

1 **DECLINE OF RIDE-SPLITTING: A CASE STUDY OF NEW YORK CITY**

2

3

4

5 **Ayush Pandey, Corresponding Author**

6 ayushp3@illinois.edu

7 Department of Civil and Environmental Engineering

8 University of Illinois Urbana-Champaign

9

10 **Hao Liu, Ph.D.**

11 hao.liu@jsums.edu

12 Department of Civil & Environmental Engineering and Industrial Systems & Technology

13 Jackson State University

14

15 **Xin Dong**

16 xjd5036@psu.edu

17 Department of Civil and Environmental Engineering

18 The Pennsylvania State University

19

20 **Lewis J. Lehe, Ph.D.**

21 lehe@illinois.edu

22 Department of Civil and Environmental Engineering

23 University of Illinois Urbana-Champaign

24

25 **Vikash V. Gayah, Ph.D.**

26 gayah@engr.psu.edu

27 Department of Civil and Environmental Engineering

28 The Pennsylvania State University

29

30

31 Word Count: 5907 words + 6 table(s)  $\times$  250 = 7407 words

32

33

34

35

36

37

38 Submission Date: September 19, 2024

1 **ABSTRACT**

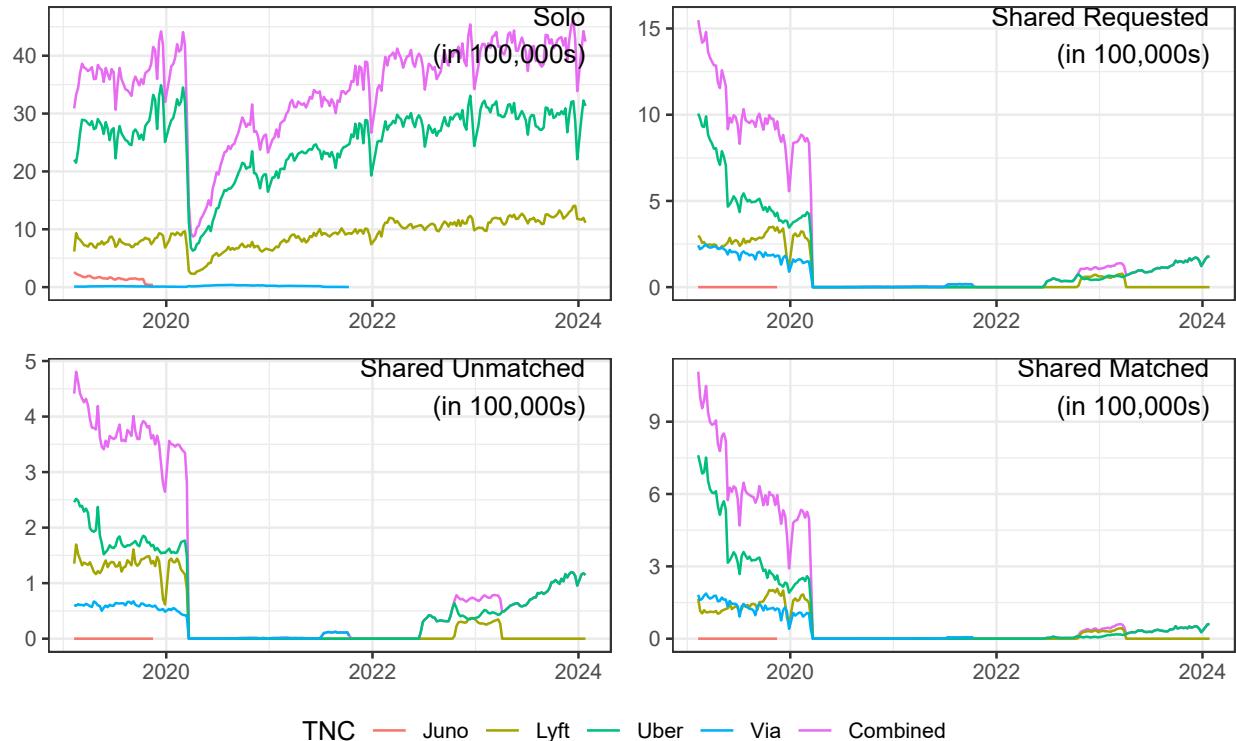
2 Ride-splitting is a service offered by Transportation Network Companies that pairs riders who  
3 choose to share a portion of their ride-hailing trip with a stranger, in exchange for a discounted fare.  
4 This paper studies the decline of ride-splitting using data from New York City. We document the  
5 events concerning ride-splitting and present plausible explanations for them. The decline of ride-  
6 splitting pre-COVID can possibly be explained by Uber's withdrawal of subsidies for UberPool;  
7 no other TNC reduces their discounts during this period. Post-COVID, we provide a plausible  
8 reason for why service has settled at a much lower level and analyze the effects of the same. We  
9 hypothesize that ride-splitting is stuck at a lower-sharing equilibrium. There are multiple equilibria  
10 because ride-splitting exhibits strong scale economies. Finally, we establish the presence of scale  
11 economies in ride-splitting using an Instrumental Variables approach.

12

13 *Keywords:* ride-pooling, ride-splitting, scale economies, instrumental variables, ridesharing

## 1 INTRODUCTION

2 Ride-splitting, also called ride-pooling or shared ride-hailing<sup>1</sup>, is a service where passengers can  
 3 choose to share their ridehailing trips with strangers to make their trips more affordable (2). Passen-  
 4 gers use an app to input their origin, destination and willingness to share a ride and the Transporta-  
 5 tion Network Company (TNC), like Uber or Lyft, tries to match them with other riders traveling  
 6 along the same route; the TNC may or may not successfully match a ride-splitting trip. Ride-  
 7 splitting has garnered a lot of interest since UberPool and Lyft Line were launched in August  
 8 2014. UberPool served over 100 million trips by 2016 and accounted for more than half of Uber's  
 9 trips in many cities; Lyft Line accounted for 30% of all Lyft rides with the proportion being closer  
 10 to 50% in cities like New York and San Francisco (3). However, the share of ride-splitting trips has  
 11 declined to single digit percentages today. Figure 1 shows the number of ridehailing trips requested  
 12 in New York City from February 2019 to January 2024. The share of ride-splitting trips decreases  
 13 from about 30% to 3% during this period. In this paper, we chronicle the significant events from  
 14 2019 to 2023 that have impacted ride-splitting. Additionally, we propose a plausible hypothesis  
 15 for its failure to rebound post-COVID.



**FIGURE 1:** Number of trips taken each week in NYC from February 2019 to January 2024

16 In this paper we classify different types of trips as follows: Trips that do not want to be  
 17 pooled are called *solo* trips. Trips that request ride-splitting are called *shared requested* trips.  
 18 Among those, the trips that successfully get matched with another passenger are called *shared*  
 19 *matched* and ones that do not get matched are called *shared unmatched*.

<sup>1</sup>See Shaheen et al. (1) for taxonomy.

1 A rider almost certainly suffers detours, to pick-up and drop-off other passengers, if their  
2 trip is successfully matched. TNCs offer discounts on ride-splitting to make up these for these  
3 detours and attract passengers (4), and at least a part of these discounts is not contingent on being  
4 matched. There are more passengers in the car in a shared matched trip and the fare for each  
5 passenger may be even lower. Ride-splitting puts more people in the same vehicle which can lower  
6 the number of vehicles required to serve all trips (1). State and local governments recognize that  
7 ride-splitting might lead to less congestion, fuel use and need for parking. It is a more sustainable  
8 option compared to traveling alone. To promote ride-splitting, cities offer discounts to passengers  
9 on taxes and surcharges levied on all ride-hailing trips. Chicago, IL; New York City, NY; San  
10 Francisco, CA; and New Jersey, Georgia, and some other cities and states levy a lower tax on  
11 shared ride-hailing trips than on solo ones (5).

12 Another reason to subsidize ride-splitting is that many professionals (as well as academics)  
13 believe that ride-splitting will become more efficient at scale. i.e., ride-splitting becomes more effi-  
14 cient as more people request a shared ride-hailing trip. As more people request to share their rides,  
15 the TNC will have a large pool to match people from which should allow them to (i) successfully  
16 match more trips Kidd (6), and (ii) find better matches with smaller detours. At scale, ride-splitting  
17 is expected to have small detours and low travel costs for passengers; higher occupancy and smaller  
18 fleet sizes for TNCs; and lower congestion, smaller emissions, and lower demand for parking for  
19 cities.

20 Castillo and Mathur (7) show that matching between drivers and riders gets more effi-  
21 cient as more drivers and riders participate in the system. Lehe et al. (8) show evidence of scale  
22 economies in carpooling using data from SCOOP (a carpooling platform) and Ke et al. (9) uses  
23 simulations to show that the match rates increase and detours decrease when more people demand  
24 pooled rides. Using Chicago's 2019 TNC data, Liu et al. (4) show that detours decrease and match  
25 rates increase as more people authorize to share rides with others. However, establishing scale  
26 economies in matching is not as simple because of the endogeneity between demand and effi-  
27 ciency measures. Empirical evidence (4, 8) shows that detours decrease as more people request to  
28 share rides; but it does not establish if it happens because detours get shorter with more requests, or  
29 do people request more when detours are shorter? Probably both are true simultaneously. Since the  
30 efficiency and demand for ride-splitting are endogenous, ordinary least square regressions cannot  
31 estimate the causal effect of number of requests on the efficiency of the system. This paper utilizes  
32 an instrumental variables based approach to show that ride-splitting exhibits scale economies.

33 We hypothesize that the presence of scale economies is a *plausible* explanation for ride-  
34 splitting's failure to rebound post-COVID. Transportation systems with scale economies *can* have  
35 multiple equilibria (10, 11) which may help explain why different cities can sometimes end up  
36 in different equilibria (12). We propose the following explanation: Ride-splitting was already in  
37 decline in 2019 (Figure 1) but the system was at a high-sharing equilibrium. The proportion of  
38 ride-splitting was high (between 25-30%) and more trips were getting matched (over 60%). The  
39 COVID19 pandemic forced TNCs to shut-down all ride-splitting offerings. Demand recovered  
40 slowly after COVID subsided and agencies resumed their ride-splitting options. But low initial  
41 demand meant that matching was not very efficient, passengers had to face with higher detours,  
42 and lower discounts; and TNCs lost more money due to low match rates. TNCs responded to  
43 loses by shutting down ride-splitting entirely or by greatly reducing the discounts offered to shared  
44 trips, leaving us with a low-sharing equilibrium. To be precise about our claim, the existence of  
45 multiple equilibria with vastly different demand and match rates does not necessarily mean that

1 the system exhibits scale economies; but scale economies can be a reason for the existence of  
2 multiple equilibria. We can *possibly* shift from the low-sharing to the high-sharing equilibrium if  
3 ride-splitting is highly subsidized for a long period, but it seems unlike that TNCs will choose to  
4 do that.

5 The next subsection presents a timeline of ride-splitting in the United States. We then  
6 describe the data used for this study. Next, we discuss the reasons behind the decline of ride-  
7 splitting in 2019, and TNCs response to the same issues post COVID. The following Section  
8 discusses the effects of Lyft's exit from ride-splitting market in detail. The next section established  
9 the existence of scale economies ride-splitting using an Instrumental Variables based analysis.  
10 Final section 6 concludes.

## 11 Timeline

12 Table 1 gives an overview of the key events concerning ride-splitting in the United States starting  
13 June 2014, when Hitch became the first company to offer ride-splitting service in San Francisco,  
14 CA (13). Just a few months later, Uber announced it's ride-splitting option, *UberPool*, on August  
15 5, 2014 (14). The service was initially launched as a beta test available to a few customers and was  
16 expanded to a public beta in the San Francisco Bay Area on August 15, 2014. Following Uber's  
17 announcement, Lyft launched *Lyft Line* to all customers in San Francisco on August 6, 2014 (15),  
18 and acquired other companies like Hitch and Rover to jump start their ride-splitting efforts (16);  
19 by March 2015, Lyft Line accounted for majority of Lyft's business in San Francisco. UberPool  
20 had served more than 100 million trips by March 2016 and more than half the trips taken in an  
21 Uber in many cities requested UberPool(17). Uber's CEO at the time, claimed that UberPool was  
22 profitable in many of the 29 cities it operated in (17). During the same time, Lyft Line was serving  
23 about 30% of all Lyft rides and the proportion was over 50% in San Francisco and New York. Lyft  
24 re-branded Lyft Line to Lyft Shared in June 2018 (18).

25 Uber and Lyft were the first large companies to offer ride-splitting in the US. Looking  
26 to expand their pooling business, Uber launched Uber *ExpressPool* in February 2018 (19) asking  
27 passengers to walk a short distance in exchange for larger discounts. Lyft announced Lyft *Shared*  
28 *Saver*, a service similar to Uber ExpressPool, on February 20, 2019 (20). To match passengers  
29 along routes with high demand, Lyft introduced a (now defunct) shuttle option in 2017 which plied  
30 on fixed routes during commute hours and charged a fixed fare (21). Uber announced a similar  
31 service, Uber *Shuttle*, in May 2024, (22, 23).

32 All ride-splitting services were suspended due to the COVID19 pandemic. UberPool, Uber  
33 ExpressPool, LyftLine, and other services were shutdown in March 2020. Uber brought back its  
34 ride-splitting option in November 2021, in Miami, with a new name: UberX Share (24). Lyft  
35 brought back Lyft Shared in July 2021 for Chicago, Philadelphia and Denver (25) and expanded it  
36 to Miami, Atlanta, Las Vegas, San Francisco, San Jose, Los Angeles, Nashville, Washington D.C.,  
37 Boston, Portland, and San Diego., in May 2022 (26). Lyft shuttered their Lyft Shared in March  
38 2023 (27). Uber still offers UberX Share.

39 Many apps came out during these years trying to compete with Uber and Lyft, most of  
40 which have since shut down or pivoted to other business models. A New York Times article (28)  
41 sums them up in this paragraph: "[the app] Gett came out against surge pricing ... Curb lets riders  
42 hail taxis either by hand or via its app, and then pay for them with the app. Lyft is perceived as a  
43 less corporate option ... And Juno's approach is to promise drivers a supportive corporate culture  
44 and a larger cut of its business." Via used to offer ride-splitting in NYC in 2019, but now Via's

**TABLE 1:** Timeline of ride-splitting in the United States.

|                                |                                                                                     |
|--------------------------------|-------------------------------------------------------------------------------------|
| <b>June 2014</b> .....         | Hitch starts pairing up riders with similar origins and destinations.               |
| <b>August 5, 2014</b> .....    | Uber launches UberPool as a test.                                                   |
| <b>August 6, 2014</b> .....    | Lyft launches Lyft Line to all customers in San Francisco, CA.                      |
| <b>February 2018</b> .....     | UberPool offered in 36 cities worldwide, 16 of them in the US.                      |
| <b>February 22, 2018</b> ..... | Uber ExpressPool launched in 8 cities in the US.                                    |
| <b>June 2018</b> .....         | Lyft Line re-branded as Lyft Shared.                                                |
| <b>February 20, 2019</b> ..... | Lyft launches Lyft Shared Saver.                                                    |
| <b>March 18, 2020</b> .....    | Ridesplitting services suspended due to COVID.                                      |
| <b>July 2021</b> .....         | Lyft brings back its ridesplitting option, Lyft Shared, in Chicago.                 |
| <b>November 2021</b> .....     | Uber brings back UberPool post COVID; rebranded as UberX Share.                     |
| <b>June 20, 2022</b> .....     | UberX Share introduced to New York City, NY.                                        |
| <b>June 2022</b> .....         | UberX Share available in 9 US cities.                                               |
| <b>October 19, 2022</b> .....  | Lyft Shared comes back to NYC.                                                      |
| <b>March 23, 2023</b> .....    | Uber raises price per mile for UberX Share.                                         |
| <b>April 1, 2023</b> .....     | Lyft ceases offering Lyft Shared.                                                   |
| <b>May 18, 2023</b> .....      | Uber brings back prices to previous levels.                                         |
| <b>May 15, 2024</b> .....      | Uber announces its shuttle service, Uber Shuttle.                                   |
| <b>July 2024</b> .....         | UberX Share available in 34 metropolitan regions in the US, and 60 cities globally. |

**TABLE 2:** Regression results for average discount in New York City, 2019

|              | Uber     | Lyft     | Via       | Combined  |
|--------------|----------|----------|-----------|-----------|
| (Intercept)  | 8.184*** | 7.795*** | 11.632*** | 8.422***  |
| week-of-year | -0.036** | -0.003   | -0.015    | -0.044*** |
| Num.Obs.     | 47       | 47       | 47        | 47        |
| R2           | 0.174    | 0.011    | 0.016     | 0.271     |

+ p < 0.1, \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

1 business relies on "working directly with transit agencies, rather than building up a de facto taxi  
 2 service" (29). Today, Uber is the only major ride-hailing company offering ride-splitting services  
 3 in 32 metropolitan regions in the US, and 60 cities globally (30).

#### 4 Data

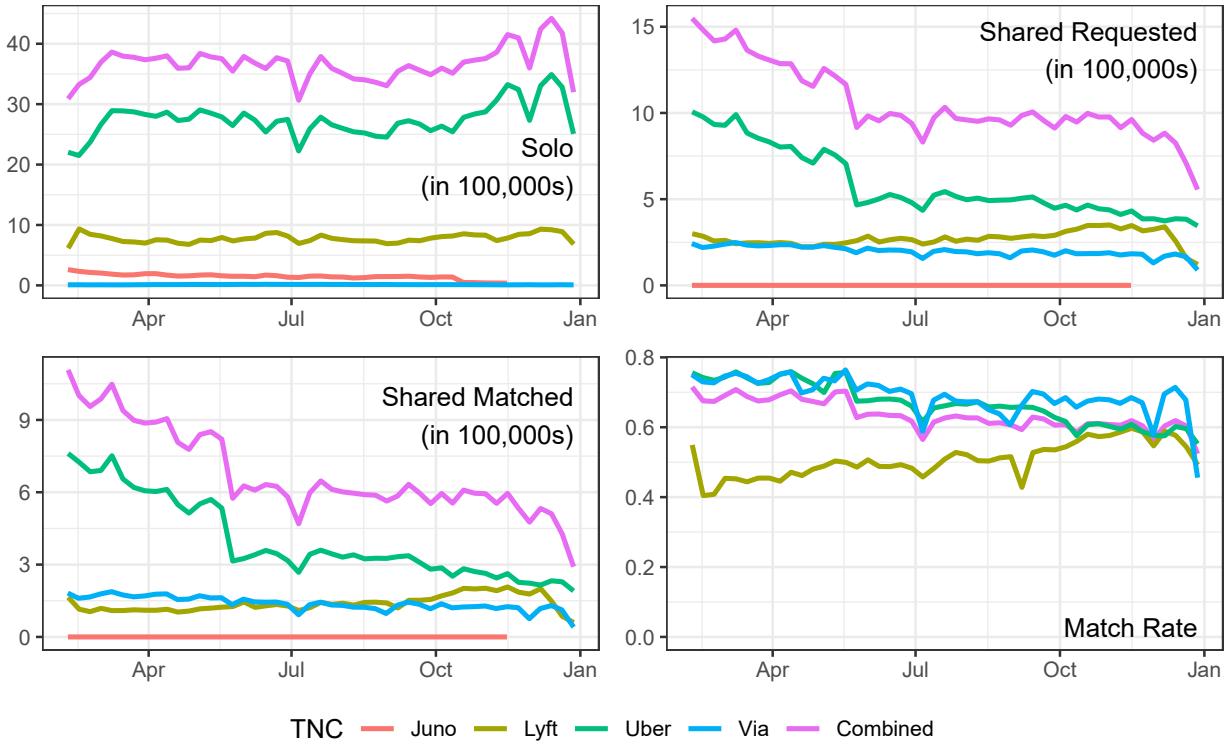
5 We use the TNC data published by the New York City's Taxi and Limousine Commission (TLC)  
 6 from February 2019 to January 2024. Most of the analysis focuses on 2019 and 2023, using them  
 7 as proxies for the pre- and post-COVID years. The TLC dataset starts from February 2019 and  
 8 contains the records of (almost) all TNC trips in New York City (NYC), with their fare; distance;  
 9 duration; origin and destination taxi zones; if the trip was authorized to be shared; if the trip was  
 10 successfully matched with another trip; and the TNC that trip was requested on. NYC had 4 TNCs  
 11 (Juno, Via, Uber, and Lyft) in 2019 and only two remained (Uber and Lyft) in 2023.

12 We calculate weekly aggregates for all of NYC. Statistics calculate by aggregating data  
 13 from all TNCs is labeled as "Combined". For example, the total number of trips in all of NYC  
 14 in Figure 1, calculated by taking the sum of all trips in different TNCs, is labeled as "Combined".  
 15 Trips shorter than 2 minutes or 0.1 miles were filtered out. We calculate the number of *solo*, *shared*  
 16 *requested*, *shared unmatched* and *shared matched* trips. The match rate is ratio of number of shared  
 17 matched with the number of shared requested. We also calculate other aggregate statistics, like av-  
 18 erage fare, trip distance, and trip duration, for each type of trip for each week. All analysis, except  
 19 in Section 5, uses weekly aggregates for all of NYC to get a city-wide big-picture perspective of  
 20 ride-splitting in NYC.

#### 21 PRE-COVID DECLINE

22 It might be tempting to ascribe the downfall of ride-splitting solely to persistent effects from  
 23 COVID. But, ride-splitting was already in decline in 2019. The number of requests for shared  
 24 trips fell from 1.55 million during the week of February 4-10, 2019, to about a million during the  
 25 week of September 9-15, 2019, and then to 0.55 million during the holidays in December 23-29,  
 26 2019 (Figure 2). In contrast the number of requests for solo trips did no change much during 2019.  
 27 3.09 million solo trips during February 4-10, 2019; 3.63 million during September 9-15, 2019; and  
 28 3.2 million during in December 23-29, 2019.

29 The fall in number of shared trips requested is almost entirely due to the fall in demand  
 30 for UberPool, which made up about two-thirds of all shared requested trips in February 2019; the  
 31 demand for Lyft Share and Via is largely constant throughout 2019. The decrease in demand for  
 32 UberPool might be a direct effect of Uber's financial troubles. UberPool offered discounts as high  
 33 as 50% to attract customers, losing up to a million dollars a week in San Francisco alone (31). In

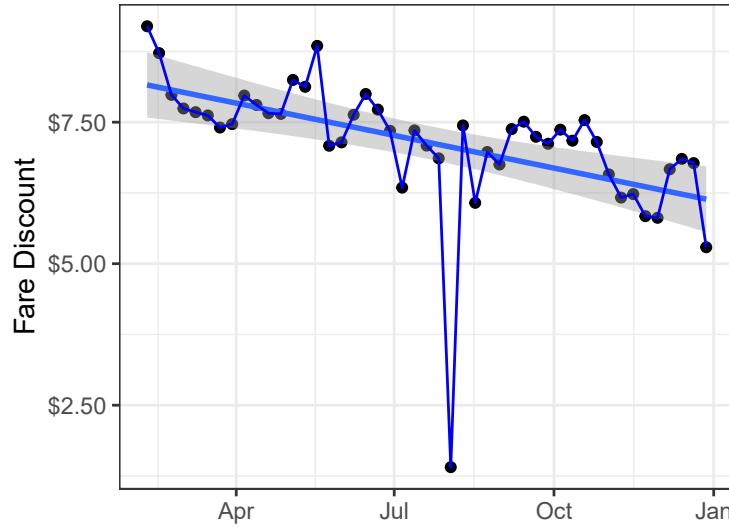


**FIGURE 2:** Weekly aggregates in NYC in 2019

1 2019, Uber was already in the process of reducing the discounts offered to shared rides. Figure 3  
 2 shows that the difference in average fare between a solo trip and a shared requested trip keeps de-  
 3 creases with time<sup>2</sup>. We regress the fare discount over week-of-year for all TNCs; Table 2 shows the  
 4 results. The average discount offered by Lyft and Via did not have any statistically significant vari-  
 5 ation over the course of the year, while the discount offered by Uber decreased. Since Uber made  
 6 up a large proportion of the combined ride-splitting market, the effect is statistically significant  
 7 even when data from all TNCs was combined. Abkarian et al. (33) also notices a decreasing trend  
 8 in the demand for shared rides in Chicago in 2019, suggesting that this withdrawal of subsidies is  
 9 not unique to NYC.

10 The financial burden imposed on the TNCs by their ride-splitting options persisted after  
 11 the COVID19 pandemic subsided. Via exited the ride-splitting market after a short comeback in  
 12 2021. Lyft stared re-introducing its ride-splitting option, Lyft Shared, in June 2021. The service  
 13 was re-introduced in New York City on October 19, 2022 and Lyft exited the ride-splitting market  
 14 on April 1, 2023; next section discusses the effect of this exit. Uber re-branded their ride-splitting  
 15 service as UberX Share. When using UberPool, passengers were guaranteed a discount whenever  
 16 they requested a shared ride, irrespective of the trip being successfully matched with other rider or  
 17 not. With UberX Share "riders will receive an upfront discount if they choose UberX Share, and  
 18 get up to 20% off the total fare, if matched with a co-rider along the way (34)," i.e., the riders get

<sup>2</sup>We call this value *fare discount*. There can be different ways calculating the fare discounts (Liu et al. (32) compares the fares for the same Origin-Destination pairs to get the fare ratio) but we compare the city wide averages to observe trends at the city level.



**FIGURE 3:** Average discount offered to shared rides in NYC in 2019

1 a smaller discount upfront for requesting a shared ride but only get the larger discount if the ride  
 2 is successfully matched with another passenger. Uber was loosing a lot of money before COVID  
 3 due to unmatched trips which probably forced them to try to match as many trips as possible, even  
 4 at the cost of large detours. This is reflected in Uber's high match rate of over 60% in 2019. Post  
 5 COVID, the loss on each unmatched trip would not be too high, meaning Uber did not worry too  
 6 much about their match rate which fell to about 30% in 2023 (Figure 5).

**TABLE 3:** Top 10 OD pairs with highest shared rides requested in 2023

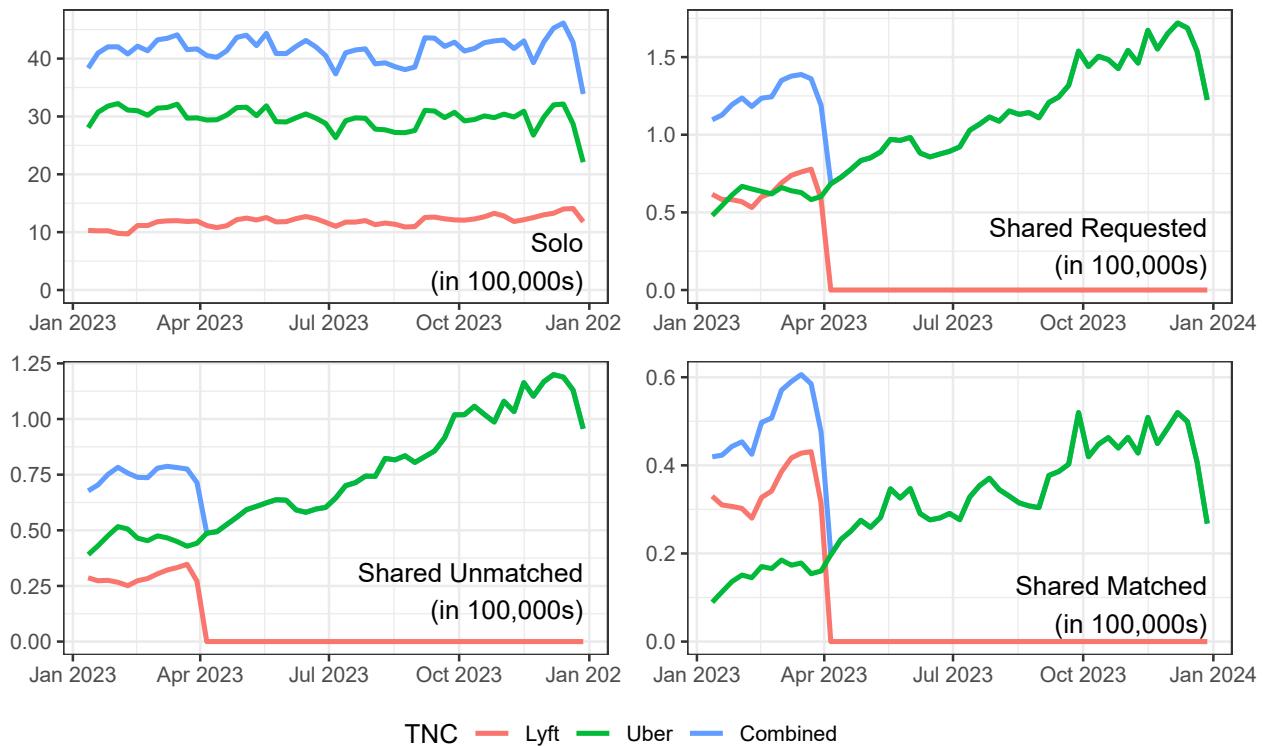
| Origin                    | Destination         | Total Trips | Shared Requested | Shared Matched | Match Rate |
|---------------------------|---------------------|-------------|------------------|----------------|------------|
| South Ozone Park          | JFK Airport         | 243528      | 65879            | 1014           | 0.02       |
| Springfield Gardens North | JFK Airport         | 58462       | 19862            | 411            | 0.02       |
| Baisley Park              | JFK Airport         | 76601       | 16709            | 522            | 0.03       |
| East New York             | East New York       | 487516      | 16321            | 1154           | 0.07       |
| East Elmhurst             | LaGuardia Airport   | 45773       | 14931            | 13             | 0.00       |
| Canarsie                  | Canarsie            | 300470      | 11525            | 593            | 0.05       |
| JFK Airport               | JFK Airport         | 96894       | 11283            | 1136           | 0.10       |
| Crown Heights North       | Crown Heights North | 235864      | 8405             | 873            | 0.10       |
| Jackson Heights           | LaGuardia Airport   | 50664       | 6366             | 130            | 0.02       |
| Springfield Gardens South | JFK Airport         | 36685       | 6226             | 400            | 0.06       |

7 Another issue with ride-splitting is that passengers might strategically request shared trips  
 8 — passengers request a shared trip when they do not expect to get matched which allows them  
 9 to get a discount without suffering additional detours. This means that in certain cases we may  
 10 observe high demand for shared trips but very low match rates. All of the top ten origin-destination  
 11 (OD) pairs, by demand for shared trips, in NYC have a match rate of 10% or less; seven out of  
 12 ten of these OD pairs end at an Airport. The highest number of requests for shared trips is from

1 South Ozone Park to the JFK Airport, over 3 times the the number of requests for OD pair with  
 2 second highest trips. This high demand is probably because South Ozone Park is next to the JFK  
 3 Airport and has many hotels and commercial parking lots. Passengers traveling to the airport might  
 4 be requesting a shared ride knowing that their probability of getting matched with another rider is  
 5 low. Such behavior makes the analysis of these ride-splitting systems even harder. Observing the  
 6 effects of improvements in the matching algorithm would be much harder if people request shared  
 7 trips only when they expect not to get matched. If people are indeed strategically requesting trips, a  
 8 more efficient ride-splitting system with higher match rate might push people away from requesting  
 9 shared rides. This will make it much harder to observe scale economies in ride-splitting.

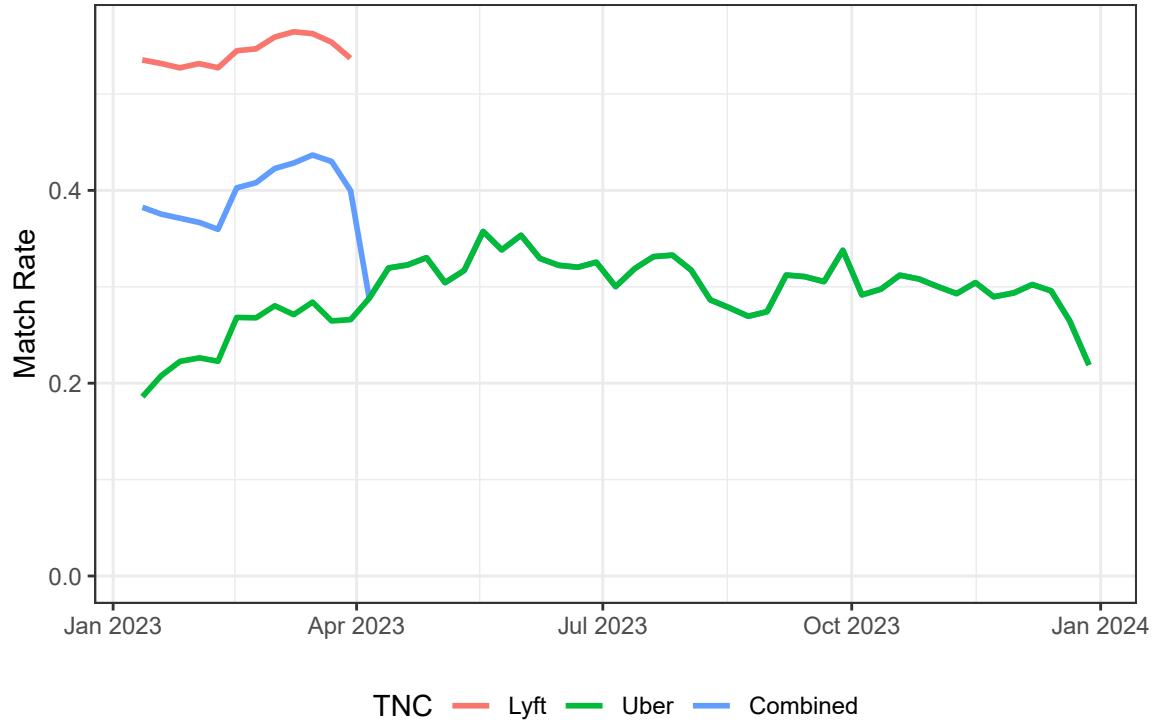
## 10 EFFECT OF LYFT'S EXIT

11 In the presence of scale economies, it is natural to expect that ride-splitting will be more efficient  
 12 if only one TNC offers the service. This is probably why Uber and Lyft invested heavily in ride-  
 13 splitting, as, eventually, the winner would take the whole market. Uber did win the market and  
 14 Lyft stopped offering their ride-splitting option, Lyft Shared, from April 1, 2023.



**FIGURE 4:** Weekly trips in NYC in 2023

15 Davalos (35) article from May 11, 2023 announces the cessation of Lyft Shared. Figure  
 16 4 shows that the number of Lyft Shared rides requested in NYC drop to zero starting April 1,  
 17 2023. The number of shared trips requested, and matched, on Uber kept increasing throughout  
 18 2023, while the number of solo trips was largely constant (Figure 4). The total number of shared  
 19 trips requested in December 2023 was higher than the number of requests in March 2023 (with  
 20 Lyft and Uber combined), indicating that the demand for ride-splitting was increasing and people

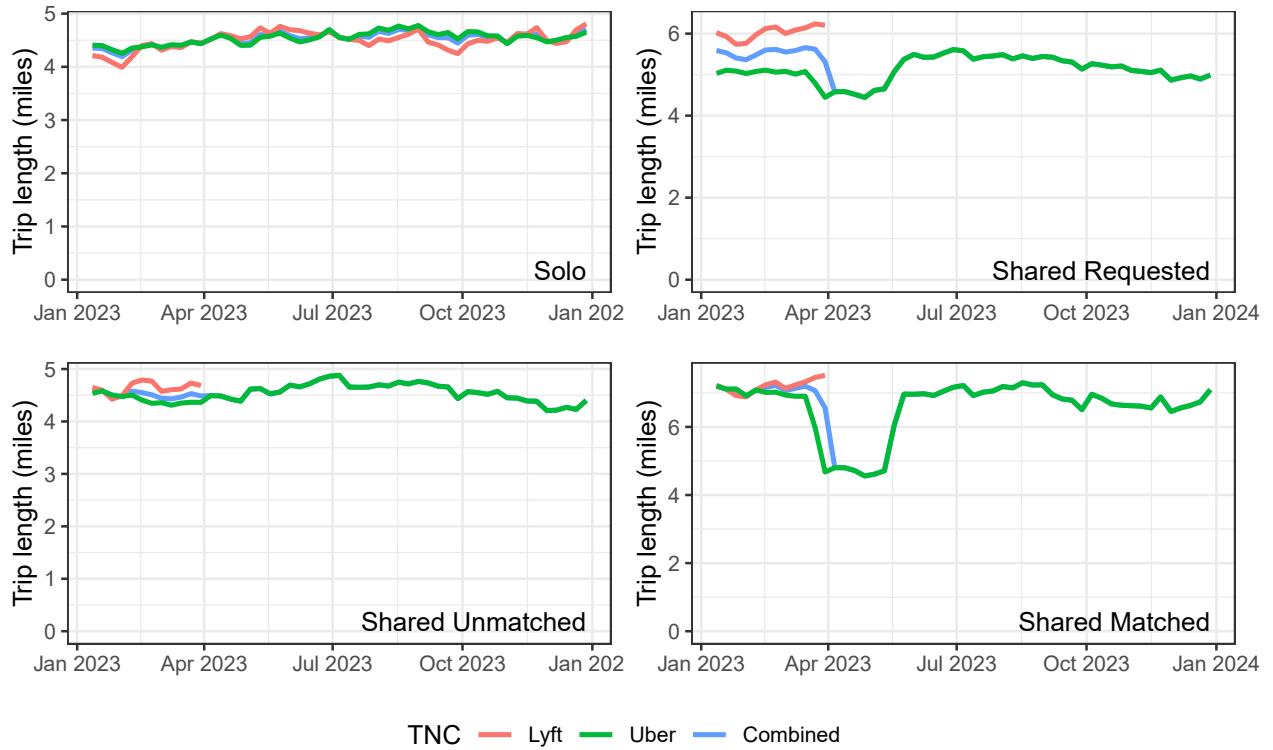


**FIGURE 5:** Match rate in NYC in 2023

1 slowly shifted to UberX Share from Lyft Shared; Lyft Shared was discontinued despite increasing  
 2 demand.

3 The number of shared trips requested on Uber doubled from about 63,000 per week during  
 4 the four weeks between March 5th and April 1st, to about 150,000 per week in October, a 137% in-  
 5 crease. If there are city-wide scale economies in ride-splitting, then the match rate should increase  
 6 with the doubling of demand. But Figure 5 shows that the match rate did not change much after  
 7 Lyft's exit; going from around 27% in March to around 30% in October. This suggests that the  
 8 UberX Share's matching efficiency did not change much despite the demand more than doubling.

9 In contrast to the hypothesis, the overall match rate actually decreased after Lyft's exit  
 10 despite an increase in total demand that was served by only one TNC. Lyft's match rate of 53%  
 11 was much higher than Uber's, suggesting that Lyft was much better at matching trips. A plausible  
 12 explanation for Lyft's higher match rate is the following: Trips requested to be shared on Lyft are  
 13 cheaper than the ones on UberX Share, per mile and per minute; Lyft Shared costs about \$3 a  
 14 mile while UberX Share is closer to \$3.5 on average. Price sensitive passengers, who are the ones  
 15 taking pooled trips, with longer trips might prefer using Lyft Shared over UberX Share. Hence, the  
 16 average trip length of a shared requested trip on Lyft is longer, both in terms of time and distance,  
 17 than the ones requested on Uber (6). Furthermore, the average trip duration and distances for the  
 18 matched trips are comparable for both Uber and Lyft, suggesting that trips that get matched have  
 19 similar characteristics, no matter the TNC. Since, Lyft can attract more passengers with longer  
 20 trips, they have more opportunities to match them, and consequently, have a higher match rate.  
 21 At the risk of being speculative, we might presume that Lyft was keeping their prices lower to  
 22 compete with Uber and was losing a lot more money on pooled trips. This might have been the



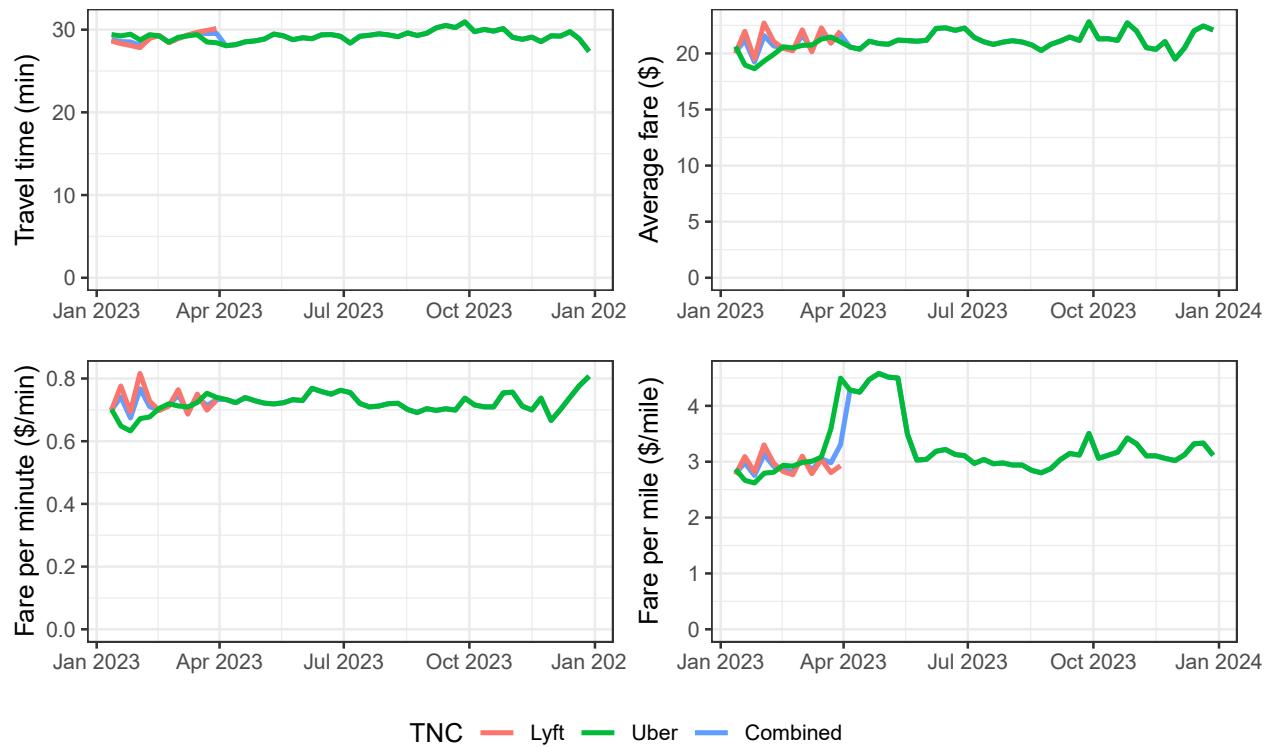
**FIGURE 6:** Average trip lengths in NYC in 2023

1 reason behind their decision to discontinue Lyft Shared. The average match rate, for all trips in  
 2 NYC, declined from about 40% to about 30% after Lyft's exit.

3 We also observe a sharp fall in the average trip length of the trips Uber successfully matched  
 4 between March 23, 2023 and May 18, 2023 in Figure 6. The trip length for shared requested trips  
 5 also has a similar but smaller dip. There is no change in the length of solo or unmatched trips. We  
 6 investigated the average travel time, fare, fare per mile, and fare per minute for all types of trips,  
 7 i.e., solo, shared requested, unmatched and matched. Average travel time, fare, fare per minute do  
 8 not show any sudden changes for any type of trip<sup>3</sup>. However, fare per mile for shared matched  
 9 trips jumps abruptly during the same time period. Figure 7 plots the average travel time, fare, fare  
 10 per minute and fare per mile for matched trips. Uber raised their prices, possibly, in anticipation  
 11 of Lyft leaving the ride-splitting market. A week before Lyft's exit, the average fare per mile for  
 12 successfully matched trips on UberX Share jumped from \$3/mile to \$4.5/mile. Remember that  
 13 one of the key difference between UberPool and UberX Share is that a part of discount in UberX  
 14 Share in contingent on being matched with another rider. What we observe here is, perhaps, Uber  
 15 decreasing that conditional discount, or conversely increasing the fare per mile for the matched  
 16 trips. The fare hike results in a decrease in the average trip length of pooled trips requested probably  
 17 because some riders with long trips, that regularly got matched, stopped using UberX Share as the  
 18 the higher fare was not worth the hassle of sharing their ride with a stranger. However, this price  
 19 change too did not result in a notable difference in the match rate.

20 This indicates that the departure of Lyft did not increase the match rate for UberX Share by

<sup>3</sup>We have omitted these plots to avoid clutter.



**FIGURE 7:** Travel time, average fare, average fare per minute and average fare per mile for matched trips in 2023

1 a lot, even when shared requested trips more than doubled. The presence or absence of competition  
 2 did not affect how efficient the matching process was. However, the absence of competition did  
 3 allow Uber to perhaps abuse their market power and raise their prices for a pricing experiment. The  
 4 pricing change too did not affect the match rate much. A plausible reason why we do not observe  
 5 large changes in match rates could be that the increase in demand for UberX Share, or the price  
 6 change, was not large enough to shift us from a low-sharing to a high-sharing equilibrium. Even  
 7 though the number of requests on UberX Share more than doubled between March and October,  
 8 2023; the number in October 2023 (150,000 per week) is less than half the number of requests  
 9 in October, 2019 (440,000 per week). Maybe the decline in 2019 is a local change in the high-  
 10 sharing equilibrium due to withdrawal of subsidies. And the effects of Lyft's exit are local changes  
 11 in the low-sharing equilibrium. Presence of scale economies *can* give rise to multiple equilibria in  
 12 systems. Hence, the next section tries to empirically identify scale economies in ride-splitting.

### 13 SCALE ECONOMIES

14 Since ride-splitting relies on finding similar trips to match together, it is natural to expect that the  
 15 system will become more efficient as the number of people requesting to share rides increases, i.e.,  
 16 the system is expected to have scale economies. Lehe et al. (8) and Liu et al. (4) find evidence  
 17 indicating the existence of scale economies, but empirically proving its existence is much harder.  
 18 The quality of matching and the number of people requesting to share rides are endogenous. The  
 19 presence of scale economies means that we expect the quality of matching to improve as more  
 20 people request to share rides. However, more people might also request shared rides as the quality  
 21 of matching improves. Hence, a positive correlation between quality and number of requests does  
 22 not necessarily mean the system exhibits scale economies.

23 Assuming the quality of matching ( $\eta$ ) and the number of people requesting to share rides  
 24 ( $D^s$ ) are linearly related, we can model the dependence of  $\eta$  on  $D^s$  as:

$$25 \quad \eta = \gamma_0 + \gamma_1 D^s + \mu, \tag{1}$$

26 and the dependence of the number of people requesting to share rides on the quality of matching  
 27 can be modeled as:

$$28 \quad D^s = \alpha_0 + \alpha_1 \eta + \varepsilon. \tag{2}$$

29 Equations (1) and (2) have a *causal interpretation* and are analogous to simultaneous supply  
 30 and demand relations from Wooldridge (36, Sec 16.3) and Romer (37)<sup>4</sup>. The supply curve (1) says  
 31 that a change in  $D^s$  *causes* a change in  $\eta$ , and, similarly, the demand curve (1) says that a change in  
 32  $\eta$  *causes* a change in  $D^s$ . Claiming that the system has scale economies is equivalent to claiming  
 33 that  $\gamma_1 > 0$ , i.e.,  $\eta$  with  $D^s$ . However, we cannot estimate equations (1) and (2) as they have  
 34 four unknowns  $\gamma_0, \alpha_0, \gamma_1, \alpha_1$ , and only two exogenous variables,  $\eta, D^s$ . The system does not have  
 35 sufficient variation to identify any coefficients in either of the equations. We can write the reduced

---

<sup>4</sup>See Chapter 16 of Wooldridge (36) for a through analysis of systems with simultaneous equations.

1 form of (1) and (2) as

$$2 \quad \gamma_0 + \gamma_1 D^s + \mu = \frac{D^s}{\alpha_1} - \frac{\alpha_0}{\alpha_1} - \frac{\varepsilon}{\alpha_1}$$

$$3 \quad \implies D^s = \frac{\gamma_0 \alpha_1 + \alpha_0}{1 - \alpha_1 \gamma_1} + \frac{\mu \alpha_1 + \varepsilon}{1 - \alpha_1 \gamma_1} \equiv \pi_{D^s 0} + \varepsilon_{D^s}. \quad (3)$$

4 Similarly,

$$5 \quad \eta = \frac{\alpha_0 \gamma_1 + \gamma_0}{1 - \alpha_1 \gamma_1} + \frac{\varepsilon \gamma_1 + \mu}{1 - \alpha_1 \gamma_1} \equiv \pi_{\eta 0} + \varepsilon_{\eta 0}. \quad (4)$$

6 Eqns. (3) and (4) do not have an exogenous variable on the right hand side and hence none  
7 of the coefficients from (1) and (2) can be estimated.

8 To estimate the coefficients in (1), we need some exogenous variable  $z_d$  that affects  $D^s$  but  
9 not  $\eta$ . We can think of  $z_d$  as some variable that introduces an exogenous variation to the demand  
10 curve which ‘shifts’ the demand curve without having any effect on the supply curve, allowing  
11 us to estimate the supply curve. If our goal was estimating the demand curve, we would need a  
12 similar exogenous variation in the supply side of our system. Consider some variable  $z_d$  that only  
13 affects the demand for shared trips but not the quality of matching. Our system of equations then  
14 becomes

$$15 \quad \eta = \gamma_0 + \gamma_1 D^s + \mu, \quad (5)$$

$$16 \quad D^s = \alpha_0 + \alpha_1 \eta + \alpha_2 z_d + \varepsilon. \quad (6)$$

17 Solving for the reduced form, we get

$$18 \quad \eta = \frac{\gamma_0 + \gamma_1 \alpha_0}{1 - \gamma_1 \alpha_1} + \frac{\gamma_1 \alpha_2}{1 - \gamma_1 \alpha_1} z_d + \frac{\mu + \gamma_1 \varepsilon}{1 - \gamma_1 \alpha_1} \quad (7)$$

$$19 \quad \equiv \pi_{\eta 0} + \pi_{\eta z_d} z_d + \varepsilon_{\eta}, \quad (8)$$

20 and

$$21 \quad D^s = \frac{\alpha_0 + \alpha_1 \gamma_0}{1 - \gamma_1 \alpha_1} + \frac{\alpha_2}{1 - \gamma_1 \alpha_1} z_d + \frac{\varepsilon + \alpha_1 \mu}{1 - \gamma_1 \alpha_1} \quad (9)$$

$$22 \quad \equiv \pi_{D^s 0} + \pi_{D^s z_d} z_d + \varepsilon_{D^s}. \quad (10)$$

23 Since  $z_d$  is exogenous to both  $\eta$  and  $D^s$ , we can estimate the coefficients of (8) and (10)  
24 using linear regression. This allows us to then estimate the effect of demand on quality of matching  
25 using

$$26 \quad \gamma_1 = \frac{\pi_{\eta z_d}}{\pi_{D^s z_d}}. \quad (11)$$

27  $\frac{\pi_{\eta z_d}}{\pi_{D^s z_d}}$  is the IV estimate of  $\gamma_1$ , using  $z_d$  as an instrument for  $D^s$ . Hence, we can estimate the causal  
28 effect of the number of addition shared trips requested on the quality of matching.

1 **Quality of matching**

2 Quality of matching is a measure of how well the system is able to match trips. We cannot have a  
 3 direct measure of this unless we know what objective function the TNCs are seeking to optimize,  
 4 which is proprietary information. However, we can safely guess that an improvement in matching  
 5 would result in an increase in match rates and a decrease in detour distances for successfully  
 6 matched riders. We can use either of these measures as a proxy for  $\eta$ . We use the match rate in  
 7 this study for the following reasons.

8 1. While the TNCs might want to limit the detour distances for the sake of the riders,  
 9 they might also opt to set a limit on the detour distance, as a service guarantee, and not  
 10 optimize further (or do so in a limited fashion). This is because the match rate affects  
 11 the bottom line of the TNCs, while detour distance does not. Anyone who requests a  
 12 pooled trip is offered a discounted price *regardless of the trip actually getting matched*.  
 13 This means that the TNCs subsidize the pooled trips that do not get matched. Increasing  
 14 their match rate is essential for the TNCs to make ride-splitting business sustainable.  
 15 TNCs might choose to optimize for the match rate while limiting the detour distance to  
 16 some maximum value. Hence, any increase in demand is likely to improve the match  
 17 rate more than the detour distance.

18 2. The number of trips successfully matched in United States is still low which makes  
 19 it hard to estimate the detour distances. For example, (4) estimates detour distances  
 20 between OD pairs by calculating the average travel distance between the OD pair for  
 21 solo trips and for successfully matched trips, and then taking their difference to get the  
 22 detour for the OD pair. However, they ignore the randomness in trip lengths and only use  
 23 the means. Since there are very few matched trips, the standard deviation for matched  
 24 trip lengths are large, making the detour distances unusable.

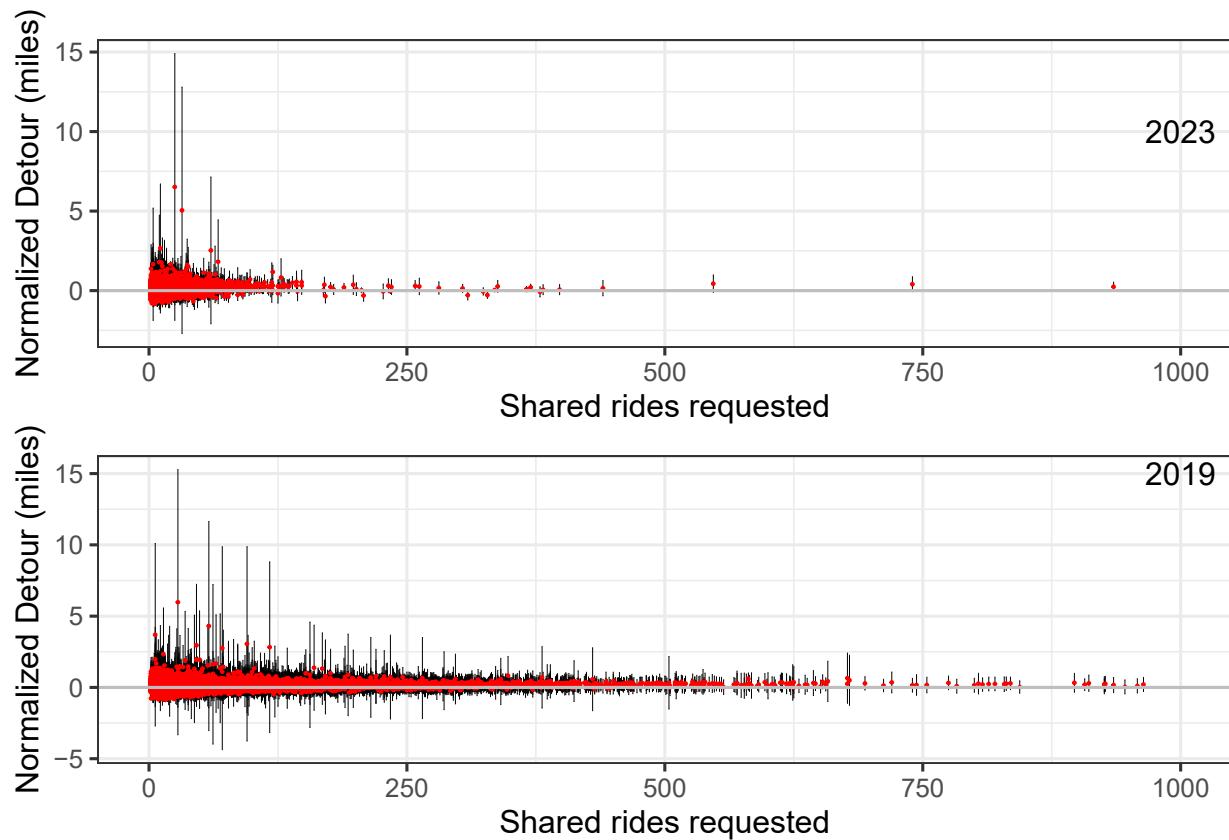
25 Figure 8 plots the normalized detour, the ratio of detour and the distance between an OD  
 26 pair, against the number of shared trips requested. The detour is calculated as the difference be-  
 27 tween the average trip length for solo trips and the average trip length for matched trips. We also  
 28 calculate upper/lower bounds of the detour by adding/subtracting the standard deviation of the trip  
 29 lengths of matched trips to the detour distance. We can observe that the detour distance has a lot  
 30 of noise. The standard deviations are higher when few trips are being requested and matched.

31 **Proposed Instrument**

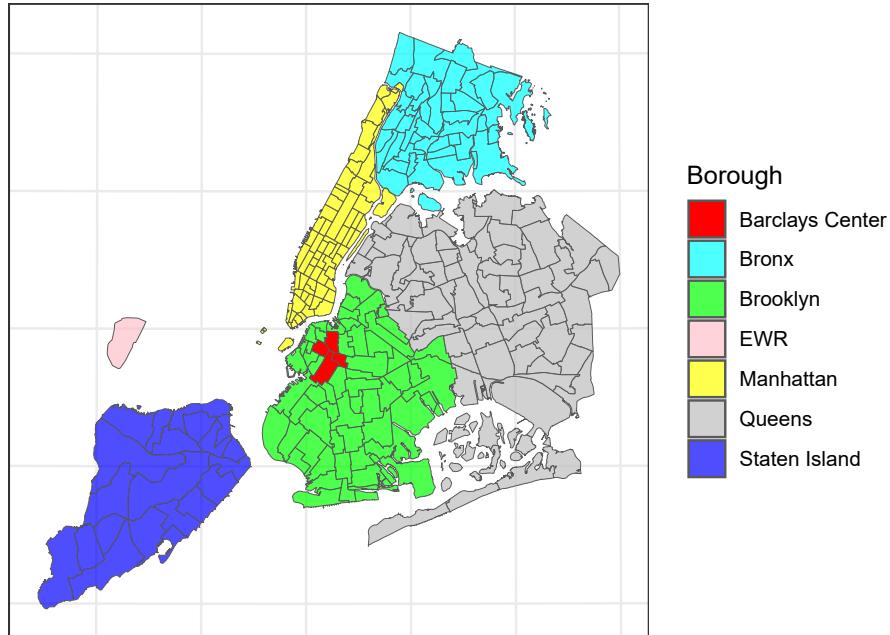
32 We need an instrument that affects the number of people requesting to share rides but does not  
 33 affect the quality of matching. We propose to use stadium events. People naturally gather within  
 34 specific time windows at stadiums for various events such as concerts or professional sports. As  
 35 there are more arriving at and leaving the venue when an event is happening, more rides get re-  
 36 quested during events and proportionally more people request to share rides. This increase in the  
 37 number of requests is likely to be irrespective of the quality of matching. Hence, we can use if an  
 38 event is happening at a stadium as an instrument for the number of people requesting to share rides  
 39 and use the IV estimate to measure the causal effect of the number of people requesting to share  
 40 rides on the match rate.

41 **Data**

42 We focus this analysis on the four Taxi Zones around Barclays center in Brooklyn (Figure 9), as  
 43 the Barclays center is a major events venue in NYC and the date and start time of historical events



**FIGURE 8:** Normalized Detours between OD pairs in NYC



**FIGURE 9:** Taxi zones in New York City as given by the TLC data. Newark Airport (EWR) is not a borough of New York City but is included as such by the TLC.

1 is available from their website <sup>5</sup>. We use the TNC data from NYC TLC for 2019 and 2023. We  
 2 use 2019 and 2023 as proxies for pre- and post-COVID data. We calculate the number of shared  
 3 trips requested, starting or ending around the four taxi zones in Barclays center, and the number of  
 4 trips successfully matched for *each hour* in 2019 and 2023.

5 The data for the events at Barclays center is collected manually from their website. This  
 6 data includes the date and the start time of the event. We do not have any information about when  
 7 these events end. Figure 10 shows that the number of shared trips requested to be dropped off  
 8 at Barclays center increases in the hour before an event starts, and the number of shared trips  
 9 requested to be picked up from Barclays center increases 2-4 hours after an event starts; we say  
 10 that the effect of an event is *active* during these hours.

11 Since there can be a lot of variation in end times based on the type of event happening at  
 12 the venue, we collect data about which of these events are basketball games. Basketball games last  
 13 for a nearly fixed duration of 2.5 hours and we can use this information to estimate the end times  
 14 for all events that were basketball games.

15 We have 8 total datasets. Two each for pickups and dropoffs in 2019 and 2023, and 2 each  
 16 of these four for both instruments, (i) one constructed with all events, and (ii) the other with just  
 17 basketball games. Each observation in a dataset is an hour of the year.

## 18 Regressions

19 We run two sets of regressions on the data for 2019 and 2023. All regressions include a fixed effect  
 20 for hour-of-day. We set  $z_d = 1$  when the effect of an event is active to compare against times when  
 21 events are not active.

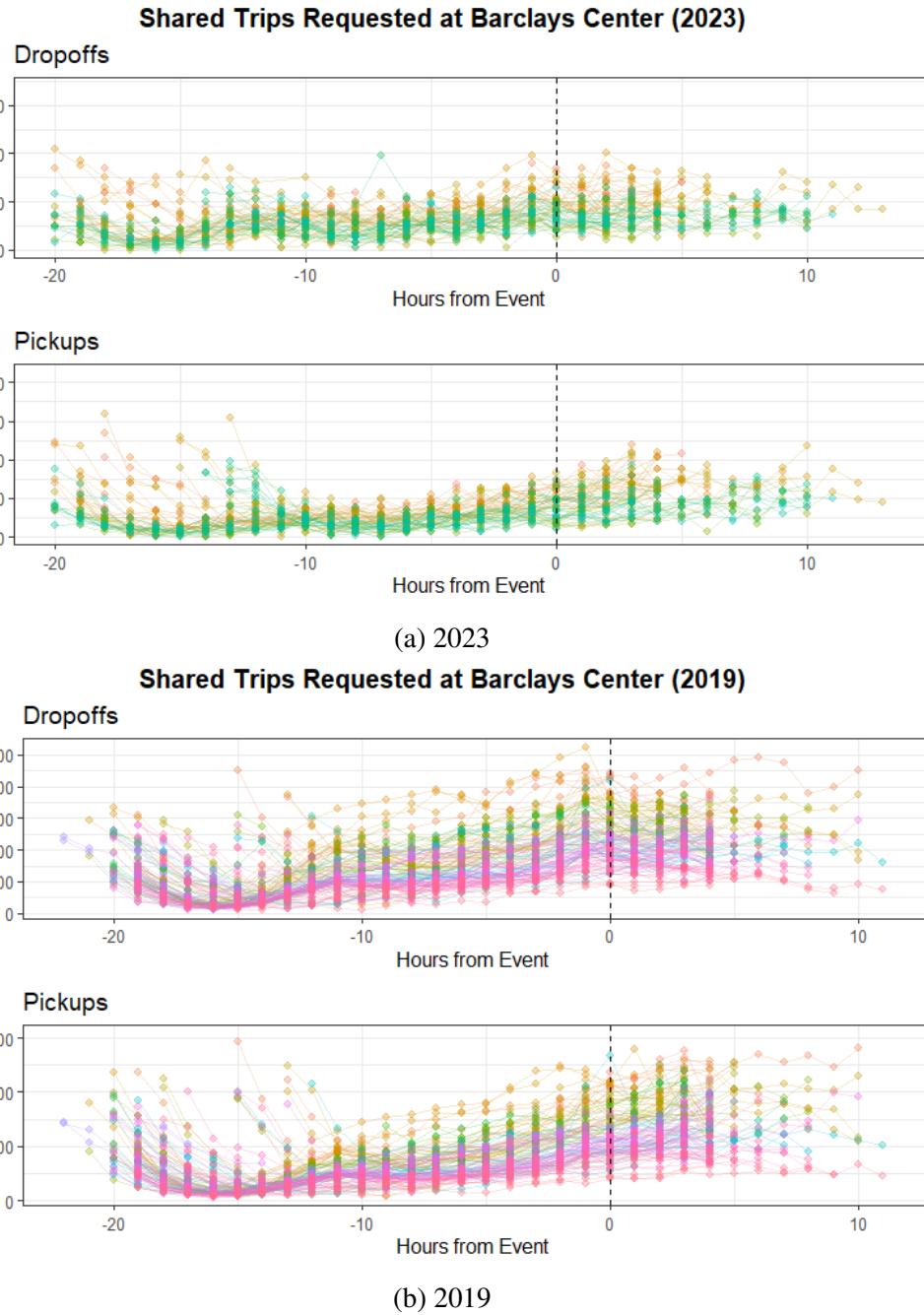
- 22 1. The first set of regressions uses all the events as instruments. For drop-offs, we set the  
 23 instrument  $z_d = 1$  from two hours before the start to the start of an event, and  $z_d = 0$   
 24 otherwise. For pick-ups, we set  $z_d = 1$  for two to four hours after the start of an event,  
 25 and zero otherwise. The wider window accounts for the fact that arrivals and departures  
 26 might be more dispersed for large concerts.
- 27 2. The second set of regressions uses only basketball games as instruments. Days with any  
 28 other events are removed from the dataset. Months with no basketball games at all are  
 29 also removed. We set  $z_d = 1$  for 1 hour before the start of the game for drop-offs. All  
 30 games last for about 2.5 hours, so we set  $z_d = 1$  for pick-ups from 2 to 3 hours after the  
 31 start time of a game.

32 Table 4 shows the results for the first stage regression, as defined in (10). Considering all  
 33 events, an “active” event is a strong instrument for drop-offs in 2023 and 2019, and for pickups  
 34 in 2019; the event does not have a statistically significant effect for pickups in 2023. When we  
 35 look at only basketball games, we notice that the estimates for drop-offs and pickups in 2019 are  
 36 approximately equal to the estimates when that dataset considers all events. However, the statistical  
 37 significance of the estimate for drop-offs in 2023 is slightly reduced; the effect on pickups in  
 38 2023 is still statistically insignificant. The F-statistic is greater than the critical value of 10 for all  
 39 regressions.

40 Table 5 shows the results for the reduced form regressions, i.e., the effect of an “active”  
 41 event on the match rate as given in (8). Active events have a positive effect on match rate. However,  
 42 the effect is statistically insignificant for 2023 if we only consider basketball games. Table 6 shows

---

<sup>5</sup><https://www.barclayscenter.com/events-tickets/event-calendar>



**FIGURE 10:** This figure shows the number of shared trips requested to be picked up and dropped off in the four taxi zones around the Barclays Center. The plots show a small increase in dropoffs before an event starts and an increase in pickups a couple hours after the event ends.

**TABLE 4:** First stage regressions

|                         | Dropoff 2019         | Pickup 2019           | Dropoff 2023      | Pickup 2023       |
|-------------------------|----------------------|-----------------------|-------------------|-------------------|
| <i>All events</i>       |                      |                       |                   |                   |
| active                  | 27.622***<br>(3.558) | 39.255***<br>(4.757)  | 1.053*<br>(0.491) | 0.324<br>(0.659)  |
| Num.Obs.                | 8015                 | 8015                  | 7271              | 7272              |
| R2                      | 0.484                | 0.548                 | 0.281             | 0.445             |
| F                       | 312.032              | 403.535               | 118.117           | 241.831           |
| <i>Basketball games</i> |                      |                       |                   |                   |
| active                  | 28.731**<br>(10.694) | 45.387***<br>(11.857) | 2.241+<br>(1.337) | -0.653<br>(1.414) |
| Num.Obs.                | 1560                 | 1560                  | 1690              | 1690              |
| R2                      | 0.142                | 0.313                 | 0.147             | 0.373             |
| F                       | 19.721               | 54.101                | 22.214            | 76.743            |

+ p < 0.1, \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

**TABLE 5:** Reduced form regressions

|                         | Dropoff 2019        | Pickup 2019         | Dropoff 2023        | Pickup 2023         |
|-------------------------|---------------------|---------------------|---------------------|---------------------|
| <i>All events</i>       |                     |                     |                     |                     |
| active                  | 0.026***<br>(0.005) | 0.028***<br>(0.006) | 0.079***<br>(0.015) | 0.063***<br>(0.018) |
| Num.Obs.                | 8015                | 8015                | 7239                | 7242                |
| R2                      | 0.194               | 0.389               | 0.085               | 0.139               |
| F                       | 80.082              | 212.070             | 27.753              | 48.606              |
| <i>Basketball games</i> |                     |                     |                     |                     |
| active                  | 0.021*<br>(0.009)   | 0.029**<br>(0.010)  | 0.019<br>(0.031)    | 0.008<br>(0.029)    |
| Num.Obs.                | 1560                | 1560                | 1690                | 1690                |
| R2                      | 0.105               | 0.347               | 0.144               | 0.199               |
| F                       | 14.018              | 63.277              | 21.600              | 31.993              |

+ p < 0.1, \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

**TABLE 6:** IV regressions

|                         | Dropoff 2019        | Pickup 2019         | Dropoff 2023      | Pickup 2023       |
|-------------------------|---------------------|---------------------|-------------------|-------------------|
| <i>All events</i>       |                     |                     |                   |                   |
| shared requested        | 0.001***<br>(0.000) | 0.001***<br>(0.000) | 0.075*<br>(0.035) | 0.194<br>(0.387)  |
| Num.Obs.                | 8015                | 8015                | 7239              | 7242              |
| Wu-Hausman (p-val)      | 0.21                | 0.79                | 9.9e-7            | 4.61e-3           |
| <i>Basketball games</i> |                     |                     |                   |                   |
| shared requested        | 0.001**<br>(0.000)  | 0.001***<br>(0.000) | 0.009<br>(0.014)  | -0.012<br>(0.055) |
| Num.Obs.                | 1560                | 1560                | 1690              | 1690              |
| Wu-Hausman (p-val)      | 0.54                | 0.57                | 0.69              | 0.73              |

+ p < 0.1, \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

1 the results for the *Instrumental variable* (IV) regression conducted using the ivreg package in R<sup>6</sup>.  
 2 The estimated coefficient for the IV regression can also be obtained by dividing the estimate from  
 3 the reduced form regression by the estimate of the first stage regression.

4 The IV estimate is positive, meaning the an increase in the number of shared trips requested  
 5 *causes* the match rate to increase, whenever the relationship is statistically significant. We also  
 6 note that the magnitude of scale economies have changed significantly between 2019 and 2023.  
 7 The most probable reason could be that the the relationship between demand for shared trips and  
 8 quality of matching is not linear. We assume a linear relationship  $D^s$  and  $\eta$  because the goal of this  
 9 study was to causally establish the existence of scale economies; a robustness check with log-log  
 10 regression also confirmed the presence of scale economies.

11 The IV estimate for some regressions are not statistically significant because binary  $z_d$  does  
 12 not introduce enough variation in  $D^s$  to estimate the supply curve. As a robustness check, we run  
 13 another regression on the pickup data from 2023 where we use the number of people entering  
 14 the Atlantic-Avenue Barclays Center subway station<sup>7</sup> each hour as the instrument; this regression  
 15 also includes fixed effect for hour-of-day. The IV estimate for  $\gamma_1$  in (1) is 0.0215 (p-value 0.002)  
 16 showing that the system exhibits scale economies. The regression also rejects the Null hypothesis  
 17 for the Weak Instrument and Wu-Hausman test.

18 This analysis shows that ride-splitting does exhibit scale economies. However, the signifi-  
 19 cance of the estimate also depends on the choice of the instrument. Future work can explore how  
 20 different sources of exogenous variation affect the estimation; ideally all instruments should result  
 21 in similar estimates.

<sup>6</sup><https://cran.r-project.org/web/packages/ivreg/vignettes/ivreg.html>

<sup>7</sup>Available since February 2022 at <https://data.ny.gov/Transportation/MTA-Subway-Hourly-Ridership-Beginning-February-2022/wujg-7c2s/data>

**1 CONCLUSION**

2 Ride-splitting has the potential to make urban transportation more sustainable while reducing travel  
3 costs for passengers. Despite heavy investments by TNCs and tax incentives by governments, only  
4 a small proportion of ride-hailing trips request to share their rides. An even smaller number of trips  
5 actually get matched.

6 In this paper we provide plausible explanations for different challenges to ride-splitting,  
7 pre- and post-COVID. Possibly, the pre-COVID decline in ride-splitting was largely a result of  
8 Uber's withdrawal of subsidies. We also hypothesize that ride-splitting's lack of rebound post-  
9 COVID can possibly be a result of the system being stuck in a low-sharing equilibrium. The  
10 presence of scale economies enables the possibility of multiple equilibria. Finally, we use an  
11 Instrumental Variables based approach to empirically establish the existence of scale economies  
12 using different regressions.

**13 ACKNOWLEDGMENTS**

14 This research was supported by National Science Foundation Grants CMMI-2052337, CMMI-  
15 2052512 and CMMI 23-39943 CAR.

1 **REFERENCES**

2 1. Shaheen, S., A. Cohen, I. Zohdy, and United States. Federal Highway Administration,  
3 *Shared Mobility: Current Practices and Guiding Principles*, 2016.

4 2. Shaheen, S. and A. Cohen, Shared Ride Services in North America: Definitions, Impacts,  
5 and the Future of Pooling. *Transport Reviews*, Vol. 39, No. 4, 2019, pp. 427–442.

6 3. Manjoo, F., Car-Pooling Helps Uber Go the Extra Mile. *The New York Times*, 2016.

7 4. Liu, H., S. Devunuri, L. Lehe, and V. V. Gayah, Scale effects in ridesplitting: A case study  
8 of the City of Chicago. *Transportation Research Part A: Policy and Practice*, Vol. 173,  
9 2023, p. 103690.

10 5. Lehe, L., S. Devunuri, J. Rondan, and A. Pandey, Taxation of Ride-hailing. *FHWA-ICT-  
11 21-029*, 2021.

12 6. Kidd, C., *Matchmaking in Lyft Line*, 2018, accessed: 2024-07-28.

13 7. Castillo, J. C. and S. Mathur, Matching and Network Effects in Ride-Hailing. *AEA Papers  
14 and Proceedings*, Vol. 113, 2023, pp. 244–247.

15 8. Lehe, L., V. V. Gayah, and A. Pandey, Increasing returns to scale in carpool matching:  
16 Evidence from Scoop. *Transport findings*, 2021.

17 9. Ke, J., Z. Zheng, H. Yang, and J. Ye, Data-driven analysis on matching probability, routing  
18 distance and detour distance in ride-pooling services. *Transportation Research Part C:  
19 Emerging Technologies*, Vol. 124, 2021, p. 102922.

20 10. Kitamura, R., S. Nakayama, and T. Yamamoto, Self-Reinforcing Motorization: Can Travel  
21 Demand Management Take Us out of the Social Trap? *Transport Policy*, Vol. 6, No. 3,  
22 1999, pp. 135–145.

23 11. Ying, J. Q. and H. Yang, Sensitivity Analysis of Stochastic User Equilibrium Flows in a  
24 Bi-Modal Network with Application to Optimal Pricing. *Transportation Research Part B:  
25 Methodological*, Vol. 39, No. 9, 2005, pp. 769–795.

26 12. David, Q. and R. Foucart, Modal Choice and Optimal Congestion. *Regional Science and  
27 Urban Economics*, Vol. 48, 2014, pp. 12–20.

28 13. Lawler, R., New Ride-Sharing App Hitch Tries To Pair You With A Driver... And Other  
29 Passengers | TechCrunch, 2014.

30 14. Russell, K., UberPool Lets You Split Uber Fares With Other Passengers Along The Same  
31 Route. *TechCrunch*, 2014.

32 15. Lawler, R., *With Lyft Line, Passengers Can Split Fares For Shared Rides*, 2014.

33 16. Lawler, R., *Lyft Acquires Shared Ride Startup Hitch To Bolster Its Lyft Line Service*, 2014.

34 17. Manjoo, F., Car-Pooling Helps Uber Go the Extra Mile. *The New York Times*, 2016.

35 18. Marshall, A., Lyft Redesigns Its App—and Strategy—for the Age of Sharing. *Wired*, 2018.

36 19. Stock, b., *Uber Newsroom*, 2018.

37 20. Westhagen, A., *Introducing Shared Saver, Our Most Affordable Ride* | Lyft, 2019.

38 21. Hawkins, A. J., Lyft Shuttle Mimics Mass Transit with Fixed Routes and Fares. *The Verge*,  
39 2017.

40 22. Duffy, C., Uber Will Soon Let Riders Book a Shuttle to the Airport, 2024.

41 23. Uber, *Uber Shuttle FAQ* | *Riders* | *Uber Help*, 2024.

42 24. Peters, J., Uber Reintroduces Shared Rides with a New Name. *The Verge*, 2021.

43 25. Bellon, T., Lyft to Resume Shared Rides in U.S. for First Time since Pandemic | Reuters,  
44 2021.

45 26. Lyft, *Shared Rides Return to More Cities*, 2022.

- 1 27. Bellan, R., Lyft Might Drop Shared Rides, Stay Focused on Basics under New CEO.  
2 *TechCrunch*, 2023.
- 3 28. Martin, C., Granting Shares for Fares: An Uber Rival's Play for Drivers. *The New York*  
4 *Times*, 2016.
- 5 29. Via, *Public Mobility Solutions*. | *Via Transportation*, 2024.
- 6 30. Uber, *UberX Share | Share Your Ride to Save*, 2024.
- 7 31. Dotan, T., Uber's Cheap and Popular Pool Ridesharing Service Lost the Company as Much  
8 as \$1 Million a Week in San Francisco Alone. *Business Insider*, 2021.
- 9 32. Liu, H., S. Devunuri, L. Lehe, and V. V. Gayah, Scale Effects in Ridesplitting: A Case  
10 Study of the City of Chicago. *Transportation Research Part A: Policy and Practice*, Vol.  
11 173, 2023, p. 103690.
- 12 33. Abkarian, H., S. Hegde, and H. S. Mahmassani, Does Taxing TNC Trips Discourage Solo  
13 Riders and Increase the Demand for Ride Pooling? A Case Study of Chicago Using Inter-  
14 rupted Time Series and Bayesian Hierarchical Modeling. *Transportation Research Record*,  
15 Vol. 2677, No. 1, 2023, pp. 212–223.
- 16 34. Macdonald, A., *Uber Newsroom*, 2022.
- 17 35. Davalos, J., You'll No Longer Be Able to Take a Carpool Ride with Lyft to Save Money.  
18 *Fortune*, 2023.
- 19 36. Wooldridge, J. M., *Introductory Econometrics: A Modern Approach*, 2012.
- 20 37. Romer, P., *The Trouble With Macroeconomics*, 2016.