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ABSTRACT

Ride-splitting is a service offered by Transportation Network Companies that pairs riders who
choose to share a portion of their ride-hailing trip with a stranger, in exchange for a discounted fare.
This paper studies the decline of ride-splitting using data from New York City. We document the
events concerning ride-splitting and present plausible explanations for them. The decline of ride-
splitting pre-COVID can possibly be explained by Uber’s withdrawal of subsidies for UberPool;
no other TNC reduces their discounts during this period. Post-COVID, we provide a plausible
reason for why service has settled at a much lower level and analyze the effects of the same. We
hypothesize that ride-splitting is stuck at a lower-sharing equilibrium. There are multiple equilibria
because ride-splitting exhibits strong scale economies. Finally, we establish the presence of scale
economies in ride-splitting using an Instrumental Variables approach.

Keywords: ride-pooling, ride-splitting, scale economies, instrumental variables, ridesharing
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INTRODUCTION

Ride-splitting, also called ride-pooling or shared ride-hailing', is a service where passengers can
choose to share their ridehailing trips with strangers to make their trips more affordable (2). Passen-
gers use an app to input their origin, destination and willingness to share a ride and the Transporta-
tion Network Company (TNC), like Uber or Lyft, tries to match them with other riders traveling
along the same route; the TNC may or may not successfully match a ride-splitting trip. Ride-
splitting has garnered a lot of interest since UberPool and Lyft Line were launched in August
2014. UberPool served over 100 million trips by 2016 and accounted for more than half of Uber’s
trips in many cities; Lyft Line accounted for 30% of all Lyft rides with the proportion being closer
to 50% in cities like New York and San Francisco (3). However, the share of ride-splitting trips has
declined to single digit percentages today. Figure 1 shows the number of ridehailing trips requested
in New York City from February 2019 to January 2024. The share of ride-splitting trips decreases
from about 30% to 3% during this period. In this paper, we chronicle the significant events from
2019 to 2023 that have impacted ride-splitting. Additionally, we propose a plausible hypothesis
for its failure to rebound post-COVID.
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FIGURE 1: Number of trips taken each week in NYC from February 2019 to January 2024

In this paper we classify different types of trips as follows: Trips that do not want to be
pooled are called solo trips. Trips that request ride-splitting are called shared requested trips.
Among those, the trips that successfully get matched with another passenger are called shared
matched and ones that do not get matched are called shared unmatched.

I'See Shaheen et al. (1) for taxonomy.
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A rider almost certainly suffers detours, to pick-up and drop-off other passengers, if their
trip is successfully matched. TNCs offer discounts on ride-splitting to make up these for these
detours and attract passengers (4), and at least a part of these discounts is not contingent on being
matched. There are more passengers in the car in a shared matched trip and the fare for each
passenger may be even lower. Ride-splitting puts more people in the same vehicle which can lower
the number of vehicles required to serve all trips (1). State and local governments recognize that
ride-splitting might lead to less congestion, fuel use and need for parking. It is a more sustainable
option compared to traveling alone. To promote ride-splitting, cities offer discounts to passengers
on taxes and surcharges levied on all ride-hailing trips. Chicago, IL; New York City, NY; San
Francisco, CA; and New Jersey, Georgia, and some other cities and states levy a lower tax on
shared ride-hailing trips than on solo ones (5).

Another reason to subsidize ride-splitting is that many professionals (as well as academics)
believe that ride-splitting will become more efficient at scale. i.e., ride-splitting becomes more effi-
cient as more people request a shared ride-hailing trip. As more people request to share their rides,
the TNC will have a large pool to match people from which should allow them to (i) successfully
match more trips Kidd (6), and (i1) find better matches with smaller detours. At scale, ride-splitting
is expected to have small detours and low travel costs for passengers; higher occupancy and smaller
fleet sizes for TNCs; and lower congestion, smaller emissions, and lower demand for parking for
cities.

Castillo and Mathur (7) show that matching between drivers and riders gets more effi-
cient as more drivers and riders participate in the system. Lehe et al. (8) show evidence of scale
economies in carpooling using data from SCOOP (a carpooling platform) and Ke et al. (9) uses
simulations to show that the match rates increase and detours decrease when more people demand
pooled rides. Using Chicago’s 2019 TNC data, Liu et al. (4) show that detours decrease and match
rates increase as more people authorize to share rides with others. However, establishing scale
economies in matching is not as simple because of the endogeneity between demand and effi-
ciency measures. Empirical evidence (4, 8) shows that detours decrease as more people request to
share rides; but it does not establish if it happens because detours get shorter with more requests, or
do people request more when detours are shorter? Probably both are true simultaneously. Since the
efficiency and demand for ride-splitting are endogenous, ordinary least square regressions cannot
estimate the causal effect of number of requests on the efficiency of the system. This paper utilizes
an instrumental variables based approach to show that ride-splitting exhibits scale economies.

We hypothesize that the presence of scale economies is a plausible explanation for ride-
splitting’s failure to rebound post-COVID. Transportation systems with scale economies can have
multiple equilibria (10, 11) which may help explain why different cities can sometimes end up
in different equilibria (12). We propose the following explanation: Ride-splitting was already in
decline in 2019 (Figure 1) but the system was at a high-sharing equilibrium. The proportion of
ride-splitting was high (between 25-30%) and more trips were getting matched (over 60%). The
COVID19 pandemic forced TNCs to shut-down all ride-splitting offerings. Demand recovered
slowly after COVID subsided and agencies resumed their ride-splitting options. But low initial
demand meant that matching was not very efficient, passengers had to face with higher detours,
and lower discounts; and TNCs lost more money due to low match rates. TNCs responded to
loses by shutting down ride-splitting entirely or by greatly reducing the discounts offered to shared
trips, leaving us with a low-sharing equilibrium. To be precise about our claim, the existence of
multiple equilibria with vastly different demand and match rates does not necessarily mean that
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the system exhibits scale economies; but scale economies can be a reason for the existence of
multiple equilibria. We can possibly shift from the low-sharing to the high-sharing equilibrium if
ride-splitting is highly subsidized for a long period, but it seems unlike that TNCs will choose to
do that.

The next subsection presents a timeline of ride-splitting in the United States. We then
describe the data used for this study. Next, we discuss the reasons behind the decline of ride-
splitting in 2019, and TNCs response to the same issues post COVID. The following Section
discusses the effects of Lyft’s exit from ride-splitting market in detail. The next section established
the existence of scale economies ride-splitting using an Instrumental Variables based analysis.
Final section 6 concludes.

Timeline

Table 1 gives an overview of the key events concerning ride-splitting in the United States starting
June 2014, when Hitch became the first company to offer ride-splitting service in San Francisco,
CA (13). Just a few months later, Uber announced it’s ride-splitting option, UberPool, on August
5, 2014 (14). The service was initially launched as a beta test available to a few customers and was
expanded to a public beta in the San Francisco Bay Area on August 15, 2014. Following Uber’s
announcement, Lyft launched Lyft Line to all customers in San Francisco on August 6, 2014 (15),
and acquired other companies like Hitch and Rover to jump start their ride-splitting efforts (16);
by March 2015, Lyft Line accounted for majority of Lyft’s business in San Francisco. UberPool
had served more than 100 million trips by March 2016 and more than half the trips taken in an
Uber in many cities requested UberPool(17). Uber’s CEO at the time, claimed that UberPool was
profitable in many of the 29 cities it operated in (17). During the same time, Lyft Line was serving
about 30% of all Lyft rides and the proportion was over 50% in San Francisco and New York. Lyft
re-branded Lyft Line to Lyft Shared in June 2018 (18).

Uber and Lyft were the first large companies to offer ride-splitting in the US. Looking
to expand their pooling business, Uber launched Uber ExpressPool in February 2018 (19) asking
passengers to walk a short distance in exchange for larger discounts. Lyft announced Lyft Shared
Saver, a service similar to Uber ExpressPool, on February 20, 2019 (20). To match passengers
along routes with high demand, Lyft introduced a (now defunct) shuttle option in 2017 which plied
on fixed routes during commute hours and charged a fixed fare (21). Uber announced a similar
service, Uber Shuttle, in May 2024, (22, 23).

All ride-splitting services were suspended due to the COVID19 pandemic. UberPool, Uber
ExpressPool, LyftLine, and other services were shutdown in March 2020. Uber brought back its
ride-splitting option in November 2021, in Miami, with a new name: UberX Share (24). Lyft
brought back Lyft Shared in July 2021 for Chicago, Philadelphia and Denver (25) and expanded it
to Miami, Atlanta, Las Vegas, San Francisco, San Jose, Los Angeles, Nashville, Washington D.C.,
Boston, Portland, and San Diego., in May 2022 (26). Lyft shuttered their Lyft Shared in March
2023 (27). Uber still offers UberX Share.

Many apps came out during these years trying to compete with Uber and Lyft, most of
which have since shut down or pivoted to other business models. A New York Times article (28)
sums them up in this paragraph: "[the app] Gett came out against surge pricing ... Curb lets riders
hail taxis either by hand or via its app, and then pay for them with the app. Lyft is perceived as a
less corporate option ... And Juno’s approach is to promise drivers a supportive corporate culture
and a larger cut of its business." Via used to offer ride-splitting in NYC in 2019, but now Via’s
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TABLE 1: Timeline of ride-splitting in the United States.

June 2014
August 5, 2014

August 6, 2014

February 2018

February 22, 2018

June 2018
February 20, 2019

March 18, 2020

July 2021

November 2021

June 20, 2022

June 2022
October 19, 2022
March 23, 2023
April 1, 2023
May 18, 2023

May 15, 2024

July 2024

‘@

‘@

‘@

@

‘@

‘@

‘@

‘@

Hitch starts pairing up riders with similar
origins and destimations.

Uber launches UberPool as a best test.

Lyft launches Lyft Line to all customers in
San Francisco, CA.

UberPool offered in 36 cities worldwide, 16
of them in the US.

Uber ExpressPool launched in 8 cities in

the US.
Lyft Line re-branded as Lyft Shared.

Lyft launches Lyft Shared Saver.

Ridesplitting services suspended due to
COVID.

Lyft brings back its ridesplitting option,
Lyft Shared, in Chicago.

Uber brings back UberPool post COVID;
rebranded as UberX Share.

UberX Share introduced to New York City,
NY.

UberX Share available in 9 US cities.
Lyft Shared comes back to NYC.

Uber raises price per mile for UberX Share.
Lyft ceases offering Lyft Shared.
Uber brings back prices to previous levels.

Uber announces its shuttle service, Uber
Shuttle.

UberX Share available in 34 metropolitan
regions in the US, and 60 cities globally.
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TABLE 2: Regression results for average discount in New York City, 2019

Uber Lyft Via Combined
(Intercept) 8.184##x 77795 Ak 1].632%H*  8.422%H*
week-of-year -0.036%*  -0.003 -0.015 -0.044 %
Num.Obs. 47 47 47 47
R2 0.174 0.011 0.016 0.271

+p < 0.1, *p <0.05, ** p < 0.01, *** p < 0.001

business relies on "working directly with transit agencies, rather than building up a de facto taxi
service" (29). Today, Uber is the only major ride-hailing company offering ride-splitting services
in 32 metropolitan regions in the US, and 60 cities globally (30).

Data

We use the TNC data published by the New York City’s Taxi and Limousine Commission (TLC)
from February 2019 to January 2024. Most of the analysis focuses on 2019 and 2023, using them
as proxies for the pre- and post-COVID years. The TLC dataset starts from February 2019 and
contains the records of (almost) all TNC trips in New York City (NYC), with their fare; distance;
duration; origin and destination taxi zones; if the trip was authorized to be shared; if the trip was
successfully matched with another trip; and the TNC that trip was requested on. NYC had 4 TNCs
(Juno, Via, Uber, and Lyft) in 2019 and only two remained (Uber and Lyft) in 2023.

We calculate weekly aggregates for all of NYC. Statistics calculate by aggregating data
from all TNCs is labeled as "Combined". For example, the total number of trips in all of NYC
in Figure 1, calculated by taking the sum of all trips in different TNCs, is labeled as "Combined".
Trips shorter than 2 minutes or 0.1 miles were filtered out. We calculate the number of solo, shared
requested, shared unmatched and shared matched trips. The match rate is ratio of number of shared
matched with the number of shared requested. We also calculate other aggregate statistics, like av-
erage fare, trip distance, and trip duration, for each type of trip for each week. All analysis, except
in Section 5, uses weekly aggregates for all of NYC to get a city-wide big-picture perspective of
ride-splitting in NYC.

PRE-COVID DECLINE

It might be tempting to ascribe the downfall of ride-splitting solely to persistent effects from
COVID. But, ride-splitting was already in decline in 2019. The number of requests for shared
trips fell from 1.55 million during the week of February 4-10, 2019, to about a million during the
week of September 9-15, 2019, and then to 0.55 million during the holidays in December 23-29,
2019 (Figure 2). In contrast the number of requests for solo trips did no change much during 2019.
3.09 million solo trips during February 4-10, 2019; 3.63 million during September 9-15, 2019; and
3.2 million during in December 23-29, 2019.

The fall in number of shared trips requested is almost entirely due to the fall in demand
for UberPool, which made up about two-thirds of all shared requested trips in February 2019; the
demand for Lyft Share and Via is largely constant throughout 2019. The decrease in demand for
UberPool might be a direct effect of Uber’s financial troubles. UberPool offered discounts as high
as 50% to attract customers, losing up to a million dollars a week in San Francisco alone (31). In
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FIGURE 2: Weekly aggregates in NYC in 2019

2019, Uber was already in the process of reducing the discounts offered to shared rides. Figure 3
shows that the difference in average fare between a solo trip and a shared requested trip keeps de-
creases with time”. We regress the fare discount over week-of-year for all TNCs; Table 2 shows the
results. The average discount offered by Lyft and Via did not have any statistically significant vari-
ation over the course of the year, while the discount offered by Uber decreased. Since Uber made
up a large proportion of the combined ride-splitting market, the effect is statistically significant
even when data from all TNCs was combined. Abkarian et al. (33) also notices a decreasing trend
in the demand for shared rides in Chicago in 2019, suggesting that this withdrawal of subsidies is
not unique to NYC.

The financial burden imposed on the TNCs by their ride-splitting options persisted after
the COVID19 pandemic subsided. Via exited the ride-splitting market after a short comeback in
2021. Lyft stared re-introducing its ride-splitting option, Lyft Shared, in June 2021. The service
was re-introduced in New York City on October 19, 2022 and Lyft exited the ride-splitting market
on April 1, 2023; next section discusses the effect of this exit. Uber re-branded their ride-splitting
service as UberX Share. When using UberPool, passengers were guaranteed a discount whenever
they requested a shared ride, irrespective of the trip being successfully matched with other rider or
not. With UberX Share "riders will receive an upfront discount if they choose UberX Share, and
get up to 20% off the total fare, if matched with a co-rider along the way (34)," i.e., the riders get

2We call this value fare discount. There can be different ways calculating the fare discounts (Liu et al. (32)
compares the fares for the same Origin-Destination pairs to get the fare ratio) but we compare the city wide averages
to observe trends at the city level.
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FIGURE 3: Average discount offered to shared rides in NYC in 2019

a smaller discount upfront for requesting a shared ride but only get the larger discount if the ride
is successfully matched with another passenger. Uber was loosing a lot of money before COVID
due to unmatched trips which probably forced them to try to match as many trips as possible, even
at the cost of large detours. This is reflected in Uber’s high match rate of over 60% in 2019. Post
COVID, the loss on each unmatched trip would not be too high, meaning Uber did not worry too
much about their match rate which fell to about 30% in 2023 (Figure 5).

TABLE 3: Top 10 OD pairs with highest shared rides requested in 2023

. . . Shared Shared  Match
Origin Destination Total Trips Requested Matched  Rate
South Ozone Park  JFK Airport 243528 65879 1014 0.02
Springfield Gardens North  JFK Airport 58462 19862 411 0.02
Baisley Park  JFK Airport 76601 16709 522 0.03
East New York East New York 487516 16321 1154 0.07
East Elmhurst LaGuardia Airport 45773 14931 13 0.00
Canarsie Canarsie 300470 11525 593 0.05
JFK Airport JFK Airport 96894 11283 1136 0.10
Crown Heights North  Crown Heights North | 235864 8405 873 0.10
Jackson Heights LaGuardia Airport 50664 6366 130 0.02
Springfield Gardens South JFK Airport 36685 6226 400 0.06

Another issue with ride-splitting is that passengers might strategically request shared trips
— passengers request a shared trip when they do not expect to get matched which allows them
to get a discount without suffering additional detours. This means that in certain cases we may
observe high demand for shared trips but very low match rates. All of the top ten origin-destination
(OD) pairs, by demand for shared trips, in NYC have a match rate of 10% or less; seven out of
ten of these OD pairs end at an Airport. The highest number of requests for shared trips is from
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South Ozone Park to the JFK Airport, over 3 times the the number of requests for OD pair with
second highest trips. This high demand is probably because South Ozone Park is next to the JFK
Airport and has many hotels and commercial parking lots. Passengers traveling to the airport might
be requesting a shared ride knowing that their probability of getting matched with another rider is
low. Such behavior makes the analysis of these ride-splitting systems even harder. Observing the
effects of improvements in the matching algorithm would be much harder if people request shared
trips only when they expect not to get matched. If people are indeed strategically requesting trips, a
more efficient ride-splitting system with higher match rate might push people away from requesting
shared rides. This will make it much harder to observe scale economies in ride-splitting.

EFFECT OF LYFT’S EXIT

In the presence of scale economies, it is natural to expect that ride-splitting will be more efficient
if only one TNC offers the service. This is probably why Uber and Lyft invested heavily in ride-
splitting, as, eventually, the winner would take the whole market. Uber did win the market and
Lyft stopped offering their ride-splitting option, Lyft Shared, from April 1, 2023.

404 1.5+
304 MJV\WW\
1.0
20
0.5-
104 Solo Shareq Requested
. (in 100,000s) 00- (in 100,000s)

Jan2023  Apr2023  Jul2023  Oct2023  Jan202 Jan2023  Apr2023  Jul2023  Oct2023  Jan 2024
125

0.6 -

1.00 1
0.75- 0.4+
0.50 -
0.2
0.25 1 Shared Unmatched Shared Matched

(in 100,000s)
0.004 0.0
Jan 2023 Apr 2023 Jul 2023 Oct 2023 Jan 202  Jan 2023 Apr 2023 Jul 2023 Oct 2023 Jan 2024

(in 100,000s)

TNC Lyft == Uber Combined
FIGURE 4: Weekly trips in NYC in 2023

Davalos (35) article from May 11, 2023 announces the cessation of Lyft Shared. Figure
4 shows that the number of Lyft Shared rides requested in NYC drop to zero starting April 1,
2023. The number of shared trips requested, and matched, on Uber kept increasing throughout
2023, while the number of solo trips was largely constant (Figure 4). The total number of shared
trips requested in December 2023 was higher than the number of requests in March 2023 (with
Lyft and Uber combined), indicating that the demand for ride-splitting was increasing and people
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FIGURE 5: Match rate in NYC in 2023

slowly shifted to UberX Share from Lyft Shared; Lyft Shared was discontinued despite increasing
demand.

The number of shared trips requested on Uber doubled from about 63,000 per week during
the four weeks between March 5th and April 1st, to about 150,000 per week in October, a 137% in-
crease. If there are city-wide scale economies in ride-splitting, then the match rate should increase
with the doubling of demand. But Figure 5 shows that the match rate did not change much after
Lyft’s exit; going from around 27% in March to around 30% in October. This suggests that the
UberX Share’s matching efficiency did not change much despite the demand more than doubling.

In contrast to the hypothesis, the overall match rate actually decreased after Lyft’s exit
despite an increase in total demand that was served by only one TNC. Lyft’s match rate of 53%
was much higher than Uber’s, suggesting that Lyft was much better at matching trips. A plausible
explanation for Lyft’s higher match rate is the following: Trips requested to be shared on Lyft are
cheaper than the ones on UberX Share, per mile and per minute; Lyft Shared costs about $3 a
mile while UberX Share is closer to $3.5 on average. Price sensitive passengers, who are the ones
taking pooled trips, with longer trips might prefer using Lyft Shared over UberX Share. Hence, the
average trip length of a shared requested trip on Lyft is longer, both in terms of time and distance,
than the ones requested on Uber (6). Furthermore, the average trip duration and distances for the
matched trips are comparable for both Uber and Lyft, suggesting that trips that get matched have
similar characteristics, no matter the TNC. Since, Lyft can attract more passengers with longer
trips, they have more opportunities to match them, and consequently, have a higher match rate.
At the risk of being speculative, we might presume that Lyft was keeping their prices lower to
compete with Uber and was losing a lot more money on pooled trips. This might have been the
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FIGURE 6: Average trip lengths in NYC in 2023

reason behind their decision to discontinue Lyft Shared. The average match rate, for all trips in
NYC, declined from about 40% to about 30% after Lyft’s exit.

We also observe a sharp fall in the average trip length of the trips Uber successfully matched
between March 23, 2023 and May 18, 2023 in Figure 6. The trip length for shared requested trips
also has a similar but smaller dip. There is no change in the length of solo or unmatched trips. We
investigated the average travel time, fare, fare per mile, and fare per minute for all types of trips,
i.e., solo, shared requested, unmatched and matched. Average travel time, fare, fare per minute do
not show any sudden changes for any type of trip’. However, fare per mile for shared matched
trips jumps abruptly during the same time period. Figure 7 plots the average travel time, fare, fare
per minute and fare per mile for matched trips. Uber raised their prices, possibly, in anticipation
of Lyft leaving the ride-splitting market. A week before Lyft’s exit, the average fare per mile for
successfully matched trips on UberX Share jumped from $3/mile to $4.5/mile. Remember that
one of the key difference between UberPool and UberX Share is that a part of discount in UberX
Share in contingent on being matched with another rider. What we observe here is, perhaps, Uber
decreasing that conditional discount, or conversely increasing the fare per mile for the matched
trips. The fare hike results in a decrease in the average trip length of pooled trips requested probably
because some riders with long trips, that regularly got matched, stopped using UberX Share as the
the higher fare was not worth the hassle of sharing their ride with a stranger. However, this price
change too did not result in a notable difference in the match rate.

This indicates that the departure of Lyft did not increase the match rate for UberX Share by

3We have omitted these plots to avoid clutter.
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a lot, even when shared requested trips more than doubled. The presence or absence of competition
did not affect how efficient the matching process was. However, the absence of competition did
allow Uber to perhaps abuse their market power and raise their prices for a pricing experiment. The
pricing change too did not affect the match rate much. A plausible reason why we do not observe
large changes in match rates could be that the increase in demand for UberX Share, or the price
change, was not large enough to shift us from a low-sharing to a high-sharing equilibrium. Even
though the number of requests on UberX Share more than doubled between March and October,
2023; the number in October 2023 (150,000 per week) is less than half the number of requests
in October, 2019 (440,000 per week). Maybe the decline in 2019 is a local change in the high-
sharing equilibrium due to withdrawal of subsidies. And the effects of Lyft’s exit are local changes
in the low-sharing equilibrium. Presence of scale economies can give rise to multiple equilibria in
systems. Hence, the next section tries to empirically identify scale economies in ride-splitting.

SCALE ECONOMIES
Since ride-splitting relies on finding similar trips to match together,it is natural to expect that the
system will become more efficient as the number of people requesting to share rides increases, i.e.,
the system is expected to have scale economies. Lehe et al. (8) and Liu et al. (4) find evidence
indicating the existence of scale economies, but empirically proving its existence is much harder.
The quality of matching and the number of people requesting to share rides are endogenous. The
presence of scale economies means that we expect the quality of matching to improve as more
people request to share rides. However, more people might also request shared rides as the quality
of matching improves. Hence, a positive correlation between quality and number of requests does
not necessarily mean the system exhibits scale economies.

Assuming the quality of matching (1) and the number of people requesting to share rides
(D) are linearly related, we can model the dependence of 1) on D* as:

n=y+nb'+u, )

and the dependence of the number of people requesting to share rides on the quality of matching
can be modeled as:

D’=oop+on+e. 2

Equations (1) and (2) have a causal interpretation and are analogous to simultaneous supply
and demand relations from Wooldridge (36, Sec 16.3) and Romer (37)*. The supply curve (1) says
that a change in D’ causes a change in 7, and, similarly, the demand curve (1) says that a change in
N causes a change in D°. Claiming that the system has scale economies is equivalent to claiming
that 71 > 0, i.e.,, n with D°. However, we cannot estimate equations (1) and (2) as they have
four unknowns 7y, o, 71, &1, and only two exogenous variables, 17, D°. The system does not have
sufficient variation to identify any coefficients in either of the equations. We can write the reduced

“4See Chapter 16 of Wooldridge (36) for a through analysis of systems with simultaneous equations.
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form of (1) and (2) as

s D
Y+nD +“:OC_1_OC_1_E1
— Ds:YOal+aO+ual+8 = Ttpso + Eps. (3)
l—oun  1—oun

Similarly,

. 06071+Yo+ EN+ U

- = Tno + €no. 4)
-y 1—omn K n

n

Eqns. (3) and (4) do not have an exogenous variable on the right hand side and hence none
of the coefficients from (1) and (2) can be estimated.

To estimate the coefficients in (1), we need some exogenous variable z; that affects D* but
not 1. We can think of z; as some variable that introduces an exogenous variation to the demand
curve which ‘shifts’ the demand curve without having any effect on the supply curve, allowing
us to estimate the supply curve. If our goal was estimating the demand curve, we would need a
similar exogenous variation in the supply side of our system. Consider some variable z; that only
affects the demand for shared trips but not the quality of matching. Our system of equations then
becomes

n=+nD"+u, ©)
D’ = op+oym+ azg +E. (6)

Solving for the reduced form, we get

o £
_3’0+1’1060+ Y100 . JrI~L+7’1

— g (7)
l-noy  1-noy I-no
and
+a o E4+a
by %+ 0% 2 I ©)
l—-ynar  1-—yoa I-no
= Ttpso + Tpsz,2d + gls). (10)

Since z; is exogenous to both 17 and D°, we can estimate the coefficients of (8) and (10)
using linear regression. This allows us to then estimate the effect of demand on quality of matching
using

”nZd
= —=. (11D
i oy

Tz, . . . . .
n"—d is the IV estimate of 7y, using z; as an instrument for D°. Hence, we can estimate the causal

DSz

effect of the number of addition shared trips requested on the quality of matching.
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Quality of matching

Quality of matching is a measure of how well the system is able to match trips. We cannot have a
direct measure of this unless we know what objective function the TNCs are seeking to optimize,
which is proprietary information. However, we can safely guess that an improvement in matching
would result in an increase in match rates and a decrease in detour distances for successfully
matched riders. We can use either of these measures as a proxy for 11. We use the match rate in
this study for the following reasons.

1. While the TNCs might want to limit the detour distances for the sake of the riders,
they might also opt to set a limit on the detour distance, as a service guarantee, and not
optimize further (or do so in a limited fashion). This is because the match rate affects
the bottom line of the TNCs, while detour distance does not. Anyone who requests a
pooled trip is offered a discounted price regardless of the trip actually getting matched.
This means that the TNCs subsidize the pooled trips that do not get matched. Increasing
their match rate is essential for the TNCs to make ride-splitting business sustainable.
TNCs might choose to optimize for the match rate while limiting the detour distance to
some maximum value. Hence, any increase in demand is likely to improve the match
rate more than the detour distance.

2. The number of trips successfully matched in United States is still low which makes
it hard to estimate the detour distances. For example, (4) estimates detour distances
between OD pairs by calculating the average travel distance between the OD pair for
solo trips and for successfully matched trips, and then taking their difference to get the
detour for the OD pair. However, they ignore the randomness in trip lengths and only use
the means. Since there are very few matched trips, the standard deviation for matched
trip lengths are large, making the detour distances unusable.

Figure 8 plots the normalized detour, the ratio of detour and the distance between an OD
pair, against the number of shared trips requested. The detour is calculated as the difference be-
tween the average trip length for solo trips and the average trip length for matched trips. We also
calculate upper/lower bounds of the detour by adding/subtracting the standard deviation of the trip
lengths of matched trips to the detour distance. We can observe that the detour distance has a lot
of noise. The standard deviations are higher when few trips are being requested and matched.

Proposed Instrument

We need an instrument that affects the number of people requesting to share rides but does not
affect the quality of matching. We propose to use stadium events. People naturally gather within
specific time windows at stadiums for various events such as concerts or professional sports. As
there are more arriving at and leaving the venue when an event is happening, more rides get re-
quested during events and proportionally more people request to share rides. This increase in the
number of requests is likely to be irrespective of the quality of matching. Hence, we can use if an
event is happening at a stadium as an instrument for the number of people requesting to share rides
and use the IV estimate to measure the causal effect of the number of people requesting to share
rides on the match rate.

Data
We focus this analysis on the four Taxi Zones around Barclays center in Brooklyn (Figure 9), as
the Barclays center is a major events venue in NYC and the date and start time of historical events
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FIGURE 9: Taxi zones in New York City as given by the TLC data. Newark Airport (EWR) is
not a borough of New York City but is included as such by the TLC.
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is available from their website 7. We use the TNC data from NYC TLC for 2019 and 2023. We
use 2019 and 2023 as proxies for pre- and post-COVID data. We calculate the number of shared
trips requested, starting or ending around the four taxi zones in Barclays center, and the number of
trips successfully matched for each hour in 2019 and 2023.

The data for the events at Barclays center is collected manually from their website. This
data includes the date and the start time of the event. We do not have any information about when
these events end. Figure 10 shows that the number of shared trips requested to be dropped off
at Barclays center increases in the hour before an event starts, and the number of shared trips
requested to be picked up from Barclays center increases 2-4 hours after an event starts; we say
that the effect of an event is active during these hours.

Since there can be a lot of variation in end times based on the type of event happening at
the venue, we collect data about which of these events are basketball games. Basketball games last
for a nearly fixed duration of 2.5 hours and we can use this information to estimate the end times
for all events that were basketball games.

We have 8 total datasets. Two each for pickups and dropoffs in 2019 and 2023, and 2 each
of these four for both instruments, (i) one constructed with all events, and (i1) the other with just
basketball games. Each observation in a dataset is an hour of the year.

Regressions

We run two sets of regressions on the data for 2019 and 2023. All regressions include a fixed effect
for hour-of-day. We set z; = 1 when the effect of an event is active to compare against times when
events are not active.

1. The first set of regressions uses all the events as instruments. For drop-offs, we set the
instrument z; = 1 from two hours before the start to the start of an event, and z; = 0
otherwise. For pick-ups, we set z; = 1 for two to four hours after the start of an event,
and zero otherwise. The wider window accounts for the fact that arrivals and departures
might be more dispersed for large concerts.

2. The second set of regressions uses only basketball games as instruments. Days with any
other events are removed from the dataset. Months with no basketball games at all are
also removed. We set z; = 1 for 1 hour before the start of the game for drop-offs. All
games last for about 2.5 hours, so we set z; = 1 for pick-ups from 2 to 3 hours after the
start time of a game.

Table 4 shows the results for the first stage regression, as defined in (10). Considering all
events, an “active” event is a strong instrument for drop-offs in 2023 and 2019, and for pickups
in 2019; the event does not have a statistically significant effect for pickups in 2023. When we
look at only basketball games, we notice that the estimates for drop-offs and pickups in 2019 are
approximately equal to the estimates when that dataset considers all events. However, the statistical
significance of the estimate for drop-offs in 2023 in slightly reduced; the effect on pickups in
2023 is still statistically insignificant. The F-statistic is greater than the critical value of 10 for all
regressions.

Table 5 shows the results for the reduced form regressions, i.e., the effect of an “active”
event on the match rate as given in (8). Active events have a positive effect on match rate. However,
the effect is statistically insignificant for 2023 if we only consider basketball games. Table 6 shows

Shttps://www.barclayscenter.com/events-tickets/event-calendar
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FIGURE 10: This figure shows the number of shared trips requested to be picked up and dropped
off in the four taxi zones around the Barclays Center. The plots show a small increase in dropoffs
before an event starts and an increase in pickups a couple hours after the event ends.
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TABLE 4: First stage regressions

Dropoff 2019  Pickup 2019 Dropoft 2023  Pickup 2023

All events
active 27.622%*%* 39.255%*%* 1.053* 0.324
(3.558) (4.757) (0.491) (0.659)
Num.Obs. 8015 8015 7271 7272
R2 0.484 0.548 0.281 0.445
F 312.032 403.535 118.117 241.831
Basketball games
active 28.731%* 45.387%** 2241+ -0.653
(10.694) (11.857) (1.337) (1.414)
Num.Obs. 1560 1560 1690 1690
R2 0.142 0.313 0.147 0.373
F 19.721 54.101 22.214 76.743

+p <0.1,*p <0.05, * p <0.01, ** p < 0.001

TABLE 5: Reduced form regressions

Dropoff 2019  Pickup 2019 Dropoff 2023  Pickup 2023

All events
active 0.026%** 0.028%%*%* 0.079%%** 0.063%**
(0.005) (0.006) (0.015) (0.018)
Num.Obs. 8015 8015 7239 7242
R2 0.194 0.389 0.085 0.139
F 80.082 212.070 27.753 48.606
Basketball games
active 0.021* 0.029%* 0.019 0.008
(0.009) (0.010) (0.031) (0.029)
Num.Obs. 1560 1560 1690 1690
R2 0.105 0.347 0.144 0.199
F 14.018 63.277 21.600 31.993

+p<0.1,%p < 0.05,* p < 0.01, ** p < 0.001
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TABLE 6: 1V regressions

Dropoff 2019  Pickup 2019 Dropoff 2023  Pickup 2023

All events
shared requested 0.001%** 0.001*** 0.075* 0.194
(0.000) (0.000) (0.035) (0.387)
Num.Obs. 8015 8015 7239 7242
Wu-Hausman (p-val) 0.21 0.79 9.9e-7 4.61e-3
Basketball games
shared requested 0.001%** 0.001*%** 0.009 -0.012
(0.000) (0.000) (0.014) (0.055)
Num.Obs. 1560 1560 1690 1690
Wu-Hausman (p-val) 0.54 0.57 0.69 0.73

+p < 0.1, *p <0.05, **p < 0.01, *** p < 0.001

the results for the Instrumental variable (IV) regression conducted using the ivreg package in R°.
The estimated coefficient for the IV regression can also be obtained by dividing the estimate from
the reduced form regression by the estimate of the first stage regression.

The IV estimate is positive, meaning the an increase in the number of shared trips requested
causes the match rate to increase, whenever the relationship is statistically significant. We also
note that the magnitude of scale economies have changed significantly between 2019 and 2023.
The most probable reason could be that the the relationship between demand for shared trips and
quality of matching is not linear. We assume a linear relationship D* and 7] because the goal of this
study was to causally establish the existence of scale economies; a robustness check with log-log
regression also confirmed the presence of scale economies.

The IV estimate for some regressions are not statistically significant because binary z; does
not introduce enough variation in D® to estimate the supply curve. As a robustness check, we run
another regression on the pickup data from 2023 where we use the number of people entering
the Atlantic-Avenue Barclays Center subway station’ each hour as the instrument; this regression
also includes fixed effect for hour-of-day. The IV estimate for y; in (1) is 0.0215 (p-value 0.002)
showing that the system exhibits scale economies. The regression also rejects the Null hypothesis
for the Weak Instrument and Wu-Hausman test.

This analysis shows that ride-splitting does exhibit scale economies. However, the signifi-
cance of the estimate also depends on the choice of the instrument. Future work can explore how
different sources of exogenous variation affect the estimation; ideally all instruments should result
in similar estimates.

®https://cran.r-project.org/web/packages/ivreg/vignettes/ivreg.html
7 Available since February 2022 at https://data.ny.gov/Transportation/
MTA-Subway-Hourly-Ridership-Beginning-February-202/wujg-7c2s/data
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CONCLUSION

Ride-splitting has the potential to make urban transportation more sustainable while reducing travel
costs for passengers. Despite heavy investments by TNCs and tax incentives by governments, only
a small proportion or ride-hailing trips request to share their rides. An even smaller number of trips
actually get matched.

In this paper we provide plausible explanations for different challenges to ride-splitting,
pre- and post-COVID. Possibly, the pre-COVID decline in ride-splitting was largely a result of
Uber’s withdrawal of subsidies. We also hypothesize that ride-splitting’s lack of rebound post-
COVID can possibly be a result of the system being stuck in a low-sharing equilibrium. The
presence of scale economies enables the possibility of multiple equilibria. Finally, we use an
Instrumental Variables based approach to empirically establish the existence of scale economies
using different regressions.
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