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ABSTRACT OF THE DISSERTATION 

 

 
Decarbonizing the Electric Grid: 

Computational Advances in Power System Planning and Scenario Analysis 

by 

Osten Peter Anderson 

 
Doctor of Philosophy, Graduate Program in Electrical Engineering 

University of California, Riverside, September 2024 

Dr. Nanpeng Yu, Chairperson 
 
 

 
The push for multi-sector decarbonization in the electric grids around the world 

has created the need for significant investment in the electrical grid. Over the next two 

decades, the bulk power system will be transformed from being historically dominated by 

gas-fired generation to dominated by wind, solar, and energy storage resources. Due to the 

large costs associated with investment and operation, and the importance of maintaining 

reliability in this critical infrastructure, a comprehensive investment plan is crucial. 

This dissertation looks at the California power system decarbonization problem 

through several lenses. The first concerns a novel formulation for decarbonization planning 

which incorporates more detailed modeling of gas-fired generation, and an advanced solution 

algorithm which enables its practical utility. Then, several novel methods for temporal 

sampling in these models are proposed. Finally, two case studies are considered. The first 

examines the impact of smart charging for medium- and heavy-duty battery electric 

vehicles on the decarbonization plan. The second concerns scenario analysis around climate 
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change pathways. At the same time, a novel method for ensuring reliable power system 

investments, with specific regard to decarbonized portfolios, is proposed. 
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Chapter 1 

 

 

Introduction 
 
 

1.1 Background and Motivation 

 
As the impacts of climate change worldwide are accelerating, so too are the mea- 

sures taken in response. Governments have taken collective action on mitigating anthro- 

pogenic climate change, such as the Paris Agreement [99]. One of the primary aims of these 

efforts is reducing the level of greenhouse gas (GHG) emissions. This considers emissions 

from all sources, such as electricity generation, transportation, buildings, and manufactur- 

ing. 

The energy sector has been identified as one of the most critical components of de- 

carbonization. Not only is the power system one of the primary sources of carbon emissions, 

it is also a promising candidate for decarbonization due to the associated technical consider- 

ations. In California specifically, electricity accounted for 16% of statewide GHG emissions 

in 2021 [89]. Whereas sectors like aviation and manufacturing currently have limited mature 

options for decarbonization, the power system has mature technologies for decarbonization 
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which have been increasingly deployed over the last decade. There is already considerable 

penetration of wind, solar, and other zero-emission generation, and rapidly increasing pen- 

etration of battery energy storage in California [91]. While not a trivial task, power system 

decarbonization is feasible for most locales. 

In California alone, the cost of building, operating, and maintaining the bulk power 

system will exceed hundreds of billions of dollars over the next two decades. As a result, 

even a small percentage improvement in the total investment and operation cost for the 

decarbonization plan could yield savings of hundreds of millions of dollars in investment 

and operational expenses. This is critical, as California has some of the most expensive 

electricity in the US [101], and these potential savings would be passed on to ratepayers. 

In practice, most load in California is served by a number of investor-owned utility com- 

panies (IOUs), and these utilities make individual investment decisions. However, these 

utilities are regulated by the California Public Utilities Commission (CPUC). IOUs work 

closely with the CPUC to plan investments, as the proposed investments are paid through 

electricity rate increases which must be approved by the regulatory agency. Studies carried 

out by the CPUC and the California Energy Commission (CEC) thus inform how IOUs are 

regulated. These studies can also help shape broader policy goals, concerning adoption of 

new technologies, planning for extreme weather events, and so on. 

California’s legislature has passed several laws governing the transition of Califor- 

nia’s electrical grid to a low-carbon future. Senate Bill 100 2018 (SB100) mandates that 

all retail electrical sales come from non-carbon sources by 2045 [58]. Senate Bill 350 2015 

(SB350) requires that the greenhouse gas emissions associated with the operation of the 
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electrical grid be reduced to 80% below 1990 levels by 2050 [57]. Consequently, a compre- 

hensive investment plan is essential to identify the most cost-effective approach to achieve 

these goals. 

 

1.2 Contributions 

 
This dissertation focuses on the topic of power system decarbonization in California 

through multiple thrusts. Each thrust either carries the goal of improving on the status 

quo in power system planning in general, or examining the impact of a specific real-world 

scenario with respect to decarbonization planning. With each, a case study of the California 

electrical grid decarbonization problem is examined. 

This problem belongs to the fields often referred to as capacity expansion planning, 

generation expansion planning, or bulk power system planning. Although these fields are not 

new, they have received increased attention over the recent decade. Across the world, power 

systems are in rapid flux, due both to economic development and decarbonization, and these 

fields are important aids to decision making. Simultaneously, increasing computational 

performance has opened new opportunities for improving the modeling of these systems. 

Accordingly, there has been considerable research interest on these topics over recent years. 

Although there is substantial variation in the approaches found in the literature, the most 

common formulation presents a co-optimization of power system investment and operation. 

Computational burden remains a significant bottleneck towards improving these models 

further. 
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A primary contribution of this dissertation is the development of a decarbonization 

planning model for California’s electrical grid that incorporates more detailed modeling of 

gas-fired power plants than the status quo. Traditional capacity expansion models neglect 

the complex operating characteristics of such generators due to computational complexity. 

However, accurate modeling of these generators is crucial, especially over the next two 

decades. The operation of these generators is a primary source of GHG emissions associated 

with electricity generation, and carbon emission limits imposes a decreasing upper bound 

on their operation. Inaccurate modeling of these generators could lead to inaccuracies in 

the investment in clean technologies needed to meet climate goals. In order to handle the 

computational complexity associated with this more detailed modeling, an advanced 

solution methodology is deployed. This model, and the related solution methodology, serve 

as the underpinning of all studies in this dissertation. 

This dissertation examines two novel methods for temporal sampling in the con- 

text of power system planning. The computational complexity associated with long-term 

planning models often necessitates the reduction in the temporal dimension. Instead of 

representing all 8760 hours in a year, models typically represent fewer than 1000 hours. 

As such, selecting the appropriate time has a substantial effect on the output of such a 

model. The first novel method proposes sampling representative days using weather-based 

features (load and renewable generation) and operational features. The second method con- 

cerns sampling of representative periods of intermediate length, in order to properly model 

inter-day dynamics of energy storage. 
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Two case studies considering concrete policy and environmental scenarios are pre- 

sented. The first case study looks at the potential savings from a bulk grid perspective 

of allowing smart vehicle charging of medium and heavy-duty electric trucks in California. 

Both flexible charging and vehicle-to-grid charging are considered. Two electric truck oper- 

ation scenarios are examined to provide a robust view of the potential avoided infrastructure 

investment. In the second case study, scenarios considering climate change and socioeco- 

nomic development are examined. At the same time, a method for improving the manner 

in which renewable and storage technologies contribute towards power system reliability is 

proposed. This novel planning formulation allows for direct simulation of extreme weather 

events within the planning model. Doing so avoids an over-reliance on gas-fired generation 

for satisfying reliability needs in the context of power system planning. 

 

1.3 Organization 

 
The remainder of the dissertation is structured as follows. Chapter 2 introduces de- 

carbonization planning, discusses related works in optimization and power system planning, 

and formulates the optimization model. Chapter 3 introduces the Lagrangian relaxation- 

based solution methodology. Chapter 4 presents numerical testing results as well as com- 

parisons to the existing linearized model results. Chapters 2 through 4 represent the core 

decarbonization model. Chapter 5 through 7 represent extensions of this model. Chapter 5 

introduces two novel approaches to selecting representative periods. Chapter 6 investigates 

the impacts of smart charging for medium- and heavy-duty battery electric vehicles on Cal- 

ifornia’s decarbonization pathway. Chapter 7 examines the impacts of climate change on 
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California’s decarbonization pathway, and presents a novel technique for ensuring resilient 

power system planning in the context of climate change and decarbonization. Chapter 8 

concludes the dissertation. 
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Nomenclature 

 
Sets 

 
t, T  Index, set of hour w, 

W Index, set of week y, Y  

Index, set of year 

u, U Index, set of thermal unit 

 
s, S Index, set of storage resource 

 
r, R Index, set of renewable resource 

 
h, H Index, set of large hydro resource 

 
z, Z Index, set of balancing authority zone 

 
l, L Index, set of line 

 
Uz Subset of thermal resources in zone z 

Sz Subset of storage resources in zone z 

Rz Subset of renewable resources in zone z 

Hz Subset of large hydro resources in zone z 
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Loads and Generation 

 

Lz(t)  Load in zone z at time t (MW) 

 
vu(t) On/off status of unit u at time t (1, 0) 

 
pu(t) Power output of unit u at time t (MW) 

 
pr(t) Power output of renewable resource r at time t (MW) 

ph(t) Power output of large hydro resource h at time t (MW) 

UTu Minimum uptime of unit u (hours) 

DTu Minimum downtime of unit u (hours) 

RUu Ramp up rate of unit u (MW/hour) 

RDu Ramp down rate of unit u (MW/hour) 

SUu Startup power limit of unit u (MW) 

SDu Shutdown power limit of unit u (MW) 

Pu Minimum output of unit u (MW) 

Pu Maximum output of unit u (MW) 

 
Ph Minimum output of hydro resource h (MW) 

 

Ph Maximum output of hydro resource h (MW) 

 
RLh Ramping limit of hydro resource h (MW/hour) 

Bh Weekly energy budget of hydro resource h (MWh) 

fl(t) Flow on line l at time t (MW) 

λl,z Incidency of line l on zone z 
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r 

s 

s 

s 

s 

s 

 

Fl Minimum (negative) flow on line l (MW) 

 

Fl Maximum flow on line l (MW) 

 
ICr Installed capacity of renewable resource r (MW) 

PFr(t) Production factor of renewable resource r at time t 

pcurt(t) Curtailment of renewable resource r at time t (MW) 

curt 
r Cost of curtailment of resource r ($/MWh) 

 
SUCu(t) Startup cost of unit u at time t ($) 

SDCu(t) Shutdown cost of unit u at time t ($) 

GCSu Generation cost slope of unit u ($/MWh) 

GCIu Generation cost intercept of unit u ($/hour) 

Storage 

 
vs(t) Storage charge (0)/discharge (1) status at time t 

pc(t) Storage rate of charge at time t (MW) 

pd(t) Storage rate of discharge at time t (MW) 

 
c Storage max rate of charge (MW) 

 
d Storage max rate of discharge (MW) 

 

Cs Storage max state of charge (MWh) 

 
Cs Storage min state of charge (MWh) 

 
Cs(t)  Storage state of charge at time t (MWh) 

 
c Storage charge efficiency 

c 

p 

p 

η 
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e 

e 

u 

u 

u 

s 

s 

 
d Storage discharge efficiency 

 
δs Storage self discharge 

 
ve(t) MHD BEV charge (0)/discharge (1) status at time t 

pc(t)  MHD BEV charge at time t (MW) 

pd(t) MHD BEV discharge at time t (MW) 

 

Pe MHD BEV charger power rating (MW) 

 
Ce(t) MHD BEV state of charge at time t (MWh) 

 

Ce MHD BEV maximum state of charge (MWh) 

 
Ce MHD BEV minimum state of charge (MWh) 

 

depot 
e Hour of depot arrival 

 

drive 
e Hour of drive start 

 

depot 
e State of charge at depot arrival (MWh) 

 

drive 
e State of charge at drive start (MWh) 

 
Investment 

 
IUu(y) Install status of unit u in year y 

 

IUp(y) Planned install status of unit u in year y 

IUb(y) Build flag for unit u in year y 

IUr(y) Retirement flag for unit u in year y 

 

ICs(y) Installed capacity of storage resource s in year y 

η 

t 

t 

C 

C 
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ICp(y) Planned capacity of storage resource s in year y 
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s 

s 

s 

r 

r 

y 

 

ICb(y) Built capacity of storage resource s in year y 

 

ICEs(y) Installed energy capacity of storage resource s in year y 

ICEp(y) Planned energy capacity of storage resource s in year y 

ICEb(y) Built energy capacity of storage resource s in year y 

ICr(y) Installed capacity of renewable resource r in year y 

ICp(y) Planned capacity of renewable resource r in year y 

ICb(y) Built capacity of renewable resource r in year y 

gen 
y Generation costs in year y 

 
m Maintenance costs in year y 

 

inv 
y Investment costs in year y 

C 

C 

C 
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Chapter 2 

 

 

Decarbonization  Planning 
 
 

2.1 Introduction 

 
From a modeling perspective, power system planning problems are frequently mod- 

eled as a mixed-integer linear programming (MILP) problem to exploit the capability of 

existing optimization solvers such as Gurobi [43], Xpress [126], and CPLEX [49]. Over 

the 20-year decarbonization planning horizon, decisions regarding resource dispatch are 

co-optimized with decisions associated with the construction and the retirement of energy 

resources. While many renewable and storage resources can be modeled using continuous 

variables, thermal unit behavior (commitment, decommission, and investment) can only 

be accurately captured with binary variables. This requirement, combined with the exten- 

sive time horizon, leads to an issue known as combinatorial complexity - as the planning 

horizon increases linearly, the associated complexity increases superlinearly (e.g., exponen- 

tially). Consequently, when using off-the-shelf commercial software, large MILP planning 
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problems can quickly become increasingly challenging to solve, with no guarantee that even 

a feasible solution can be found within a reasonable CPU time. 

Currently, the lack of tractability resulting from large time-scale and the inherently 

discrete nature of the planning problems is typically addressed by relaxing binary restric- 

tions, thereby reducing the MILP problem into a Linear Programming (LP) problem. One 

example of this is E3’s RESOLVE, a resource planning model used by the California Pub- 

lic Utilities Commission as well as by three major California utilities: Southern California 

Edison, Pacific Gas & Electric, and San Diego Gas & Electric. While LP-relaxed problems 

may still theoretically be NP-hard, the practical performance of such methods as simplex or 

barrier methods leads to much-reduced CPU times. However, LP-relaxed versions cannot 

accurately capture the behavior of thermal units and tend to overestimate their opera- 

tional flexibility. Consequently, an investment plan based on these simplifications may lead 

to higher costs or even reliability issues when subjected to the constraints of real-world 

operations. 

In this chapter, we address the California decarbonization planning issue by for- 

mulating it as a MILP problem. This approach provides a more accurate model of thermal 

plants’ operations as compared to previous simplifications. Instead of oversimplifying the 

model, we tailor a surrogate Lagrangian relaxation technique to decompose the problem into 

manageable subproblems. This method significantly reduces the combinatorial complexity 

and uses Lagrangian multipliers for iterative coordination of the subproblems. By using 

the proposed method, investment plans are more consistent with real-world power system 

operations. The results are compared with RESOLVE, a model used by California state 
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agencies for decarbonization studies. We find that RESOLVE routinely underestimates the 

investment required to meet intermediate emissions targets. Further, our model results in 

lower overall costs on the order of billions through the investment horizon. 

 

2.2 Related Work 

 
While the decarbonization planning problem is relatively new, it is closely con- 

nected to the generation expansion problem, which has been the subject of study for decades. 

Further, as the focus shifts to renewable generation resources, the lines between these prob- 

lems have blurred in the literature. This section will review related literature in both 

decarbonization and generation expansion planning (GEP), as well as works related to the 

proposed surrogate Lagrangian relaxation solution methodology. 

 

2.2.1 Generation Expansion Planning 

 
The decarbonization planning problem is essentially a modification of the GEP, 

with more emphasis on the construction of green technology and subject to constraints on 

emissions. Thus, these problems will be reviewed together. GEP approaches generally fall 

into two groups: reduction in model complexity and alternative optimization methods. 

Reduction in model complexity refers to relaxations made to the full MILP formulation 

used within GEP. Within this group, there are a few common streams. The first technique 

is the relaxation of integrality requirements of binary commitment and investment decisions 

[47, 118, 113]. The general drawback of LP-relaxation-based methods is an overestimation of 

the flexibility of thermal and pumped storage units. The second technique is the omission 
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of detailed technical constraints within the unit commitment formulation. Examples of 

simplifications include clustered rather than individual modeling of thermal units [73] and 

the omission of thermal unit operational constraints such as ramping constraints [77, 122, 

41]. Furthermore, models may even neglect temporal dependencies opting for load duration 

curves or similar metrics instead [1, 85, 55]. As a result, two situations may occur: infeasible 

or non-cost-effective operations. In the former case, the fleet of build-out units satisfying 

the forecasted peak load may still not satisfy all constraints, such as emissions limits, once 

more granular operational constraints are imposed on thermal units. In the latter case, 

feasible solutions may turn out much more expensive during realistic operations due to the 

need to satisfy more granular operational constraints. 

Several open-source generation expansion packages such as Gridpath [87], GenX 

[95], and ReEDS [96] have also been developed. The packages differ in handling MILP 

versus LP, clustered versus non-clustered scenarios, and the granularity of unit commit- 

ment. Some offer a choice in the level of detail for unit commitment. However, despite 

allowing detailed generator-level integer unit commitment modeling, these packages do not 

enhance computational tractability, limiting their application over a significant number of 

time periods. 

This work closely follows Energy + Environmental Economics’ (E3) RESOLVE 

model’s data and general composition [34]. The RESOLVE model is used by the California 

Public Utilities Commission to perform integrated resource planning to meet California’s 

long-term energy policy goals. However, the RESOLVE model presents a linearized and 

clustered version of unit commitment, in which units are clustered by similar technology. 
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This simplification massively increases computational efficiency, but has the potential to 

overestimate the flexibility of thermal units. In clustered unit commitment, individual 

units’ feasible sets are not captured by design making it impossible to accurately apply 

constraints such as minimum up- and down-time to each unit. Using continuous variables 

instead of binary ones can result in physically impossible outcomes, such as committing “half 

of a unit,” which is not feasible in reality. This overestimated operational flexibility will 

likely lead to sub-optimal investment solutions when the full set of constraints are applied in 

real-world operations. In this work, we overcome these issues by developing a more detailed 

operational model and adopting a decomposition and coordination methodology for efficient 

problem solving. 

 

2.2.2 Optimization Methods: Heuristics and Decomposition 

 
Alternative optimization methods include both heuristic methods and decompo- 

sition methods, like Benders’ decomposition. Heuristic methods have been used to find 

satisfactory solutions to complex problems where traditional optimization methods may 

be inefficient or impractical and have been particularly useful when solving large-scale and 

complex problems. Unlike exact algorithms, such as those employed in software like CPLEX 

or Gurobi, heuristic methods seek “good enough” solutions within a reasonable timeframe. 

Notable examples of these methods include genetic algorithm [53], NSGA-II [46] and par- 

ticle swarm optimization [70, 67]. One of the shortcomings of heuristic methods is the lack 

of a lower bound to provide a measure of the solution quality - how close a solution is to 

the global optimal. Moreover, heuristic and metaheuristics methods such as particle swarm 

optimization may generally suffer from getting trapped at local optima; by the very na- 
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ture of heuristics, there is generally no systematic or theoretically justified way to improve 

solutions. 

Another approach to improving computational tractability is the use of Benders’ 

decomposition. This method has been deployed for transmission expansion planning in sev- 

eral studies [51, 72, 40]. In [105], Benders’ decomposition is applied to generation expansion 

planning, although it still relies on a genetic algorithm and thus inherits issues of heuris- 

tics methods. In general, Benders’ decomposition has been less common for generation 

expansion as compared to transmission expansion. It should be noted that these alterna- 

tive solution techniques are often coupled with reduction in model complexity as described 

above. 

 

2.2.3 Optimization Methods: Lagrangian Relaxation 

 
Lagrangian relaxation is an optimization technique that is related to the techniques 

described above. It has been applied to a range of problems, including unit commitment. 

This section will review a range of techniques within the family of Lagrangian relaxation to 

demonstrate the advantages of the selected technique. 

Traditional Lagrangian relaxation-based methods faced difficulties such as the high 

computational effort required to obtain subgradient directions; even if obtained, subgradi- 

ent directions tend to change drastically and lead to zigzagging of multipliers and slow 

convergence. Additionally, standard LR utilizing subgradient methods for multiplier up- 

dates requires the optimal dual value knowledge for convergence as in Polyak stepsizing 

[78]. 
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Recently, surrogate Lagrangian relaxation (SLR) [16] has addressed most of these 

issues, enabling multiplier updates with only “good-enough” subproblem solutions obtained 

at a time that satisfy the “surrogate optimality condition.” This procedure essentially 

improves the incumbent solution of a relaxed problem (rather than finding the exact optimal 

solution) in a computationally efficient way due to the drastic reduction of complexity, 

while still guaranteeing convergence, and reducing the zigzagging of multipliers. From the 

subproblem-coordination standpoint, the method eliminates the need for optimal dual 

value knowledge. Moreover, several advancements have been made to the SLR framework, 

including surrogate absolute-value Lagrangian relaxation (SAVLR) [14] which accelerates 

convergence through piece-wise linear penalties. These methods have demonstrated success 

in solving various complex problems in power systems such as unit commitment [108, 123] 

and beyond [16, 14]. 

Table 2.1: Comparison of characteristics of LR methods using Polyak’s stepsize as well as 

Polyak’s seminal work 

Method 
Require optimal 

dual value 
Multiplier 

updating directions 

Polyak’s seminal 

work (1969) [78] 

Surrogate subgradient 

method [133] 

Surrogate “level-based” 

Lagrangian relaxation [17] 

Yes Subgradient 

 
Yes Surrogate subgradient 

 
No Surrogate subgradient 

 

 

 
The surrogate “level-based” Lagrangian relaxation (SLBLR) technique has been 

recently developed [17], which uses the Polyak stepsize formula with efficient level-value 

adjustments while guaranteeing convergence of level values to the true optimal dual value 

leading to overall convergence. This user-friendly approach is robust and reduces the need 
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for domain knowledge. SLBLR has successfully addressed major issues of previous meth- 

ods, specifically obviating the need to know the optional function value while still exploiting 

the geometric (fastest possible) convergence inherent in the Polyak formula. Key features 

of SLBLR include the decomposition (or “partial optimization” with respect to subsets of 

decision variables) of the problem into subproblems and the exponential reduction of com- 

plexity, enabling efficient coordination through iterative updates of multipliers. Table 2.1 

compares the key characteristics of three important Lagrangian relaxation techniques. Due 

to these characteristics, SLBLR is identified as a technique of particular promise for solving 

large-scale MILP planning problems. In general, these Lagrangian relaxation-based meth- 

ods can frequently achieve performance enhancements over commercially available software 

by a factor of 2-3 times, and as high as 4 orders of magnitude [19]. 

Lagrangian relaxation-based methods have demonstrated the ability to efficiently 

exploit the drastic reduction of complexity upon decomposition as well as to efficiently 

coordinate the subproblems to obtain near-optimal solutions for operation optimization 

problems in a computationally efficient manner. Lagrangian relaxation is well-suited and 

is expected to be beneficial for coordinating multiple subsystems and supporting decision- 

making in complex problems like California’s large-scale power system investment for de- 

carbonization as well. For these reasons, SLBLR will be used to solve the decarbonization 

model developed in Chapter 3. 
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2.3 Technical Method 

 
In this section, we present a two-timescale formulation for the power system plan- 

ning problem. At the hourly level, we formulate a unit commitment problem, responsible 

for committing and dispatching resources to meet load and ancillary service requirements. 

Meanwhile, the yearly level modeling focuses on investment decisions, governing the con- 

struction or retirement of resources. Subsection 2.3.1 presents the formulation for single- 

week unit commitment. Subsection 2.3.2 then integrates the single-week unit commitment 

formulation into the multi-week, multi-year planning model. 

 

2.3.1 Single-Week Unit Commitment 

Unit commitment (UC) will be considered over a time period T with 1-hour res- 

olution. Every UC variable is indexed temporally by (y, w, t) – a tuple consisting of year, 

week, and hour. For the sake of conciseness, in this subsection, we formulate all constraints 

that are generic for any year and week. Thus, we omit y, w indices and let (y, w, t) → (t). 

In the planning model formulation, these constraints will be enforced over all y ∈ Y, w ∈ W . 

To circumvent the need to define the initial status of units in UC, time periods will be con- 

sidered to be consist of a circular set of hours t, in a fashion echoing that of the RESOLVE 

package [93]. That is, all constraints that link hours are enforced between the end of the 

period back to the beginning, as shown in Fig. 2.1. 

This idea is operationalized by using the modulo operator to track hours. Gen- 

erally, circular time is calculated as τ (t) = mod (t − 1 + T, T ), ensuring time values stay 

within the period’s range. For constraints which link hours, such as ramping constraints, 
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Figure 2.1: Visualization of the circular representation of time. 

 

 
hours extending past the regular period loop back to the start. This circular approach is 

only applied to the time variable t. During normal periods (where t ranges from 1 to T ), 

t is simply equal to itself. This time linkage is enforced within each period w, but there is 

no time linkage between periods and each w is considered disjoint from others. 

 
Generation Resources 

 
The generation fleet consists of five basic types of generation resources: thermal 

units, renewable resources, firm resources, storage resources, and large hydro resources. 

These formulations are based on the formulations presented in [93], [120], and [81]. These 

types of resources and their constraints will now be discussed. 

Thermal Units. Thermal units include various types of gas-fired power plants such as 

combined-cycle gas turbines, fast-start peaking power plants (“peakers”), steam turbines, 

..... 
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aeroderivative combustion turbines, and coal-fired plants. The outputs of thermal units are 

subject to generation capacity constraints: 

 

Puvu(t) ≤ pu(t) ≤ Puvu(t), ∀t ∈ T, u ∈ U, (2.1) 

minimum up- and down-time constraints: 

τ (t+UTu) 

 
n=t+1 

vu(n) ≥ UTu[vu(t) − vu(t − 1)], ∀t ∈ T, u ∈ U, (2.2) 

 

τ (t+DTu) 

 
n=t+1 

[1 − vu(n)] ≥ DTu[vu(t − 1) − vu(t)], ∀t ∈ T, u ∈ U, (2.3) 

and ramp-rate constraints that include ramp up- and down-rate constraints: 
 
 

pu(t) ≤ pu(τ (t − 1)) + RUuvu(τ (t − 1)) 

+ SUu[vu(t) − vu(τ (t − 1))] + Pu(1 − vu(t)), ∀t ∈ T, u ∈ U,  (2.4) 

shutdown ramp-rate constraints: 

pu(t) ≤ Puvu(τ (t + 1)) + SDu[vu(t) − vu(τ (t + 1))], ∀t ∈ T, u ∈ U, (2.5) 

and startup ramp-rate constraints: 

pu(t) ≥ pu(τ (t − 1)) − RDuvu(t) 

− SDu[vu(τ (t − 1)) − vu(t)] − Pu[1 − vu(τ (t − 1))], ∀t ∈ T, u ∈ U.  (2.6) 

Thermal units incur fuel costs as well as startup/shutdown costs. The fuel costs 

are modeled as a linear function of the commitment status and generation level: GCIu · 

vu(t) + GCSu · pu(t). Additionally, there are fixed costs for starting up (sucu) and shutting 
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down (sdcu). These fixed costs are applied each time the unit is turned on or off: 

 

 

SUCu(t) = max(0, vu(t) − vu(τ (t − 1))) · sucu, ∀t ∈ T, u ∈ U, (2.7) 

 

SDCu(t) = max(0, vu(τ (t − 1)) − vu(t)) · sdcu, ∀t ∈ T, u ∈ U. (2.8) 

 
Renewable Resources. Renewable resources are utility-scale solar and wind farms, and 

an agglomeration of behind-the-meter customer solar. Renewable resources are described 

by generation shape generally represented as a certain percentage of the resource’s rated 

capacity PFr(t) in a given hour, depending on the solar irradiance or wind speed. The power 

output of a renewable resource is equal to this amount minus any curtailment. Curtailment 

incurs a cost related to the loss of production tax credits ccurt as: 

 

pr(t) = ICr · PFr(t) − pcurt(t), ∀t ∈ T, r ∈ R (2.9) 

Firm resources. Firm resources, such as nuclear, small hydro, biofuel, geothermal, and 

combined heat and power, are grouped together with renewable resources in our model. 

These firm resources generate a consistent amount of power every hour. Unlike other types 

of resources, they are neither schedulable nor curtailable. 

Large Hydro Units. Large hydro units are dispatchable hydro resources, which are 

subject to weekly energy budget constraints: 

ph(t) × 1 hour ≤ Bh, ∀h ∈ H, (2.10) 

t∈T 

ramp limits: 
 

 

ph(t) − RLh ≤ ph(τ (t + 1)) ≤ ph(t) + RLh, ∀t ∈ T, h ∈ H, (2.11) 
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and generation capacity constraints: 

 

Ph ≤ ph(t) ≤ Ph, ∀t ∈ T, h ∈ H. (2.12) 

 
Storage Resources. Storage resources include pumped and battery storage. These re- 

sources can charge using overgeneration and discharge to serve undergeneration. Storage 

resources are defined and limited by their power rating (MW) and energy rating (MWh). 

To enforce minimum duration, particularly for pumped storage resources, storage resources 

have a binary discharge (1) or charge (0) status. Charge and discharge rates are modeled 

separately to account for efficiency losses, and are subject to minimum: 

0 ≤ pc(t) ≤ (1 − vs)pc, ∀t ∈ T, s ∈ S (2.13) 
s s 

 
and maximum rate constraints: 

 
0 ≤ pd(t) ≤ vspd, ∀t ∈ T, s ∈ S. (2.14) 

s s 

 
Storage resources are subject to battery capacity limits - a minimum and maximum 

state of charge constraint: 

Cs ≤ Cs(t) ≤ Cs, ∀t ∈ T, s ∈ S. (2.15) 

 
Storage resource state of charge balance is governed by: 

 

C (t) = (1 − δ )C (τ (t − 1)) +

 

pc(t)ηc − pd(t) 
 1
  

× 1 hour, ∀t ∈ T, s ∈ S. (2.16) 

 

 
Zones and Lines 

 
A zonal unit commitment model is employed to represent the California Indepen- 

dent System Operator (CAISO) and the Western Interconnection, encompassing distinct 
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zones: CAISO, three balancing authorities within California (LADWP, IID, BANC), and 

two out-of-state aggregations (NW, SW). Each zone is interconnected with at least one 

other zone through transmission lines, with power transfer between zones modeled as deci- 

sion variables. This approach, often referred to as a ’transportation’ transmission model, 

omits the need for detailed power flow analyses, reducing the computational complexity of 

the problem while facilitating a comprehensive representation of the interconnected system. 

The incidence of line l on zone z is captured by λl,z taking 0 values for non- 

incidence, and values of 1 and -1 to denote reference directions of line l into and out of 

zone z, respectively. Transmission is associated with a transmission cost ctx which captures 

wheeling costs, and can be derived from Open Access Transmission Tariffs [94]. The power 

flows are subject to line capacity constraints: 
 
 

F l  ≤ fl(t) ≤ F l, ∀t ∈ T, l ∈ L. (2.17) 

 
Load and Reserve Requirements 

The ancillary service requirements must be satisfied with resources in CAISO. Each 

reserve product is modeled individually. Superscripts fr, sr, lf ↑, reg ↑ denote frequency 

response, spinning reserve, load following up, and regulation up products, while lf ↓, reg ↓ 

denote the load following down and regulation down products. The exact amount of each 

product in this formulation is specific to CAISO, but the formulation is readily adaptable 

to the reserve requirements of other system operators. Products can only be supplied up to 

the headroom and footroom available for thermal units: 

 
pfr(t) + psr(t) + plf↑(t) + preg↑(t) ≤ Puvu(t) − pu(t), ∀t ∈ T, u ∈ U, (2.18) 

u u u u 
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plf↓(t) + preg↓(t) ≤ pu(t) − Puvu(t), ∀t ∈ T, u ∈ U, (2.19) 

u u 

 
and hydro units: 

 

 
pfr(t) + psr(t) + plf↑(t) + preg↑(t) ≤ Ph − ph(t), ∀t ∈ T, h ∈ H, (2.20) 

h h h h 

 
plf↓(t) + preg↓(t) ≤ ph(t) − P , ∀t ∈ T, h ∈ H. (2.21) 

h h h 

 
Thermal provision of frequency response is limited to 8% of the current output as: 

 

pfr(t) ≤ 0.08pu(t), ∀t ∈ T, u ∈ U. (2.22) 

For products other than frequency response, ramping limits must also be obeyed for thermal 

units: 

psr(t) + plf↑(t) + preg↑(t) ≤ RUu/6, ∀t ∈ T, u ∈ U, (2.23) 
u u u 

 
plf↓(t) + preg↓(t) ≤ RDu/6, ∀t ∈ T, u ∈ U, (2.24) 

u u 

 
and hydro units: 

 
psr(t) + plf↑(t) + preg↑(t) ≤ RLh/6, ∀t ∈ T, h ∈ H, (2.25) 

h h h 

 
plf↓(t) + preg↓(t) ≤ RLh/6, ∀t ∈ T, h ∈ H. (2.26) 

h h 

 
Storage can provide each product up to the headroom and footroom of both power capacity: 

 
pfr(t) + psr(t) + plf↑(t) + preg↑(t) ≤ pd(t) − pd(t) + pc(t), ∀t ∈ T, s ∈ S, (2.27) 

s s s s s s s 

 
plf↓(t) + preg↓(t) ≤ pc(t) − pc(t) + pd(t), ∀t ∈ T, s ∈ S, (2.28) 

s s s s s 

 
and energy capacity: 

 

 
pfr(t) + psr(t) + plf↑(t) + preg↑(t) ≤ Cs(t) − Cs, ∀t ∈ T, s ∈ S, (2.29) 

s s s s 
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plf↓(t) + preg↓(t) ≤ Cs − Cs(t), ∀t ∈ T, s ∈ S. (2.30) 

s s 

 
Up to half of the load following down can be provided via curtailable renewable resources: 

 

plf↓(t) ≤ 0.5LF ↓ (t), ∀t ∈ T, r ∈ R (2.31) 

up to the available footroom: 

plf↓(t) ≤ ICr · PFr(t) − pcurt(t) − pr(t), ∀t ∈ T, r ∈ R. (2.32) 
r r 

 
For every hour, 770MW must be held for frequency regulation. Regulation up, 

regulation down, and spinning reserve each require 1% of the CAISO load. Load following 

up and down requirements are based upon renewable penetration scenario analysis carried 

out by E3: 

 

L 
pfr(t) + 

L 
p

fr 
(t) + 

L 
pfr(t) ≥ 770MW, t ∈ T, z = 0, (2.33) 

L 
psr(t) + 

L 
psr(t) + 

L 
psr(t) ≥ 0.01Lz(t), t ∈ T, z = 0, (2.34) 

   

L 
preg↑(t) + 

L 
preg↑(t) + 

L 
preg↑(t) ≥ 0.01Lz(t), t ∈ T, z = 0, (2.35) 

L 
preg↓(t) + 

L 
preg↓(t) + 

L 
preg↓(t) ≥ 0.01Lz(t), t ∈ T, z = 0, (2.36) 

   

L 
plf↑(t) + 

L 
p

lf↑
(t) + 

L 
plf↑(t) ≥ LF ↑ (t), t ∈ T, z = 0, (2.37) 

L 
plf↓(t) + 

L 
plf↓(t) + 

L 
plf↓(t) + 

L 
plf↓(t) ≥ LF ↓ (t), t ∈ T, z = 0. (2.38) 

    

u∈Uz h∈Hz s∈Sz 

u∈Uz h∈Hz s∈Sz 

u∈Uz h∈Hz s∈Sz r∈Rz 

u∈Uz h∈Hz s∈Sz 

u∈Uz h∈Hz s∈Sz 

u∈Uz h∈Hz s∈Sz 



29  

L 

L L { _ 

L 
pu(t) + 

L
[pd(t) − pc(t)] + 

L 
pr(t) + 

L 
ph(t) 

l r r 

 
Each zone within the ISO area must satisfy the zonal power balance constraints 

(2.39) as: 

 

 

u∈Uz 

s 

s∈Sz 

s 

r∈Rz 

 

h∈Hz 

+ λl,zfl(t) = Lz(t), t ∈ T, z ∈ Z.  (2.39) 

l∈L 

 
Unit Commitment Objective 

 
The objective of unit commitment is to minimize the startup and shutdown costs, 

fuel costs, transmission costs, and renewable curtailment costs as: 

Cgen = SUCu(t) + SDCu(t) + (GCIu · vu(t) + GCSu · pu(t)) × 1 hour 
t∈T u∈U 

+

 
L L 

fl(t) · ctx + 
L L 

ccurt · pcurt(t)

l 

× 1 hour.  (2.40) 

With this, we can write the unit commitment optimization problem as the mini- 

mization of the cost 2.40 subject to all operational constraints. 

min Cgen (2.41) 

s.t., (2.1) − (2.39) 

 
In the next section, we take this basic formulation and transform it into a broader planning 

model by optimizing over a set of years and weeks, and allowing for resource investment 

alongside dispatch. 

 

2.3.2 Decarbonization Planning 

 
The objective of decarbonization planning is to minimize the total cost associ- 

ated with meeting carbon emissions and renewable generation goals from power generation 

t∈T l∈L t∈T r∈R 
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through 2045. The total cost encompasses both annual energy expenses (including main- 

tenance) and the capital costs of constructing new capacity of zero-carbon resources and 

lower-carbon power plants. 

In the present study, it is assumed that the development of new resources will be 

restricted to the CAISO territory. However, the problem formulation remains broadly ap- 

plicable. The portfolio of potential resources encompasses wind, solar, and energy storage 

at various sites, as well as geothermal, biomass, and several categories of gas-fired power 

plants. Decisions regarding the retirement of existing thermal units may also be consid- 

ered, with certain technologies, such as coal and nuclear, already possessing predetermined 

decommissioning schedules. In this section, all constraints will be enforced for each year 

∀y ∈ Y , and for CAISO only z = 0 where zonal subsets of resources are concerned. 

First, let us define the build status of thermal units. Let IUu(y) represent the 

binary operational status of unit u in year y, where 1 indicates the unit is operational and 

may be turned on. IUp(y) denotes the planned status of unit u, where 1 signifies the unit is 

operational, and 0 indicates the unit is decommissioned or not yet constructed. IUb(y) and 

IUr(y) define whether the unit is built and retired, respectively, in year y. Consequently, 

the relationship between the planning layer and the unit commitment layer is expressed as: 

 

IUu(y) ≥ vu(y, w, t), ∀u ∈ U, w ∈ W, t ∈ T, (2.42) 

which constrains the unit commitment status vu to turn on only if it is operational as: 

IUu(y) = IUp(y) + 
L

(IUb(Y) − IUr(Y)). (2.43) 

u 

u 

Y=1 
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ICs(y) = ICp(y) + 
L

(ICb(Y) − ICr(Y)), (2.44) 

s s s 

r r r 

 
Installation of additional capacity of renewable generation units (indexed by r) 

and storage units (indexed by s) is considered to be a continuous variable and the logic 

capturing the installation capacity follows that of (2.43) as: 

s s s 

Y=1 
y 

ICEs(y) = ICEp(y) + 
L

(ICEb(Y) − ICEr(Y)). (2.45) 

 
New capacity of these types can be installed in discrete amounts on the order of tens of 

watts, which is effectively continuous compared to the scale at which these resources are 

installed. Storage capacity has two components, one each for energy capacity (MWh), 

denoted as ICE, and power capacity (MW), denoted as IC. The total installed capacity 

of each renewable resource is defined in a similar way to that of the thermal units, with the 

chief difference being the decision variables become continuous instead of binary: 

 

 

ICr(y) = ICp(y) + 
L

(ICb(Y) − ICr(Y)). (2.46) 

 
The installed capacities of these units impact the unit commitment formulation in different 

ways. The maximum rate of charge/discharge is equal to the rated capacity, represented as 

pc(y) = pd(y) = ICs(y). The maximum/minimum state of charge corresponds to the rated 
s s 

energy capacity, multiplied by a percentage factor associated with the operational range, 

denoted as Cs(y) = ICEs(y) · ϵmax. For batteries, these values typically range between 0.1 

and 0.9 for degradation considerations [132], while for pumped storage, they are closer to 0 

and 1 [114]. Regarding renewables, ICr(y) defines ICr for the specified year in (2.9). 

y 

Y=1 

Y=1 
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Let the cost of energy generation for year y be denoted as Cgen. This cost is 

composed of the same components as the function being minimized in the unit commitment 

given by (2.40). Within the planning problem, unit commitment is performed for a sample 

of several weeks per year. Each sampled week is assigned a weight ωw that conveys its 

representative factor to the annual load profile, with the sum of these weights amounting 

to 52, corresponding to the number of weeks in a year. The yearly unit commitment cost is 

calculated as the weighted sum of the weekly unit commitment costs. It is also weighted by 

the yearly weight ωy, which encodes the number of years represented by y. Consequently, 

the cost of generation in year y and week w in (2.40) is expressed as Cgen, and the annual 

generation costs can be written as: 

Cgen = ωy 

L 
ωw · C

gen. (2.47) 

Yearly maintenance costs are considered as a function of the installed capacity and the cost 

of maintaining a given technology. Renewables have a single cost component expressed in 

$/MW. Thermal units have a single cost component in $/unit. Storage has two maintenance 

 
cost components, for rated energy cm and rated power cm , expressed in $/MWh and 

 
$/MW, respectively. The cost of maintenance for the year y is then: 

 

Cm = ωy·

 L 
IUu,y · cm + 

L 
ICEs,y · cm,E 

+ 
L 

ICs,y · cm,P + 
L 

ICk,ycm + 
L 

ICh,y · cm

 

.  (2.48) 

Lastly, let us consider the investment costs for constructing new resources. Annualized 

costs are assessed for every year after a resource is constructed. Each thermal technology is 

associated with an annualized capital cost per unit, denoted as ccap. Similarly, storage and 

u∈U s∈S 
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renewable technologies have an annualized capital cost per megawatt ($/MW), represented 

 

cap,P 
y,s and ccap, respectively. Additionally, storage has an annualized capital cost for 

 
energy capacity, expressed as ccap,E: 

 

|Y | 

Cinv = ωγ·

  L
(IUb(y)) · ccap + 

L
(ICb(y)) · ccap,P 

y 

γ=y 

u 

u∈U 
y,s s s 

s∈S 

+ 
L

(ICEb(y)) · ccap,E + 
L

(ICb(y)) · ccap

)

.   (2.49) 

 
The objective function of decarbonization planning is: 

 

min O = min 
L 

Cgen + Cm + Cinv
 

. (2.50) 

The planning process in decarbonization is subject to various constraints, which are central 

to formulating effective strategies. These constraints comprise emissions targets, renewable 

energy penetration, and system reliability. In this study, the analysis focuses solely on the 

constraints utilized by CAISO, excluding other balancing authorities. Thus, for notational 

clarity, the subscript z denoting zone will be used, with the specification that z = 0 for these 

planning constraints. 

Emission Limits. Carbon emissions are generated when energy is produced by thermal 

plants. CAISO is subject to an emissions constraint specifying that the emissions associated 

with all generation within CAISO, as well as emissions associated with imports, must be 

less than the emissions target for year y, Ey. Given the emissions associated with unit 

u in tons/MW as eu, and the emissions associated with imports el, we can examine the 

relationship between emissions and energy generation: 

as c 

y∈Y 

s∈S r∈R 
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Ey ≥ 
L 

ωw · 
L L 

eu · pu(y, w, t) + 
L 

el · max(0, λl,zfl(y, w, t))

)

. (2.51) 
w∈W t∈T u∈Uz l∈L 
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Only imports count towards the emission constraint, and exports should not count to reduce 

the emissions. Thus, the contributing emissions are lower-bounded by 0. 

Renewable Portfolio Standards. In addition to the net-zero emissions target by 2045, 

renewable portfolio standards (RPS) impose interim requirements on the proportion of elec- 

tricity generation from carbon-free resources, based on a percentage of CAISO’s annual load. 

The majority of renewable energy sources qualify for RPS, with the notable exceptions of 

combined heat and power (CHP) and nuclear power, which are grouped with renewables due 

to their similar generation attributes. The following constraint ensures that the renewable 

portfolio standards (RPS) are met for each year y ∈ Y as: 

RPSy · 
L 

ωw 
L 

Lz(y, w, t) ≤ 
L 

ωw · 
L L 

pr(y, w, t) · RPSeligible, (2.52) 

w∈W t∈T w∈W r∈R t∈T 

where binary variable RPSeligible indicates whether a renewable source in the set R meets 

the RPS criteria.  Accordingly, RPSy · 
L

w∈W ωw 
L

t∈T L0(y, w, t) represents the required 

amount of electricity generation from eligible renewable resources for the year y, based on 

a percentage (RPSy) of the total annual load in CAISO. 

Planning Reserve Margin. CAISO must also satisfy reliability requirements, partic- 

ularly the planning reserve margin (PRM). These requirements ensure that the portfolio, 

even with high renewable penetration, can meet energy demands. The PRM guarantees that 

the peak load, with some additional headroom, in a given year is satisfied by the installed 

capacity. Each resource contributes to the PRM by a fraction of its installed capacity. 

For thermal units and large hydro capacity, it is modified by the net qualifying ca- 

pacity fraction (NQC). Wind and solar are modified by the effective load-carrying capacity 

(ELCC), a fraction that decreases as renewable penetration increases. Essentially, ELCC 
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encodes the complex nature of variable generation, such as the behavior that increasing 

installation of renewables, particularly solar, may have little effect on the peak net load, 

which occurs in California in the early evening when solar generation is rapidly decreasing. 

The ELCC is approximated by a 3-dimensional piece-wise linear surface, with axes repre- 

senting the capacity of wind and solar, respectively. This ELCC surface is visualized in Fig. 

2.2. Each solar or wind resource in CAISO contributes to the total axis value by its capacity 

and a multiplier, denoted as multaxis. 
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Figure 2.2: Visualization of the ELCC surface. 

 

 
The resulting 3D surface is comprised of flat segments referred to as facets, which 

together create the overall shape of the ELCC representation. The facets simplify the 

complex relationships between wind, solar, and ELCC by breaking down the surface into a 
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series of linear segments, making it easier to analyze and understand the impact of different 

resource capacities on the overall system [34]. 

Then, the ELCC value of each facet is characterized by an intercept and slope on 

each axis. In the optimization, the final value for this piece-wise linear ELCC is determined 

by setting the ELCC as the minimum of each facet value. With Rwind and Rsolar denoting the 

subsets of CAISO wind and solar resources, the following equation computes the ELCC 

for each year y based on the capacity of wind and solar resources in CAISO: 

 

r∈Rz,wind 

ELCCy ≤ 

r∈Rz,solar 

+  

ICy,r · multaxis  · slopey,wind,f 

ICy,r · multaxis  · slopey,solar,f + intercepty,f , f ∈ Facets.  (2.53) 

 
Similarly, storage contributes through the 4-hour capacity. The ELCC of storage resources 

is characterized by a two-dimensional piecewise linear surface: 

 

ELCCy,s ≤ intercepty,s,f 
 

sL∈Sz 

 

 

 

min(IC , 
ICEy,s 

) · mult 
4 hours 

 

 

· slopey,s,f , f ∈ Facets.  (2.54) 

 
The following equation ensures that the planning reserve margin (PRM) for each 

year y is met, taking into account the contributions from different types of resources, such 

as thermal units, storage, wind, and solar: 

PRMy ≤ 

u∈Uz 
 

 

IUy,uPuNQCu + ELCCy,s + ELCCy + 

h∈Hz 

ICy,hNQCh. (2.55) 

+ 
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Chapter 3 

 

 

Computational Techniques 

 
The problem formulated in the previous chapter belongs to the class of MILP 

problems. MILP problems suffer from combinatorial complexity – because of binary de- 

cision variables, as the problem size increases, the number of possible solutions increases 

super-linearly thereby leading to a drastic increase in the computational effort. In this 

chapter, to efficiently solve the problem, the recently proposed decomposition and coordi- 

nation approach SLBLR [17] is deployed to exploit the super-linear reduction of complexity 

upon the decomposition and the geometric convergence potential inherent to Polyak’s step- 

sizing formula for the fastest coordination possible to obtain near-optimal solutions in a 

computationally efficient manner. 

The decomposition is operationalized by relaxing coupling zonal power balance 

constraints (2.39). Given the additivity of the constraints and the objective function, the 

relaxed problem is separable into individual unit subproblems. Subproblem solutions are 

first coordinated through the iterative update of Lagrangian multipliers Λ. After the mul- 
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tipliers have converged sufficiently, the primal problem is solved while fixing the majority of 

the binary variables to their subproblem optimal values. The process for solving subproblems 

is described next. 

Relaxed Problem. After relaxing coupling constants, the relaxed problem is broken into 

subproblems decomposed by groups of thermal units. While solving each subproblem, all 

other thermal units’ commitment status, power levels, and build status are fixed at their 

value in the previous iteration. Each subproblem is optimized with respect to all the 

variables (both discrete and continuous) associated with the group of thermal units selected, 

including commitment status, dispatch, reserve product supply, and investment. 

After relaxing zonal power balance (2.39), which couples thermal units, the relaxed 
 

problem becomes:  
 

 
min L = min 

{p,v,I} 

 

  

O + Λ · R + c · R 
1

  

, (3.1) 

s.t., (2.1) − (2.38), ∀y ∈ Y, w ∈ W, 

(2.43) − (2.46), (2.51) − (2.55), ∀y ∈ Y, 

 

where R = [rz(y, w, t), ∀z ∈ Z, y ∈ Y, w ∈ W, t ∈ T ] is a vector of zonal power balance 

constraint violations across all zones and timepoints. The violation is given by rz(y, w, t) = 
L 

pu(y, w, t) + 
L 

[pd(y, w, t) − pc(y, w, t)] + 
L 

pr(y, w, t) + 
L 

ph(y, w, t) + 

L
l∈L λl,zfl(y, w, t) − Lz(y, w, t). Λ is a vector of Lagrangian multipliers, and c is a penalty 

coefficient acting on the absolute value of constraint violations. For notational brevity, 

let p represent all power-related variables (including line flows), v represent all binary 

commitment variables, and I represent all investment variables. 
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The solution process is presented in Algorithm 1. Subproblems are formulated 

by selecting Ωk - a group of units to be optimized with respect to at iteration k and 

by fixing decision variables collectively denoted as {p, v, I} that do not belong to Ωk are 

fixed at previously obtained values {pk−1, vk−1, Ik−1}. In particular, all units are split at 

random into groups, and these groups are iterated through during the subproblems. In each 

iteration, all non-thermal-unit variables are also solved. 

After one subproblem is solved, the multipliers are updated along “surrogate” 

subgradient directions, which are violation levels of relaxed constraints, with an appropriate 

stepsize as follows: 

Λk = Λk−1 + sk · R̃ k. (3.2) 

 
Here “tilde” (˜) indicates that the constraint violations are obtained approximately 

without optimizing the relaxed problem with respect to all the units at a time. Penalty 

coefficient c acts on the absolute value of constraint violations. Care must be taken to 

update c since if c is initialized “too large” or grows “too quickly,” it can hamper the 

convergence of multipliers thus severely impacting the iteration time. Further discussion of 

the role of c and strategies for updating it can be found in [123, 82]. 

The nature of the problem can contribute to slow convergence since renewable 

resources are generally dispatched at identical costs. While each renewable project has 

a unique investment cost, generation is associated with zero marginal cost. Therefore, 

with high penetration, a large amount of renewable resources respond identically to the 

multipliers. The dispatch of these resources may jump between maximum and minimum, 
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and multipliers may oscillate and overshoot optimal multipliers. The mechanism by which 

this occurs will be elucidated through an example. 

Consider a single-hour simplified illustrative example where renewable generation 

exceeds load, and disregard the penalty coefficient c for simplicity. The optimization prob- 

lem min L will minimize R by curtailing all generation, for any positive value of the multi- 

plier Λ. Conversely, with a negative Λ, there is no curtailment, resulting in overgeneration. 

While this is a simplified example, similar behavior is exhibited for the dispatch and con- 

struction of resources. Essentially, Lagrangian multipliers serve as “price signals,” causing 

renewable resources with similar costs to exhibit similar responses. This can lead to solu- 

tions jumping and, consequently, to the zigzagging of multipliers. 

To alleviate the solution jumping issue, specifically, to suppress the jumping of 

solutions, each continuous power variable is restricted within ∆ = 500MW of its value from 

the previous subproblem. Experimental results suggest that the value of ∆ is not 

particularly sensitive, with values in the range of 250MW to 1000MW having similar effect 

in experiments. This parameter is best set experimentally, as it depends on the number of 

projects, size of projects, relative costs of projects, load, and so on. The suggested range 

for this parameter is 0.5% to 2% of the average load. If this parameter is too small, dispatch 

variables will lag behind updated multipliers and not react in proportion, but if it is too 

large, convergence of multipliers will be poor due to large dispatch oscillations. The 

procedure also alleviates zigzagging since with suppressed jumping of solutions, the 

corresponding multiplier-updating directions tend not to change drastically (i.e., become 

smoother) eventually leading to a smoother update of multipliers. From the multiplier 
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convergence perspective, to alleviate the overshooting issue, proper stepsize selection plays 

an important role as explained ahead. 

Stepsize Update. The step size, denoted as sk, plays a pivotal role in the proposed algo- 

rithm’s convergence. Following the methodology outlined in [17], the step size is computed 

as follows: 

sk = ζ · γ · 
q̄ k − Lk 

∥R̃ ∥2 

. (3.3) 

 
In this equation, ζ and γ are hyperparameters that are chosen to balance the 

trade-off between convergence speed and algorithm stability. While in the original work 

of Polyak [78] γ < 2, which would be appropriate for standard Lagrangian relaxation that 

utilizes subgradient directions for multiplier update, in further “surrogate” extensions of LR 

[133, 17], γ < 1. Moreover, since level value q¯k represents the current overestimation of the 

dual value, ζ is chosen in a way to reduce stepsizes (e.g., ζ = 1/2). Since the method solves 

one subproblem at a time, γ is chosen to be the reciprocal of the number of subproblems. 

Overall, as compared to standard LR, this method allows for a more frequent update of 

multipliers along smoother directions with smaller steps leading to the alleviation of the 

“overshooting” issue mentioned above. 

The step size is initially set using an overestimation of the optimal dual value. The 

value of q¯k is not static, rather, as detailed in [17], it undergoes periodic adjustments based 

on a level-based resetting mechanism, which detects the lack of multiplier convergence. 

This resetting process is designed to lower q¯k to approach the actual (dual) optimal value 

in light of new information obtained during the iterative procedure, thereby refining the 

overestimation of the dual value and guiding the algorithm toward the optimal multipliers. 
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In essence, this approach to updating the step size is grounded in dynamism and adaptivity. 

By making use of gathered information and tuning the step size accordingly, we can expedite 

convergence and enhance the efficiency and robustness of the overall algorithm. For more 

information, interested readers are refered to [17, 62]. 

Algorithm 1: Surrogate “Level-Based” Lagrangian Relaxation 

initialize Λ = 0, c, q¯0, ζ, γ 

for k = 1... do 

 
select subproblem units Ωk ; 

solve subproblem min Lk with Λk (3.1) → R̃ k ;  

if ∥R̃ k ∥ < threshold then 

break ; 

 
end 

 
if Λ not converging then 

reset q¯k 

 
end 

sk ← ζ · γ · q¯k−Lk 

; 
∥R∥ 

Λk+1 ← Λk + sk · R̃ k ; 

 
end 

 
Solve primal problem with heuristic partially-fixed binary variables 

 

 
Feasible Solution. Although the method is guaranteed to converge towards the optimal 

(dual) solution [62], obtaining zero constraint violations through multipliers alone is often 

difficult or impossible. As a result, a heuristic is necessary to find a feasible solution to the 



44  

 
primal problem. Once the multipliers have converged such that the constraint violations are 

sufficiently low, the primal problem is solved by fixing the commitment status of most units 

to the values obtained in the relaxed problem. The above heuristic presents a fundamental 

trade-off: constraining fewer variables in the primal problem requires greater computational 

effort but may lead to lower overall costs. Nevertheless, as empirical evidence suggests in 

the chapter ahead, by solving the entire primal problem but with respect to only a small 

number of units, the primal problem is much easier to solve and can generally be solved to 

near-optimality. 
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Chapter 4 

 

 

Results 
 
 

4.1 Numerical Study 

 
4.1.1 Experimental Setup 

 
The decarbonization model is based on the Western Interconnection. The model 

incorporates CAISO and 5 other zones: LADWP, BANC, IID, and aggregations of non- 

California balancing authorities in the Northwest and Southwest. The data used within the 

model is taken from the RESOLVE implementation published by CPUC [34]. To reduce 

computational complexity, rather than model every year, and every hour of every year, 

it is typical to model representative periods. We model 8 weeks per year, and biennially 

from 2023 to 2045. The model has 91.1 million continuous variables and 11.8 million 

binary variables, roughly 40x more total variables than in RESOLVE. We use Gurobi on a 

workstation with an AMD Ryzen Threadripper 3970X CPU to solve the subproblems and 

primal problem. The total solution process takes less than 48 hours. Each iteration accounts 
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for approximately 25 minutes, although the exact time varies considerably and tends to slow 

as the multipliers converge. Fig. 4.1 shows the average absolute value of the power balance 

constraint violation over iterations. A feasible solution is attained at 75 iterations. At this 

point, the constraint violations are low enough that a solution to the primal problem can 

be recovered. As a direct comparison, the model is also deployed on the same set of 

representative days as RESOLVE. The solution process in this case takes approximately 24 

hours, with a feasible solution obtained at 120 iterations. Finally, the models are compared 

over representative days with a higher emissions scenario, representing an emissions limit 

of 38 MMT by 2030, instead of 30 MMT as in the other scenarios. A feasible solution is 

obtained at 90 iterations and 18 hours. Due to the number of modeled timepoints being 

substantially reduced, at 37 days per year as opposed to 56 days per year in the case of 

representative weeks, the time for each iteration is much shorter. Although these solution 

times are slower than continuous relaxation-based solution models, which can often be run 

in less than 12 hours, these solution times are not unreasonable in the context of long-term 

planning. 

To reduce computational complexity, rather than modeling unit commitment for 

full years, representative weeks are sampled and used instead. The sampling method follows 

the method used in RESOLVE studies [48]. We diverge from RESOLVE by modeling repre- 

sentative weeks rather than representative days, and the advantages will be demonstrated 

in the results. Histogram bins b ∈ B are created from features of the data, most importantly 

the distributions of hourly loads. Then, an optimization problem is solved to select weeks 

and corresponding weights which minimizes the Manhattan distance of bin frequency in the 



47  

 

 
10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 10 20 30 40 50 60 70 

Iteration 

 

 
Figure 4.1: Minimization of constraint violation as Lagrangian multipliers converge. 

 

 
full year to the representative weeks. 

 

min 
L 

Y earlyFreqb − 
L 

ωw · WeeklyFreqw,b

) 
(4.1) 

 
The optimization horizon is through 2045, and financing through 2065. Due to the 

sampling of weeks and years, it is necessary to weight the weekly and yearly components 

to ensure that costs assessed over different timescales are accurately balanced. In essence, 

weights ensure that the costs according to representative periods and years are scaled to 

approximate full timespace costs. The capital costs in (2.49) are amortized. Then, these 

costs are assessed for every subsequent year to the decision in the optimization horizon. 

Note that this also accounts for residual value of new capacity. All costs are in real dollars, 

but the yearly weight should capture the time value of money, with an assumed discount 
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rate of 5%, and the number of real years represented by the sampled year: 

 

 
 1  

)(Yy−Y0) 

 

We compare the investment decisions of the proposed model with those of RE- 

SOLVE. Maintenance and investment cost comparisons can readily be made. However, 

for operational cost comparisons, it is necessary to analyze RESOLVE’s investment deci- 

sions under the detailed MILP unit commitment model. For both models, in each year, 

investment decisions are fixed and unit commitment is solved, with a modified emissions 

constraint as described in (4.3). This modified constraint allows for violations of the emis- 

sions limits Evio, penalized by a large value M. The exact value is not critical, and the 

optimization should tend towards minimizing emissions even without this penalty, because 

investment decisions are not considered here and carbon-free resources generate with zero 

marginal cost. The same SLBLR method is used to solve these dispatch problems. In each 

case, the difference between the integer feasible solutions and the linear-relaxed objective 

value ranges from 0.5% to 1.5% of the linear-relaxed objective value, and no pattern ob- 

served towards any set of solutions achieving lower gaps. This metric can be considered 

similar to the MIP gap, used by commercial solvers like Gurobi to quantify the quality of a 

mixed-integer solution. However, it is not equivalent, because the lower bound used by the 

MIP gap is updated during branch-and-bound, while the lower bound is fixed in the above 

ωy = · (Y(y+1) − Yy). (4.2) 
1.05 
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metric. 

 

min Cgen + M · Evio (4.3) 

y y 

s.t., (2.1) − (2.39), ∀w ∈ W, 

Ey + Evio ≥ 
L 

ωw · 
L L 

eu · pu(y, w, t) 

w∈W t∈T u∈Uz 

+ el · max(0, λl,zfl(y, w, t)) 

l∈L 

 
4.1.2 Results 

 
We first compare the fleet of RESOLVE to the fleets of our model when optimized 

over both the same representative days as RESOLVE, and the proposed representative 

weeks. Cost comparisons are presented using both the proposed representative weeks and 

RESOLVE’s representative days. The proposed method with representative weeks will be 

generally referred to as SLBLR, with the suffix of “day” or “week” added where the 

distinction is necessary. In each of these cases, operational costs are determined using (4.3) 

over representative weeks. Including the SLBLR Day case in these comparisons allows for 

a better demonstration of which component of the improvement comes from more detailed 

MILP modeling and which component comes from more extensive modeling of weeks. 

With the goal of decarbonization by 2045 in mind, a comparison of CAISO fleets 

in 2045 is shown in Figure 4.2. Compared to RESOLVE, our model builds fewer solar and 

storage resources. However, this is not the case throughout the optimization horizon. 

Figure 4.3 shows the fleet composition from 2023 to 2045. Our model begins investing in 
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Figure 4.2: Comparison of CAISO fleet in 2045. 
 

 
additional capacity, especially solar, much earlier than RESOLVE, and holds more total 

capacity than RESOLVE until 2045. 

The likely explanation for the lower build of renewable resources in RESOLVE 

during this transitional years is that the overestimated flexibility of thermal resources un- 

derestimates the running costs of thermal units, as well as their emissions. In fact, RE- 

SOLVE’s investment decisions, when applied to the SLBLR model, cannot satisfy emissions 

constraints between year 2027 and 2045, and overemits anywhere from a few thousand to 

several million tons of GHG per year. Due to this underestimation, RESOLVE chooses to 

defer investment in renewables to later years. As evidence of the cost underestimation of 

running gas generators, Table 4.1 shows the shutdown, startup, and fuel costs for CAISO gas 

generators in 2022, before substantial investment occurs. The costs shown for RESOLVE 

are with respect to their linearized, clustered unit commitment formulation. RESOLVE 

underestimates fuel costs by roughly 20% and, vastly underestimates startup and shutdown 
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costs. Thus, this may explain why RESOLVE’s investment plan leans more heavily on gas 

units. Similarly, RESOLVE drastically underestimates the emissions in 2022, although it is 

still within emissions limits. California Air Resources Board estimates emissions of roughly 

40MMT from in-state electricity production in 2020, which is much more aligned with our 

model than RESOLVE. The takeaway is that if RESOLVE results are used to inform policy 

decisions, it may be difficult to meet intermediate emissions targets due to under-investment 

in renewable energy and storage. 

By a similar token, the differences in wind vs solar investment may be explained 

by the more accurate modeling of gas generators. When gas generators are modeled more 

faithfully, wind may have a more complementary load shape. Even today, ramping poses 

difficulties during early evening hours in which load is increasing and solar generation is 

rapidly decreasing. With solar capacity more than doubled, this effect will become even 

more pronounced. 
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Figure 4.3: Comparison of CAISO fleet over time. 
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Table 4.1: Comparison of CAISO 2022 Baseline Generation Costs 

 

 Shutdown 

(Millions $) 

Startup 

(Millions $) 

Fuel 

(Millions $) 

Emissions 

(MMT) 

SLBLR 29.71 70.46 2594.53 35.7 

RESOLVE 5.28 5.28 1935.45 21.4 
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Figure 4.4: Battery state of charge for an exemplary week in 2045. 
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The storage state of charge for an exemplary week in August 2045 is shown in Fig 

4.4. As expected, the state of charge is at its maximum in the late afternoon and its 

minimum in the early morning. A feature of note is that the state of charge maximum and 

minimum vary by roughly 30GWh. This indicates that energy is being shared between days, 

behavior which is enabled by modeling longer representative periods. In contrast, if energy 

sharing is not allowed, as in the case of modeled days in RESOLVE, the state of charge 

must be equal at the beginning and end of the day. Also of note is that our model builds 5 

less GW of storage, but only 6GWh less energy capacity. In 2045, our model builds battery 

storage with approximately 8 hour duration vs 7 hour in RESOLVE, and pumped storage 

with 100 hour duration vs 90 hour in RESOLVE. 

Yearly costs are shown in Fig 4.5. Our model maintains lower operation costs in 

almost every year. Investment spending is higher in early years, but increases at an overall 

lower rate, resulting in lower investment costs in the second half of the study period. Costs 

shown in Fig 4.5 are yearly, including financing of investment from earlier years, and not 

adjusted for discount rate. As shown in Table 4.2, with generation, investment, and 

maintenance costs included but neglecting emission violations, our model presents a 

savings of 1.2%, or 4 billion dollars through 2065. This includes all costs for CAISO as well 

as operating costs for the other WECC zones. As a reminder, investment in non-CAISO 

zones is exogenous, and CAISO investment has a limited impact on outside operating costs. 

When considering CAISO costs alone, our model saves 1.9%. 
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Figure 4.5: Yearly cost breakdown for CAISO. 

 
 
 
 

 
Table 4.2: Comparison of Total System Costs. 2022 $, Billions. 

 

 System Cost CAISO Costs 
 Total Total Op. Maint. Invest. 

RESOLVE 341.35 205.86 32.42 65.38 108.06 

SLBLR, Day 336.47 202.53 26.23 52.96 123.35 

SLBLR, Week 337.36 201.93 22.73 56.01 123.19 

 
 
 
 

 
Table 4.3: Comparison of total CAISO costs under range of per ton carbon costs. 2022 $, 

Billions. 

 
 Total CAISO Costs 

Tax $0 $30 $100 

RESOLVE 205.86 207.51 211.38 

SLBLR, Day 202.53 203.07 204.31 

SLBLR, Week 201.93 201.93 201.93 
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As exceeding emissions targets comes at the direct benefit of avoided investment 

in renewables and storage, it is critical to examine the total cost with some component for 

the cost of over-emissions. These costs are calculated using the optimal objective values 

and the emission violations Evio with a tax cvio, as: 

L 
Cgen + Cm + Cinv + ωy · cvio · Evio. (4.4) 

Table 4.3 shows the total CAISO costs under different values of a carbon tax per ton of 

GHG emissions over the limit. Two carbon tax rates are shown to essentially bookend the 

cost of exceeding emission targets. A carbon tax of $30 roughly corresponds to the 2022 

California cap-and-trade clearing price [100]. A carbon tax of $100 roughly corresponds to 

the Department of Energy’s Carbon Negative Shot goal for direct air capture cost per ton 

[102]. Due to sampling days vs weeks and increasing the total number of modeled days 

roughly 50% from 37 to 56, the average load in the representative weeks scenario is slightly 

higher than the representative days. Emissions constraints are binding constraints in most 

years in all three models. Thus, it is unsurprising that our own SLBLR Day investment 

decisions have emissions violations in the representative week evaluation. Crucially, the 

SLBLR Day scenario has less than 1/3rd of the total violation of RESOLVE. 

Table 4.4: Comparison of total CAISO costs with representative days under range of per 

ton carbon costs. 2022 $, Billions. 

 

 
Tax 

Total CAISO Costs 

$0 $30 $100 

RESOLVE 204.34 205.96 209.73 

SLBLR, Day 194.84 194.84 194.84 

y∈Y 



56  

To demonstrate that these results are consistent across varied problem instances, 

two further comparisons will be made. In each, all input parameters are identical between 

RESOLVE and SLBLR. The first compares the investment plans of RESOLVE and SLBLR 

when operated over representative days in (4.3). The comparison of RESOLVE to SLBLR 

optimized over representative days provides a more isolated comparison of the value of 

more rigorous generator modeling. The results of this experiment considering a range of 

carbon taxes are presented in Table 4.4. In this scenario, again our model produces no 

violation of emissions, while RESOLVE investments result in several million tons of GHG 

overemitted each year. Even neglecting any cost of overemission, our more detailed model 

has a nearly 5% lower total cost, primarily due to increased investment and correspondingly 

lower operating costs. With a $100 carbon cost, the gap grows to over 7%. The second 

comparative scenario is again over representative days, but with a higher emissions limit. A 

similar pattern is present in this case. RESOLVE has several million tons of overemissions, 

and SLBLR has savings of 2.0% to 4.2% depending on carbon tax cost. As is intuitive, the 

costs with a less aggressive emissions limit is less expensive in both cases. Again, the 

message is the same: the simplifications to generator modeling underestimate both emissions 

and fuel costs. This both underestimates the requirement for and value of renewable and 

storage resources. 

Finally, the performance of the proposed method is validated against the per- 

formance of other optimization techniques towards solving the full MILP model. First, a 

state-of-the-art package enabling Dantzig-Wolfe and Benders’ decomposition of MILP prob- 

lems [35] was used. These methods are the closest competitors to surrogate Lagrangian 
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relaxation methods, as they also allow for decomposition of difficult MILP into more man- 

ageable subproblems. Even a reduced model, with 5 instead of 12 modeled years, fails to 

find a feasible solution within 48 hours. Next, the model was implemented using the Opy- 

timizer Python package [31]. This package implements many metaheuristic optimization 

algorithms. In a time limit of 48 hours, genetic algorithm, particle swarm optimization, and 

simulated annealing are unable to find a feasible solution. As a further point of comparison, 

the original surrogate Lagrangian relaxation [133] fails to find a feasible solution within 48 

hours. As such, we conclude that the SLBLR method is particularly suited to solving this 

type of large planning model, over many of the other advanced optimization techniques. 

 

4.2 Conclusions 

 
This concludes the discussion of the core decarbonization model. In Chapter 2, a 

MILP decarbonization model for California is developed. To overcome the issue of combi- 

natorial complexity with integer variables, SLBLR is implemented in Chapter 3, and allows 

us to optimize over nearly 100 million variables including 12 million binary variables in 

under 48 hours. In Chapter 4, we show that the existing, linearized model underestimates 

operational costs of gas generators, leading to a substantially different investment plan. By 

doing so, we develop an investment plan that saves California 4 billion dollars over the 

investment horizon. Further, our model suggests more substantial and early investment in 

renewable generation and storage is required to meet intermediate emissions targets. This 

result may inform policymakers that a more aggressive approach is needed than previous 

work sponsored by state commissions. 
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The following chapters will extend this decarbonization model to examine novel 

approaches to representative period selection, integration of smart charging for medium- 

and heavy-duty vehicles, and climate change scenarios. 



59  

 
 
 

 
Chapter 5 

 

 

Novel Approaches to 

Representative Period Selection 

A key component of any planning study is representative period selection. Plan- 

ning models, including the one developed in Chapter 2, usually involve two-time scales: one 

for annual investment decisions and another for hourly generation dispatch simulations. The 

complexity of solving the optimization problem increases significantly when attempting to 

model all 8760 hours in a year, potentially leading to slow or intractable computations. 

To mitigate this challenge, one solution is to use representative periods, which 

can significantly alleviate the computational load. For instance, rather than modeling all 

8760 hours annually, one can solve 37 representative days, reducing the modeled hours by 

almost 90%. The main goal in selecting these representative days is to capture the essential 

aspects of the entire yearly system behavior while substantially reducing the computational 

intricacies involved. 
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This chapter will present two novel approaches to representative period selection. 

These approaches have similar goals but different focuses. The following section will review 

existing works on the topic of representative period selection, and identify two gaps in the 

literature which these works seek to fill. 

 

5.1 Related Work 

 
The problem of representative period selection in power system planning has re- 

ceived much attention in the literature. The majority of the work on this topic has been 

built around the framework of time series clustering. The authors in [110] compare a va- 

riety of clustering methods. The authors in [75] present a comparison of clustering and 

downsampling approaches. In [117], a clustering method is proposed which requires that 

each cluster consist of a contiguous set of days, while a downsampling-based approach is 

proposed in [64]. These clustering-based approaches all share the common drawback that 

they are only suitable for the selection of representative days, and not periods of multiple 

days in length, as will be discussed in detail later. 

Some works seek to model a year continuously to better model long-term storage 

[76, 112]. In these works, the temporal reduction is achieved by holding an operating state 

for multiple hours. However, within the CEM, this approach severely affects ramping 

modeling. The ramping requirements, particularly those originating from the so-called 

’duck curve’ due to high solar penetration, are a critical aspect that needs to be modeled. 

Representative hour approaches have also been proposed [65, 9], but suffer the same loss of 

chronology and thus the ability to track energy storage and ramping. 
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The method used in Chapter 4 is a histogram-based approach [48]. This method 

was used in this study to isolate the deviations from the reference study to the selection of 

weeks and the improved generator modeling. This method ensure that the sampled 

periods accurately represent the loading levels of a full year, but neglect the importance of 

variability of renewables. This method also neglects chronology, and accounts for loading 

levels as equivalent regardless of when they occur during the day. 

There are limited studies that utilize other features for clustering. In [59], clus- 

tering based on investment cost is proposed, along with a technique for extreme period 

selection. The authors in [79] examine the trade-off between temporal and technical mod- 

eling detail and propose period selection based on RE variability. 

While a considerable amount of research effort has been devoted to the representa- 

tive period selection problem, the majority of it has focused on clustering algorithm design. 

In contrast, there is little work dedicated to the selection of power grid features to be used 

within the clustering algorithm. Indeed, the majority of representative period selection 

methods use a greenfield approach, assuming no existing capacity, which is an impractical 

assumption for real power systems. Furthermore, these approaches overlook features highly 

relevant to capacity expansion planning, such as transmission congestion, RE curtailment, 

and load shedding. The first study, in Section 5.2, addresses this gap. 

On the other hand, these works are all dedicated towards selection of representative 

days. The selection of longer representative periods poses unique challenges due to the 

clustering framework relied upon. With the interday variability of renewable energy and 
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growing importance of energy storage, the ability to model longer periods is vital, as it 

enables energy to be shared between days. Section 5.3 presents a study addressing this gap. 

 

5.2 Representative Period Selection for Robust Capacity Ex- 

pansion Planning in Low-carbon Grids 

This study integrates additional operational features into a general time series 

clustering framework to select representative periods, thus improving the efficiency and 

accuracy of the clustering process. By enhancing the clustering framework with these 

tailored operational features, we strive to provide a more robust and insightful analysis of 

the underlying temporal patterns used in capacity expansion in the presence of high RE 

penetration and extreme events. 

 

5.2.1 Technical Method 

 
Feature Selection 

 
In practice, CEMs do what the name suggests: determine optimal strategies for 

adding energy resource capacity. The current resource fleet within a system might be sub- 

optimal or insufficient for future years, as a result of a variety of drivers including the 

following examples. Environmental regulations may limit the use of gas-fired generators. 

Increasing loads could necessitate additional capacity. High fuel costs may also make it 

more economically viable to invest in additional energy storage or renewable resources. 

Therefore, it is crucial to consider the characteristics of the existing capacity when selecting 

representative days. While existing methods for representative period selection have disre- 
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garded this aspect, our objective is to incorporate the attributes of the existing capacity 

into the process of choosing representative days. 

To this end, we propose including features that encode the existing capacity, but 

are typically not considered during clustering. This section identifies these features and 

justifies their inclusion. These features are referred to as operational features, as they are 

outputs of system operation, in contrast with demand and generation, which are inputs to 

operation. Namely, these features are load shedding, transmission congestion, and renewable 

curtailment. 

Load shedding, sometimes known as rolling blackouts, refers to interrupting some 

portion of loads, generally as a last resort for load balancing. Load shedding events are 

increasingly associated with extreme weather events, like heat waves or cold snaps. Load 

shedding is associated with considerable economic cost, as well as potential loss of life, as 

evidenced by the 2021 Texas power crisis [26]. Load shedding is a key metric for resource 

adequacy and can be avoided with proper planning. Inclusion of this feature in represen- 

tative day selection could help select periods that stress the existing resource fleet, thus 

leading to more robust capacity sizing. 

Curtailment refers to disconnecting RE generation to prevent overgeneration. Cur- 

tailment occurs when renewable generation exceeds demand, and this excess cannot be 

exported or used to charge energy storage systems. Including curtailment will better ac- 

count for days where renewable capacity is already sufficient, as well as select periods which 

demonstrate the value in expanding storage capacity. 
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Congestion refers to a $/MWh transmission cost. Congestion exists when there is 

more demand for transmission capacity than there is physical capacity. Including this fea- 

ture should help select periods which would be relevant to expanding transmission capacity 

by identifying periods with excess RE generation which could be exported to other areas. 

Each of these operational features can be readily obtained from the output of a 

production cost model (PCM). Because these features can be obtained by running a PCM 

in discontinuous days, the computational complexity associated with long timescales that 

necessitates the use of representative days in the CEM is irrelevant. 

 
Dimensionality Reduction 

Often, capacity expansion models consider wide geographic areas. Thus, there are 

load forecasts at many nodes, as well as renewable generation profiles at different locations. 

Each time step further inflates the dimensionality of each sample. Attempting to cluster 

without reducing the spatial dimensionality of these features could produce sub-optimal 

results. For load, renewable generation profiles, and congestion, this is done in the straight- 

forward method of averaging the time series over the spatial dimension. Some operational 

features should be highly sparse. In particular, curtailment should be zero in most hours, 

and load shedding should be even less common. For this reason, the spatial dimension of 

these features is reduced by taking the maximum. Each feature is normalized to zero mean, 

unit variance before it is clustered. With each feature reduced to a time series of length 

8760, we can construct the feature matrix x ∈ R365×24×6 by reshaping the time series and 

concatenating each feature. Each element xn ∈ R24×6 represents the multivariate time 

series for a given day. 
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Extreme Events 

 
The goal of representative day selection is to find a subset of days that best cap- 

ture the annual behavior of load and generation. However, this goal conflicts with the need 

to simulate extreme periods. Extreme weather events may only occur for a small fraction 

of days each year, and thus are unlikely to be selected during typical representative period 

selection. Within power system planning, extreme events are an extremely important con- 

sideration. If enough generation capacity is not held, the reliability of the system during 

extreme weather patterns could be compromised. Similarly, if there are periods of abnor- 

mally low renewable generation, the system could struggle to cope with demand. With 

climate change and an increasing push for decarbonization, these extreme events will be- 

come even more important. Several works have proposed methods for selecting extreme 

events based on peak load, peak ramping, or other features [104, 59]. Through the numeri- 

cal study, we will show that inclusion of operational features in clustering implicitly selects 

these representative periods. In particular, the inclusion of load shedding as a feature in 

representative period selection effectively captures the inadequacy of existing capacity. 

 
Clustering 

 
To select representative days, the periods are clustered using k-means. Given N 

samples, the goal of k-means is to generate K clusters with centers µk and assign a cluster 

label to each multivariate time series xn. 

 
K N 

min γn,k||xn − µi||2 (5.1) 
k=1 n=1 
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where γn,k is a binary variable that indicates that sample xn belongs to cluster k 

 
and must satisfy (5.2), 

K 

γn,k = 1, ∀n ∈ N (5.2) 
k=1 

Although the optimization problem in (5.1) is NP-hard, computationally efficient 

heuristics exist and are implemented in widely-used Python packages, such as scikit-learn 

[74]. Clusters will be represented by their medoid in the capacity expansion model. This 

is necessitated by the dimensionality reduction discussed in Section 5.2.1, precluding a 

backwards map from the low-spatial dimension representation used in clustering to the high- 

spatial dimension used in the CEM. The medoid is selected after clustering as the sample 

with the smallest Euclidean distance to the centroid. The weight of each representative 

period is chosen as the cluster cardinality. 

 

5.2.2 Experimental Validation 

 
Experimental Setup 

 
The proposed clustering technique is validated using a CEM and PCM for the 

Western Interconnection. Only single-year planning is considered, and the year modeled 

will be referred to as the target year. First, the PCM is solved for the target year using the 

existing generation capacity. Then, the features described in Section 5.2.1 are extracted and 

used within the proposed clustering technique. Finally, the representative days correspond- 

ing to the cluster medoids are used to run the CEM for the target year. To evaluate the 

performance of the investment decisions made with the representative periods, the PCM is 
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then run again with updated investments. Fig. 5.1 demonstrates the flow of the numerical 

 

study. 
 

Proposed Representative 

Period Selection Method 

 
Simulation Model for 

Validation 

 

 
 

 
Figure 5.1: Flow of proposed method and numerical validation. 

 

 
The CEM is the planning model derived in Chapter 2, and the PCM is equivalent 

to the single-week unit commitment model derived in 2.40. 

Planning models, like the one derived in Chapter 2, typically include a planning 

reserve margin (PRM) constraint, requiring that the fleet be able to provide some margin 

greater than the maximum projected load. As a result, regardless of clustering performance, 

the investment decisions will produce a fleet that can most likely satisfy all load require- 

ments. In some cases, if this constraint is particularly tight, the final resource investment 

plan may be predominantly determined by investment costs, thus diminishing the value of 

improved representative day selection. In other words, system operation may determine 
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the optimal fleet up to some MW of capacity, but any requirement for capacity above that 

may be determined only by which resource is cheapest per capacity. In the numerical study, 

results will be shown both with PRM omitted and with a minimal PRM, equal only to the 

maximum load and not a margin above, as is typical. 

To demonstrate the performance of the proposed technique, we compare the in- 

vestment decisions obtained using the proposed clustering method to those using only tra- 

ditional features, namely the load and renewable generation profiles. The performance of 

investment decisions is evaluated using two metrics: cost and reliability. Reliability is eval- 

uated using both the number of load shedding events and MWh of load shedding. Cost is 

the combined cost of maintenance, investment, and operation. Within the PCM, load 

shedding is available at $50,000 per MWh. Investment costs are amortized to allow for 

single-year planning. 

 
Results 

 
We evaluate the performance of the algorithm through two lenses: load shedding 

and total cost. We also look to the blend of resources to evaluate how representative day 

selection affects valuation of one resource group versus another. The proposed method is 

compared to a base method, in which the clustering step only accounts for load, solar, and 

wind. This method is representative of what is commonly utilized in the literature, and 

performs similarly to many other selection methods [110]. Fig. 5.2 shows the behavior of 

the clustering method with respect to the net load in 2030. The proposed method captures 

a more diverse set of net load conditions, whereas the base method tends to select fewer 

extreme points. 
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To better understand the impacts of the proposed method, results will be shown 

under several planning scenarios, with several target years. K-means heuristics are not 

deterministic and are highly dependent on initialization. To address this, most implemen- 

tations run the algorithm multiple times and choose the result with the lowest cost function. 

Still, the selected days and weights can vary, so the numerical study is repeated three times 

for each scenario and averaged. Unless stated otherwise, 20 representative days are selected. 

The two PRM scenarios will be shown with target years of 2025, 2030, and 2045. 

We also show the results for 2025 in which economic retirement is not allowed and for 2045 

in which economic retirement is required for 50% of all in-CAISO units. No such constrained 

retirement will be demonstrated for 2030. The justification for including these scenarios is 

as follows. Without PRM, the effect of representative day selection on resource adequacy 

should be more obvious. With PRM, there should be a smaller effect on resource adequacy 

and a greater effect on system costs. 
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Table 5.1: Total cost comparison of base and proposed method investment decisions (Mil- 

lions $) 

Year Pen Method PRM No PRM 
Constrained 

Retirement 

 

 
2025 

 
Yes 

Base 13,372 13,354 12,468 

Proposed 12,412 12,407 12,442 

Improvement 7.18 % 7.09 % 0.21 % 

No 

Base 12,461 12,472 12,466 

Proposed 12,412 12,407 12,442 

Improvement 0.39 % 0.52 % 0.19 % 

 

 
2030 

Yes 

Base 14,507 14,666 - 

Proposed 14,503 14,255 - 

Improvement 0.03 % 2.80 %  

No 

Base 14,448 14,141 - 

Proposed 14,470 14,239 - 

Improvement -0.16 % -0.69 %  

 

 
2045 

Yes 

Base 23,713 23,649 23,481 

Proposed 23,414 21,323 21,351 

Improvement 1.26% 9.84% 9.07% 

No 

Base 23,545 22,011 21,952 

Proposed 23,414 21,323 21,351 

Improvement 0.56% 3.13% 2.74 % 
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Figure 5.2: Average hourly net load of full year and selected representative days. 
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Table 5.1 shows the total cost for each target year with the proposed method and 

the base method. The base method often requires considerable load shedding, which greatly 

increases the total cost. To give a point of comparison without this effect, costs are shown 

both with and without the load shedding penalty component, denoted by ‘pen’. Note that 

for the proposed method, the penalty and no penalty values often are equal as there is no 

load shedding. In every case with load shedding penalty, the proposed method leads to 

lower or nearly identical costs. Omitting the load shedding costs, the proposed method 

generally has comparable costs to the base case. This indicates that the proposed method 

produces more realistic capacity plans, which, in turn, lead to a reduction in load shedding, 

with only moderately higher investment costs. 

Fig. 5.3 shows the costs for 2030 without PRM, both with and without load 

shedding penalty. As expected, the capacity plan resulting from representative days with 

the base features requires more load shedding in the PCM. This load shedding is a result 

of lower capacity, which in turn has lower investment costs. However, the capacity plan 

resulting from the proposed method, has only slightly higher investment costs. With load 

shedding costs ignored, the total costs are only 0.69% higher for the proposed method. 

Investment costs are 2.6% higher, but are offset by lower operational costs and much lower 

load shedding costs. With load shedding costs accounted for, the total cost is drastically 

lower. 

Fig. 5.4 shows components of capacity expansion by resource class for 2030. Intu- 

itively, the scenarios with PRM have increased investment regardless of the representative 
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Figure 5.3: Operation and capital costs for 2030 without PRM. 
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Figure 5.4: Capacity expansion decisions in 2030. 

 

 
Fig. 5.5 shows the sensitivity of the number of representative days for 2030. 

Regardless of the number of representative days, the proposed method leads to lower load 

shedding, both in the number of events and the average MWh of shedding per event. As 

previously suggested, this indicates that the inclusion of the proposed operational features 

implicitly selects extreme conditions more effectively. 

 

5.2.3 Conclusion 

 
In this section, we proposed a novel method to select representative days that can 

be used in capacity expansion models. The proposed method better accounts for existing 

capacity by considering key novel operational features during the clustering step. By in- 

cluding these features, the resulting capacity expansion plan exhibits improved load-serving 
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Figure 5.5: Sensitivity of number of representative days on load shedding. 
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capability and cost savings as compared to the base-feature case. The proposed method was 

validated on a capacity expansion model based on decarbonization goals in CAISO. Sev- 

eral planning scenarios and horizons were studied. In all scenarios, the proposed method 

resulted in lower load shedding in the full-space production cost model, as well as lower or 

comparable costs even when the cost of load shedding is neglected. 

 

5.3 Selection of Intermediate-Length Representative Periods 

 
The references cited in 5.1 primarily concentrate on the selection of representative 

days and offer general assertions regarding the algorithm’s ability to choose periods of vary- 

ing lengths, such as a representative day or week. However, let us consider the case where 

the desired period is of an intermediate length, such as 3 days. The time series clustering 

framework upon which the majority of representative period selection algorithms are built, 

requires the full time series to be divided into subsequences. Clustering these subsequences 

becomes highly dependent on the starting point. In particular, the load exhibits significant 

differences in both shape and magnitude between weekdays and weekends. For example, 

the Euclidean distance of a Friday-Saturday-Sunday subsequence to a Saturday-Sunday- 

Monday subsequence would likely be large because the loads of Friday would be compared 

to Saturday and the loads of Sunday would be compared to Monday. On the other hand, 

clustering of overlapping subsequences, obtained by sliding a window across the full time 

series with a stride shorter than the subsequence length, has been established to return 

essentially random results [54]. Even in the case of representative weeks, there are con- 

siderable drawbacks. Generally speaking, capacity expansion problems tend to reduce the 
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annual temporal coverage to roughly 10% or less. In the case of days, this permits 37 days, 

but in the case of weeks, this permits only 5 weeks. Intuitively, one would expect that 

representing a full year is more difficult given 5 choices than 37 choices. 

Considering the limitations of existing clustering methods, along with the need to 

capture interday variability in CEMs subject to high levels of energy storage and renewables 

penetration, the selection of representative periods longer than one day becomes imperative. 

Indeed, enabling interday sharing of energy through storage modeling is a crucial, yet often 

ignored, aspect that would become particularly valuable during days of low generation from 

renewable resources. 

While the selection of a representative period length is fundamentally an experi- 

mental design decision, there exists a noticeable gap in research when it comes to effectively 

choosing a period longer than a day but shorter than a week. To bridge this knowledge 

gap, we introduce a novel snippet algorithm specifically designed for selecting representa- 

tive periods that extend beyond a single day. By comparing subsequences instead of full 

sequences, the proposed snippet algorithm is able to select representative periods of arbi- 

trary length from complex datasets. The proposed algorithm draws significant inspiration 

from [50]; however, we have made several tailored adjustments to accommodate the unique 

domain to which our proposed algorithm is applied. 



77  

 

 
5.3.1 Technical Method 

 
Overview of time series snippets 

The discussion of time series snippets below provides a concise overview of the 

algorithm that served as the inspiration for the proposed method in Section 5.3.1. The time 

series snippets algorithm is built on top of the matrix profile distance (MPdist) [37] measure, 

which is in turn built on top of the matrix profile [131]. MPdist compares two-time series 

and considers them to be similar if they have similar subsequences. At its most basic level, 

the distance is the j-th smallest Euclidean distance between subsequences. More specifically, 

the goal of time series snippets is to select, from a time series T with length t, subsequences 

of length s that best generalize the full-time series. First, the full-time series is separated 

into non-overlapping subsequences Si with i ∈ [0, t/s− 1]. Each of these subsequences then 

has an MPdist profile MPdisti compared to the full-time series. If each MPdisti were plotted, 

the goal would be to select the k profiles that minimize the area under the curve of the 

combined profiles, as shown in Fig. 5.6. To select these representative subsequences, a 

greedy algorithm is proposed, choosing the subsequence that gives the greatest reduction in 

the cumulative distance in each iteration. 

The key contribution of these matrix profile-related methods is that they scale 

well to extremely long time series. The problem of representative period selection for power 

system planning typically considers one year of data at hourly frequency, for a time series of 

length 8760, which is extremely short in that context. Further, we do not need to calculate 

the distance measure for every subsequence, as we can exploit the known daily periodicity 
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Figure 5.6: Visualization of distance profiles and minimization of area under the curve of 

selected profiles. 

 
of our time series. For this reason, we can calculate a distance measure similar to the 

MPdist without relying on algorithms related to the matrix profile. This also enables 

us to utilize overlapping subsequences as Si. Finally, the problem size allows us to select 

the representative snippets through convex optimization rather than relying on a greedy 

algorithm. 

 
Proposed Method 

Let T = {T [0], . . . T [htbp!], . . . , T [t − 1]} represent the yearly multivariate time 

series of length t and T [htbp!] be the tuple of measurements at hour h ∈ [0, t− 1]. This tuple 

typically encompasses load, solar generation, and wind generation information; however, 

the proposed method remains agnostic to the input features, providing adaptability in the 

analysis. Let also S = {S0, . . . Sj, . . . Sm−1} be the set of subsequences, and u the stride of the 

window that generates subsequences of length s. The subsequence Sj is then defined 
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as: 

Sj = T [j · u : j · u + s] (5.3) 

There will be m = t−s + 1 total subsequences, thus j ∈ [0, m − 1]. These will be the candidate 

subsequences used for selecting representative periods. Similarly, we can define non-

overlapping subsequences of T , which we will refer to as segments. There will be n = t 

such segments, thus i ∈ [0, n − 1]. The segment Ti is then defined as: 

 

Ti = T [i · u : (i + 1) · u] (5.4) 

 
A visual representation of the definitions can be seen in Fig. 5.7. For clarity, i will be 

reserved to index the time series segments Ti and j to index the subsequences Sj. 
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Figure 5.7: Visualization of an example time series T and subsequences Sj with u = 2, 

s = 3. 
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Inspired by the MPdist, let D be a matrix of distances with shape n × m. For 

our case, we will assume u and s are chosen such that n, m, and s/u are integers. We 

also have domain knowledge of periodicity. Each of the features, especially load and solar 

generation, have strong 24-hour cycles. It is unlikely that an afternoon subsequence from 

one day would be similar to a nighttime subsequence from another day. Further, this is 

physically meaningless in the context of capacity expansion. For this reason, whereas the 

MPdist compares subsequences for every timestep, we apply stride u = 24 in calculating 

the distances. In essence, this compares each day in the multivariate subsequence to each 

day in the full multivariate time series, and assigns a distance correspondingly. 

 

D = min ||S [x · u : (x + 1) · u] − T ||, x ∈
 

0, 
s ) (5.5) 

 
The goal is then to find a subset of those candidate days which best captures the 

patterns for the year as a whole. This goal is the same as the one visualized in Fig. 

5.6. Time series snippets were originally proposed with a greedy algorithm that iteratively 

selects the subsequence which minimizes the cumulative sum of distances to the full time 

series, necessitated by the long time series the algorithm was designed for. Because our 

time series is rather short, we can instead formulate this problem as a mixed integer linear 
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program and find the solution using any suitable optimization solver. 

n−1 
min disti (5.6) 
α 

i=0 

m−1 

s.t. αj = k 

j=0 

m−1 

disti = mdi,j · Di,j, ∀i ∈ [0, n) 
j=0 

m−1 

mdi,j = 1, ∀i ∈ [0, n) 
j=0 

mdi,j ≤ αj, ∀i ∈ [0, n), ∀j ∈ [0, m) 

dist ∈ Rn,  md ∈ [0, 1]n×m,  α ∈ [0, 1]m, 

 

where k is the desired number of representative periods; αj is a binary indicator select- 

ing subsequence Sj as a representative period; disti is the minimum distance between the 

selected representative periods to Ti; and mdi,j is a binary indicator signifying that sub- 

sequence Sj has the smallest distance to day Ti. Within CEM, representative periods are 

typically weighted by the amount of the year that they account for. The weights associated 

with each representative period are a function of mdi,j, and can be written then as: 

n−1 

wj = mdi,j/(s/u), (5.7) 
i=0 

where s/u ensures the weights sum to 365. 
 

 

5.3.2 Experimental Validation 

 
Experimental Setup 

 
To the authors’ knowledge, no work has made a dedicated attempt to address 

the sampling of intermediate-length representative periods in capacity expansion planning. 
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This absence poses a challenge when comparing the proposed method with widely used 

state-of-the-art approaches. We will compare the performance of the proposed algorithm 

to a popular method for selecting representative days, and show that our algorithm is at 

least comparable with the state-of-the-art for this task. The proposed method will also be 

used to compare single-day planning to multi-day planning. The goal of this comparison 

is to show the value in simulating representative periods longer than one day, particularly 

in sizing energy storage. Our goal is not necessarily to show the optimality of a particular 

representative period length, but rather to demonstrate the differences between period 

lengths on investment plans and operational cost. 

The following general experimental design will be used to validate the proposed 

method. First, the representative days are selected and used within the CEM. Then, the 

investment decisions are fixed, and the model is solved again as a production cost model. 

The production cost model (PCM) is ran for the full year in two-week stages, and results 

from this will be referred to as fullspace results. The choice of two weeks is somewhat 

arbitrary, with the key being that this length is considerably longer than each of the candi- 

date representative period lengths to avoid giving bias towards any particular length. The 

models described in 5.2.2 will be used. 

 
Results and Discussions 

 
First, we compare our method to a popular approach for representative day se- 

lection: k-means clustering using load, wind, and solar profiles with medoid cluster center 

representation used in the CEM. We use our proposed algorithm with subsequence length 

s = 24 to select 21 representative days. Our algorithm has a total cost (investment, main- 
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tenance, fullspace operations) of 14.560 billion US dollars as compared to 14.611 billion 

US dollars. [110] compared many clustering techniques for power system planning, and 

established that there are not clear patterns on which technique is best, and many have 

comparable performance. With this in mind, we can suggest that even for representative 

day selection, our proposed method is at least comparable with one of the most commonly 

used representative day selection approaches. 

With the validity of the proposed method established, we now seek to defend the 

motivation behind selection of longer representative periods. This will be explored via 

investment, fullspace operation cost, emissions, and the investment portfolio, considering 

representative periods of 1 to 5 days, i.e. with subsequence length s ∈ [24, 48, 72, 96, 120]. 

In each case, periods are adjusted to model a total of 35 or 36 days, nearly 10% of the 

annual days. 
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Figure 5.8: Fullspace emissions 
 

 
Fullspace emissions are shown in Fig. 5.8. None of the scenarios meet fullspace 

emissions limits. The primary driver of emissions is investment in renewable generation 

and energy storage. Once these technologies are purchased, their use incurs no additional 

operational costs in the unit commitment model. However, the PCM is myopic in terms 

of emissions, and may take actions which lead to lower costs but higher emissions, such as 

export generation from thermal units in CAISO. As the fullspace model is run in discontinu- 

ous segments for reasons of computational tractability, it is impossible to effectively enforce 

emissions limits. It is difficult to say which, if any, of these fleets would be able to satisfy 

the emissions limits. Still, it is notable that 3-day representative periods present the lowest 

emissions, and longer, and thus fewer, periods have substantially higher emissions. This 

suggests that by modeling an intermediate-length period, interday energy storage can be 
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leveraged to lower emissions. However, as the length of period grows, the number of periods 

must shrink. Without a sufficient number of periods, it is difficult to select periods which 

represent the annual behavior sufficiently well. This is illustrated by the higher emissions 

in the 4 and 5-day cases, which sample 9 and 7 periods respectively. 

The duration of installed storage, and installed power and energy capacity of 

storage as a function of representative period length for 2030 and 2045 are shown in Fig. 

5.9. With regards to storage duration, the key takeaway is that increasing the length of 

representative period allows for utilization of storage for interday energy sharing, and the 

duration increases for lengths between 1 and 3 days. However, the tradeoff between number 

and length of representative seems to impact the ability of the surrogate days to effectively 

represent the full year, leading to less predictable effects with lengths over 3 days. With 

regards to the power and energy capacity of storage, a similar pattern is evident. Between 

lengths of 1 and 3 days, the installed capacities generally increase, and then begin to decrease 

again. This result is in line with the emissions result. 

Fig. 5.10 shows the cost by year for each scenario. As one would expect from the 

emissions violations visualization, d = 4 and d = 5 have the lowest overall cost due to less 

build of renewable technologies. Most notable is that the d = 3 result is very close to the d 

= 1 result despite larger investment. This suggests that by representing longer periods, it 

is better able to capture the fullspace value of interday energy sharing. Thus, the cost of 

additional investment is offset by lower operating costs. Specifically, the total costs for 

2030 are 1.1% higher but have 7.1% lower emissions. 
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Figure 5.9: Impact of representative period length on duration and capacity of installed 

energy storage. 
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Figure 5.10: Investment and operation costs of differing representative periods 
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Fig. 5.11 shows an elbow plot of the objective function of (5.6). Intuitively, for 

a given number of total modeled days k × s/u, the objective is best for more, shorter 

representative periods. The gap between the lines is larger at the lower total modeled days 

and begins to converge at higher. This characteristic explains why, for a fixed total modeled 

days, the representation degrades with higher period length. 
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Figure 5.11: Elbow plot of objective function (5.6) at different representative period lengths. 
 
 

 

5.3.3 Conclusion 

 
In this section, we proposed a novel algorithm for selecting representative periods. 

The algorithm is particularly directed towards selecting periods longer than a single day, 

and is well suited for planning in systems with high penetration of variable renewable energy 

and reliance on energy storage. The method chooses representative days which minimize a 

distance measure to the timeseries of the full year. The proposed method was validated on 
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a CEM based on California’s decarbonization targets. The proposed method is competitive 

with the state-of-the-art for representative day selection, and we demonstrate the impact 

of representative period length on investment strategy. 

 

5.4 Conclusion 

 
This chapter proposed two novel methods for representative period selection. The 

first method focuses on unique operational features within the framework of time series 

clustering to support more robust capacity expansion planning. The second method con- 

cerns the selection of representative periods of intermediate length, with the goal of better 

modeling of interday energy sharing. The next chapter will utilize the second method, and 

present a case study considering the adoption of smart charging of medium- and heavy-duty 

battery electric vehicles. 



90  

 
 
 

 
Chapter 6 

 

 

Impact of Smart Charging on 

Decarbonization Pathways 

6.1 Introduction 

 
California has set ambitious decarbonization goals across multiple sectors, includ- 

ing transportation with the California Air Resources Board’s Advanced Clean Fleet reg- 

ulation, and electric power generation with Senate Bill 100 and Senate Bill 350. As a result, 

these sectors are expected to change rapidly over the next two decades. It is crucial that 

these transitions be planned in tandem to ensure cost-effectiveness and reliable power 

system operation. 

It is well established that transportation and energy generation are becoming in- 

creasingly linked fields as part of the response to climate change. Transportation electrifi- 

cation is a key component of the energy transition, and vehicle charging load is expected 
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to become a large share of the energy demand as penetration of electric vehicles increases. 

This transition is occurring together with the shift from carbon-based to renewables-based 

power generation. 

Adoption of battery electric vehicles (BEV) is expected to both increase electricity 

demand as well as impact the load patterns. A topic of recent interest has been leveraging 

the charging flexibility of BEVs to reduce the impacts on power grid operation. A major 

component of this is flexible charging, or V1G, which is the ability to control vehicle charg- 

ing, typically to shift charging from a peak time to an off-peak time to lower stress on the 

grid or to adjust the charging power with respect to pricing and demand response signals 

from the electric utilities. Even further is V2G or bi-directional charging. In this case, 

vehicles can discharge to the grid, to provide energy shifting or ancillary services. 

From the perspective of large-scale implementation of flexible and bidirectional 

charging, there are inherent advantages to medium- and heavy-duty (MHD) BEV over light 

duty (LD) BEVs. The number of MHD BEVs is projected to be much fewer; in 2035 

the projected LD BEV stock in California is over 15 million, whereas the MHD BEV is 

approximately 400,000. The smaller number of MHD BEVs and chargers makes it inherently 

easier to control and coordinate. Simultaneously, MHD BEVs are associated with larger 

battery capacities than LD BEVs. MHD BEV are also likely to be operated with more 

sophisticated planning in fleets, and may be less likely to be affected by the randomness 

of the driving behaviors. MHD BEV adoption may also be shifted towards larger logistics 

companies with the capital to purchase these vehicles, and operating a large number of 

vehicles may influence the incentives of enrolling in flexible charging or V2G operations. 
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These unique characteristics make MHD BEVs a more enticing candidate than LD BEVs 

for pursuing flexible charging and V2G operations. 

In this study, the adoption of MHD BEVs is considered exogenous to the decar- 

bonization planning problem. It is assumed that the MHD BEV stock over years aligns with 

the existing California policy requirements, such as CARB’s Advanced Clean Fleet Regu- 

lation [88]. As such, enabling V1G or V2G services could help avoid installing additional 

renewable generation or storage capacity with relatively little added cost and difficulty. 

A great deal of literature has focused on the economic benefit of V1G and V2G. 

However, the majority of these works have focused on short-term costs and the economic 

benefit to the BEV owner. In [121], the potential revenue for BEV owners in California is 

examined while paying attention to future grid behavior, including wide adoption of BEVs 

and future grid changes. The value of BEVs has been examined for both managing load, 

including V2G [8] and peak shaving [61] and for providing ancillary services, like frequency 

regulation [115]. The authors in [116] look at a range of potential value streams for V1G 

and V2G services. 

Somewhat less work has been done to quantify the economic benefit of enabling 

V1G and V2G services from the perspective of power system planning. These works gen- 

erally optimize investment planning alongside dispatch and BEV charging scheduling to 

provide lower infrastructure costs and avoid buildout of generation and energy storage ca- 

pacity. Ramirez et al [84] present a co-optimization of power system planning with dispatch 

of flexible charging with LD BEVs with a UK-based test system. Yao et al [128], Suski 

et al [109], Hajebrahimi et al [44], and Gunkel et al [42] present similar co-optimizations 
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with case studies in China, the Maldives, Canada, and the EU, respectively. In [32], an 

analysis of the potential savings of V1G and V2G, including ancillary services, is analyzed 

for LD BEVs in California. Xu et al [127] look at the potential emissions reductions of these 

services, including life-cycle analysis of BEVs. 

Similarly, most works have focused on LD BEVs, rather than MHD BEV. As 

discussed above, these groups have rather distinct behavior, which affects both their the- 

oretical value and practical implementability. In this work, we focus on this gap in the 

literature, and examine the value of V1G and V2G in California’s decarbonization pathway, 

specifically with respect to electrification of medium- and heavy-duty vehicles. 

In this chapter, we examine the potential savings and implicit costs of V1G and 

V2G services through the lens of California’s energy transition investment planning. We 

start with the mixed-integer linear program (MILP) decarbonization planning model devel- 

oped in Chapter 2 and incorporate a clustered representation of MHD BEV based on the 

timing of charging and driving. The same surrogate Lagrangian relaxation-based technique 

is implemented to provide computational tractability of the large MILP model. We analyze 

the results of the three charging regimes under two MHD BEV driving scenarios, and show 

a range of potential savings as high as 16 billion dollars. We also examine some of the costs 

related to charging services to show that the cost savings these services provide are robust. 

The remainder of the chapter will be organized as follows. Section 6.2 will integrate of MHD 

BEV into the planning formulation. Section 6.3 will discuss results and policy implications. 

Section 6.4 will present the conclusions. 
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6.2 Technical Method 

 
The planning formulation is broadly unchanged from the one developed in Chapter 

 
2. This section will describe the integration of MHD BEV in the unit commitment. 

 

 

6.2.1 Flexible MHD BEV Charging 

 
MHD BEV with flexible or bidirectional charging capability, is modeled similarly 

to storage resources, with the major exception that a large amount of discharge happens 

exogenously through driving, during which these resources are not connected to the power 

grid. To integrate MHD BEV into the planning framework, these resources are modeled as 

dispatchable by a central system operator, rather than a virtual power plant controlled by 

price signals. Each vehicle is associated with a charge start time, charge end time, starting 

state-of-charge, and ending state-of-charge. It is assumed that the vehicle is plugged in and 

available for charging for the entire duration that it is at the depot. These values essen- 

tially determine the vehicles charging needs, as well as potential V2G provisions. Modeling 

vehicles individually would make the problem computationally intractable; thus, vehicles 

are grouped by their start and end hour to form virtual power plants. The power and 

energy capacity parameters of the clusters are obtained as the summation of the individual 

parameters of the MHD BEVs in the cluster. MHD BEVs are modeled as a demand-side 

resource. 

The control of MHD BEV clusters within optimization is operationalized by three 

 
variables: state of charge Ce(t), charge power pc(t), and discharge power pd(t). These three 

e e 

 
variables are subject to limits based on the capacity of the cluster, as well as the timing at 
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which the cluster is connected to the grid at the depot for charging vs disconnected from the 

grid for driving. Discharge through driving is exogenous, and pe(t) = 0 when the vehicle is 

not at the depot. If V2G is not considered, discharge is not allowed and pd(t) = 0, ∀t ∈ T . 

The definition of a period T allows for multiple days to be modeled consecutively, 

and the same charge events occur each day. To account for this, we define the set of days 

in the period D, where |D| = |T |/24 denotes the number of days in the period. We also 

define a time wrap t∆, to account for charging which occurs overnight. For each day, the 

variable state of charge at the time of depot arrival and departure is set equal to the input 

state of charge at the start (6.1) and end of charging (6.2). 

 
Ce(tdepot + d · 24) = Cdepot, ∀d ∈ D, e ∈ E (6.1) 

e e 

 
Ce(tdrive + d · 24) = Cdrive, ∀d ∈ D, e ∈ E (6.2) 

e e 

 
t∆ = 24 if tdepot > tdrive else 0 (6.3) 

e e e 

 
While the vehicle is at the depot, bounds of charge (6.4) and discharge rate (6.5), and 

bounds on state of charge are enforced (6.6). State of charge is also tracked with provisions 

for charger efficiency (6.7). 

0 <= pc(τ (t + d · 24)) <= (1 − ve(t))P e, ∀e ∈ E, d ∈ D, t ∈ [tdepot, tdrive + t∆] (6.4) 
e e e e 

 
0 <= pd(τ (t + d · 24)) <= ve(t)P e, ∀e ∈ E, d ∈ D, t ∈ [tdepot, tdrive + t∆] (6.5) 

e e e e 

 
Ce <= Ce(τ (t)) <= Ce, ∀e ∈ E, d ∈ D, t ∈ [tdepot, tdrive + t∆] (6.6) 

e e e 

 

 
Ce(τ (t + 1) = Ce(τ (t)) + pc(τ (t)ηc − pd(τ (t))ηd, 

e e e e 

∀e ∈ E, d ∈ D, t ∈ [tdepot, tdrive + t∆ − 1]  (6.7) 
e e e 
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pi(t) + 

L
[pd(t) − pc(t)] + 

L 
pr(t) + 

L 
ph(t) 

e e 

 
These BEV clusters can then be integrated into the broader unit commitment, 

and thus planning, through the power balance constraints. Zonal power balance constraints 

ensure that the generation and net line flows meet the load. Each zone must satisfy these 

constraints as: 

 
 

u∈Uz 

s 

s∈Sz 

s 

r∈Rz 

 

h∈Hz 

+ 
L 

λl,zfl(t) = Lz(t) + 
L 

[pc(t) − pd(t)], (6.8) 
 

  

This formulation assumes that BEV can be perfectly controlled by a central oper- 

ator. There are no provisions for virtual power plant control through price signals or user 

decisions to opt out of certain charging actions. In line with the focus on California, we 

assume that only CAISO has BEV flexible and bi-directional charging. 

 

6.3 Numerical Study 

 
This section will quantify the impact of V1G and V2G on Decarbonization plan- 

ning. Subsection 6.3.1 will introduce two MHD BEV driving and charging datasets and 

processing them into planning model inputs. Then, we will present the results of the study, 

both in terms of cost savings and the overall impact on power system investment. Finally, 

we will examine some of the relevant costs, namely battery degradation and charging infras- 

tructure, associated with V1G and V2G to draw conclusions about the value of adopting 

these services. 

The decarbonization model is a zonal representation of the Western Interconnec- 

tion. The model focuses on CAISO, but also represents 3 small balancing authorities in 

l∈L e∈Ez 
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California (LADWP, BANC, IID) and 2 aggregations of balancing authorities outside Cal- 

ifornia in the Northwest and Southwest. Data is primarily taken from the RESOLVE im- 

plementation published by the California Public Utilities Commission [93]. Representative 

periods are selected using the sampling method in [5]. We use 10 representative periods of 

3-day length. Investment is modeled in 5-year frequency from 2025 through 2045. Financing 

is considered through 2065. 

 

6.3.1 Specifications for MHD BEV 

 
Accurate modeling of V1G and V2G services requires projections of both the 

number of MHD BEVs and the operating characteristics of each vehicle, such as drive 

duration and miles traveled. In general, there is a great deal of uncertainty associated with 

long term planning models, due to the reliance on projections of future load, technology 

costs, and so on. This is compounded by the fact that this planning model is reliant both 

on the adoption of MHD BEV as well as the usage characteristics. While datasets exist on 

the driving and parking characteristics of gas and diesel trucks, it is not known if the use 

cases of MHD BEV will be the same. 

To address this, we examine the impact of V1G and V2G MHD BEVs utiliz- 

ing the simulated trip patterns in the HEVI-LOAD tool and we build an additional sce- 

nario informed by the temporal patterns extracted from a historical truck driving dataset, 

FleetDNA [98]. 

The two scenarios share the same technical underpinnings, such as MHD BEV 

population, charger size, and kWh/mile driving efficiency. The principle difference between 

the two scenarios is the temporal distribution of charging availability, as demonstrated by 
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the comparison of drive start times in Fig. 6.1. By presenting both scenarios, it is possible 

to get a look at a larger picture of the range in potential cost savings of V1G and V2G 

and investigate the sensitivity with respect to the trip temporal patterns. These scenarios 

also raise additional questions regarding the total cost and savings associated with enabling 

these services. 

The HEVI-LOAD scenario (Scenario HL) relies on the results of the HEVI-LOAD 

tool, which [119] is an agent-based driving and charging simulation tool for MHD zero- 

emission vehicles (ZEVs) developed by the Lawrence Berkeley National Laboratory in col- 

laboration with the California Energy Commission (CEC). HEVI-LOAD takes multiple data 

sources as input and resolves the integrated driving, parking, and charging/refueling behav- 

iors of the future MHD ZEVs. Individual trucks are referred to as agents whose behaviors 

are constructed and calibrated utilizing multiple data sources, such as adoption projection, 

travel demand, telematics data, power-train specifications, etc. Trip origin and destinations 

are provided at the traffic analysis zones (TAZ) level for better geospatial granularities. The 

overall trip statistics in terms of vehicle miles traveled (VMT), energy consumption rate 

(kWh/mile), and vehicle stock by segment have been validated with existing state policies. 

HEVI-LOAD creates a virtual environment that replicates real-world transportation scenar- 

ios with fine-grained representation of electrification scenarios. However, the high geospatial 

resolution that HEVI-LOAD charging profiles provide are obfuscated in this study to match 

the load zones as we consider only CAISO-level load. 

The additional scenario with varied temporal patterns (Scenario FD) is informed 

by the Fleet DNA dataset.  This dataset is composed of thousands of historical drives 
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across a variety of vehicle classes, vocations, and days. Each entry has several hundred 

associated fields, but for our purposes, the key information extracted is drive start time, 

drive end time, and VMT. Then, for each drive, the efficiency mapping in Table 6.1 is used 

to convert VMT to kWh consumption. We assume that each vehicle charges to 100% before 

departing. The SoC at depot arrival can be calculated as the difference between the capacity 

and consumption. This dataset is combined with the California Energy Commission’s 2023 

AATE3 truck adoption projections [90]. Similarly to the approach in [10], we bootstrap 

from the Fleet DNA dataset according to the population projections by class and vocation. 

There are several key assumptions. Of course, bootstrapping assumes that the distribution 

of drive timing and distance present in Fleet DNA is the same as future MHD BEV drives 

in California. We assume that every vehicle drives and charges every day. It is also assumed 

that all charging occurs at the depot and there is no en-route charging. 

Table 6.1: MHD BEV Technical Assumptions 
 

 Charger Size 

(kW) 

Capacity 

(kWh) 

Efficiency 

(kWh/mile) 

Class 2-3 150 100 0.6 

Class 4-6 150 300 1.05 

Class 7 150 400 1.1 

Class 8 150 600 1.8 

 

 
As previously mentioned, modeling each vehicle individually would make compu- 

tations intractable. For both scenarios, it is necessary to cluster the individual vehicles, 

and the same approach is used. We assume that if the vehicle is not driving, it is plugged 

in at the depot, and vice-versa. As dispatch is modeled hourly, vehicle charge start times 

are rounded to the next hour and vehicle charge end times are rounded to the previous 
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Figure 6.1: Comparison of drive start times between two scenarios. 
 

 
hour. This rounding is to prevent an overestimation in the time flexibility of vehicles. First, 

clusters are generated by enumerating all possible combinations of start and end hour. Each 

vehicle is assigned to a cluster. If the cluster size accounts for less than 0.1% of all vehicles, 

this cluster is not modeled with V1G or V2G and left with a fixed charging profile, as this 

cluster would increase the associated complexity of the problem while only mildly impacting 

the solution due to the small number of associated controlled vehicles. This results in 87 

clusters for Scenario HL, comprising in total 92% of all vehicles and 168 clusters for Scenario 

FD, comprising in total 94% of all vehicles. 
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As a result of the assumptions made in Scenario FD, and the methodology of 

Scenario HL, the two scenarios have some key differences in addition to the trips’ temporal 

patterns. In Scenario HL, approximately 1 out of 3 vehicles charge each day, as many 

vehicles make short trips and do not need to charge. Scenario FD does not account for this, 

and charges each vehicle daily. However, because the underlying assumptions on VMT per 

day and truck efficiency are similar, the total daily MHD BEV load is extremely similar, 

within 1%. This means in Scenario FD, the vehicles have considerably higher starting SoC, 

as well as a much larger number of vehicles connected resulting in considerably higher total 

power and energy capacity. The results will reflect this, and the ensuing discussion will 

consider both the pros and cons of this detail in terms of cost. 

We consider 3 charging regimes for both scenarios: a baseline case in which all 

charging is fixed, V1G, and V2G. For Scenario HL, fixed charging profiles are provided by 

HEVI-LOAD. For Scenario FD, the fixed charging profile is generated using the assumption 

that 50% of vehicles charge immediately at full power and 50% charge with the lowest power 

to fully charge by departure. For simplicity, all chargers are assumed to have 150kW rating. 

 

6.3.2 Results 

 
The key consideration related to V1G and V2G with respect to decarbonization 

planning is quantifying how enabling these services lower the cost of power system de- 

carbonization through lower investment, and potentially lower operation costs. Figure 6.2 

shows the cumulative added capacity in year 2045. In general, V1G and V2G are associated 

with lower build of renewable and storage resources. 
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Figure 6.2: Comparison of installed resources in 2045. 

 

 
By enabling V1G and V2G services, it is possible to avoid some of the installation 

of renewable and storage capacity that are needed in the base scenario to meet emissions 

targets. Accordingly, there are slightly less retirements of thermal units, which are kept 

online to meet the planning reserve margin. 

The mechanism by which these services lower investment costs is straightforward. 

Figure 6.3 shows the gross load for an exemplary day in 2035 under fixed charging, V1G, 

and V2G. Load is shifted from hours with lower renewable generation to hours with higher 

renewable generation. In the case of V2G, MHD BEV are able to provide power injections 

at critical hours to further reduce the need for energy storage. Most MHD BEV spend the 
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bulk of the day driving, and thus are unable to charge when there would be most excess 

generation. As such, charging is mostly correlated to periods with lower variable renewable 

generation, and the cost savings comes mostly as avoided storage investment. This behavior 

is demonstrated by the visualization of net load for each regime in Fig. 6.4. V2G flattens the 

net load peak in the early morning, and recovers energy through the afternoon by charging 

batteries of stationary vehicles when renewable generation is plentiful. 
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Figure 6.3: Scenario FD gross load considering fixed charging, V1G, and V2G. 
 

 
Figure 6.5 shows the MHD BEV load for each hour, averaged over the year 2035. 

The shape of V1G and V2G load is broadly similar, with the key difference that V2G is 

providing power to the grid for early morning hours, between 4am and 8am, then charging 
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Figure 6.4: Scenario FD net load for an exemplary day in 2035. 
 

 
quickly between 8am and 10am, when the bulk of vehicles are leaving. There is a large 

spike in charging load in the morning, as other system loads are generally lower and solar 

generation ramps up. This spike is even larger for V2G, as the vehicles provide power in 

the very early morning. 

The total costs as well as costs broken down by component are shown in Table 6.2. 

As a resulted of the avoided investment in storage, there are substantially lower investment 

and maintenance costs. These services also help lower operational costs by lowering the use 

of thermal units. Scenario HL V1G and V2G present 3.5% and 4.6% savings over baseline 
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Figure 6.5: Scenario FD MHD BEV hourly load averaged over year 2035. 

 
 

 
in California costs, respectively. Scenario FD V1G and V2G present 1.8% and 3.0% savings. 

 
 

 
The cost savings of V1G and V2G over fixed charging are shown per vehicle, per 

year in Table 6.3. These costs are not discounted for the time value of money. In the worst 

case, V1G saves a few hundred dollars per vehicle per year. In the best case, V2G saves 

several thousand dollars for each vehicle each year. 
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Table 6.2: Costs, billions 2025$ 

 

 Scenario HL Scenario FD 
 Fixed V1G V2G Fixed V1G V2G 

Total Cost 397.5 384.4 381.0 401.8 397.1 391.8 

CA Cost 247.8 239.2 236.3 251.7 247.1 244.2 

Maint. Cost 67.0 65.8 65.9 67.2 67.0 67.137 

Inv. Cost 152.3 145.5 142.5 156.0 151.9 149.1 

CA Op. Cost 28.5 27.9 27.9 28.4 28.2 28.0 

Table 6.3: Levelized Cost Savings over Fixed Charging ($ per vehicle-year, Non-discounted) 

 2025 2030 2035 2040 2045 

HL V1G 2765 1337 1243 1378 997 

HL V2G 4317 1840 1510 1822 1350 

FD V1G 871 592 431 457 724 

FD V2G 1277 1204 933 1005 999 

 

6.3.3 Policy Implications 

 
The decision to enable V1G and V2G services does not exist in a vacuum, and it is 

crucial to quantify potential costs related to these services. The main two considerations are 

the cost of battery degradation and the cost of charging infrastructure. 

 
Degradation 

 
Battery degradation is quantified using the BLAST model [97]. This model takes 

an input SoC time series and returns a total degradation %. We run this model for each 5 

year investment interval. The goal is to understand how V1G and V2G services impact 

battery degradation over default operation. Understanding how the batteries degrade over 

this interval helps evaluate the overall cost and value of these services. 

Each cluster of MHD BEV is evaluated for degradation independently. The SoC 

time series is created by stacking the MHD BEV SoC time series of each representative 
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period by their respective weights to make a yearly time series, then stacking that time 

series to obtain a 5-year-long time series corresponding to the investment frequency. We 

calculate the degradation given 3 battery chemistries (lithium-iron-phosphate, nickel-cobalt- 

aluminium, and nickel-manganese-cobalt) and take the average as the final degradation %. 

This percentage can then be converted to a total degraded kWh given the kWh capacity of 

each cluster. 

Degradation cost is estimated by making the assumption that, at the end of the 

interval, batteries can be refurbished by replacement of cells to restore battery health. Thus, 

cost is linear with degradation. Of course, the cost of battery degradation is more complex 

than this, but this method provides an effective way of comparing the relative degradation 

between BEV charging regimes and scenarios. 

We assume a battery degration cost of $100/kWh. In 2022, the cost of battery 

packs reached $150/kWh [92]. The cost of battery packs are expected to drop further, 

with projections covering a significant range. [29] predicts grid stationary battery costs will 

see a reduction of 16% to 47% by 2030. [39] estimates a lithium-ion battery pack cost of 

72$/kWh (in 2022 $) by 2030. Thus, $100/kWh should be fairly conservative. 

We examine the degradation for the Scenario FD. We present degradation for a 

base scenario, V1G, and V2G. Scenario FD is a good candidate for quantifying degradation 

because each vehicle is controlled. There is not a rigorous way of measuring degradation 

in Scenario HL, because during the optimization, roughly 1 in 3 vehicles charge each night. 

From the vehicle perspective, some MHD BEV are charging every night and some are 

charging less frequently. From the perspective of the grid, it does not matter which vehicles 
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are plugging in. As a consequence, this does not permit rigorous tracking of each vehicle’s 

SoC. 

The cost of degradation as well as the average relative battery capacity at the end 

of each 5-year interval is shown in Table 6.4. The impact of degradation is relatively mild. 

The vast majority of the degradation seems to be due to aging. Batteries experience on 

average an extra 0.2% of degradation for V1G vs the baseline case, and an additional 0.3% 

again for V2G. The critical consideration is the increase in degradation costs over baseline. 

Operating vehicles will necessarily incur degradation, but it is critical to understand what 

costs are incurred by V1G and V2G services. The cost associated with degradation is 

increased by 0.1 billion USD for V1G and 0.2 billion USD for V2G, as compared to the 

baseline. Although these costs are considerable, they are an order of magnitude less than 

the potential savings. As such, increased degradation is a relevant consideration, but it is 

not a critical risk to the business case for V1G and V2G services. 

Table 6.4: Battery degradation 
 

 Baseline V1G V2G 

Degradation Cost (Billions) 7.5 7.6 7.7 

Residual Discharge Capacity % 81.9 81.7 81.4 

 
 

 
Cost of Chargers 

 
In terms of BEV supply equipment costs, the most relevant factors are the cost of 

ensuring vehicles have sufficient access to chargers, and the cost of enabling bidirectional 

charging over unidirectional charging. 
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At time of writing, there are very limited number of V2G ready chargers on the 

market. Bidirectional chargers are substantially more expensive that unidirectional charg- 

ers, but it is difficult to estimate how much of that cost difference is driven by the lack of 

commercialization. While numerous studies examine the cost of BEV supply equipment, 

there are no concrete comparisons of the cost of bidirectional and unidirectional MHD BEV 

supply equipment. To estimate the potential cost of bidirectional chargers vs unidirectional 

chargers, we consider two elements which are necessary for enabling bidirectional charging. 

The first is an islanding switch, which can be opened to prevent energy flowing into lines, 

for example, when lines must be serviced. The cost of this switch is likely negligible if it is 

installed at the time that the charging depot is constructed. The other cost is an inverter 

required to convert the DC current of the MHD BEV battery to AC used by the grid. We 

estimate this cost using the cost of solar inverters, approximately $50 per kW [83]. The 

total cost of this equipment adds $1.1B to the V2G cost of Scenario HL in Table 6.2. These 

costs reduce substantially the potential savings of V2G. We should emphasize that the up- 

charge associated with V2G is purely speculative. Depending on the cost of bidirectional 

equipment, V2G could pose a better or worse business case. 

The two scenarios are generated under different basic charging behavior assump- 

tions, and these assumptions impact the cost related to charging in a major way. Scenario 

HL is an agent-based approach, in which vehicles only charge when necessary. As such, 

approximately 1 in 3 vehicles charge on a given day, and the number of chargers can be 

provided accordingly. A key assumption of Scenario FD is that each vehicle charges each 

day. We consider two cases which bookend the spectrum on which this could be enabled. 
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The first is providing every vehicle in Scenario FD with a dedicated charger. The cost of a 

150kW DC fast charger is estimated at $142,200 for hardware and installation [30]. For each 

investment interval, we calculate the cost of installing a dedicated charger for each vehicle 

in Scenario FD and installing only the necessary chargers in Scenario HL. In Scenario HL, 

we assume that a dedicated charger is installed for each vehicle charging in a given day. In 

total, the cost of chargers in Scenario HL would be $20.6B and $61.6B for Scenario FD. 

The second is providing only the necessary number of chargers. An emerging concept is to 

connect multiple vehicles to a single charger. If a charger is rated at 150kW, it may be able 

to connect to multiple vehicles simultaneously and provide either lower power to all, or full 

power to individual vehicles at different times. This service could be enabled without per- 

forming substantial hardware upgrades, only by providing some additional switchgear and 

plugs. If we take inspiration from this, we can suggest that in Scenario FD, the number of 

chargers needed is proportional to the peak hourly charging demand. This brings the num- 

ber of necessary chargers down substantially, to approximately 1 charger per 4 vehicles in 

most years. Accordingly, the cost of installing chargers drops to $14.5B. Although installing 

chargers is essential with or without V1G and V2G, the range in potential charger costs is 

extremely large, and is bigger than the potential savings associated with these services. Be- 

cause of this, minimizing the number of necessary chargers is a very relevant consideration 

alongside lowering chargers costs with V1G and V2G. 
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6.4 Conclusion 

 
In this chapter, we examined the potential costs and savings of enabling V1G and 

V2G services for MHD BEVs in California. Using a large scale MILP model, we calculate 

the savings of these services from the perspective of a central power system planner. Two 

scenarios are used to understand the driving and charging behavior of vehicles. We also 

estimate costs linked to these services. We show that battery degradation is not insignificant, 

but is associated with costs an order of magnitude lower than potential savings. We estimate 

that the cost of enabling bidirectional charging could be a very relevant element, and could 

weaken the business case of V2G over V1G. Carefully identifying the number of necessary 

chargers is of utmost importance, as costs associated with chargers could be very large. 



112  

 
 
 

 
Chapter 7 

 

 

Impact of Climate Change on 

Decarbonization Pathways 

7.1 Introduction 

 
California has set aggressive targets for power system decarbonization through 

Senate Bill 100 and Senate Bill 350, establishing limits on the minimum generation from 

renewable resources and maximum emissions from power generation. These targets are 

meant to address California’s contributions towards climate change mitigation. However, 

climate change in turn also poses adaptation challenges for these decarbonization goals. 

Climate change, and the societal response to it, have a range of potential impacts 

on the electrical grid. The level of electrification that occurs in response to multi-sector 

decarbonization, such as transportation and buildings, will massively impact both the shape 

and magnitude of load patterns [33]. Simultaneously, climate change itself may impact 
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the level of heating ventilation and air conditioning (HVAC) demand and the efficiency of 

electric assets as temperatures rise. Weather, and thus both load and renewable generation, 

will likely become even more volatile towards the middle of the century. This study seeks to 

address some of the challenges that climate change poses to the decarbonization pathways 

of California’s electrical grid. 

We examine the impacts of climate change and associated increase in uncertainty 

through two lenses. The first is climate change pathways. We look at a set of scenarios that 

span a broad but plausible range of climate scenario uncertainty, climate model uncertainty, 

and socioeconomic and policy scenario uncertainty. These scenarios are derived from models 

in the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate model archive, also 

utilized by the Intergovernmental Panel on Climate Change (IPCC). The second is a new 

approach towards ensuring resilient capacity planning, which leverages joint load-renewable 

generation forecasts in the face of climate change. 

Large investments in electrical resources are expected over the coming decades to 

meet decarbonization targets. As such, capacity expansion modeling or generation expan- 

sion planning have been increasingly important for planning these investments, with models 

such as RESOLVE [34], Gridpath [87], and REEDS [96] used by various state agencies and 

load-serving entities. Due to computational limitations in capacity expansion modeling, it 

is typical to reduce the temporal dimension by modeling representative periods instead of 

all 8760 hours per year [5]. The goal of selecting representative periods is to choose a set of 

periods which, in tandem, best represent the year as a whole. However, some of the most 

stressful periods on a power grid account for only a few days per year, or may not even occur 
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each year. Because these fringe cases account for so little of the yearly behavior, they will 

not naturally be selected as representative periods. However, they still must be planned for 

to ensure enough generation capacity is held to reliably operate the grid. Thus, it is neces- 

sary to enforce some constraint on reliability. Typically, this is done via a planning reserve 

margin (PRM) constraint [86]. However, this constraint is overly rigid, as the parameters of 

this constraint are determined exogenously to the generation portfolio optimization. Thus, 

this constraint could lead to generation portfolios that are either overly cautious, or fail to 

respond to periods of low renewable generation. 

Ensuring power system planning produces generation portfolios that are reliable 

has been a task of increasing importance. In the past, the generation mix was dominated 

by thermal units, which can generate at full-capacity except for outages or derates. This 

simplified reliability planning because it ensured dispatchability in resources and allowed 

grid operators to adjust output on demand. As the penetration of variable renewable energy 

increases, reliability planning is becoming increasingly difficult due to the unpredictability 

of meteorological patterns and the timing of generator availability (lack of dispatchable 

resources). A large amount of work in recent years has been devoted towards this task as 

well as studying the effects of rare weather events on reliability. 

PRM requirements ensure a specified amount of generation capacity is held, and 

are sized according to the projected peak demand. Each resource in a system contributes 

towards the requirement as a fraction of its nameplate capacity. In the typical formulation 

of this approach, this fraction conveys how much of the resource’s capacity is equivalent to 

firm capacity, such as in [36] and California Public Utilities Commission (CPUC) resource 
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adequacy requirements before 2018 [25]. However, for highly variable resources like wind, 

solar, and energy storage, distilling this complex variability into a single fraction is difficult. 

The behavior of wind, solar, and load are highly coupled due to the underlying weather 

dependency. The combined contributions of wind, solar, and energy storage are non-linear, 

as the contribution of storage is limited by both power and energy. To address this non- 

linearity, the effective load-carrying capacity (ELCC) has been proposed, and adopted by 

regulators including CPUC [20]. The ELCC allows for more accurate quantification of the 

load-carrying contributions of variable energy by accounting for the impact of renewable 

energy on net load. While the development of ELCC has improved PRM constraints, the 

parameters of this formulation are still determined exogenously, leading to inherent loss of 

accuracy. An overview of modern reliability studies focusing on the ELCC of renewables 

is given in [103]. In [86], the authors discuss the recent trend in exceeding PRM require- 

ments, primarily due to techno-economic factors, as well as the impacts on planning studies 

accounting for the required and actual implemented margins. Ssengonzi et al. [107] an- 

alyze the ELCC of renewables across the United States, but neglect storage, which has a 

synergistic effect when coupled with variable renewables. Cole et al. [28] study resource 

adequacy contributions under a range of variable resource penetrations. Bera et al. [7] 

present a study of resource adequacy focusing on the sizing of energy storage in systems 

with high renewable penetration. 

It is common to apply a Monte Carlo simulation approach to evaluating resource 

adequacy, as in [45] and the current approach used by the California Public Utilities Com- 

mission [23]. While these approaches are effective at evaluating resource adequacy of a fleet 
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after the system planning step, it is impossible to perform system planning over such a 

large temporal domain without significantly sacrificing the level of modeling detail used to 

represent dispatch, as is done in [69]. 

There is also a developing body of work around the selection of extreme events 

within representative period selection. For example, Scott et al. [104] select extreme weather 

periods as initial cluster centers in representative period selection. A range of approaches 

to representative period selection with extreme periods is examined in [56]. In [60], extreme 

days are added as representative periods in a second optimization step based on the costs 

associated with dispatch of the portfolio in the first optimization step. The authors in 

[129] select extreme periods as those periods with peak load. An iterative approach to 

ensuring reliability is proposed in [111], with each iteration adding the day with maximum 

lost load as a representative period, until the portfolio satisfies reliability metrics. These 

works, however, do not study the inclusion of extreme periods as a direct replacement to 

industry-standard PRM, making the comparison of these methods difficult. 

In the study, we demonstrate that PRM-based reliability constraints are inflexible, 

and thus may lead to suboptimal generation fleets from planning solutions. In the case study 

of the California electric grid, PRM results in substantial overemphasis of thermal capacity 

for reliability needs. Many of the references above acknowledge the complex interactions 

between various classes of resources. We address these nuances through direct simulation 

of challenging dispatch conditions which we call resiliency periods. The proposed method is 

shown to meet the level of required reliability threshold at cost savings as high as 14 billion 

dollars through 2045. The remainder of the chapter will be organized as follows. Section 
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7.2 will present the formulation of the planning model, including the proposed resilient 

planning method. Section 7.3 discusses the numerical study and experimental results. 

 

7.2 Technical Method 

 
The decarbonization model used in this chapter is broadly the same as the one 

developed in Chapter 2. We will begin by repeating the formulation of the PRM constraint 

for context, and then describe the proposed method for enabling climate resilient planning. 

 

7.2.1 Policy Constraints - Reliability 

 
Due to the computational complexity associated with modeling 8760 hours per 

year, temporal downsampling is ubiquitous, and is often achieved by modeling representative 

periods. The goal of selecting representative periods is to choose a set of periods which, in 

tandem, best represent the year as a whole. However, some of the most stressful periods, 

and thus most important for reliability, on a power grid may be less frequent than a few 

days per year. Given that representative period selection is often limited to fewer than 37 

days (i.e. 10% of the year), there is very low likelihood that these low-frequency, high- 

importance events will be selected as representative periods. However, accounting for these 

low-frequency periods is critical to ensure enough generation capacity is held to reliably 

operate the grid. Typically, this is integrated through a PRM constraint. 

PRM constraints (7.1) ensure that the generation fleet for a given year can satisfy 

some factor above the forecasted peak load. Resources typically count towards the PRM 

requirement through a net qualifying capacity (NQC) or an ELCC. Thermal units, and firm 
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generation, generally have an NQC close to 1, as they can typically generate at full capacity 

except for rare occasions when unavailable due to maintenance or other circumstances. The 

contributions of solar, wind, and storage, are either modeled through NQC in the simplistic 

case or ELCC. These resources are generally associated with rather low NQC due to the 

high variability of generation. In more detailed representations, contribution of variable 

resources is modeled as a function of decreasing value with increasing penetration. For 

example, California’s gross load typically experiences daily summer peak around 5pm local 

time. With the proliferation of both behind-the-meter and utility-scale solar PV, the net 

load peak has shifted closer to 7pm, at which time solar generation is rapidly decreasing. 

Essentially, this resource is saturated at the peak load time, and installing more solar will 

have little to no effect on the peak net load. 

PRMy ≤ 
u∈Uz 

 
 

IUy,uPuNQCu + ELCCy,s + ELCCy + 

h∈Hz 

ICy,hNQCh, z = 0. (7.1) 

 
As a reminder, the optimization formulation is written as the minimization of 

investment, maintenance, and operation costs, subject to all operational and investment 

constraints: 

min O 

 

s.t., (2.1) − (2.39) ∀y ∈ Y, w ∈ W, (7.2) 

(2.43) − (2.46), (2.51) − (2.55) ∀y ∈ Y. 
 

 

7.2.2 Proposed Method: Resiliency Days 

 
As discussed in Section 7.2.1, reliability requirements are often modeled by a yearly 

constraint on the fleet makeup. The goal of this constraint is to serve as a surrogate for 
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modeling periods with extremely severe load conditions. There is an inherent loss of fidelity 

associated with distilling a dispatch problem into a constraint weighting capacities of re- 

sources by predetermined factors, especially considering the high variability of renewable 

resources. This modeling approach is very rigid and it fails to rigorously account for the 

correlation between load and renewable generation. As demand is expected to be served 

dominantly by a mix of variable renewables and storage, this is an extremely important ele- 

ment. This approach also fails to account for complex dispatch behaviors, such as ramping 

of thermal units. 

Instead of constraining the fleet through predetermined factors, we propose the 

direct simulation of extreme load serving conditions. We adopt the name “resiliency peri- 

ods” to refer to these extreme periods, as a complementary to representative periods. While 

representative periods seek to embody the most typical behaviors of the power system, re- 

siliency periods seek to embody the most extreme periods in order to directly ensure that 

enough capacity is held to meet these demands. Similar to PRM, the rarity of resiliency 

period events means these do not need to be considered for operating costs or emissions 

constraints. 

To do so, we create new sets corresponding to the resiliency period Wr and hour 

within each resiliency period Tr. Resiliency periods do not necessarily need to have the same 

length as representative periods. For example, resiliency periods could model days (∥Tr∥ = 

24), while representative periods could model weeks (∥T∥ = 168). As with representative 

periods, resiliency periods link time within, but not across periods. The index of year is the 

same, as we wish to enforce the resiliency requirements for each investment interval. The 
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optimization (7.2) can be rewritten to incorporate these periods and omit PRM as: 

 
 

min O 

 

s.t., (2.1) − (2.39) ∀t ∈ T, w ∈ W, y ∈ Y, (7.3) 

(2.1) − (2.39) ∀t ∈ Tr, wr ∈ Wr, y ∈ Y 

(2.43) − (2.46), (2.51) − (2.52) ∀y ∈ Y. 

 
With this as the basic formulation behind using resiliency periods to enforce re- 

silient planning, we can move on to discuss the selection of resiliency periods. 

In general, the method described above can be used agnostic to the manner in 

which the resiliency periods are selected. However, we suggest that they should reflect the 

accepted standards which inform PRM calculations. For example, California uses the 1-in- 

10 standard, stating that the expectation of loss of load should not exceed 1 event in 10 

years. 

Due to the increasing importance of renewable resources, we propose the use of 

net load as the metric by which periods are selected. Taking inspiration from the recently 

proposed concept of compound energy droughts [12], we propose the use of net load over 

various timesteps to properly capture the effects of variability in renewable energy. 

Net load is a combination of data (load, renewable generation factors) and model 

outputs (total installed capacity of resources), so an iterative approach is required. First, 
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the base model is solved while omitting reliability constraints (7.1): 

 
 

min O 

 

s.t., (2.1) − (2.39) ∀t ∈ T, w ∈ W, y ∈ Y, (7.4) 

(2.43) − (2.46), (2.51) − (2.52) ∀y ∈ Y. 

 
This provides baseline capacities of the various resource, which is necessary as it establishes 

a proper relationship between load in units of MW and unitless renewable generation factors. 

Net load is then defined as: 

NLz(y, d, t) = Lz(t) −    ICr(y) · PFr(y, d, t)(t) (7.5) 
r∈Rz 

For each year y ∈ Y , hourly net load metrics should be calculated. For this discussion, we 

will assume resiliency periods are selected as 24-hour days. The discussion here is 

immediately adaptable to periods of arbitrary length. We rely on a set of days d ∈ D 

which allow for a probabilistic interpretation of load and generation shapes. The size, and 

members, of D essentially bound the loss of load expectation. The approach developed in 

the following section ensures that load can be served for all days present in D. For instance, 

to meet or exceed the 1-in-10 standard, D should include 3650 days. This ensures that no 

load shedding occurs in the represented 10 years of input data. This method is readily 

tailored to other reliability margins. 

We propose calculating the net load for each year and selecting resiliency days 

based on the maximum net load when averaged over a specified duration. This is opera- 

tionalized by, for each day, rolling a window of length n through the day, calculating the 
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average net load for each, and selecting the maximum (7.6). 

 
t+n 

NLn(y, d) = max( 
1 

NL (y, d, t), ∀t ∈ [1, 24 − n]) (7.6) 

Then, we select the day with the maximum n-hour net load as a resiliency period. We refer 

to this highest net-load day as an n-hour net load peak. 

Wr ← arg max NLn(y, d), ∀n ∈ N (7.7) 
d 

 
By selecting droughts of various lengths, a range of behaviors in the correlation between 

renewable generation and load can be represented. For example, the 1-hour drought corre- 

sponds to the day with highest hourly net load and the 24-hour drought corresponds to the 

day with highest average net load. The set of all n-hour durations used to form the set of 

resiliency periods Wr is given as N . 

The proposed planning method is summarized in Algorithm 2 and displayed as a 

flowchart in Fig. 7.1. First, the model is solved without PRM or other reliability constraints 

to establish baseline resource capacity, enabling the calculation of net load for future years. 

Resiliency days are then selected based on the net load peaks (7.7). Finally, the model is 

solved once again with these resiliency days integrated, given as (7.3). 

Algorithm 2: Decarbonization with Resiliency 

Solve model without PRM (7.4); 

Calculate net loads NLn(y, d) (7.5); 

Select resiliency days (7.7); 

Solve model with resiliency days (7.3); 
 

t 
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Figure 7.1: Flowchart showing the proposed method for selecting and planning with re- 

siliency periods. 
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7.3 Numerical Study 

 
In this section, we present a numerical study of the impacts of climate, socioeco- 

nomic pathways, and the proposed resilient planning method. First, we discuss the climate- 

generation-load dataset which enables this study. Next, we examine the planning results 

under a variety of scenarios. We then present a comparison of planning results under the 

status quo PRM reliability formulation and the proposed resiliency periods formulation. 

Finally, we present some of the policy implications of this study. 

Outside of the climate dataset described next, the data used in this study is taken 

from the RESOLVE implementation published by the California Public Utilities Commis- 

sions [34]. Investment is modeled from 2025 through 2045 in 5-year intervals, with financing 

through 2065. We model representative periods of 3-day length and resiliency periods of 1- 

day length. Representative periods are selected using the approach in [5]. Resiliency periods 

are selected for net load peak durations of 1, 4, 12, and 24 hours. For the resiliency periods 

in (7.3), we also account for a 5% derate for generators in the resiliency period, based on the 

NQC for these units defined in [34]. The same surrogate Lagrangian relaxation technique 

developed in Chapter 3 is used to solve each of the models. 

 

7.3.1 Climate, Load, and Generation Datasets 

 
This study is enabled by recent publicly-available load and renewable generation 

projection datasets developed by multiple projects at the Pacific Northwest National Lab- 

oratory [11]. Load and renewable generation projections are considered in tandem, and 

because they are both based on the same underlying climate projections, the time series 
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will be properly correlated. The correlation between load and renewable generation is impor- 

tant, so we specifically avoid Monte Carlo approaches which generally sever this correlation. 

As noted in [12], there are correlations between periods of high load and low renewable gen- 

eration which may have extremely large impact for future grids relying heavily on variable 

renewables. The renewable generation projections also account for climate impacts such as 

solar panel efficiency loss as temperatures increase and the suppression of wind generation 

under high pressure conditions. 

The climate, load, and generation projections are based on 40-years (1980-2019) of 

historical meteorology. The use of historical meteorology results in the dataset containing 

actual historical extreme events. The climate methodology then takes the 40-year sequence 

of historical weather and repeats it twice into the future (from 2020-2059 and again from 

2060-2099) for eight unique scenarios that reflect a wide but plausible range of future climate 

and socioeconomic conditions. The details of this approach are provided in [52]. The eight 

future scenarios are defined jointly by a combination of Representative Concentration 

Pathway (RCPs 4.5 and 8.5) and Shared Socioeconomic Pathway (SSPs 3 and 5). They also 

reflect a range of climate model uncertainties by using warming levels from climate models 

that are hotter and cooler than the multimodel mean. 

The RCP scenario impacts load through both climate-related impacts, such as 

higher temperatures increasing the load from air conditioning, as well as the level of elec- 

trification needed to meet the emissions target. The SSPs impact load through the level of 

consumption, economic expansion and population growth. The RCP and the warming levels 

both affect the production factors of renewable generation though both technological (e.g. 
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solar panel derating) and climate (e.g. heat dome wind suppression), while maintaining 

physical consistency. 

The RCP 4.5 and 8.5 pathways are denoted by R4 and R8, respectively. The SSP 

3 and 5 pathways are denoted by S3 and S5, respectively. The cooler and hotter climate 

model outcomes are denoted by the suffixes “C” and “H”, respectively (i.e. R4S3C, R4S3H). 

Details of the various scenarios are provided in [21]. 

To produce the data used in this study, the 40 years of historical and 80 years of 

future meteorology across the eight scenarios are then run through a series of load and re- 

newable generation models to produce hourly time series of historical and projected load and 

renewable generation. The load projection model accounts for the hour-to-hour variations 

in demand due to weather (including extreme events like heat waves and cold snaps) and 

grows loads over time to reflect longer-term changes in population, economics, and energy 

policy (for example, electrification needs to stay on an RCP 4.5 pathway). For each 1/8th 

degree grid cell, a hypothetical wind and solar plant was modeled with generic assumptions 

about solar panel and wind turbine configurations. The details of the models used in this 

process are provided in [12] and [21]. 

 

7.3.2 Results 

 
Climate Pathways 

 
First, we examine the impacts of each of the scenarios on the 2045 fleets. The 

newly installed capacity in CAISO in each scenario is shown in Fig. 7.2. It is not surprising 

that different pathways force different levels of investment based on the amount of associated 
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load growth. These results do, however, emphasize the need to account for the wide range 

of planning outcomes of different pathways. The buildout of renewables is as low as 50GW 

and as high as 87.5GW, and the buildout of energy storage is as low as 32.6GW and as high 

as 47GW. It is vital that this range is understood, even if these extremes represent 

relatively less-likely scenarios. The investment over time is shown in Fig. 7.3 for both 

warming pathways of two of the climate scenarios. Not only do warming pathways affect 

the total amount of clean capacity needed to achieve decarbonization by 2045, but also the 

optimal intervals in which to make these investments, with both hotter scenarios favoring 

later investment as compared to their cooler counterparts. 

Besides climate pathways, it is also critical to plan for a range of warming scenarios. 

Although the RCP4.5 scenarios have nearly identical fleets between the hotter and cooler 

warming scenarios, the RCP8.5 scenarios have notably different fleets. The hotter and cooler 

warming scenarios have nearly the same annual load, but the hourly loads in the hotter 

warming scenarios are concentrated slightly more towards the tails of the distribution. In 

the RCP8.5 pathway, the hotter scenarios have 16% and 21% higher renewable installations 

than the respective cooler scenarios. This is an early affect of climate change on load and 

renewable generation, and these trends will become even more severe after 2045 if the 

higher global emissions pathway is followed. These results also raise the issue of adaptability 

and mitigation. Towards the mid-century and onwards, effects of climate change are more 

uncertain, and so therefore are its impacts on load and generation. In turn, this can make 

planning more difficult, and thus require more potential investments to meet emissions 

targets. 
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Figure 7.2: Comparison of capacity added to CAISO fleet under different climate pathways, 

demonstrating the extreme variation in required capacity. 
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Figure 7.3: Comparison of investment over time for the R4S3 and R8S5 scenarios with both 

cooler and hotter warming pathways. 
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The evolution of the fleet can also be evaluated through its spatial distribution. 

Fig. 7.4 shows maps of the investment in storage and renewable projects for two years and 

two scenarios. These two scenarios are the most moderate of the four pathways examined. In 

2030, there are relatively few differences between the two scenarios. In 2045, the differences 

become apparent, with substantially more investment in solar in southern California, more 

wind in southern Nevada, and more storage in both northern and southern California for 

the R8S5H scenario compared to the R4S5H scenario. 

 
Planning with Resiliency Periods 

 
We present the results of two planning regimes: PRM and resiliency day plan- 

ning. The PRM planning regime corresponds to the approach currently employed by the 

California Public Utilities Commission and California Energy Commission for their decar- 

bonization planning studies [34]. We examine the performance using two scenarios. The 

R8S5C scenario is the closest match in terms of yearly load to CAISO’s most recent inte- 

grated energy policy report (IEPR) load forecasts. The R4S3H is the next closest match, 

but has slightly lower loads. For reliability considerations, we merge the hotter and cooler 

pathways together. In other words, to convey the variability of a warming climate, both 

cooler and hotter perturbations are used for the determination of PRM and selection of 

resiliency periods. Representative periods, however, are chosen for R8S5C and R4S3H. 

We compare the results of these techniques in three ways. The first is the com- 

parison of total cost, as well as direct comparison of fleet composition. The second is the 
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Figure 7.4: Map depicting the installation of storage and renewable projects for 2030 and 

2045 across R8S5H and R4S3H, with major differences highlighted. 
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loss-of-load-expectation of each fleet. The third is a study of what margin above the peak 

load could be served by each fleet. 

Table 7.1: Costs, billions 2025$ 
 

 R8S5C R4S3H 
 PRM Resil. PRM Resil. 

Total Cost 365.7 351.2 329.6 322.8 

CA Cost 214.9 200.6 179.3 173.3 

Maint. Cost 34.8 33.1 29.6 27.6 

Inv. Cost 162.3 150.6 131.4 127.8 

CA Op. Cost 17.8 16.8 18.3 17.9 

 
As shown in Table 7.1, in the R8S5C scenario, the cost savings for resilient plan- 

ning over PRM is extremely substantial, over 14 billion or 6.7% in CA costs. This is mostly 

due to the avoided installation of several GW of thermal capacity. The R4S3H scenario 

presents moderately lower savings, 6 billion or 3.3%. The savings come primarily from 

avoided maintenance costs of economically-retired power plants and, to an extent, avoided 

installation of thermal capacity. This scenario has overall lower loads, so there are over- 

all lower installations necessary to meet reliability needs. As such, the cost savings are 

considerably lower. In both scenarios, the operating costs are slightly lower using resilient 

planning as the value of renewable technologies for reliability is higher, resulting in slightly 

higher overall capacity of these technologies. 

The cumulative investments in 2045 are shown in Fig. 7.5 for both scenarios. We 

also visualize the fleet resulting from planning with no reliability requirement (“No Rel.”) 

to help compare the planning regimes. Both scenarios show generally similar levels of re- 

newable and storage buildout between the PRM and resilient planning regimes. In the 

R8S5C scenario, there is a slight increase in renewable and slight decrease in storage build 
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but the storage buildout is slightly higher. The key difference between the three regimes 

is the level of retirement and construction of thermal technology. Without any reliability, 

there are considerable retirements. PRM encourages heavy buildout of thermal units and 
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Figure 7.5: Comparison of fleets resulting from planning with PRM, the proposed resiliency 

days modeling, and no reliability requirement. The proposed method is less dependent on 

thermal units for reliability. 
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bine and reciprocating engine capacities which have negligible installed capacities in all 

scenarios. Planned retirements are minor, consisting of 2 peakers in all scenarios. Gen- 

erally, combined-cycle gas turbines (CCGTs) are leveraged more heavily in 2045. In the 

PRM scenarios, CCGTs are the main candidate for new construction. While two smaller 

candidate units (steam turbine, reciprocating engine) are available, there is nearly no con- 

struction of these resources as the CCGT has a slightly lower $/MW capital cost. These 

resources are almost exclusively used to satisfy the reliability constraints, so their operating 

characteristics are less important than their capital cost in this context. These units are 

not visualized here due to that lack of utilization. Peakers see more retirements in general; 

these resources are particularly expensive to run, so pose little benefit to normal operation. 

However, the maintenance costs are low compared to capital costs of new construction, so 

peakers are retained when they serve to satisfy reliability constraints. In the lower-load 

R4S3H scenario, both CCGT and peakers see retirement. We have demonstrated that the 

fleets produced by the resilient planning regime are more economical than the PRM fleets. 

It is critical to demonstrate that the fleet meets the required level of reliability; otherwise, 

these cost savings are worthless. We seek to demonstrate that our planning approach leads 

to more economical, sufficiently-reliable fleets by more appropriately accounting for the 

load-serving potential of all resources during extreme load events. In order to demonstrate 

this, we directly look at the loss of load expectation. Then, we examine the level of load 

above these events that could be actually served by each fleet. 

For each of the investment years, we run 10 years of unit dispatch, with 5 each 

corresponding to the cooler and hotter warming scenarios, and look for any load shedding. 
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Neither planning regime experiences any load shedding in this test. This should come as 

no surprise; dispatch of extreme load periods was directly modeled in the resilient planning 

regime, and the PRM regime has even higher capacities. This study thus satisfies the 1-in-10 

loss of load expectation which informs CAISO’s reliability margin. 

Although this analysis is not shown, it is worth noting that if only the 1-hour gross 

load peak is selected for resilient planning, load shedding actually does occur in this 

dispatch stage. This highlights the importance of looking at the correlation between 

renewable generation and load rather than load alone for reliability considerations, as well 

as selecting net load peaks of several time scales as the resiliency periods. 

We have shown that each fleet meets the reliability requirements; now we seek to 

demonstrate the degree to which each fleet exceeds the reliability requirements. We conduct 

a study showing the level of load above the peak load that could be served by each fleet. 

We start by selecting the 1-in-10 load day for each investment year. As is, this represents a 

reliability threshold. Then, we increasingly scale the load of this day and look to both the 

number of hours with load shedding. The results of this experiment are shown in Fig. 7.7. 

The resilient planning regime typically starts requiring load shed after a 5% or 10% increase 

in the load. The PRM regime starts shedding load at significantly higher percentages in 

every case. It also experiences fewer hours of load shedding. In the R8S5C scenario, the 

PRM regime can meet demand 25% higher than the 1-in-10 load in 3 out of the 5 investment 

years. This demonstrates that the PRM scenario is overbuilt. 

The key result of this analysis is that the existing method, rather than meet the 

prescribed reliability standard, far exceeds it. On the other hand, the proposed method more 
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accurately tailors the portfolio to meet the reliability standard, at a lower overall cost. While 

higher levels of reliability are not adverse, significantly exceeding reliability standards by 

maintaining or building excess capacity is not the most efficient investment. In this sense, 

the proposed method is an improvement, as it meets reliability targets at significantly 

reduced costs. Finally, the proposed method is flexible, and could readily be applied to 

meet more or less stringent reliability targets by adjusting the specified probabilistic set of 

days D. 

As previously discussed, the PRM constraint is artificial in the sense that it at- 

tempts to distill complex energy resource dispatch information into a single constraint. In 

the theoretically most rigorous planning model, thousands of days would be simulated. Pe- 

riods of extreme weather, across a variety of patterns, would be directly simulated, and 

thus the resiliency requirements would be met. However, this type of analysis is currently 

infeasible due to computational limitations. The proposed method essentially occupies a 

subspace of that theoretical planning model. PRM-based models, however, transform into 

an entirely separate model by the addition of this constraint, and so the decisions made are 

of unknown optimality compared to real operations. 

 

7.3.3 Policy Implications 

 
The key takeaway of this study is that PRM-based reliability requirements are too 

inflexible. Feasibly, PRM-based constraints could suffer from the opposite problem as well, 

failing to account for severe energy droughts. This problem is demonstrated by the fact 

resilient planning using only the peak load day produces a fleet that has to shed load on 

days with lower gross load, but also less renewable generation. 
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In this case, the use of PRM results in chronic underestimation of renewables’ 

contributions towards reliability. This in turn creates an artificial demand for new power 

plants, and a lack of retirement of existing power plants. The lack of retirement has consid- 

erable social implications. The resiliency regime retires roughly 60 peakers more than the 

PRM regime in both scenarios. Peakers are often located in densely-inhabitated areas [27], 

so reducing the reliance on these resources may have an even greater social impact than 

reducing system-wide carbon emissions. Retiring these resources may have further social 

benefits if the land can be converted to other uses, such as housing or greenspaces. If the 

state moves forward under the assumption that no existing power plants will be retired, 

these potential benefits will be left untapped. 

On the other hand, the construction of new power plants is associated with con- 

siderable embodied carbon emissions. Even if these resources never turn on, and thus 

never emit, in the context of normal operation, there is a notable cost associated with their 

construction. We follow two estimates of the emissions associated with power plant 

construction to obtain estimates of 450 and 1280 tons per MW [125, 106]. For the R8S5C 

scenario, the PRM regime is associated with an additional 3.2-9.2 million tons of emissions. 

Simultaneously, the 2045 emissions target is approximately 12 million tons. Although em- 

bodied emissions are not considered as part of the energy sector emissions targets, the scale 

of emissions associated with this capacity that is built but not required to meet reliability 

needs is extremely relevant. Thus, it is crucial that resources not be overbuilt, not just for 

cost reduction, but for a holistic view of satisfying California’s climate goals. 
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Long-term planning models like the present model have a separate objective from 

short-term planning models. The goal of long-term planning models is not to determine ex- 

actly how much capacity of each resource will be purchased for the next 20 years. The goal 

is to determine long-term trends in capacity. Especially from the perspective of state agen- 

cies, understanding these trends is critical as they inform at a high level the implementation 

of various programs. The use of PRM can affect this in several ways. Thermal capacity be- 

comes more favorable and renewable capacity is undervalued, leading to severely overbuilt 

fleets. The excess of thermal capacity has both cost and social ramifications. PRM also 

undervalues the reliability contributions of renewable and storage capacity to the extend 

that it reduces the amount of investment in these technologies. 

It is necessary to note that reliability studies, in particular in CAISO, encompass 

a large number of contingencies, some of which are not suitable to be modeled here. We are 

not advocating for the replacement of near-term resource adequacy studies by the proposed 

resiliency period modeling. However, we suggest that for the task of long-term planning, the 

current planning reserve margin studies may be overly rigid, and undervalue the combined 

value of storage, wind, and solar. This is of interest to policymakers, because these long- 

term planning models are not directly informing utilities which resources they should buy, 

but informing state agencies where regulatory and funding efforts should be directed over 

the next decades. 

We would also like to point out that the proposed resiliency days method is ulti- 

mately a data driven method. The method is effectively driven by the available projections 

and statistical analysis of weather-generation-load patterns. More or less frequent events 
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could be chosen as the resiliency days, in line with the desired loss-of-load expectation. The 

resiliency days could also incorporate modeling for generator outages, line outages, and 

other climate-related risks. The key advantage of the proposed method is direct simulation 

of low-likelihood events. The specific implementation is flexible. 

Simultaneously, the resiliency days method is enabled by the Lagrangian relaxation- 

based solution methodology, which provides substantial improvements in CPU time over 

traditional optimization solvers used alone. This technique allows us to solve a detailed 

dispatch model without sacrificing the temporal scope. 

A caveat of these studies is that perfect foresight to which climate pathway will 

occur is impossible. This highlights the need for study of a range of pathways, as well as the 

importance of repeating these studies every few years to ensure that the trajectories take 

advantage of the best available science. Conversely, the advantage of the proposed resiliency 

days method is that it better represents the capacity needed to ensure reliability. The 

excess capacity held in the PRM scenarios, although unintentional, could be advantageous 

if the future loads are greater than the projection. However, we suggest that this type of 

uncertainty can be more robustly handled through scenario analysis, rather than unintended 

effects of PRM. Finally, we analyze a range of scenarios concerning climate and emissions, 

but do not consider various other uncertainties, including the future price of storage and 

renewable technologies, adoption of hydrogen fuels, increased energy efficiency, and so on. 

These factors are all relevant to a holistic understanding of future power system operations 

and investment in California. 
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7.4 Conclusion 

 
In this chapter, we investigate the impacts of climate and socioeconomic scenario 

uncertainty on California’s decarbonization pathways. First, we formulate decarbonization 

planning as a MILP problem. We propose a novel method for ensuring reliability, referred to 

as resiliency period planning. Then, we discuss the surrogate Lagrangian relaxation-based 

technique that enabled computational tractability of this large MILP model. We present the 

results of planning under a range of climate and socioeconomic scenarios and show that the 

range of required new capacity of renewables and storage varies on the order of 52GW. We 

then compare the traditional approach to reliability to the proposed method and find that 

the proposed method meets the required reliability threshold at costs savings of 6.7% by 

more rigorously valuing the contribution of renewable technologies. This study, however, 

presents a limited version of the reliability studies performed by regulators and utilities. 

Future work will expand upon the reliability studies to further investigate the comparative 

performance of the proposed method and planning reserve margin-based approaches. It 

is also acknowledged that the direct adoption of this proposed technique has significant 

hurdles for the risk-adverse utility industry. Instead, we hope that this study elucidates the 

shortcomings of the existing methods. 
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Figure 7.6: Comparison of thermal fleet components under PRM and resiliency days mod- 

eling. 
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Figure 7.7: Study showing the load shedding behavior of fleets resulting from PRM and the 

proposed method as the peak load day is scaled higher. 
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Chapter 8 

 

 

Conclusions 

 
This dissertation studied the issue of planning the decarbonization of California’s 

electrical grid through a number of lenses. In Chapter 2, a detailed decarbonization plan- 

ning model was developed and formulated as a MILP optimization problem. Chapter 3 

discussed the surrogate Lagrangian relaxation-based solution methodology. Chapter 4 pre- 

sented results from the proposed model and method, and compared them with the status 

quo. In Chapter 5, two novel representative period selection algorithms were proposed. A 

case study considering the integration of smart vehicle charging for MHD BEVs was pre- 

sented in Chapter 6. In Chapter 7, a case study of the impact of climate change pathways 

on decarbonization planning was shown, and a novel method for resilient planning was 

proposed. 

The methods proposed in this dissertation push the boundaries of what has been 

considered computationally feasible in capacity expansion planning. The case studies con- 

sider novel, concrete applications of the methods. Still, the area of capacity expansion 



144  

 
planning is diverse and in urgent need. In the US, the grid will see more rapid change over 

the next decades than ever before. Comprehensive planning is necessary to ensure this 

change happens with the best possible cost, reliability, and environmental efficacy. 

Planning models like the ones developed in this dissertation have a wide range of 

practical applications. For instance, they can help understand the long-term impacts of 

decisions like decommissioning of nuclear facilities or removal of hydroelectric dams. They 

can also help understand the long-term impacts of climate change, and ensure that the 

power system is resilient to extreme weather events. 

The proposed studies assumed perfect foresight. To account for the uncertainties 

in future loads, costs, and so on, the proposed model could be converted to a stochastic 

optimization model. Further, these planning studies need to be repeated periodically as 

time passes and projections of future load, cost, and weather conditions are improved and 

updated. 
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A nature-inspired python optimizer, November 2020. 

[32] Jonathan Donadee, Robbie Shaw, Oliver Garnett, Eric Cutter, and Liang Min. Po- 

tential benefits of vehicle-to-grid technology in California: High value for capabilities 

beyond one-way managed charging. IEEE Electrific. Mag., 7(2):40–45, 2019. 

[33] Edison International. Countdown to 2045: Realizing california’s pathway to net zero. 

https://www.edison.com/our-perspective/countdown-to-2045, 2023. 

[34] Energy + Environmental Economics. Inputs & Assumptions: 2019-2020 Integrated 

Resource Planning . Technical report, California Public Utilities Commission, 2019. 

http://www.cleanegroup.org/publication/
http://www.edison.com/our-perspective/countdown-to-2045


148  
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[58] Kevin De Le ón. 100 percent clean energy act of 2018. California Statutes of 2018, 

2018. 

[59] Can Li, Antonio Conejo, John Siirola, and Ignacio Grossmann. On representative day 

selection for capacity expansion planning of power systems under extreme operating 

conditions. Int j. Electr. Power Energy Syst., 137:107697, 11 2021. 

[60] Can Li, Antonio J. Conejo, John D. Siirola, and Ignacio E. Grossmann. On represen- 

tative day selection for capacity expansion planning of power systems under extreme 

operating conditions. Int. J. Electr. Power Energy Syst., 137:107697, 2022. 

http://www.ethree.com/wp-content/uploads/2020/10/E3-Least_Cost_Carbon_
http://www.ilog.com/products/cplex


150  

 
[61] Xinzhou Li, Yitong Tan, Xinxin Liu, Qiangqiang Liao, Bo Sun, Guangyu Cao, Cheng 

Li, Xiu Yang, and Zhiqin Wang. A cost-benefit analysis of V2G electric vehicles 

supporting peak shaving in Shanghai. Electr. Power Syst. Res., 179:106058, 2020. 

[62] Anbang Liu, Mikhail A Bragin, Xi Chen, and Xiaohong Guan. Accelerating level-value 

adjustment for the polyak stepsize. arXiv preprint arXiv:2311.18255, 2023. 

[63] Anbang Liu, Peter B Luh, Bing Yan, and Mikhail A Bragin. A novel integer linear 

programming formulation for job-shop scheduling problems. IEEE Robot. Autom. 

Lett., 6(3):5937–5944, 2021. 

[64] Yixian Liu, Ramteen Sioshansi, and Antonio J. Conejo. Hierarchical clustering to 

find representative operating periods for capacity-expansion modeling. IEEE Trans. 

Power Syst., 33(3):3029–3039, 2018. 

[65] Patrick Maloney, Ping Liu, Qingyu Xu, James Mccalley, Benjamin Hobbs, Sara 

Daubenberger, Anders Johnson, and Stan Williams. Wind capacity growth in the 

Northwest United States: Cooptimized versus sequential generation and transmission 

planning. Wind Eng., 43:0309524X1881496, 01 2019. 

[66] James H. Merrick. On representation of temporal variability in electricity capacity 

planning models. Energy Econ., 59:261–274, 2016. 

[67] S.M. Moghddas-Tafreshi, H.A. Shayanfar, A. Saliminia Lahiji, A. Rabiee, and 

J. Aghaei. Generation expansion planning in pool market: A hybrid modified game 

theory and particle swarm optimization. Energy Convers. Manag., 52(2):1512–1519, 

2011. 

[68] Amir Motamedi, Hamidreza Zareipour, Majid Oloomi Buygi, and William D. Rose- 

hart. A transmission planning framework considering future generation expansions in 

electricity markets. IEEE Trans. Power Syst., 25(4):1987–1995, 2010. 

[69] Salman Nazir, Hisham Othman, Khoi Vu, Shiyuan Wang, Dipayan Banik, Atri Bera, 

Cody Newlun, Andrew Benson, and Jim Ellison. pirp: A probabilistic tool for long- 

term integrated resource planning of power systems. In 2022 IEEE EESAT, pages 

1–5, 2022. 

[70] Najmeh Neshat and M.R. Amin-Naseri. Cleaner power generation through market- 

driven generation expansion planning: an agent-based hybrid framework of game 

theory and particle swarm optimization. J. Clean. Prod., 105:206–217, 2015. 

[71] Riccardo Novo, Paolo Marocco, Giuseppe Giorgi, Andrea Lanzini, Massimo Santarelli, 

and Giuliana Mattiazzo. Planning the decarbonisation of energy systems: The im- 

portance of applying time series clustering to long-term models. Energy Convers. 

Manag., 15:100274, 2022. 

[72] George A. Orfanos, Pavlos S. Georgilakis, and Nikos D. Hatziargyriou. Transmission 

expansion planning of systems with increasing wind power integration. IEEE Trans. 

Power Syst., 28(2):1355–1362, 2013. 



151  

 
[73] Bryan Palmintier and Mort Webster. Impact of unit commitment constraints on 

generation expansion planning with renewables. In 2011 IEEE PESGM, pages 1–7, 

2011. 

[74] F. Pedregosa et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 

12:2825–2830, 2011. 

[75] Stefan Pfenninger. Dealing with multiple decades of hourly wind and PV time series in 

energy models: A comparison of methods to reduce time resolution and the planning 

implications of inter-annual variability. Appl. Energy, 197:1–13, 2017. 

[76] Salvador Pineda and Juan M. Morales. Chronological time-period clustering for opti- 

mal capacity expansion planning with storage. IEEE Trans. Power Syst., 33(6):7162– 

7170, 2018. 

[77] G. Pleßmann and P. Blechinger. How to meet EU GHG emission reduction targets? 

A model based decarbonization pathway for Europe’s electricity supply system until 

2050. Energy Strategy Rev., 15:19–32, 2017. 

[78] Boris Teodorovich Polyak. Minimization of unsmooth functionals. USSR Computa- 

tional Mathematics and Mathematical Physics, 9(3):14–29, 1969. 

[79] Kris Poncelet, Erik Delarue, Daan Six, Jan Duerinck, and William D’haeseleer. Im- 

pact of the level of temporal and operational detail in energy-system planning models. 

Appl. Energy, 162:631–643, 2016. 
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