

1 **COMPARING THE PERFORMANCE OF COLLABORATIVE AND COMPETITIVE**
2 **MARKET OF RIDE-SHARING SYSTEM: A DYNAMIC GRAPH-BASED METHOD**

3
4
5

6 **Xin Dong***, Corresponding Author

7 Department of Civil and Environmental Engineering
8 The Pennsylvania State University
9 231 Sackett Building
10 University Park, PA 16802
11 xjd5036@psu.edu
12 phone: 814-996-9601
13

14 **Jose Ventura**

15 Department of Industrial and Manufacturing Engineering
16 The Pennsylvania State University
17 356 Leonhard Building
18 University Park, PA 16802
19 jav1@psu.edu
20

21 **Vikash V. Gayah**

22 Department of Civil and Environmental Engineering
23 The Pennsylvania State University
24 231 Sackett Building
25 University Park, PA 16802
26 gayah@engr.psu.edu
27
28

29 Word Count: 6470 words + 3 table(s) \times 250 = 7220 words
30
31
32
33
34
35

36 Submission Date: July 30, 2024

Abstract

2 Ride-sharing platforms like Uber and Lyft have transformed urban transportation by reducing travel
3 distances and increasing vehicle occupancy rates. However, efficiency is often limited by market
4 segmentation, where rider-rider pairs are restricted to specific platforms, potentially leading to
5 suboptimal results. This study uses a dynamic graph-based framework with maximum weighted
6 matching to compare the efficiency of a competitive market with a more collaborative one where
7 platforms can share individual trip requests. We model riders as graph vertices with dynamic
8 weighted edges representing profit and waiting times. The competitive market is modeled as sub-
9 graphs representing different platforms, the collaboration scenario as a union graph, and a rational
10 collaboration mode as a partial union graph under Shapley-value-based profit constraints and in-
11 formation transparency control. Maximum weighted matching is found within sub-graphs for the
12 competitive market and within the union graph for different collaboration types. Additionally, we
13 examine how the computational performance varies with the scale of nodes and edges. The re-
14 sults reveal that a collaborative market significantly improves share rates and profit while reducing
15 travel distances and waiting times by overcoming market segmentation barriers. This highlights
16 the benefits of cross-platform collaboration, suggesting it can enhance operational efficiency in a
17 competitive environment. Although market segmentation and platform controls can impact per-
18 formance, rational collaboration generally serves as a feasible approach to achieving a near-ideal
19 fully collaborative scenario.

20 *Keywords:* On-demand Ride-sharing, Market Segmentation, Competition, Collaboration, Maxi-
21 mum Weighted Matching, Shapley Value

1 INTRODUCTION

2 Ride-sharing involves sharing a vehicle journey among riders traveling in similar directions, thereby
3 reducing the number of vehicle trips needed to serve passengers (1). This concept can be traced
4 back to the push for carpooling during the US oil crisis in the 1970s (2). Since then, it continuously
5 evolved and been promoted in various forms, such as peer-to-peer ride-sharing (3) and on-demand
6 ride-sharing (4). The push for ride-sharing stems from its numerous benefits, including reducing
7 total vehicle travel distance, increasing vehicle occupancy rates, decreasing required fleet size,
8 alleviating traffic congestion, and lowering greenhouse gas emissions (5). The sharing mobility
9 economy has grown considerably in recent years and achieved over \$130 billion in global con-
10 sumer spending (6) in 2019 (pre-pandemic). Various Transportation Network Companies (TNCs)
11 offer ride-sharing services and compete for customers, including Uber, Lyft, DiDi, and Via.

12 Competition among TNCs is not always beneficial, as a competitive market can lead to
13 either competitive prices or price collusion for ride services (7). Competitive prices alter riders'
14 selection of platforms, while price collusion (usually resulting in surged prices during peak hours)
15 tends to push riders away to seek other options. This potential dynamic of riders' shifting among
16 platforms brings instability to the segmentation of the system and impedes the economies of scale
17 for each platform. The economies of scale originally refer to cost advantages that enterprises
18 obtain due to the increase in the scale of operation (8). In ride-sharing systems, it refers to the
19 efficiency increases as the amount of service increases. Specifically, as the number of shared ride
20 requests increases, various measures of system performance (e.g., service quality, sharing rate,
21 detour distance—the extra distance in a shared trip compared with the corresponding rider's single
22 trip—, and wait time) improve (9, 10). The fragmented ride-sharing market created by various
23 TNCs divides users into separate matching pools, reducing the potential for higher efficiency and
24 quality (11) that can be achieved due to economies of scale.

25 Collaboration among on-demand service platforms might be a potential solution to mit-
26 iate these inefficiencies. In the practical experience of the ride-hailing services market, where
27 matching typically involves pairing one rider with one driver, established practices already exist.
28 For instance, the Uber platform has partnered with taxi-hailing companies such as Curb, Arro,
29 Flywheel, and YoTaxi to integrate traditional taxi options into their applications (12, 13). This
30 initiative aims to boost matching efficiency and service coverage by integrating their resources.
31 Some third-party platform integrations also exist; for example, Baidu Map integrates the platform
32 options of DiDi and others in a single interface for ride-hailing in China (14). This integration
33 has resulted in a lower pickup distance and a higher match rate. However, there are no established
34 practices for ride-sharing matching collaboration in practice. Some research on this domain does
35 exist, details will be presented in the next section.

36 This paper introduces a dynamic graph-based framework to compare the performance of
37 ride-share systems under different levels of collaboration among TNC platforms. The dynamic
38 weighted graph captures the status of rider requests and tracks rider waiting times, which are
39 used to make matching decisions. The Shapley value method allocates profits for inter-platform
40 rider pairs and compares them with intra-platform profits. If inter-platform profit is higher, the
41 collaboration option is agreed upon. To this end, rider-rider matching pairs selected based on the
42 maximum weighted matching method within and across platforms are recorded and processed. Our
43 goal is to maximize the total saved travel distances in shared trips and minimize the total wait time
44 of riders. The performance of this framework is compared to both a perfect competition scenario
45 and a complete collaboration scenario through empirical experiments.

1 The rest of this paper is organized as follows. The next section reviews the literature on both
2 traditional and state-of-the-art technologies, highlighting existing gaps in ride-sharing systems.
3 This is followed by a detailed methodology section. The following section presents an empirical
4 experiment using the New York City Taxi and Limousine Commission (TLC) dataset, comparing
5 the performance of competitive and collaborative markets. Finally, the last section concludes with
6 our findings.

7 LITERATURE REVIEW

8 In this section, we review the literature focusing on two main streams. The first stream addresses
9 matching in ride-sharing systems, emphasizing the matching among riders (shareability) rather
10 than the matching between rider pairs or riders and drivers (dispatching process). The second
11 stream focuses on collaboration within the ride-sharing market, examining two key areas: the
12 effects of competition and collaboration, and the existing collaboration methods and their impacts
13 on the market. Additionally, we clearly state our contributions to the field.

14 Matching in Ride-sharing System

15 There is a wide spectrum of approaches to solving matching problems in ride-sharing systems,
16 including heuristic, combinatorial optimization, machine learning, and graph-based methods.

17 For carpooling and peer-to-peer ride-sharing services, where demand is well determined
18 far in advance of trips, the aforementioned solutions are easy to implement (15–17). However,
19 demand is generated shortly before trip departure in on-demand ride-sharing systems; matching
20 decisions must be made dynamically. In this context, heuristic methods, sometimes referred to as
21 instant matching methods, offer the advantage of near-instant responses (18, 19), but suboptimum
22 solutions (e.g., higher total vehicle travel distances and lower successful pooling rates). To han-
23 dle this, combinatorial optimization methods (such as integer linear programming and dynamic
24 programming) combined with sliding windows (20) are widely used. These approaches involve
25 optimizing the assignment of a batch of requests at regular time intervals and continuously updat-
26 ing decisions as new data comes in (21, 22). Although combinatorial optimization methods are
27 capable of providing system optimum solutions (23), their application can still be computationally
28 expensive and complex.

29 In comparison, numerous polynomial-time graph-based algorithms can be applied to match-
30 ing problems. For a detailed review of these types of models, readers are referred to Duan (24).
31 Bipartite matching is widely used for finding rider-driver pairs; e.g., Agatz et al. developed a dy-
32 namic ride-matching optimization method by positioning passengers and drivers on two sides of
33 a bipartite graph (25). General graphs are more suitable for finding rider-rider pairs. Depending
34 on the objectives, the matching problem can be categorized into maximum cardinality matching
35 (containing as many edges as possible) or maximum weighted matching (MWM). Some papers
36 have applied maximum cardinality matching to maximize the possibility of riders being matched
37 in a ridesharing system, for example, Santi et al. (26). Instead of finding maximum cardinality
38 matching, we focus on finding MWM in a general graph. Galil’s $O(mn \log n)$ -time algorithm for
39 maximum weighted matching in general graphs (27) is efficient for sparse graphs. This efficiency
40 makes graph-based methods valuable in systems with frequently changing configurations.

41 Most developed matching models in ride-sharing systems have focused on a single TNC,
42 overlooking the potential for shareability among different platforms. Our paper, however, focuses
43 on rider-matching both within and among platforms. Besides, unlike most papers that use bipar-

1 title graph matching, maximum cardinality matching in unweighted general graphs, or MWM in
2 weighted general graphs that only consider travel time, we propose a dynamic graph that maxi-
3 mizes total profit while prioritizing riders with longer waiting times.

4 **Platform Competition and Collaboration**

5 Several studies have examined the impact of competition among TNC platforms. For example,
6 Séjourné et al. quantified how demand fragmentation degrades the efficiency of the Mobility-on-
7 Demand services systems by focusing on the supply re-balancing costs incurred by this demand
8 fragmentation (28). Liu et al. examined competition's impact on travel characteristics and in-
9 troduced entropy to evaluate spatial and temporal competition among TNC platforms (11). The
10 study found that increased competition leads to decreased share rates on each platform and longer
11 average travel distances for shared trips.

12 Other studies have investigated how collaboration influences system efficiency and plat-
13 form profit. Zhou et al. presented the equilibrium of a competitive ride-sourcing market with
14 platform integration and compared the performance of the ride-sourcing market with and with-
15 out integration (29). The study found that platform integration does not always increase platform
16 profit but always enhances social welfare. Guo et al. proposed different profit allocation mech-
17 anisms among TNC platforms in four market structures, demonstrating benefits such as reducing
18 total vehicle travel distance and decreasing the total number of trips in collaborative scenarios
19 (30). The focus was primarily on profit allocation mechanisms for different market designs and
20 emphasizing the required fleet size. Wang et al. introduced a deep reinforcement learning model to
21 determine driver-passenger pairs in a third-party integrated ride-hailing platform (31). The study
22 demonstrated that the proposed method can mitigate dispatching conflicts between platforms and
23 enhance overall market efficiency, resulting in a higher order response rate, increased market rev-
24 enue, and lower total travel distances.

25 However, these studies have predominantly focused on the supply (drivers) and demand
26 (riders) dynamics, paying relatively less attention to the intricacies of cross-platform rider-rider
27 matching. In contrast, our paper emphasizes the shareability of riders among platforms.

28 **Our Contributions**

29 To summarize, most studies have focused exclusively on a monopolistic matching environment,
30 without examining how ride-sharing services may be improved by sharing riders between different
31 platforms. Additionally, existing collaboration papers focus more on the supply management side
32 rather than on rider shareability. To partially bridge these gaps, the contributions of this paper to the
33 literature are as follows: 1) developed a graph-based framework with dynamic edge weights and
34 maximum weighted matching method to match ride-share users; 2) proposed Shapley-value-based
35 collaborating strategies for ride-sharing platforms in sharing users; and, 3) examined the impacts
36 of collaboration over competition under varying levels of information transparency and varying
37 levels of market segmentation.

38 **METHODOLOGY**

39 In this section, we first discuss the trip fare and profit allocation, then the geographical and tem-
40 poral adjacency of riders, and the rider-rider graph (RR-G) concepts. We then present the market
41 partition, which includes full competition, full collaboration, and rational collaboration. Finally,
42 we present the method to find maximum weighted matching pairs in the constructed general graphs

1 under different market behaviors.

2 Trip Fare and Profit Allocation

3 Demand is spatially and temporally stochastic, with riders selecting platforms based on heterogeneous preferences and factors. A trip request from a given rider r_i is distinguished by the following
 4 four characteristics: $r_i = \{P_i, t_i, O_i, D_i\}$. Here, P_i is a categorical variable denoting the platform selected, t_i is the request time, O_i is the rider's origin, and D_i is the rider's destination. The platform
 5 then offers an upfront flat fare to this rider, f_i , based on the direct trip distance from his origin to
 6 destination, as defined in Equation (1). If a rider shares a trip with others, we assume for simplicity
 7 that the fare collected from each shared rider is the same as for single trips, although a discount
 8 could be given.

$$11 \quad f_i = l_i(\alpha^d + \frac{\alpha^t}{\bar{v}}), \quad (1)$$

12 where l_i is the direct distance of r_i ; α^d , α^t are the unit value of distance and unit value of time; and
 13 \bar{v} is the average speed of the vehicles, which is assumed here to be a constant for simplicity.

14 Assuming the driver's cost is proportional to vehicle traveled distance and time, the profit
 15 each platform obtains from a single trip is defined in Equation (2), and the profit from a shared trip
 16 for rider pair (r_i, r_j) is defined in Equation (3).

$$17 \quad p_i = f_i(1 - o), \quad (2)$$

$$18 \quad p_{ij} = f_i + f_j - l_{ij}(\alpha^d + \frac{\alpha^t}{\bar{v}})o, \quad (3)$$

19 where p_i is the profit out of r_i ; o is the driver payout rate; l_{ij} is the travel distance of the shared
 20 trip; and f_j is the fare from r_j .

21 The profits from inter-platform shared trips are distributed to different platforms based on
 22 the Shapley value method (32), a game-theory-based profit allocation scheme defined in Equa-
 23 tion (4). In our collaborative game, the shareable riders are considered the players, denoted as N .
 24 Each successfully served solo rider or shared rider pair, such as (r_i, r_j) , is considered a coalition S .
 25 The profit gained for the platforms is the value of this coalition, denoted as $v(S)$.

$$26 \quad \phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(|N| - |S| - 1)!}{|N|!} [v(S \cup i) - v(S)], \quad (4)$$

27 where $\phi_i(v)$ is the profit allocated to player i ; $v(S \cup i)$ is the value of the coalition with the addition
 28 of player i ; summation over $S \subseteq N \setminus \{i\}$ considers all coalitions without player i .

29 When we restrict at most two riders in a shared trip, the matching decision becomes a
 30 two-player cooperative game, and the Shapley values ϕ_{r_i} and ϕ_{r_j} are simplified as:

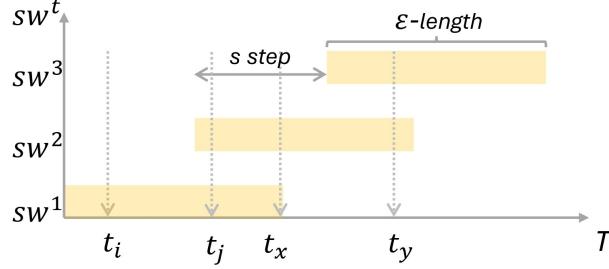
$$31 \quad \begin{aligned} \phi_{r_i} &= \frac{1}{2} (v(\{r_i\}) - v(\{\emptyset\})) + \frac{1}{2} (v(\{r_i, r_j\}) - v(\{r_j\})), \\ \phi_{r_j} &= \frac{1}{2} (v(\{r_j\}) - v(\{\emptyset\})) + \frac{1}{2} (v(\{r_i, r_j\}) - v(\{r_i\})), \end{aligned} \quad (5)$$

32 where $v(\{r_i\})$ is the value (profit) out of i^{th} solo trip; $v(\{\emptyset\})$ is the value (profit) of no trips, and is
 33 0; $v(\{r_i, r_j\})$ is the value (profit) of the shared trips.

34 Feasible Pairs

35 Many trips are 'similar' regarding origins, destinations, and time, and therefore could be aggre-
 36 gated into fewer vehicles. Here, we define pairs of riders sharing their trips as feasible pairs, and
 37 two steps are needed to find them:

1 First, a sliding window technique (20) segments trip requests into small batches. As shown
 2 in Figure 1, the sliding window (sw^t) is an ε -length time window (e.g., $\varepsilon = 5$ minutes) that moves
 3 over time. The moving step, s , of this window can be any integer within $[1, \varepsilon]$. The riders with the
 4 request time inside t^{th} time window, $[t - \varepsilon, t]$, are considered active riders for pairing.



Note: t_i, t_j, t_x, t_y are rider arrival times, sw^t is the t^{th} sliding window, and ε, s are its length and moving step.

FIGURE 1: Illustration of a Sliding Window

5 Second, we determine if there exists a shortest path for two active riders. Since we assume
 6 at most two riders (e.g., r_i and r_j) can share their trips, only four possible pick-up and drop-off
 7 sequences exist: $O_i \underline{O_j D_j D_i}$, $O_j \underline{O_i D_i D_j}$, $O_i O_j D_i D_j$, and $O_j O_i D_j D_i$, as depicted in Figure 2. The
 8 underlined sequence is the trip segment same as direct single trips, where no detour distance is
 9 encountered. The shortest travel distance of the path, denoted as l_{ij} , is the smallest length of four
 10 possible paths. However, whether this ride-sharing pair is feasible is checked with the following
 11 three constraints:

- 12 • Constraint 1 (C_1): **Waiting time constraints.** To minimize the wait time for riders after
 13 booking, a waiting time threshold, τ , is set for each rider to be picked up.

14
$$l_{O_i O_j} \leq \bar{v}\tau. \quad (6)$$

15 where $l_{O_i O_j}$ is the travel distance between origins of r_i and r_j , assuming r_i is picked up first.

- 16 • Constraint 2 (C_2): **Detour distance constraints.** To prevent excessively long travel times,
 17 only a certain proportion of a passenger's direct trip distance is acceptable as an additional
 18 distance for a shared trip.

19
$$\frac{l_{O_x D_x} - l_x}{l_x} \leq \gamma, \forall x \in i, j, \quad (7)$$

20 where l_x and $l_{O_x D_x}$ are the direct trip distance and the distance between the origin and destination
 21 of rider x ($x \in \{i, j\}$) in a shared trip (which may include a partial detour), respectively;
 22 and γ is the fixed detour factor.

- 23 • Constraint 3 (C_3): **Profit constraints.** The profit from shared trips should be no less than the
 24 sum of profits from single trips.

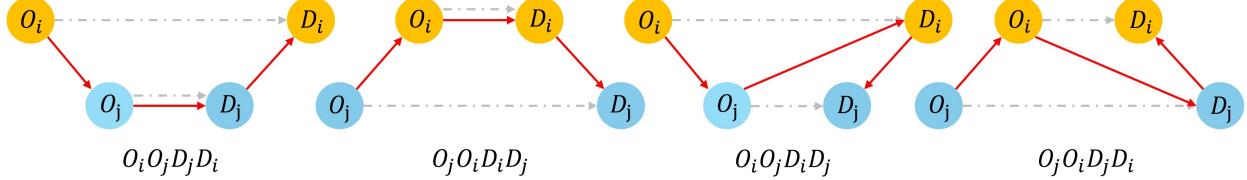
25
$$p_i + p_j \leq p_{ij}. \quad (8)$$

26 where p_{ij} is from Equation (3), and p_i and p_j are from Equation (2).

27 Checking the constraints for every two active riders with Equations (6)–(8), the indicators
 28 (0 or 1) for feasible pairs are recorded in an indicators matrix, denoted as I^t , defined in Equation (9).

29

30
$$I^t = \left\{ I_{ij}^t \mid I_{ij}^t = \begin{cases} 1 & \text{if } C_1 \cap C_2 \cap C_3, \text{ and } \forall i, j \text{ such that } r_i, r_j \in sw^t \\ 0 & \text{otherwise} \end{cases} \right\}. \quad (9)$$



Note: The locations do not represent the actual locations but merely illustrate the path sequences. Dashed grey arrows show the direct single trip path, while the solid red arrows represent the shared trip path.

FIGURE 2: Illustration of Path Sequences

1 **Rider-Rider Graph**

2 A representative rider-rider graph (RR-G) is an undirected weighted graph that represents the ad-
3 jacency relationships among riders over a specific period.

4 **Vertices**

5 V^t represents the active riders set in the t^{th} sliding window sw^t , and the number of vertices, $|V^t|$,
6 is the number of active riders in that window. k different colors are assigned to the vertices,
7 representing the riders belonging to k different platforms.

8 **Edges**

9 The edge set is a set of unordered pairs of vertices, denoted as $E^t \subseteq \{(x, y) \mid x, y \in V^t \text{ and } x \neq y\}$.
10 Each edge is associated with two distinct vertices and is connected with a weight representing
11 the adjacency relationships between riders. The weight of an edge in our graph is dynamic, as
12 defined by Equation (10). It consists of two parts: the profit of the shared trip and the waiting time
13 of the connected riders. The elements in the indicator matrix, I_{ij}^t , are used to decide whether an
14 edge exists in the graph. With the sliding window, each additional waiting step increases a rider's
15 connection weight, prioritizing longer waits and reducing overall waiting time.

16 $w_{ij} = I_{ij}^t [p_{ij} + (t_i^w + t_j^w) \alpha^t], \quad (10)$

17 where t_i^w and t_j^w are the waiting time of rider r_i and rider r_j , I_{ij}^t is from Equation (9).

18 Thus, the RR-G, $G^t = (V^t, E^t)$, can be constructed with the elements introduced above.

19 Modifications on G^t are made in the next subsections to represent different market behaviors. A
20 schematic RR-G is presented in Figure 3, where we considered two platforms in the system. On
21 the left is the requested trip queue in the sliding window of $[0, 5]$, and on the right is the constructed
22 $G^{t=5}$.

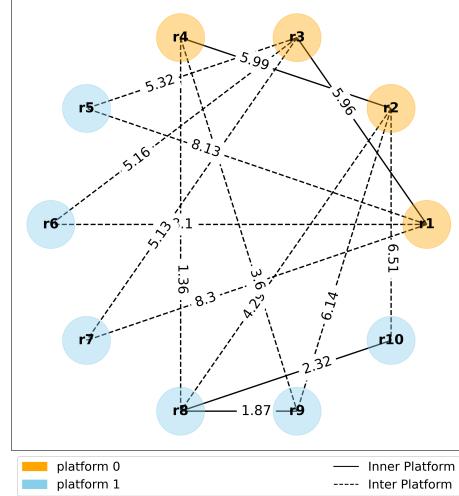
23 **The Ride-sharing Market**

24 The status quo ride-share market is primarily dominated by only a few TNC platforms with dif-
25 ferentiated services, presenting an oligopolistic market. For instance, the ride-sharing market in
26 Manhattan is dominated by Uber and Lyft, creating a special scenario of oligopoly: a duopoly
27 market. Under the current market structure, there is no collaboration among TNC platforms, only
28 full competition behaviors. However, we propose methods to construct the RR-G and analyze the
29 performance under competition and collaboration (both full and rational) behaviors.

30 **Full Competition**

31 With full competition behavior, the platforms operate independently. Suppose an RR-G of the
32 whole ride-sharing system at the t^{th} sliding window is represented as $G^t = (V^t, E^t)$. Each platform
33 owns only an induced sub-graph of this G^t , denoted as H_i^t . The induced sub-graph contains only a

RID	Platform	Time	OID	DID	Edge Weight
1	0	0	1	5	6.55
2	0	1	3	1	3.17
3	0	2	4	5	5.67
4	0	3	5	2	3.21
5	1	0	1	1	0.19
6	1	2	1	1	0.33
7	1	3	1	6	3.01
8	1	3	3	3	0.31
9	1	4	5	2	3.37
10	1	5	5	6	4.09



Note: Solid lines show feasible pairs within platforms, and dashed lines show those between platforms.

FIGURE 3: Rider Requests and Schematic Rider-Rider Graph at a Single Time-Step

- 1 subset of vertices from G^t and all the edges from G^t that connect vertices only within this subset.
- 2 If there are k different platforms, there will be k induced sub-graphs, and each is defined in Equation (11). The weight of edges is calculated using Equation (10), except for all r_i and r_j belonging to different platforms, which are modified to 0.
- 3 $H_i^t = (V_{H_i}^t, E_{H_i}^t)$, where $V_{H_i}^t = \{x \mid x \in P_i\}$ and $E_{H_i}^t = \{(x, y) \mid x, y \in P_i\}$, (11)
- 4 where P_i represents the i^{th} platform ($i \in [1, k]$), $V_{H_i}^t$ is the vertex set with riders belonging to the i^{th} platform ($V_{H_i}^t \subseteq V^t$), and $E_{H_i}^t$ is the edge set connecting only riders within the platform ($E_{H_i}^t \subseteq E^t$).
- 5 Vertices x, y are riders in P_i .

9 **Full Collaboration**

- 6 Full collaboration assumes all providers share all resources as if they were one provider to optimize the entire system's operation. Under this behavior, the collaborative graph $C^t = (V_C^t, E_C^t)$ includes all vertices and edges from the RR-G, with weights defined by Equation (10):

$$13 \quad C^t = (V_C^t, E_C^t), \text{ where } V_C^t = V^t \text{ and } E_C^t = E^t. \quad (12)$$

- 14 where V_C^t is the vertex set with active riders in the current sliding window, and E_C^t is the edge set with edges connecting both inter-platform riders and intra-platform riders.

16 **Rational Collaboration**

- 17 Rational collaboration, on the other hand, differs from the full collaboration scenario in that two additional conditions need to be met before a rider may be shared with another platform: 1) each provider has some control over rider information transparency, which controls the extent to which the rider's information is exposed across the market while collaborating; and, 2) each platform checks the up-front profit—calculated using the Shapley value—of sharing a rider with another platform before allowing it to be shared, with Equation (4)–(5). Trips may only be shared if they fit within the information transparency provision and are financially feasible to do so. The indicator matrix for the qualified edges connecting r_i and r_j in this rational collaboration scenario, derived from Equation (10), is updated as follows:

1 $I_{ij}^t = \mathbb{1}_{ij} \left((\phi_{r_i}^{\text{inter}} \geq \phi_{r_i}^{\text{inner}}) \wedge (\phi_{r_i}^{\text{inter}} \geq p_i) \wedge (\phi_{r_j}^{\text{inter}} \geq p_j) \wedge (\phi_{r_j}^{\text{inter}} \geq \phi_{r_j}^{\text{inner}}) \right) I_{ij}^t$ (13)

2 where $\mathbb{1}_{ij}$ is the indicator function. ϕ^{inter} and ϕ^{inner} are the inter-platform upfront profit and inner-
3 platform profit for r_i or r_j in the pair (i, j) , calculated using the Shapley value method.

4 Then the weight of edges is calculated with the updated indicator matrix and Equation (10).

5 And the rational collaborative RR-G, denoted as $RC^t = (V_{RC}^t, E_{RC}^t)$, is defined as:

6 $RC^t = (V_{RC}^t, E_{RC}^t)$, where $V_{RC}^t = \{x \mid x \in P_i \wedge P_j\}$ and $E_{RC}^t = \{(x, y) \mid x, y \in P_i \wedge P_j\}$, (14)

7 where V_{RC}^t is the vertex set, containing all active riders in all platforms ($V_{RC}^t = V^t$); and E_{RC}^t is the
8 edge set that contains all inner-platform edges and partial inter-platform edges ($E_{RC}^t \subseteq E^t$).

9 Maximum Weighted Matching (MWM)

10 The optimum ride-sharing solutions are also provided dynamically within each sliding window.

11 Using RR-Gs under different market behaviors— $H^t = (V_H^t, E_H^t)$, $C^t = (V_C^t, E_C^t)$, and $RC^t = (V_{RC}^t, E_{RC}^t)$
12 —three matching sets M_H , M_C , and M_{RC} are decided by:

$$\max \quad W(G) = \sum_{E_{ij} \in M} w(E_{ij})$$

13 s.t. $E_{ij} \cap E_{xy} = \emptyset, \quad \forall E_{ij}, E_{xy} \in M,$ (15)

$$M \subseteq E,$$

$$w(E_{ij}) = w_{ij},$$

14 where G is one of the defined RRGs, $W(G)$ is the maximum weight of graph, and E is the cor-
15 responding edge set of the RR-G. M is the matching set to be assigned, which is the subset of
16 E .

17 Finding the augmenting path is the core of finding the maximum weighted matching in a
18 general graph, which is defined as an alternating path that starts and ends with unmatched vertices
19 and alternates between edges not in M and edges in M . We utilized the technique of finding a
20 maximum weighted matching in general graphs developed by Galil (27), which employs a primal-
21 dual method. Finding the matching (edge set) is a primal solution, and the dual solution is an
22 assignment of dual variables u_i, u_j corresponding to vertices. With the solution of rider pairs, and
23 given the large number of available drivers in TNCs, dispatching the nearest driver to the itinerary
24 instantly is feasible. Therefore, in the following, we assume all paired-up riders or solo riders can
25 be matched with available drivers.

26 EMPIRICAL EXPERIMENT

27 The experiment is designed to examine the feasibility of the proposed model and analyze the im-
28 pact of different market behaviors on the ride-sharing system's performance under varying market
29 shares and information transparencies. This section details the data, experimental designs, param-
30 eters, and simulation steps.

31 Data

32 TLC trip data (33) from Manhattan, NYC are used as system inputs. From 2019 to 2023, the
33 proportion of shared trip requests dropped significantly from 16% to 2%, according to the data in
34 Table 1. Due to this shift, the most recent data from February 2023 were considered here. Figure 4
35 shows the daily and five-minute aggregated counts of requested single and shared trips. Most days
36 see around 180,000 single trip requests and 3,250 shared trip requests, with about 750 single trip
37 requests and 10 shared trip requests every five minutes. This data indicates that current shared

1 ride services have very few candidates. To maximize potential benefits from the current market,
 2 we focus on February 4th, 2023, the day with the highest number of shared trip requests, totaling
 3 4,235.

4 The TLC trips are encoded with locations in taxi zones (33). To simulate travel distances
 5 more precisely, we used the GeoPandas (34) and OSMNX (35) Python packages to decode the
 6 origins and destinations from 63 zones in Manhattan to 4,589 intersections in the roadway network.
 7 The all-to-all distance matrix was queried and recorded.

TABLE 1: Summary of Manhattan TNC Trips in February 2019 VS February 2023

TNC (Year)	Realized Trips	Shared (%)	Base Fare (\$)	Unit Fare (\$/mile)	Unit Fare (\$/min)	Avg. Wait Time (min)	Avg. Trip Distance (mile)	Avg. Direct Time (min)
UberX (2019)	3,526,943	–	2.40	1.42	0.54	4.29	2.52	14.92
UberPool (2019)	837,247	80.11	1.42	1.06	0.06	6.88	3.01	17.88
UberX (2023)	4,196,579	–	4.09	1.76	0.64	4.05	2.56	14.71
UberPool (2023)	55,491	45.18	3.43	0.81	0.50	6.45	4.47	22.13
Lyft (2019)	991,262	–	2.99	1.61	0.45	3.89	2.65	14.74
LyftLine (2019)	676,557	79.36	2.48	1.27	0.09	5.96	3.18	18.89
Lyft (2023)	1,136,579	–	3.96	1.62	0.58	4.64	2.70	14.87
LyftLine (2023)	45,770	34.64	3.96	0.65	0.52	12.48	4.71	22.89

Note: UberX, Lyft: single trip service; UberPool, LyftLine: shared trip service
 all fare-related parameters were estimated with linear regression and statistically significant p-values.

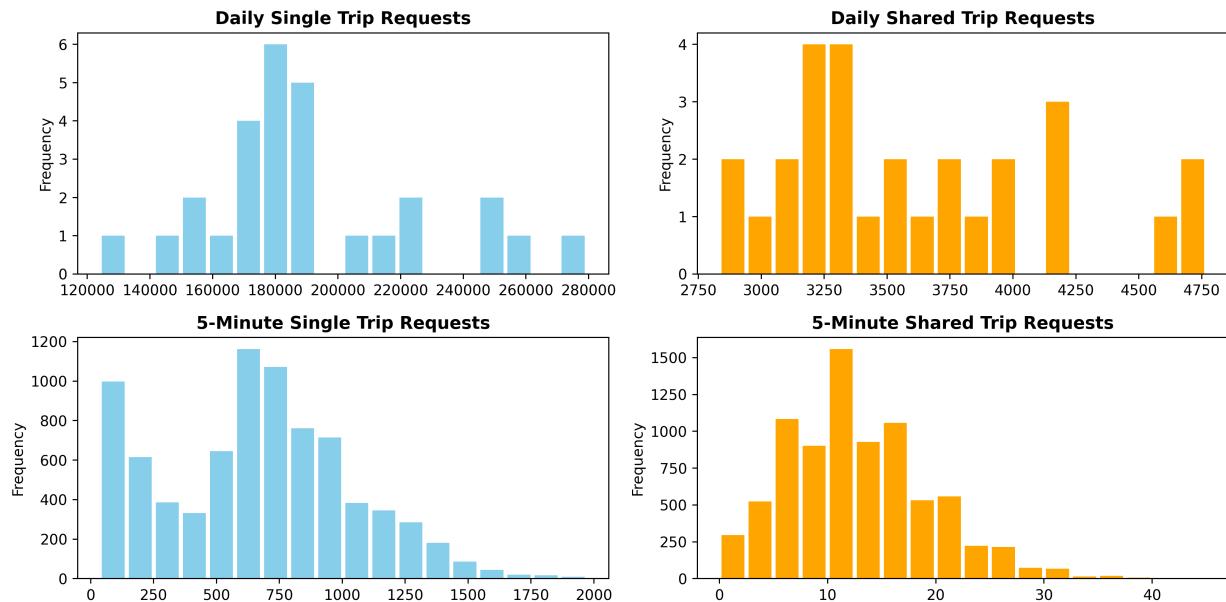


FIGURE 4: Distribution of Aggregated (Every 5-minutes) Trips in February, 2023

8 Design

9 In the experiment, two varying parameters are market share and rider information transparency.
 10 Three types of market shares are examined under low (30%), equal (50%), and high (70%) conditions for one platform (referred to as platform 0) in a market comprising two platforms (0 and 1).

1 The rider information transparency indicates the different levels of control over the rider's information sharing with other platforms in rational collaborations, also viewed as an indicator of the 2 platform's willingness to collaborate. Five different levels of rider information transparency are 3 explored for platform 0: [0.2, 0.4, 0.6, 0.8, 1.0].

5 Ten replications of the simulation are conducted to ensure the robustness and reliability 6 of the results. Parameters used in the simulation are listed and explained in Table 2. Control 7 parameters are fixed constant for all designs, including ε , s , τ , o , γ , \bar{v} , α^d , and α^t . Notice that 8 these parameters could vary across different service quality objectives. However, this is not the 9 key focus of this paper, so we hold them constant.

10 Detailed steps of a single replication are as follows: the time horizon of a single replication 11 is set to $H = 1440$ minutes (24 hours), and the sliding window moves over a day. We set both the 12 length and the moving step of the sliding window to 5 minutes, also defined as non-overlapping 13 windows. In the beginning, $t = 0$, the daily trip requests, Q^0 , are loaded into the simulator, en- 14 compassing initial features such as the arrival time, the platform they requested from, origins, and 15 destination. The trip fares are calculated using Equation (1), with $\alpha^d = 1$ and $\alpha^t = 0.2$. At this 16 stage, some randomness could be introduced into the rider's selection of platforms, based on a 17 defined market share of platforms, P . Although all data are loaded into the simulator at the same 18 time, trips are marked as active to serve only when they fall within the sliding window, sw^t . At 19 each time step, the following steps are conducted:

- 20 1. Update the queue, Q^t , including the status of riders (inactive, active, served), waiting time of
21 unserved riders, etc.
- 22 2. Gather all un-served requests from active riders to calculate the shareability indicator matrix
23 I , with Equations (6)–(9).
- 24 3. Construct vertices and weighted edges in three distinct RR-Gs: the competitive graph H^t , the
25 full collaborative graph C^t , and the rational collaborative graph RC^t using Equations (10)–
26 (14).
- 27 4. Compute and allocate upfront profits from feasible pairs to the corresponding platforms based
28 on the Shapley value method, in Equations (4)–(5).
- 29 5. Check, determine, and record the maximum weighted matching set within the constructed
30 graphs based on Equation (15).
- 31 6. Update the queue Q^t with the matching records and record the profits from both inter-platform
32 and intra-platform matches to corresponding platforms.

33 Evaluation Metrics

34 Six performance metrics were used to quantify the performance:

- 35 • **Share rate:** percentage of rider requests served as shared riders.
- 36 • **Platform profit:** total revenue generated by the trip fare minus the operational costs.
- 37 • **Vehicle travel distance:** distance traveled by vehicles in serving riders.
- 38 • **Shared trip distance:** trip distance when both shared riders are on board.
- 39 • **Passenger detour distance:** additional distance a passenger has to travel due to sharing a
40 ride with others, compared to a direct trip.
- 41 • **Passenger waiting time:** time a rider waits from requesting a ride until being offered a trip.

TABLE 2: Summary of parameters in ride-sharing simulation

Notation	Interpretation	Value
n	Number of replications	10
H	Horizon (minute)	1440
t	Time step	$[0, H]$
M	The number of Platforms	2
Q^t	Riders' trip request queue at certain time	$[r_1, r_2, \dots, r_i], i \in [1, 4235]$
ε	Length of sliding window (minute)	5
s	Moving step of sliding window (minute)	5
sw^t	Sliding window (minute)	$[t - \varepsilon, t]$
P	Market Share	$[0.3, 0.7], [0.5, 0.5], [0.7, 0.3]$
Θ	Rider information transparency	$[0.2, 0.4, 0.6, 0.8, 1.0]$
τ	Maximum waiting time (minute)	10
o	Driver payout factor	0.5
γ	Maximum detour factor	0.4
\bar{v}	Velocity (mph)	30
α^d	Value of distance (vod) (\$/mile)	1
α^t	Value of time (vot) (\$/minute)	0.2

1 RESULTS

2 This section presents the results of experiments conducted under various designs and analyzes the
3 outcomes across all three market behaviors.

4 Share Rate

5 Two share rate results are explored: one over a 5-minute horizon and another over a one-day
6 horizon. To eliminate the influence of unrelated parameters, we control the market share across
7 the two platforms to match a real-world scenario (58% and 42%) and set the rider information
8 transparency of both platforms to 100%. This setting for the control variables remains consistent
9 until the sensitivity analysis subsection.

10 Figure 5 shows the MWM results of riders within a specific 5-minute time horizon. Each
11 node (from r_0 to r_{22}) represents a rider. Solid black lines indicate potential intra-platform matches,
12 while dashed black lines indicate potential inter-platform matches. Since rational collaboration
13 has more constraints on collaboration than full collaboration, there are fewer dashed lines. Under
14 the full competition scenario, in Figure 5(a), only solid lines can be selected for the matching set.
15 Under both collaboration scenarios, in Figure 5(b) and Figure 5(c), both solid and dashed lines can
16 be selected. Red lines indicate optimum matches. In the competitive market, in Figure 5(a), the op-
17 timum matching pairs are $M_1 = \{r_0r_{15}, r_3r_{20}, r_5r_9, r_{21}r_{22}\}$ with a match rate of 36%; in the full col-
18 laboration, in Figure 5(b), the optimum matching is $M_2 = \{r_0r_{15}, r_2r_4, r_5r_{10}, r_6r_3, r_9r_{17}, r_{13}r_{20}, r_{21}r_{22}\}$
19 with a match rate of 64%. In the rational collaboration, in Figure 5(c), the optimum matching
20 is $M_3 = \{r_0r_{15}, r_2r_4, r_5r_{10}, r_6r_3, r_9r_{17}, r_{21}r_{22}\}$ with a match rate of 54%. This result provides an
21 overview of how matching differs under different scenarios. The average benefits are quantified
22 over a one-day horizon and presented in the next figure.

23 Figure 6 illustrates the riders' share rate over one day, segmented into four time intervals:
24 0-5 hours, 6-11 hours, 12-17 hours, and 18-23 hours. The grey bars show the total number of

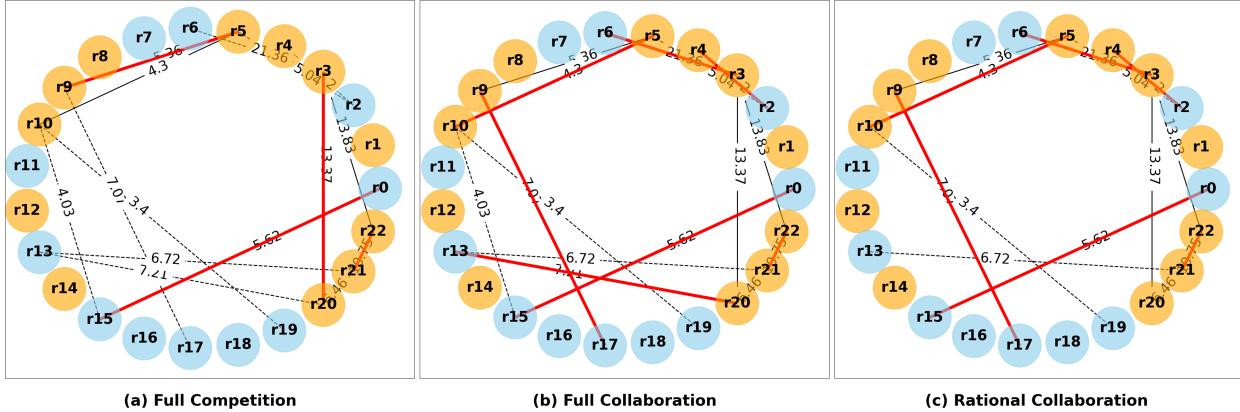


FIGURE 5: Maximum Weighted Matching Result for Riders within one sliding window in (a) Competitive Market, (b) Fully Collaborative Market, and (c) Rational Collaborative Market

1 shared trip requests, and the colored bars present the number of realized shared trips under the
 2 three scenarios mentioned above. Additionally, the corresponding share rates in each scenario are
 3 depicted as dashed lines. The benefits of collaboration are evident: the share rate increases by ap-
 4 proximately 15% under full collaboration. Additionally, full collaboration results in a marginally
 5 higher share rate (2%) than the rational collaboration scenario. This is because the full collabora-
 6 tion scenario maximizes shared trips without being constrained by individual platform profits. In
 7 contrast, rational collaboration only facilitates inter-platform matching if the profit exceeds that of
 8 intra-platform matching or a single rider traveling alone on their platform. The results demonstrate
 9 that collaboration enhances share rates, and rational collaboration can achieve performance levels
 10 close to those of full collaboration under our settings, where all platforms operate as a single entity.

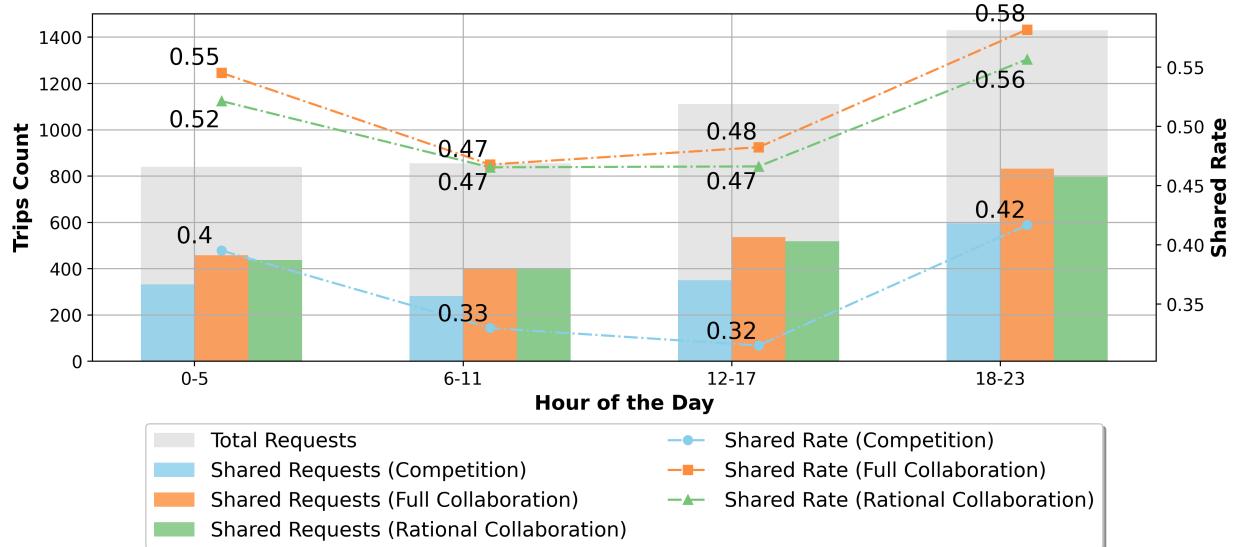


FIGURE 6: Shared Rate over One Day

1 Platform Profit

2 Figure 7 presents the profit benefits of the ride-sharing system. The competition with the shared
 3 trips scenario (Figure 7 (b)) shows higher profit than single trips (Figure 7 (a)), suggesting that
 4 promoting shared trips is more profitable under our matching constraints. Both platforms experi-
 5 ence profit growth when the market transitions from competitive behavior to a fully collaborative
 6 one. The full competition scenario (Figure 7 (c)) reveals the highest profits, demonstrating that
 7 full resource sharing and coordination maximize system efficiency and profitability. The rational
 8 collaboration scenario (Figure 7 (d)) also yields substantial profits, albeit slightly lower than full
 9 collaboration, validating the feasibility of our proposed collaboration way. Besides, platform 0
 10 consistently achieves higher profits than platform 1, reflecting its larger market share.

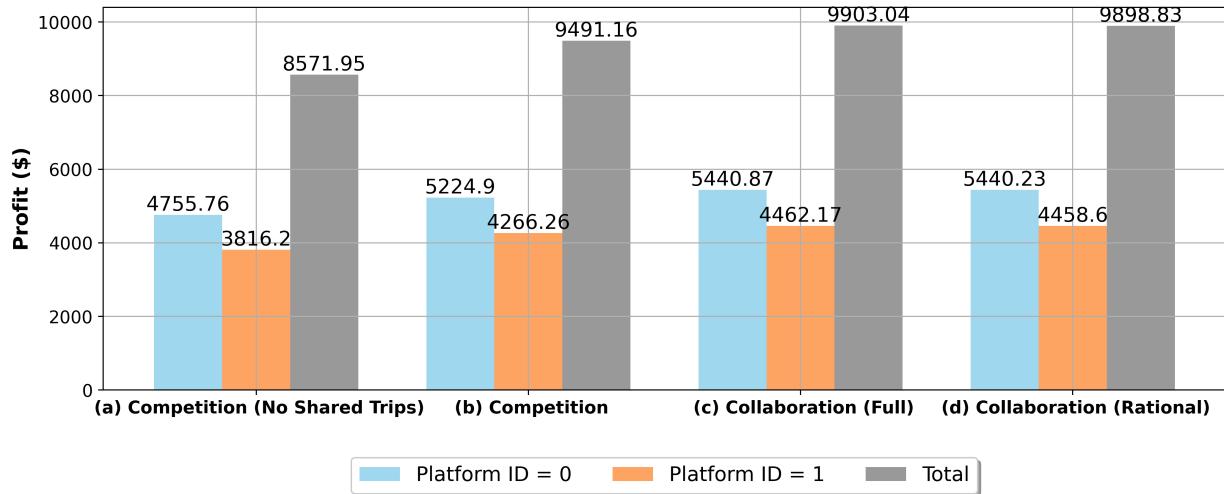


FIGURE 7: System Profit under Different Modes

11 Trip Characteristics

TABLE 3: Comparison of Service Quality Across Different Scenarios

Scenario	Vehicle Distance	Shared Distance	Detour Distance	Wait Time
Competition	5.65	2.59	0.454	3.84
Rational Collaboration	5.48	2.65	0.443	3.71
Full Collaboration	5.52	2.61	0.451	3.69

12 Table 3 presents several metrics for shared trips from the same experiment mentioned above
 13 to evaluate service quality performance across the three market behaviors. Variations of these four
 14 metrics under different experiment designs can also be seen in Figure 8. Vehicle distance represents
 15 the distance from the first passenger pickup to the last passenger drop-off, while shared distance is
 16 when both passengers are on board. A lower shared distance typically results in a higher vehicle
 17 distance and detour distance for successfully shared trips. For example, rational collaboration has a
 18 shared distance of 2.65 miles compared to 2.61 miles in full collaboration, a lower average vehicle

1 travel distance of 5.48 miles versus 5.52 miles, and a lower detour distance of 0.443 miles versus
 2 0.451 miles. But the differences are small, which are less than 0.1 mile. Generally, the performance
 3 of full and rational collaboration is very similar and is better than competitive behavior.

4 Sensitivity Analysis

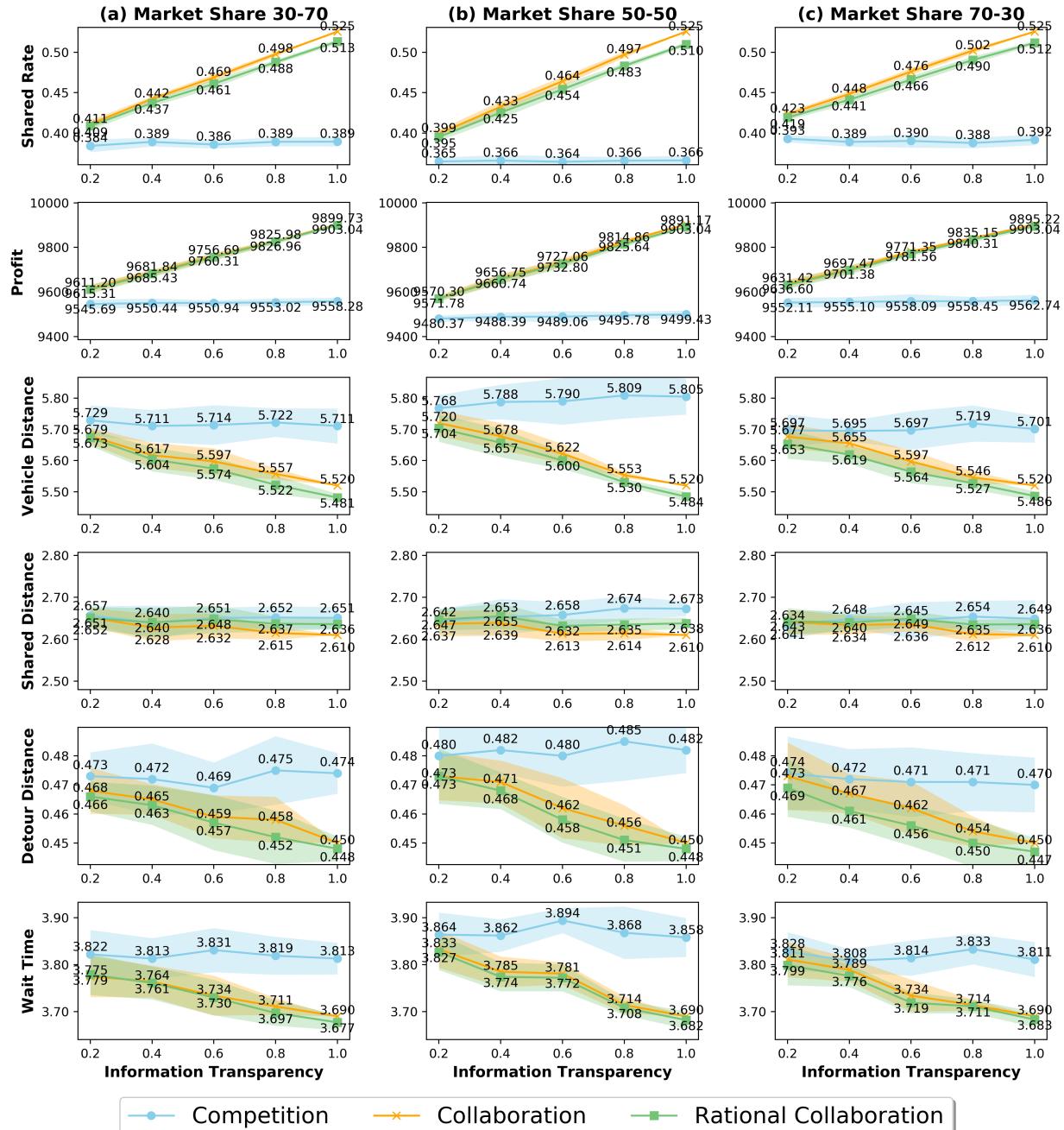


FIGURE 8: Influence of Market Share and Information Transparency

1 A sensitivity analysis on the influence of market share and rider information transparency
 2 is analyzed, which was held fixed in the previous results. The system performance of three market
 3 behaviors under different levels of market share and rider information transparency are explored.

4 Figure 8 shows the whole system’s performance under different experiment designs. The
 5 six rows show the results of the six metrics we used to evaluate the system. The three columns
 6 represent varying levels of market shares, where riders select platforms at ratios of [30%, 70%],
 7 [50%, 50%], and [70%, 30%] for platform 0 and platform 1, respectively. In each sub-plot, differ-
 8 ent levels of Θ are controlled over platform 0, while the value for the other platform is set to 1. The
 9 blue, orange, and green lines show the average performance over ten replications of competition,
 10 collaboration, and rational collaboration, respectively. The shaded areas represent the standard
 11 deviations across the replications.

12 First, the effects of rider information transparency (Θ) are discussed. Overall, the general
 13 trend across all subplots is that increasing Θ raises the share rate and system profit, while it reduces
 14 average vehicle travel distances, detour distances, and passenger waiting times across all market
 15 behaviors. This indicates that higher rider information transparency generally leads to better sys-
 16 tem performance. The shared trip distances, however, do not show obvious changes, as the shaded
 17 areas representing standard deviations of different behaviors overlap significantly. Under a low
 18 transparency level, the improvement in the system’s performance under collaboration behaviors is
 19 limited compared to a fully competitive market. However, when the transparency level is high, the
 20 improvement is notable. For instance, in the first row of Figure 8(b), when the market share is
 21 equal and $\Theta = 0.2$, the improvement in the system’s share rate is only around 3% for both rational
 22 and full collaboration compared to the competition results. However, when $\Theta = 1$, the improve-
 23 ment is notable, around 15% for rational collaboration and 16% for full collaboration. Therefore,
 24 a higher information level generally leads to better system performance.

25 Second, the effects of market share levels are discussed. Generally, when the platform
 26 with a high market share provides high rider information transparency, it helps achieve better
 27 system performance than a platform with a lower market share. For instance, in the first row of
 28 Figure 8(c), when $\Theta = 0.8$, the system’s shared rate is 50.2%, compared with 49.8% and 49.7%
 29 for the corresponding situation in Figure 8(a) and Figure 8(b). When the market share is equal, the
 30 influence of rider information transparency is the most significant. As Θ increases from 0.2 to 1,
 31 the equal market share scenario shows the largest changes in all metrics (expect shared distance)
 32 compared to the other two market share conditions. For instance, under the rational collaboration
 33 scenario with $\Theta = 0.2$, the shared rates across all three market shares are 40.9%, 39.5%, and 41.9%,
 34 respectively. But towards the end when $\Theta = 1.0$, shared rates across all three market shares are
 35 the same, indicating the equal market has the largest improvement in share rates. This is because
 36 the requests are equally segmented into two matching pools, a larger information of transparency
 37 would help platforms collaborate and communicate.

38 Computation Time

39 Figure 9 presents the relationships between each of the number of edges, the graph creation time,
 40 and the graph matching time with the number of nodes in the created graph. The blue dots rep-
 41 resent the full collaboration mode, while the orange dots present the rational collaboration mode.
 42 Figure 9(a) indicates that the number of edges in the rational collaboration mode is less than in the
 43 full collaboration mode. As seen, the greater the number of nodes, the sparser the graph becomes
 44 (the number of edges is less than half of the potential edges), which is advantageous for applying

graph-based methods to find the maximum matching. Figure 9(b) and Figure 9(c) show the time consumed for constructing graphs and finding the maximum matching of general graphs. Times are recorded each time the RR-G is operated in the sliding windows, averaged over a whole day. Each task theoretically has time complexities of $O(n^2)$ and $O(mn \log n)$, where m and n represent the number of edges and nodes, respectively. The experiment results demonstrate that the proposed graph-based collaboration method achieves results within an acceptable time.

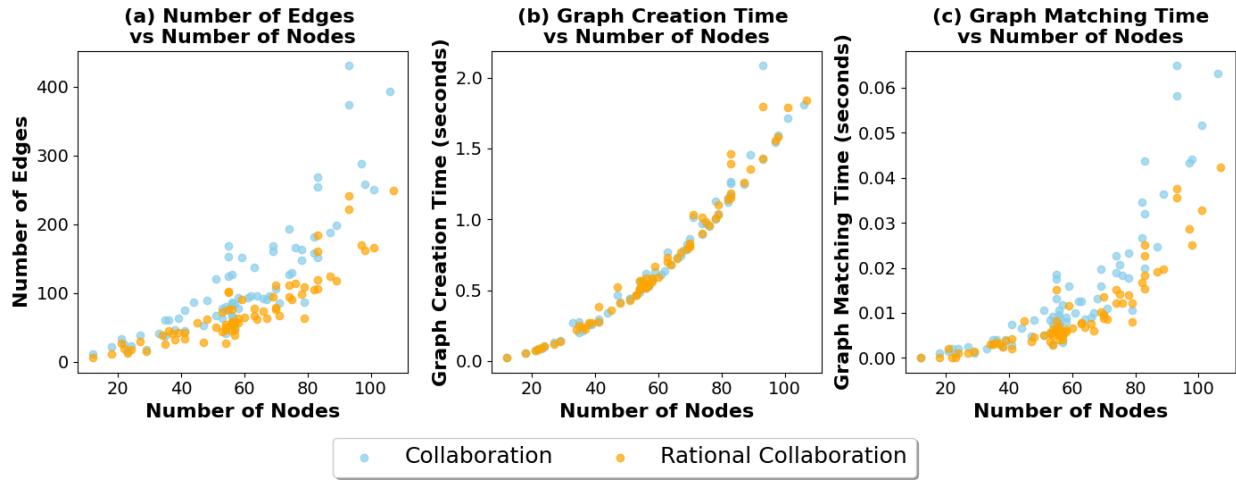


FIGURE 9: Computational Time with Scales of Nodes in Graph

7 CONCLUSION

This paper proposes a dynamic graph-based matching framework to identify potential shared trips across different platforms in a ride-sharing system. A comparative analysis of performances under collaborative versus competitive platform behaviors is conducted. The collaborative market is modeled in two ways: full collaboration, where the system operates as a unified entity; and rational collaboration, where platforms determine the profitability of the profit allocation and rider information transparency. An upfront profit allocation is calculated with the Shapley value method and used to compare inter-platform profit with other options, such as solo travel or sharing a trip with passengers from the same platform. This ensures both platforms' willingness to collaborate while maintaining individual platform profits. When constructing the graphs, requests are partitioned into sub-graphs (representing different platforms) and the adjacency of riders is constructed as edges. Different market behaviors are represented by different levels of constraint on inter-platform edges (between inter-platform riders). A fully competitive market prohibits inter-platform edges, while full collaboration allows all qualified inter-platform edges. Rational collaboration adopts an intermediate level of constraint. The Shapley value-based profit allocation method guides individual platforms in determining the existence of these inter-platform edges. Then with the constructed graphs, the maximum weighted matching method is utilized to find optimum matching. Six key metrics are analyzed: share rate, platform profit, and four service quality metrics. Additionally, sensitivity analysis on market share and rider information transparency is explored.

Our findings reveal that both full and rational collaboration improve share rates and total profit, reduce total vehicle travel distance, and enhance service quality (e.g., lower detour dis-

1 tance and shorter waiting times) compared to a fully competitive market. The collaborative market
2 demonstrates economies of scale, as inter-platform feasible pairs increase the overall matching
3 probabilities. Furthermore, rational collaboration boosts each platform's profit proportionate to
4 its market share. The sensitivity analysis indicates that increasing rider information transparency
5 generally enhances system performance by raising share rates and system profits while reducing
6 average vehicle travel distances, detour distances, and passenger waiting times across all market
7 behaviors. High transparency levels in collaborative markets significantly improve system perfor-
8 mance compared to competitive scenarios. Besides, when a platform with a high market share
9 provides high rider information transparency, it enhances overall system performance more effec-
10 tively than a platform with a lower market share. Equal market share conditions benefit the most
11 from greater transparency in a collaborative market.

12 Our work offers transportation practitioners an overview of the quantifiable benefits of
13 shifting from a fully competitive market to a rational collaborative market, and ideally to a fully
14 collaborative market. Although the matching parameters, such as maximum wait time, maximum
15 detour constraints, and fare calculations, may differ from industry standards, they are consistently
16 applied as control variables across all scenarios, ensuring reliable comparison results across dif-
17 ferent market behaviors. This shift could lead to a more sustainable and customer-friendly market
18 environment, potentially setting new standards for service quality and economic viability in the
19 ride-sharing industry. Future work may quantify the scale of benefits when the willingness to pool
20 increases with the entire ride-hailing dataset. Besides, a trip-based graph partition method could
21 be incorporated to accommodate larger graphs and enable parallel matching. Additionally, consid-
22 ering vehicle routing details could help optimize fleet size under a rational collaborative market.

23 **ACKNOWLEDGEMENTS**

24 This research was supported by NSF Grants CMMI-2052337.

25 **AUTHOR CONTRIBUTIONS**

26 The authors confirm their contribution to the paper as follows: study conception and design: X.
27 Dong, J. Ventura, V. Gayah; simulation: X. Dong; analysis and interpretation of results: X. Dong,
28 J. Ventura, V. Gayah; draft manuscript preparation: X. Dong, V. Gayah; All authors reviewed the
29 results and approved the final version of the manuscript.

1 REFERENCES

- 2 1. Shaheen, S. and A. Cohen, Shared ride services in North America: definitions, impacts,
3 and the future of pooling. *Transport reviews*, Vol. 39, No. 4, 2019, pp. 427–442.
- 4 2. Ferguson, E., The rise and fall of the American carpool: 1970–1990. *Transportation*,
5 Vol. 24, No. 4, 1997, pp. 349–376.
- 6 3. Tafreshian, A., N. Masoud, and Y. Yin, Frontiers in service science: Ride matching for
7 peer-to-peer ride sharing: A review and future directions. *Service Science*, Vol. 12, No.
8 2-3, 2020, pp. 44–60.
- 9 4. Qin, Z. T., H. Zhu, and J. Ye, Reinforcement learning for ridesharing: An extended survey.
10 *Transportation Research Part C: Emerging Technologies*, Vol. 144, 2022, p. 103852.
- 11 5. Chan, N. D. and S. A. Shaheen, Ridesharing in North America: Past, present, and future.
12 *Transport reviews*, Vol. 32, No. 1, 2012, pp. 93–112.
- 13 6. Heineke, K., B. Kloss, T. Möller, and C. Wiemuth, Shared mobility: Where it stands and
14 where it's going. *McKinsey Center for Future Mobility*, 2021.
- 15 7. Salcedo, B., Pricing algorithms and tacit collusion, 2015.
- 16 8. Stigler, G. J., The economies of scale. *The Journal of Law and Economics*, Vol. 1, 1958,
17 pp. 54–71.
- 18 9. Lehe, L., V. V. Gayah, and A. Pandey, Increasing returns to scale in carpool matching:
19 Evidence from Scoop. *Transport findings*, 2021.
- 20 10. Liu, H., S. Devunuri, L. Lehe, and V. V. Gayah, Scale effects in ridesplitting: A case study
21 of the City of Chicago. *Transportation Research Part A: Policy and Practice*, Vol. 173,
22 2023, p. 103690.
- 23 11. Liu, H., S. Devunuri, X. Dong, L. Lehe, and V. V. Gayah, Impact of competition on the
24 scale effects in ridesplitting: A case study of Manhattan. In *103rd Annual Meeting of the*
25 *transportation Research baord*, National Academies of Engineering, 2024.
- 26 12. Hu, W., K. Browning, and K. Zraick, Uber partners with yellow taxi companies in N.Y.C.
27 *The New York Times*, 2022.
- 28 13. Daus, M. W., *The Uber-Taxi partnership: regulatory evolution spawns a new transportation species!* <https://www.blackcarnews.com/article/the-uber-taxi-partnership-regulatory-evolution-spawns-a-new-transportation-species>, 2022.
- 31 14. Ke, J., H. Yang, H. Wang, and Y. Yin, *Supply and demand management in ride-sourcing markets*. Elsevier, 2023.
- 33 15. Daganzo, C. F., Y. Ouyang, and H. Yang, Analysis of ride-sharing with service time and
34 detour guarantees. *Transportation Research Part B: Methodological*, Vol. 140, 2020, pp.
35 130–150.
- 36 16. Ouyang, Y., H. Yang, and C. F. Daganzo, Performance of reservation-based carpooling services under detour and waiting time restrictions. *Transportation Research Part B: Methodological*, Vol. 150, 2021, pp. 370–385.
- 39 17. Dong, X., H. Liu, and V. V. Gayah, An analytical model of many-to-one carpool system performance under cost-based detour limits. *International Journal of Transportation Science and Technology*, 2024.
- 42 18. Masoud, N. and R. Jayakrishnan, A decomposition algorithm to solve the multi-hop peer-to-peer ride-matching problem. *Transportation Research Part B: Methodological*, Vol. 99,
43 2017, pp. 1–29.

- 1 19. Alisoltani, N., L. Leclercq, and M. Zargayouna, Can dynamic ride-sharing reduce traffic
2 congestion? *Transportation research part B: methodological*, Vol. 145, 2021, pp. 212–
3 246.
- 4 20. Datar, M., A. Gionis, P. Indyk, and R. Motwani, Maintaining stream statistics over sliding
5 windows. *SIAM journal on computing*, Vol. 31, No. 6, 2002, pp. 1794–1813.
- 6 21. Simonetto, A., J. Monteil, and C. Gambella, Real-time city-scale ridesharing via linear
7 assignment problems. *Transportation Research Part C: Emerging Technologies*, Vol. 101,
8 2019, pp. 208–232.
- 9 22. Alonso-Mora, J., S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, On-demand high-
10 capacity ride-sharing via dynamic trip-vehicle assignment. *Proceedings of the National
11 Academy of Sciences*, Vol. 114, No. 3, 2017, pp. 462–467.
- 12 23. Agatz, N., A. Erera, M. Savelsbergh, and X. Wang, Optimization for dynamic ride-sharing:
13 A review. *European Journal of Operational Research*, Vol. 223, No. 2, 2012, pp. 295–303.
- 14 24. Duan, R. and S. Pettie, Linear-time approximation for maximum weight matching. *Journal
15 of the ACM (JACM)*, Vol. 61, No. 1, 2014, pp. 1–23.
- 16 25. Agatz, N. A., A. L. Erera, M. W. Savelsbergh, and X. Wang, Dynamic ride-sharing: A
17 simulation study in metro Atlanta. *Transportation Research Part B*, Vol. 9, No. 45, 2011,
18 pp. 1450–1464.
- 19 26. Santi, P., G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, and C. Ratti, Quantifying
20 the benefits of vehicle pooling with shareability networks. *Proceedings of the National
21 Academy of Sciences*, Vol. 111, No. 37, 2014, pp. 13290–13294.
- 22 27. Galil, Z., Efficient algorithms for finding maximum matching in graphs. *ACM Computing
23 Surveys (CSUR)*, Vol. 18, No. 1, 1986, pp. 23–38.
- 24 28. Séjourné, T., S. Samaranayake, and S. Banerjee, The price of fragmentation in mobility-
25 on-demand services. *Proceedings of the ACM on Measurement and Analysis of Computing
26 Systems*, Vol. 2, No. 2, 2018, pp. 1–26.
- 27 29. Zhou, Y., H. Yang, J. Ke, H. Wang, and X. Li, Competition and third-party platform-
28 integration in ride-sourcing markets. *Transportation Research Part B: Methodological*,
29 Vol. 159, 2022, pp. 76–103.
- 30 30. Guo, X., A. Qu, H. Zhang, P. Noursalehi, and J. Zhao, Dissolving the segmentation of a
31 shared mobility market: A framework and four market structure designs. *Transportation
32 Research Part C: Emerging Technologies*, Vol. 157, 2023, p. 104397.
- 33 31. Wang, Y., J. Wu, H. Sun, Y. Lv, and J. Zhang, Promoting Collaborative Dispatching in
34 the Ride-Sourcing Market With a Third-Party Integrator. *IEEE Transactions on Intelligent
35 Transportation Systems*, 2024.
- 36 32. Shapley, L. S. et al., A value for n-person games, 1953.
- 37 33. NYC Taxi and Limousine Commission, *NYC TLC Trip Record Data*.
38 <https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page>, 2024.
- 39 34. Jordahl, K., GeoPandas: Python tools for geographic data. *URL*: <https://github.com/geopandas/geopandas>, 2014.
- 40 35. Boeing, G., OSMnx: New methods for acquiring, constructing, analyzing, and visualizing
41 complex street networks. *Computers, environment and urban systems*, Vol. 65, 2017, pp.
42 126–139.
- 43