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ABSTRACT

The past decade has seen great advancements in speech recognition for control of interactive
devices, personal assistants, and computer interfaces. However, Deaf people and people
with hard-of-hearing, whose primary mode of communication is sign language, cannot use
voice-controlled interfaces. Although there has been significant work in video-based sign
language recognition, video is not effective in the dark and has raised privacy concerns
in the Deaf community when used in the context of human ambient intelligence. Radars
have recently been started to be used as a new modality that can be effective under the
circumstances where video is not.

This dissertation conducts a thorough exploration of the challenges in RF-enabled sign
language recognition systems. Specifically, it proposes an end-to-end framework to acquire,
temporally isolate, and recognize individual signs. A trigger sign detection with an adaptive
thresholding method is also proposed. An angular subspace projection method is presented
to separate multiple targets at raw data level. An interactive sign language-controlled chess
game is designed to enhance the user experience and automate the data collection and
annotation process for labor-intensive data collection procedure. Finally, a framework is
presented to dynamically adjust radar waveform parameters based on human presence and

their activity.
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CHAPTER 1

INTRODUCTION

1.1 Motivation & Context

Users of American Sign Language (ASL) make up over 1 million people in the U.S. and
Canada, based on statistics provided by Gallaudet University (the world’s only university
designed to be barrier-free for deaf and hard of hearing students located in Washington,
D.C.). People in the Deaf community, who rely on ASL as their primary mode of communication,
rely heavily on technology as an assistive device as they navigate communication/language
barriers that status quo society often creates. Unfortunately, many technologies are designed
for hearing individuals, where vocalized speech is the preferred mode of communication, and
has driven a burgeoning market of voice recognition software and voice-controlled devices.
This precludes the Deaf community from benefiting from advances in technology, which, if
designed to be compatible with ASL, could in fact generate tangible improvements in their
quality of life.

Research related to technologies for the deaf or Hard of Hearing (HoH) has been ongoing
for the past three decades, but, has primarily focused on camera-based and wearable technologies,
such as gloves or wrist bands containing accelerometers and other sensors to translate sign
language into voice or text. Among these approaches, sensor-augmented gloves have been
reported to typically yield higher gesture recognition rates than camera-based systems.

However, such wearable gloves cannot capture intricacies of sign languages offered through



Figure 1.1: Geometry of video and radar velocity measurements.
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head and body movements [46, 119]. This issue is addressed by optical sensors, however,
video cameras trigger user concerns over privacy and require light to be effective.

In contrast, especially in the context of technologies for the Deaf/HoH users, RF sensors
have several advantages over alternative sensing modalities, which make them uniquely
desirable. RF sensors are non-contact and protective of privacy, fully operational in the
dark, and can even be used for through-the-wall sensing. RF sensors do not acquire personal
imagery. Therefore, they are considered to be more privacy protective sensors when compared
to video cameras. However, if the system security is compromised, there are still certain
information the intruder can infer from the environment such as presence of human [39],
number of people in a room [153], or person-specific activity or presence data (when acquired
enough model training data) [180]. Most importantly, RF sensors can acquire a new source
of information that is inaccessible to optical sensors: visual representation of kinematic
patterns of motion via the micro-Doppler signature [27], as well as more accurate velocity
measurements and range profiles. Figure 1.1 depicts the components of a 3D velocity

vector, v. While video sensors are more sensitive to motions in x-y axes, radars have



higher sensitivity towards radial motions. This feature makes them promising complimentary

sensors for multi-modal recognition scenarios.
1.1.1 Involvement of Deaf Community

Previous investigations of these existing prototypes often fail to involve participants and
investigators fluent in ASL [16, 41]. A major aspect of my research methodology has involved
feedback from Deaf users, and advice and collaboration with Deaf researchers at Gallaudet
University, in particular Dr. Kenneth DeHaan and Dr. Caroline Kobek Pezzarossi.

In a preliminary focus group we conducted in 2019, Deaf participants reacted negatively to
the idea of having to use anything wearable in their daily lives. Indeed, wearable technology
limits signer’s freedom in conducting daily activities and is not designed with ASL movements
and language constraints in mind. In contrast, the Deaf participants reported that while
they used on a regular basis some form of video-based technology for communication in
their jobs; those video technologies have limitations (such as a narrow field-of-view, privacy
issues, and reliance on light). Although video tends to be viewed favorably for interpersonal
communication with society-at-large, Deaf participants in our focus group lamented its
limitations — video usage was dependent upon being in an office/work environment or with
access to cell phones (and battery life). A significant thematic point of discussion that
occurred with the Deaf participants was concern over technology enabling invasion of privacy
and potential surveillance of their personal and private lives.

There are also concerns about cultural exploitation and monetizing/commercializing
products with no involvement or ownership by the Deaf community. As researchers we
also have a responsibility with cultural sensitivity and awareness. Therefore, we believe
it is important to have a strong collaboration with Deaf community while designing and
commercializing Deaf-centric products, and there should be more initiatives towards including
Deaf researchers into the product development team so that we can ensure a fair economic

outcome.



1.2 Linguistic Significance of Kinematics

In speech communication, quantitative measurements of the temporal dynamics have
resulted in fundamental insights into perceptual and mathematical properties of information
exchange [160] . Temporal quantification of the properties of signed languages has been, to
date, substantially behind that of speech due to the higher dimensionality of visual modality.
When sign language linguistics research began in 1960s, signs had been defined based on their
static properties: hand shape, place of articulation (i.e. location of the articulator/hand at
the beginning and end of the sign), and hand shape orientation [161].

A study on signers’ perception of writing in point-light displays [98] has demonstrated
that signers viewing the dynamics of hieroglyph writing can tell the difference between
‘strokes’ (information-bearing portions of point-light movement) and ‘transitions’ (movement
of the point-light from the end of one meaningful portion, to the beginning of another).
A 2x2 Latin Square design that assessed the difference in perception between signers and
non-signers, and users of Chinese and English, showed that sensitivity to transitions was
due entirely to experience with sign language, and not due to experience with hieroglyphic
writing systems.

Current neurolinguistic research indicates that dynamic properties of signs (i.e., speed
and temporal contour of motion) contribute crucial linguistic information to the meaning of
signs [120, 117]. Analysis of information content in speech vs. everyday motion using the
visual properties of the signal and optical flow [118, 12] has indicated that signers transmit
more information (in the sense of mathematical entropy) than humans carrying out dynamic
tasks, and that the intelligibility of a signing stream is crucially dependent on the ability
to parse entropy changes in visual information [121, 14]. RF sensors allow for improved
measurements of these temporal dynamics in conjunction with shape dynamics, combining
information picked up from the moving hands with the information on other articulators

(head and body).



1.3 Sign Language-Sensitive Cyber-Physical & Human Systems

There has been extensive research towards technologies for the Deaf and HoH people
over the past three decades, and most of these works have focused on the translation of
sign language into text or voice. While Sign Language (SL) translation contributes towards
facilitating interaction between Deaf/HoH and hearing people, potential of more broad range
of applications to make their lives easier is overlooked. In contrast with many works focused
on sign language translation, this dissertation is concerned with recognition only to facilitate
interaction, which can be accomplished without needing to recognize all the words comprising
ASL.

Smart Deaf spaces [9] are environments that can respond to the natural language of the
Deaf community for the purposes of remote health, environment control, Human Computer
Interaction (HCI), and security. There are several key design considerations when designing

Deaf-centric smart spaces:

1. Culture: The Deaf culture and what feels more comfortable and natural for them
should be prioritized for the device control commands. Having an open space and
less visual noise in the room/office are important to facilitate a visually comfortable

environment.

2. Representation: Deaf people have very diverse backgrounds and the data used by
the prediction model (if there are any) should be comprehensive enough to represent
data of all the signers. Regional dialects and different versions of the same sign are also
other important factors to take into account while designing a sign language recognition

system.

3. Data Authenticity: The data utilized in the system should be acquired from Deaf/HoH
people and not from hearing individuals since SL is a language with an involved
grammar and has contextual nuances, and should be articulated by the fluent signers

to be able to capture those features. In our earlier study [69], we have found that there
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are significant differences in the data distribution of fluent and imitation signers which
affect the model performance. In another work [104], we have shown the importance
of acquiring data in a natural setting instead of having strict experimental limitations

and assumptions which do not represent the real world scenarios.

4. Ease of Operation: Usage of an accessible system should be intuitive and easy enough
so that it does not require any technical expertise or external assistance. In an RF
sensor based system, this would correspond to having a standalone system operating
continuously without needing user to connect it to an edge device or computer and set

it up every time when the system is being used.

Omitting any of these items can result in unfavorable user experiences. Therefore, a
special attention needs to be paid in the design process of Deaf-centric spaces.

A wide range of sensor modalities from cameras to wearable-based devices have been
proposed for SL recognition. Although sensor augmented gloves typically yield the most
accurate 3D positioning of the hands and fingers, they cannot capture facial expressions
and other body movements which play a significant role in SL grammar and can completely
change the meaning of a phrase. In addition, they are often cumbersome devices to be used
in a daily living scenario, and found intrusive by the Deaf community [47]. Since they need
to be worn every time when the user wants to use the system, it interferes with other daily
activities and causes uncomfortable experiences.

Video-based solutions, on the other hand, are currently the most effective way to capture
facial expressions. High 2D spatial resolution provides sufficient precision for scene understanding
and enables further methods like skeleton and body landmark estimation from 2D video
frames by utilizing Deep Learning (DL)-based methods. Inclusion of Infrared (IR) sensors
in cameras enables depth estimation as well with the cost of increased price and size. While
video-based solutions have a lot to offer, they have certain limitations which preclude them
to be ubiquitously used in home environments. First, they collect visual imagery which

raises serious privacy concerns about data security. Second, they can easily get affected by



the lighting conditions of the environment, and skin and dress color of the people. Finally,
they require direct Line of Sight (LOS) within a close distance to be able to understand the
human motions accurately. These drawbacks limit the deployment of video-based solutions
for Sign Language Recognition (SLR) in indoor environments. Therefore, a more secure,
non-intrusive and non-invasive modality is needed.

Devices for interaction and communication with humans in a home environment should

utilize sensors with several key characteristics:

1. Privacy: Not acquiring any personal data which can compromise identity or personal

information of the individuals.

2. Data Security: The data should be acquired, processed, transferred and stored

securely without allowing intruders to interfere.

3. Accuracy and Precision: Perceiving the environment and people with enough

resolution and no or minimal error.

4. Reliability and Robustness: Environmental conditions and other external factors

should not affect the sensor in a degree that it malfunctions or provides misinformation.

While each sensor has its own pros and cons, RF sensors check all these requirements and
present distinct advantages over other sensor types. They can provide range, velocity and
angle information with high resolution in various data representation formats. Furthermore,
radars provide these information through physical measurements instead of relying on estimation
methods as used in video-based solutions. Time-varying radial range information can be
attained through round-trip time delay of the transmitted signal. Velocity information can
be obtained from the Doppler shifts of the transceived signal. Finally, azimuth and elevation
angles can be extracted from the time delay between the receiving antenna elements. The
raw RF data is flexible enough to generate range, velocity, angle profiles, Range-Doppler

Map (RDM), Range-Angle Map (RAM), Doppler-Angle Map (DAM), point clouds and any



other RF data representations. This flexible nature of RF data becomes especially handy
when computational resources or the time allocated for data processing are limited. The
generated data representations then can be used to train various DL models which lead to
end CPHS applications.

Radars can also operate in adverse weather conditions from long distances which make
them suitable sensors for autonomous driving and other surveillance applications. They
can even be used for through-the-wall sensing in certain center-frequency bands. The
development of low-cost, low-power, high-resolution and small size antenna modules enabled
new research topics by allowing the use of RF sensors almost anywhere as a part of Internet-of-Things
(IoT) applications, smart home systems, autonomous driving, wearables and even cell phones
(e.g., Google Pixel 4). As a result, businesses including Google [112], NXP [143], Aptiv [147],

Motional and Ghost have started to build and commercialize radar-based devices.

1.3.1 Radar as an Emerging Modality

Figure 1.2: Radar-based CPHS applications.
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Development of commercially available, small package, high frequency radars has enabled
numerous applications in automotive, health monitoring, security and loT fields. Automotive

applications include traffic sign detection, object detection and tracking, pedestrian detection,



blind spot detection, automated parking systems, and in-cabin sensing applications such
as occupancy count, and infant monitoring. Health monitoring applications such as vital
sign monitoring, fall detection and gait abnormality detection have also been investigated.
Other indoor applications include but not limited to gesture recognition, Human Activity
Recognition (HAR), SLR and presence detection.

There are several reasons why radars have such a wide range of applications:

e Data Reliability: Radars can provide consistent data in unfavorable conditions such

as adverse weather, very high or very low temperatures.

e Low Cost: Radars are relatively cheaper sensors when compared to LiDARs which

makes them more affordable to integrate into various systems.

e High Resolution Data: Radars can provide high range, velocity and angle resolution

depending on the RF waveform parameters and the antenna layout.

e Privacy Protection: Radars do not acquire personal imagery which alleviates the

privacy concerns for indoor applications.

e Small Package: Commercially available RF sensors have very small package sizes

that makes them easy to deploy in various environments.

e Color, Texture and Lighting Agnostic: Radars do not get affected from the color
or texture of the object, and having very high or very low lighting conditions in the

environment.

These features make radars well-suited sensors for various applications, and draw more
attention from the researchers each day. Figure 1.2 depicts the radar-based CPHS applications

for various objectives along with their sensing challenges.



Figure 1.3: The Cycle of Adaptation.
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1.3.2 Adaptive RF Sensing

RF waveforms used in radar systems are often selected and adjusted based on the
application needs. These include maximum unambiguous range and velocity, range, velocity
and angle resolution, sampling rate, computational overhead and storage space. While having
a fixed set of waveform parameters work well for a particular task, when there exists multiple
tasks or a dynamic environment, utilization of different waveform becomes a necessity. For
instance the RF sensor might need to adjust its parameters based on existence of a person
in the room, or the activities they are performing.

With the development of software-defined RF sensors, it has become possible adjust
transmitted signal’s waveform parameters such as center frequency, bandwidth, Analog-to-Digital
Converter (ADC) sampling rate, Pulse Repetition Frequency (PRF), and number of receiving
antenna elements to be used depending on the needs of the application. However, these
selections are made manually prior to deployment of the system. In addition to sensing, if the
radar can understand the surroundings and takes action to adjust its waveform parameters
in an autonomous fashion, it would count towards cognition, and the radar can operate in

more optimal modes for different scenarios.
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Human brain considered to be the most powerful cognitive dynamic system. Haykin [74]
describes the functions of five building blocks of a cognitive dynamic system attributed to

Fuster’s Paradigm [52]:

1. Perception/Action Cycle (PAC): Extracting information about the environment
by processing the received signal, where the amount of information gain increases at

each cycle.

2. Memory: Encoding and storing the information, and recalling it when queried by

some cue.

3. Attention: Utilizing computational resources in an effective and efficient manner in

order to avoid the information overload problem.

4. Intelligence: Enabling an algorithmic decision-making process to choose a strategy

for the optimal solution of a predefined objective.

5. Language: Enabling an effective and efficient communication between people. Therefore,
Haykin discards the language form its model in the concept of cognitive radar and it

is not considered further.

Cognition mechanism is often depicted with PAC [71, 60]. Similarly, adaptation of radar
parameters for the environment can be depicted with Cycle of Adaptation as depicted in
Figure 1.3. Here, adaptation cycle first starts with RF sensor’s response acquisition from the
environment. This collection is realized by transceiving antenna elements. Upon extracting
the relevant information from the data, they are passed to the actuator to interpret and take
intelligent actions to optimize the resource allocation and radar parameters. When the new
actions are realized and used on the environment, the cycle is complete. The main objective
of the adaptation cycle is to mimic human operator to adjust the radar parameters and other
computational resources. By doing so, the RF sensor will be able to perceive, understand

and adapt to the environment intelligently.
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In addition to adaptive optimization processes we can perform on the hardware side,
there are certain computational stages we can optimize on the signal processing side as
well. For instance, generating high resolution optical images/videos from raw RF data using
computationally intensive algorithms in order to obtain range, velocity and angle information
can be cumbersome, and also increases the overall response delay of the system. Continuously
running these algorithms also allocates so much space in the random access memory (RAM)
of the processor and can interfere or block concurrently running computational threads used
by other modules of the system. This can be processing of other sensor’s data or a DL
model used for prediction. Such software-related artifacts can result in software crashes
and unfavorable user experience. Therefore, it is important to adapt the signal processing
pipeline for the environmental feedback to maximize the system efficiency.

Similarly, for the inference part, various DL models with different computational complexities
can be present in the system. Light-weight models can be used for initial device trigger (i.e.,
wake-word) detection and more sophisticated models can be preferred for actual command
sign/gesture understanding. This would alleviate the heavy computational load on the

Graphics Processing Unit (GPU) and keep its memory more accessible to other units.

1.4 Vision and Objectives of This Dissertation

This dissertation aims to enable accessible, interactive RF technologies controlled via sign
language. While the scope of this dissertation is not complete sign language translation, we
aim to explore the ways how RF technology can be utilized to build accessible applications for
Deaf/HoH people in an indoor environment. We first tackle the word-level ASL recognition
task and propose various signal processing and Machine Learning (ML) techniques to improve
the recognition performance of the system. Next, we consider the use case of sign language
in a daily living scenario where other human activities can also be part of the observed
data. Then, we consider the case of presence of multiple people in the radar Field of View

(FoV) and how to recognize activities of people individually. Next, we explore the ways
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of automating the data collection and annotation procedure via gamification. Finally, we
aim to improve the intelligence of the RF system by dynamically adjusting the waveform
parameters based on the actions in the environment.

Putting it all together, we examine different components of a sign language-sensitive
smart spaces. While our objective is not to replace our modalities in SLR, we rather show
how RF sensors can provide a new source of information and how they can be a well-suited
complimentary sensors when other sensors become suboptimal or inadequate.

Outcomes of this dissertation can be leveraged in other applications including building
STEM applications to teach RF sensing and AI/ML for high school students, or controlling
other electronic devices via sign language. Complete translation of ASL (ASL-to-text or
text-to-ASL) will only be viable when a large amount of annotated sentence-level data
are acquired, perhaps with the utilization of multiple sensors and adequate amount of

computational resources.

1.5 Related Work

Radar-based CPHS applications has been expanded to various fields and applications
including HAR [48], fall/fall risk detection [4], gait analysis [148, 67], healthcare monitoring
[131] and many more. A great deal of these innovative solutions utilize the recent advances in
GPU technology - enabling powerful ML. and DL models to be used on end user devices. DL
methods used in radar-based recognition technology exploit different RF data representations
and processing techniques. This is due to flexible nature of the raw radar data in a sense that
it can be processed in many different ways to obtain range, velocity or angle information.

In the past, radar-based recognition frameworks often adopted conventional ML methods
such as Support Vector Machines (SVMs) [187], decision trees [126], random forest [174],
k-Nearest Neighbors (k-NN) [35] and Dynamic Time Warping (DTW) [156]. Different
feature extraction methods are used while employing these methods for recognition problems.

Although conventional ML methods work well on different radar-based tasks, they have
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several drawbacks which prevent the further improvement of robustness and generalization.
Firstly, in order to employ these methods domain expertise need to manually and heuristically
extract the features. Further feature selection algorithms may also needed to choose the
only most important features to maximize the model’s performance. Minimum Redundancy
Maximum Relevancy (MRMR) [115], neighborhood component analysis [54] and sequential
feature selection can be given as example to some of the popular feature selection methods.
Secondly, hand-crafted features, in most cases, refer to low-level statistical information such
as mean, median, variance, power level and amplitude, which are task specific. When the
model is trained with these low-level features and tested on a new dataset, the performance
of the model usually degrades. Therefore, conventional ML methods are not competent
enough to train a robust model with good generalization capability.

Deep neural networks (DNNs), on the other hand, tend to break these limitations as a
new branch of ML. DL approaches are able to extract a wide range of low-level to high-level
features without requiring any manual or heuristic effort, through hierarchical architectures.
Moreover, thanks to recent advances in GPU and parallel computing technology, they are
capable of processing large amounts of data within a very short time interval. However,
since DL approaches are data-driven methods, they require a handful amount of quality
data to be able to train the model with a good generalization capability. While there exists
a broad range of publicly available datasets for many image-based recognition tasks, this is
not the case for radar datasets. They are not only limited by the certain application areas,
also the number of samples is often not adequate to train very deep networks. Quality of
the provided datasets are also questionable. Moreover, since there exists a large number
of commercially available RF sensors, research groups use different RF sensors depending
on their budget and project requirements. These sensors’ operation characteristics and the
hardware /software artifacts observed in the data are so different that it is almost impossible

to utilize a data collected with a different sensor model even if they are operating at the same
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center frequency. Collecting real radar samples is also a labor intensive, time consuming and
an expensive task.

In order to overcome these problems, different synthetic data generation methods are
proposed such as Variational Auto-encoder (VAE) [97] and Generative Adversarial Network
(GAN) [57]. Most of the data augmentation techniques used in computer vision such as
flipping, rotating or shearing are also not applicable to radar data since RF data are often
presented to the networks in the form of heat maps, and the location of each blob in
the heat map has a physical meaning. Therefore, any modification made on the image
would correspond to a physical change in the observed environment and hamper the model’s
performance. As an alternative to synthetic data generation methods, Transfer Learning
(TL) techniques [149] are often employed to initialize the network weights with a better
starting point. In this way, a network trained on a different task with large amount data
can be leveraged to be used in a different task by only fine-tuning the network weights with
a small amount of real data. ImageNet [40] weights which are trained with over one million
images can be given as example to one of most popular network initialization methods.
While the earlier layers of the DNN models extract the low-lewel features such as edges,
corners and curves which are common in most computer vision tasks, deeper layers capture
higher-level features such as eyes, lips or nose in a facial image. Therefore, keeping weights of
the initial layers fixed and fine tuning the latter layers with the task of interest is a common
approach while employing TL methods. Although such pre-trained networks are not initially
going to be familiar with spatial features of RF data, they can extract primitive features

very effectively and can learn high level RF data features as more data acquired over time.
1.5.1 Gesture versus Sign Language Recognition

Machine learning algorithms are data greedy methods that require large amounts of
training samples to enable the network to learn complex models. Thus, it is a common
practice for researchers to acquire data from non-native signers, who may not know any

sign language, since it is an expeditious source of data. Although ASL is often likened to
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gesturing, it is important to recognize that ASL is a language, and not reduce signing to
mechanical hand and arm movements that can be easily imitated. Thus, while gestures can
be made using any participant, studies of ASL require participants for whom sign language
is their native language, e.g. Deaf/HoH individuals.

In an earlier study [66], it is found that there are also significant differences between
fluent ASL signers and imitation signers who do not know ASL but imitates a learned
sign for the experimental study, and signing of hearing imitation signers is distinguishable
from that of fluent ASL signers, exhibiting greater kinematic variation, more erratic cadence
and significant signing errors. Although some studies, e.g. [89, 162, 32, 49, 116], of ASL
recognition have employed hearing imitation signers or ASL learners, perhaps due to the
greater ease in recruiting a larger number of participants, the intended benefactor of Deaf

spaces are fluent ASL signers.
1.5.2 Machine Learning

Various ML methods are used to learn important data statistics and features of moving
targets from the radar signal. A handful amount of studies have been published in the
literature for radar target recognition using ML approaches [21, 2, 141]. Rathi et al. [141]
proposed a method which uses SVM and Naive Bayes for classifying airborne targets. An
airborne radar is employed to obtain the measurements of the moving targets on the ground
and the sea surface. The authors in [2] employed a ground penetration radar data and
presented an automatic target recognition method based on an ML algorithm. The proposed
system is able to detect complex features which are relevant to threading targets. Carrera
et al. [21] presents an ML-based approach for target detection employing radar processors,
where the performances of random decision forests and Recurrent Neural Network (RNN) are
compared. It is shown that although the ML-based approaches are capable of differentiating
the targets from clutter with a good precision, they require feature extraction before the

final prediction. Gurbuz et al. [66] has benchmarked k-NNs, random forests and SVMs for

16



different RF sensors operating at 10, 24 and 77 GHz center frequencies for ASL recognition
task.

With the recent advances in DL methods due to data availability and better hardware
components (e.g., GPUs), ML-based methods are regarded as outdated and inferior in
performance. However, they are lighter methods in terms of the computational complexity
when compared to DL methods, and high performances can be obtained even with a low

amount of training data.
1.5.3 Convolutional Neural Networks

Convolutional neural networks are one of the most popular DL models in many computer
vision tasks. They can effectively capture the spatial relationships of the input data with
2D and 3D kernels. Most popular Convolutional Neural Network (CNN) approaches include
VGG-Net [154], Alex-Net [99], Google-Net [165], Res-Net [75], Dense-Net [82] and Mobile-Net
[80].

In the last few years, different CNN methods are successfully used with different radar
system data types for various tasks such as object detection and recognition, HAR [150],
Hand Gesture Recognition (HGR) [164], SLR [106] and many other tasks [107, 19, 6, 129,
38, 173] with high accuracy performance. This is due to ability of convolutional kernels to
capture the spatial relationships in different RF data representations such as RDM, RAM,
1D, range profiles and point cloud data. In [164], a multi-feature encoder is designed to
extract 4D range-velocity-azimuth-elevation information, and followed by a CNN model on
an edge computing platform for real-time HGR. One weakness of CNNs is that they cannot
capture the temporal relationships in sequential data. Although 3D-CNNs are proposed
instead of 2D-CNNs for temporal data, the long term dependencies are still not being

captured effectively by the convolutional kernels.
1.5.4 Recurrent Neural Networks
Recurrent neural networks (RNNs) [145, 94], on the other hand, proposed as a new

approach to capture the long term dependencies, utilizing memory cells. However, RNNs
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suffered from the vanishing and exploding gradient problems, especially when the input
sequences are long. Next, Long Short Term Memory (LSTM) networks [77] are proposed as
an alternative to RNNs, which were able to overcome the vanishing and exploding gradient
problems by using three different gates in their structure, namely, input, output and forget
gates.

In radar-based HAR problems, it is shown that RNNs can capture temporal and spatial
characteristics of the radar signal, which is crucial in HAR [6]. In [106], a short-time
averaging over long-time averaging-based motion detector is implemented to extract the
motion detected intervals in a time sequence data. A multi-task learning-based multi-branch
temporal CNN + LSTM model is proposed for SLR. In [189], hand gestures are decomposed
into sub-classes similar to the phonemes in speech recognition methods. The proposed

method predicts the class labels from in-progress gestures in unsegmented input streams.
1.5.5 Encoder-Decoder Networks

Encoder-decoder networks are type of networks which are composed of two subnetworks
to map the input data to output data. The encoder part tries to create a dense representation
of the input data (i.e., latent space), while the decoder part tries to reconstruct the output
from the latent space representation. Such models are heavily used in Natural Language
Processing (NLP) and image-to-image translation tasks. Some encoder-decoder variances
include VAEs, Convolutional Autoencoder (CAE) and stacked autoencoder (SAE). These
models are employed in various radar signal processing tasks as well [176]. Taking the
advantage of unsupervised pre-training technique, the network weights can be better initialized
before the actual task is started to learn when compared to training the network from scratch.
In [93], multi-branch sparse autoencoders are stacked to fuse the information obtained from
time-range and time-Doppler maps. In [92], a similar stacked autoencoder approach is
presented with a decision level fusion of multiple input representations (i.e., time-range,
time-Doppler and RDMs. The decision level fusion is implemented on the softmax outputs

with a majority voting approach. Seyfioglu et al. [150] used convolutional autoencoders to
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classify human activities and shown that they can outperform CNN models since the model

weights has a better initialization when compared to training from scratch.
1.5.6 Training Under Low Sample Support

Although DL methods are proven to be very effective in various radar-based recognition
tasks, they are data-greedy methods. Therefore, when the number of samples in a dataset
is not sufficient or the distribution of the training data is different than the testing data,
their performance degrade and the models are more likely to be overfitting. In order to
eliminate this problem, different DL-based data augmentation methods are proposed which

are covered in this section.

Variational Autoencoders

VAEs are a type of encoder-decoder networks whose aim is to generate similar synthetic
samples to the original input. They achieve this goal by outputting a 2-dimensional vector
with mean and variance from a random variable. The created vector is used to sample an
encoding which is passed to the decoder. Since latent spaces are generated from a distribution
consisting of the same mean and variance, the decoder part learns from the nearby points
referred to the same encoded space. The diversity of the generated samples are controlled
through KL divergence. Reducing the KL divergence corresponds to optimizing the mean
and variance to be similar to that of the target distribution. Optimizing both the encoder and
the decoder parts together (reconstruction loss, decoding and KL divergence loss) generates
a latent space which preserves the resembling of close encodings on the local scale. VAEs
are considered to be effective generative methods since they work seamlessly on various data
types including continuous or discrete, temporal or non-temporal and 1D, 2D or 3D data.
Charlish et al. [25] employed VAEs to generate non-linear FM radar waveforms using
a custom reconstruction loss. The proposed VAE has capability to synthesize new radar
waveform modulations which have required ambiguity function characteristics, even though

they were not represented in the training data. In [91], VAE is coupled with an RNN to
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compute the anomaly level of the body motion based on the acquired point cloud. The
proposed model generates a spike in the anomaly level when an abnormal motion, such as
fall, occurs. Stephan et al. [159] proposed a parametrically constrained VAE with residual
and skip connections, which can generate the clustered and localized target detections on
the RA map. They present domain adaptation strategies whereby the neural network is first
trained using ray tracing based model data and then fine-tuned on the real sensor data. This
method improves the generalization and scalability of the proposed model even though it is

trained with limited real radar data.

Generative Adversarial Networks

GANSs are one of the most popular generative methods. They are composed of two subnetworks:
a generator and a discriminator. While generator takes a noise vector as input and tries to
output a fake sample which resembles to the data distribution, the discriminator takes both
fake and a real sample and tries to differentiate them. The generator tries to minimize a joint
loss function while the discriminator tries to maximize it. GANs take longer time to train
when compared to VAEs, and they more sophisticated architectures for generative modeling.
Therefore, the use of GANSs is considered and proved a lot more stable.

Labeling of the real data is one of the most labor-intensive tasks in computer vision and
radar-based recognition problems. However, utilizing the unsupervised generative models
like GANS, a large amount of synthetic data can be generated in an unsupervised manner to
be used in the training stage without needing the labor-intensive labeling tasks. Although
GANSs are powerful methods for generative modeling, they suffer from a critical issue called
mode collapse where the model starts to output the same fake after certain number of
iterations. More recent GAN architectures propose various techniques to overcome this
specific problem.

Lekic et al. [109] proposed a Conditional Multi-Generator Generative Adversarial Network

(CMGGAN) which can produce scene images conditioned on the radar sensor measurements.
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The proposed model fuses the features from both radar and camera sensors. Rahman
et al. [137, 138, 134] tackled the problem of synthetic uD spectrogram generation using
Physics-Aware Generative Adversarial Network (PhGAN) architectures for HAR and SLR
tasks. They present a modified GAN architecture which makes use of the envelope trajectory
of the spectrograms. A custom loss function is proposed which takes the consistency of the
envelopes of the generated fake samples into account. This helps loss function to better

guide the training process, and generate more kinematically accurate uD samples.

Transfer Learning

TL is a sub-field of ML whose aim is to store the knowledge gained while solving a problem
and applying it to another but related problem. It is a popular approach in many computer
vision and NLP tasks. TL methods are alternative ways to synthetic data generation
techniques under low sample support scenarios. They can be utilized in combination with
other generative methods as well. In computer vision tasks, applying TL with ImageNet
weights is a common method, however since radar data looks significantly different than
other image datasets, the TL may not necessarily be as efficient as in the case of computer
vision tasks.

Seyfioglu et al. [150] used CAE to pretrain the network weights in an unsupervised
manner for identity mapping. The decoder part of the trained CAE is then removed and the
model is augmented with fully connected layers for classification. The modified architecture
transforms into a CNN model with pretrained weights instead of random or Gaussian weight
initialization. Later added layers are, then, fine-tuned for the task of interest. The pretrained
CAE model performed significantly better than other ImageNet-based TL methods. A
similar approach is followed in [68] for HAR using multiple radars operating at different
center frequencies. It is shown that while CNN models trained at different center frequencies
perform poorly on a cross-frequency dataset testing, TL across different frequency bands

helps to alleviate this problem.
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Huang et al. [85] proposed a method to transfer knowledge gained from a large unlabeled
dataset to small amount of labeled dataset. The proposed CNN architecture is composed of
stacked CAEs, along with a feedback bypass additionally. First, the reconstruction pathway
with stacked CAEs is trained in an unsupervised manner. Then, the pretrained CNN layers
are reused to transfer knowledge to the classification task, with feedback bypass introducing
the reconstruction loss simultaneously. In [84], fully connected network and U-Net based
two TL methods are proposed for classification with only 50 image patches. Chen et al.
[26] proposed a modified CNN which incorporates expert knowledge of target scattering
mechanism interpretation and polarimetric feature mining that assists the training of the
model and increases the classification performance.

Zhang et al. [188] presents a semi-supervised TL method based on GANs. Initially, the
GAN is trained with a variety of unlabeled samples in order to learn generic features of radar
images. Next, the learned network parameters are reused to initialize the target network
weights to transfer the knowledge gained from the unsupervised stage to specific recognition
task. Finally, the network is fine-tuned in a semi-supervised manner using both the labeled
and unlabeled training samples. It is shown that the proposed TL method outperforms the
randomly initialized model by accuracy difference of 23.58%. Zheng et al. [190] proposed a
semi-supervised recognition method composed of a GAN and a CNN. A handful amount of
unlabeled images are generated using the GAN, and they are fed into the CNN subnetwork
as input along with the original labeled images. In order to address the mode collapsing issue
faced in GANs, a dynamic adjustable multi-discriminator GAN architecture is introduced.
At the same time, label smoothing regularization method is applied to better regularize the
semi-supervised recognition model of the CNN. In other studies [50, 72, 96, 152], publicly

available pretrained models and radar datasets are utilized for TL.
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Other RF Data Augmentation and Model Regularization Techniques

Data augmentation techniques used in computer vision such as mirroring, shearing, random
cropping cannot be directly employed in radar-based recognition methods because of the
structural differences in the data types. Radar images correspond to physical measurements
and such distortions change the underlying physical structure of the observed scene. This
section covers the data augmentation and model regularization techniques tailored to RF
data.

In order to eliminate the overfitting problem on a small RF dataset, Ding et al. [43]
proposed three ways to augment the data, namely, translation, speckle noising and pose
synthesis. Pei et al. [133] introduced a multi-view DL framework for limited RF data. They
present a novel multi-branch CNN architecture to generate multiple views of the data as
input. The features of multiple views are progressively fused in consecutive layers of the
network. Song et al. [158] introduced an autoencoder-based cyclic network using adversarial
learning to generate synthetic samples at different azimuth angles. Hua et al. [81] proposed a
dual-channel CNN model for classifying the dataset with a small number of labeled samples.
The proposed method, first, enlarges the labeled sample set using a neighborhood minimum
spanning tree, and then extracts the spatial features using the dual-channel CNN.

Zhang et al. [186] proposed a feature augmentation and ensemble learning method. The
selected features from the CNN layers are concatenated to obtain an enriched representation
for the recognition. The Adaboost rotation forest is proposed instead of using a softmax
layer for classification to realize the low sample-based recognition task with merged features.
In [181, 151] fully connected layers are replaced with CNN layers and deep memory CNNs
are proposed to alleviate the overfitting problem caused by low-sample support. Zhai et
al. [185] presents a transferred max-slice CNN with L2-regularization term. The proposed
method augments the feature space and enables the recognition of the targets with a greater

performance using a small number of samples.
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1.6 Challenges

Just like any other modality radars also have certain limitations yet to be tackled. The
proposed radar-based recognition methods in this work make use of the dynamic movements
of the arms, hands and fingers. Therefore, static hand shapes cannot be recognized since
they require 3D imaging of the skeleton joints. Although imaging radars have capability to
reconstruct the depth map of the objects and the scene, they require longer observation times
and large number of TX-RX antenna elements in both azimuth and elevation dimension.
Schuessler et al. [146] proposed a radar-based solution to detect static hand shapes in ASL.
However, since it is an imaging radar, the target (hands) should be stationary during radar’s
observation time. Having longer observation times reduces the frame rate and hinders the
applicability of the proposed solution for the recognition of dynamic motions which are
crucial for most of the signs. In addition, the designed radar system has 47 RX antenna in
both azimuth and elevation directions with a bulky hardware, which makes it hard to deploy
in indoor environments with limited spaces.

In this work, we are not concerned with the reconstruction of the object. Instead, our
objective is to extract the characteristics of kinematic motions over time and utilize them to
recognize different activities and signs. It has been shown that high temporal resolution of
radar can compensate for the low spatial resolution for hand gesture recognition applications
[112]. Note that motivation of employing RF sensors in CPHS applications is not to replace
other sensor modalities with radar. Instead, we show the capabilities of the radar with
its distinct advantages like high temporal resolution and high sensitivity towards radial
motions, and show that radars have valuable information to offer where other sensors can
become suboptimal or inefficient. Therefore, radars can be great complimentary sensors
when integrated into a system with other sensor modalities like camera or LiDAR.

RF-based recognition methods in CPHS applications have several other challenges which
preclude machine understanding of human activities and gestures with high accuracy and

robustness:
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1. Temporal Segmentation: RF data are usually in the form of time stream of raw
In-Phase and Quadrature (I/Q) ADC samples. There is no prior information regarding
where a motion is occurring in the time-series data which is crucial to spot when
an activity or gesture starts and ends. Missegmentation of the data can result in
incomplete actions/gestures which would confuse classifiers and can cause wrong predictions.
Therefore, a way to autonomously and accurately segment the data in temporal domain

is a necessity.

2. Open-Set Problem: The number of possible human motions/activities are almost
infinite. However, most of the existing studies limit the number of experimental
activities to be very small (10-20). These methods are often not expandable to new
classes, and when the RF sensor experiences a data sample which does not resemble
to any of the learned classes, it is unconfidently dumped into one of the classes. Usage
of an "unknown” class is also a sub-optimal solution since the unknown sample’s data
distribution might resemble more to one of the valid classes, and the representation
and generalization capability of the unknown class is also questionable considering so

many possible human movements.

3. Multi-Person Differentiation: When multiple people exist in the radar FoV, back-scattered
signals from all the targets superimpose on top of each other. This causes generated
RF data representations to have signatures from different targets and it becomes
challenging for classifiers to identify the correct motion. Resolving targets in range-angle
domain and differentiating their signatures from each other is both a crucial and a

challenging task, especially when targets are close to each other.

4. Data Scarcity: Collecting real RF data with human subjects in a laboratory environment
is a time consuming, labor intensive and an expensive task. This becomes even
more challenging when the focus group of people are not easily accessible (e.g., Deaf

community). In addition, there is no consensus on the radar type, waveform parameter
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selection and format of the publicly available datasets, leaving them unusable when

any of these items do not match-up.

5. Robustness Across Multiple Tasks: Radar waveform parameters affect range,
velocity and angle resolutions along with their maximum and minimum unambiguous
boundaries. They are often optimized according to application requirements. However,
when the applications consists of different tasks, using the same waveform can be
suboptimal and can introduce unnecessary computational overhead to the system.
Therefore, the waveform parameters need to be adjusted based on dynamic environmental

changes and for different tasks in an autonomous fashion.

Sensing challenges in RF data are the root causes of the subsequent learning challenges.

Figure 1.4 depicts the aforementioned issues yet to be solved.

Figure 1.4: Sensing and learning challenges of RF data.

Sensing Continuous | | Infinite Number of | | Presence of | |Labor & Time Cost | |Optimal Waveform
Challenges Time-Series Data Human Motions Multiple Targets of Human Testing Selection

Learning Temporal Open-Set Multi-Person Low Sample Variety of RF Data
Challenges Segmentation Problem Separation Support Representations
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1.7 Contribution of This Dissertation

RF-based CPHS applications present both sensing and learning-related challenges. Overlooking
or omitting any of these issues can result in suboptimal and unfavorable CPHS applications.
This dissertation aims to tackle all of these challenges individually, but in a correlated and

compatible fashion. Main contributions of this dissertation can be listed as:

1. Automated Motion Detector: RF data are often in the form of a time-series of
complex 1/Q samples. An automated labeling strategy is needed to locate where a
motion is starting and ending. This work presents a short-time averaging over long-time
averaging (STA/LTA) based motion detector [106] to spot the starting and ending times
of a motion. The method first generates the uD spectrogram of the data. Then, upper
and lower envelopes of the spectrogram are extracted, and their Euclidean distance
is computed. The resulting 1D vector is passed to STA/LTA-based detector to find
the starting and ending points of the motions. A 1D binary masking vector with the
same length as the input vector is outputted for subsequent segmentation of individual

activities. Details of the proposed method are explained in Section 3.4.

2. RF Data Fusion Classifier: The raw complex RF data do not provide any meaningful
information without certain pre-processing steps to extract range, velocity and angle
measurements through various signal processing techniques. It is common practise
to generate uD spectrograms, RDMs, RAMs, range profiles, point clouds and other
data representations to visualize and inspect the data. These data representations are
further used to train DL classifiers and enabling them to learn certain spatial features
of RF data better instead of enforcing the Deep Neural Network (DNN) model to figure
out these features by itself. In this dissertation, we propose a Joint-Domain Multi-Input
Multi-Task Learning (JD-MIMTL) network [106] to fuse information gathered from
multiple RF data representations. Each data representation is processed parallelly

with time-distributed 2D and 3D CNN blocks followed by LSTM layers to capture the
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temporal dependencies. Auxiliary tasks for SLR such as one versus two handedness,
major hand location, hand movement type, daily activity versus SL and number of arm
strokes are used to regularize the network training. The proposed method is shown to
outperform other State-of-the-Art (SOTA) methods by a large margin. Architectural

and implementation details of the JD-MIMTL network are discussed in Section 3.5.4.

. Trigger Sign Detection: In order to activate a SL-enabled CPHS device, a wake
sign should be accurately recognized within a stream of RF data, and the device
should activate only when the articulation of the wake sign is completed. Trigger sign
detection task differs from conventional classification in a sense that trigger sign should
be intuitive and making sense for the context. In addition, it should be recognized
with high recognition rate to prevent false alarms and false rejections (i.e., missing the
actual trigger). Incomplete or overextended trigger attempts should also be taken into
account. Therefore, this work studies the design considerations of trigger signs both
from device perception and user experience point of views. In this work, an adaptive
double-threshold Cumulative Score Aggregation (CSA) approach [106] is proposed to
recognize the wake sign in RF data streams. The proposed method is shown to yield
better detection rates with lower false rejections while preserving the low false alarm

rate. Details of the proposed motion detection approach are provided in Section 3.6.1.

. Automation of Natural ASL Data Collection via Gamification: An important
challenge in SL-sensitive CPHS applications is the lack of publicly available RF datasets
for model training. Not just the amount of data, but the quality of data is also
critical. Just like any other language, SLs have their own grammar, linguistic features,
dialectal nuances and diversities across people. Traditional way of collecting SL data
in a laboratory environment from people whose primary way of communication is
not SL results in pristine datasets which do not well represent the features of actual

SL. Training learning models with such datasets unsurprisingly yield overoptimistic
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results. When these models are tested on real-world SL data collected free from
experimental restrictions and assumptions, they are likely to underperform and cause
poor user experience. In this work, we developed an ASL-controlled chess game where
the pieces are moved on the board with ASL sign articulations instead of mouse
clicks. The proposed method [104] acquires data from both camera and an RF sensor
simultaneously during the game play, and processes it, uploads it to a cloud platform,
and runs the prediction model and the chess engine in the backend. This CPHS
application eliminates the need for an external operator to monitor the data collection
procedure. Moreover, the game interactively communicates with the user through a
pop-up window to correct the ground truth labels of the mispredicted samples. Finally,
the game is designed in a way that more words can be added to its dictionary. Such
flexibility paves the way to curate a large and diverse multi-modal SL datasets for
SLR tasks. This approach enables acquisition of natural SL, in an enjoyable and
sustainable manner in long term. Implementation and gameplay details of the designed

SL-controlled chess game are provided in Section 5.2.2.

. Multi-Person Separation: Most RF-based CPHS techniques assume only one target
in the radar FoV. However, presence of multiple targets in the scene is a very typical
case in real-world environments. Their backscattered radar signal returns superimpose
on top of each other, making generated data representations hard to interpret. Consequently,
DL models trained with single target data samples will fail to correctly classify the
activity of the targets individually. Many of the CPHS works considering multiple
targets focus on counting the number of people present and tracking them in a room
environment. Moreover, separation techniques applied on the pre-processed data are
not scalable to other domain representations. In this work, we propose an Angular
Subspace Projection-Based Separation (ASPS) method [103] to resolve the raw data
of the targets in the scene. This approach differs from current SOTA target separation

methods in a sense that it can output projected raw data for each target. This low-level
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separation technique enables to generate any RF data representation using the project
raw data for a particular target. Efficacy of the proposed method is demonstrated
for a HAR application in an end-to-end framework. In addition, a multi-view DNN
is also proposed for very close targets when the angular resolution of the device is
not sufficient to completely resolve the targets in angular domain. Algorithmic details
and performance for varying number of antenna elements of the ASPS method are

explained and discussed in Section 4.2.3.

. Human-Centric Adaptive RF Sensing: It is a common practise to optimize
the radar waveform parameters based on the application requirements. However, for
RF-controlled CPHS applications, these parameters are often fixed before deploying the
system. Continuously running the radar system in its fully functional mode with high
sampling rate and a large bandwidth allocates so many resources like high memory
and RAM usage to store and process the data, GPU memory to make inference
using the DL-based prediction model on the edge device. Therefore, a more strategic
approach is needed to intelligently switch between working modes. This work presents
an automated framework to switch between different working modes of the RF system
based on the activities of the person. To the best of our knowledge, this dissertation
is the first study on introducing human-centric adaptive RF system where radar takes
action to adjust the waveform parameters and the operation characteristics according
to human behavior. The proposed system not only optimize the resource allocation
intelligently, but also reduces the computational overhead significantly without compromising
the recognition performance. Details of the proposed fully-adaptive RF waveform

selection approach are discussed in Section 6.3.
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CHAPTER 2

RADAR BACKGROUND

2.1 Introduction

RADAR is an acronym for "RAdio Detection and Ranging”. It is a technology that
uses radio waves to detect, locate, track and identify objects. It is used in a wide range of
applications including aviation, military, navigation, weather monitoring and traffic control.
Radar systems are often customized to meet the application requirements and for specific
objectives. For instance, weather radar is used to monitor precipitation and severe weather
conditions. Air traffic control radars are used to track the position of planes and aircrafts in
the airspace. Military radars are used to detect missiles, aircrafts and other potential targets.
Ground penetrating radars are used for subsurface imaging in archaeological and geological
studies. Police radars are used to measure the velocity of the vehicles on the roads.

Until the last decade, radar was mostly associated with military, intelligence and defense
related applications with strict regulations. In the past decade, recent developments of
low-cost, small package, high frequency radar systems enabled more civilian applications of
off-the-shelf radars. Automotive radars are started to be used in semi-autonomous and
fully-autonomous driving applications. Smart home devices and even cell phones (e.g.,
Google Pixel 4) have started to utilize radars as a complimentary sensor. Radar’s capability
to provide range, velocity and angle information of the objects in the scene with high

resolution makes it an indispensable sensor for certain applications.
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2.2 Radar Principle

Radar operates based on the principles of broadcasting radio waves, receiving their
back-scattered reflections from objects in the environment, and analyzing the received signal
to extract certain information about the objects. First, the radar system generates short
pulses of radio waves using a transmitter antenna. The generated pulses propagate through
the airspace with the speed of light. A portion of the waves is reflected back to radar
when they encounter an object or obstacle. Reflected signal strength is related to object’s
shape, material and reflectivity coefficient. This constant is often referred as Radar Cross
Section (RCS). The reflected waves are received by a receiver antenna. The receiver module
is typically scheduled to listen for reflected waves during the idle times between transmitted
pulses.

Radial distance of the targets from the radar antenna can be computed from the round-trip
time delay of the transceived waves. Velocity of the moving targets can be found using the
Doppler principle. Moving objects in the radar FoV cause frequency shift between the
transmitted the received waves. This phenomenon is called Doppler shift, and it’s value is
related to object’s moving direction, center frequency of the radar system and the radial
speed of the object. If there are multiple transmitter or receiver antennas, azimuth and
elevation angles of the targets can also be computed by analyzing the phase shift between
the antenna elements considering the antenna array geometry. The received signal often
undergoes certain signal processing steps to enhance the signal quality, filter out the noise
and clutter, and extract useful information. The specifications and capabilities of a radar

system can vary depending on the use case.
2.2.1 Radar System and Hardware

A typical radar system consists of the following components:

e RF Generator

e Amplifiers
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Transmitter

Receiver

e Mixer

Analog to Digital Converter

An electromagnetic wave is created, amplified and transmitted through RF Generator,
Amplifier and Transmitter, respectively. The back-scattered signal from the objects is
collected by the Receiver, amplified and passed to a Mixer which mixes it with the transmitted
signal. The output signal from the mixer is called as Intermediate Frequency (IF) signal.
IF signal’s instantaneous frequency and phase are equal to the difference of instantaneous
frequencies and phases of the two input signals, respectively. The IF signal is sampled and
digitized by an ADC to be further processed by a computer. Figure 2.1 depicts the overall
block diagram of a typical radar system.

Figure 2.1: Radar system block diagram [86].
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2.2.2 Radar Types Based on the Waveform

This section discusses and provides information about different types of radar systems.
Radar systems can be classified into two types based on the type of signal they are operating

with:
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e Pulse Radar

e Continuous Wave Radar

Pulse Radar

Pulse radar operates by transceiving a high power signal. It waits for the reflected signal
to get received and then transmits the next signal. It employs a single antenna for both
transmitting and receiving signals with the help of a duplexer which isolates the receiver
from the transmitter modules while permitting them to share a common antenna. The
antenna transmits a pulse signal at every clock cycle. The time interval between the two
clock pulses should be long enough so that the reflected signal corresponding to the current
clock pulse should be collected before the next clock pulse.

A variant of pulse radar is Moving Target Indication (MTI) Radar. It uses the Doppler

effect phenomenon to differentiate the moving targets from stationary objects.

Continuous Wave Radar

Continuous Wave (CW) radar transmits a continuous signal or wave at a constant frequency
at all times. Similarly, they utilize Doppler effect for moving target detection and speed
measurement. CW radar systems can further be divided into two categories: Modulated
and Unmodulated radar systems.

Unmodulated CW radar systems require two separate antennas for transmitting and
receiving the signal. They can only measure the velocity of the targets, but not the radial
distance of the targets from the radar. Velocity is extracted from the instantaneous rate of

change of the target’s radial range by calculating the Doppler shift of the reflected signal.

Frequency Modulated Continuous Wave Radar

A variant of modulated CW radar is called Frequency Modulated Continuous Wave (FMCW)

radar whose center frequency linearly increases during each pulse. Each pulse sweeps a
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Figure 2.2: Chirp signal representation [86].
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certain bandwidth. Such pulse whose frequency increases with a constant rate over time
is called a chirp. This radar system requires two separate antennas for transmitting and
receiving the radio waves. It can measures not only the velocity of the target, but also the
radial distance of the target from the radar system. Figure 2.2 (left) shows the time-frequency
representation while the right one shows the time-amplitude plot for a chirp signal. A chirp
is typically characterized by its start frequency (f.), bandwidth (BW) and duration (7).

The slope () of the chirp defines the rate at which the chirp ramps up.

Figure 2.3: FMCW radar system block diagram [86].
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Figure 2.3 depicts the FMCW radar system. Here, the frequency synthesizer generates
the FMCW chirp together with the Voltage Controlled Oscillator (VCO). The output of the
power amplifier is passed to transmitter antenna for broadcasting, and mixer to down-convert
the received and amplified signal. The resulting IF signal from the mixer is then low pass
filtered, amplified and finally passed to an ADC. The sampled signal is then transferred to
a computing device for further processing.

A frequency mixer is a 3 port device with 2 inputs and 1 output which combines two
input signals to generate a new signal with a new frequency [87, 140]. For two sinusoidal

input signals z; and 1, the output signal, Zoutput, can be written as:

x1 = sin(wit + ¢1) (2.1)
To = sin(wat + ¢2) (2.2)
Toutput = Si((w1 — wo)t + (P1 — ¢2)) (2.3)

Notice that the instantaneous frequency of Zoyutpur is equal to the difference of the instantaneous
frequencies of x; and x3. The phase of the Z oy is also equal to the difference of the phases
of x1 and xs.

The fundamental advantages of an FMCW radar include:

e Ability to measure both range and velocity simultaneously.
e High range and velocity resolution.

e Enabling of performing signal processing at a low frequency range.

2.3 FMCW Radar Metrics and Parameters

The received FMCW signal is a time-delayed and frequency-shifted version of the transmitted

signal. The time-of-flight of the transceived signal, 7 can be derived as:
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T=— (2.4)

where d is the radial distance of the object from the radar platform and c is the speed of

light. A single target in the radar FoV creates an IF signal with a constant frequency given

by:

25d BW
IFfrequency = T, where S = T

(2.5)

where S is the slope of the chirp. IF bandwidth is limited by the ADC sampling rate Fj

given by:

o S2Rmaz
- C

F

(2.6)

where R,,,. is the maximum unambiguous range. This gives the maximum unambiguous

range of the radar as:

Fse  Fycl,
28 2BW

Rinas = (2.7)

Range resolution, R,csoution, Of a radar system is the ability to differentiate two or more

objects in range domain. It solely depends on the BW and can be computed by:

C

resolution — S 5117 2.
Ry esolut 5B (2.8)

It can be noticed that higher BW yields better range resolution. The relationship between

Rooe and Ryesomution can also be written as:

Rreso ution
Rmam = %Nsamples (29)
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where Nggmpies is the number of ADC samples per chirp. When two targets are closer than
Ry esotution, they will look like a single target in the frequency spectrum. The maximum
allowed BW of the RF system should comply with Federal Communications Commission
(FCC) legislation.

When two targets moving at different speeds are equidistant from the radar, their range
spectrum will have a single peak they cannot be resolved in range domain. Phases of the two
targets can be used to estimate the velocity of the targets by computing the phase difference
measured across two consecutive chirps. The maximum unambiguous velocity, v, that can
be measured by consecutive two chirps is given by:

A 1 c

PRI = ——, A

_ _c 2.1
Umaz = BRI’ PRE’ 7. (2.10)

where ) is the wavelength in meters, f. is the center frequency, PRI is the pulse repetition
interval and PRF is the pulse repetition frequency. If any of the targets move faster than v;,q,,
aliasing (i.e., wrapping of the peak to the opposite side of the spectrum) in Doppler spectrum
would be observed. Estimating over more chirps instead of two would yield better estimation
results. Coherent processing of N, chirps constructs a Coherent Processing Interval (CPI)

(i.e., frame). The velocity resolution, v,esopution, can then be written as:

2Umaac

Uresolution = N (2 d 1)

The total frame duration, T’,qme, can also be computed as:

Tframe = N.PRI (2.12)

Figure 2.4 depicts the attributes of a typical FMCW radar chirp, while Figure 2.5 shows
the frame structure.
In order to locate the object in the 2D or 3D space, azimuth and elevation angles of the

object is also needed in addition to the radial distance. DoA of a target can be estimated by
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Figure 2.4: Typical FMCW chirp [42].
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Figure 2.5: Typical FMCW frame structure [42].

Frame Period

utilizing the phase difference of the collected signal from multiple receivers which are spaced
apart with a distance, d. Therefore, estimating the DoA of an object requires at least two
RX antennas.

Figure 2.6: DoA estimation using two RX antennas [139].
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Figure 2.6 depicts the geometry of a radar antenna array with two RX antennas separated
by distance d. The reflected signal approaches at an angle of # with respect to the radar, and
is collected by both RX antennas. The signal received at the secondary RX antenna travels
an additional distance of dsin @ which corresponds to a phase difference of w = (27/\)dsind

between the two RX antennas. Therefore, the DoA, 6, can be computed as:

— it (A
0 = sin (27rd) (2.13)

Since w, can be estimated only within the range (-, 7), the equation 2.13 can be

re-written with the unambiguous FoV of the radar as:

A
Opoy = £sin™? (ﬁ> (2.14)

When the inter-antenna distance, dgx = A/2, the maximum FoV is achieved, 0z, = +90°.
In general, a MIMO radar system has more than two RX antennas. Angular resolution, Af,

of a radar system can be written as:

A

A) = ————
NRXdRX cos

(2.15)

where Ngx is the number of RX antennas. Notice that Af depends on target’s DoA, #, and

when the target is located in the bore-sight view (0=0) and drx=A\/2, angular resolution

2

becomes Af = oo
RX

2.3.1 Principle of MIMO Radar

Angle resolution of a radar system can be doubled by doubling the number of RX antennas
(i.e., Ngrx). The same enhancement can be achieved by utilizing the MIMO concept where
one more TX antenna is added to the array geometry. The radar system depicted in Figure
2.7 has two TX and four RX antennas. The signal emitted from the right TX antenna will
have phases of [0, w, 2w, 3w] at the receiver Uniform Linear Array (ULA). Since the left TX

antenna is placed at a distance of 4d from the right TX antenna, any signal emitted from
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Figure 2.7: Virtual array formation with MIMO concept.
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it will travel additional distance of 4dsin 6. Consequently, they will have additional phase
shift of 4w which can be listed as [4w, bw, 6w, Tw]. The phase sequence of [0, w, 2w, 3w,k
4w, bw, 6w, Tw| can be obtained by concatenating the phase sequences of four receivers for
the signals emitted from two TX antennas. Such phase sequence is equal to the one can
obtained from one TX and eight RX antennas. This process is called virtual array formation
or synthesis, and it can be generalized to arbitrary number of Nrx X Ngrx virtual arrays
elements. Therefore, utilization of MIMO radar principle has the advantage of multiplicative
increase in the number of virtual antenna channels, which results in finer angle resolution.

The MIMO concept can also be extended to multi-dimensional array geometries.

Multiplexing Strategies for MIMO Radar

In MIMO arrays, RX antennas must be able to separate the signals emitted from each TX
antenna. There exists various techniques to achieve this separation, and in this section
two of these methods are discussed: Time Division Multiplexing (TDM) and Binary Phase
Modulation (BPM).
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Figure 2.8: MIMO radar multiplexing methods.
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Time Division Multiplexing

In TDM-MIMO, TX antennas emit signals in a scheduled manner. Depending on the chirp
sequence in the frame configuration, they can transmit chirps consecutively. Figure 2.8a
depicts the TDM-MIMO chirp sequencing for the case of Npx=2. In the collected data,

each channel will correspond to one virtual antenna (i.e., TX-RX pair).

Binary Phase Modulation

TDM-MIMO is a simple method to implement, however it does not utilize full transmission
capability of the system since only one transmitter is activated at a time. Different from
TDM-MIMO technique, BPM-MIMO activates and transmits signal from both TX antennas
simultaneously. While configuring the chirps, the first chirp, C,, is configured to use both
TX antennas with zero phase ($=0°), while the second chirp, C,, is configured to use again
both antennas but with phases of 0° and 180°, which is equivalent to multiplying each chirp
with +1 and —1. One iteration of transmission of C, and Cj is called a chirp loop. This
process allows received data to be subsequently decoded by each virtual channel. Allowing

simultaneous transmission from all TX antennas increases the total transmission power per
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Figure 2.9: Range information extraction from raw data.
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(a) Range-FFT spectrum. (b) A range profile sample for arm gesture.

time slot which results in an Signal-to-Noise Ratio (SNR) increase of 10loglO(Nrx). Figure
2.8b visualizes the chirp configuration for BPM-MIMO multiplexing.
One downside of employing MIMO techniques is the reduction in PRF which results in

lower maximum unambiguous velocity.

2.4 Radar Signal Processing

Although radar signal processing is a wide topic to cover, this section primarily discusses
the most common ways of processing raw data of FMCW MIMO radars. RF data are often
in the form of time-series of complex 1/Q samples. After a reshaping operation, the data
can be converted to a 3D array with the shape of (Ngampies, Ne, Nrx X Ngx). ADC samples
in the first and the second dimensions are also referred as fast-time and slow-time samples,
respectively.

Fast Fourier Transform (FFT) is one of the most commonly employed radar signal
processing technique to extract useful information from the raw data. FF'T is more efficient

version of Discrete Fourier Transform (DFT). It transforms a data from its original domain
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to a representation in the frequency domain. In essence, it decomposes a signal into the

frequency components that build it up.
2.4.1 Range Extraction

Applying FFT along the fast-time samples, range spectrum can be obtained. Peak
locations along the spectrum indicate the radial distance of the targets, and the magnitude
indicates the received signal strength. Figure 2.9a shows an FFT along the fast-time samples
for range extraction for human arm gesture movement. Repeating this for each chirp results
in a time series of range information in a heatmap matrix called Range Profile (RP). Figure

2.9b shows a sample of RP for human arm gesture for 3 sec.
2.4.2 Micro-Doppler Spectrogram

In human activity observation, the occurrence of kinematic motions in the radar FoV
are reflected in the received signal’s frequency components. Micro motions generated by
hand, fingers and limbs result in pD [27] modulations centered around the main Doppler
shift caused by the torso motion. The uD spectrogram, S, (also called uD signature) is

a time-frequency analysis technique that can be used to observe these patterns and can

Figure 2.10: pD spectrogram sample for different activities and hand gestures.
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Figure 2.11: Range-Doppler processing and target detection of two targets.
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be computed as the square modulus of the Short-Time Fourier Transform (STET) of the

discretized input signal:

S(t,w) = '/_: h(t —w)z(uw)e 7™ du 2 (2.16)

where h(+) is the windowing function, z(-) is the received signal. Reflected signals from the
stationary objects such as the walls or furniture, will locate at 0 Hz or 0 m/s in the pD

spectrogram. Figure 2.10 shows a sample uD spectrogram for different human activities.
2.4.3 Range-Doppler Processing

Both range and velocity information can be jointly obtained via range-Doppler processing.
While a range-FFT along fast-time resolves objects in range, a Doppler-FFT along the
slow-time resolves each row (i.e., range bin) in velocity. Doppler FFT should be applied
separately for each CPI in a non-overlapping windowing fashion, resulting in time-series of
range-Doppler heatmaps with the same frame rate as the radar CPI. Peaks appear at targets’
range and velocity bins. The resulting heatmap matrix is called range-Doppler map. Figure
2.11a shows a sample RDM for two targets located at 50 and 100 m away from the radar

with radial velocities of 10 and -15 m/s, respectively.
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2.4.4 Target Detection

A target detection method is needed in order to determine the number of targets, and
range, velocity and angle information of the targets. In essence, most detection methods
work by comparing the signal with threshold. The threshold is, in general, a function of
both the probability of detection and the probability of false alarm. In this section, we
study one of the most widely used adaptive thresholding method: Cell Averaging Constant
False Alarm Rate (CA-CFAR). CA-CFAR extracts noise samples from both leading and
lagging RDM bins (i.e., training cells) around the cell under test (CUT). The noise power

estimate, P,, can be computed as [142]:

1
Po= 5o > m (2.17)

where Np is the number of training cells and z,, is the sample in each training cell. Guard
cells are chosen adjacent to the CUT, both leading and lagging it. They serve for avoiding
signal components from leaking into the training cells, which could adversely affect the noise

estimate. The threshold factor, a, can be written as:

a = Np(P;/N —1) (2.18)

where Py, is the desired false alarm rate. When the power of CUT exceeds a, detection
occurs. Figure 2.11b shows the CA-CFAR detection result for the RDM given in Figure
2.11a.

2.4.5 Angle Estimation

In order to locate a target in 2D or 3D space, estimation of azimuth and elevation angles
are needed. After detecting targets in range-Doppler domain for each channel (i.e., TX-RX
pair), the measured phase difference across channels can be used to estimate the angle of
arrival of the object. An FFT across channels of detected CA-CFAR peaks resolves the

objects in angle domain even if they are located in the same range-Doppler bin. Other angle
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estimation methods like digital beamforming, MUSIC [73] and ESPRIT [144] can also be

applied for enhanced angular resolution.

2.5 Conclusion

Recent advances in FMCW MIMO radar technology enables various ways of processing
data and achieving better target detection and tracking results. Software-defined adaptability
of radar parameters also paves the way for environment-aware waveform selection. Such

functionality leads to more optimal use of the hardware based on the application.
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CHAPTER 3

SIGN LANGUAGE RECOGNITION IN A DAILY LIVING

3.1 Introduction

There has been much research on the use of RF sensing for hand gesture recognition
(61, 177], especially since the development of low-cost, low-power, high resolution, integrated
millimeter wave RF transceivers [7]. However, most current research involves controlled data
acquisition with the participant located in a fixed position relative to the radar, articulating
only a single gesture or sign. A critical challenge that has not been adequately addressed
in the literature, however, is the challenge of ASL recognition in the context of daily living.
To the best of our knowledge, this study [106] represents the first to consider triggering
and command recognition of RF-sensor enabled devices under more realistic conditions,
where the RF data is acquired in a continuous fashion to capture mixed sequences of
gross body motion/activity intertwined with ASL signing. In particular, we analyze the
design considerations for selection of a trigger sign based on kinematics, replicability, and
recognition accuracy. Whereas current approaches rely on just one RF data representation,
we propose a JD-MIMTL framework coupled with a motion detector to isolate the intervals
over which the user is engaged in meaningful movement, and thus prevent unnecessary
expenditure of computation resources when the RF system is not being used. Figure 3.1
shows a flowchart providing an overview of the proposed approach. Our results show that

the proposed approach exceeds that offered by approaches common in the literature and can
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Figure 3.1: Flowchart for the proposed approach.
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recognize a sequence of 3 activities and 15 ASL signs with 92% accuracy, while detecting

trigger signs with rates as high as 98.9%.

3.2 Sequential Human Activity and Sign Language Dataset

3.2.1 RF Sensor

In this study, a TT AWR1642BOOST 77 GHz RF transceiver paired with a DCA1000EVM
data capture card were used to record data directly to a laptop. The T1 77 GHz transceiver is
a FMCW short-range automotive radar that has two TX and four RX antennas, which offer
additional sensing capabilities in comparison to other commercially available RF sensors that
may have only 1 TX/RX channel. The antenna for the sensor has a roughly £70° azimuth
and +15° elevation beamwidths. The sensor was positioned on a small table at a distance

of about 1 meter from the ground.
3.2.2 Participants

Although ASL has been used as example motions in some gesture recognition studies
[128, 110], sign language greatly differs from gesturing in that it possesses a much greater
degree of physical complexity and Shannon information [123, 13, 125]. Like other complex
system-generated signals, raw physical signal from signing data contains information at

multiple timescales, spanning phonological, semantic, syntactic, and prosodic cues [11, 178].
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Table 3.1: Listing of ASL Signs Acquired

WATER GOOoD ‘WANT THANK YOU PAPER LAWYER I Love You HE Book YES COFFEE
TEACH You TIME MOUNTAIN BED KNIFE NOTHING FATHER CAR BRING ALWAYS
EAT DRINK TIRED DoN’T LIKE ‘WORK ENGINEER OH, I SEE See TiE UP CIty EVENING
DEAF My BREATH DOESN’T MATTER SCHOOL Mg Wny BETTER SHOES READ ‘WRITE
HoLp SOON TEACHER TECHNOLOGY SLEEP WHERE GO AHEAD Hor PET READY LIKE
SHOP MAYBE HEeLp EARTHQUAKE MOTHER YOUR WALK CAN MONTH LICENSE PLEASE
MORNING GAs HELLO TOMORROW AGAIN COOK OK SHOULD Go AGAIN THIS
HAVE EXCITED WEEK LET ME SEE FINE FRIEND SUMMON HowmEe THREE MORE Pusu
KITCHEN WHAT WRONG BREAKFAST MONEY COME HEALTH TODAY NIGHT MusT ONE

Table 3.2: Description of Mixed Activity/Sign Sequences

’ Seq. # ‘ Motion Sequence

Walking, sitting, TIRED, BOOK, SLEEP, standing up
Walking, sitting, EVENING, READY, HOT, standing up
Walking, sitting, MONTH, COOK, AGAIN, standing up

Walking, sitting, SUMMON, MAYBE, NIGHT, standing up
Walking, sitting, SOMETHING, TEACHER, TEACH, standing up

O | W N~

While some studies [49, 116] have utilized imitation signers - i.e., hearing participants
who mimic signs observed in video - it has been shown [10] that it takes at least three years
before the signing of ASL learners is perceived as fluent by native ASL users. Imitation
signers exhibit greater kinematic variations, erratic cadence and signing errors, especially
in replicating repetitive signs. Indeed, in our previous works [66, 69], we have found
that imitation signing is distinguishable from native signing using classification of RF uD
signatures.

Thus, in this study, RF data from both imitation signers and native ASL users were
acquired and used for comparative study in trigger sign selection. A total of 110 single
ASL signs were recorded from participants sitting 1 meter away from the radar. A total of
19 participants contributed to the database, including 4 native ASL users, who were either
Deaf or Child of Deaf Adult (CODA), and 6 hearing individuals. Continuous recordings of
mixed activity/signing sequences were recorded from 13 hearing participants, while testing
on native users was conducted with 2 CODAs and 2 ASL learners, who were not used in

acquisition of training samples.
3.2.3 RF Datasets

A total of two different datasets were acquired:
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Figure 3.2: Signal processing diagram for computation of various RF data representations.
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1. Single ASL Signs: 110 of the more frequently used ASL signs were selected from the
ASL-LEX Database [23], including nouns, verbs, and adjectives. A complete listing of
the signs acquired is given in Table 3.1. Each participant was asked to repeat the signs

5 times, resulting in 20 native and 30 imitation samples per sign.

2. Mixed Motion Sequences: Of these 110 signs, based on kinematics and replicability,
a subset of 15 ASL signs are selected. Five different sequences of three ASL signs
mixed with three different gross motor activities (walking, sitting, and standing up)
were acquired, as shown in Table 3.2. For example, in SEQUENCE 1, the participant
first walks for a few seconds, then sits on a chair located in front of the radar and enacts
3 different signs (TIRED, BOOK, SLEEP), and finally stands up. The participants were
instructed to perform these activities consecutively in the line-of-sight of the radar. A
total of 200 hearing participant samples and 94 native participant samples for each

sequence were acquired, and made available for download *.

thttps://github.com/cidr/ASL-Sequential-Dataset
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3.2.4 RF Data Representations

From the radar data cube, several different ways of representing the information acquired
by the radar may be formed. In this work, RDMs, uD spectrograms and RAMs are used as
RF data representations.

The visibility of target-related motion in the RAMs may be enhanced using optical flow,
which indicates the spatial change in the location of pixels from one frame to another in
a video. In this work, we compute the optical flow using the Horn-Schunck method [79]
and take its element-wise multiplication with the pixels in the RA maps to accentuate
motion-related returns. This process puts more weight on pixels where there is a moving
target, and suppresses pixels comprised of clutter or minimal motion. Because the MUSIC
algorithm is relatively prone to noise, this approach can enable significant visual enhancements
in the RA maps. An overview of the radar signal processing steps utilized to compute the

stated RF data representations are summarized in Figure 3.2.

3.3 Trigger Sign Fidelity Analysis and Selection

There are many different considerations for the design of a device trigger sign (also known
as a wake word). Trigger signs should be distinct, not easily confused with signs frequently
used in daily discourse, easy to articulate and culturally appropriate. In Deaf culture, for
example, while it is common for finger-spelling to be used to state the names of a hearing
individuals, personal name signs can only be used if the name sign has been given by a
member of the Deaf community. Moreover, ASL does have some differences in dialects used in
different geographical regions within the U.S., such as Black ASL, which represents a unique
ethnic sub-culture in the South [76]. The cultural context of signs may differ and take on
different meanings in different regions. Therefore, the design of culturally-appropriate trigger
signs can only be accomplished through partnership with Deaf community organizations, who
can provide cultural perspectives and facilitate studies soliciting Deaf community feedback

on the design.
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Figure 3.3: Selection of replicable ASL signs using DFD and DTW.
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Thus, this study focuses on technical aspects of trigger sign design as a precursor to
a subsequent Deaf-centric design study. First, as RF sensors are sensitive to distance and
motion, signs that are dynamic, with strong radial velocity components (i.e., include primary
arm motion, as well as secondary motion of the hand, such as hand shape or orientation
change), or which traverse greater distance and have a longer flight times are better suited
as trigger signs for automatic detection. This is in contrast with signs primarily characterized
by secondary hand motion, such as finger-spelled words.

Second, the replicability of the trigger sign is important to enable consistent and robust
recognition. Although native ASL users are the target population for ASL-sensitive user
interfaces, there is a wider community of ASL learners and non-native ASL users, such
as interpreters, who could also be using the interface. However, there can be noticeable
differences in the articulation of signs based on fluency. Thus, the replicability of the 110
signs listed in Table 3.1 were evaluated using a comparison of the imitation signing and native
ASL D signatures. This was done by first computing the upper and lower envelopes of each
sign based on the percentiles of the cumulative amplitude distribution [44, 95]. Next, both
the Discrete Fréchet Distance (DFD) [45] and DTW were used to compare the replicability
of signs based on fluency.

DTW is a method for measuring the similarity between two time-series and finds the

optimal match [1] between sequences that satisfy all restrictions and rules with the minimum
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cost. The DFD computes the similarity between two curves by taking into account both
ordering of the points and the location along the curves. It is defined as the shortest
cord-length required to join a point traveling forward along one curve and one traveling
forward along the other curve, and the rate of travel for either point may not necessarily be
uniform. As the similarity of two curves increases, DFD gets closer to zero. As an example,
consider the comparison of the upper envelopes of the uD signatures for imitation signing
and native signing for the sign WANT, shown in Figure 3.3(a), where the grey lines represent
the cord-length.

To identify the most easily replicable signs (independent of fluency), the envelopes of
the native ASL signatures and those from hearing imitation signers are compared on a
sign-by-sign basis. The DTW and DFD metrics are averaged and re-scaled between 0 and
1. Once the distance metrics, dtw and dfd, are normalized, the fidelity scores, S, and
Safd, for each class (sign) are found by taking the inverse of the normalized distance (i.e.,
Sarw = 1/dtw, sqrq = 1/dfd). The results are shown in Figure 3.3(b). It may be observed that
both the DTW and DFD are consistent in their assessment of which signs are consistently
articulated across deaf, CODA, and hearing users.

The top 15 signs that have the shortest distance (i.e. highest similarity) between native
ASL and imitation signing users were selected as trigger sign candidates, which will next be
evaluated based on detection rate and sequential recognition accuracy. The selected signs

are listed in Figure 3.3(c) along with their kinematic properties, as given by ASL-LEX.

3.4 Motion Detection and Segmentation

Continuous activities and ASL signing create a time series of sequential activities, for
which segmentation is an important initial step in the analysis of sequential data. Utilization
of a motion detector can facilitate segmentation, which helps define the length of the input
samples to be fed to a learning model. It can also improve the power and computational

efficiency of the system by making a prediction only when an activity or sign is detected as
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Figure 3.4: Illustration of the operation of STA/LTA based motion detector on SEQUENCE
3.
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(a) Operation of detector on absolute (b) Intervals with motion detected by
distance vectors. STA/LTA detector.

opposed to every time step. While motion detection can be done with a human-in-the-loop
approach, this is not desirable in automate, stand-alone systems. Instead, a power-based
automated segmentation algorithm, such as STA /LTA [170, 164], Dynamic Boundary Detection
(DBD) [163] or Power Burst Curve (PBC) [184] may be utilized.

The PBC can be used for motion detection using thresholding. The start and end of
the motion is determined by when the input power exceeds or falls below this threshold,
respectively. An important drawback of this method, however, is that it is prone to a high
rate of false triggering, especially in the presence of noise, because the threshold is not
adaptive and unaware of past and future power levels.

STA /LTA-based techniques solve this problem by defining two consecutive windows;
namely, short-time and long-time windows. Their relative average power is used to define
an adaptive threshold value. The STA/LTA method proposed in [164] has proven to be very
successful in detecting the tail (end point) of hand gestures. However, the method uses fixed
length detection windows, whose duration is selected based on the duration of the longest
gesture in the dataset. This approach is not well suited to sign language, since ASL signs
possess great variability in duration. Basing window size on the longest duration sign can
result in a long blank period at the beginning of the detected region for short signs, thereby

introducing non-informative or redundant input to the feature space.
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DBD, on the other hand, requires application of high-pass filtering to the Doppler
information, resulting in elimination of the low and zero frequency components of the
spectrograms. Prior work [66] has shown, however, that filtering at 77 GHz results in
significant loss of low-frequency information in the signal, together with removal of the
clutter, thereby degrading classification accuracy.

Thus, this work proposes a variable window STA /LTA-based motion detection algorithm
to identify both the starting and ending point of a motion. First, the absolute difference
between the upper and lower envelopes at a time index is computed to create absolute
distance vectors. An exemplary, normalized absolute distance vector is shown in Figure 3.4a.
The absolute distance for each data recording, i, can be computed as v; = |u; — [;|, where v;
is the absolute distance vector, u; and [; are the upper and lower envelopes, respectively.

Then, STA(t) and LT A(t) can be defined as the leading and lagging windows at time ¢

as: , ey , .
STA(t) = = > wi(k), LTA(t) = = > k) (3.1)
b =t11 2 p=t—To+1

where T7 and T5 are the lengths of short and long windows respectively. The starting point

of a motion is detected when the following conditions are satisfied:

STA(t) > oy and i;—ig; > 0y (3.2)

where o, and o, are predefined detection thresholds. Similarly, the ending point is detected
if
STA(t)

STA(t) < o3 and ITA()

< 09 (33)

where o3 is the detection threshold for the stopping point.
Note that in order to locate the starting point, according to (3.2), ST'A(t) needs to exceed
the threshold oy, implying that the the motion has to appear in the short window. Also,

the ratio of average power in the short and the long window should be higher than oy. In
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this way, if there is noise, the system will not be triggered unless the ratio exceeds the o,.
Similar conditions apply to ensure correct detection of the endpoint; i.e., the case when the
motion disappears from the proceeding window and the ratio drops below the threshold .
The resulting detection mask found with the proposed vw-STA/LTA approach is able to
separate the intervals with and without motion, as shown in Figure 3.4b.

While DBD requires the optimal selection of a threshold based on the returned signal
strength, fixed length STA/LTA bases selection on the window length. In contrast, the
proposed variable length STA /LTA approach adaptively changes its detection window interval
irrespective of the returned signal strength. A comparison of the segmentation accuracy for
these three methods is presented in Figure 3.5. Segmentation accuracy is computed by
comparing segmentation mask with the ground truth generated by a human analyst for
each time step. Note that the segmentation accuracy of DBD and fixed-window STA/LTA
exhibit great variance in efficacy for different thresholds or window lengths. Fixed-window
STA /LTA achieves a peak accuracy of 75.7% when the window length is 2.3 seconds. DBD
performs better by comparison, achieving a peak accuracy of 84.2% when the threshold is set
to 61, but with the cost of information loss in low frequency components. This peak value
is only slightly higher than the 83.5% accuracy achieved by the proposed motion detector,
while the propose approach can maintain this accuracy irrespective of any parameter values

due to the use of variable, adaptive window lengths.

3.5 Joint-Domain Multi-Input Multi-Task Learning

Conventional approaches to RF signal classification rely on a single data representation,
presented as either 2D or 3D inputs. In contrast, to take advantage of all available physics-based
information (range, velocity, frequency and angle), we propose a JD-MIMTL-based DNN
architecture, where each input representation is processed in parallel and the final feature

space is constructed by fusing individual feature spaces. Auxiliary tasks are used to regularize
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Figure 3.5: Comparison of the segmentation accuracy of DBD, fixed-window STA /LTA and
the proposed variable-window STA /LTA.
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and better guide the training loss. The accuracy of the proposed approach surpasses that of

conventional single-input models by over 13%.
3.5.1 Mixed Motion Sequential Recognition

Sequential classification of daily activities and ASL signs differs from conventional hand
gesture recognition tasks because it is not comprised of just an isolated, short duration,
single type of motion. Instead, it consists of a time series of consecutive motions, which
might belong to different classes of gross daily activities or ASL signs. A typical approach
to classify a continuous time series data includes: 1) temporal segmentation, 2) making
prediction for each time step. The former is achieved using a motion detector described in
Section 3.4, while the latter will be discussed in this section. In real-world scenarios, training
a model with the entire stream of data sequences (24 sec each) is not feasible, because this
significantly increases the computation time, rendering outputs only after a long delay, which
is undesirable in interactive systems. However, when models are trained with shorter input
sequences, performance also tends to drop gradually, because performance of LSTMs are
dependent on input sequence lengths [90]. Since LSTM networks have the flexibility to be

trained with varying sequence lengths, the data segments isolated by the motion detector
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were used as input sequences. These segments will have varying lengths depending on the

user’s pace and the motion itself.
3.5.2 Training a Spatio-Temporal Model

In this section, the effect of input sequence length on prediction accuracy is examined. For
this purpose, we use a DNN consisting of 3 time-distributed (TD) 2-D convolutional blocks
with kernel sizes of 3, followed by max pooling layers and a bidirectional long-short-term-memory
(BiLSTM) layer. A TD softmaxz layer is employed for temporal classification. While
convolutional layers extract the spatial features, the TD wrapper enables application of
the same nested layer to each time step. BiLSTM is a kind of recurrent neural network
which is used to extract temporal relationships between time steps. They have proven to be
very successful in terms of learning long term dependencies in various tasks such as natural
language processing [183], and speech recognition [58]. By employing LSTMs in our final
encoded feature space, both spatial and temporal features are extracted for classification.

In D spectrogram (uDS) classification, spectrograms are divided into 0.2 sec non-overlapping
windows to be used as time steps. In RD and RA map classification, the interval between
each RD/RA map or frame is 40 milliseconds, so to obtain a data structure corresponding
to the same (0.2s) duration, five RD/RA frames were stacked (5x40ms = 0.2s). For both
inputs, 80% of the data is used for training and 20% for testing, with an equal number
of samples from each sequence. Adam optimizer and categorical cross entropy is used
along with early stopping with patience of 10 epochs to train the model. Hence, the input
data has the shape of (batch size, number of windows, width, height, channels).

A 2D-CNN+BIiLSTM network for uDS and 3D-CNN+BiLLSTM network for RD/RA maps

are employed. The impact of the motion detector is discussed next.

Original Sequential Data

Table 3.3 shows the classification accuracy for each input data representation as a function

of various input durations. It may be observed that the accuracy of the models for all
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Table 3.3: Sequential Classification with CNN+BiLSTM

Data g:;lf;lcgi 1D Spectrogram | RD Map | RA Map
1/24 (1 sec) 69.2% 72.5% 69.9%
= 8 1/12 (2 sec) 78.6% 76.3% 73.7%
= g 1/6 (4 sec) 81.3% 82.4% 79%
2 271/3 (3 sec) 84.3% 89.9% | 85.9%
O & Half (12 sec) 84.6% 90% 87%
Full (24 sec) 86.1% 92.4% 89.7%
MDI Varying 78.8% 72.8% 67.5%

Table 3.4: Computation Times Spent for Prediction

Length of Sequences || uD Spectrograms | RD Map | RA Map
1 second 201.8 sec 207.5 sec | 205.8 sec

2 seconds 111.7 sec 125.7 sec | 123.1 sec
MDIs 61.4 sec 69.3 sec | 67.8 sec

input domains decreases as the length of input sequences gets shorter. Best performances
are obtained using longest sequences with RD maps providing a 92.4% accuracy. The
performance using uDS changes around 17% while that using RD maps and RA maps
change around 20% from 1 sec. sequences to 24 sec. sequences. While the longer sequences
give better performance, they also result in greater prediction delay and higher memory
requirement due to increased data size. This situation demonstrates the challenge of deciding
an appropriate input length while doing sequential classification and the trade-off between

prediction performance and delay.

Motion Detected Intervals (MDTI)

The detector extracts data segments containing motion, eliminating periods of no movement.
Thus, each MDI is of varying duration, and models are trained using variable length data.
The testing accuracies obtained when using uDS, RD and RA maps are 78.8%, 72.8%, 67.5%
respectively. These results are comparable to those obtained with fixed length sequences of
2 sec. for puD, and 1 sec. for RD/RA maps, while the length of detected segments vary

between 0.6 and 10 sec. Moreover, using MDI rather than fixed length windows significantly
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Table 3.5: Classification Accuracy of the Motion Detectors

Motion Detector | uD Spectrogram | RD Map | RA Map
DBD 72.4% 70.9% 63.8%
Fixed STA/LTA 76.8% 71.5% 67.1%
Varying STA/LTA 78.8% 72.8% 67.5%

reduces the computation time for prediction by masking out the intervals that do not contain
any motion. Table 3.4 presents the total computation time of an NVIDIA Titan V GPU
to make predictions for data durations of 1 sec and 2 sec. The total computation time
is reduced by 45% on average for different input representations when compared with 2 sec
length sequences. Note that the amount of computational savings obtained using the motion
detector does depends on the data, in that as MDI increases so does the time savings. As
daily life often involves extended stationary periods, in practical settings the use of MDI can

result in significant savings.
3.5.3 Effect of Motion Detector on Classification Accuracy

The performance of DNN models rely heavily on the data presented at the input, which
in turn is extracted based upon the starting and ending points of the MDIs as determined by
the motion detector. Thus, the ability of a motion detector to accurately extract intervals
containing movement impacts the efficacy of classifiers. Table 3.5 compares the classification
accuracy attained from different input representations extracted using DBD, fixed-length
STA /LTA and the proposed variable-length STA /LTA motion detectors. It may be observed
that the proposed variable-length STA/LTA detector yields greater classification accuracy
in comparison to other approaches, surpassing fixed-length STA/LTA by 0.4-2% and DBD
by 1.3-6.4%. Note that the relatively worse accuracy of DBD is due to information loss
incurred during the high-pass filtering, which removes low-frequency signal as well as clutter

components, and hence degrades the resulting classification accuracy.
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3.5.4 Proposed Approach: JD-MIMTL

To improve the classification accuracy obtained with just one input representation, this
paper proposes utilizing fusion of multiple input representations in a multiple-task learning
[22] framework with connectionist temporal classification (CTC) [59]. Although MTL has
been implemented successfully in computer vision [53] and natural language processing [34],
these applications all involve a single data representation (image, text, speech signal). In RF
sensing, the various physical variables measurable by radar - namely, range, uD, and angle
versus time - are reflected in different data representations, to base recognition decisions on
all physical properties, multiple inputs to MTL are advantageous. The joint feature space
derived from multiple input representations is enriched by fusing in a concatenation layer.

MTL jointly optimizes multiple objectives by exploiting domain-specific information
contained in commonalities and differences across tasks. By sharing representations among
related (auxiliary) tasks, the generalization capability of the model can be improved on the
main task. ASL classification can be aided by basing decisions on consistency with certain
physical properties of signing, based on the categorization provided in Figure 3.3(c). Five

auxiliary tasks are defined:

Task 1: One versus two handedness;

Task 2: Major location of hands;

Task 3: Movement type;

Task 4: Daily activity versus ASL sign; and

Task 5: Number of strokes.

The overall loss function, Ly, utilized in the JD-MIMTL framework is the weighted

sum of the CTC loss, A, and the loss L; specific to each task i:

I
Ltotal = )\CtCLCtC + Z )\sz (34)
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Figure 3.6: Proposed multi-input multi-task learning network.
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where \ are the weights assigned to the various loss terms. Since each task has its own
loss function, and, hence, varying convergence times, the weights A needs to be jointly
optimized. Three different loss optimization techniques [56] were compared, namely, the
uniform combination of losses (i.e. equal weights across all tasks), the uncertainty based
weighing method [33], and grid search. The first two methods minimize Ly, without
taking into account the importance of each individual task. Since we aim to minimize
L., which is derived from the prediction layer, the grid search method was preferred.
The use of smaller auxiliary task weight values during grid search was found to perform
better than that obtained with using the uniform combination of losses or uncertainty-based
weighting. Specifically, weight values of Ay, = 1 and \; = 0.2 were used. The overall
proposed JD-MIMTL approach is depicted in Figure 3.6. After training the model, all of
the auxiliary task and CTC output layers are removed and the model is augmented with a
softmax layer for classification.
The probability distribution of the classes, which is obtained as the output of the JD-MIMTL,

can be decoded two ways in parallel for sequential classification and trigger word detection.

Best path decoding is used as the decoding scheme of the CTC outputs for both objectives.
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However, the final prediction class is defined as the statistical mode of the time steps of an
MDI for sequential classification, and as the prediction scores for the trigger sign accumulated

over the time steps of an MDI for trigger word detection.

3.6 Results and Discussion

3.6.1 Trigger Word Detection

To activate a device, the trigger sign must be correctly recognized from within a stream
of data, and the activation should occur when the articulation of the sign is completed.
One approach is cumulative score aggregation (CSA) [166], where the scores (i.e., prediction
probabilities) of the trigger sign are accumulated over time, and a detection is recorded when
the accumulated score, s,, exceeds a predefined threshold. The threshold can be adjusted
to ensure the detection is triggered only when the trigger sign is complete.

In this work, an adaptive, double-threshold CSA approach is proposed for trigger sign
detection. Since the MDIs have varying lengths, the value of the threshold, 7', is adaptively
determined based on the interval length as: T = w*+, where w is the length of the MDI and
~v is a predefined confidence factor. To mitigate the false rejection rate (FRR) of the detector,
a second (lower) threshold, Tj,,, is also defined. When the accumulated score exceeds the
Tiow, but not T', the detector is alerted to the possibility of a trigger and begins recording
the duration over which the score stays above Tj,,. The system is triggered if score exceeds
Tiow for more than w/2 seconds and the motion is classified as the trigger sign.

In trigger word detection, effect of using single versus double thresholding can been seen
from Figure 3.7a, which shows the trade-off between the false alarm rate (FAR) and FRR for
v € {0.01 : 0.99} for the word AGAIN. When a single threshold is used, the FRR can climb
as high 0.6, while double thresholding limits this value to just over 0.2. This is significant
because decreasing the FRR boosts the detection rate, D, =1 — FRR — FAR, where FRR
and FAR are defined as:

ng — Ng

FRR = ., FAR=" (3.5)

Uz ny
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Figure 3.7: Trigger word detection results.
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where ny, nq and ny are the number of total, detected and false detected samples respectively.

As shown in Figure 3.7b, when the resulting detection rates for single thresholding versus
the proposed double thresholding approach are compared, it may be observed that for each
considered trigger sign, the proposed approach yields a same or improved detection rate.
The word TEACHER has the highest detection rate for both thresholding methods, achieving
a detection rate of 0.93 and 0.96, while the word MONTH (self-occluded) has the lowest score
of 0.65 for both cases. Signs with higher classification accuracy tend to have higher detection
rates as well, such as TEACHER and TEACH.

The number of strokes (i.e., length) of the sign is an important consideration in trigger
sign selection. For the purposes of automatic detection, strokes were defined as components
surrounding the sign-initial and sign-final handshapes; thus, both the motion inherent to
the sign (i.e., the stroke as defined in sign language phonology), and transitional motions
preceding and following the sign, were included in the analysis. This approach approximated
predictive processing in human sign language recognition [122, 51], while remaining consistent
with ecological paradigm of wake sign use. Signs with few strokes defined in this manner

(less than 3) were found to have many false alarms, while those with more than 4 were prone
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Table 3.6: Comparison of DNNs for MDI Classification

Architecture ‘ uD ‘ RD Map ‘ RA Map ‘ Feature-Level Fusion
CNN + BiLLSTM 78.8% 72.8% 67.5% 84.3 %
CNN + BiLSTM + CTC 80.6% 78.4% 71.3% 87.5%

CNN + BiLSTM + CTC + MTL | 83.6% | 78.6% 71.4% JD-MIMTL 92%

to a high number of false rejections. This is similar to results in speech recognition, which
report optimal wake word lengths of 3 to 4 syllables [167] - or, in quantitative terms, several

entropy (high information-density) peaks within the continuous signal.
3.6.2 Sequential ASL Recognition

A testing accuracy of 92% is achieved using the proposed JD-MIMTL approach, and
surpasses the results achieved with various state-of-the-art sequential recognition approaches,
as shown in Table 3.6. This result is also quite close to the 93.5% accuracy attained
using JD-MIMTL when the motion detector is replaced with ground truth segmentation.
Moreover, the baseline established in Section 3.5.2 using CNN+BiLSTM on single-input
representation MDI data is improved to 84.3% by application of feature-level fusion. Consideration
of CTC loss improves the results obtained for both single-input and fusion of multi-input
representations.

The accuracy using DS increased to 80.6%, RD maps to 78.4% and RA maps to 71.3%,
thus providing an average improvement of 3.73%. For RD maps and RA maps, MTL only
slight improves performance by just 0.1%-0.2%, while the accuracy with uDS increases by
3%. The proposed JD-MIMTL approach yields a performance improvement of 8.4% over
uDS as a single-input to MTL, and 4.5% improvement over multi-input feature level fusion
without using MTL.

The confusion matrix for the proposed architecture is provided in Figure 3.8. It can
be seen JD-MIMTL exhibits the most confusion in signs with low radial motion (EVENING,

MAYBE, NIGHT) and self-occlusion (MONTH). The signs with high radial motion (TEACHER,
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TEACH) have the highest recognition rates. This is due to higher sensitivity of radars to

radial velocity components.
3.6.3 Performance Across Different Fluency Groups

The proposed approach is tested on different fluency groups to evaluate is efficacy across
different users. This is done by training the model solely with data from non-ASL users, but
testing on ASL users’ data. Thus, not only are the participants between training and test
sets different, but also their fluency levels. In Figure 3.7¢c, the overall testing accuracy for all
signs, and the trigger detection rate for the selected trigger word, TEACHER, are presented for
different fluency groups. While the first two columns report average results, the remaining 4
columns break down the results for specific participants, indicating whether the participant
was an ASL learner or CODA. On average, the sequential ASL classification accuracy for
ASL users was 10% less than that attained from non-ASL users. But, the trigger detection
rates remained above 94% irrespective of fluency. In fact, 3 out of 4 ASL users’ trigger word

is detected with 100% accuracy.
3.6.4 Discussion

Because RF sensors rely on kinetic properties of signing during recognition, signs that

inherently contain greater movement (especially inter-sign movements) are easier to recognize.

Figure 3.8: Confusion matrix of the proposed JD-MIMTL.
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For example, the signs TEACHER and TEACH both involve raising the hands to the level of the
head, whereas MONTH involves just a short swipe of a finger downward and NIGHT involves
a more subtle downward, curved motion of the hand/arm, resulting in a detection rate that
is over 20% lower. Effective ASL-based device triggering will require the design of a unique
sign for this purpose, as commonly used daily expressions may mistakenly trigger a device.
In this regard, it is important to note that it is not necessary for such a trigger sign to
have meaning in English; e.g. that KNOCK might be sensible in meaning has little bearing
on efficacy in terms of detectability, practical and cultural considerations. In future work,
we aim to work with deaf community partners to jointly evaluate usability and efficacy of
kinetically unique trigger signs.

Another important consideration for device operation with ASL is real-time implementation
on dedicated edge computing platforms. Although there have been some studies of real-time
gesture recognition using micro-Doppler signatures [164, 114, 28, 130], these works have
considered only a small number of classes (less than 12), and focus on hardware acceleration
or reduction of the computational complexity of the model itself. However, our initial work [3]
in evaluating computational latency in the processing pipeline has shown that a significant
part of the latency is not in the classification stage, but in the computation of the input
representations themselves, especially micro-Doppler signatures. Latency depends not just
on the duration (length) of the data, but also on short-time Fourier transform parameters,
such as window length and overlap, which determine the dimensionality of the resulting
spectrogram and impacts classification accuracy. Joint optimization of input representation

generation and DNN model will be necessary to maximize real-time recognition performance.

3.7 Conclusion

The proposed techniques in this chapter enables trigger sign detection for device activation
and sequential recognition of ASL in the context of daily living. While conventional approaches

to RF signal classification utilize just one RF data representation, this work exploits pD
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spectrograms, RD maps, and RA maps in a JD-MIMTL framework for sequential classification.
By defining tasks in terms of physically-relevant concepts for ASL recognition, sequences
involving a mixture of 18 different daily activities and ASL signs was classified with 92%
accuracy. The proposed double-thresholding trigger detection method achieves detection
rates of 96% and 98.9% for non-ASL and ASL users, respectively, for the sign TEACHER.
Potential selections for trigger signs are evaluated based on sequential activity recognition
accuracy and replicability across the fluency levels of users. The results demonstrate the

potential for RF sensing to be used for ASL-sensitive HCI.
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CHAPTER 4

MULTI-PERSON SEPARATION VIA ANGULAR PROJECTION

4.1 Introduction

Most of the current RF-based activity /gesture recognition literature is limited to consideration
of just single target scenarios, even though the presence of multiple targets is typical in
real-world environments. In multi-target scenarios, the RF pD signature computed from the
raw 1/Q data will result in the signature for each target super-imposed upon each other.
Consequently, DNNs trained with data with just a single target present will not be able to
correctly recognize the targets’ activity. Many of the works involving multiple targets focus
on counting the number of people present [30, 29, 182, 8|, while just a few works actually
aim at separating the micro-Doppler signatures. Vishwakarma, et al. [172] propose a sparse
coding dictionary learning based algorithm to separate the uD returns from multiple targets.
However, the approach relies on parametric models for simulating the human and fan returns
considered as part of a binary classification problem. The Boulic model used to simulate
human returns only approximates walking, thus precluding the approach from being effective
when generalized human activities, which are not easily represented by a parametric model,
are observed. Even in the limited case presented, the separated uD signatures suffer from
losses in comparison to their measured counterparts.

Alternatively, Huang, et al. [83] applies a multi-stage separation scheme in which range
gating is first applied for preliminary separation, followed by design of a multi-task learning

network for fine signature separation and recognition. However, because multiple targets can
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be present at the same range, this approach is essentially relying on the DNN to figure out
the signal separation solely based on a learned, data-driven model. This inherently limits the
applicability of the proposed approach to only those target signatures for which the model
has been trained, and will not generalize easily to previously unseen target puD signatures.

Another common approach is to explicitly track the components of the overall pD
signature. Wang, et al. [175] formulates the problem as one of path planning and proposes
ant colony optimization to identify the points corresponding to different paths within the
overall puD signature. Simulation-based results are presented only for sinusoidal pD curves
- in real measured signatures where the backscatter from each target is not comprised
of a distinct curve, it is not clear how effective this approach would be. Moreover, the
uD signatures of more complicated targets, such as humans, are comprised of multiple
trajectories corresponding to the movements of each body part. This approach does not
address the subsequent association problem that would ensue for target signatures comprised
of multiple trajectories. A similar challenge is faced by the multiple target tracking approach
proposed in [24], where the coning targets considered similarly consist of distinct sinusoidal
trajectories.

To overcome these limitations, Pegoraro, et al. [132] proposed a density clustering and
tracking based technique to separate the u-D for up to four people walking back and forth
along a corridor. A trajectory association algorithm is utilized to match clusters with tracked
trajectories, and a CNN that incorporates a reconstruction loss term in the cost function
is utilized to correctly identify the person walking in case tracking fails and clusters of
some subjects cannot be separated. Although this method in principle can generalize to
realistic target signatures, results are only presented for identification of walking people -
HAR for multiple people in a scene is not considered. Moreover, it can potentially suffer
from trajectory instability due to missed detections, a probable event in scenes where there is

significant clutter, and ghost targets resulting from multi-path reflections. Significant effort
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Figure 4.1: Conventional vs. angular projection-based radar signal processing (RSP) chain
for multi-target scenarios.
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is involved for trajectory management, a task that is increasingly complicated as the number
of targets present increases.

A common limitation of all of the aforementioned works, however, is that they can
perform separation only after tracking results are obtained or after radar images are computed
from the raw data cube. The computation of tracking trajectories introduces additional
delays in the classification process, which is detrimental to real-time applications. For cases
like multiple close targets or gesture recognition for right and left hands, separation of
targets in range-angle domain is generally not possible, detrimentally effecting performance
of existing approaches. Additionally, decomposition or target separation made at the image
level is not scalable to other data domains as the raw 1/Q signals of the targets are still
superimposed. This precludes the utilization of joint domain classification techniques, which
require lower-level signal separation in the raw radar data and hence RDC itself.

The proposed angular subspace projection-based separation (ASPS) technique [103] projects
the raw radar data onto an angle subspace and generates multiple low-level RDC-w representations
for the targets at different aspect angles. Figure 4.1 shows the fundamental differences
between radar signal processing stages with and without the proposed projection method
along with its advantages and disadvantages. In particular, we show that the proposed
projection method improves the similarity between a target’s original signal and the decomposed

multi-target signal after projection. This enables the utilization of a DNN trained for the
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single-target case to be utilizable even in multi-target scenarios. For a 9-class uD signature
recognition problem, a four-layer CNN achieves 97.8% when three targets are present within
the radar field-of-view. In cases where multiple targets are positioned with close proximity
to each other, the RDC-w representation offers multi-view inputs, which highlights the
differences at each angle that can be exploited via a multi-view deep neural network to
achieve improved classification accuracy. This work expands on preliminary work presented
as a conference paper [105] by 1) adding a weighting stage to the projection pipeline, 2)
characterizing target separability as a function of the number of antenna elements and
aspect angle for an expanded number of targets, which includes human activities and several
different gaits of a robotic dog, 3) demonstrating improved classification results for a 9-class
HAR scenario using a 4-layer CNN and 10-class gesture/sign language recognition scenario
using a multi-view DNN on an expanded dataset that has a greater number of samples per
class.

The specific contributions of this study are as follows:

1. We propose the ASPS method to separate and boost the relative SNR of targets at

different aspects angles, generating raw multi-view RDC-w data representations.

2. The effect of the number of antenna channels and target aspect angle on ASPS performance

is evaluated.

3. The effectiveness of ASPS is demonstrated for a HAR application in an end-to-end

framework.

4. We propose a novel multi-view DNN that utilizes multiple RDC-w derived micro-Doppler
signatures as its input to boost classification performance when targets are in close
proximity, such as when separately considering left and right hand movements for sign

language recognition.
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4.2 Multiple Target Signal Model

In an FMCW radar, the frequency of the transmit signal changes over time, typically
as a linear sweep across the bandwidth, so that both range and velocity measurements can
be acquired. [113]. In MIMO FMCW radar systems, the presence of multiple channels also
enables the estimation of the angle of arrival of the radar backscatter from a target. The

transmitted FMCW signal, S7(t), can be modelled as:
Sr(t) = exp(j2m fot + jrat?) (4.1)

where, f.is the carrier frequency, « is the chirp rate defined as the ratio of bandwidth, B,

to the sweep duration, T, as a = %
Now suppose that once transmitted, the signal reflects back from a set of K targets with
corresponding ranges R; and radial velocities v; ¢ = 1,2,..., K. The received signal in one

channel of the radar system can be expressed as:

Sg(t) = Z Ajexp(j2m ot — ;) + jma(t — t;)?) (4.2)

where, A; is a complex constant related to target radar cross section, and ¢; is the round
trip time delay for the i** target. Each RF sensor channel’s raw data is collected as a time
stream of in-phase (I) and quadrature (Q) samples. In FMCW transceivers, the received
signal is mixed with a copy of the transmitted signal and then low-pass filtered to remove
unwanted high-frequency mixing byproducts. The output of the filter as an intermediate
frequency (IF) signal Srp(t):

K
S[F<t) = Z Al eXp(j27roztit + ¢Z), (43)

i=1
where ¢; is a constant phase term over time and is function of time delays, chirp rate and

carrier frequency. Sampling the IF return signal results in NV fast-time samples for each pulse,
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Figure 4.2: Target separation in range, Doppler and angle domain for a multi-target scenario.
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while computation of its Fourier transform reveals the beat frequencies F, = at;, which are
directly related to the round-trip travel time and distance between the radar and target.
The velocity of a target can be obtained through transmission and coherent processing of
P pulses. Because the PRI is typically much longer than the ADC sampling interval, the
pulse number is typically referred to as slow-time, while the ADC samples are referred to
as fast-time. For a MIMO radar with a ULA consisting of M virtual channels, a RDC with
dimensions of (N x P x M) can be formed. Fourier processing can be utilized to compute
from the RDC various RF data representations, such as RD or RA versus time.

When multiple targets are present in the radar FoV, the received signal is comprised
of the backscatter from all the targets in the scene. Thus, the uD spectrogram consists of
the superposition of the uD signatures for all targets. Figure 4.2a illustrates the resulting
u-D spectrogram obtained when two people present in the FoV - one person is walking
towards radar and the other is walking away from the radar. Comparing the multi-target
spectrogram with the one obtained when the same activities are recorded individually in the
radar FoV, it can be observed that the uD for each person exhibits the same patterns, but

that in the multi-target spectrogram these signatures are overlayed or superimposed so that
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they interfere with each other. As DNNs for HAR are typically trained on pD signatures
recorded when just a single person is present, such activities of the subjects in multi-target
spectrograms will not be accurately classified. Thus, the signatures for each person need to

be separated prior to input to a DNN for classification.
4.2.1 Rationale of Proposed Approach

Rather than immediately compute the uD, the potential separability of targets can be
observed through the use of other radar data representations, especially the RD and RA
maps. Consider the case of three people walking towards a radar. The RD and RA maps
for this scenario is shown in Figure 4.2b. When a CA-CFAR detector is applied to the
RD and RA maps, the presence of several distinct targets can be seen. In the RD map,
however, despite three targets being present, only two can be detected as two of the people
were located at the same distance from the radar. Consequently, in the RD map, their RF
returns fall into the same range-Doppler bin and cannot be distinguished. On the other
hand, in the CA-CFAR results for the RA map, three separate targets can now be observed.
Hence multiple targets live in the range-Doppler or angle domains and might not be always
be separated. Our goal is to generate multi-view raw radar data representations that will
enhance target classifications even for cases that might not be separated in RA domains.

Towards this goal, we propose an angular subspace projection technique for signal separation
that decomposes the raw complex RDC of multiple targets from each other by generating
individual RDCs for each angle subspace. This process strengthens the signals received
from the projection angle subspace, but weakens the signals received from any other angle.
Because the signal separation is accomplished at the RDC-level, subsequently any desired
radar data representation for the separated multi-view RDCs, including micro-Doppler signature,
RD and RA maps, can be computed. This yields advantages over trajectory tracking-based
approaches in the literature because the joint use of multiple input representations has given

improved classification performance over just using micro-Doppler signatures. In essence, a
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Figure 4.3: Proposed end-to-end framework of the angular projection method for a
classification application.
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more fundamental form of signal separation is being accomplished at the raw radar signal
level.

The proposed framework, shown in Figure 4.3, consists of two main stages. The first
stage involves target detection and angular projection. RD maps are obtained through
2D FF'T on the fast and slow-time dimensions of each channel of the acquired raw RDC.
Then, CA-CFAR adaptive thresholding is applied on the RD maps to detect the targets.
Angle-of-arrival (AoA) of the detected targets are estimated using the MUlItiple Slgnal
Classification (MUSIC) [73] super-resolution algorithm. Next, the proposed projection approach
is applied with the detected angles to form new, projected RDCs for each target. The second

stage involves the implementation of task-specific processing on each individual target RDC.
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For the task of classification, individual pD signatures can be generated by applying any
desired time-frequency transformation on the projected RDCs. The uD signatures can then
be given as input to a DNN to separately classify each target. Although pD is used as
the input representation for classification here, different representations from multi-view
RDC can also be computed. Even though angular subspace projection is applied to detected
targets here, we also show that the proposed projection idea boosts the classification performance
even for targets that were not separated at the initial stage such as right or left-hand gestures.

The details of the computations comprising each stage are presented next.
4.2.2 Target Detection and AoA Estimation

The first stage to decompose multiple target RDC into individual RDCs of each target is
the detection of targets in range-Doppler-angle domain. Number of targets in the radar FoV
along with their angles are utilized to apply the projection algorithm. If the user has the
priori knowledge of this information, angles of the targets can directly be fed into the angular
projection algorithm without the initial detection stage. Otherwise, a target detection and
an angle estimation method is applied.

A 2D FFT can be applied on the fast and slow-time dimension of the multi-target RDC
to obtain the RD maps spanning each coherent processing interval, a.k.a. frame. In order to
detect the targets in the RD maps, a widely used adaptive thresholding method, CA-CFAR
detection, is applied.

Once CA-CFAR is applied on the RD maps, the detected target range-Doppler bins are
passed through the MUSIC algorithm for angle estimation. This procedure is applied to
all frames. To reduce grid effects, clustering is applied in angle space (i.e., detections with
close angles are clustered into one group). If the number of detections for a particular angle
cluster exceeds the pre-defined threshold, the center angle of the cluster is added to the list

of projection angles, which is then given as input to the projection algorithm.
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4.2.3 Projection of RDC

The previous detection stage generates angle estimates of each target. In this part, we
project the raw multi-target radar data to the angular subspace of each target. To do this
let us first define the angular space. If there is a target at a specific angle with respect to
the array, the steering vector defines the signal model received at the array. For the case of

a ULA the steering vector, a, can be formulated as follows:

a(@) — [1 6—j(27rdsin(0)/>\) e—j(Zw(M—l)dsin(G)/)\)]T (44)

where 6 is the aspect angle, \ is the signal wavelength, d is the spacing between array
elements, and M is the total number of channels in the ULA. Repeating equation 4.4 for
each discretized angle 6 yields the steering matrix. The projection method takes the lower
and upper bounds of the desired projection angular interval (i.e., §; and 6,,, respectively) as
inputs. For a given angle space [0;, 0,], we can discretize this space and create a steering
matrix, as B = [a(0y) a(62), ...,a(6;),...,a(0s)] where each column is a steering vector for
the corresponding aspect angle 0; € [, 0,]. Here the column space of B spans the angular
subspace we want to project and slow time index k can be projected onto the column space

of B as follows:

X = (B(B'B)'BY)x,1 (4.5)

where X, is the projected data. Repeating the projection for relevant fast-time and slow-time
indexes will construct the projected RDC for the given angle subspace. The angle subspace
can be selected as the angular extent of the detected targets. In some cases the angular
subspace can also be designed depending on the application. For example, in radar-based sign
language recognition, to better represent right and left-hand activities, angular projections

for each hand can be done considering an angular subspace that can include all angles at
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Figure 4.4: Virtual array generation from MIMO array using TDM (a-b) and the
experimental setup (c).
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one hand can be. As the output of this subspace projection multi-view RDCs are obtained

and varying feature representations can be computed for each RDC.

4.3 Experimental Setup and Dataset

In this work, Texas Instrument’s AWR2243 Cascade MIMO radar is employed as the RF
sensor which uses a sawtooth FMCW model. Frequency of the transmitted signal linearly
increases as a function of time during sweep repetition period or sweep time, 7. The start
frequency in the radar system is 77 GHz and a bandwidth of 4 GHz is used. So, the signal is
linearly increased up to 81 GHz. The radar system can be configured as a long-range radar
(LRR) in the beamforming mode for higher signal-to-noise ratio (SNR) or as a short-range
radar (SRR) using the MIMO mode for enhanced angular resolution. In this work, MIMO

configuration is utilized.
4.3.1 Virtual Array Generation with MIMO Processing

The experimental MIMO radar contains 4 radar sensor chips cascaded together, where
each containing 3 transmitter TX and 4 RX antennas, resulting in a total of 12 TX and 16

RX channels. 9 of the 12 TX antennas are in the same vertical position and remaining 3 of

them are at different heights. As for the Rx antennas, all of them are located at the same
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Table 4.1: The acquired dataset for different number of targets.

Number of Targets Angles Number of Samples
1 0°, £45° 476
+15°, +£30° 16
2 0°, £45° 15
3 0°, £45° 6

height with a sparse distribution in the horizontal axis as depicted in Figure 4.4a. Utilizing
relative positions of different TX-RX pairs in MIMO radars, one can form a virtual array
with a larger aperture size than what is provided on the hardware. It can be achieved by
employing different modulation techniques such as TDM, BPM, code-division multiplexing
(CDM).

BPM works by introducing binary phase difference (i.e., 0and180) between consecutive
pulses which is not effectively applicable when there exists more than two TX channels. In
this work, TDM is used as the virtual array generation scheme which schedules each TX-RX
pair to transmit pulses. Using 12 TX and 16 RX, a virtual array with 192 channels (including
the overlapping TX-RX pairs) can be formed as depicted in Figure 4.4b where 86 of these
192 channels can be used to form a ULA in azimuth direction, providing angular resolution

of as small as 1.4°.
4.3.2 Data Collection

In order to assess the effectiveness of the proposed method, a HAR dataset with 9
activities are acquired where 5 of them are human activities and 4 of them belong to a
robotic dog (i.e., Boston Dynamics’s Spot). The acquired classes for human participants
can be listed as: walking towards radar, walking away from radar, picking up an object
from the ground, sitting down to a chair, standing up from a chair. The classes for Spot
are: walking towards radar, walking away from radar, crawling towards radar, crawling away

from radar. The experiment is conducted in a 4.5 m x 6.4 m indoor area. Figure 4.4c shows
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Figure 4.5: uD spectrogram samples of different classes.
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the experimental setup and the layout of the room where the data are acquired. Each of the
activities are performed at the angles of 0° and £45°. Few more samples are also collected
at £15° and £30° in order assess the limitations of the proposed method. Each recording
for an activity is lasted for 7 sec, and walking/crawling activities are started at 4.5m away
from the radar. Single and multi-target cases are considered, and Table 4.1 summarizes the
acquired dataset for varying number of targets.

In this study, uD spectrogram is used as the RF data representation type for similarity
analysis and classification. Sample uD spectrograms belonging to different classes are provided

in Figure 4.5. Three different datasets are generated from the acquired samples:

1. The first dataset consists of single activity samples where only one target present in

the radar FoV. This dataset is referred as single activity dataset.
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2. Secondly, merging of raw 1/Q signals of the targets located at different aspect angles
by summing the raw signals up allows us to create a scene with multiple targets in a
synthetic way. This dataset is referred as merged multi-target dataset throughout the

chapter.

3. Finally, the data of multiple subjects located at different aspect angles are also recorded

which are named as real multi-target dataset.

Next, we present the performance analysis of the proposed approach and the effect of
several radar system parameters. Classification performance for two additional applications

and their corresponding datasets will also be presented.

4.4 Performance Analysis of the ASPS Method

4.4.1 Similarity Comparison

Projection of the raw signal onto the angular subspace spanned by B keeps the returned
signal strength from the targets located at the angular interval spanned by B, while fades
out the return signals of the targets located at other angles. In order to quantitatively
evaluate the quality of the projected RDCs, their similarity with the original, single target

spectrograms are compared by applying the following steps:

e Step 1: Raw data with single targets at different aspect angles are recorded, their

RDCs are formed and corresponding pD spectrograms are generated.

e Step 2: Multiple single target RDCs are merged by adding them up to create a
combined RDC which contains the raw return signals of multiple targets, and the u-D

spectrogram of the merged RDC is generated.

e Step 3: The combined RDC is projected onto the target angular subspace. Resulting

projected RDCs are used to generate new, projected uD spectrograms for each projection.
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Figure 4.6: Projection results for two and three target cases.
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e Step 4: Compare the similarity of the projected spectrograms to the original, single

target spectrograms with varying metrics.

Figure 4.6 illustrates the aforementioned steps with the u-D spectrograms for two and
three target cases. In the first row of the Figure 4.6a, single target spectrograms for walking
away (at 0°) and standing up (at +45°) activities and their merging result is presented. After
the projection of the combined RDC onto 0° and +45°, it can be seen that individual targets’
signals are recovered almost perfectly. Second row, presents the results for standing up and
walking towards activities where both of them have mostly positive Doppler frequencies.
It can be seen that the projection method is still able to separate two targets quite well,

indicating that the performance of ASPS method is agnostic to the signature of the Doppler
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frequency caused by the direction of the target’s radial motion. Figure 4.6b presents the
projection results for a three-target case performed at -45°, 0° and +45° angles. In the first
row, while Spot’s walking towards and walking away activities seem to be well separated
than others, projection result for picking up an object has some leftover signals of Spot’s
activities before and after the picking up an object’s signature. This is due to the fact that
the projection angle subspaces are not fully orthogonal and still some weak projections from
other angles are observed.

In order to quantitatively assess the similarity of the projected spectrograms to the
original (i.e., single target) ones, three different similarity metrics are considered, namely,
structural similarity index (SSI), pixelwise mean-squared error (MSE) and peak signal-to-noise
ratio (PSNR). Table 4.2, presents the averaged similarity results across all the samples of
merged multi-target dataset for two and three target cases where X, Y, Z € {£45,0}. It can be
observed that when the target angle and the projection angle matches, resulting spectrograms
have higher SSI and PSNR and lower MSE than non-matching case as expected. Although
the presented results are the average of all samples, having higher SSI and PSNR with
lower MSE when the target and the projection angle matches is consistent for all individual

samples.
4.4.2 Effect of Angular Difference of the Targets

So far, only angles of -45°, 0° and +45° are considered for the similarity measures. In
order to understand the effect of angular difference, A©, of the targets on the projection
results, more data samples are collected from -30°, -15°, 0°, +15°, and 430° for the activity
of walking away from radar. These samples are then merged with a picking up an object
activity sample recorded at -45° one-by-one, resulting in varying A© between two targets
where AO € {15°, 30°, 45°, 60°, 75° and 90°}. Table 4.3 presents the similarity results for
uD spectrograms when RDCs of the targets at varying angles merged with the RDC of the
target located at -45°, and projected onto the target’s original angle. It can be observed

that as A© increases, SSI and PSNR increase as well and MSE decreases, meaning that
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Table 4.2: Mean similarity results for the uD spectrograms where
X, Y, Z e {£45°, 0°}.

Num. of | Target | Projection
Targets | Angle Angle SIHL || WIS | TN
X X 0.59 | 1.82e3 | 16.93
9 Y 0.46 | 3.6e3 13.16
v X 0.47 | 3.56e3 13.2
Y 0.55 | 2.17e3 | 16.46
X 0.56 | 2.22e3 | 16.43
X Y 0.45 | 3.68e3 | 13.14
7 0.42 | 4e3 12.8
X 0.46 | 3.73e3 | 13.07
3 Y Y 0.57 | 2.06e3 | 16.52
Z 0.44 | 3.9e3 12.9
X 0.44 | 3.95e3 | 12.88
Z Y 0.44 | 3.79e3 | 12.97
Z 0.53 | 2.48e3 | 16.05

the projected spectrogram resembles more to the original single target spectrogram. Figure
4.7 shows the geometry of the multi-target scenario and resulting projected spectrograms
belonging to Table 4.3. It can be seen that the projection method has hard time to separate
targets when A© = 15° where both activities are well visible in the resulting spectrogram.
When A© = 30°, although a complete isolation of two targets is not achieved yet, picking up
an object activity is mostly suppressed and walking away seems to be the dominant activity.
When A© = 45°, uD signature of the picking up an object activity is barely noticeable and
there exists only a small portion of the leftover weak signatures. When A© = 60° or 75°
a complete separation can be observed with uD spectrograms containing only one target’s
signatures. From these results, it can be inferred that as A© between targets increases, a

better separation is achieved and all similarity metrics perform better.
4.4.3 Effect of Number of Antennas

The created virtual array has 86 channels which forms a ULA in the azimuth direction. In
any kind of angle estimation method, the angular resolution is proportional to the number

of channels in the antenna array. However, it worsens as the aspect angle deviates from
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Table 4.3: Similarity results when two activities (i.e., picking up an object and walking
away) with angular difference of A© are merged, and projected onto the targets’ original
angle.

A© 15° 30° 45° 60° 75° 90°

SSI 0.67 0.72 0.77 0.83 0.85 | 0.85
MSE | 1.75e3 | 0.63e3 | 0.55e3 | 0.45e3 | 0.39¢3 | 0.3e3
PSNR | 15.7 | 20.15 | 20.73 | 21.63 | 22.25 | 23.36

Figure 4.7: Generated uD spectrograms after projecting multi-target (picking up an object
and walking away) RDCs onto original target angles.

Geometry

the direct line-of-sight of the radar. A similar phenomenon can be observed in the ASPS
method as well. In some cases, it can be seen that the projected uD spectrograms still contain
signatures of some portion of the activities from other angles. This due to the fact that the
steering vector, a(f), for an angle, 6, is not fully orthogonal to the other angles. Figure
4.8a shows the correlation between the steering vector of angle 0° and the steering vectors of
other angles for different number of antenna elements. It can be stated that although there

are some ups and downs, especially noticeable for 4-elements case, the correlation between
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Figure 4.8: Correlation of angles and similarity between the original single target and
projected pD spectrograms for varying number of antenna elements.
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steering vectors gets smaller as the number of antenna elements increases which is in favor
of the projection algorithm as lower correlation between two angles will lead to a better
separation of the targets located at those angles.

Figure 4.8b presents the normalized SSI, MSE and PSNR values of the projected and
the original spectrogram pairs for different number of enabled antenna elements. It can
be observed that SSI and PSNR increase as with the number of antenna elements while
MSE decreases, indicating that the projections made with a larger antenna aperture size
resembles more to the original target signatures. Qualitative results for this observation are
presented in Figure 4.9. Figure 4.9a shows the uD spectrograms belonging to 3 different
activities at different angles and their merging result. Figure 4.9b shows the resulting uD
spectrograms for projections for the target angles with different number of antenna elements.
While the separation is barely noticeable and poor for lower number of antenna elements, it
gets better as the number of MIMO channels increases. Isolation of individual targets start

to become quite clear after 32 channels, and 72 and 86 channels yield very close results.
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Figure 4.9: Projection results for varying number of antenna elements.
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These qualitative results are found to be in-line with the quantitative results obtained in

Figure 4.8b.

4.5 Classification with RDC-w Representation

In this section, utilization of ASPS derived RDC-w representation for multi-target activity
classification is presented. First, multi-person HAR where there is sufficient angular separation

is considered. The RDC-w representation for each target is input to a DNN trained with
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data from single-target. Next, two cases where targets are in close proximity is considered:
1) the left and right hands during articulation of two-handed gestures/sign language and
2) two-people doing different activities next to each other. In these cases, the proposed
multi-view DNN, taking multiple spectrograms generated from the RDC-ws as inputs, is

shown to boost the multi-target classification performance.
4.5.1 Multi-Person Activity Recognition

HAR and indoor monitoring are drawing more attention as with the development of
state-of-the-art end-to-end solutions utilizing RF sensing. HAR dataset is used to assess the
effectiveness of the method. First, a very basic case, classification of the single activity dataset
is considered. pD spectrograms of single targets are fed into a 4-layer CNN followed by two
fully connected layers and one more fully connected layer having number of nodes equal to
the number of classes for classification. There exists a Reshape layer before the final Dense
layer, so that the output of the model will have the shape of T}, X Ngass where T4, is the
predefined maximum number of detectable targets and N, is the number of classes. This
modification allows model to give prediction for each target. softmax activation function
is often employed in the last layer of a classification network for multi-class classification
problems. It enables normalization of the output of a network to a probability distribution
over predicted output classes, based on Luce’s choice axiom. In this work, in the final
classification layer, sigmoid activation function is preferred over softmaz which is more
common for multi-class classification problems. Such unconventionality is needed because
output values of the softmaz should add up to 1, however, when there are less number of
targets than T),,, in the scene, all the output values for non-existent target nodes should be
close to 0, but softmaz cannot provide such output while sigmoid can. In this application,
Trnaz is set to 3. The trained model achieved the testing accuracy of 98.7% for the single
activity dataset. However, when the trained model is tested on merged multi-target and real

multi-target datasets where multiple targets present in the scene, accuracies drop down to
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Figure 4.10: Angle estimation accuracy for different angular tolerance values.
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5.8% and 8.3%, respectively. Such performance drop is expected as the latent space of the
multi-target spectrograms may not resemble to any of the individual classes.

Application of the projection idea can be quite useful in this scenario as it has capability
to isolate pu-D signatures of the individual targets. As mentioned earlier, estimation of
the target angles is a necessary step in this framework, and the ground truth label of the
projected spectrogram will depend on the ground truth class of the original target. If the
original target angle and the estimated projection angle matches, they will share the same
class label. In order to decide whether the estimated angle and the original angle matches,
the angular grid needs to be divided into angular bins. If the estimated angle and the original
are in the same angular bin, they are said to be matching and will share the same class label,
otherwise, the target will be regarded as a false detection, and will not be classified since its
ground truth becomes vague. Figure 4.10 shows the angle estimation accuracy for varying
angular bin widths for 2 and 3-target cases of the real multi-target dataset. Accuracy here is
defined as the ratio of the number of correct angle estimations divided by the total number
of estimated targets in the dataset. It can be seen that the angle estimation accuracies for
the 3-target case is higher than the 2-target case, especially for lower angular bin widths.

One reason of this could be that the ground truth of the 3-target case spans a larger angular
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Table 4.4: Classification accuracy of the projected spectrograms for the real
multi-target dataset.

Angular o o ° o o o o
Bin Width 5 10 15 20° | 30° | 35° | 45

Accuracy (%) | 96.9 | 97.8 | 93.8 | 92.2 | 92.3 | 88.9 | 79

Table 4.5: Classification accuracy of the projected spectrograms for varying
number of MIMO channels.

Number of MIMO Channels 4 16 | 32 72 86
Accuracy (%) 46.8 | 82| 93.1 | 94.6 | 94.6

interval than 2-target case, hence it is more likely for an estimated angle to fall into detection
interval of a ground truth angle.

After obtaining the ground truth labels for the projected spectrograms, they are given
as input to the model trained with single activity dataset. Table 4.4 presents the prediction
accuracies of the projected spectrograms for the real multi-target dataset for varying angular
bin widths. It can be seen that the accuracy reaches its maximum with 97.8% at 10° which
is only 1% lower than the single target prediction task, although none of the real multi-target
dataset samples are used in the training stage. This shows the benefit of utilizing the
ASPS method in a multi-target scenario by decomposing the multi-target spectrograms into
individual spectrograms and enabling flexibility to treat them as single target spectrograms,
and classify them in that way. Finally, Table 4.5 presents the testing accuracy results for
different number of virtual channels in the MIMO array. It can be observed that the accuracy
improves with increasing number of MIMO channels since more number of channels yields
better separation of uD signatures and the projected spectrograms start to resemble more

to the single target samples.
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Figure 4.11: uD spectrograms of the projected ASL signs.

Projected on Projected on

Original (0°, 30°)

"Hello"

"Mountain"

4.5.2 Multi-view DNN for Multiple Targets in Close Proximity

American Sign Language Recognition

ASL recognition using radars has become an emerging research field, especially with the
development of small package, commercially available RF sensors. ASL signs are composed
of a mixture of various hand movement types (e.g., circular, straight, and back-and-forth).
While some signs are articulated with one hand, some are articulated using both hands.
Separation of return signals from left and right hands can be quite useful in order to retrieve
the individual characteristics of each hand’s motion. However, rapid change in the spatial
position of the hands and two hands being very close to each other introduce challenging
scenarios and classical representations such as RA domain cannot separate the right and left
hand as two separate targets.

In order to demonstrate the performance of the proposed ASPS approach, an ASL
dataset with 10 different signs (YOU, HELLO, WALK, DRINK, FRIEND, KNIFE, WELL, CAR,
ENGINEER, MOUNTAIN) are collected from 6 participants. Moreover, considering not all the
commercially available MIMO radars have antenna apertures as large as 86 channels, TI’s

AWRI1642BOOST single-chip radar with 2 TX and 4 RX channels is employed as the RF
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Figure 4.12: Proposed multi-view CNN model where W; denotes the shared weights at the
ith Jayer.
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Table 4.6: Classification accuracy (%) comparison results for the ASL
recognition task for varying projection angle intervals.

No Projection Angle Interval
Projection | ( to £30 | +30 to £60 | +60 to £90
93.3 96.9 93.9 93.3

sensor. A virtual array of 8 channels is formed using BPM scheme for MIMO processing.
ASL samples are then projected onto left and right angular intervals of (0° to +30°), (£30°
to £60°) and (£60° to +£90°). Figure 4.11 shows the original and projected samples for the
words HELLO and MOUNTAIN. In the first row, it can be seen that while projecting onto (0°,
30°) interval strengthens the power of first negative and second positive peaks, projecting
onto (-30°, 0°) strengthens the power of first positive and the last negative peaks. A similar
observation can be made for the word MOUNTAIN in the second row. Although ASPS method,
in this case, cannot completely separate uD signatures of left and right hands, the resulting
spectrograms can be used to enrich the feature space in the learning-based classification
algorithms.

For this 10-class ASL recognition problem, a multi-branch DNN model which takes left
and right projected spectrograms as inputs is proposed. The network has 2 input layers and
4 CNN blocks. Weights of two branches are shared across corresponding layers to reduce the

number of trainable parameters, hence better regularizing the model. Two branches are then
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merged in a concatenation layer and softmax is employed for classification. The proposed
network model is presented in Figure 4.12. The performance of this model is then compared
with the baseline model which is essentially the same network, but with a single branch that
takes the original spectrograms as inputs. Table 4.6 presents the classification results when
the projection is employed and not employed. It can be seen that while baseline model’s
mean accuracy is limited to 93.3%, the classification accuracy of the projected spectrograms
with the proposed network can go up to 96.9%. The reason projection performs better
for angular subspaces of [0, £30] might be because the articulating ASL signs mostly live
in this angular subspace. These results show that although the ASPS method has some
limitations for challenging scenarios such as separation of left and right hands signals, it can
still be employed to enrich the feature space in the model which yields a better recognition

performance.

Two People Performing Activities Side-by-Side

Similar to the ASL case, when the targets are very close to each other or side-by-side, it is
a challenging task to individually isolate and extract each target’s uD signal as depicted
in Figure 4.7. When the generated spectrograms from the ASPS method have major
uD components from multiple targets, it is not plausible to feed the resulting projected
spectrograms into a DNN model trained with only single target samples as their feature
spaces are different from the single target samples. Therefore, a similar approach can be
followed as in the ASL case, and the ASPS method can still be benefited in the cases when
there is a prior knowledge about the number of targets present in the scene.

In order to demonstrate an alternative use of the ASPS method for closely located
targets, a separate HAR dataset is acquired where two targets were performing the same or
different activities in the direct line of sight of the radar, very closely on the lateral axis and
side-by-side for the stationary activities like sitting down, standing up and picking up an

object. In total, 276 samples for 5 different activities are acquired including walking towards
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Table 4.7: Classification accuracy (%) comparison results for closely
located targets for varying projection angle intervals.

No Projection Angle Interval
Projection | 0 to 45 | 0 to 430 | £30 to +60 | 60 to £90
91.1 92.9 94.6 92.9 87.5

and away from the radar. The acquired samples are projected onto different pairs of left and
right angular intervals: (0° to £5°), (0° to £30°), (£30° to £60°) and (£60° to £90°). The
projected left and right samples are then used to train the multi-input CNN model presented
in Figure 4.12 by only modifying the number of nodes in the softmax layer according to the
number of classes. Performance of the multi-input CNN model with projected samples is
compared with the single branch model with no projection. Single branch model has the
same hyperparameters and the identical architecture to the one branch of the multi-branch
CNN model.

Table 4.7 presents the testing results for the single branch baseline model (i.e., no
projection) and the proposed multi-branch CNN with the projected spectrograms. It can
be seen that all the projected angular intervals except (£60° to £90°) outperform the the
baseline method with no projection. Obtaining lower performance for the (+£60° to +90°)
case is an expected result since all the activities were performed in the direct line of sight
of the radar, hence not much information is present in the higher angular intervals. On the
other hand, projection on (£0° to £30°) yields the highest performance with 94.6% which

is more than 3% performance gain when compared to the baseline method.

4.6 Discussion and Conclusions

This study proposes two techniques to address the challenge of multi-target recognition:
1) an angular subspace projection-based separation (ASPS) method to emphasize at the raw
signal-level the data of targets located at different aspect angles with respect to the radar;

and 2) a multi-view DNN, which takes as input spectrograms generated from the multiple
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RDC-w representations generated via ASPS. The approach was demonstrated for several
use cases: multi-person/robot motion recognition, HAR for closely spaced targets and sign
language recognition, where ASPS is used to generate RDC-w representations for the left and
right hands that are then used in a multi-view network for classification. The significance
of the new RDC-w representation is that the angle-depended boosting of target signatures
is accomplished at the level of the raw RDC, not after post-processing in images as is done
with current approaches. The RDC-w representation can thus be also used to develop DNNs
that directly operate on the raw RDC-w data or other 2D/3D radar data representations
than micro-Doppler, such as range-Doppler, range-Angle maps.

The case studies presented in this paper show that the proposed method is able to
generate individual RDCs for each target so that the newly generated RF data representations
from the projected RDCs can be treated as samples belonging to a single target in a
classification task. For a nine-class activity recognition scenario, the projected multi-target
RF data samples were classified with 97.8% accuracy by a CNN model which is trained solely
on single target samples, despite multiple targets being within the field of view. We also
characterize the effect of the number of MIMO channels on the performance of the projection
method in terms of different similarity metrics and classification accuracy. In the case of
close proximity between targets, we show that the multiple RDC-w representations can be
used in a multi-input DNN framework to boost classification performance.

In future work, we plan to further investigate the design of DNNs operating on the
raw RDC-w representations to enable real-time recognition applications, such as RF-enabled
cyber-physical human systems for explicit and implicit control of personal assistants and
autonomous vehicle in-cabin driver /passenger monitoring sub-systems. Future work will also
include multi-target activity classification under more challenging scenarios such as moving

clutter.
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CHAPTER 5

INTERACTIVE LEARNING OF NATURAL SIGN LANGUAGE

5.1 Introduction

An important challenge to the development of RF-sensing based human motion recognition
algorithms, and sign language processing technologies more broadly, is the lack of availability
of adequate datasets for model training. Not just the amount of data, but the quality of
data is critical. Sign language is comprised of not just physical spatio-temporal articulations,
but also non-manual markers (such as eyebrow, eye, cheek, and mouth postures, head and
body position) to convey linguistically and emotionally rich messages. Like all languages,
sign language is influenced by personal, regional, and cultural traits that can result unique
variations in expression, as well as linguistic properties influenced by grammar and prosidy
[124]. In prior work, we have shown that RF sensing data also captures these human and
linguistic qualities, including co-articulation [65] and degree of fluency [69]. In particular,
we showed that a support vector machine (SVM) could be trained on RF micro-Doppler
signatures to discriminate between fluent users of American Sign Language (ASL) and
imitation signers - hearing participants who strive to replicate ASL signs after watching and
practicing from videos of fluent signers. More significantly, we found that using imitation
data to train and validate machine learning (ML) algorithms, as done in some works [49, 116],
over-optimistically predicts the recognition accuracy of 20-signs by as much as 20% in
comparison with that obtained using data from fluent signers - the actual prospective users

of ASL recognition technologies.
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Given the great variety and complexity of the expression of sign language, existing ASL
datasets (for any sensing modality) lack adequate size and diversity to adequately train
models that can generalize to signers of all ethnicities, regions and accents. Traditional in-lab
data collection typically involves inviting participants to articulate ASL in a directed fashion
and in a controlled setting. However, this type of data collection has many disadvantages,
from both a sociological and technical perspective. In-lab data collection may attract
participants from only a certain demographic [17], unwittingly resulting in datasets that
contain inherent biases and that do not adequately represent certain groups of signers.
Moreover, the controlled settings of a lab result in pristine data, which may not be representative
of real-world environments or natural articulation. For example, in collecting directed
datasets, the signer may position the hands on the knees before repeating the directed sign,
subsequently returning the hands to the same position. This type of scripting precludes
capture of variations due to co-articulation - the variation in the spatio-temporal properties
of the sign due to the preceeding or proceeding word or activity. Moreover, it is just human
nature to behave differently when we know that we are recorded [127]. In daily settings,
when one is not explicitly focusing on what one is saying, the participant may behave and
sign differently. Circumstances may also dictate differences in signing with two hands versus
one, if the person is signing while holding a cup of coffee, for example.

Finally, directed dataset collection is simply not scalable. The costs in terms of time to
collect the data and money to compensate participants for their contributions are often too
prohibitive to collect massive amounts of data. This has driven efforts to develop alternative
means for acquiring sign language datasets. In 2021, Bragg, et al. [18] proposed using
crowdsourcing to record videos with specific content to facilitate automatic labeling and
perform quality control with experts to check for consistency. In another work, Bragg, et
al. [15] also conducted a user study to explore the data quality that could be obtained by
participants playing ASL Sea Battle, a variant of Battleship that uses ASL, and reported

favorable user experiences and reliable collection of videos for 20 ASL signs. However, this
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work utilized an approach similar to the "Wizard of Oz” [36] procedure. In particular, a
researcher was required to interact with the technology alongside participants. Moreover,
the quality of the data collected was only visually evaluated by experts - no investigation or
demonstration of the data’s utilization for model training or ASL recognition was conducted.
In contrast, this study proposes ChessSIGN!, an interactive chess game autonomously
controlled via video to collect natural ASL from both video and radar. To the best of our
knowledge, this paper is the first to explore the learning via interaction of radar micro-Doppler
signatures, considering both pre-deployment batch training and post-deployment model
updates. First, Section 5.2 describes the design of the ChessSIGN game, interface design,
model training, and real-time recognition accuracy. Next, Section 5.3 shows how directed
datasets are not effective even for model pre-training of DNNs to classify natural articulations.
Section 5.4 then describes several possible solutions to this challenge, including the use of
physics-aware generative adversarial networks (PhGANSs) for synthetic training data generation,
style transfer and domain adaptation networks for leveraging directed data for model training,
and post-deployment training strategies for improving recognition accuracy as an increasing
amount of data is acquired. Beyond ASL recognition, the results of this paper provide
insights into the real-world challenges in the development and deployment of effective ML
models for classification of human RF signatures, and show that post-deployment interaction
can be used to improve recognition of natural signing over time. Section 5.5 discusses key
conclusions and plans for future work, including the use of ChessSIGN as an interface for
evaluating real-time radar-based recognition algorithms and closed-loop sensing paradigms,

such as cognitive radar.

'We refrained from utilizing ASL in the name to reflect the broader applicability of the proposed approach
to all sign languages, not just ASL.
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5.2 Interactive ASL-Enabled Chess Game

Chess is a popular strategy game that as drawn great interest from people of all age
groups and backgrounds. It is well-suited for our proposed interactive data acquisition
approach because it is a slow-paced game, which gives users enough time to decide and
select their move. As such, it alleviates real-time processing constraints and allows enough
time for locally saving and transferring the data, signal processing, and model prediction.
Furthermore, chess is flexible enough to allow for the addition of other features for collecting
more complex signing sequences and collecting user feedback using a small pop-up window.
This can enable users to effectively self-annotate their data, minimizing subsequent quality
control efforts.

When the data collection procedure is transformed into a gaming environment, several
concerns emerge that do not exist in controlled experiments, such as designing the game in an
enjoyable manner and ensuring that any overhead for self-annotation is not overwhelming or
so intrusive that users get bored or frustrated with the interface. Additionally, it is important
to minimize computational overhead due to data processing so as to avoid introducing delays
in the game, which can then degrade a user’s playing experience. Finally, predictions made
by the game control model should be accurate enough so that users do not have to often
undo their move, or feel like they are doing something wrong or are not skilled enough to
play the game.

The proposed interactive ASL-enabled chess game is designed to acquire data from both
an RGB camera and an FMCW radar simultaneously. In our initial pilot version, the game
itself is controlled using predictions made using video data only. To minimize potential user
frustration due to misclassifications, we took advantage of a publicly available video-based

ASL dataset to train our initial game control model, as described in the next section.
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WATER YES BOOK SLEEP CAR HELLO

HOME READ TIME BETTER | DRINK | TOMORROW
SEE HOT BED WHY WHERE LIKE
PLEASE | HAVE | MORNING FINE GO NIGHT

CAN TABLE THERE FINISH HATE -

Table 5.1: ASL signs utilized in the chess game.

5.2.1 Video Dataset

We used Google’s Tsolated Sign Language Recognition (GISLR) dataset [31] to train our
initial video-based control model. This dataset contains 250 of the first concepts/vocabulary
based signs that are taught to infants in any language. Around 100k videos (~400 samples
per class) of isolated signs are articulated by 21 Deaf participants fluent in ASL. The corpus
itself is a collection of hand and facial landmarks generated by MediaPipe Holistic pipeline. It
integrates separate models for pose, face and hand components, each of which are optimized
for their particular domain. This dataset is mainly used in the PopSign mobile game? to
improve the ability of the game to help relatives of Deaf/Hard-of-Hearing(HoH) children
learn basic signs and communicate better with their loved ones. In this work, a subset of 29
signs - the maximum number of different positions the most mobile piece, the Queen, can
move - from the GISLR dataset is utilized to control the movement of game pieces.

Command sign selection was done based on the basis of several factors, including the
selection of signs that were unique in their articulation (e.g. not signs that had many
variants based on regional dialects), were more kinetic in nature (did not rely exclusively
on shape for distinction), and which were one of the 100 signs acquired in prior studies
[138] conducted with directed data collection using radar. This enabled comparison of our
proposed interactive approach with conventional directed data and study of its implications
for ML model training and recognition of natural ASL - the core contribution of this paper.

A list of signs utilized is given in Table 5.1.
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Figure 5.1: Screenshots of the ASL-enabled chess game.
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5.2.2 Chess Interface Design and Game Play

The graphical user interface (GUI) of the game is comprised of a central region showing
the chess board itself, captioned with an banner at the top to provide information and
instructions to the user. The game begins by the user selecting the piece they wish to move
by hovering over the piece with a mouse and clicking. This triggers the GUI to reveal to
the user all of the possible moves for the selected piece by highlighting those squares on
the chess board and displaying text for the English word that has the closest conceptual
correspondence an ASL sign, randomly selected from among the 29 command signs. Note
that there is no guarantee that the user will respond by articulating exactly the same sign as
recorded in the training data, due to regional and cultural variations of ASL. In our initial
selection of command signs, we aimed to select signs that had unique articulations and no
significantly different variants. A screenshot showing the textual prompts for moving a chess
piece using ASL is illustrated in Figure 5.1a.

Once the user decides to which position they want to move the piece, the user clicks

the green "CLICK HERE” botton on the top right corner of the screen to trigger the data

2https://www.popsign.org/
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recording of both the camera and radar sensors. A pop-up appears on the center of the
screen and counts down from 3 to 1, after which the word ”GQO” is displayed to indicate to
the user when to begin signing. Both sensors record the users signing for 3 seconds, after
which the camera data is processed and input to the video-based model, described in Section
5.2.3, to recognize the user’s articulation.

The prediction made is displayed to the user and the chess engine makes the move
accordingly. An "UNDQO?” button is then displayed on the top right corner of the screen, as
shown in Figure 5.1b. If the prediction is correct, the user selects another piece and continues
to play. Otherwise, the user can click on the "UNDQO” button to reverse the move. When
a move is undone, the last move is reversed (i.e., the game goes back to the previous board
state before the prediction), and it opens-up a small GUI to allow user to select the actual
word they signed from a drop-down menu, as shown in Figure 5.1c¢, and enables correct
labeling of the recorded signs as ground truth. The game history, along with a record of
the incorrectly predicted samples, is logged into a file to allow further offline analysis of the
data. The recorded data samples are transferred to a local hard drive and backed-up to a
cloud platform automatically after each recording for storage safety purposes.

The interactive ASL-enabled chess game essentially inherits all the features and preserves
the rules of a regular chess game. The main difference from a regular chess game comes from
the way it is being played from a user point of view. Instead of clicking on the position users
want to move their piece on, they use ASL signs to give the move command to the game.
The game, on the other hand, operates sensors, collects user’s data and runs the prediction
model and the chess engine in the backend. Such operating capability eliminates the need
for an operator during the game play and the data collection process and the need for an

annotator to label the acquired dataset.
5.2.3 Video Prediction Model

The GISLR dataset was first introduced in an online hackathon organized by Google

on Kaggle. The first place was achieved with a network composed of a 1D-CNN and
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a Transformer subnetworks by Hoyeol Sohn [157]. Combining CNNs with Transformers
is a prevalent idea applied in different networks such as CoAtNet [37], Conformer [62],
MaxViT [168] and Next-ViT [111]. In the proposed solution, the Transformer is applied
with batch normalization and Swish activation function instead of typical layer normalization
and Gaussian Error Linear Unit (GELU) activation since the former yielded slightly lower
inference time with the same accuracy than the latter one. The proposed model has around
1.85M trainable parameters. Handling variable-length input was achieved with padding
and truncation. This approach provided sufficient inference speed and enabled the use of
reasonably large models. In this work, we modified the network for 29 output classes and
re-trained the model.

The final model consists of 12 convolutional and 4 Transformer blocks stacked in 341
fashion for four times. After global average pooling (GAP) for flattening, a multi-layer
perceptron (MLP) with Softmax activation function is applied for classification. Drop-path
[108] - a high rate of dropout (p=0.8) - and Adversarial Weight Perturbation (AWP) [179]
is applied for regularization. These methods were very crucial to prevent overfitting when
training for long epochs (> 300), and removing any one of them resulted in significant
performance drops. To improve generalization, temporal and spatial augmentation techniques
were applied to the training data, such as random re-sampling (0.5x - 1.5x the original
length), random masking, horizontal flip of the skeleton, random affine transformations

(scale, shift, rotate and shear) and random cutout.
5.2.4 ASL Datasets Acquired

Both directed and interactive data was acquired during this study. Directed data is
acquired via a controlled experiment in which the users is specifically directed to articulate a
particular sign. Interactive data is acquired via the proposed ASL-enabled chess game, and
the data is acquired in free form during game play with limited instructions and no external
intervention. IRB approval was obtained prior to the study, and data was collected with

informed consent from each participant.
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Figure 5.2: Dataset acquisition environments.

. ]
— — {
P é-
—
’\:".;_ ,,g, +RF Sensor

I

(a) Directed RF Dataset Acquisition. (b) Natural ~ Multi-Modal ~ Dataset
Acquisition.

Directed RF ASL Data

This initial dataset is acquired under controlled experimental settings in a laboratory environment.
The RF sensor was placed around 1.5m away from the participants and 0.91m elevated
from the ground. Participants were seated on a chair directly facing towards a monitor
that was placed behind the RF sensor. The monitor is used to prompt the words to be
articulated. This ensures the dialectal consistency across participants by displaying a specific
articulation of each sign. The experimental setup for the directed RF ASL dataset acquisition

is demonstrated in Figure 5.2a. Since there exists different ways of articulating a sign, the
signing videos were also displayed to the participants in order to have a consistent way of
signing a word across participants.

Data was acquired in 2022 from 19 participants at Gallaudet University, the only university
in the U.S. for Deaf/HoH students where ASL is used as the primary language of instruction,
and 4 participants at the Lab for Computational Intelligence in Radar (CI4R) at the University
of Alabama. Of these participants, twenty-one were Deaf, while two were Child-of-Deaf
Adults (CODASs) fluent in ASL. All experiments were conducted using the same RF settings
and operators. A total of 110 signs were acquired, based on selection from the ASL-Lex

Database [23] including nouns, verbs and adjectives based on their usage frequency and
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kinematic variance. A total of 4,455 samples were acquired for 110 signs which corresponds

to around 40 samples per class.

Interactive Multi-Modal ASL Dataset Acquired

This dataset is acquired during the course of interactive ASL-enabled chess game play. An
integrated RGB camera is used for recording the videos, while an RF sensor (the same
sensor as used in the directed ASL dataset) was placed in front of a laptop that runs the
game as shown in Figure 5.2b. This data was acquired in 2023 from 23 Deaf participants
at Gallaudet University. Note that the people who participated in the 2022 Directed ASL
data collection are not the same individuals as those who played ChessSIGN to provide
interactively-acquired data. To assess the difference between the directed and the natural
signing, 29 common words between the directed dataset and the GISLR are selected as listed
in Table 5.1. The dataset is acquired in a synchronized, multi-modal fashion and in total
1,078 samples were collected for 29 signs (~37 samples per class). Since the chess game is a
slow-paced game, total number of samples acquired during the experiment is relatively lower
when compared to the directed case. However, number of samples per class is comparable

to that of the directed case.

5.3 Directed versus Natural ASL Data

In this section, we examine the differences between RF ASL signatures acquired through
natural interactions versus that of the conventional, directed (controlled) experimental approach.
In particular, we first show qualitatively through observation of the RF signatures, the
various ways in which directed experiments fail to capture the nuances of natural signing.
Then, we show the detrimental impact of using directed ASL data in model training for sign

language recognition.

110



Figure 5.3: uD signatures of directed and natural ASL samples for the signs HOT (left), LIKE
(center) and PLEASE (right).
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5.3.1 Comparison of D Signatures

Consider the pairs of directed versus natural uD signatures shown in Figure 5.3 for the
signs HOT, LIKE, and PLEASE. For the same sign, the natural signature exhibit significantly
greater variance. These variations are not just slight variations in the spatio-temporal
artifacts of the signature, but can be significant differences in the shape, speed (uD bandwidth),
number and bandwidth of repetitive features and strength of the signatures.

For example, based on viewing video recordings of the articulation corresponding to the
uD signatures, it may be observed that for the word HOT, the signer articulating the word
in a natural, interactive setting repeats the sign two times, hence two positive peaks can
be observed in the puD signature while there is only one repetition and one positive peak
in the directed samples. For the word LIKE, in an unconstrained, interactive setting, the
signer shakes her hand after finishing the sign. This causes some jittering effect at the lower
frequencies of the uD spectrogram. For the word PLEASE, the signer moves her hand towards
her chest in two steps instead of one which causes two consecutive negative peaks in the uD
spectrogram. Also, the negative and the positive peaks at the beginning and at the ending
of the sign when the arms are being moved towards and away from the chest are not as sharp

as in the directed case.
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Figure 5.4: Maximum and minimum velocity distributions of directed and natural ASL
signing.
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Table 5.2: Statistical comparison of speed in directed and natural.

Data | Avg. Max. | Var. of Max. | Avg. Min. | Var. of Min.
Type Velocity Velocity Velocity Velocity
Directed | 2.58 m/s 1.06 (m/s)? -2.46 m/s 0.89 (m/s)*
Natural 2.61 m/s 1.59 (m/s)? -2.28 m/s 1.03 (m/s)?

5.3.2 Comparison of Velocity and Feature Distribution

Figure 5.4 shows maximum and minimum velocity distributions of directed and natural
ASL signing. From the histograms, it can be observed that although directed and natural
samples have close mean maximum and minimum velocity values, variance of natural samples
are much larger as the histograms bins are more evenly distributed. Table 5.2 summarizes
the average and variance values of maximum and minimum velocities of directed and natural

ASL samples. It can be seen that while the variance of maximum velocity of the directed
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Figure 5.5: Data distribution difference exploration of directed and natural ASL samples via
dimension reduction techniques.
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samples are 1.06 (m/s)?, it is 1.59 (m/s)? for the natural signing samples. Similarly, for the
variance of minimum velocity, while it is 0.89 (m/s)? for directed samples, it is 1.03 (m/s)?
for the natural case. This quantifies the statistical difference between the two datasets.
The impact on the statistical distribution of features can be visualized by utilizing the
principal component analysis (PCA) [5] and t-SNE [171] dimension reduction techniques.
Figure 5.5a and 5.5b present the 2-dimensional PCA and t-SNE maps for directed and
natural ASL samples. From these visualizations, it may be observed that the directed ASL
samples exhibit - as expected - some overlap with the natural signing samples. However,
there are significant regions overwhich the two distributions do not overlap, indicating that

for many samples, the directed data is not representative of natural signing.

5.3.3 Impact on Model Training

The significance of the difference between the distributions is underscored when its impact
on model training is examined. In particular, the distributions of direct data signatures

versus natural signing is so significant that models trained with data collected in a directed
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fashion are entirely unable to recognize natural signing at all - a result seen not just with
radar data, but with video data as well.

First, it should be noted that there are actually two different ways of evaluating model
performance: computation of the ”"in-game accuracy” and evaluation of 29-sign model accuracy
once the game has concluded based on recorded data. Although the complete model is
trained for 29 signs, during a game, the selected piece will only be able to move to a much
lower number of possible positions. This reduces the classification problem to one of just
recognizing the signs for the possible positions. For example, a Pawn can move one square
forward if unobstructed (or two on the first move), or one square diagonally forward when
making a capture. This results in three possible positions. Or a completely unobstructed
Knight may only move to eight different positions. In contrast, once the game is completed,
all the data acquired for all 29 command signs can be utilized as test data for the model,
resulting in a true assessment of the ability of the interactive data to train a 29-class model.
Due to the few number of classes encountered during the game, the in-game accuracy of a

model is typically higher than that of the true 29-class accuracy.

Video-Based Model Accuracy

When the video-based model is trained and tested with directed data from the GISLR
dataset, an accuracy of 92.3% was obtained for the 29 signs selected to control the movement
of chess pieces during the game. However, during the actual chess game, this model performed
significantly worse, achieving a 76.62% in-game classification accuracy. The confusion matrix
for in-game predictions are shown in Figure 5.6. A number of words appear to be consistently
confused over 10% of the time: HOT with FINISH, FINE and HELLO with GO, and BETTER
with HAVE. All of these signs are more kinetic in nature, which may be one reason for
higher misclassification by video: video tends to be more effective in characterizing spatial
variance, rather than temporal variance (a weakness remedied by radar, which is effective in

recognizing signing dynamics - not shapes).
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Figure 5.6: Confusion matrix of the video-based prediction model with in-game restrictions.
(All the values are in terms of percentages.)
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If we evaluate the efficacy of the GISLR-trained model to classify 29 signs outside the
constraints of the game, however, a natural signing classification accuracy of just 48.24%
is attained. This result demonstrates the inherent limitations of existing sign language
video databases, which utilize directed data collection and hence cannot capture the natural

features of sign language, which emerge in the interactive game environment.

Radar-Based Model Accuracy

A similar effect is observed in radar data as well. First, let us consider the baseline training
scenario of training the RF model with directed data, but also testing the model on directed
data. The directed RF dataset used in this work has significantly lower number of samples
per class when compared to the GISLR video dataset (i.e., 40 vs 400 samples per class).
With only real data itself used during training, a classification accuracy of 68.9% is obtained

using a 4-layer CNN comparised of 2D convolutional blocks followed by max-pooling layers
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and two fully connected layers for classification. The Adam optimizer and cross-entropy loss
function are used in the training phase.

This performance can be boosted, however, through the use of synthetic data generation
to increase the size of the training sample support. In prior work, physics-aware generative
adversarial network (PhGAN) [137] was shown to be effective in improving the classification
accuracy of both sign language and, more broadly, human activity datasets. The PhGAN
model improves the kinematic fidelity of synthetically generated RF signatures by adding
another branch to the discriminator that takes as input not just the puD signature, but
its envelope as well. The envelope represents the maximum velocity incurred during the
articulation of a certain movement and as such represents an important physical bound
on the resulting signatures. Moreover, a physics-based loss was also added into the cost
function of the network to quantify how effectively the envelopes of the synthetic versus real
signatures matched. The utilization of these two innovations was shown to result in the
fewest kinematic errors as comparison to alternative GAN [57] architectures. In this work,
a dual-branch PhGAN network was utilized to generate an additional 500 synthetic samples
per class for the directed RF dataset. When trained using PhGAN-synthesized signatures,
the same 4-layer CNN yielded 100% recognition accuracy on directed radar-based ASL data.

Inasmuch as this is a great result when training and testing on directed ASL data,
this model completely fails to recognize any natural ASL samples: only a 9.56% accuracy
is obtained when testing on the natural ASL samples acquired via the interactive chess
game. This result is substantially worse than that obtained from video, which exhibited a
44% performance drop. Here, the radar-based model exhibits a 90% drop in performance!
One possible reason for radar being more effected could be that one of the major ways in
which directed ASL data differs from that of natural ASL is that the kinematics - temporal
progression and revelation of co-articulation - is much different even though the spatial

component of the signal is still similar. As radar is much more sensitive than video to
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Table 5.3: Performance comparison of different training methods and datasets.
(Note that no natural signing data are used in the training phase of Exp. 5).

Exp. Training  Testing Modality Model Acc.

ID Data Data %
1 GISLR GISLR  Video  ID-CNN 4+ g9 3
Transformer
Natural : 1D-CNN +
2 GISLR ASL Video Transformer 48.2
Directed Directed 2D-CNN +
3 ASL ASL RE mLp 089
PhGAN(Dir.  pjrected 2D-CNN +
4 ASL) ASL RE MLP 100
PhGAN(DlI“ Natural RF 2D—CNN + 9 6
ASL) ASL MLP '

kinematics rather than hand shape or spatial variables, its performance is more negatively

effected.

5.4 Interactive Learning of Natural ASL

The results of the prior section clearly show the challenge of recognizing natural ASL
and validate the necessity of the proposed interactive ASL-enabled chess game for capturing
and learning from natural ASL. But the question then remains of how to best train an RF
system prior to deployment so that the prediction accuracy improves as we get an increasing

amount of natural ASL data: interactive learning in-situ.
5.4.1 Fine-Tuning Model Pre-Trained with Directed ASL

The results given in Table 5.3 do not utilize any natural signing data during the training
phase. However, after the ChessSIGN game is deployed, we will be acquiring an increasing
number of natural ASL samples that can then be leveraged to fine-tune models initially
trained using 1) real RF samples acquired in a directed fashion, or 2) synthetic RF samples
generated from directed ASL data. Synthetic RF data generation using GANs has been
shown to be an effective method for increasing the sample support during model training,

especially when the availability of real data is limited.
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Figure 5.7: Accuracy of 4-layer CNN pre-trained with Directed and PhGAN-Directed ASL
data, and fine-tuned with natural ASL data.
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Figure 5.7 shows how utilizing varying amounts of natural signing data for fine-tuning the
model improves prediction accuracy. Note that the 4-layer CNN has the identical architecture
and hyperparameters as used in Exp. 4 in Table 5.3. It should be noted that while the use of
PhGAN-synthesized samples for training offered tremendous performance gains when testing
on directed ASL data (accuracy increases from 68.9% to 100%), when testing on natural ASL
data, as shown in Figure 5.7, increasing the amount of training data using PhGAN synthesis
does not offer an performance benefits. This is because there is a fundamental difference in
the distributions of directed versus natural ASL data, and GAN-based synthesis does not
bridge this gap - it only generates more samples from the same distribution. As directed ASL
does not accurate capture the articulation of signs that occurs during natural signing, the
fundamental differences in kinematics severely limits the efficacy of directed data to inform
model training of networks intended for classification of natural ASL.

Ultimately, while fine-tuning with natural ASL samples collected in-situ increases the
testing accuracy, this increase is not sufficient to train a viable model as accuracy remains

under 20%.
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Figure 5.8: Accuracy of VGG-16 pre-trained with Directed/PhGAN-Directed data only
versus initialization with ImageNet.
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5.4.2 Fine-Tuning Model Pre-Trained with ImageNet

One potential way to improve the efficacy of pre-training with RF datasets is to initialize
the network with optical imagery from a large database, such as ImageNet [40], a database of
1.5 million RGB images. While such pre-trained network is not initially going to be familiar
with the spatial features of the RF data except certain primitive image features such as
edges and corners, directed dataset can be utilized to introduce the spatial features of RF
data to the network. In this section, we examine the impact of using a two-step pre-training
process for the 16-layer CNN architecture of VGG-16 [155] by 1) utilize the stored VGG-16
weights obtained from training with ImageNet, and 2) training VGG-16 again using Directed
or PhGAN-synthesized Directed ASL data.

Figure 5.8 shows the resulting accuracy as we fine-tune the network with increasing
amounts of natural ASL samples. First, it may be observed that using Directed or PhGAN-Directed
samples for training VGG-16 results in the worst performance - baseline results consistent
with that seen in Figure 5.7. If we utilize the two-step training process with ImageNet-based

initialization, we can see a significant performance improvement by as much as 25% when
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25 samples per class natural ASL is used in fine-tuning. The best performance is attained
when both ImageNet weights and training with Directed ASL samples are used. However,
notice that this is only slightly better than the result obtained if would have just fine-tuned
from ImageNet only initialization. Using a second round of training with Directed ASL
offers greater initial performance when fewer samples of natural ASL are used in fine tuning;
however, once we have at least 25 samples per class natural ASL, utilizing a second round
of training with Directed ASL does not offer much benefit.

This result is significant because essentially it is showing that when an interactive learning

paradigm is utilized, we are better off just initializing with ImageNet, and learning as we go.
5.4.3 Domain Adaptation of Directed to Natural ASL

Rahman et al. [138] showed how the degree of fluency of the ASL user effected classification
accuracy. For example, an often encountered practice is the use of hearing participants to
imitate actual sign language based on videos showing ASL articulations - also known as
“imitation signing”. It is shown that discrepancies in the fluency level of signers in training
and test data resulted in significantly degraded classification accuracy, but that domain
adaptation techniques could be use to bridge the gap.

In this study, we consider the efficacy of utilizing domain adaptation techniques to bridge
the gap between the distributions of directed versus natural ASL data. In particular, rather
than directly using the natural ASL samples for fine-tuning, we consider two alternative ways
of exploiting the interactively acquired natural ASL samples: 1) utilization for training a
PhGAN to general additional synthetic samples from the distribution of natural ASL, and 2)
utilization for training a domain adaptation network to learn the mapping from the directed
data distribution to the natural ASL distribution. In particular, we consider two domain
adaptation networks: CycleGAN [191] and Pix2Pix [88] (abbreviated as P2P in this study).

CycleGAN is a network that aims to learn a mapping from directed (D) to the natural
(N) ASL domain, G : D—N such that the distribution of uD spectrograms from G(D) is

indistinguishable from the distribution N using an adversarial loss. This mapping is coupled

120



Figure 5.9: Upper and lower envelope extraction.
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with an inverse mapping F' : N—D, and a cycle consistency loss is introduced to push
F(G(D)) ~ D (and vice versa). One advantage of CycleGAN is that it can generate more
synthetic samples than the number of images provided during training.

Pix2Pix, on the other hand, is an image-to-image translation method that utilizes conditional
adversarial networks. In addition to learning the mapping from input image to output image,
this network also learns a loss function to train this mapping. This enables Pix2Pix to apply a
consistent process across all datasets without having to explicitly modify the loss function for
each case. However, Pix2Pix requires matching input-output image pairs during its training
process. This is in contrast to CycleGAN, which can be trained on unpaired samples drawn
from each distribution. Because the amount of real data available is limited, we use PhGAN
to generate a greater number of synthetic-Directed and synthetic-Natural samples. We then
create input-output pairs by matching samples from the same class to train Pix2Pix.

To improve the kinematic fidelity of the synthetic data generated by the two networks,
in addition to vanilla CycleGAN and Pix2Pix networks, modified versions that utilizes
a physics-based loss term based on consistency of the upper and lower envelopes is also
developed. The modified versions, CycleGAN-Env and Pix2Pix-Env, extract the upper and
lower envelopes of the uD signatures using the percentile method [44]. Figure 5.9 shows

the results of the envelope extraction for a sample uD signature. The mean-squared error
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Figure 5.10: uD signatures of the PhGAN-generated directed and natural samples, and
benchmarking of transformed samples generated by CycleGAN, CycleGAN-Env, Pix2Pix
and Pix2Pix-Env models.
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(MSE) between the envelopes of the generated and target signatures is computed as the

physics-aware loss. Thus, the total loss of the generator, Lgan, is computed as

Laan(G, Dy, D, N) = E,[log(Dy(n))] + Eqllog(1 — Dy (G(A))] + Mo, (5.1)

where G is the generator, Dy is the discriminator for natural domain, A is the weighting
factor and L,y is the MSE between generated and target envelopes. While the first two terms
represent the discriminator and the generator losses, respectively, the last term computes
the error rate between generated and target envelopes. \ is empirically selected to be 0.001
to balance multiple loss terms in Equation 5.1.

Figure 5.10 shows examples for visual comparison of PhGAN-generated directed and
natural uD signatures, and the transformed samples generated by Cycle-GAN, CycleGAN-Env,
Pix2Pix and Pix2Pix-Env methods. It may be observed that while initial and final peaks
are well represented by both CycleGAN and CycleGAN-Env, peaks in the center of the
signature are not replicated effectively by the vanilla CycleGAN model. The signal power
of the CycleGAN-Env sample is also noticeably higher than that of CycleGAN. A similar
phenomenon can be observed in the Pix2Pix model. While the vanilla model is performing
very poorly and incapable of reconstructing the peaks in the uD signatures, Pix2Pix-Env
can replicate periodic peaks with high signal power. However, much of the detail of the

signature is lost in the synthetic Pix2Pix-Env samples. While our goal does not necessarily
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Figure 5.11: Accuracy of 4-layer CNN fine-tuned with synthetic samples generated from
natural ASL or adapted from directed ASL data.
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require perfect emulation of natural ASL signatures, we did observe that this loss of detail
does degrade the ability of Pix2Pix-Env samples to adequately train classifiers of natural

signing, as discussed more in the next section.
5.4.4 Fine-Tuning Model with Synthetic Natural ASL

Synthetic data generated from a small amount of natural ASL or adapted from directed
ASL data can be used to augment and improve the training of networks for recognition of
natural ASL. Figure 5.11 shows the improvement of the classification accuracy of a 4-layer
CNN when incrementally fine-tuned with 500 synthetic samples per class that are generated
from 25 natural ASL samples/class (70% of data). Note that 30% of the natural signing
data is always preserved for testing.

It may be observed that the best performance is attained when a PhGAN is used to
synthesize additional samples from the natural ASL data itself, irrespective of the amount
of natural ASL samples available for training. The domain adaptation method that yields

the most comparable results - when a larger amount of natural ASL data is available - is
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Table 5.4: Final classification results of VGG-16 for RF data of natural ASL.

Method | PhGAN CycleGAN YICGAN pop pop gy
with Env.
Acc. (%) | 69.14 62.04 62.35  61.73  60.49

Pix2Pix. However, with only a small about of natural ASL data, CycleGAN-Env provides
the best results.

As more data are acquired, all models begin to level off at about 58% accuracy. We believe
this is because all 25 samples/class is used to train the PhGAN model that synthesizes the
augmented directed and natural ASL data required to train the domain adaptation methods.
If even more natural ASL data were acquired interactively, the sample support for the domain
adaptation step would also be increased, and consequently increase the fidelity of synthesized
samples.

Nevertheless, an important benefit of synthetic data generation, however, is that also a
deeper network can be trained to further improve classification accuracy. For each of the
different synthesis approaches - PhGAN synthesis from natural ASL, CycleGAN/CycleGAN-Env/Pix2Pix/]
adaptation from directed ASL - the VGG-16 model is trained and used to compute the final
achieved classification accuracy for the interactively-acquired, natural ASL dataset. Table
5.4 presents the accuracy achieved 70% of the training data (25 samples/class) are used to
train the network. It may be observed that utilizing PhGAN to synthesize samples from
natural ASL itself provides the best accuracy of 69.1%, while CycleGAN and Pix2Pix-based
methods yield between 60-62% accuracy. In general, utilizing training data synthesized via
domain adaptation from directed ASL underperformed that of simply synthesizing from
natural ASL itself.

Thus, even in combination with domain adaptation, the utilization of directed ASL
samples in the training process does not offer tangible benefits that would render worthwhile

the time, cost and effort involved with the acquisition of directed ASL data, even if from
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Figure 5.12: uD signatures of different participants for the sign FINISH.

Person - 1 Person - 2

participants who are Deaf and fluent in ASL. In all cases, we achieve better results by simply

learning interactively and in-situ from natural signing only.
5.4.5 Generalization Across Participants

It is critical for user interfaces to be effective regardless of the user or study participant.
This is especially significant for interfaces reliant on sign language recognition as different
participants may articulate ASL differently based on regional and cultural differences. For
example, consider the variation in sign articulation for four different participants, illustrated
in Figure 5.12 for the puD signatures of the sign FINISH. While significant differences in peak
velocities may be observed by comparing Person 1 and 2’s samples, the Person 3’s second
positive stroke (i.e., arm motion) is faster than the initial positive stroke; however, this
situation is reverse for Person 1, whose second positive peak is much wider - indicating a
longer duration motion with less acceleration - than that of Person 3. Person 4, on the other
hand, has the longest sign articulation duration by spanning over 2.5 s interval with higher
positive and negative peaks, which indicates greater peak speed.

Due to the individualized differences in articulation across participants, in this section,
we evaluate the robustness of the proposed system across different group of participants
using the leave-one-group-out (LOGO) method: the data of certain group of participants are

used for training the model while the remaining participants’ data are used for testing only.

125



Figure 5.13: Recognition performance of different participant groups when
leaving-one-group-out for testing.

61.6%

W H~ a1 [N
e} e} (e} (e}
1 1 1 1

Accuracy (%)

N
(@]

10 1

Group 1 Group 2 Group 3

LOGO cross-validation is repeated for three participant groups, where in each repetition, the
data of randomly selected seven participants used for testing and the remaining data of 16
participants are used for training the recognition model. Figure 5.13 presents the recognition
performance across different participant groups. It may be observed that the random
selection of different participants does result, as expected, in a variation of performance
based on the participants, but this variation is only +/- 2.45%. However, the average LOGO
cross-validation accuracy is about 10% lower than data for all participants are utilized in
training. As data from more and more participants is acquired, we expect this discrepancy to
become increasingly smaller. This result corroborates the conventional wisdom that building
a very diverse dataset for training effective models is crucial to the performance of real-world

systems.
5.4.6 Discussion

Our results show that there is a significant difference in the RF and video recordings

of sign articulations that are acquired under a controlled setting (a.k.a. directed data
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collection format) versus the natural articulations acquired via the proposed interactive
gaming environment. While conventional wisdom may lead us to believe that despite these
differences there is still value in acquiring directed ASL data for model pre-training, in fact
our results show that this is not the case. Pre-training with ImageNet and Directed ASL
yields the best performance irrespective of the amount of natural ASL acquired. However,
once 25 samples/class of natural ASL is available, there is no significant difference between
pre-training on ImageNet only, versus pre-training on ImageNet and Directed ASL.

It is important to note that video data also exhibits significant performance degradation
due to the difference between directed and natural ASL articulations. Fine-tuning the
video-based GISLR model with 70% of our acquired natural ASL data improves the prediction
accuracy from 48.2% to 88.1%. Note that direct comparison of this result with the radar-based
accuracy of 69% achieved via our proposed approach is not a fair comparison of the sensor
modalities, as the GISLR model is pre-trained with an enormous amount of ASL data
acquired by Google. However, both modalities exhibit massive performance gains when
data acquired via the interactive ChessSIGN is utilized to fine-tune models for recognition of
natural ASL. We do not view either the 88% video-based accuracy or the 69% radar-based
accuracy as the ultimate achievable classification performance for the 29 ASL signs considered
in this work as these accuracies will further increase as the interactive ChessSIGN game is
continually played and the increasing amount of data is used to further improve model
training.

In fact, the proposed interactive game ChessSIGN can be used to expand the dictionary
to as many words as desired, since the words used for moving pieces during gameplay are

randomly selected among a list of words.

5.5 Conclusion

This work proposes an interactive gaming environment, ChessSIGN, as a new way of

acquiring video and radar recordings of natural sign language acquired in an unconstrained,
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real-world setting. We show that the conventional way of collecting human RF signatures
via directed experiments results in data that does not reflect how sign language is typically
articulated in natural settings. The differences in movement result in a shift in distribution if
directed data is used to train models for classification of natural ASL. This difference can be
observed in both video-based models as well as radar-based models, which are more severely
impacted due to its exclusive reliance on kinematic features, rather than spatial features, for
ASL recognition.

In particular, radar-based ASL recognition performance for a 29-sign dataset is shown
to drop from 100% to just 9% when natural ASL is used as test data rather than directed
data. Several possible ways to exploit directed data for data synthesis via generative learning
and domain adaptation are explored, but we show that such methods cannot overcome the
differences in sign articulation due to participants being directed on when/what to articulate.
Ultimately, our work shows that network initialization using transfer learning from ImageNet
is sufficient to enable learning via interaction with the ChessSIGN game. As an increased
amount of natural ASL data are acquired, we show the performance gains of augmenting
natural ASL data using a physics-aware generative adversarial network (PhGAN). Fine
tuning of the RF model with PhGAN-augmented natural samples yields promising results
even when a small amount of data (around 25 samples per class) are acquired. In this way,
we achieve a classification accuracy of 69% for a 29-sign natural ASL dataset acquired using
the ChessSIGN game.

In future work, we aim to expand the concept of gaming-enabled interaction to the
domain of embodiment games coupled with virtual reality to naturally engage participants
in a wider range of natural movements and daily activities. We believe that the proposed
interactive gaming approach can evolve into a valuable interface for evaluating real-time
radar-based recognition algorithms. Moreover, as the software-defined radar systems, such

as that used in ChessSIGN, can be controlled via command-line, the proposed interactive
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learning framework can contribute to the testing and evaluation (T&E) of closed-loop sensing

paradigms, such as cognitive radar.
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CHAPTER 6

HUMAN-AWARE FULLY-ADAPTIVE RF SENSING

6.1 Introduction

Selection of RF waveform parameters play a crucial role in the quality and the characteristics
of the received signal. As discussed in Section 2.2.2, selection of certain parameters affect
range, velocity and angle resolution, unambiguous velocity and range, frame rate and other
metrics. These parameters are often optimized and selected based on the end-application’s
needs. For instance, while front-looking automotive radars require higher maximum ranges
(e.g., > 150 m) without needing fine range resolution (e.g., < 30 cm), human activity and sign
language recognition applications typically require much less maximum range (< 10 m) but
with a finer range resolution (< 5 ¢cm). Therefore, a special attention should be paid while
adjusting the RF waveform parameters as the data cannot be recovered or enhanced after
the data acquisition if there are certain errors or sub-optimal selections in the parameters.

Most of the RF-based sign language recognition studies select a certain set of fixed
parameters and acquire all the data with the same parameter set (i.e., parameter profile).
This is a viable option for developing an end-to-end functional system. However, it requires
radar to be continuously operational in high data rate mode while occupying all the RF-related
and computational resources (e.g., bandwidth, random access memory (RAM), data storage
memory, GPUs etc.) even if there is no informative or communicative action occurring in
the radar FoV. Constantly allocating a large bandwidth can raise interference problems

in the presence of other RF sensors. Time-scheduled allocation of it can enable more
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spectrum-efficient solutions. RAM is often utilized by other computational modules of the
system as well and unnecessary occupation of it can cause processing delays or out-of-memory
issues for certain applications. Therefore it should be occupied only when a computational
resource is needed with a reasonable amount. In addition, it is often desired for the system to
be able to store the acquired data locally or in a cloud platform. When a daily living scenario
is considered where an RF sensor is mounted in a corner or on a wall of the room to observe
and recognize sign language, continuous recording of the acquired data can easily result in a
very large amount of storage memory without containing much informative data since there is
not much communicative interaction between the sign language recognition systems and the
people during the day. Therefore, an automated system is needed to understand the presence
of the people in a room, temporally isolate the individual activities and differentiate daily,
non-communicative activities from the communicative sign language articulations. This way,
the informative data can be separated from other activities and can be efficiently stored
without needing to manually segment and label the data which is a labor-intensive and an
expensive task. GPUs, on the other hand, are the hardware units used to make inference
from the trained prediction model. Although modern computers and laptops are equipped
with high-end GPU units, smaller edge-computing devices such as NVIDIA-Jetson Nano
usually have GPUs with less computational capabilities and memory. Considering GPUs
are also used in rendering other graphical displays, they can be in high demand by several
modules of the system. Hence, they should be utilized in an effective manner to maximize
the system efficiency and mitigate the unwanted computational overhead.

Optimization of RF waveform in the context of data quality is still a pristine area
with a very limited amount of study. Hong et al. [78] recently proposed a reinforcement
learning-based cognitive Doppler radar approach to optimize the carrier frequency and the
sampling rate (PRF is referred as sampling rate throughout the paper). They used Carnegie
Mellon University (CMU) Graphics Lab’s human activity motion capture data to simulate

the RF uD spectrograms and evaluate the proposed method. It is found that for 7 human
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Figure 6.1: Doppler bandwidth and sampling rate on pD spectrogram (a), and Doppler
aliasing affect due to low PRF in parameter selection (b).
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activity classes there is an optimal interval for the carrier frequency and going beyond
that results in lower classification accuracy. However, when the accuracy of the individual
activities are considered, this interval is subject to change. Therefore, there is no clear
pattern which can be generalized to all human activities or sign language recognition tasks.
Nonetheless, it is a fact that the center frequency is proportional to the Doppler resolution of
the signature. For a more expressive and detailed uD spectrograms, higher carrier frequencies
are desired. Figure 6.1a shows the Doppler bandwidth and the PRF/2 frequency span on a
uD spectrogram. PRF is also another important parameter which determines the maximum
unambiguous velocity. If the PRF is not chosen wisely, unambiguous velocity can be lower
than application needs, and when targets move faster than the upper limit, Doppler aliasing
effect can be observed. Doppler aliasing is basically wrapping of the Doppler components to
the other side of the spectrum if they exceed the maximum unambiguous velocity. Figure
6.1b illustrates this effect. Such artifact causes corrupt and kinematically incorrect data
representations. When such data are used to train or test the ML/DL models, they result

in sub-optimal performances.
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Figure 6.2: uD spectrogram for the word HAVE when sampling rate, f;=1 MHz (a), and
when f;=2 MHz (b).

(b)

It is also found that there is a clear pattern which suggests higher sampling rates yield

higher accuracies. This is an expected result as higher sampling rates result in higher SNRs
in the collected signal. Figure 6.2 illustrates this phenomenon for the ASL word HAVE. It
can be observed that when the sampling rate is higher, SNR of the uD signature increases
drastically.

Gong et al. [55] studied the effect of CPI and PRF on the uD signals of a DJI Phantom
4 drone and a P750 aircraft. They observed that changes in CPI and PRF values have
differential effects on Jet Engine Modulation (JEM) spectra and the blade flash patterns of
the uD spectrograms.

In this chapter, we propose an adaptive RF waveform parameter adjustment framework
according to the observed scene of the radar. The system is able to observe, understand
and adapt to the environment by changing its operation mode and waveform characteristics.
Specifically, we define three operation modes: presence await (PA), trigger await (TA) and
fully-active (FA) mode. The main objective of the radar in PA mode is to determine if
there is a moving target/subject in the room or not. The PA mode makes use of waveform
parameters with relatively low data rate and bandwidth. Therefore, its computational cost
is very low. It utilizes a small fraction of the full bandwidth and do not store any data during

acquisition. No prediction model or GPU memory is used since determination of the target
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Figure 6.3: Fully-adaptive RF cycle.
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presence is based on the received power strength and do not need any learning model to
make this decision. Once target presence is detected, the system switches to the TA mode.
The TA mode is used to spot the trigger or wake sign from the user. Its computational
cost is relatively higher than the PA mode and lower than the FA mode. The TA mode is
continuously tries to determine if the trigger sign is articulated or not. When the system
is turned on with the trigger sign, the system switches to the FA mode. The FA mode
enables the full capabilities of the system by temporally segmenting activities, separating
daily activities from ASL signs and recognizing different signs. After switching to TA or
FA mode, if there is no moving target in the radar FoV for a certain duration the system
goes back to the idle (i.e., PA) mode. In the FA mode, if the performed activities are not
communicative ASL signs, but random movements or daily activities, the system goes back
to the TA mode. Figure 6.3 depicts the proposed fully-adaptive RF cycle framework. It is
found that the proposed method maintains high level ASL sign recognition performance while

minimizing the computational costs and allocation of computational units in the system.
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6.2 Adaptive RF Dataset and Experimental Setup

6.2.1 RF Sensor and Dataset Description

In order to evaluate the proposed method, we use Infineon’s BGT60TR13C Demo FMCW
radar operating at 60 GHz. This device has several advantages over other FMCW sensors
for indoor monitoring. First, the device has a very small package size (40.64mm x 25.4mm)
enabling it to be deployed in any corner of the room seamlessly. Second, it has a relatively
large bandwidth (5.5 GHz) which yields very fine range resolution of 0.027m. The device
also has MATLAB and Python software development kit (SDK) support to be operable in
real-time without needing to rely on manufacturer’s GUI for end-applications. Finally, the
RF sensor also has an L-shaped RX antenna array with 3 receivers in a single-input-multiple-output
(SIMO) fashion which enables angle estimation in both azimuth and elevation directions.

As discussed in the previous section, the proposed fully-adaptive RF cycle approach has
three operation modes: PA, TA and FA mode. Each of these modes have their own respective
waveform parameter profiles: PA-RF, TA-RF and FA-RF. The adaptive RF dataset consists
of 6 ASL signs (HELLO, HAVE, TEACHER, TABLE, BED, CAR) and 1 UNKNOWN class for
random motions and daily activities like walking, sitting and standing up. For the UNKNOWN
class, participants were free do whatever they want in the radar FoV. The ASL signs are
performed in the direct line-of-sight of the radar in a sitting position. The RF sensor was
placed 1.5 away from the subjects and approximately 0.9 above the ground. The experiment
is repeated for each parameter profile. In total approximately 1,500 samples were collected
for each parameter set with a uniform distribution across classes (~ 210 samples/class for
each parameter set). 5 participants have attended the study with various ages. The acquired
data are then split into 70% and 30% portions for training and testing.

Range-Doppler maps, uD spectrograms, range profiles and angle profiles are used as
RF data representations in this study. While computation of range-Doppler maps, uD
spectrograms and range profiles are described in detail in Section 2.4, for angle profile

computation, two different angle estimation approaches are considered: Fast Fourier Transform
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Figure 6.4: Range, Doppler and Angle Profiles of fully-adaptive RF dataset samples.
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(FFT) and Capon beamforming (i.e., minimum variance distortionless response (MVDR)
beamformer) [20]. While MVDR has better resolution with the cost of higher computational
complexity, FFT has lower resolution with the advantage of requiring less computation.

In this work, both methods are evaluated and it is found that using MVDR increases the
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computation time to the extend that radar frame rate drops when operated in real-time and
causes buffering issue. Since the proposed method is designed to operate in real-time, we
opted for using FFT-based angle estimation. Figure 6.4 shows range, Doppler and angle

profile samples for each class of the dataset.
6.2.2 Parameter Profiles

Parameter profiles play a crucial role in the adaptive RF paradigm as they directly affect
the operation and waveform characteristics of the system. Therefore, this section describes
the parameter selection and the reasoning behind it for each parameter profile.

PA-RF parameters are used in the PA mode to determine the presence of a moving target
in the radar FoV. PA-RF parameters are empirically optimized to be both computationally
light and sensitive to detect the moving targets. The presence detection algorithm uses
range-Doppler maps to make a decision. If the cumulative power level from the moving
targets are above certain threshold, detection occurs. Considering an indoor environment
(e.g., room, lab, office etc.), presence detection for targets closer than ~5m should suffice.
Frame interval of 0.1s (i.e., 10 FPS) is also determined to be temporally satisfying for the
application needs. Sampling rate and PRF kept lower than other parameter profiles since
this parameter profile is going to be used by the PA mode which will be running during a
great portion of the day with the assumption that there is no moving person or object in the
environment most of the day time. Keeping sampling rate and PRF reduces the data size
drastically and the computational overhead on the computational units like RAM and the
CPU. Finally, only one RX antenna is used since there is no need for the angle information
in the presence detection algorithm.

TA-RF parameters are used when radar is operating in the TA mode which is activated
when presence of a target is detected in the PA mode. TA-RF profile has the same bandwidth
of 1 GHz as the PA-RF has. Higher allocation of bandwidth is not needed in TA-RF
since only uD spectrograms are used for trigger sign detection and range resolution has no

effect on them which is the only motivation for allocating larger bandwidths. Sampling
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Figure 6.5: RF waveform selection of different parameter profiles.

RE Paramier—— Bistid  PA-RE TA-RF FA-RF
Start Frequency (GHz) 58 58 58
End Frequency (GHz) 59 59 63.5
Sample Rate (MHZz) 1 2 2
Number of ADC Samples 128 256 256
Number of RX Antennas 1 1 2z
Frame Repetition Time (s) 0.1 0.1 0.1
Pulse Repetition Interval (s) 0.0004 0.0002 0.0002
Max. Unambiguous Range (m) 9.59 19.19 3.49
Max. Unambiguous Velocity (m/s) 3.2 6.41 6.17
Range Resolution (m) 0.15 0.15 0.027
Velocity Resolution (m/s) 0.1 0.1 0.096

rate and the PRF are higher than the PA-RF profile since the TA mode is using puD
spectrograms to make predictions on whether the trigger sign is articulated or not, and
the spectrograms should have high temporal and frequency resolution. Increasing PRF, also
increases the maximum unambiguous velocity which prevents the aforementioned aliasing
effect. Maximum unambiguous velocity of 6.41 m/s is obtained for the TA-RF parameter
selection which is sufficient for indoor activity/signing monitoring applications considering
average signing speed is < 3 m/s. TA-RF profile also utilizes single RX antenna since angle
information is not used in the trigger sign detection algorithm.

Finally, FA-RF parameters are used in the FA mode upon the trigger sign detection
in the TA mode and switching to the FA mode. FA-RF profile utilizes the full available
bandwidth of 5.5 GHz yielding 0.027m range resolution. Sampling rate and the PRF are
also maximized to the limit allowed by the real-time processing frame rate requirements.
Different than the TA-RF profile, FA-RF profile utilizes the all 3 RX antennas for angle
estimation. The maximum unambiguous velocity of 6.17 m/s and velocity resolution of

0.096 m/s is obtained with the selected parameters. The maximum unambiguous range is
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set to 3.49 m which is the shortest range amongst different parameter profiles, expecting
user to be present close to the radar for greater returned signal SNR. Figure 6.5 summarizes

the three parameter profiles.

6.3 Fully-Adaptive RF Cycle

6.3.1 Adaptive RF Operation Modes

This section describes the three modes of the adaptive RF operation cycle in detail and

compares them.

Presence Await Mode

The radar starts with the PA mode. In this mode, it continuously observes the scene
with the purpose of detecting a moving object. For that, we use a power-based presence
detection algorithm. The acquired raw data are first reshaped into a 3D array with the
shape of (number of ADC samples x number of chirps X number of RX channels). After
the reshaping operation, a moving target indicator (MTI) filter is applied to suppress the
signals reflected back from stationary objects and enhance the SNR of the moving target
signals. Then, a 2D-FFT is applied to obtain the range-Doppler map. Total energy of the
range-Doppler is computed by summing up the power levels (dB) of all the range-Doppler
bins. If the cumulative power level exceeds a predefined threshold, detection occurs and the

radar switches to the TA mode.

Trigger Await Mode

In the TA mode, the system utilizes the TA-RF parameter profile to detect the occurrence of
the trigger sign. In order to detect the beginning and the ending of a sign and isolate its raw
data, the STA/LTA based motion detector presented in an earlier study [106] is utilized. In
the original study, the presented motion detector operates on puD spectrogram envelopes.

Although the presented method works well when the data is processed offline without
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considering real-time processing challenges, it becomes computationally costly and infeasible
due to the high computational complexity of generating uD spectrograms in real-time with
high resolution and their upper and lower envelope extraction process. Therefore, a more
lightweight method is needed to run the motion detector in real-time.

In order to reduce the computational complexity of the uD envelope-based motion detector,
in this work, we propose a modified STA /LTA-based motion detector which makes use of
the total power, Pr, in the range-Doppler map. The total power in a 2D range-Doppler map
(RDM) can be computed by:

R D
Pr =Y 20log,,|[RDM(r,d)| (6.1)

r=1 d=1
where R and D are the number of range and Doppler bins respectively. Then, ST A(t) and

LTA(t) can be defined as the leading and lagging windows at time t as:

t+T11 t

STA(t) = % > Pr(k), LTA(t) = Ti > Pr(k) (6.2)

b=t 2 h=t—To+1

where 77 and T5 are the lengths of short and long windows respectively. While greater T}
and T5 values are more robust to false alarms in noisy data, they increase the response time
of the system proportionally since at least a total time of 77 should pass after a motion is
performed and for it to appear in the lagging window. Therefore, T} and T, values should
be selected based on the application requirements. In this work, we empirically optimized
the window sizes of T} = T} = 0.5s. The starting point of a motion is detected when the
following conditions are satisfied:

STA(t)
LTA(t)

STA(t) > o; and > 09 (63)
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where 0, and o, are predefined detection thresholds. Similarly, the ending point is detected
if

STA(t) < O3 and i;—ig; < 09 (64)

where o3 is the detection threshold for the stopping point.

Once the beginning and ending of a motion is detected, the interval corresponding to
the beginning and the ending point of the motion is isolated from the raw data. uD
spectrogram of the isolated data portion is generated using the STFT method. Since STFT
operation is only performed on a small interval of the data where the motion is occurring,
its computation is light enough and does not hinder the real-time processing. After uD
spectrogram is generated it is passed into a trigger recognition network to determine if the
observed motion is the trigger sign or not. The trigger recognition network is a CNN-based
binary classification model which inherits 4 convolutional blocks from the VGG-16 model
trained with ImageNet weights. The model is fine-tuned with the puD spectrograms of the
TRIGGER sign and NON-TRIGGER class samples. NON-TRIGGER class samples include daily
activities (e.g., walking, sitting, standing up, arm gestures) and other 5 ASL signs in the
acquired dataset. Since the number of samples in the NON-TRIGGER class is significantly
larger (> 5x) than the TRIGGER class, class-weighting approach based on the number of
samples for each class is applied in the loss function. This step is crucial to prevent network
to bias its weight optimization process towards NON-TRIGGER class samples. If the observed
motion is predicted as TRIGGER, the system switches to the FA mode. Otherwise, the system
stays in the TA mode and continues to isolate and predict different motions occurring in the
radar FoV. If there is no motion for a certain duration, the system cycles back to the PA

mode.

Fully-Active Mode

When the TRIGGER sign is detected, the FA mode gets activated. The FA mode is the

operation mode where capabilities of the system are maximized. The system uses the full
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Figure 6.6: Multi-input ASL recognition network.
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available bandwidth, all the RX channels and high data rate. Computational hardware units
such as memory, RAM and GPU are also occupied accordingly. The motivation behind this
selection is to maximize the acquired data quality and information and utilize them to make

better sign language predictions and increase the user experience by yielding more accurate
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results. Similar to the TA mode, the FA mode also utilizes the proposed STA /LTA-based
motion detector for temporal segmentation of the individual activities/signs. Upon isolation
of the raw data of an individual activity/sign, range profile, uD spectrogram and angle
profile of the data are generated. The generated RF data representations are then passed to
a multi-input CNN-based network to recognize a particular sign.

The multi-input CNN network inherits 4 convolutional blocks of the VGG-16 network
pretrained with ImageNet weights. Range profiles, uD spectrograms and angle profiles are
processed in the network with identical but separate CNN layers in a parallel fashion. After
the CNN blocks, a global average pooling layer is used to flatten the feature embeddings.
Feature spaces of three inputs are fused in a concatenation layer which is followed by two
fully-connected layers. The model is finally augmented with a softmax layer with 7 nodes
for 6 ASL signs and 1 UNKNOWN class. The overall architecture of the proposed model is
presented in Figure 6.6. If the predicted sign is an ASL sign, the system stays in the FA
mode and continues to interact with the user. If the predicted sign is the UNKNOWN class
which includes random movements or daily activities and gestures, the system goes back to
the TA mode since these activities are non-communicative and it is highly likely that the
user has finished interacting with the system. Similar to the TA mode, if there is no motion
for a certain duration, the system cycles back to the PA mode which lowers and stops the

occupation of certain computational resources.

6.4 Non-Adaptive versus Adaptive RF Sensing

In conventional RF-based activity or sign language recognition applications, it is a
common practise to optimize the RF waveform parameters and use a fixed set of parameters
(i.e., non-adaptive) to collect all the data and make inference on the trained model. Although
this approach works well when the radar is coupled with high-end computational units and
do not interfere with other modules of the system, when the edge-computing device has

limited computational capabilities such as low RAM, GPU or memory, and need to share
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Resource \ Mode Non-Adaptive RF Adaptive RF
Parameter Profile PA-RF TA-RF FA-RF ‘ Switching between 3 profiles

Bandwidth (GHz) 1 1 5.5 Varying [1, 5.5]
Storage Memory (MB/s) | 0.67 2.5 7.49 | 7.49 after the system trigger
RAM (MB) 487 591 744 Varying [487, 591, 744]

Table 6.1: Resource allocation comparison of non-adaptive versus adaptive parameter
selection approaches.

the computational resources with other modules of the system, allocation of computational
units needs to be taken into account and utilized in an effective manner. Therefore, in this
section, we compare the non-adaptive and the proposed adaptive RF sensing approach in

terms of both resource allocation efficiency and overall recognition capability of the system.
6.4.1 Resource Allocation Efficiency Benchmark

In order to compare the resource allocation efficiency of the non-adaptive and adaptive
RF approaches, we evaluate them using three different metrics: bandwidth allocation,
storage memory allocation and RAM allocation. These spectral and computational resources
are common in almost all radar-based recognition applications. Non-adaptive approach is
evaluated by fixed utilization of PA-RF, TA-RF and FA-RF parameter profiles without any
transition between them.

Table 6.1 summarizes the resource allocation results for two approaches. It can be
seen that non-adaptive parameter profiles always allocate a fixed bandwidth. While lower
bandwidths has the advantage of less chance of interference with other RF sensors might be
present in the environment, they provide poor range resolution. Higher bandwidths, on the
other hand, yield superior range resolution with a higher chance of interfering with other
RF sensors. Considering this phenomenon, a fixed selection of PA-RF or TA-RF will be
more advantageous when the system is not actively being used as the RF system will have
less chance of affecting other sensors or being affected by them. Fixed selection of FA-RF,
on the other hand, has the advantage of providing more high quality data with the cost

of allocating a larger bandwidth continuously. Adaptive RF approach, basically, takes the
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good part of different bandwidth selections by using a lower bandwidth when the system is
not active and switching to the full-bandwidth after the system is triggered. This ensures
the acquisition of high resolution data during interaction with the user while minimizing the
interference when the system is not actively being used.

In terms of storage memory allocation, using lower sampling rate, PRF and less number
of RX channels reduces the acquired data size drastically with the cost of low resolution,
lower unambiguous velocity and not being able to estimate the target’s direction-of-arrival.
However, DNN models used in RF data recognition tasks are data driven models and the
quality of the training data plays a crucial role in the recognition performance of the model.
Therefore, data with rich spatial and temporal features are needed to train a robust learning
model. While non-adaptive fixed PA-RF and TA-RF yield small data size, they compromise
the data quality and features can be useful during the model training. Fixed FA-RF profile,
on the other hand, yields high quality data but the data size is always large even when
the system is not actively used. Considering such RF-controlled interactive system will
potentially be used less than a few hours a day and the cost of cloud-based storage solutions
per GB such as Microsoft’s Azure, Google Cloud Platform or AWS Cloud Storage, it is not
needed to save data always in high quality when data are not informative. The adaptive RF
approach optimizes this problem by reducing the data size during non-communicative actions
in PA and TA modes in a daily scenario and increasing the data rate during interaction with
the user by switching to the FA-RF profile for a higher data quality and performance.

Finally, RAM allocations of non-adaptive and adaptive RF approaches are compared.
RAM is a significant computational resource which stores all the variables and data in
its memory during a program’s execution. Several modules of a system and the operation
system can make use of the RAM simultaneously and continuously. Since it is a shared unit, it
should be occupied efficiently in order to mitigate system response delays and out-of-memory
errors. In the fixed PA-RF and TA-RF parameter selection, the RF sensor occupies a smaller

portion in the memory with 487 MB and 591 MB of space respectively when compared to
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the FA-RF profile which allocates 744 MB of space. This is mainly due to the smaller data
size per frame and the lighter computational cost on a smaller data chunk. The adaptive
RF approach minimizes the RAM allocation by using PA-RF profile when no moving target
present in the environment. It starts to occupy a larger space as a result of switching to the
TA-RF and FA-RF profiles when a target is detected and the system is triggered respectively.

Therefore, it minimizes the unnecessary RAM occupation during idle times.
6.4.2 Classification Results

While optimizing the usage efficiency of computational resources are important from a
system point-of-view, we should also ensure and maximize the recognition capability of the
system. Compromising the recognition performance of the system for the sake of minimizing
computational cost can result in poor user experience due to wrong predictions. Therefore,
it is important to balance and maximize the two metrics. The proposed approach listens for
the trigger sign in the TA mode before switching to the FA mode for ASL recognition. Once

the trigger sign is detected, it starts to predict the ASL signs in the FA mode.

Trigger Sign Recognition Results

It is a common practise to trigger /awake an interactive system before starting to use it such as
"Hey Siri” phrase in Apple’s products, ”Hey Alexa” in Amazon’s products or ” Okay Google”
for Google Home. In this work, we follow a similar approach and evaluate the detection
performance of each trigger candidate word separately by training individual models for
each word. For the evaluation of trigger sign recognition task, we define two metrics false
alarm rate (FAR) and false rejection rate (FRR). They are defined as:

FP FN

PAR=gysrp "= TR EN (6:5)

where F'P is the number of false positives (i.e., predicting trigger when it is not), T'N is the

number of true negatives (i.e., predicting non-trigger motions correctly), F'N is the number of
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Param. Profile | Metric \ Word \HELLO HAVE TEACHER TABLE BED CAR

é FAR (%) 13.25  7.23 16.87 13.25 10.84 16.87
g FRR (%) 1324 2.6 5.41 533  13.58 2.56
o Detection Rate (%) | 73.561 90.17  77.73 81.41 75.58 80.57
Ey FAR (%) 814 465 814 1047 581 9.3

5 FRR (%) 26 2.9 2.74 132 678 3.6
— Detection Rate (%) | 89.26  92.45 89.12 88.22 87.41 87.08
< FAR (%) 21.52 0 12.66 20.25 16.46 18.99
Cg FRR (%) 4.29 6.06 1.41 2.5 1.19  5.13
é Detection Rate (%) | 74.2  93.94 85.93 7725 82.35 75.88

Table 6.2: Trigger sign recognition results of each word for different parameter profiles.

false negatives (i.e., missed triggers), and T'P is the number of true positives (i.e., predicting
the trigger sign correctly). Based on the FAR and FRR of a sign, detection rate, Dg, of a

sign can be computed as:

Dp=1—-FAR—- FRR (6.6)

Table 6.2 presents the trigger recognition results of each sign for different parameter
profiles. Note that a binary classification model described in Section 6.3.1 is trained for
each word and parameter profile pair separately. It can be observed that the TA-RF profile
has the highest average detection rate of 88.92% for the six signs while the PA-RF and
FA-RF profiles can achieve 79.83% and 81.59%, respectively. The models trained with the
TA-RF profile perform significantly better than the other two parameter sets except for the
word HAVE where the FA-RF profile performs only 1% better which can be due to various
reasons including different number of samples in the training/testing datasets or the way
participant articulates the sign. The poor performance of the models trained with data
collected in PA-RF mode can be attributed to the low quality data and the lower SNR in
uD spectrograms. Although the lower performance for the FA-RF mode is a bit unexpected,
we can see that the lower detection rates are mostly due to high FARs when compared to

the TA-RF mode even though the FRRs remain low. Other reasons can also include the free
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form activities participants perform during the data collection. If the uD signatures of the
motions they perform during data collection resemble to the trigger sign, there is a higher
chance that they might be confused with the trigger sign. Recall that participants were free
to do anything they want during free form activities except the ASL signs. Nonetheless,
the overall trend does not change and we can conclude that the TA-RF parameter set is
well-suited for the trigger recognition task.

It can be seen that for all the parameter profiles the word HAVE yields the highest
detection rates of 90.17%, 92.45% and 93.94% and the lowest FARs of 7.23%, 4.65% and
0%. This might be due to the high radial displacement of the arms while moving both hands
towards the chest and retrieve them back. Radar is the most sensitive to the motions in radial
direction which makes motions with high kinematic variance in radial axis more perceivable
to the radar. The word TABLE consistently has very high FARs for all the parameter profiles
with over 13%, 10% and 20% which indicates the higher chance of being confused with other
motions and unintentional activation of the system. This is not a desired behavior from a
user experience point-of-view. High FAR, on the other hand, seems to reduce the FRR of the
word which is a desired behavior, but it comes with the cost of so many false alarms. The
word TABLE is articulated by parallelly moving both arms stacked on top of each other up
and down. This can cause strong returned signal strengths from the arms which is similar to
torso movements observed on daily activities. Therefore, it can be easier for the DNN model
to confuse the daily activities as if they are trigger signs. The words HELLO, TEACHER,
BED, CAR, on the other hand, have similar detection rates ranging between 87%-89% for
the TA-RF mode. Based on these results, we chose the word HAVE as the trigger sign of the

system for the TA mode.

Sign Language Recognition Results

When the system is activated with the trigger sign, it starts to recognize the ASL signs

articulated by the user. In order to predict the articulated sign, we use the model described in
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Model Input(s) ‘ Param. Profile ‘ Accuracy (%)

PA-RF 52.24

1D Spectrogram TA-RF 67.11

FA-RF 82.01

D Spectrosra PA-RF 49.63

R b TA-RF 69.22

ange TLote FA-RF 86.17

1D Spectrogram 875
Range Profile FA-RF (Pro ;)se a)

Angle Profile p

Table 6.3: ASL recognition results of the parameter profiles with various model input(s).

Section 6.3.1 and Figure 6.6. Performance of the proposed network is evaluated by applying
certain ablation studies on the network architecture and the RF parameter profile.

First, we compare the performance of different parameter profiles for the classification of
1D spectrograms in a single input network. Such CNN-based network is the baseline model
which is commonly used pD spectrogram classification tasks. The single input network
has the identical architectural structure to the proposed method with the exception of
having only one branch since only pD spectrograms are used to train/test the model. Other
training settings such as optimizer, number of layers, kernel sizes, learning rate, learning rate
scheduler, dropouts also kept the same to have a fair comparison. The models trained with
the data acquired in PA-RF, TA-RF and FA-RF profiles yielded the accuracies of 52.24%,
67.11% and 82.01%, respectively for the 7-class (6 ASl sign + 1 UNKNOWN class) ASL
recognition task. It can be observed that as the sampling rate, PRF, and SNR increases,
the learning models can achieve higher accuracies as a result of having more expressive and
high quality data samples.

Next, we expand the network to two branches in order to incorporate the range information
into the model. This model takes both uD spectrogram and range profile as separate inputs
and processes them parallelly, and fuses their feature spaces after the global average pooling

operation. This network resembles to the proposed network illustrated in 6.6 with the
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Figure 6.7: Range profile comparison of different RF waveform profiles.
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exception of not having the third branch for the angle profile. After training, the augmented
two-branch model yielded the accuracies of 49.63%, 69.22% and 86.17% for PA-RF, TA-RF
and FA-RF profiles. It can be observed that while there is not much improvement for the
PA-RF and TA-RF profiles, accuracy of the FA-RF profile is increased over 4%. This can
be due to the high bandwidth selection in the FA-RF profile which results in finer range
resolution as depicted in Figure 6.7. The detrimental effect observed in the PA-RF profile
for around 3% can be because of the increased number of trainable parameters while not
providing very informative and distinct input samples.

Finally, we evaluate the performance of the proposed three-input network which incorporates
range, Doppler and angle information by expanding the network with a third branch which
processes angle profiles. This method is evaluated only for the FA-RF profiles since other
parameter profiles utilize single RX antenna data and the angle estimation cannot be performed.
The proposed model outperformed other method by achieving the testing accuracy of 87.5%
on 7-class ASL recognition task. These results show the efficacy of utilizing all the physical
information about the environment RF sensors can offer. Table 6.3 summarizes the performances
of different waveform profiles along with different RF data representations as DNN inputs.

Figure 6.8 shows the final confusion matrix of the proposed model. The words HAVE and
TEACHER yield the highest recognition rate with over 95% accuracy. These results are also
in line with the trigger recognition results obtained in Section 6.4.2 where the word HAVE

had the highest trigger recognition rate among other signs. The word HELLO, on the other
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Figure 6.8: Confusion matrix of the proposed multi-input network for ASL recognition.
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hand, has the lowest recognition rate with the accuracy of 74.3%. It is mostly confused with
the word TEACHER. This potentially be because of the similarity of the way the beginning
of these signs are articulated. While the word HELLO is articulated by raising one hand
to the forehead and moving forward towards the person of interest, the word TEACHER is
articulated by raising both hands to the forehead and moving them forward for a certain
distance, and lowering them parallelly at the end. Confusion of the UNKNOWN activities

with the other signs seem to be distributed across the signs.

6.5 Conclusion

This chapter introduces the idea of fully-adaptive RF where the waveform parameter
as well as the operation characteristics of the RF-based ASL recognition system changes.

Advantage of the proposed method is evaluated both in terms of computational and spectral
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resource allocation, and the recognition performance of the overall system. We propose a
cyclic multi-state operation diagram for the RF system where each state utilizes a certain set
of waveform parameters to optimally use the computational resources without compromising
the recognition performance. Resource allocation and recognition performances of different
parameter profiles are evaluated for an ASL dataset consisting of 6 ASL signs and daily
activities. Incorporation of range and angle information in addition to the Doppler in a
multi-input network is shown to be a promising approach for enriching the feature space and

achieving better recognition performance than the baseline methods.
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CHAPTER 7

CONCLUSION AND DISCUSSION

This dissertation is mainly focused on the utilization of RF sensors for ASL-enabled smart
environments. We tackle several challenges in RF-based ASL recognition systems including
data variance stemming from background-related and cultural dialects, pre-processing of
RF data, presentation of RF data to the deep learning models, temporal segmentation of
sequential activities/signs, differentiation of ASL signs from daily activities, limitations in
real-time recognition, separation and isolation of RF data of multiple people, automation of
data collection and annotation stages, and adaptively changing of RF waveform parameters
to optimize the resource allocation and to maximize the recognition performance. While
most of these are on-going and not well-explored challenges, we propose intuitive solutions
for them collectively. We provide both qualitative and quantitative results for the each

proposed method/approach.

7.1 Summary of the Contributions

For the temporal segmentation problem, an STA /LTA-based motion detector is presented
to locate the starting and ending point of a motion. The proposed method is shown to
outperform other power-based methods and it eliminates the need for relying on fixed length
windows. The method utilizes the Euclidean distance between upper and lower envelopes
of the uD spectrograms to decide when a motion is starting and ending. Efficacy of the
method is shown on a sequential mixed activity/signing data to isolate individual activities

and signs in RF data in a daily living scenario.
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Next, a joint-domain multi-input multi-task learning network is presented to aggregate
information from different RF data representations including D spectrograms, range-Doppler
maps and range-angle maps. Each data representation is processed in parallel branches of the
network. In the proposed network, while time-distributed 2D and 3D CNN layers are used
to extract spatial features, temporal dependencies are obtained with bidirectional LSTM
layers. We define certain auxiliary tasks for the signs such as one versus two handedness,
major hand location, hand movement type, daily activity versus SL and number of arm
strokes to better regularize the network in the training stage. The proposed technique is
shown to outperform other SOTA methods in the sequential sign language recognition task.

When the RF sensors are deployed in an indoor environment to interact with the users
via sign language, it is a natural need to turn on/off the system with certain gestures or
signs similar to the wake/trigger words in voice-based personal assistant systems. In this
study, we explore the design considerations and radar’s capability to perceive and recognize
these words. Accurate recognition of the trigger sign is crucial to reduce and eliminate
the false triggers and false trigger rejections. The system should be robust enough to
spot incomplete or overextended trigger attempts as well. In this work, we present an
adaptive double-threshold cumulative score aggregation approach to recognize the trigger
sign in continuous RF data streams.

Collecting data with RF sensors is often a time consuming and expensive task. A certain
number of participants need to be recruited to attend the study and follow the instructions
of the researchers to help with the data collection. In sign language recognition tasks, it is
even harder to find and recruit the participants since the target community (Deaf/HoH) is
narrower. Recruiting hearing participants is shown to be not a viable solution since there are
significant differences between the signings of fluent and non-fluent (i.e., imitation) signers,
and imitation signing cannot effectively represent the nuances of sign language. In addition,
recruiting fluent signers (Deaf/HoH) for data collection in a laboratory environment is also

not a sustainable solution since there are cultural differences across Deaf communities and
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sign language is also an evolving language with the addition of new words and dialects in
everyday life. In this work, we propose an interactive gamification approach to integrate sign
language into the chess game where users control the pieces on the chess board with sign
language instead of mouse clicks. The game collects, processes and classifies the collected
signs. Users also have chance to correct the mispredictions of the game by canceling the
last motion. This feature of the game eliminates the need for manual data annotation. The
designed game also presents a new way to acquire data without boring the participants. This
approach enable to curate a diverse, multi-modal sign language datasets in a sustainable and
enjoyable fashion.

Presence of multiple people in the environment presents certain challenges in the RF data
since the received signal becomes superimposition of the individual signals from each target.
Although there exists certain methods to estimate target ranges and angles, they can be
applied only after certain signal processing steps, and unprocessed raw data of the individual
targets cannot be recovered. In this work, we present an angular subspace projection-based
separation technique to separate the signals of individual targets at a low level. Achieving
separation at the raw data level enables further signal processing and learning techniques
for individual targets. We show the efficacy of the proposed method on human activity
recognition and sign language recognition tasks. For closely spaced targets, we present a
multi-view DNN model which incorporates left and right side of the boresight view.

In radar-based recognition tasks, RF waveform parameters are often optimized on the
software based on the application needs. Although this is a commonly applied approach,
software-defined RF sensors allow users to change the waveform parameters at any given
time. There are certain pros and cons, and trade-offs while adjusting the radar parameters.
Therefore, ideally, we want to keep the radar parameters optimal and aware of the surroundings
so that it can perceive, understand and adapt to the environment. RF sensors are often
coupled with other computational units to process and store the data. It is highly likely that

these systems are also hosts for other modules of the system where computational resources
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are shared across the units. Therefore, RF system should adjust its parameters and operation
characteristics so that it does not occupy the spectral and computational resources it does
not need especially when users are not interacting with the RF system. In this work, we
propose a fully-adaptive cyclic RF sensing paradigm where radar has three operation states
and each state is associated with a RF waveform profile. It is shown that the proposed
paradigm can understand the presence of a person, whether the trigger sign is articulated
and different ASL signs. The proposed method is shown to be effective in reducing the
unnecessary occupation of the spectral and computational resources while preserving the

high recognition performance.

7.2 Discussion

This work explores and tackles on-going challenges in RF sensor-based end-to-end sign
language and human activity recognition systems. The presented studies and experiments
show and prove that RF is a promising modality for indoor monitoring and human-computer
interaction especially considering they are non-intrusive, non-invasive and robust against
lightning conditions. While the purpose and claim of this research are not to replace the
existing modalities such as video or wearables, we show what radars can offer and how they
can be integrated into existing systems as a compatible modality seamlessly.

Other challenges current RF sensor-based recognition systems face include data scarcity.
Although certain synthetic data generation methods have been proposed including GANs,
simulated data, transfer learning and other physics-based methods, still each recognition
task require at least certain amount of real data to be collected to drive the DNN-based
solutions. Also, generalization capability of the synthesized data are often questionable as
their variance is limited by the distribution of real data samples.

Low spatial resolution in point cloud data is also another on-going challenge especially
for the autonomous driving scenarios. Accurate 3D reconstruction of the hand and finger

shapes are still not possible with the existing RF systems. This limits radar’s capability to
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recognize only dynamic motions with high radial movement. Recognition of static shapes
and finger-spelling are still challenging tasks without high resolution 3D hand and finger
point clouds. However, this challenge can be alleviated in a near future with the recent
advances in high resolution imaging radar technology and Al-based oversampling and RF
data-to-skeleton methods.

Overall, radar looks like will be in our lives especially with smart home and human-computer

interaction applications as a key player.
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All the best with your research.

166 Rose Administration | Box 870127] Tuscaloosa, AL 35487-0127 | 205-345-8461

Fax 205-348-7189] Toll Free 1-877-820-3066 | rscompliance@ua.edu

178



THE UNIVERSITY Of Research &

ALABAMA Economic Development
Office for Research Compliance
June 22,2023

To: Sevgi Zubeyde Gurbuz, PhD
Assistant Professor
Department of Electrical and Computer Engineering
College of Engineering
The University of Alabama
Box 870286

From: Carpantato T. Myles, MSM, CIM, CIP
Director & Research Compliance Officer

Re: Notice of Approval

IRB Application #: e-Protocal 18-OR-364-ME-R5-A (18-06-1271)

Project Title: “Radar-Based Indoor Human Motion Recognition Studies”

Submission Type: Revision (Amendment, Modification)

Approval Date: June 22, 2023

Expiration Date: June 7, 2024

Funding Source: NSF(OSP#19-0652), AFOSR(OSP#22-0615), ECE and CS Departmental Funding
Review Categary: Expedited

Approved Documents: Informed Consent, Recruitment Email/Flyer

Dear Dr. Gurbuz:

The University of Alabama Institutional Review Board has reviewed the revision to your previously approved
expedited protocol. The board has determined that the change does not affect the expedited status of your
protocol.

Should you need to submit any further correspondence regarding this proposal, please include the assigned IRB
application number. Changes in this study cannot be initiated without IRB approval, except when necessary to
eliminate apparent immediate hazards to participants.

All the best with your research,

166 Rose ‘..|:||;n|--ir.1[j.-niI'-u\h' "0127| Tuscaloosa, Al 35487 0127 | 205-348-8461

Fax 205-348-7189| Toll Free 1-877-820-3066 | rscompliance@rescarch.ua.edu

179



	ABSTRACT
	DEDICATION
	LIST OF ABBREVIATIONS AND SYMBOLS
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	RADAR BACKGROUND
	SIGN LANGUAGE RECOGNITION IN A DAILY LIVING
	MULTI-PERSON SEPARATION VIA ANGULAR PROJECTION
	INTERACTIVE LEARNING OF NATURAL SIGN LANGUAGE
	HUMAN-AWARE FULLY-ADAPTIVE RF SENSING
	CONCLUSION AND DISCUSSION
	REFERENCES
	APPENDIX IRB APPROVAL LETTERS FOR HUMAN SUBJECT TESTING

