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Abstract

Ride-sharing platforms like Uber and Lyft have transformed urban transportation by reducing travel
distances and increasing vehicle occupancy rates. However, efficiency is often limited by market
segmentation, where rider-rider pairs are restricted to specific platforms, potentially leading to
suboptimal results. This study uses a dynamic graph-based framework with maximum weighted
matching to compare the efficiency of a competitive market with a more collaborative one where
platforms can share individual trip requests. We model riders as graph vertices with dynamic
weighted edges representing profit and waiting times. The competitive market is modeled as sub-
graphs representing different platforms, the collaboration scenario as a union graph, and a rational
collaboration mode as a partial union graph under Shapley-value-based profit constraints and in-
formation transparency control. Maximum weighted matching is found within sub-graphs for the
competitive market and within the union graph for different collaboration types. Additionally, we
examine how the computational performance varies with the scale of nodes and edges. The re-
sults reveal that a collaborative market significantly improves share rates and profit while reducing
travel distances and waiting times by overcoming market segmentation barriers. This highlights
the benefits of cross-platform collaboration, suggesting it can enhance operational efficiency in a
competitive environment. Although market segmentation and platform controls can impact per-
formance, rational collaboration generally serves as a feasible approach to achieving a near-ideal
fully collaborative scenario.

Keywords: On-demand Ride-sharing, Market Segmentation, Competition, Collaboration, Maxi-
mum Weighted Matching, Shapley Value
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INTRODUCTION

Ride-sharing involves sharing a vehicle journey among riders traveling in similar directions, thereby
reducing the number of vehicle trips needed to serve passengers (/). This concept can be traced
back to the push for carpooling during the US oil crisis in the 1970s (2). Since then, it continuously
evolved and been promoted in various forms, such as peer-to-peer ride-sharing (3) and on-demand
ride-sharing (4). The push for ride-sharing stems from its numerous benefits, including reducing
total vehicle travel distance, increasing vehicle occupancy rates, decreasing required fleet size,
alleviating traffic congestion, and lowering greenhouse gas emissions (5). The sharing mobility
economy has grown considerably in recent years and achieved over $130 billion in global con-
sumer spending (6) in 2019 (pre-pandemic). Various Transportation Network Companies (TNCs)
offer ride-sharing services and compete for customers, including Uber, Lyft, DiDi, and Via.

Competition among TNCs is not always beneficial, as a competitive market can lead to
either competitive prices or price collusion for ride services (7). Competitive prices alter riders’
selection of platforms, while price collusion (usually resulting in surged prices during peak hours)
tends to push riders away to seek other options. This potential dynamic of riders’ shifting among
platforms brings instability to the segmentation of the system and impedes the economies of scale
for each platform. The economies of scale originally refer to cost advantages that enterprises
obtain due to the increase in the scale of operation (8). In ride-sharing systems, it refers to the
efficiency increases as the amount of service increases. Specifically, as the number of shared ride
requests increases, various measures of system performance (e.g., service quality, sharing rate,
detour distance—the extra distance in a shared trip compared with the corresponding rider’s single
trip—, and wait time) improve (9, /0). The fragmented ride-sharing market created by various
TNCs divides users into separate matching pools, reducing the potential for higher efficiency and
quality (/1) that can be achieved due to economies of scale.

Collaboration among on-demand service platforms might be a potential solution to mit-
igate these inefficiencies. In the practical experience of the ride-hailing services market, where
matching typically involves pairing one rider with one driver, established practices already exist.
For instance, the Uber platform has partnered with taxi-hailing companies such as Curb, Arro,
Flywheel, and YoTaxi to integrate traditional taxi options into their applications (/2, 13). This
initiative aims to boost matching efficiency and service coverage by integrating their resources.
Some third-party platform integrations also exist; for example, Baidu Map integrates the platform
options of DiDi and others in a single interface for ride-hailing in China (/4). This integration
has resulted in a lower pickup distance and a higher match rate. However, there are no established
practices for ride-sharing matching collaboration in practice. Some research on this domain does
exist, details will be presented in the next section.

This paper introduces a dynamic graph-based framework to compare the performance of
ride-share systems under different levels of collaboration among TNC platforms. The dynamic
weighted graph captures the status of rider requests and tracks rider waiting times, which are
used to make matching decisions. The Shapley value method allocates profits for inter-platform
rider pairs and compares them with intra-platform profits. If inter-platform profit is higher, the
collaboration option is agreed upon. To this end, rider-rider matching pairs selected based on the
maximum weighted matching method within and across platforms are recorded and processed. Our
goal is to maximize the total saved travel distances in shared trips and minimize the total wait time
of riders. The performance of this framework is compared to both a perfect competition scenario
and a complete collaboration scenario through empirical experiments.
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The rest of this paper is organized as follows. The next section reviews the literature on both
traditional and state-of-the-art technologies, highlighting existing gaps in ride-sharing systems.
This is followed by a detailed methodology section. The following section presents an empirical
experiment using the New York City Taxi and Limousine Commission (TLC) dataset, comparing
the performance of competitive and collaborative markets. Finally, the last section concludes with
our findings.

LITERATURE REVIEW

In this section, we review the literature focusing on two main streams. The first stream addresses
matching in ride-sharing systems, emphasizing the matching among riders (shareability) rather
than the matching between rider pairs or riders and drivers (dispatching process). The second
stream focuses on collaboration within the ride-sharing market, examining two key areas: the
effects of competition and collaboration, and the existing collaboration methods and their impacts
on the market. Additionally, we clearly state our contributions to the field.

Matching in Ride-sharing System
There is a wide spectrum of approaches to solving matching problems in ride-sharing systems,
including heuristic, combinatorial optimization, machine learning, and graph-based methods.

For carpooling and peer-to-peer ride-sharing services, where demand is well determined
far in advance of trips, the aforementioned solutions are easy to implement (/5—/7). However,
demand is generated shortly before trip departure in on-demand ride-sharing systems; matching
decisions must be made dynamically. In this context, heuristic methods, sometimes referred to as
instant matching methods, offer the advantage of near-instant responses (/8, 19), but suboptimum
solutions (e.g., higher total vehicle travel distances and lower successful pooling rates). To han-
dle this, combinatorial optimization methods (such as integer linear programming and dynamic
programming) combined with sliding windows (20) are widely used. These approaches involve
optimizing the assignment of a batch of requests at regular time intervals and continuously updat-
ing decisions as new data comes in (27, 22). Although combinatorial optimization methods are
capable of providing system optimum solutions (23), their application can still be computationally
expensive and complex.

In comparison, numerous polynomial-time graph-based algorithms can be applied to match-
ing problems. For a detailed review of these types of models, readers are referred to Duan (24).
Bipartite matching is widely used for finding rider-driver pairs; e.g., Agatz et al. developed a dy-
namic ride-matching optimization method by positioning passengers and drivers on two sides of
a bipartite graph (25). General graphs are more suitable for finding rider-rider pairs. Depending
on the objectives, the matching problem can be categorized into maximum cardinality matching
(containing as many edges as possible) or maximum weighted matching (MWM). Some papers
have applied maximum cardinality matching to maximize the possibility of riders being matched
in a ridesharing system, for example, Santi et al. (26). Instead of finding maximum cardinality
matching, we focus on finding MWM in a general graph. Galil’s O(mnlogn)-time algorithm for
maximum weighted matching in general graphs (27) is efficient for sparse graphs. This efficiency
makes graph-based methods valuable in systems with frequently changing configurations.

Most developed matching models in ride-sharing systems have focused on a single TNC,
overlooking the potential for shareability among different platforms. Our paper, however, focuses
on rider-matching both within and among platforms. Besides, unlike most papers that use bipar-
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tite graph matching, maximum cardinality matching in unweighted general graphs, or MWM in
weighted general graphs that only consider travel time, we propose a dynamic graph that maxi-
mizes total profit while prioritizing riders with longer waiting times.

Platform Competition and Collaboration

Several studies have examined the impact of competition among TNC platforms. For example,
Séjourné et al. quantified how demand fragmentation degrades the efficiency of the Mobility-on-
Demand services systems by focusing on the supply re-balancing costs incurred by this demand
fragmentation (28). Liu et al. examined competition’s impact on travel characteristics and in-
troduced entropy to evaluate spatial and temporal competition among TNC platforms (/7). The
study found that increased competition leads to decreased share rates on each platform and longer
average travel distances for shared trips.

Other studies have investigated how collaboration influences system efficiency and plat-
form profit. Zhou et al. presented the equilibrium of a competitive ride-sourcing market with
platform integration and compared the performance of the ride-sourcing market with and with-
out integration (29). The study found that platform integration does not always increase platform
profit but always enhances social welfare. Guo et al. proposed different profit allocation mech-
anisms among TNC platforms in four market structures, demonstrating benefits such as reducing
total vehicle travel distance and decreasing the total number of trips in collaborative scenarios
(30). The focus was primarily on profit allocation mechanisms for different market designs and
emphasizing the required fleet size. Wang et al. introduced a deep reinforcement learning model to
determine driver-passenger pairs in a third-party integrated ride-hailing platform (37). The study
demonstrated that the proposed method can mitigate dispatching conflicts between platforms and
enhance overall market efficiency, resulting in a higher order response rate, increased market rev-
enue, and lower total travel distances.

However, these studies have predominantly focused on the supply (drivers) and demand
(riders) dynamics, paying relatively less attention to the intricacies of cross-platform rider-rider
matching. In contrast, our paper emphasizes the shareability of riders among platforms.

Our Contributions

To summarize, most studies have focused exclusively on a monopolistic matching environment,
without examining how ride-sharing services may be improved by sharing riders between different
platforms. Additionally, existing collaboration papers focus more on the supply management side
rather than on rider shareability. To partially bridge these gaps, the contributions of this paper to the
literature are as follows: 1) developed a graph-based framework with dynamic edge weights and
maximum weighted matching method to match ride-share users; 2) proposed Shapley-value-based
collaborating strategies for ride-sharing platforms in sharing users; and, 3) examined the impacts
of collaboration over competition under varying levels of information transparency and varying
levels of market segmentation.

METHODOLOGY

In this section, we first discuss the trip fare and profit allocation, then the geographical and tem-
poral adjacency of riders, and the rider-rider graph (RR-G) concepts. We then present the market
partition, which includes full competition, full collaboration, and rational collaboration. Finally,
we present the method to find maximum weighted matching pairs in the constructed general graphs
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under different market behaviors.

Trip Fare and Profit Allocation

Demand is spatially and temporally stochastic, with riders selecting platforms based on heteroge-
neous preferences and factors. A trip request from a given rider r; is distinguished by the following
four characteristics: r; = {P,,t;,0;,D;}. Here, P, is a categorical variable denoting the platform se-
lected, ¢; is the request time, O; is the rider’s origin, and D; is the rider’s destination. The platform
then offers an upfront flat fare to this rider, f;, based on the direct trip distance from his origin to
destination, as defined in Equation (1). If a rider shares a trip with others, we assume for simplicity
that the fare collected from each shared rider is the same as for single trips, although a discount
could be given}

fi=lilo + ), ()
where [; is the direct distance of r;; a?, o are the unit value of distance and unit value of time; and
v is the average speed of the vehicles, which is assumed here to be a constant for simplicity.

Assuming the driver’s cost is proportional to vehicle traveled distance and time, the profit
each platform obtains from a single trip is defined in Equation (2), and the profit from a shared trip
for rider pair (r;,7;) is defined in Equation (3).

pi=fi(1-0) @

t
pij:fi‘l‘fj_lij(ad+%>07 3)
where p; is the profit out of r;; o is the driver payout rate; /;; is the travel distance of the shared
trip; and f; is the fare from ;.

The profits from inter-platform shared trips are distributed to different platforms based on
the Shapley value method (32), a game-theory-based profit allocation scheme defined in Equa-
tion (4). In our collaborative game, the shareable riders are considered the players, denoted as N.
Each successfully served solo rider or shared rider pair, such as (r;,7;), is considered a coalition S.
The profit gained for the platforms is the value of this coalition, denoted as v(S).

! — 1Sl =1)!
o) =¥, BHEZA=D 0 - vis), @

SCN\{i} )
where ¢;(v) is the profit allocated to player i; v(SU1) is the value of the coalition with the addition
of player i; summation over S C N\ {i} considers all coalitions without player i.

When we restrict at most two riders in a shared trip, the matching decision becomes a
two-player cooperative game, and the Shapley values ¢, and ¢,; are simplified as:

0= 5 ({2}~ v({0D) + 5 (1)) — ()
6= 5 (i) = v({0D) + 5 ([ i)) —v({r),

where v({r;}) is the value (profit) out of i/ solo trip; v({@}) is the value (profit) of no trips, and is
0; v({ri,rj}) is the value (profit) of the shared trips.

&)

Feasible Pairs

Many trips are ‘similar’ regarding origins, destinations, and time, and therefore could be aggre-
gated into fewer vehicles. Here, we define pairs of riders sharing their trips as feasible pairs, and
two steps are needed to find them:
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1 First, a sliding window technique (20) segments trip requests into small batches. As shown
2 in Figure 1, the sliding window (sw') is an &-length time window (e.g., € = 5 minutes) that moves
3 over time. The moving step, s, of this window can be any integer within |1, €|. The riders with the
g step y g

4 request time inside ¢’ h time window, [t — €,1], are considered active riders for pairing.

swt &-length

3 s step

sw

sw?

swt

t; ti ty ty T

Note: #;,1;, 1,1, are rider arrival times, sw' is the 1" sliding window, and €, s are its length and moving step.

FIGURE 1: Illustration of a Sliding Window

Second, we determine if there exists a shortest path for two active riders. Since we assume
at most two riders (e.g., r; and r;) can share their trips, only four possible pick-up and drop-off
sequences exist: 0;0;D;D;, O;0;D;D;, O;0;D;D;, and O;0;D;D;, as depicted in Figure 2. The
underlined sequence is the trip segment same as direct single trips, where no detour distance is
encountered. The shortest travel distance of the path, denoted as /;;, is the smallest length of four
10 possible paths. However, whether this ride-sharing pair is feasible is checked with the following
11 three constraints:

12 e Constraint 1 (Cp): Waiting time constraints. To minimize the wait time for riders after

O 00 3 O\ W

13 booking, a waiting time threshold, 7, is set for each rider to be picked up.

14 lo,0; <Vt ©)
15 where lg,0; is the travel distance between origins of r; and r;, assuming r; is picked up first.
16 * Constraint 2 (C;): Detour distance constraints. To prevent excessively long travel times,
17 only a certain proportion of a passenger’s direct trip distance is acceptable as an additional
18 distance for a shared trip.

19 ZODZ—_Z" <y, Vx€i,j, (7
20 wher)é Iy and [p p, are the direct trip distance and the distance between the origin and destina-
21 tion of rider x (x € {i, j}) in a shared trip (which may include a partial detour), respectively;
22 and 7 is the fixed detour factor.

23 * Constraint 3 (C3): Profit constraints. The profit from shared trips should be no less than the
24 sum of profits from single trips.

25 pi+pj < pij- ®)
26 where p;; is from Equation (3), and p; and p; are from Equation (2).
27 Checking the constraints for every two active riders with Equations (6)—(8), the indicators

28 (0 or 1) for feasible pairs are recorded in an indicators matrix, denoted as I, defined in Equation (9).
29

1 ifCinGNC
30 I'= {Ifj |1 = { i ~2 7% and Vi, j such that ri,rj € swt} : )
0 otherwise
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6 —— D 0 / B) @ @
— D 0; D; 0; Dy 0; \\\\\\\D

0;

0;

0,0;D;D; 0;0:D;D; 0,0;D,D; 0;0,D;D;

Note: The locations do not represent the actual locations but merely illustrate the path sequences. Dashed
grey arrows show the direct single trip path, while the solid red arrows represent the shared trip path.

FIGURE 2: Illustration of Path Sequences

Rider-Rider Graph

A representative rider-rider graph (RR-G) is an undirected weighted graph that represents the ad-
jacency relationships among riders over a specific period.

Vertices

V! represents the active riders set in the 1 sliding window sw’, and the number of vertices, |V,
is the number of active riders in that window. k different colors are assigned to the vertices,
representing the riders belonging to k different platforms.

Edges

The edge set is a set of unordered pairs of vertices, denoted as E' C {(x,y) | x,y € V' and x # y}.
Each edge is associated with two distinct vertices and is connected with a weight representing
the adjacency relationships between riders. The weight of an edge in our graph is dynamic, as
defined by Equation (10). It consists of two parts: the profit of the shared trip and the waiting time
of the connected riders. The elements in the indicator matrix, Il? j» are used to decide whether an
edge exists in the graph. With the sliding window, each additional waiting step increases a rider’s
connection weight, prioritizing longer waits and reducing overall waiting time.

wij =1Ii; [pij+ (@' +1}) o], (10
where #;" and tJW are the waiting time of rider r; and rider r;, I! ; is from Equation (9).

Thus, the RR-G, G' = (V',E"), can be constructed with the elements introduced above.
Modifications on G’ are made in the next subsections to represent different market behaviors. A
schematic RR-G is presented in Figure 3, where we considered two platforms in the system. On
the left is the requested trip queue in the sliding window of [0, 5], and on the right is the constructed
G'=.

lth

The Ride-sharing Market

The status quo ride-share market is primarily dominated by only a few TNC platforms with dif-
ferentiated services, presenting an oligopolistic market. For instance, the ride-sharing market in
Manbhattan is dominated by Uber and Lyft, creating a special scenario of oligopoly: a duopoly
market. Under the current market structure, there is no collaboration among TNC platforms, only
full competition behaviors. However, we propose methods to construct the RR-G and analyze the
performance under competition and collaboration (both full and rational) behaviors.

Full Competition

With full competition behavior, the platforms operate independently. Suppose an RR-G of the
whole ride-sharing system at the 1™ sliding window is represented as G’ = (V', E"). Each platform
owns only an induced sub-graph of this G', denoted as H!. The induced sub-graph contains only a
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RID Platform Time OID DID Edge Weight
1 0 0 1 5 6.55
2 0 1 3 1 3.17 R
3 0 2 4 5 5.67
4 0 3 5 2 3.21
5 1 0 1 1 0.19 rs-
6 1 2 1 1 0.33
7 1 3 1 6 3.01
8 1 3 3 3 0.31 e
9 1 4 5 2 3.37
10 1 5 5 6 4.09

platform 0 —— Inner Platform
platform1 e Inter Platform

Note: Solid lines show feasible pairs within platforms, and dashed lines show those between platforms.

FIGURE 3: Rider Requests and Schematic Rider-Rider Graph at a Single Time-Step

subset of vertices from G’ and all the edges from G’ that connect vertices only within this subset.
If there are k different platforms, there will be k induced sub-graphs, and each is defined in Equa-
tion (11). The weight of edges is calculated using Equation (10), except for all r; and r; belonging
to different platforms, which are modified to O.

H; = (Vi.,Ey,), where Vi = {x| x € B} and Ej; = {(x,y) | x,y € B}, (11)
where P; represents the i’ platform (i € [1,k]), V}Ii is the vertex set with riders belonging to the i
platform (V. C V'), and E}, is the edge set connecting only riders within the platform (E}; C E').
Vertices x,y are riders in P,.

Full Collaboration

Full collaboration assumes all providers share all resources as if they were one provider to optimize
the entire system’s operation. Under this behavior, the collaborative graph C' = (V{, Ef.) includes
all vertices and edges from the RR-G, with weights defined by Equation (10):

C' = (V},EL), where V.=V and E. =E". (12)
where V/. is the vertex set with active riders in the current sliding window, and Ef. is the edge set
with edges connecting both inter-platform riders and intra-platform riders.

Rational Collaboration

Rational collaboration, on the other hand, differs from the full collaboration scenario in that two
additional conditions need to be met before a rider may be shared with another platform: 1) each
provider has some control over rider information transparency, which controls the extent to which
the rider’s information is exposed across the market while collaborating; and, 2) each platform
checks the up-front profit—calculated using the Shapley value—of sharing a rider with another
platform before allowing it to be shared, with Equation (4)—(5). Trips may only be shared if they
fit within the information transparency provision and are financially feasible to do so. The indicator
matrix for the qualified edges connecting r; and r; in this rational collaboration scenario, derived
from Equation (10), is updated as follows:
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1= 13y (01 2 9" A (0" 2 pi) A (97" = py) A (93" = 91" ) I (13)
where 1;; is the indicator function. ¢"¢" and ¢"*" are the inter-platform upfront profit and inner-
platform profit for r; or r; in the pair (i, j), calculated using the Shapley value method.

Then the weight of edges is calculated with the updated indicator matrix and Equation (10).
And the rational collaborative RR-G, denoted as RC' = (V}y, Eg), is defined as:
RC' = (Ve Ege), where Vi = {x| x € P,AP;} and Ep- = {(x,y) | x,y € BAP;}, (14)
where V},- is the vertex set, containing all active riders in all platforms (V- = V'); and Ej is the
edge set that contains all inner-platform edges and partial inter-platform edges (Eg- C E').

Maximum Weighted Matching (MWM)

The optimum ride-sharing solutions are also provided dynamically within each sliding window.
Using RR-Gs under different market behaviors— H' = (V/;,E},), C' = (V,EL), and RC' = (Vo Ec)
—three matching sets My, Mc, and Mg are decided by:
max W(G)= ) w(Ej)

E,’jEM
MCE,
w(Eij) = wij,

where G is one of the defined RRGs, W(G) is the maximum weight of graph, and E is the cor-
responding edge set of the RR-G. M is the matching set to be assigned, which is the subset of
E.

Finding the augmenting path is the core of finding the maximum weighted matching in a
general graph, which is defined as an alternating path that starts and ends with unmatched vertices
and alternates between edges not in M and edges in M. We utilized the technique of finding a
maximum weighted matching in general graphs developed by Galil (27), which employs a primal-
dual method. Finding the matching (edge set) is a primal solution, and the dual solution is an
assignment of dual variables u;, u; corresponding to vertices. With the solution of rider pairs, and
given the large number of available drivers in TNCs, dispatching the nearest driver to the itinerary
instantly is feasible. Therefore, in the following, we assume all paired-up riders or solo riders can
be matched with available drivers.

EMPIRICAL EXPERIMENT

The experiment is designed to examine the feasibility of the proposed model and analyze the im-
pact of different market behaviors on the ride-sharing system’s performance under varying market
shares and information transparencies. This section details the data, experimental designs, param-
eters, and simulation steps.

Data

TLC trip data (33) from Manhattan, NYC are used as system inputs. From 2019 to 2023, the
proportion of shared trip requests dropped significantly from 16% to 2%, according to the data in
Table 1. Due to this shift, the most recent data from February 2023 were considered here. Figure 4
shows the daily and five-minute aggregated counts of requested single and shared trips. Most days
see around 180,000 single trip requests and 3,250 shared trip requests, with about 750 single trip
requests and 10 shared trip requests every five minutes. This data indicates that current shared
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ride services have very few candidates. To maximize potential benefits from the current market,
we focus on February 4th, 2023, the day with the highest number of shared trip requests, totaling
4,235.

The TLC trips are encoded with locations in taxi zones (33). To simulate travel distances

more precisely, we used the GeoPandas (34) and OSMNX (35) Python packages to decode the
origins and destinations from 63 zones in Manhattan to 4,589 intersections in the roadway network.
The all-to-all distance matrix was queried and recorded.

TABLE 1: Summary of Manhattan TNC Trips in February 2019 VS February 2023

TNC Realized Shared Base Fare Unit Fare Unit Fare Avg. Wait Avg. Trip Avg. Direct
(Year) Trips (%) $) ($/mile) ($/min) Time (min) Distance (mile) Time (min)
UberX (2019) 3,526,943 - 2.40 1.42 0.54 4.29 2.52 14.92
UberPool (2019) 837,247 80.11 1.42 1.06 0.06 6.88 3.01 17.88
UberX (2023) 4,196,579 — 4.09 1.76 0.64 4.05 2.56 14.71
UberPool (2023) 55,491 45.18 3.43 0.81 0.50 6.45 4.47 22.13
Lyft (2019) 991,262 - 2.99 1.61 0.45 3.89 2.65 14.74
LyftLine (2019) 676,557 79.36 2.48 1.27 0.09 5.96 3.18 18.89
Lyft (2023) 1,136,579 — 3.96 1.62 0.58 4.64 2.70 14.87
LyftLine (2023) 45,770 34.64 3.96 0.65 0.52 12.48 4.71 22.89

Frequency

Note: UberX, Lyft: single trip service; UberPool, LyftLine: shared trip service
all fare-related parameters were estimated with linear regression and statistically significant p-values.

Daily Single Trip Requests Daily Shared Trip Requests
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FIGURE 4: Distribution of Aggregated (Every 5-minutes) Trips in February, 2023

Design

In

the experiment, two varying parameters are market share and rider information transparency.

Three types of market shares are examined under low (30%), equal (50%), and high (70%) condi-
tions for one platform (referred to as platform 0) in a market comprising two platforms (0 and 1).
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The rider information transparency indicates the different levels of control over the rider’s infor-
mation sharing with other platforms in rational collaborations, also viewed as an indicator of the
platform’s willingness to collaborate. Five different levels of rider information transparency are
explored for platform 0: [0.2,0.4,0.6,0.8,1.0].

Ten replications of the simulation are conducted to ensure the robustness and reliability
of the results. Parameters used in the simulation are listed and explained in Table 2. Control
parameters are fixed constant for all designs, including &, s, 7, 0, ¥, V, a?, and of. Notice that
these parameters could vary across different service quality objectives. However, this is not the
key focus of this paper, so we hold them constant.

Detailed steps of a single replication are as follows: the time horizon of a single replication
is set to H = 1440 minutes (24 hours), and the sliding window moves over a day. We set both the
length and the moving step of the sliding window to 5 minutes, also defined as non-overlapping
windows. In the beginning, r = 0, the daily trip requests, Q°, are loaded into the simulator, en-
compassing initial features such as the arrival time, the platform they requested from, origins, and
destination. The trip fares are calculated using Equation (1), with ¢ = 1 and o’ = 0.2. At this
stage, some randomness could be introduced into the rider’s selection of platforms, based on a
defined market share of platforms, P. Although all data are loaded into the simulator at the same
time, trips are marked as active to serve only when they fall within the sliding window, sw’. At
each time step, the following steps are conducted:

1. Update the queue, Q', including the status of riders (inactive, active, served), waiting time of
unserved riders, etc.

2. Gather all un-served requests from active riders to calculate the shareability indicator matrix
I, with Equations (6)—(9).

3. Construct vertices and weighted edges in three distinct RR-Gs: the competitive graph H', the
full collaborative graph C’, and the rational collaborative graph RC' using Equations (10)—
(14).

4. Compute and allocate upfront profits from feasible pairs to the corresponding platforms based
on the Shapley value method, in Equations (4)—(5).

5. Check, determine, and record the maximum weighted matching set within the constructed
graphs based on Equation (15).

6. Update the queue Q' with the matching records and record the profits from both inter-platform
and intra-platform matches to corresponding platforms.

Evaluation Metrics
Six performance metrics were used to quantify the performance:
* Share rate: percentage of rider requests served as shared riders.
* Platform profit: total revenue generated by the trip fare minus the operational costs.
* Vehicle travel distance: distance traveled by vehicles in serving riders.
* Shared trip distance: trip distance when both shared riders are on board.
» Passenger detour distance: additional distance a passenger has to travel due to sharing a
ride with others, compared to a direct trip.
* Passenger waiting time: time a rider waits from requesting a ride until being offered a trip.
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TABLE 2: Summary of parameters in ride-sharing simulation

Notation Interpretation Value

n Number of replications 10

H Horizon (minute) 1440
t Time step [0,H]

M The number of Platforms 2

o Riders’ trip request queue at certain time  [ry,r2, ..., 7], i € [1,4235]
€ Length of sliding window (minute) 5
s Moving step of sliding window (minute) 5

sw Sliding window (minute) [t —¢,1]

P Market Share [0.3,0.7], [0.5, 0.5], [0.7, 0.3]
® Rider information transparency [0.2,0.4,0.6,0.8, 1.0]
T Maximum waiting time (minute) 10
o Driver payout factor 0.5
V4 Maximum detour factor 0.4
v Velocity (mph) 30

od Value of distance (vod) ($/mile) 1

o Value of time (vot) ($/minute) 0.2

RESULTS
This section presents the results of experiments conducted under various designs and analyzes the
outcomes across all three market behaviors.

Share Rate

Two share rate results are explored: one over a 5-minute horizon and another over a one-day
horizon. To eliminate the influence of unrelated parameters, we control the market share across
the two platforms to match a real-world scenario (58% and 42%) and set the rider information
transparency of both platforms to 100%. This setting for the control variables remains consistent
until the sensitivity analysis subsection.

Figure 5 shows the MWM results of riders within a specific 5-minute time horizon. Each
node (from rg to ry,) represents a rider. Solid black lines indicate potential intra-platform matches,
while dashed black lines indicate potential inter-platform matches. Since rational collaboration
has more constraints on collaboration than full collaboration, there are fewer dashed lines. Under
the full competition scenario, in Figure 5(a), only solid lines can be selected for the matching set.
Under both collaboration scenarios, in Figure 5(b) and Figure 5(c), both solid and dashed lines can
be selected. Red lines indicate optimum matches. In the competitive market, in Figure 5(a), the op-
timum matching pairs are M| = {roris,r3r20,rsr9, 21722 } with a match rate of 36%; in the full col-
laboration, in Figure 5(b), the optimum matching is My = {rorys,rara,rsr10, 673, ¥9r17,F13r20, 721722
with a match rate of 64%. In the rational collaboration, in Figure 5(c), the optimum matching
is Mz = {r0r15,r2r4,r5r10,r6r3,r9r17,r21r22} with a match rate of 54%. This result provides an
overview of how matching differs under different scenarios. The average benefits are quantified
over a one-day horizon and presented in the next figure.

Figure 6 illustrates the riders’ share rate over one day, segmented into four time intervals:
0-5 hours, 6-11 hours, 12-17 hours, and 18-23 hours. The grey bars show the total number of
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FIGURE 5: Maximum Weighted Matching Result for Riders within one sliding window in (a)
Competitive Market, (b) Fully Collaborative Market, and (c) Rational Collaborative Market

shared trip requests, and the colored bars present the number of realized shared trips under the
three scenarios mentioned above. Additionally, the corresponding share rates in each scenario are
depicted as dashed lines. The benefits of collaboration are evident: the share rate increases by ap-
proximately 15% under full collaboration. Additionally, full collaboration results in a marginally
higher share rate (2%) than the rational collaboration scenario. This is because the full collabora-
tion scenario maximizes shared trips without being constrained by individual platform profits. In
contrast, rational collaboration only facilitates inter-platform matching if the profit exceeds that of
intra-platform matching or a single rider traveling alone on their platform. The results demonstrate
that collaboration enhances share rates, and rational collaboration can achieve performance levels
close to those of full collaboration under our settings, where all platforms operate as a single entity.
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FIGURE 6: Shared Rate over One Day
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Platform Profit

Figure 7 presents the profit benefits of the ride-sharing system. The competition with the shared
trips scenario (Figure 7 (b)) shows higher profit than single trips (Figure 7 (a)), suggesting that
promoting shared trips is more profitable under our matching constraints. Both platforms experi-
ence profit growth when the market transitions from competitive behavior to a fully collaborative
one. The full competition scenario (Figure 7 (c)) reveals the highest profits, demonstrating that
full resource sharing and coordination maximize system efficiency and profitability. The rational
collaboration scenario (Figure 7 (d)) also yields substantial profits, albeit slightly lower than full
collaboration, validating the feasibility of our proposed collaboration way. Besides, platform 0
consistently achieves higher profits than platform 1, reflecting its larger market share.

.04 .
10000 9491 16 9903.0 9898.83
8571.95

8000 A
§ 6000 -
*x 5224.9 5440.87 5440.23
5 4755.76 26628 4462.17 4458.6
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(a) Competition (No Shared Trips) (b) Competition (c) Collaboration (Full) (d) Collaboration (Rational)

Platform ID = 0 Platform ID = 1 Total J

FIGURE 7: System Profit under Different Modes

Trip Characteristics

TABLE 3: Comparison of Service Quality Across Different Scenarios

Scenario Vehicle Distance Shared Distance Detour Distance Wait Time
Competition 5.65 2.59 0.454 3.84
Rational Collaboration 5.48 2.65 0.443 3.71
Full Collaboration 5.52 2.61 0.451 3.69

Table 3 presents several metrics for shared trips from the same experiment mentioned above
to evaluate service quality performance across the three market behaviors. Variations of these four
metrics under different experiment designs can also be seen in Figure 8. Vehicle distance represents
the distance from the first passenger pickup to the last passenger drop-off, while shared distance is
when both passengers are on board. A lower shared distance typically results in a higher vehicle
distance and detour distance for successfully shared trips. For example, rational collaboration has a
shared distance of 2.65 miles compared to 2.61 miles in full collaboration, a lower average vehicle
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travel distance of 5.48 miles versus 5.52 miles, and a lower detour distance of 0.443 miles versus
0.451 miles. But the differences are small, which are less than 0.1 mile. Generally, the performance
of full and rational collaboration is very similar and is better than competitive behavior.

Sensitivity Analysis
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A sensitivity analysis on the influence of market share and rider information transparency
is analyzed, which was held fixed in the previous results. The system performance of three market
behaviors under different levels of market share and rider information transparency are explored.

Figure 8 shows the whole system’s performance under different experiment designs. The
six rows show the results of the six metrics we used to evaluate the system. The three columns
represent varying levels of market shares, where riders select platforms at ratios of [30%, 70%],
[50%, 50%], and [70%, 30%] for platform O and platform 1, respectively. In each sub-plot, differ-
ent levels of ® are controlled over platform 0, while the value for the other platform is set to 1. The
blue, orange, and green lines show the average performance over ten replications of competition,
collaboration, and rational collaboration, respectively. The shaded areas represent the standard
deviations across the replications.

First, the effects of rider information transparency (®) are discussed. Overall, the general
trend across all subplots is that increasing ® raises the share rate and system profit, while it reduces
average vehicle travel distances, detour distances, and passenger waiting times across all market
behaviors. This indicates that higher rider information transparency generally leads to better sys-
tem performance. The shared trip distances, however, do not show obvious changes, as the shaded
areas representing standard deviations of different behaviors overlap significantly. Under a low
transparency level, the improvement in the system’s performance under collaboration behaviors is
limited compared to a fully competitive market. However, when the transparency level is high, the
improvement is notable. For instance, in the first row of Figure 8(b), when the market share is
equal and ® = (.2, the improvement in the system’s share rate is only around 3% for both rational
and full collaboration compared to the competition results. However, when ® = 1, the improve-
ment is notable, around 15% for rational collaboration and 16% for full collaboration. Therefore,
a higher information level generally leads to better system performance.

Second, the effects of market share levels are discussed. Generally, when the platform
with a high market share provides high rider information transparency, it helps achieve better
system performance than a platform with a lower market share. For instance, in the first row of
Figure 8(c), when ® = 0.8, the system’s shared rate is 50.2%, compared with 49.8% and 49.7%
for the corresponding situation in Figure 8(a) and Figure 8(b). When the market share is equal, the
influence of rider information transparency is the most significant. As @ increases from 0.2 to 1,
the equal market share scenario shows the largest changes in all metrics (expect shared distance)
compared to the other two market share conditions. For instance, under the rational collaboration
scenario with ® = (0.2, the shared rates across all three market shares are 40.9%, 39.5%, and 41.9%,
respectively. But towards the end when ® = 1.0, shared rates across all three market shares are
the same, indicating the equal market has the largest improvement in share rates. This is because
the requests are equally segmented into two matching pools, a larger information of transparency
would help platforms collaborate and communicate.

Computation Time

Figure 9 presents the relationships between each of the number of edges, the graph creation time,
and the graph matching time with the number of nodes in the created graph. The blue dots rep-
resent the full collaboration mode, while the orange dots present the rational collaboration mode.
Figure 9(a) indicates that the number of edges in the rational collaboration mode is less than in the
full collaboration mode. As seen, the greater the number of nodes, the sparser the graph becomes
(the number of edges is less than half of the potential edges), which is advantageous for applying
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graph-based methods to find the maximum matching. Figure 9(b) and Figure 9(c) show the time
consumed for constructing graphs and finding the maximum matching of general graphs. Times
are recorded each time the RR-G is operated in the sliding windows, averaged over a whole day.
Each task theoretically has time complexities of O(n?) and O(mnlogn), where m and n represent
the number of edges and nodes, respectively. The experiment results demonstrate that the proposed
graph-based collaboration method achieves results within an acceptable time.
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FIGURE 9: Computational Time with Scales of Nodes in Graph

CONCLUSION
This paper proposes a dynamic graph-based matching framework to identify potential shared trips
across different platforms in a ride-sharing system. A comparative analysis of performances un-
der collaborative versus competitive platform behaviors is conducted. The collaborative market is
modeled in two ways: full collaboration, where the system operates as a unified entity; and rational
collaboration, where platforms determine the profitability of the profit allocation and rider infor-
mation transparency. An upfront profit allocation is calculated with the Shapley value method and
used to compare inter-platform profit with other options, such as solo travel or sharing a trip with
passengers from the same platform. This ensures both platforms’ willingness to collaborate while
maintaining individual platform profits. When constructing the graphs, requests are partitioned into
sub-graphs (representing different platforms) and the adjacency of riders is constructed as edges.
Different market behaviors are represented by different levels of constraint on inter-platform edges
(between inter-platform riders). A fully competitive market prohibits inter-platform edges, while
full collaboration allows all qualified inter-platform edges. Rational collaboration adopts an inter-
mediate level of constraint. The Shapley value-based profit allocation method guides individual
platforms in determining the existence of these inter-platform edges. Then with the constructed
graphs, the maximum weighted matching method is utilized to find optimum matching. Six key
metrics are analyzed: share rate, platform profit, and four service quality metrics. Additionally,
sensitivity analysis on market share and rider information transparency is explored.

Our findings reveal that both full and rational collaboration improve share rates and total
profit, reduce total vehicle travel distance, and enhance service quality (e.g., lower detour dis-
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tance and shorter waiting times) compared to a fully competitive market. The collaborative market
demonstrates economies of scale, as inter-platform feasible pairs increase the overall matching
probabilities. Furthermore, rational collaboration boosts each platform’s profit proportionate to
its market share. The sensitivity analysis indicates that increasing rider information transparency
generally enhances system performance by raising share rates and system profits while reducing
average vehicle travel distances, detour distances, and passenger waiting times across all market
behaviors. High transparency levels in collaborative markets significantly improve system perfor-
mance compared to competitive scenarios. Besides, when a platform with a high market share
provides high rider information transparency, it enhances overall system performance more effec-
tively than a platform with a lower market share. Equal market share conditions benefit the most
from greater transparency in a collaborative market.

Our work offers transportation practitioners an overview of the quantifiable benefits of
shifting from a fully competitive market to a rational collaborative market, and ideally to a fully
collaborative market. Although the matching parameters, such as maximum wait time, maximum
detour constraints, and fare calculations, may differ from industry standards, they are consistently
applied as control variables across all scenarios, ensuring reliable comparison results across dif-
ferent market behaviors. This shift could lead to a more sustainable and customer-friendly market
environment, potentially setting new standards for service quality and economic viability in the
ride-sharing industry. Future work may quantify the scale of benefits when the willingness to pool
increases with the entire ride-hailing dataset. Besides, a trip-based graph partition method could
be incorporated to accommodate larger graphs and enable parallel matching. Additionally, consid-
ering vehicle routing details could help optimize fleet size under a rational collaborative market.
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