approach developed in
the following section ensures that load can be served for all days present in D. For instance,
to meet or exceed the 1-in-10 standard, D should include 3650 days. This ensures that no
load shedding occurs in the represented 10 years of input data. This method is readily
tailored to other reliability margins.

We propose calculating the net load for each year and selecting resiliency days
based on the maximum net load when averaged over a specified duration. This is opera-

tionalized by, for each day, rolling a window of length » through the day, calculating the
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average net load for each, and selecting the maximum (7.6).

n

N i
NLy, d) = max(\, NLfv,d0), Vi€ [1,24~n)) (7.6)

t

Then, we select the day with the maximum n-hour net load as a resiliency period. We refer

to this highest net-load day as an n-hour net load peak.
W, < argmaxNL"(y, d), Vn € N (7.7)
d

By selecting droughts of various lengths, a range of behaviors in the correlation between
renewable generation and load can be represented. For example, the 1-hour drought corre-
sponds to the day with highest hourly net load and the 24-hour drought corresponds to the
day with highest average net load. The set of all n-hour durations used to form the set of
resiliency periods W, is given as N.

The proposed planning method is summarized in Algorithm 2 and displayed as a
flowchart in Fig. 7.1. First, the model is solved without PRM or other reliability constraints
to establish baseline resource capacity, enabling the calculation of net load for future years.
Resiliency days are then selected based on the net load peaks (7.7). Finally, the model is

solved once again with these resiliency days integrated, given as (7.3).

Algorithm 2: Decarbonization with Resiliency

Solve model without PRM (7.4);
Calculate net loads NL"(y, d) (7.5);
Select resiliency days (7.7);

Solve model with resiliency days (7.3);
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Solve planning model "
[ without PRM J—) Investment decisions
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[Calculate net loads J—) Nﬁzy,d
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!

Solve planning model
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Figure 7.1: Flowchart showing the proposed method for selecting and planning with re-
siliency periods.
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7.3 Numerical Study

In this section, we present a numerical study of the impacts of climate, socioeco-
nomic pathways, and the proposed resilient planning method. First, we discuss the climate-
generation-load dataset which enables this study. Next, we examine the planning results
under a variety of scenarios. We then present a comparison of planning results under the
status quo PRM reliability formulation and the proposed resiliency periods formulation.
Finally, we present some of the policy implications of this study.

Outside of the climate dataset described next, the data used in this study is taken
from the RESOLVE implementation published by the California Public Utilities Commis-
sions [34]. Investment is modeled from 2025 through 2045 in 5-year intervals, with financing
through 2065. We model representative periods of 3-day length and resiliency periods of 1-
day length. Representative periods are selected using the approach in [5]. Resiliency periods
are selected for net load peak durations of 1, 4, 12, and 24 hours. For the resiliency periods
in (77.3), we also account for a 5% derate for generators in the resiliency period, based on the
NQC for these units defined in [34]. The same surrogate Lagrangian relaxation technique

developed in Chapter 3 is used to solve each of the models.

7.3.1 Climate, Load, and Generation Datasets

This study is enabled by recent publicly-available load and renewable generation
projection datasets developed by multiple projects at the Pacific Northwest National Lab-
oratory [11]. Load and renewable generation projections are considered in tandem, and

because they are both based on the same underlying climate projections, the time series
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will be properly correlated. The correlation between load and renewable generation is impor-
tant, so we specifically avoid Monte Carlo approaches which generally sever this correlation.
As noted in [12], there are correlations between periods of high load and low renewable gen-
eration which may have extremely large impact for future grids relying heavily on variable
renewables. The renewable generation projections also account for climate impacts such as
solar panel efficiency loss as temperatures increase and the suppression of wind generation
under high pressure conditions.

The climate, load, and generation projections are based on 40-years (1980-2019) of
historical meteorology. The use of historical meteorology results in the dataset containing
actual historical extreme events. The climate methodology then takes the 40-year sequence
of historical weather and repeats it twice into the future (from 2020-2059 and again from
2060-2099) for eight unique scenarios that reflect a wide but plausible range of future climate
and socioeconomic conditions. The details of this approach are provided in [52]. The eight
future scenarios are defined jointly by a combination of Representative Concentration
Pathway (RCPs 4.5 and 8.5) and Shared Socioeconomic Pathway (SSPs 3 and 5). They also
reflect a range of climate model uncertainties by using warming levels from climate models
that are hotter and cooler than the multimodel mean.

The RCP scenario impacts load through both climate-related impacts, such as
higher temperatures increasing the load from air conditioning, as well as the level of elec-
trification needed to meet the emissions target. The SSPs impact load through the level of
consumption, economic expansion and population growth. The RCP and the warming levels

both affect the production factors of renewable generation though both technological (e.g.
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solar panel derating) and climate (e.g. heat dome wind suppression), while maintaining
physical consistency.

The RCP 4.5 and 8.5 pathways are denoted by R4 and R8, respectively. The SSP
3 and 5 pathways are denoted by S3 and S5, respectively. The cooler and hotter climate
model outcomes are denoted by the suffixes “C” and “H”, respectively (i.e. R4S3C, R4S3H).
Details of the various scenarios are provided in [21].

To produce the data used in this study, the 40 years of historical and 80 years of
future meteorology across the eight scenarios are then run through a series of load and re-
newable generation models to produce hourly time series of historical and projected load and
renewable generation. The load projection model accounts for the hour-to-hour variations
in demand due to weather (including extreme events like heat waves and cold snaps) and
grows loads over time to reflect longer-term changes in population, economics, and energy
policy (for example, electrification needs to stay on an RCP 4.5 pathway). For each 1/8th
degree grid cell, a hypothetical wind and solar plant was modeled with generic assumptions
about solar panel and wind turbine configurations. The details of the models used in this

process are provided in [12] and [21].

7.3.2 Results

Climate Pathways

First, we examine the impacts of each of the scenarios on the 2045 fleets. The
newly installed capacity in CAISO in each scenario is shown in Fig. 7.2. It is not surprising

that different pathways force different levels of investment based on the amount of associated
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load growth. These results do, however, emphasize the need to account for the wide range
of planning outcomes of different pathways. The buildout of renewables is as low as 50GW
and as high as 87.5GW, and the buildout of energy storage is as low as 32.6GW and as high
as 47GW. It is vital that this range is understood, even if these extremes represent
relatively less-likely scenarios. The investment over time is shown in Fig. 7.3 for both
warming pathways of two of the climate scenarios. Not only do warming pathways affect
the total amount of clean capacity needed to achieve decarbonization by 2045, but also the
optimal intervals in which to make these investments, with both hotter scenarios favoring
later investment as compared to their cooler counterparts.

Besides climate pathways, it is also critical to plan for a range of warming scenarios.
Although the RCP4.5 scenarios have nearly identical fleets between the hotter and cooler
warming scenarios, the RCP8.5 scenarios have notably different fleets. The hotter and cooler
warming scenarios have nearly the same annual load, but the hourly loads in the hotter
warming scenarios are concentrated slightly more towards the tails of the distribution. In
the RCP8.5 pathway, the hotter scenarios have 16% and 21% higher renewable installations
than the respective cooler scenarios. This is an early affect of climate change on load and
renewable generation, and these trends will become even more severe after 2045 if the
higher global emissions pathway is followed. These results also raise the issue of adaptability
and mitigation. Towards the mid-century and onwards, effects of climate change are more
uncertain, and so therefore are its impacts on load and generation. In turn, this can make
planning more difficult, and thus require more potential investments to meet emissions

targets.
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Figure 7.2: Comparison of capacity added to CAISO fleet under different climate pathways,
demonstrating the extreme variation in required capacity.
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Figure 7.3: Comparison of investment over time for the R4S3 and R8S5 scenarios with both
cooler and hotter warming pathways.
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The evolution of the fleet can also be evaluated through its spatial distribution.
Fig. 7.4 shows maps of the investment in storage and renewable projects for two years and
two scenarios. These two scenarios are the most moderate of the four pathways examined. In
2030, there are relatively few differences between the two scenarios. In 2045, the differences
become apparent, with substantially more investment in solar in southern California, more
wind in southern Nevada, and more storage in both northern and southern California for

the R8S5H scenario compared to the R4S5H scenario.

Planning with Resiliency Periods

We present the results of two planning regimes: PRM and resiliency day plan-
ning. The PRM planning regime corresponds to the approach currently employed by the
California Public Utilities Commission and California Energy Commission for their decar-
bonization planning studies [34]. We examine the performance using two scenarios. The
R8S5C scenario is the closest match in terms of yearly load to CAISO’s most recent inte-
grated energy policy report (IEPR) load forecasts. The R4S3H is the next closest match,
but has slightly lower loads. For reliability considerations, we merge the hotter and cooler
pathways together. In other words, to convey the variability of a warming climate, both
cooler and hotter perturbations are used for the determination of PRM and selection of
resiliency periods. Representative periods, however, are chosen for R8S5C and R4S3H.

We compare the results of these techniques in three ways. The first is the com-

parison of total cost, as well as direct comparison of fleet composition. The second is the
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Figure 7.4: Map depicting the installation of storage and renewable projects for 2030 and
2045 across R8S5H and R4S3H, with major differences highlighted.
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loss-of-load-expectation of each fleet. The third is a study of what margin above the peak

load could be served by each fleet.

Table 7.1: Costs, billions 20255

R8S5C R4S3H
PRM | Resil. | PRM | Resil.
Total Cost | 365.7 | 351.2 | 329.6 | 322.8
CA Cost 214.9 | 200.6 | 179.3 | 173.3
Maint. Cost | 34.8 | 33.1 | 20.6 | 27.6
Inv. Cost 162.3 | 150.6 | 131.4 | 127.8
CA Op. Cost | 17.8 16.8 | 18.3 17.9

As shown in Table 7.1, in the R8S5C scenario, the cost savings for resilient plan-
ning over PRM is extremely substantial, over 14 billion or 6.7% in CA costs. This is mostly
due to the avoided installation of several GW of thermal capacity. The R4S3H scenario
presents moderately lower savings, 6 billion or 3.3%. The savings come primarily from
avoided maintenance costs of economically-retired power plants and, to an extent, avoided
installation of thermal capacity. This scenario has overall lower loads, so there are over-
all lower installations necessary to meet reliability needs. As such, the cost savings are
considerably lower. In both scenarios, the operating costs are slightly lower using resilient
planning as the value of renewable technologies for reliability is higher, resulting in slightly
higher overall capacity of these technologies.

The cumulative investments in 2045 are shown in Fig. 7.5 for both scenarios. We
also visualize the fleet resulting from planning with no reliability requirement (“No Rel.”)
to help compare the planning regimes. Both scenarios show generally similar levels of re-
newable and storage buildout between the PRM and resilient planning regimes. In the

R8S5C scenario, there is a slight increase in renewable and slight decrease in storage build
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for resilient planning. In the R4S3H scenario, the renewable buildout is nearly the same,
but the storage buildout is slightly higher. The key difference between the three regimes
is the level of retirement and construction of thermal technology. Without any reliability,
there are considerable retirements. PRM encourages heavy buildout of thermal units and

nearly no retirements. Resilient planning is a middle ground between the two results. The
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Figure 7.5: Comparison of fleets resulting from planning with PRM, the proposed resiliency
days modeling, and no reliability requirement. The proposed method is less dependent on
thermal units for reliability.

overall lower reliance on thermal units in the two scenarios manifests in different ways. The

total thermal fleets in 2045 are shown in Fig. 7.6, including both existing units, planned

retirements, economic retirements, and new construction. Not shown are combustion tur-
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bine and reciprocating engine capacities which have negligible installed capacities in all
scenarios. Planned retirements are minor, consisting of 2 peakers in all scenarios. Gen-
erally, combined-cycle gas turbines (CCGTSs) are leveraged more heavily in 2045. In the
PRM scenarios, CCGTs are the main candidate for new construction. While two smaller
candidate units (steam turbine, reciprocating engine) are available, there is nearly no con-
struction of these resources as the CCGT has a slightly lower $/MW capital cost. These
resources are almost exclusively used to satisfy the reliability constraints, so their operating
characteristics are less important than their capital cost in this context. These units are
not visualized here due to that lack of utilization. Peakers see more retirements in general;
these resources are particularly expensive to run, so pose little benefit to normal operation.
However, the maintenance costs are low compared to capital costs of new construction, so
peakers are retained when they serve to satisfy reliability constraints. In the lower-load
R4S3H scenario, both CCGT and peakers see retirement. We have demonstrated that the
fleets produced by the resilient planning regime are more economical than the PRM fleets.
It is critical to demonstrate that the fleet meets the required level of reliability; otherwise,
these cost savings are worthless. We seek to demonstrate that our planning approach leads
to more economical, sufficiently-reliable fleets by more appropriately accounting for the
load-serving potential of all resources during extreme load events. In order to demonstrate
this, we directly look at the loss of load expectation. Then, we examine the level of load
above these events that could be actually served by each fleet.

For each of the investment years, we run 10 years of unit dispatch, with 5 each

corresponding to the cooler and hotter warming scenarios, and look for any load shedding.
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Neither planning regime experiences any load shedding in this test. This should come as
no surprise; dispatch of extreme load periods was directly modeled in the resilient planning
regime, and the PRM regime has even higher capacities. This study thus satisfies the 1-in-10
loss of load expectation which informs CAISO’s reliability margin.

Although this analysis is not shown, it is worth noting that if only the 1-hour gross
load peak is selected for resilient planning, load shedding actually does occur in this
dispatch stage. This highlights the importance of looking at the correlation between
renewable generation and load rather than load alone for reliability considerations, as well
as selecting net load peaks of several time scales as the resiliency periods.

We have shown that each fleet meets the reliability requirements; now we seek to
demonstrate the degree to which each fleet exceeds the reliability requirements. We conduct
a study showing the level of load above the peak load that could be served by each fleet.
We start by selecting the 1-in-10 load day for each investment year. As is, this represents a
reliability threshold. Then, we increasingly scale the load of this day and look to both the
number of hours with load shedding. The results of this experiment are shown in Fig. 7.7.
The resilient planning regime typically starts requiring load shed after a 5% or 10% increase
in the load. The PRM regime starts shedding load at significantly higher percentages in
every case. It also experiences fewer hours of load shedding. In the R8S5C scenario, the
PRM regime can meet demand 25% higher than the 1-in-10 load in 3 out of the 5 investment
years. This demonstrates that the PRM scenario is overbuilt.

The key result of this analysis is that the existing method, rather than meet the

prescribed reliability standard, far exceeds it. On the other hand, the proposed method more
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accurately tailors the portfolio to meet the reliability standard, at a lower overall cost. While
higher levels of reliability are not adverse, significantly exceeding reliability standards by
maintaining or building excess capacity is not the most efficient investment. In this sense,
the proposed method is an improvement, as it meets reliability targets at significantly
reduced costs. Finally, the proposed method is flexible, and could readily be applied to
meet more or less stringent reliability targets by adjusting the specified probabilistic set of
days D.

As previously discussed, the PRM constraint is artificial in the sense that it at-
tempts to distill complex energy resource dispatch information into a single constraint. In
the theoretically most rigorous planning model, thousands of days would be simulated. Pe-
riods of extreme weather, across a variety of patterns, would be directly simulated, and
thus the resiliency requirements would be met. However, this type of analysis is currently
infeasible due to computational limitations. The proposed method essentially occupies a
subspace of that theoretical planning model. PRM-based models, however, transform into
an entirely separate model by the addition of this constraint, and so the decisions made are

of unknown optimality compared to real operations.

7.3.3 Policy Implications

The key takeaway of this study is that PRM-based reliability requirements are too
inflexible. Feasibly, PRM-based constraints could suffer from the opposite problem as well,
failing to account for severe energy droughts. This problem is demonstrated by the fact
resilient planning using only the peak load day produces a fleet that has to shed load on

days with lower gross load, but also less renewable generation.
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In this case, the use of PRM results in chronic underestimation of renewables’
contributions towards reliability. This in turn creates an artificial demand for new power
plants, and a lack of retirement of existing power plants. The lack of retirement has consid-
erable social implications. The resiliency regime retires roughly 60 peakers more than the
PRM regime in both scenarios. Peakers are often located in densely-inhabitated areas [27],
so reducing the reliance on these resources may have an even greater social impact than
reducing system-wide carbon emissions. Retiring these resources may have further social
benefits if the land can be converted to other uses, such as housing or greenspaces. If the
state moves forward under the assumption that no existing power plants will be retired,
these potential benefits will be left untapped.

On the other hand, the construction of new power plants is associated with con-
siderable embodied carbon emissions. Even if these resources never turn on, and thus
never emit, in the context of normal operation, there is a notable cost associated with their
construction. We follow two estimates of the emissions associated with power plant
construction to obtain estimates of 450 and 1280 tons per MW [125, 106]. For the R8S5C
scenario, the PRM regime is associated with an additional 3.2-9.2 million tons of emissions.
Simultaneously, the 2045 emissions target is approximately 12 million tons. Although em-
bodied emissions are not considered as part of the energy sector emissions targets, the scale
of emissions associated with this capacity that is built but not required to meet reliability
needs is extremely relevant. Thus, it is crucial that resources not be overbuilt, not just for

cost reduction, but for a holistic view of satisfying California’s climate goals.
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Long-term planning models like the present model have a separate objective from
short-term planning models. The goal of long-term planning models is not to determine ex-
actly how much capacity of each resource will be purchased for the next 20 years. The goal
is to determine long-term trends in capacity. Especially from the perspective of state agen-
cies, understanding these trends is critical as they inform at a high level the implementation
of various programs. The use of PRM can affect this in several ways. Thermal capacity be-
comes more favorable and renewable capacity is undervalued, leading to severely overbuilt
fleets. The excess of thermal capacity has both cost and social ramifications. PRM also
undervalues the reliability contributions of renewable and storage capacity to the extend
that it reduces the amount of investment in these technologies.

It is necessary to note that reliability studies, in particular in CAISO, encompass
a large number of contingencies, some of which are not suitable to be modeled here. We are
not advocating for the replacement of near-term resource adequacy studies by the proposed
resiliency period modeling. However, we suggest that for the task of long-term planning, the
current planning reserve margin studies may be overly rigid, and undervalue the combined
value of storage, wind, and solar. This is of interest to policymakers, because these long-
term planning models are not directly informing utilities which resources they should buy,
but informing state agencies where regulatory and funding efforts should be directed over
the next decades.

We would also like to point out that the proposed resiliency days method is ulti-
mately a data driven method. The method is effectively driven by the available projections

and statistical analysis of weather-generation-load patterns. More or less frequent events
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could be chosen as the resiliency days, in line with the desired loss-of-load expectation. The
resiliency days could also incorporate modeling for generator outages, line outages, and
other climate-related risks. The key advantage of the proposed method is direct simulation
of low-likelihood events. The specific implementation is flexible.

Simultaneously, the resiliency days method is enabled by the Lagrangian relaxation-
based solution methodology, which provides substantial improvements in CPU time over
traditional optimization solvers used alone. This technique allows us to solve a detailed
dispatch model without sacrificing the temporal scope.

A caveat of these studies is that perfect foresight to which climate pathway will
occur is impossible. This highlights the need for study of a range of pathways, as well as the
importance of repeating these studies every few years to ensure that the trajectories take
advantage of the best available science. Conversely, the advantage of the proposed resiliency
days method is that it better represents the capacity needed to ensure reliability. The
excess capacity held in the PRM scenarios, although unintentional, could be advantageous
if the future loads are greater than the projection. However, we suggest that this type of
uncertainty can be more robustly handled through scenario analysis, rather than unintended
effects of PRM. Finally, we analyze a range of scenarios concerning climate and emissions,
but do not consider various other uncertainties, including the future price of storage and
renewable technologies, adoption of hydrogen fuels, increased energy efficiency, and so on.
These factors are all relevant to a holistic understanding of future power system operations

and investment in California.
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7.4 Conclusion

In this chapter, we investigate the impacts of climate and socioeconomic scenario
uncertainty on California’s decarbonization pathways. First, we formulate decarbonization
planning as a MILP problem. We propose a novel method for ensuring reliability, referred to
as resiliency period planning. Then, we discuss the surrogate Lagrangian relaxation-based
technique that enabled computational tractability of this large MILP model. We present the
results of planning under a range of climate and socioeconomic scenarios and show that the
range of required new capacity of renewables and storage varies on the order of 52GW. We
then compare the traditional approach to reliability to the proposed method and find that
the proposed method meets the required reliability threshold at costs savings of 6.7% by
more rigorously valuing the contribution of renewable technologies. This study, however,
presents a limited version of the reliability studies performed by regulators and utilities.
Future work will expand upon the reliability studies to further investigate the comparative
performance of the proposed method and planning reserve margin-based approaches. It
is also acknowledged that the direct adoption of this proposed technique has significant
hurdles for the risk-adverse utility industry. Instead, we hope that this study elucidates the

shortcomings of the existing methods.
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Chapter 8

Conclusions

This dissertation studied the issue of planning the decarbonization of California’s
electrical grid through a number of lenses. In Chapter 2, a detailed decarbonization plan-
ning model was developed and formulated as a MILP optimization problem. Chapter 3
discussed the surrogate Lagrangian relaxation-based solution methodology. Chapter 4 pre-
sented results from the proposed model and method, and compared them with the status
quo. In Chapter 5, two novel representative period selection algorithms were proposed. A
case study considering the integration of smart vehicle charging for MHD BEVs was pre-
sented in Chapter 6. In Chapter 7, a case study of the impact of climate change pathways
on decarbonization planning was shown, and a novel method for resilient planning was
proposed.

The methods proposed in this dissertation push the boundaries of what has been
considered computationally feasible in capacity expansion planning. The case studies con-

sider novel, concrete applications of the methods. Still, the area of capacity expansion
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planning is diverse and in urgent need. In the US, the grid will see more rapid change over
the next decades than ever before. Comprehensive planning is necessary to ensure this
change happens with the best possible cost, reliability, and environmental efficacy.

Planning models like the ones developed in this dissertation have a wide range of
practical applications. For instance, they can help understand the long-term impacts of
decisions like decommissioning of nuclear facilities or removal of hydroelectric dams. They
can also help understand the long-term impacts of climate change, and ensure that the
power system is resilient to extreme weather events.

The proposed studies assumed perfect foresight. To account for the uncertainties
in future loads, costs, and so on, the proposed model could be converted to a stochastic
optimization model. Further, these planning studies need to be repeated periodically as
time passes and projections of future load, cost, and weather conditions are improved and

updated.
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