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ABSTRACT1
Ride-splitting is a service offered by Transportation Network Companies that pairs riders who2
choose to share a portion of their ride-hailing trip with a stranger, in exchange for a discounted fare.3
This paper studies the decline of ride-splitting using data from New York City. We document the4
events concerning ride-splitting and present plausible explanations for them. The decline of ride-5
splitting pre-COVID can possibly be explained by Uber’s withdrawal of subsidies for UberPool;6
no other TNC reduces their discounts during this period. Post-COVID, we provide a plausible7
reason for why service has settled at a much lower level and analyze the effects of the same. We8
hypothesize that ride-splitting is stuck at a lower-sharing equilibrium. There are multiple equilibria9
because ride-splitting exhibits strong scale economies. Finally, we establish the presence of scale10
economies in ride-splitting using an Instrumental Variables approach.11

12
Keywords: ride-pooling, ride-splitting, scale economies, instrumental variables, ridesharing13
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INTRODUCTION1
Ride-splitting, also called ride-pooling or shared ride-hailing1, is a service where passengers can2
choose to share their ridehailing trips with strangers to make their trips more affordable (2). Passen-3
gers use an app to input their origin, destination and willingness to share a ride and the Transporta-4
tion Network Company (TNC), like Uber or Lyft, tries to match them with other riders traveling5
along the same route; the TNC may or may not successfully match a ride-splitting trip. Ride-6
splitting has garnered a lot of interest since UberPool and Lyft Line were launched in August7
2014. UberPool served over 100 million trips by 2016 and accounted for more than half of Uber’s8
trips in many cities; Lyft Line accounted for 30% of all Lyft rides with the proportion being closer9
to 50% in cities like New York and San Francisco (3). However, the share of ride-splitting trips has10
declined to single digit percentages today. Figure 1 shows the number of ridehailing trips requested11
in New York City from February 2019 to January 2024. The share of ride-splitting trips decreases12
from about 30% to 3% during this period. In this paper, we chronicle the significant events from13
2019 to 2023 that have impacted ride-splitting. Additionally, we propose a plausible hypothesis14
for its failure to rebound post-COVID.15
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FIGURE 1: Number of trips taken each week in NYC from February 2019 to January 2024

In this paper we classify different types of trips as follows: Trips that do not want to be16
pooled are called solo trips. Trips that request ride-splitting are called shared requested trips.17
Among those, the trips that successfully get matched with another passenger are called shared18
matched and ones that do not get matched are called shared unmatched.19

1See Shaheen et al. (1) for taxonomy.
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A rider almost certainly suffers detours, to pick-up and drop-off other passengers, if their1
trip is successfully matched. TNCs offer discounts on ride-splitting to make up these for these2
detours and attract passengers (4), and at least a part of these discounts is not contingent on being3
matched. There are more passengers in the car in a shared matched trip and the fare for each4
passenger may be even lower. Ride-splitting puts more people in the same vehicle which can lower5
the number of vehicles required to serve all trips (1). State and local governments recognize that6
ride-splitting might lead to less congestion, fuel use and need for parking. It is a more sustainable7
option compared to traveling alone. To promote ride-splitting, cities offer discounts to passengers8
on taxes and surcharges levied on all ride-hailing trips. Chicago, IL; New York City, NY; San9
Francisco, CA; and New Jersey, Georgia, and some other cities and states levy a lower tax on10
shared ride-hailing trips than on solo ones (5).11

Another reason to subsidize ride-splitting is that many professionals (as well as academics)12
believe that ride-splitting will become more efficient at scale. i.e., ride-splitting becomes more effi-13
cient as more people request a shared ride-hailing trip. As more people request to share their rides,14
the TNC will have a large pool to match people from which should allow them to (i) successfully15
match more trips Kidd (6), and (ii) find better matches with smaller detours. At scale, ride-splitting16
is expected to have small detours and low travel costs for passengers; higher occupancy and smaller17
fleet sizes for TNCs; and lower congestion, smaller emissions, and lower demand for parking for18
cities.19

Castillo and Mathur (7) show that matching between drivers and riders gets more effi-20
cient as more drivers and riders participate in the system. Lehe et al. (8) show evidence of scale21
economies in carpooling using data from SCOOP (a carpooling platform) and Ke et al. (9) uses22
simulations to show that the match rates increase and detours decrease when more people demand23
pooled rides. Using Chicago’s 2019 TNC data, Liu et al. (4) show that detours decrease and match24
rates increase as more people authorize to share rides with others. However, establishing scale25
economies in matching is not as simple because of the endogeneity between demand and effi-26
ciency measures. Empirical evidence (4, 8) shows that detours decrease as more people request to27
share rides; but it does not establish if it happens because detours get shorter with more requests, or28
do people request more when detours are shorter? Probably both are true simultaneously. Since the29
efficiency and demand for ride-splitting are endogenous, ordinary least square regressions cannot30
estimate the causal effect of number of requests on the efficiency of the system. This paper utilizes31
an instrumental variables based approach to show that ride-splitting exhibits scale economies.32

We hypothesize that the presence of scale economies is a plausible explanation for ride-33
splitting’s failure to rebound post-COVID. Transportation systems with scale economies can have34
multiple equilibria (10, 11) which may help explain why different cities can sometimes end up35
in different equilibria (12). We propose the following explanation: Ride-splitting was already in36
decline in 2019 (Figure 1) but the system was at a high-sharing equilibrium. The proportion of37
ride-splitting was high (between 25-30%) and more trips were getting matched (over 60%). The38
COVID19 pandemic forced TNCs to shut-down all ride-splitting offerings. Demand recovered39
slowly after COVID subsided and agencies resumed their ride-splitting options. But low initial40
demand meant that matching was not very efficient, passengers had to face with higher detours,41
and lower discounts; and TNCs lost more money due to low match rates. TNCs responded to42
loses by shutting down ride-splitting entirely or by greatly reducing the discounts offered to shared43
trips, leaving us with a low-sharing equilibrium. To be precise about our claim, the existence of44
multiple equilibria with vastly different demand and match rates does not necessarily mean that45
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the system exhibits scale economies; but scale economies can be a reason for the existence of1
multiple equilibria. We can possibly shift from the low-sharing to the high-sharing equilibrium if2
ride-splitting is highly subsidized for a long period, but it seems unlike that TNCs will choose to3
do that.4

The next subsection presents a timeline of ride-splitting in the United States. We then5
describe the data used for this study. Next, we discuss the reasons behind the decline of ride-6
splitting in 2019, and TNCs response to the same issues post COVID. The following Section7
discusses the effects of Lyft’s exit from ride-splitting market in detail. The next section established8
the existence of scale economies ride-splitting using an Instrumental Variables based analysis.9
Final section 6 concludes.10

Timeline11
Table 1 gives an overview of the key events concerning ride-splitting in the United States starting12
June 2014, when Hitch became the first company to offer ride-splitting service in San Francisco,13
CA (13). Just a few months later, Uber announced it’s ride-splitting option, UberPool, on August14
5, 2014 (14). The service was initially launched as a beta test available to a few customers and was15
expanded to a public beta in the San Francisco Bay Area on August 15, 2014. Following Uber’s16
announcement, Lyft launched Lyft Line to all customers in San Francisco on August 6, 2014 (15),17
and acquired other companies like Hitch and Rover to jump start their ride-splitting efforts (16);18
by March 2015, Lyft Line accounted for majority of Lyft’s business in San Francisco. UberPool19
had served more than 100 million trips by March 2016 and more than half the trips taken in an20
Uber in many cities requested UberPool(17). Uber’s CEO at the time, claimed that UberPool was21
profitable in many of the 29 cities it operated in (17). During the same time, Lyft Line was serving22
about 30% of all Lyft rides and the proportion was over 50% in San Francisco and New York. Lyft23
re-branded Lyft Line to Lyft Shared in June 2018 (18).24

Uber and Lyft were the first large companies to offer ride-splitting in the US. Looking25
to expand their pooling business, Uber launched Uber ExpressPool in February 2018 (19) asking26
passengers to walk a short distance in exchange for larger discounts. Lyft announced Lyft Shared27
Saver, a service similar to Uber ExpressPool, on February 20, 2019 (20). To match passengers28
along routes with high demand, Lyft introduced a (now defunct) shuttle option in 2017 which plied29
on fixed routes during commute hours and charged a fixed fare (21). Uber announced a similar30
service, Uber Shuttle, in May 2024, (22, 23).31

All ride-splitting services were suspended due to the COVID19 pandemic. UberPool, Uber32
ExpressPool, LyftLine, and other services were shutdown in March 2020. Uber brought back its33
ride-splitting option in November 2021, in Miami, with a new name: UberX Share (24). Lyft34
brought back Lyft Shared in July 2021 for Chicago, Philadelphia and Denver (25) and expanded it35
to Miami, Atlanta, Las Vegas, San Francisco, San Jose, Los Angeles, Nashville, Washington D.C.,36
Boston, Portland, and San Diego., in May 2022 (26). Lyft shuttered their Lyft Shared in March37
2023 (27). Uber still offers UberX Share.38

Many apps came out during these years trying to compete with Uber and Lyft, most of39
which have since shut down or pivoted to other business models. A New York Times article (28)40
sums them up in this paragraph: "[the app] Gett came out against surge pricing ... Curb lets riders41
hail taxis either by hand or via its app, and then pay for them with the app. Lyft is perceived as a42
less corporate option ... And Juno’s approach is to promise drivers a supportive corporate culture43
and a larger cut of its business." Via used to offer ride-splitting in NYC in 2019, but now Via’s44
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TABLE 1: Timeline of ride-splitting in the United States.

June 2014 · · · · · ·• Hitch starts pairing up riders with similar
origins and destimations.

August 5, 2014 · · · · · ·• Uber launches UberPool as a best test.

August 6, 2014 · · · · · ·• Lyft launches Lyft Line to all customers in
San Francisco, CA.

February 2018 · · · · · ·• UberPool offered in 36 cities worldwide, 16
of them in the US.

February 22, 2018 · · · · · ·• Uber ExpressPool launched in 8 cities in
the US.

June 2018 · · · · · ·• Lyft Line re-branded as Lyft Shared.

February 20, 2019 · · · · · ·• Lyft launches Lyft Shared Saver.

March 18, 2020 · · · · · ·• Ridesplitting services suspended due to
COVID.

July 2021 · · · · · ·• Lyft brings back its ridesplitting option,
Lyft Shared, in Chicago.

November 2021 · · · · · ·• Uber brings back UberPool post COVID;
rebranded as UberX Share.

June 20, 2022 · · · · · ·• UberX Share introduced to New York City,
NY.

June 2022 · · · · · ·• UberX Share available in 9 US cities.

October 19, 2022 · · · · · ·• Lyft Shared comes back to NYC.

March 23, 2023 · · · · · ·• Uber raises price per mile for UberX Share.

April 1, 2023 · · · · · ·• Lyft ceases offering Lyft Shared.

May 18, 2023 · · · · · ·• Uber brings back prices to previous levels.

May 15, 2024 · · · · · ·• Uber announces its shuttle service, Uber
Shuttle.

July 2024 · · · · · ·• UberX Share available in 34 metropolitan
regions in the US, and 60 cities globally.
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TABLE 2: Regression results for average discount in New York City, 2019

Uber Lyft Via Combined

(Intercept) 8.184*** 7.795*** 11.632*** 8.422***
week-of-year -0.036** -0.003 -0.015 -0.044***

Num.Obs. 47 47 47 47
R2 0.174 0.011 0.016 0.271

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

business relies on "working directly with transit agencies, rather than building up a de facto taxi1
service" (29). Today, Uber is the only major ride-hailing company offering ride-splitting services2
in 32 metropolitan regions in the US, and 60 cities globally (30).3

Data4
We use the TNC data published by the New York City’s Taxi and Limousine Commission (TLC)5
from February 2019 to January 2024. Most of the analysis focuses on 2019 and 2023, using them6
as proxies for the pre- and post-COVID years. The TLC dataset starts from February 2019 and7
contains the records of (almost) all TNC trips in New York City (NYC), with their fare; distance;8
duration; origin and destination taxi zones; if the trip was authorized to be shared; if the trip was9
successfully matched with another trip; and the TNC that trip was requested on. NYC had 4 TNCs10
(Juno, Via, Uber, and Lyft) in 2019 and only two remained (Uber and Lyft) in 2023.11

We calculate weekly aggregates for all of NYC. Statistics calculate by aggregating data12
from all TNCs is labeled as "Combined". For example, the total number of trips in all of NYC13
in Figure 1, calculated by taking the sum of all trips in different TNCs, is labeled as "Combined".14
Trips shorter than 2 minutes or 0.1 miles were filtered out. We calculate the number of solo, shared15
requested, shared unmatched and shared matched trips. The match rate is ratio of number of shared16
matched with the number of shared requested. We also calculate other aggregate statistics, like av-17
erage fare, trip distance, and trip duration, for each type of trip for each week. All analysis, except18
in Section 5, uses weekly aggregates for all of NYC to get a city-wide big-picture perspective of19
ride-splitting in NYC.20

PRE-COVID DECLINE21
It might be tempting to ascribe the downfall of ride-splitting solely to persistent effects from22
COVID. But, ride-splitting was already in decline in 2019. The number of requests for shared23
trips fell from 1.55 million during the week of February 4-10, 2019, to about a million during the24
week of September 9-15, 2019, and then to 0.55 million during the holidays in December 23-29,25
2019 (Figure 2). In contrast the number of requests for solo trips did no change much during 2019.26
3.09 million solo trips during February 4-10, 2019; 3.63 million during September 9-15, 2019; and27
3.2 million during in December 23-29, 2019.28

The fall in number of shared trips requested is almost entirely due to the fall in demand29
for UberPool, which made up about two-thirds of all shared requested trips in February 2019; the30
demand for Lyft Share and Via is largely constant throughout 2019. The decrease in demand for31
UberPool might be a direct effect of Uber’s financial troubles. UberPool offered discounts as high32
as 50% to attract customers, losing up to a million dollars a week in San Francisco alone (31). In33
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FIGURE 2: Weekly aggregates in NYC in 2019

2019, Uber was already in the process of reducing the discounts offered to shared rides. Figure 31
shows that the difference in average fare between a solo trip and a shared requested trip keeps de-2
creases with time2. We regress the fare discount over week-of-year for all TNCs; Table 2 shows the3
results. The average discount offered by Lyft and Via did not have any statistically significant vari-4
ation over the course of the year, while the discount offered by Uber decreased. Since Uber made5
up a large proportion of the combined ride-splitting market, the effect is statistically significant6
even when data from all TNCs was combined. Abkarian et al. (33) also notices a decreasing trend7
in the demand for shared rides in Chicago in 2019, suggesting that this withdrawal of subsidies is8
not unique to NYC.9

The financial burden imposed on the TNCs by their ride-splitting options persisted after10
the COVID19 pandemic subsided. Via exited the ride-splitting market after a short comeback in11
2021. Lyft stared re-introducing its ride-splitting option, Lyft Shared, in June 2021. The service12
was re-introduced in New York City on October 19, 2022 and Lyft exited the ride-splitting market13
on April 1, 2023; next section discusses the effect of this exit. Uber re-branded their ride-splitting14
service as UberX Share. When using UberPool, passengers were guaranteed a discount whenever15
they requested a shared ride, irrespective of the trip being successfully matched with other rider or16
not. With UberX Share "riders will receive an upfront discount if they choose UberX Share, and17
get up to 20% off the total fare, if matched with a co-rider along the way (34)," i.e., the riders get18

2We call this value fare discount. There can be different ways calculating the fare discounts (Liu et al. (32)
compares the fares for the same Origin-Destination pairs to get the fare ratio) but we compare the city wide averages
to observe trends at the city level.
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FIGURE 3: Average discount offered to shared rides in NYC in 2019

a smaller discount upfront for requesting a shared ride but only get the larger discount if the ride1
is successfully matched with another passenger. Uber was loosing a lot of money before COVID2
due to unmatched trips which probably forced them to try to match as many trips as possible, even3
at the cost of large detours. This is reflected in Uber’s high match rate of over 60% in 2019. Post4
COVID, the loss on each unmatched trip would not be too high, meaning Uber did not worry too5
much about their match rate which fell to about 30% in 2023 (Figure 5).6

TABLE 3: Top 10 OD pairs with highest shared rides requested in 2023

Origin Destination Total Trips
Shared

Requested
Shared

Matched
Match
Rate

South Ozone Park JFK Airport 243528 65879 1014 0.02
Springfield Gardens North JFK Airport 58462 19862 411 0.02

Baisley Park JFK Airport 76601 16709 522 0.03
East New York East New York 487516 16321 1154 0.07
East Elmhurst LaGuardia Airport 45773 14931 13 0.00

Canarsie Canarsie 300470 11525 593 0.05
JFK Airport JFK Airport 96894 11283 1136 0.10

Crown Heights North Crown Heights North 235864 8405 873 0.10
Jackson Heights LaGuardia Airport 50664 6366 130 0.02

Springfield Gardens South JFK Airport 36685 6226 400 0.06

Another issue with ride-splitting is that passengers might strategically request shared trips7
— passengers request a shared trip when they do not expect to get matched which allows them8
to get a discount without suffering additional detours. This means that in certain cases we may9
observe high demand for shared trips but very low match rates. All of the top ten origin-destination10
(OD) pairs, by demand for shared trips, in NYC have a match rate of 10% or less; seven out of11
ten of these OD pairs end at an Airport. The highest number of requests for shared trips is from12
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South Ozone Park to the JFK Airport, over 3 times the the number of requests for OD pair with1
second highest trips. This high demand is probably because South Ozone Park is next to the JFK2
Airport and has many hotels and commercial parking lots. Passengers traveling to the airport might3
be requesting a shared ride knowing that their probability of getting matched with another rider is4
low. Such behavior makes the analysis of these ride-splitting systems even harder. Observing the5
effects of improvements in the matching algorithm would be much harder if people request shared6
trips only when they expect not to get matched. If people are indeed strategically requesting trips, a7
more efficient ride-splitting system with higher match rate might push people away from requesting8
shared rides. This will make it much harder to observe scale economies in ride-splitting.9

EFFECT OF LYFT’S EXIT10
In the presence of scale economies, it is natural to expect that ride-splitting will be more efficient11
if only one TNC offers the service. This is probably why Uber and Lyft invested heavily in ride-12
splitting, as, eventually, the winner would take the whole market. Uber did win the market and13
Lyft stopped offering their ride-splitting option, Lyft Shared, from April 1, 2023.14
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FIGURE 4: Weekly trips in NYC in 2023

Davalos (35) article from May 11, 2023 announces the cessation of Lyft Shared. Figure15
4 shows that the number of Lyft Shared rides requested in NYC drop to zero starting April 1,16
2023. The number of shared trips requested, and matched, on Uber kept increasing throughout17
2023, while the number of solo trips was largely constant (Figure 4). The total number of shared18
trips requested in December 2023 was higher than the number of requests in March 2023 (with19
Lyft and Uber combined), indicating that the demand for ride-splitting was increasing and people20
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FIGURE 5: Match rate in NYC in 2023

slowly shifted to UberX Share from Lyft Shared; Lyft Shared was discontinued despite increasing1
demand.2

The number of shared trips requested on Uber doubled from about 63,000 per week during3
the four weeks between March 5th and April 1st, to about 150,000 per week in October, a 137% in-4
crease. If there are city-wide scale economies in ride-splitting, then the match rate should increase5
with the doubling of demand. But Figure 5 shows that the match rate did not change much after6
Lyft’s exit; going from around 27% in March to around 30% in October. This suggests that the7
UberX Share’s matching efficiency did not change much despite the demand more than doubling.8

In contrast to the hypothesis, the overall match rate actually decreased after Lyft’s exit9
despite an increase in total demand that was served by only one TNC. Lyft’s match rate of 53%10
was much higher than Uber’s, suggesting that Lyft was much better at matching trips. A plausible11
explanation for Lyft’s higher match rate is the following: Trips requested to be shared on Lyft are12
cheaper than the ones on UberX Share, per mile and per minute; Lyft Shared costs about $3 a13
mile while UberX Share is closer to $3.5 on average. Price sensitive passengers, who are the ones14
taking pooled trips, with longer trips might prefer using Lyft Shared over UberX Share. Hence, the15
average trip length of a shared requested trip on Lyft is longer, both in terms of time and distance,16
than the ones requested on Uber (6). Furthermore, the average trip duration and distances for the17
matched trips are comparable for both Uber and Lyft, suggesting that trips that get matched have18
similar characteristics, no matter the TNC. Since, Lyft can attract more passengers with longer19
trips, they have more opportunities to match them, and consequently, have a higher match rate.20
At the risk of being speculative, we might presume that Lyft was keeping their prices lower to21
compete with Uber and was losing a lot more money on pooled trips. This might have been the22
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FIGURE 6: Average trip lengths in NYC in 2023

reason behind their decision to discontinue Lyft Shared. The average match rate, for all trips in1
NYC, declined from about 40% to about 30% after Lyft’s exit.2

We also observe a sharp fall in the average trip length of the trips Uber successfully matched3
between March 23, 2023 and May 18, 2023 in Figure 6. The trip length for shared requested trips4
also has a similar but smaller dip. There is no change in the length of solo or unmatched trips. We5
investigated the average travel time, fare, fare per mile, and fare per minute for all types of trips,6
i.e., solo, shared requested, unmatched and matched. Average travel time, fare, fare per minute do7
not show any sudden changes for any type of trip3. However, fare per mile for shared matched8
trips jumps abruptly during the same time period. Figure 7 plots the average travel time, fare, fare9
per minute and fare per mile for matched trips. Uber raised their prices, possibly, in anticipation10
of Lyft leaving the ride-splitting market. A week before Lyft’s exit, the average fare per mile for11
successfully matched trips on UberX Share jumped from $3/mile to $4.5/mile. Remember that12
one of the key difference between UberPool and UberX Share is that a part of discount in UberX13
Share in contingent on being matched with another rider. What we observe here is, perhaps, Uber14
decreasing that conditional discount, or conversely increasing the fare per mile for the matched15
trips. The fare hike results in a decrease in the average trip length of pooled trips requested probably16
because some riders with long trips, that regularly got matched, stopped using UberX Share as the17
the higher fare was not worth the hassle of sharing their ride with a stranger. However, this price18
change too did not result in a notable difference in the match rate.19

This indicates that the departure of Lyft did not increase the match rate for UberX Share by20

3We have omitted these plots to avoid clutter.
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a lot, even when shared requested trips more than doubled. The presence or absence of competition1
did not affect how efficient the matching process was. However, the absence of competition did2
allow Uber to perhaps abuse their market power and raise their prices for a pricing experiment. The3
pricing change too did not affect the match rate much. A plausible reason why we do not observe4
large changes in match rates could be that the increase in demand for UberX Share, or the price5
change, was not large enough to shift us from a low-sharing to a high-sharing equilibrium. Even6
though the number of requests on UberX Share more than doubled between March and October,7
2023; the number in October 2023 (150,000 per week) is less than half the number of requests8
in October, 2019 (440,000 per week). Maybe the decline in 2019 is a local change in the high-9
sharing equilibrium due to withdrawal of subsidies. And the effects of Lyft’s exit are local changes10
in the low-sharing equilibrium. Presence of scale economies can give rise to multiple equilibria in11
systems. Hence, the next section tries to empirically identify scale economies in ride-splitting.12

SCALE ECONOMIES13
Since ride-splitting relies on finding similar trips to match together,it is natural to expect that the14
system will become more efficient as the number of people requesting to share rides increases, i.e.,15
the system is expected to have scale economies. Lehe et al. (8) and Liu et al. (4) find evidence16
indicating the existence of scale economies, but empirically proving its existence is much harder.17
The quality of matching and the number of people requesting to share rides are endogenous. The18
presence of scale economies means that we expect the quality of matching to improve as more19
people request to share rides. However, more people might also request shared rides as the quality20
of matching improves. Hence, a positive correlation between quality and number of requests does21
not necessarily mean the system exhibits scale economies.22

Assuming the quality of matching (η) and the number of people requesting to share rides23
(Ds) are linearly related, we can model the dependence of η on Ds as:24

η = γ0 + γ1Ds +µ, (1)25

and the dependence of the number of people requesting to share rides on the quality of matching26
can be modeled as:27

Ds = α0 +α1η + ε. (2)28

Equations (1) and (2) have a causal interpretation and are analogous to simultaneous supply29
and demand relations from Wooldridge (36, Sec 16.3) and Romer (37)4. The supply curve (1) says30
that a change in Ds causes a change in η , and, similarly, the demand curve (1) says that a change in31
η causes a change in Ds. Claiming that the system has scale economies is equivalent to claiming32
that γ1 > 0, i.e., η with Ds. However, we cannot estimate equations (1) and (2) as they have33
four unknowns γ0,α0,γ1,α1, and only two exogenous variables, η ,Ds. The system does not have34
sufficient variation to identify any coefficients in either of the equations. We can write the reduced35

4See Chapter 16 of Wooldridge (36) for a through analysis of systems with simultaneous equations.
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form of (1) and (2) as1

γ0 + γ1Ds +µ =
Ds

α1
− α0

α1
− ε

α1
2

=⇒ Ds =
γ0α1 +α0

1−α1γ1
+

µα1 + ε

1−α1γ1
≡ πDs0 + εDs . (3)3

Similarly,4

η =
α0γ1 + γ0

1−α1γ1
+

εγ1 +µ

1−α1γ1
≡ πη0 + εη0. (4)5

Eqns. (3) and (4) do not have an exogenous variable on the right hand side and hence none6
of the coefficients from (1) and (2) can be estimated.7

To estimate the coefficients in (1), we need some exogenous variable zd that affects Ds but8
not η . We can think of zd as some variable that introduces an exogenous variation to the demand9
curve which ‘shifts’ the demand curve without having any effect on the supply curve, allowing10
us to estimate the supply curve. If our goal was estimating the demand curve, we would need a11
similar exogenous variation in the supply side of our system. Consider some variable zd that only12
affects the demand for shared trips but not the quality of matching. Our system of equations then13
becomes14

η = γ0 + γ1Ds +µ, (5)15

Ds = α0 +α1η +α2zd + ε. (6)16

Solving for the reduced form, we get17

η =
γ0 + γ1α0

1− γ1α1
+

γ1α2

1− γ1α1
zd +

µ + γ1ε

1− γ1α1
(7)18

≡ πη0 +πηzd zd + εη , (8)19

and20

Ds =
α0 +α1γ0

1− γ1α1
+

α2

1− γ1α1
zd +

ε +α1µ

1− γ1α1
(9)21

≡ πDs0 +πDszd zd + ε
s
D. (10)22

Since zd is exogenous to both η and Ds, we can estimate the coefficients of (8) and (10)23
using linear regression. This allows us to then estimate the effect of demand on quality of matching24
using25

γ1 =
πηzd

πDszd

. (11)26

πηzd
πDszd

is the IV estimate of γ1, using zd as an instrument for Ds. Hence, we can estimate the causal27

effect of the number of addition shared trips requested on the quality of matching.28
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Quality of matching1
Quality of matching is a measure of how well the system is able to match trips. We cannot have a2
direct measure of this unless we know what objective function the TNCs are seeking to optimize,3
which is proprietary information. However, we can safely guess that an improvement in matching4
would result in an increase in match rates and a decrease in detour distances for successfully5
matched riders. We can use either of these measures as a proxy for η . We use the match rate in6
this study for the following reasons.7

1. While the TNCs might want to limit the detour distances for the sake of the riders,8
they might also opt to set a limit on the detour distance, as a service guarantee, and not9
optimize further (or do so in a limited fashion). This is because the match rate affects10
the bottom line of the TNCs, while detour distance does not. Anyone who requests a11
pooled trip is offered a discounted price regardless of the trip actually getting matched.12
This means that the TNCs subsidize the pooled trips that do not get matched. Increasing13
their match rate is essential for the TNCs to make ride-splitting business sustainable.14
TNCs might choose to optimize for the match rate while limiting the detour distance to15
some maximum value. Hence, any increase in demand is likely to improve the match16
rate more than the detour distance.17

2. The number of trips successfully matched in United States is still low which makes18
it hard to estimate the detour distances. For example, (4) estimates detour distances19
between OD pairs by calculating the average travel distance between the OD pair for20
solo trips and for successfully matched trips, and then taking their difference to get the21
detour for the OD pair. However, they ignore the randomness in trip lengths and only use22
the means. Since there are very few matched trips, the standard deviation for matched23
trip lengths are large, making the detour distances unusable.24

Figure 8 plots the normalized detour, the ratio of detour and the distance between an OD25
pair, against the number of shared trips requested. The detour is calculated as the difference be-26
tween the average trip length for solo trips and the average trip length for matched trips. We also27
calculate upper/lower bounds of the detour by adding/subtracting the standard deviation of the trip28
lengths of matched trips to the detour distance. We can observe that the detour distance has a lot29
of noise. The standard deviations are higher when few trips are being requested and matched.30

Proposed Instrument31
We need an instrument that affects the number of people requesting to share rides but does not32
affect the quality of matching. We propose to use stadium events. People naturally gather within33
specific time windows at stadiums for various events such as concerts or professional sports. As34
there are more arriving at and leaving the venue when an event is happening, more rides get re-35
quested during events and proportionally more people request to share rides. This increase in the36
number of requests is likely to be irrespective of the quality of matching. Hence, we can use if an37
event is happening at a stadium as an instrument for the number of people requesting to share rides38
and use the IV estimate to measure the causal effect of the number of people requesting to share39
rides on the match rate.40

Data41
We focus this analysis on the four Taxi Zones around Barclays center in Brooklyn (Figure 9), as42
the Barclays center is a major events venue in NYC and the date and start time of historical events43
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FIGURE 9: Taxi zones in New York City as given by the TLC data. Newark Airport (EWR) is
not a borough of New York City but is included as such by the TLC.
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is available from their website 5. We use the TNC data from NYC TLC for 2019 and 2023. We1
use 2019 and 2023 as proxies for pre- and post-COVID data. We calculate the number of shared2
trips requested, starting or ending around the four taxi zones in Barclays center, and the number of3
trips successfully matched for each hour in 2019 and 2023.4

The data for the events at Barclays center is collected manually from their website. This5
data includes the date and the start time of the event. We do not have any information about when6
these events end. Figure 10 shows that the number of shared trips requested to be dropped off7
at Barclays center increases in the hour before an event starts, and the number of shared trips8
requested to be picked up from Barclays center increases 2-4 hours after an event starts; we say9
that the effect of an event is active during these hours.10

Since there can be a lot of variation in end times based on the type of event happening at11
the venue, we collect data about which of these events are basketball games. Basketball games last12
for a nearly fixed duration of 2.5 hours and we can use this information to estimate the end times13
for all events that were basketball games.14

We have 8 total datasets. Two each for pickups and dropoffs in 2019 and 2023, and 2 each15
of these four for both instruments, (i) one constructed with all events, and (ii) the other with just16
basketball games. Each observation in a dataset is an hour of the year.17

Regressions18
We run two sets of regressions on the data for 2019 and 2023. All regressions include a fixed effect19
for hour-of-day. We set zd = 1 when the effect of an event is active to compare against times when20
events are not active.21

1. The first set of regressions uses all the events as instruments. For drop-offs, we set the22
instrument zd = 1 from two hours before the start to the start of an event, and zd = 023
otherwise. For pick-ups, we set zd = 1 for two to four hours after the start of an event,24
and zero otherwise. The wider window accounts for the fact that arrivals and departures25
might be more dispersed for large concerts.26

2. The second set of regressions uses only basketball games as instruments. Days with any27
other events are removed from the dataset. Months with no basketball games at all are28
also removed. We set zd = 1 for 1 hour before the start of the game for drop-offs. All29
games last for about 2.5 hours, so we set zd = 1 for pick-ups from 2 to 3 hours after the30
start time of a game.31

Table 4 shows the results for the first stage regression, as defined in (10). Considering all32
events, an “active” event is a strong instrument for drop-offs in 2023 and 2019, and for pickups33
in 2019; the event does not have a statistically significant effect for pickups in 2023. When we34
look at only basketball games, we notice that the estimates for drop-offs and pickups in 2019 are35
approximately equal to the estimates when that dataset considers all events. However, the statistical36
significance of the estimate for drop-offs in 2023 in slightly reduced; the effect on pickups in37
2023 is still statistically insignificant. The F-statistic is greater than the critical value of 10 for all38
regressions.39

Table 5 shows the results for the reduced form regressions, i.e., the effect of an “active”40
event on the match rate as given in (8). Active events have a positive effect on match rate. However,41
the effect is statistically insignificant for 2023 if we only consider basketball games. Table 6 shows42

5https://www.barclayscenter.com/events-tickets/event-calendar

https://www.barclayscenter.com/events-tickets/event-calendar
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(a) 2023

(b) 2019

FIGURE 10: This figure shows the number of shared trips requested to be picked up and dropped
off in the four taxi zones around the Barclays Center. The plots show a small increase in dropoffs
before an event starts and an increase in pickups a couple hours after the event ends.
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TABLE 4: First stage regressions

Dropoff 2019 Pickup 2019 Dropoff 2023 Pickup 2023

All events

active 27.622*** 39.255*** 1.053* 0.324
(3.558) (4.757) (0.491) (0.659)

Num.Obs. 8015 8015 7271 7272
R2 0.484 0.548 0.281 0.445
F 312.032 403.535 118.117 241.831

Basketball games

active 28.731** 45.387*** 2.241+ -0.653
(10.694) (11.857) (1.337) (1.414)

Num.Obs. 1560 1560 1690 1690
R2 0.142 0.313 0.147 0.373
F 19.721 54.101 22.214 76.743

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

TABLE 5: Reduced form regressions

Dropoff 2019 Pickup 2019 Dropoff 2023 Pickup 2023

All events

active 0.026*** 0.028*** 0.079*** 0.063***
(0.005) (0.006) (0.015) (0.018)

Num.Obs. 8015 8015 7239 7242
R2 0.194 0.389 0.085 0.139
F 80.082 212.070 27.753 48.606

Basketball games

active 0.021* 0.029** 0.019 0.008
(0.009) (0.010) (0.031) (0.029)

Num.Obs. 1560 1560 1690 1690
R2 0.105 0.347 0.144 0.199
F 14.018 63.277 21.600 31.993

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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TABLE 6: IV regressions

Dropoff 2019 Pickup 2019 Dropoff 2023 Pickup 2023

All events

shared requested 0.001*** 0.001*** 0.075* 0.194
(0.000) (0.000) (0.035) (0.387)

Num.Obs. 8015 8015 7239 7242
Wu-Hausman (p-val) 0.21 0.79 9.9e-7 4.61e-3

Basketball games

shared requested 0.001** 0.001*** 0.009 -0.012
(0.000) (0.000) (0.014) (0.055)

Num.Obs. 1560 1560 1690 1690
Wu-Hausman (p-val) 0.54 0.57 0.69 0.73

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

the results for the Instrumental variable (IV) regression conducted using the ivreg package in R6.1
The estimated coefficient for the IV regression can also be obtained by dividing the estimate from2
the reduced form regression by the estimate of the first stage regression.3

The IV estimate is positive, meaning the an increase in the number of shared trips requested4
causes the match rate to increase, whenever the relationship is statistically significant. We also5
note that the magnitude of scale economies have changed significantly between 2019 and 2023.6
The most probable reason could be that the the relationship between demand for shared trips and7
quality of matching is not linear. We assume a linear relationship Ds and η because the goal of this8
study was to causally establish the existence of scale economies; a robustness check with log-log9
regression also confirmed the presence of scale economies.10

The IV estimate for some regressions are not statistically significant because binary zd does11
not introduce enough variation in Ds to estimate the supply curve. As a robustness check, we run12
another regression on the pickup data from 2023 where we use the number of people entering13
the Atlantic-Avenue Barclays Center subway station7 each hour as the instrument; this regression14
also includes fixed effect for hour-of-day. The IV estimate for γ1 in (1) is 0.0215 (p-value 0.002)15
showing that the system exhibits scale economies. The regression also rejects the Null hypothesis16
for the Weak Instrument and Wu-Hausman test.17

This analysis shows that ride-splitting does exhibit scale economies. However, the signifi-18
cance of the estimate also depends on the choice of the instrument. Future work can explore how19
different sources of exogenous variation affect the estimation; ideally all instruments should result20
in similar estimates.21

6https://cran.r-project.org/web/packages/ivreg/vignettes/ivreg.html
7Available since February 2022 at https://data.ny.gov/Transportation/

MTA-Subway-Hourly-Ridership-Beginning-February-202/wujg-7c2s/data

https://cran.r-project.org/web/packages/ivreg/vignettes/ivreg.html
https://data.ny.gov/Transportation/MTA-Subway-Hourly-Ridership-Beginning-February-202/wujg-7c2s/data
https://data.ny.gov/Transportation/MTA-Subway-Hourly-Ridership-Beginning-February-202/wujg-7c2s/data
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CONCLUSION1
Ride-splitting has the potential to make urban transportation more sustainable while reducing travel2
costs for passengers. Despite heavy investments by TNCs and tax incentives by governments, only3
a small proportion or ride-hailing trips request to share their rides. An even smaller number of trips4
actually get matched.5

In this paper we provide plausible explanations for different challenges to ride-splitting,6
pre- and post-COVID. Possibly, the pre-COVID decline in ride-splitting was largely a result of7
Uber’s withdrawal of subsidies. We also hypothesize that ride-splitting’s lack of rebound post-8
COVID can possibly be a result of the system being stuck in a low-sharing equilibrium. The9
presence of scale economies enables the possibility of multiple equilibria. Finally, we use an10
Instrumental Variables based approach to empirically establish the existence of scale economies11
using different regressions.12

ACKNOWLEDGMENTS13
This research was supported by National Science Foundation Grants CMMI-2052337, CMMI-14
2052512 and CMMI 23-39943 CAR.15



Pandey, Liu, Dong, Lehe and Gayah 23

REFERENCES1
1. Shaheen, S., A. Cohen, I. Zohdy, and United States. Federal Highway Administration,2

Shared Mobility: Current Practices and Guiding Principles, 2016.3
2. Shaheen, S. and A. Cohen, Shared Ride Services in North America: Definitions, Impacts,4

and the Future of Pooling. Transport Reviews, Vol. 39, No. 4, 2019, pp. 427–442.5
3. Manjoo, F., Car-Pooling Helps Uber Go the Extra Mile. The New York Times, 2016.6
4. Liu, H., S. Devunuri, L. Lehe, and V. V. Gayah, Scale effects in ridesplitting: A case study7

of the City of Chicago. Transportation Research Part A: Policy and Practice, Vol. 173,8
2023, p. 103690.9

5. Lehe, L., S. Devunuri, J. Rondan, and A. Pandey, Taxation of Ride-hailing. FHWA-ICT-10
21-029, 2021.11

6. Kidd, C., Matchmaking in Lyft Line, 2018, accessed: 2024-07-28.12
7. Castillo, J. C. and S. Mathur, Matching and Network Effects in Ride-Hailing. AEA Papers13

and Proceedings, Vol. 113, 2023, pp. 244–247.14
8. Lehe, L., V. V. Gayah, and A. Pandey, Increasing returns to scale in carpool matching:15

Evidence from Scoop. Transport findings, 2021.16
9. Ke, J., Z. Zheng, H. Yang, and J. Ye, Data-driven analysis on matching probability, routing17

distance and detour distance in ride-pooling services. Transportation Research Part C:18
Emerging Technologies, Vol. 124, 2021, p. 102922.19

10. Kitamura, R., S. Nakayama, and T. Yamamoto, Self-Reinforcing Motorization: Can Travel20
Demand Management Take Us out of the Social Trap? Transport Policy, Vol. 6, No. 3,21
1999, pp. 135–145.22

11. Ying, J. Q. and H. Yang, Sensitivity Analysis of Stochastic User Equilibrium Flows in a23
Bi-Modal Network with Application to Optimal Pricing. Transportation Research Part B:24
Methodological, Vol. 39, No. 9, 2005, pp. 769–795.25

12. David, Q. and R. Foucart, Modal Choice and Optimal Congestion. Regional Science and26
Urban Economics, Vol. 48, 2014, pp. 12–20.27

13. Lawler, R., New Ride-Sharing App Hitch Tries To Pair You With A Driver... And Other28
Passengers | TechCrunch, 2014.29

14. Russell, K., UberPool Lets You Split Uber Fares With Other Passengers Along The Same30
Route. TechCrunch, 2014.31

15. Lawler, R., With Lyft Line, Passengers Can Split Fares For Shared Rides, 2014.32
16. Lawler, R., Lyft Acquires Shared Ride Startup Hitch To Bolster Its Lyft Line Service, 2014.33
17. Manjoo, F., Car-Pooling Helps Uber Go the Extra Mile. The New York Times, 2016.34
18. Marshall, A., Lyft Redesigns Its App—and Strategy—for the Age of Sharing. Wired, 2018.35
19. Stock, b., Uber Newsroom, 2018.36
20. Westhagen, A., Introducing Shared Saver, Our Most Affordable Ride | Lyft, 2019.37
21. Hawkins, A. J., Lyft Shuttle Mimics Mass Transit with Fixed Routes and Fares. The Verge,38

2017.39
22. Duffy, C., Uber Will Soon Let Riders Book a Shuttle to the Airport, 2024.40
23. Uber, Uber Shuttle FAQ | Riders | Uber Help, 2024.41
24. Peters, J., Uber Reintroduces Shared Rides with a New Name. The Verge, 2021.42
25. Bellon, T., Lyft to Resume Shared Rides in U.S. for First Time since Pandemic | Reuters,43

2021.44
26. Lyft, Shared Rides Return to More Cities, 2022.45



Pandey, Liu, Dong, Lehe and Gayah 24

27. Bellan, R., Lyft Might Drop Shared Rides, Stay Focused on Basics under New CEO.1
TechCrunch, 2023.2

28. Martin, C., Granting Shares for Fares: An Uber Rival’s Play for Drivers. The New York3
Times, 2016.4

29. Via, Public Mobility Solutions. | Via Transportation, 2024.5
30. Uber, UberX Share | Share Your Ride to Save, 2024.6
31. Dotan, T., Uber’s Cheap and Popular Pool Ridesharing Service Lost the Company as Much7

as $1 Million a Week in San Francisco Alone. Business Insider, 2021.8
32. Liu, H., S. Devunuri, L. Lehe, and V. V. Gayah, Scale Effects in Ridesplitting: A Case9

Study of the City of Chicago. Transportation Research Part A: Policy and Practice, Vol.10
173, 2023, p. 103690.11

33. Abkarian, H., S. Hegde, and H. S. Mahmassani, Does Taxing TNC Trips Discourage Solo12
Riders and Increase the Demand for Ride Pooling? A Case Study of Chicago Using Inter-13
rupted Time Series and Bayesian Hierarchical Modeling. Transportation Research Record,14
Vol. 2677, No. 1, 2023, pp. 212–223.15

34. Macdonald, A., Uber Newsroom, 2022.16
35. Davalos, J., You’ll No Longer Be Able to Take a Carpool Ride with Lyft to Save Money.17

Fortune, 2023.18
36. Wooldridge, J. M., Introductory Econometrics: A Modern Approach, 2012.19
37. Romer, P., The Trouble With Macroeconomics, 2016.20


	Abstract
	Introduction
	Timeline
	Data

	Pre-COVID decline
	Effect of Lyft's Exit
	Scale economies
	Quality of matching
	Proposed Instrument
	Data
	Regressions

	Conclusion
	Acknowledgments

