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Abstract1

Ride-sharing platforms like Uber and Lyft have transformed urban transportation by reducing travel2
distances and increasing vehicle occupancy rates. However, efficiency is often limited by market3
segmentation, where rider-rider pairs are restricted to specific platforms, potentially leading to4
suboptimal results. This study uses a dynamic graph-based framework with maximum weighted5
matching to compare the efficiency of a competitive market with a more collaborative one where6
platforms can share individual trip requests. We model riders as graph vertices with dynamic7
weighted edges representing profit and waiting times. The competitive market is modeled as sub-8
graphs representing different platforms, the collaboration scenario as a union graph, and a rational9
collaboration mode as a partial union graph under Shapley-value-based profit constraints and in-10
formation transparency control. Maximum weighted matching is found within sub-graphs for the11
competitive market and within the union graph for different collaboration types. Additionally, we12
examine how the computational performance varies with the scale of nodes and edges. The re-13
sults reveal that a collaborative market significantly improves share rates and profit while reducing14
travel distances and waiting times by overcoming market segmentation barriers. This highlights15
the benefits of cross-platform collaboration, suggesting it can enhance operational efficiency in a16
competitive environment. Although market segmentation and platform controls can impact per-17
formance, rational collaboration generally serves as a feasible approach to achieving a near-ideal18
fully collaborative scenario.19
Keywords: On-demand Ride-sharing, Market Segmentation, Competition, Collaboration, Maxi-20
mum Weighted Matching, Shapley Value21
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INTRODUCTION1
Ride-sharing involves sharing a vehicle journey among riders traveling in similar directions, thereby2
reducing the number of vehicle trips needed to serve passengers (1). This concept can be traced3
back to the push for carpooling during the US oil crisis in the 1970s (2). Since then, it continuously4
evolved and been promoted in various forms, such as peer-to-peer ride-sharing (3) and on-demand5
ride-sharing (4). The push for ride-sharing stems from its numerous benefits, including reducing6
total vehicle travel distance, increasing vehicle occupancy rates, decreasing required fleet size,7
alleviating traffic congestion, and lowering greenhouse gas emissions (5). The sharing mobility8
economy has grown considerably in recent years and achieved over $130 billion in global con-9
sumer spending (6) in 2019 (pre-pandemic). Various Transportation Network Companies (TNCs)10
offer ride-sharing services and compete for customers, including Uber, Lyft, DiDi, and Via.11

Competition among TNCs is not always beneficial, as a competitive market can lead to12
either competitive prices or price collusion for ride services (7). Competitive prices alter riders’13
selection of platforms, while price collusion (usually resulting in surged prices during peak hours)14
tends to push riders away to seek other options. This potential dynamic of riders’ shifting among15
platforms brings instability to the segmentation of the system and impedes the economies of scale16
for each platform. The economies of scale originally refer to cost advantages that enterprises17
obtain due to the increase in the scale of operation (8). In ride-sharing systems, it refers to the18
efficiency increases as the amount of service increases. Specifically, as the number of shared ride19
requests increases, various measures of system performance (e.g., service quality, sharing rate,20
detour distance—the extra distance in a shared trip compared with the corresponding rider’s single21
trip—, and wait time) improve (9, 10). The fragmented ride-sharing market created by various22
TNCs divides users into separate matching pools, reducing the potential for higher efficiency and23
quality (11) that can be achieved due to economies of scale.24

Collaboration among on-demand service platforms might be a potential solution to mit-25
igate these inefficiencies. In the practical experience of the ride-hailing services market, where26
matching typically involves pairing one rider with one driver, established practices already exist.27
For instance, the Uber platform has partnered with taxi-hailing companies such as Curb, Arro,28
Flywheel, and YoTaxi to integrate traditional taxi options into their applications (12, 13). This29
initiative aims to boost matching efficiency and service coverage by integrating their resources.30
Some third-party platform integrations also exist; for example, Baidu Map integrates the platform31
options of DiDi and others in a single interface for ride-hailing in China (14). This integration32
has resulted in a lower pickup distance and a higher match rate. However, there are no established33
practices for ride-sharing matching collaboration in practice. Some research on this domain does34
exist, details will be presented in the next section.35

This paper introduces a dynamic graph-based framework to compare the performance of36
ride-share systems under different levels of collaboration among TNC platforms. The dynamic37
weighted graph captures the status of rider requests and tracks rider waiting times, which are38
used to make matching decisions. The Shapley value method allocates profits for inter-platform39
rider pairs and compares them with intra-platform profits. If inter-platform profit is higher, the40
collaboration option is agreed upon. To this end, rider-rider matching pairs selected based on the41
maximum weighted matching method within and across platforms are recorded and processed. Our42
goal is to maximize the total saved travel distances in shared trips and minimize the total wait time43
of riders. The performance of this framework is compared to both a perfect competition scenario44
and a complete collaboration scenario through empirical experiments.45



Dong, Ventura, and Gayah 2

The rest of this paper is organized as follows. The next section reviews the literature on both1
traditional and state-of-the-art technologies, highlighting existing gaps in ride-sharing systems.2
This is followed by a detailed methodology section. The following section presents an empirical3
experiment using the New York City Taxi and Limousine Commission (TLC) dataset, comparing4
the performance of competitive and collaborative markets. Finally, the last section concludes with5
our findings.6

LITERATURE REVIEW7
In this section, we review the literature focusing on two main streams. The first stream addresses8
matching in ride-sharing systems, emphasizing the matching among riders (shareability) rather9
than the matching between rider pairs or riders and drivers (dispatching process). The second10
stream focuses on collaboration within the ride-sharing market, examining two key areas: the11
effects of competition and collaboration, and the existing collaboration methods and their impacts12
on the market. Additionally, we clearly state our contributions to the field.13

Matching in Ride-sharing System14
There is a wide spectrum of approaches to solving matching problems in ride-sharing systems,15
including heuristic, combinatorial optimization, machine learning, and graph-based methods.16

For carpooling and peer-to-peer ride-sharing services, where demand is well determined17
far in advance of trips, the aforementioned solutions are easy to implement (15–17). However,18
demand is generated shortly before trip departure in on-demand ride-sharing systems; matching19
decisions must be made dynamically. In this context, heuristic methods, sometimes referred to as20
instant matching methods, offer the advantage of near-instant responses (18, 19), but suboptimum21
solutions (e.g., higher total vehicle travel distances and lower successful pooling rates). To han-22
dle this, combinatorial optimization methods (such as integer linear programming and dynamic23
programming) combined with sliding windows (20) are widely used. These approaches involve24
optimizing the assignment of a batch of requests at regular time intervals and continuously updat-25
ing decisions as new data comes in (21, 22). Although combinatorial optimization methods are26
capable of providing system optimum solutions (23), their application can still be computationally27
expensive and complex.28

In comparison, numerous polynomial-time graph-based algorithms can be applied to match-29
ing problems. For a detailed review of these types of models, readers are referred to Duan (24).30
Bipartite matching is widely used for finding rider-driver pairs; e.g., Agatz et al. developed a dy-31
namic ride-matching optimization method by positioning passengers and drivers on two sides of32
a bipartite graph (25). General graphs are more suitable for finding rider-rider pairs. Depending33
on the objectives, the matching problem can be categorized into maximum cardinality matching34
(containing as many edges as possible) or maximum weighted matching (MWM). Some papers35
have applied maximum cardinality matching to maximize the possibility of riders being matched36
in a ridesharing system, for example, Santi et al. (26). Instead of finding maximum cardinality37
matching, we focus on finding MWM in a general graph. Galil’s O(mn logn)-time algorithm for38
maximum weighted matching in general graphs (27) is efficient for sparse graphs. This efficiency39
makes graph-based methods valuable in systems with frequently changing configurations.40

Most developed matching models in ride-sharing systems have focused on a single TNC,41
overlooking the potential for shareability among different platforms. Our paper, however, focuses42
on rider-matching both within and among platforms. Besides, unlike most papers that use bipar-43
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tite graph matching, maximum cardinality matching in unweighted general graphs, or MWM in1
weighted general graphs that only consider travel time, we propose a dynamic graph that maxi-2
mizes total profit while prioritizing riders with longer waiting times.3

Platform Competition and Collaboration4
Several studies have examined the impact of competition among TNC platforms. For example,5
Séjourné et al. quantified how demand fragmentation degrades the efficiency of the Mobility-on-6
Demand services systems by focusing on the supply re-balancing costs incurred by this demand7
fragmentation (28). Liu et al. examined competition’s impact on travel characteristics and in-8
troduced entropy to evaluate spatial and temporal competition among TNC platforms (11). The9
study found that increased competition leads to decreased share rates on each platform and longer10
average travel distances for shared trips.11

Other studies have investigated how collaboration influences system efficiency and plat-12
form profit. Zhou et al. presented the equilibrium of a competitive ride-sourcing market with13
platform integration and compared the performance of the ride-sourcing market with and with-14
out integration (29). The study found that platform integration does not always increase platform15
profit but always enhances social welfare. Guo et al. proposed different profit allocation mech-16
anisms among TNC platforms in four market structures, demonstrating benefits such as reducing17
total vehicle travel distance and decreasing the total number of trips in collaborative scenarios18
(30). The focus was primarily on profit allocation mechanisms for different market designs and19
emphasizing the required fleet size. Wang et al. introduced a deep reinforcement learning model to20
determine driver-passenger pairs in a third-party integrated ride-hailing platform (31). The study21
demonstrated that the proposed method can mitigate dispatching conflicts between platforms and22
enhance overall market efficiency, resulting in a higher order response rate, increased market rev-23
enue, and lower total travel distances.24

However, these studies have predominantly focused on the supply (drivers) and demand25
(riders) dynamics, paying relatively less attention to the intricacies of cross-platform rider-rider26
matching. In contrast, our paper emphasizes the shareability of riders among platforms.27

Our Contributions28
To summarize, most studies have focused exclusively on a monopolistic matching environment,29
without examining how ride-sharing services may be improved by sharing riders between different30
platforms. Additionally, existing collaboration papers focus more on the supply management side31
rather than on rider shareability. To partially bridge these gaps, the contributions of this paper to the32
literature are as follows: 1) developed a graph-based framework with dynamic edge weights and33
maximum weighted matching method to match ride-share users; 2) proposed Shapley-value-based34
collaborating strategies for ride-sharing platforms in sharing users; and, 3) examined the impacts35
of collaboration over competition under varying levels of information transparency and varying36
levels of market segmentation.37

METHODOLOGY38
In this section, we first discuss the trip fare and profit allocation, then the geographical and tem-39
poral adjacency of riders, and the rider-rider graph (RR-G) concepts. We then present the market40
partition, which includes full competition, full collaboration, and rational collaboration. Finally,41
we present the method to find maximum weighted matching pairs in the constructed general graphs42
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under different market behaviors.1

Trip Fare and Profit Allocation2
Demand is spatially and temporally stochastic, with riders selecting platforms based on heteroge-3
neous preferences and factors. A trip request from a given rider ri is distinguished by the following4
four characteristics: ri = {Pi, ti,Oi,Di}. Here, Pi is a categorical variable denoting the platform se-5
lected, ti is the request time, Oi is the rider’s origin, and Di is the rider’s destination. The platform6
then offers an upfront flat fare to this rider, fi, based on the direct trip distance from his origin to7
destination, as defined in Equation (1). If a rider shares a trip with others, we assume for simplicity8
that the fare collected from each shared rider is the same as for single trips, although a discount9
could be given.10

fi = li(αd +
α t

v̄
), (1)11

where li is the direct distance of ri; αd , α t are the unit value of distance and unit value of time; and12
v̄ is the average speed of the vehicles, which is assumed here to be a constant for simplicity.13

Assuming the driver’s cost is proportional to vehicle traveled distance and time, the profit14
each platform obtains from a single trip is defined in Equation (2), and the profit from a shared trip15
for rider pair (ri,r j) is defined in Equation (3).16
pi = fi(1−o), (2)17

pi j = fi + f j − li j(α
d +

α t

v̄
)o, (3)18

where pi is the profit out of ri; o is the driver payout rate; li j is the travel distance of the shared19
trip; and f j is the fare from r j.20

The profits from inter-platform shared trips are distributed to different platforms based on21
the Shapley value method (32), a game-theory-based profit allocation scheme defined in Equa-22
tion (4). In our collaborative game, the shareable riders are considered the players, denoted as N.23
Each successfully served solo rider or shared rider pair, such as (ri,r j), is considered a coalition S.24
The profit gained for the platforms is the value of this coalition, denoted as v(S).25

φi(v) = ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!
|N|!

[v(S∪ i)− v(S)] , (4)26

where φi(v) is the profit allocated to player i; v(S∪ i) is the value of the coalition with the addition27
of player i; summation over S ⊆ N \{i} considers all coalitions without player i.28

When we restrict at most two riders in a shared trip, the matching decision becomes a29
two-player cooperative game, and the Shapley values φri and φr j are simplified as:30

φri =
1
2
(v({ri})− v({ /0}))+ 1

2
(
v({ri,r j})− v({r j})

)
,

φr j =
1
2
(
v({r j})− v({ /0})

)
+

1
2
(
v({ri,r j})− v({ri})

)
,

(5)31

where v({ri}) is the value (profit) out of ith solo trip; v({ /0}) is the value (profit) of no trips, and is32
0; v({ri,r j}) is the value (profit) of the shared trips.33

Feasible Pairs34
Many trips are ‘similar’ regarding origins, destinations, and time, and therefore could be aggre-35
gated into fewer vehicles. Here, we define pairs of riders sharing their trips as feasible pairs, and36
two steps are needed to find them:37
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First, a sliding window technique (20) segments trip requests into small batches. As shown1
in Figure 1, the sliding window (swt) is an ε-length time window (e.g., ε = 5 minutes) that moves2
over time. The moving step, s, of this window can be any integer within [1,ε]. The riders with the3
request time inside tth time window, [t − ε, t], are considered active riders for pairing.4

Note: ti, t j, tx, ty are rider arrival times, swt is the tth sliding window, and ε,s are its length and moving step.

FIGURE 1: Illustration of a Sliding Window

Second, we determine if there exists a shortest path for two active riders. Since we assume5
at most two riders (e.g., ri and r j) can share their trips, only four possible pick-up and drop-off6
sequences exist: OiO jD jDi, O jOiDiD j, OiO jDiD j, and O jOiD jDi, as depicted in Figure 2. The7
underlined sequence is the trip segment same as direct single trips, where no detour distance is8
encountered. The shortest travel distance of the path, denoted as li j, is the smallest length of four9
possible paths. However, whether this ride-sharing pair is feasible is checked with the following10
three constraints:11

• Constraint 1 (C1): Waiting time constraints. To minimize the wait time for riders after12
booking, a waiting time threshold, τ , is set for each rider to be picked up.13
lOiO j ≤ v̄τ. (6)14
where lOiO j is the travel distance between origins of ri and r j, assuming ri is picked up first.15

• Constraint 2 (C2): Detour distance constraints. To prevent excessively long travel times,16
only a certain proportion of a passenger’s direct trip distance is acceptable as an additional17
distance for a shared trip.18
lOxDx − lx

lx
≤ γ, ∀x ∈ i, j, (7)19

where lx and lOxDx are the direct trip distance and the distance between the origin and destina-20
tion of rider x (x ∈ {i, j}) in a shared trip (which may include a partial detour), respectively;21
and γ is the fixed detour factor.22

• Constraint 3 (C3): Profit constraints. The profit from shared trips should be no less than the23
sum of profits from single trips.24
pi + p j ≤ pi j. (8)25
where pi j is from Equation (3), and pi and p j are from Equation (2).26

Checking the constraints for every two active riders with Equations (6)–(8), the indicators27
(0 or 1) for feasible pairs are recorded in an indicators matrix, denoted as It , defined in Equation (9).28

29

It =

{
It
i j | It

i j =

{
1 if C1 ∩C2 ∩C3,

0 otherwise
and ∀i, j such that ri,r j ∈ swt

}
. (9)30
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Note: The locations do not represent the actual locations but merely illustrate the path sequences. Dashed
grey arrows show the direct single trip path, while the solid red arrows represent the shared trip path.

FIGURE 2: Illustration of Path Sequences

Rider-Rider Graph1
A representative rider-rider graph (RR-G) is an undirected weighted graph that represents the ad-2
jacency relationships among riders over a specific period.3
Vertices4
V t represents the active riders set in the t th sliding window swt , and the number of vertices, |V t |,5
is the number of active riders in that window. k different colors are assigned to the vertices,6
representing the riders belonging to k different platforms.7
Edges8
The edge set is a set of unordered pairs of vertices, denoted as Et ⊆ {(x,y) | x,y ∈ V t and x ̸= y}.9
Each edge is associated with two distinct vertices and is connected with a weight representing10
the adjacency relationships between riders. The weight of an edge in our graph is dynamic, as11
defined by Equation (10). It consists of two parts: the profit of the shared trip and the waiting time12
of the connected riders. The elements in the indicator matrix, It

i j, are used to decide whether an13
edge exists in the graph. With the sliding window, each additional waiting step increases a rider’s14
connection weight, prioritizing longer waits and reducing overall waiting time.15
wi j = It

i j
[
pi j +(tw

i + tw
j ) α

t] , (10)16
where tw

i and tw
j are the waiting time of rider ri and rider r j, It

i j is from Equation (9).17
Thus, the RR-G, Gt = (V t ,Et), can be constructed with the elements introduced above.18

Modifications on Gt are made in the next subsections to represent different market behaviors. A19
schematic RR-G is presented in Figure 3, where we considered two platforms in the system. On20
the left is the requested trip queue in the sliding window of [0,5], and on the right is the constructed21
Gt=5.22

The Ride-sharing Market23
The status quo ride-share market is primarily dominated by only a few TNC platforms with dif-24
ferentiated services, presenting an oligopolistic market. For instance, the ride-sharing market in25
Manhattan is dominated by Uber and Lyft, creating a special scenario of oligopoly: a duopoly26
market. Under the current market structure, there is no collaboration among TNC platforms, only27
full competition behaviors. However, we propose methods to construct the RR-G and analyze the28
performance under competition and collaboration (both full and rational) behaviors.29
Full Competition30
With full competition behavior, the platforms operate independently. Suppose an RR-G of the31
whole ride-sharing system at the t th sliding window is represented as Gt = (V t ,Et). Each platform32
owns only an induced sub-graph of this Gt , denoted as Ht

i . The induced sub-graph contains only a33
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RID Platform Time OID DID Edge Weight

1 0 0 1 5 6.55
2 0 1 3 1 3.17
3 0 2 4 5 5.67
4 0 3 5 2 3.21
5 1 0 1 1 0.19
6 1 2 1 1 0.33
7 1 3 1 6 3.01
8 1 3 3 3 0.31
9 1 4 5 2 3.37
10 1 5 5 6 4.09

Note: Solid lines show feasible pairs within platforms, and dashed lines show those between platforms.

FIGURE 3: Rider Requests and Schematic Rider-Rider Graph at a Single Time-Step

subset of vertices from Gt and all the edges from Gt that connect vertices only within this subset.1
If there are k different platforms, there will be k induced sub-graphs, and each is defined in Equa-2
tion (11). The weight of edges is calculated using Equation (10), except for all ri and r j belonging3
to different platforms, which are modified to 0.4
Ht

i = (V t
Hi
,Et

Hi
), where V t

Hi
= {x | x ∈ Pi} and Et

Hi
= {(x,y) | x,y ∈ Pi}, (11)5

where Pi represents the ith platform (i ∈ [1,k]), V t
Hi

is the vertex set with riders belonging to the ith6
platform (V t

Hi
⊆V t), and Et

Hi
is the edge set connecting only riders within the platform (Et

Hi
⊆ Et).7

Vertices x,y are riders in Pi.8
Full Collaboration9
Full collaboration assumes all providers share all resources as if they were one provider to optimize10
the entire system’s operation. Under this behavior, the collaborative graph Ct = (V t

C,E
t
C) includes11

all vertices and edges from the RR-G, with weights defined by Equation (10):12
Ct = (V t

C,E
t
C), where V t

C =V t and Et
C = Et . (12)13

where V t
C is the vertex set with active riders in the current sliding window, and Et

C is the edge set14
with edges connecting both inter-platform riders and intra-platform riders.15
Rational Collaboration16
Rational collaboration, on the other hand, differs from the full collaboration scenario in that two17
additional conditions need to be met before a rider may be shared with another platform: 1) each18
provider has some control over rider information transparency, which controls the extent to which19
the rider’s information is exposed across the market while collaborating; and, 2) each platform20
checks the up-front profit—calculated using the Shapley value—of sharing a rider with another21
platform before allowing it to be shared, with Equation (4)–(5). Trips may only be shared if they22
fit within the information transparency provision and are financially feasible to do so. The indicator23
matrix for the qualified edges connecting ri and r j in this rational collaboration scenario, derived24
from Equation (10), is updated as follows:25
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It
i j = 1i j

(
(φ inter

ri
≥ φ

inner
ri

)∧ (φ inter
ri

≥ pi)∧ (φ inter
r j

≥ p j)∧ (φ inter
r j

≥ φ
inner
r j

)
)

It
i j (13)1

where 1i j is the indicator function. φ inter
. and φ inner

. are the inter-platform upfront profit and inner-2
platform profit for ri or r j in the pair (i, j), calculated using the Shapley value method.3

Then the weight of edges is calculated with the updated indicator matrix and Equation (10).4
And the rational collaborative RR-G, denoted as RCt = (V t

RC,E
t
RC), is defined as:5

RCt = (V t
RC,E

t
RC), where V t

RC = {x | x ∈ Pi ∧Pj} and Et
RC = {(x,y) | x,y ∈ Pi ∧Pj}, (14)6

where V t
RC is the vertex set, containing all active riders in all platforms (V t

RC =V t); and Et
RC is the7

edge set that contains all inner-platform edges and partial inter-platform edges (Et
RC ⊆ Et).8

Maximum Weighted Matching (MWM)9
The optimum ride-sharing solutions are also provided dynamically within each sliding window.10
Using RR-Gs under different market behaviors— Ht =(V t

H ,E
t
H), Ct =(V t

C,E
t
C), and RCt =(V t

RC,E
t
RC)11

—three matching sets MH , MC, and MRC are decided by:12
max W (G) = ∑

Ei j∈M
w(Ei j)

s.t. Ei j ∩Exy = /0, ∀Ei j,Exy ∈ M,

M ⊆ E,
w(Ei j) = wi j,

(15)13

where G is one of the defined RRGs, W (G) is the maximum weight of graph, and E is the cor-14
responding edge set of the RR-G. M is the matching set to be assigned, which is the subset of15
E.16

Finding the augmenting path is the core of finding the maximum weighted matching in a17
general graph, which is defined as an alternating path that starts and ends with unmatched vertices18
and alternates between edges not in M and edges in M. We utilized the technique of finding a19
maximum weighted matching in general graphs developed by Galil (27), which employs a primal-20
dual method. Finding the matching (edge set) is a primal solution, and the dual solution is an21
assignment of dual variables ui, u j corresponding to vertices. With the solution of rider pairs, and22
given the large number of available drivers in TNCs, dispatching the nearest driver to the itinerary23
instantly is feasible. Therefore, in the following, we assume all paired-up riders or solo riders can24
be matched with available drivers.25

EMPIRICAL EXPERIMENT26
The experiment is designed to examine the feasibility of the proposed model and analyze the im-27
pact of different market behaviors on the ride-sharing system’s performance under varying market28
shares and information transparencies. This section details the data, experimental designs, param-29
eters, and simulation steps.30

Data31
TLC trip data (33) from Manhattan, NYC are used as system inputs. From 2019 to 2023, the32
proportion of shared trip requests dropped significantly from 16% to 2%, according to the data in33
Table 1. Due to this shift, the most recent data from February 2023 were considered here. Figure 434
shows the daily and five-minute aggregated counts of requested single and shared trips. Most days35
see around 180,000 single trip requests and 3,250 shared trip requests, with about 750 single trip36
requests and 10 shared trip requests every five minutes. This data indicates that current shared37
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ride services have very few candidates. To maximize potential benefits from the current market,1
we focus on February 4th, 2023, the day with the highest number of shared trip requests, totaling2
4,235.3

The TLC trips are encoded with locations in taxi zones (33). To simulate travel distances4
more precisely, we used the GeoPandas (34) and OSMNX (35) Python packages to decode the5
origins and destinations from 63 zones in Manhattan to 4,589 intersections in the roadway network.6
The all-to-all distance matrix was queried and recorded.7

TABLE 1: Summary of Manhattan TNC Trips in February 2019 VS February 2023

TNC
(Year)

Realized
Trips

Shared
(%)

Base Fare
($)

Unit Fare
($/mile)

Unit Fare
($/min)

Avg. Wait
Time (min)

Avg. Trip
Distance (mile)

Avg. Direct
Time (min)

UberX (2019) 3,526,943 – 2.40 1.42 0.54 4.29 2.52 14.92
UberPool (2019) 837,247 80.11 1.42 1.06 0.06 6.88 3.01 17.88
UberX (2023) 4,196,579 – 4.09 1.76 0.64 4.05 2.56 14.71
UberPool (2023) 55,491 45.18 3.43 0.81 0.50 6.45 4.47 22.13

Lyft (2019) 991,262 – 2.99 1.61 0.45 3.89 2.65 14.74
LyftLine (2019) 676,557 79.36 2.48 1.27 0.09 5.96 3.18 18.89
Lyft (2023) 1,136,579 – 3.96 1.62 0.58 4.64 2.70 14.87
LyftLine (2023) 45,770 34.64 3.96 0.65 0.52 12.48 4.71 22.89

Note: UberX, Lyft: single trip service; UberPool, LyftLine: shared trip service
all fare-related parameters were estimated with linear regression and statistically significant p-values.

FIGURE 4: Distribution of Aggregated (Every 5-minutes) Trips in February, 2023

Design8
In the experiment, two varying parameters are market share and rider information transparency.9
Three types of market shares are examined under low (30%), equal (50%), and high (70%) condi-10
tions for one platform (referred to as platform 0) in a market comprising two platforms (0 and 1).11
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The rider information transparency indicates the different levels of control over the rider’s infor-1
mation sharing with other platforms in rational collaborations, also viewed as an indicator of the2
platform’s willingness to collaborate. Five different levels of rider information transparency are3
explored for platform 0: [0.2,0.4,0.6,0.8,1.0].4

Ten replications of the simulation are conducted to ensure the robustness and reliability5
of the results. Parameters used in the simulation are listed and explained in Table 2. Control6
parameters are fixed constant for all designs, including ε , s, τ , o, γ , v̄, αd , and α t . Notice that7
these parameters could vary across different service quality objectives. However, this is not the8
key focus of this paper, so we hold them constant.9

Detailed steps of a single replication are as follows: the time horizon of a single replication10
is set to H = 1440 minutes (24 hours), and the sliding window moves over a day. We set both the11
length and the moving step of the sliding window to 5 minutes, also defined as non-overlapping12
windows. In the beginning, t = 0, the daily trip requests, Q0, are loaded into the simulator, en-13
compassing initial features such as the arrival time, the platform they requested from, origins, and14
destination. The trip fares are calculated using Equation (1), with αd = 1 and α t = 0.2. At this15
stage, some randomness could be introduced into the rider’s selection of platforms, based on a16
defined market share of platforms, P. Although all data are loaded into the simulator at the same17
time, trips are marked as active to serve only when they fall within the sliding window, swt . At18
each time step, the following steps are conducted:19

1. Update the queue, Qt , including the status of riders (inactive, active, served), waiting time of20
unserved riders, etc.21

2. Gather all un-served requests from active riders to calculate the shareability indicator matrix22
I, with Equations (6)–(9).23

3. Construct vertices and weighted edges in three distinct RR-Gs: the competitive graph Ht , the24
full collaborative graph Ct , and the rational collaborative graph RCt using Equations (10)–25
(14).26

4. Compute and allocate upfront profits from feasible pairs to the corresponding platforms based27
on the Shapley value method, in Equations (4)–(5).28

5. Check, determine, and record the maximum weighted matching set within the constructed29
graphs based on Equation (15).30

6. Update the queue Qt with the matching records and record the profits from both inter-platform31
and intra-platform matches to corresponding platforms.32

Evaluation Metrics33
Six performance metrics were used to quantify the performance:34

• Share rate: percentage of rider requests served as shared riders.35
• Platform profit: total revenue generated by the trip fare minus the operational costs.36
• Vehicle travel distance: distance traveled by vehicles in serving riders.37
• Shared trip distance: trip distance when both shared riders are on board.38
• Passenger detour distance: additional distance a passenger has to travel due to sharing a39

ride with others, compared to a direct trip.40
• Passenger waiting time: time a rider waits from requesting a ride until being offered a trip.41
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TABLE 2: Summary of parameters in ride-sharing simulation

Notation Interpretation Value

n Number of replications 10
H Horizon (minute) 1440
t Time step [0,H]

M The number of Platforms 2
Qt Riders’ trip request queue at certain time [r1,r2, ...,ri], i ∈ [1,4235]
ε Length of sliding window (minute) 5
s Moving step of sliding window (minute) 5

swt Sliding window (minute) [t − ε, t]
P Market Share [0.3, 0.7], [0.5, 0.5], [0.7, 0.3]
Θ Rider information transparency [0.2, 0.4, 0.6, 0.8, 1.0]
τ Maximum waiting time (minute) 10
o Driver payout factor 0.5
γ Maximum detour factor 0.4
v̄ Velocity (mph) 30

αd Value of distance (vod) ($/mile) 1
α t Value of time (vot) ($/minute) 0.2

RESULTS1
This section presents the results of experiments conducted under various designs and analyzes the2
outcomes across all three market behaviors.3

Share Rate4
Two share rate results are explored: one over a 5-minute horizon and another over a one-day5
horizon. To eliminate the influence of unrelated parameters, we control the market share across6
the two platforms to match a real-world scenario (58% and 42%) and set the rider information7
transparency of both platforms to 100%. This setting for the control variables remains consistent8
until the sensitivity analysis subsection.9

Figure 5 shows the MWM results of riders within a specific 5-minute time horizon. Each10
node (from r0 to r22) represents a rider. Solid black lines indicate potential intra-platform matches,11
while dashed black lines indicate potential inter-platform matches. Since rational collaboration12
has more constraints on collaboration than full collaboration, there are fewer dashed lines. Under13
the full competition scenario, in Figure 5(a), only solid lines can be selected for the matching set.14
Under both collaboration scenarios, in Figure 5(b) and Figure 5(c), both solid and dashed lines can15
be selected. Red lines indicate optimum matches. In the competitive market, in Figure 5(a), the op-16
timum matching pairs are M1 = {r0r15,r3r20,r5r9,r21r22} with a match rate of 36%; in the full col-17
laboration, in Figure 5(b), the optimum matching is M2 = {r0r15,r2r4,r5r10,r6r3,r9r17,r13r20,r21r22}18
with a match rate of 64%. In the rational collaboration, in Figure 5(c), the optimum matching19
is M3 = {r0r15,r2r4,r5r10,r6r3,r9r17,r21r22} with a match rate of 54%. This result provides an20
overview of how matching differs under different scenarios. The average benefits are quantified21
over a one-day horizon and presented in the next figure.22

Figure 6 illustrates the riders’ share rate over one day, segmented into four time intervals:23
0-5 hours, 6-11 hours, 12-17 hours, and 18-23 hours. The grey bars show the total number of24



Dong, Ventura, and Gayah 12

FIGURE 5: Maximum Weighted Matching Result for Riders within one sliding window in (a)
Competitive Market, (b) Fully Collaborative Market, and (c) Rational Collaborative Market

shared trip requests, and the colored bars present the number of realized shared trips under the1
three scenarios mentioned above. Additionally, the corresponding share rates in each scenario are2
depicted as dashed lines. The benefits of collaboration are evident: the share rate increases by ap-3
proximately 15% under full collaboration. Additionally, full collaboration results in a marginally4
higher share rate (2%) than the rational collaboration scenario. This is because the full collabora-5
tion scenario maximizes shared trips without being constrained by individual platform profits. In6
contrast, rational collaboration only facilitates inter-platform matching if the profit exceeds that of7
intra-platform matching or a single rider traveling alone on their platform. The results demonstrate8
that collaboration enhances share rates, and rational collaboration can achieve performance levels9
close to those of full collaboration under our settings, where all platforms operate as a single entity.10

FIGURE 6: Shared Rate over One Day
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Platform Profit1
Figure 7 presents the profit benefits of the ride-sharing system. The competition with the shared2
trips scenario (Figure 7 (b)) shows higher profit than single trips (Figure 7 (a)), suggesting that3
promoting shared trips is more profitable under our matching constraints. Both platforms experi-4
ence profit growth when the market transitions from competitive behavior to a fully collaborative5
one. The full competition scenario (Figure 7 (c)) reveals the highest profits, demonstrating that6
full resource sharing and coordination maximize system efficiency and profitability. The rational7
collaboration scenario (Figure 7 (d)) also yields substantial profits, albeit slightly lower than full8
collaboration, validating the feasibility of our proposed collaboration way. Besides, platform 09
consistently achieves higher profits than platform 1, reflecting its larger market share.10

FIGURE 7: System Profit under Different Modes

Trip Characteristics11

TABLE 3: Comparison of Service Quality Across Different Scenarios

Scenario Vehicle Distance Shared Distance Detour Distance Wait Time

Competition 5.65 2.59 0.454 3.84
Rational Collaboration 5.48 2.65 0.443 3.71
Full Collaboration 5.52 2.61 0.451 3.69

Table 3 presents several metrics for shared trips from the same experiment mentioned above12
to evaluate service quality performance across the three market behaviors. Variations of these four13
metrics under different experiment designs can also be seen in Figure 8. Vehicle distance represents14
the distance from the first passenger pickup to the last passenger drop-off, while shared distance is15
when both passengers are on board. A lower shared distance typically results in a higher vehicle16
distance and detour distance for successfully shared trips. For example, rational collaboration has a17
shared distance of 2.65 miles compared to 2.61 miles in full collaboration, a lower average vehicle18
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travel distance of 5.48 miles versus 5.52 miles, and a lower detour distance of 0.443 miles versus1
0.451 miles. But the differences are small, which are less than 0.1 mile. Generally, the performance2
of full and rational collaboration is very similar and is better than competitive behavior.3

Sensitivity Analysis4

FIGURE 8: Influence of Market Share and Information Transparency
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A sensitivity analysis on the influence of market share and rider information transparency1
is analyzed, which was held fixed in the previous results. The system performance of three market2
behaviors under different levels of market share and rider information transparency are explored.3

Figure 8 shows the whole system’s performance under different experiment designs. The4
six rows show the results of the six metrics we used to evaluate the system. The three columns5
represent varying levels of market shares, where riders select platforms at ratios of [30%, 70%],6
[50%, 50%], and [70%, 30%] for platform 0 and platform 1, respectively. In each sub-plot, differ-7
ent levels of Θ are controlled over platform 0, while the value for the other platform is set to 1. The8
blue, orange, and green lines show the average performance over ten replications of competition,9
collaboration, and rational collaboration, respectively. The shaded areas represent the standard10
deviations across the replications.11

First, the effects of rider information transparency (Θ) are discussed. Overall, the general12
trend across all subplots is that increasing Θ raises the share rate and system profit, while it reduces13
average vehicle travel distances, detour distances, and passenger waiting times across all market14
behaviors. This indicates that higher rider information transparency generally leads to better sys-15
tem performance. The shared trip distances, however, do not show obvious changes, as the shaded16
areas representing standard deviations of different behaviors overlap significantly. Under a low17
transparency level, the improvement in the system’s performance under collaboration behaviors is18
limited compared to a fully competitive market. However, when the transparency level is high, the19
improvement is notable. For instance, in the first row of Figure 8(b), when the market share is20
equal and Θ = 0.2, the improvement in the system’s share rate is only around 3% for both rational21
and full collaboration compared to the competition results. However, when Θ = 1, the improve-22
ment is notable, around 15% for rational collaboration and 16% for full collaboration. Therefore,23
a higher information level generally leads to better system performance.24

Second, the effects of market share levels are discussed. Generally, when the platform25
with a high market share provides high rider information transparency, it helps achieve better26
system performance than a platform with a lower market share. For instance, in the first row of27
Figure 8(c), when Θ = 0.8, the system’s shared rate is 50.2%, compared with 49.8% and 49.7%28
for the corresponding situation in Figure 8(a) and Figure 8(b). When the market share is equal, the29
influence of rider information transparency is the most significant. As Θ increases from 0.2 to 1,30
the equal market share scenario shows the largest changes in all metrics (expect shared distance)31
compared to the other two market share conditions. For instance, under the rational collaboration32
scenario with Θ= 0.2, the shared rates across all three market shares are 40.9%, 39.5%, and 41.9%,33
respectively. But towards the end when Θ = 1.0, shared rates across all three market shares are34
the same, indicating the equal market has the largest improvement in share rates. This is because35
the requests are equally segmented into two matching pools, a larger information of transparency36
would help platforms collaborate and communicate.37

Computation Time38
Figure 9 presents the relationships between each of the number of edges, the graph creation time,39
and the graph matching time with the number of nodes in the created graph. The blue dots rep-40
resent the full collaboration mode, while the orange dots present the rational collaboration mode.41
Figure 9(a) indicates that the number of edges in the rational collaboration mode is less than in the42
full collaboration mode. As seen, the greater the number of nodes, the sparser the graph becomes43
(the number of edges is less than half of the potential edges), which is advantageous for applying44
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graph-based methods to find the maximum matching. Figure 9(b) and Figure 9(c) show the time1
consumed for constructing graphs and finding the maximum matching of general graphs. Times2
are recorded each time the RR-G is operated in the sliding windows, averaged over a whole day.3
Each task theoretically has time complexities of O(n2) and O(mn logn), where m and n represent4
the number of edges and nodes, respectively. The experiment results demonstrate that the proposed5
graph-based collaboration method achieves results within an acceptable time.6

FIGURE 9: Computational Time with Scales of Nodes in Graph

CONCLUSION7
This paper proposes a dynamic graph-based matching framework to identify potential shared trips8
across different platforms in a ride-sharing system. A comparative analysis of performances un-9
der collaborative versus competitive platform behaviors is conducted. The collaborative market is10
modeled in two ways: full collaboration, where the system operates as a unified entity; and rational11
collaboration, where platforms determine the profitability of the profit allocation and rider infor-12
mation transparency. An upfront profit allocation is calculated with the Shapley value method and13
used to compare inter-platform profit with other options, such as solo travel or sharing a trip with14
passengers from the same platform. This ensures both platforms’ willingness to collaborate while15
maintaining individual platform profits. When constructing the graphs, requests are partitioned into16
sub-graphs (representing different platforms) and the adjacency of riders is constructed as edges.17
Different market behaviors are represented by different levels of constraint on inter-platform edges18
(between inter-platform riders). A fully competitive market prohibits inter-platform edges, while19
full collaboration allows all qualified inter-platform edges. Rational collaboration adopts an inter-20
mediate level of constraint. The Shapley value-based profit allocation method guides individual21
platforms in determining the existence of these inter-platform edges. Then with the constructed22
graphs, the maximum weighted matching method is utilized to find optimum matching. Six key23
metrics are analyzed: share rate, platform profit, and four service quality metrics. Additionally,24
sensitivity analysis on market share and rider information transparency is explored.25

Our findings reveal that both full and rational collaboration improve share rates and total26
profit, reduce total vehicle travel distance, and enhance service quality (e.g., lower detour dis-27
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tance and shorter waiting times) compared to a fully competitive market. The collaborative market1
demonstrates economies of scale, as inter-platform feasible pairs increase the overall matching2
probabilities. Furthermore, rational collaboration boosts each platform’s profit proportionate to3
its market share. The sensitivity analysis indicates that increasing rider information transparency4
generally enhances system performance by raising share rates and system profits while reducing5
average vehicle travel distances, detour distances, and passenger waiting times across all market6
behaviors. High transparency levels in collaborative markets significantly improve system perfor-7
mance compared to competitive scenarios. Besides, when a platform with a high market share8
provides high rider information transparency, it enhances overall system performance more effec-9
tively than a platform with a lower market share. Equal market share conditions benefit the most10
from greater transparency in a collaborative market.11

Our work offers transportation practitioners an overview of the quantifiable benefits of12
shifting from a fully competitive market to a rational collaborative market, and ideally to a fully13
collaborative market. Although the matching parameters, such as maximum wait time, maximum14
detour constraints, and fare calculations, may differ from industry standards, they are consistently15
applied as control variables across all scenarios, ensuring reliable comparison results across dif-16
ferent market behaviors. This shift could lead to a more sustainable and customer-friendly market17
environment, potentially setting new standards for service quality and economic viability in the18
ride-sharing industry. Future work may quantify the scale of benefits when the willingness to pool19
increases with the entire ride-hailing dataset. Besides, a trip-based graph partition method could20
be incorporated to accommodate larger graphs and enable parallel matching. Additionally, consid-21
ering vehicle routing details could help optimize fleet size under a rational collaborative market.22
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