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ABSTRACT

The past decade has seen great advancements in speech recognition for control of interactive

devices, personal assistants, and computer interfaces. However, Deaf people and people

with hard-of-hearing, whose primary mode of communication is sign language, cannot use

voice-controlled interfaces. Although there has been significant work in video-based sign

language recognition, video is not effective in the dark and has raised privacy concerns

in the Deaf community when used in the context of human ambient intelligence. Radars

have recently been started to be used as a new modality that can be effective under the

circumstances where video is not.

This dissertation conducts a thorough exploration of the challenges in RF-enabled sign

language recognition systems. Specifically, it proposes an end-to-end framework to acquire,

temporally isolate, and recognize individual signs. A trigger sign detection with an adaptive

thresholding method is also proposed. An angular subspace projection method is presented

to separate multiple targets at raw data level. An interactive sign language-controlled chess

game is designed to enhance the user experience and automate the data collection and

annotation process for labor-intensive data collection procedure. Finally, a framework is

presented to dynamically adjust radar waveform parameters based on human presence and

their activity.
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CHAPTER 1

INTRODUCTION

1.1 Motivation & Context

Users of American Sign Language (ASL) make up over 1 million people in the U.S. and

Canada, based on statistics provided by Gallaudet University (the world’s only university

designed to be barrier-free for deaf and hard of hearing students located in Washington,

D.C.). People in the Deaf community, who rely on ASL as their primary mode of communication,

rely heavily on technology as an assistive device as they navigate communication/language

barriers that status quo society often creates. Unfortunately, many technologies are designed

for hearing individuals, where vocalized speech is the preferred mode of communication, and

has driven a burgeoning market of voice recognition software and voice-controlled devices.

This precludes the Deaf community from benefiting from advances in technology, which, if

designed to be compatible with ASL, could in fact generate tangible improvements in their

quality of life.

Research related to technologies for the deaf or Hard of Hearing (HoH) has been ongoing

for the past three decades, but, has primarily focused on camera-based and wearable technologies,

such as gloves or wrist bands containing accelerometers and other sensors to translate sign

language into voice or text. Among these approaches, sensor-augmented gloves have been

reported to typically yield higher gesture recognition rates than camera-based systems.

However, such wearable gloves cannot capture intricacies of sign languages offered through
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Figure 1.1: Geometry of video and radar velocity measurements.

head and body movements [46, 119]. This issue is addressed by optical sensors, however,

video cameras trigger user concerns over privacy and require light to be effective.

In contrast, especially in the context of technologies for the Deaf/HoH users, RF sensors

have several advantages over alternative sensing modalities, which make them uniquely

desirable. RF sensors are non-contact and protective of privacy, fully operational in the

dark, and can even be used for through-the-wall sensing. RF sensors do not acquire personal

imagery. Therefore, they are considered to be more privacy protective sensors when compared

to video cameras. However, if the system security is compromised, there are still certain

information the intruder can infer from the environment such as presence of human [39],

number of people in a room [153], or person-specific activity or presence data (when acquired

enough model training data) [180]. Most importantly, RF sensors can acquire a new source

of information that is inaccessible to optical sensors: visual representation of kinematic

patterns of motion via the micro-Doppler signature [27], as well as more accurate velocity

measurements and range profiles. Figure 1.1 depicts the components of a 3D velocity

vector, v. While video sensors are more sensitive to motions in x-y axes, radars have
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higher sensitivity towards radial motions. This feature makes them promising complimentary

sensors for multi-modal recognition scenarios.

1.1.1 Involvement of Deaf Community

Previous investigations of these existing prototypes often fail to involve participants and

investigators fluent in ASL [16, 41]. A major aspect of my research methodology has involved

feedback from Deaf users, and advice and collaboration with Deaf researchers at Gallaudet

University, in particular Dr. Kenneth DeHaan and Dr. Caroline Kobek Pezzarossi.

In a preliminary focus group we conducted in 2019, Deaf participants reacted negatively to

the idea of having to use anything wearable in their daily lives. Indeed, wearable technology

limits signer’s freedom in conducting daily activities and is not designed with ASL movements

and language constraints in mind. In contrast, the Deaf participants reported that while

they used on a regular basis some form of video-based technology for communication in

their jobs; those video technologies have limitations (such as a narrow field-of-view, privacy

issues, and reliance on light). Although video tends to be viewed favorably for interpersonal

communication with society-at-large, Deaf participants in our focus group lamented its

limitations – video usage was dependent upon being in an office/work environment or with

access to cell phones (and battery life). A significant thematic point of discussion that

occurred with the Deaf participants was concern over technology enabling invasion of privacy

and potential surveillance of their personal and private lives.

There are also concerns about cultural exploitation and monetizing/commercializing

products with no involvement or ownership by the Deaf community. As researchers we

also have a responsibility with cultural sensitivity and awareness. Therefore, we believe

it is important to have a strong collaboration with Deaf community while designing and

commercializing Deaf-centric products, and there should be more initiatives towards including

Deaf researchers into the product development team so that we can ensure a fair economic

outcome.
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1.2 Linguistic Significance of Kinematics

In speech communication, quantitative measurements of the temporal dynamics have

resulted in fundamental insights into perceptual and mathematical properties of information

exchange [160] . Temporal quantification of the properties of signed languages has been, to

date, substantially behind that of speech due to the higher dimensionality of visual modality.

When sign language linguistics research began in 1960s, signs had been defined based on their

static properties: hand shape, place of articulation (i.e. location of the articulator/hand at

the beginning and end of the sign), and hand shape orientation [161].

A study on signers’ perception of writing in point-light displays [98] has demonstrated

that signers viewing the dynamics of hieroglyph writing can tell the difference between

‘strokes’ (information-bearing portions of point-light movement) and ‘transitions’ (movement

of the point-light from the end of one meaningful portion, to the beginning of another).

A 2x2 Latin Square design that assessed the difference in perception between signers and

non-signers, and users of Chinese and English, showed that sensitivity to transitions was

due entirely to experience with sign language, and not due to experience with hieroglyphic

writing systems.

Current neurolinguistic research indicates that dynamic properties of signs (i.e., speed

and temporal contour of motion) contribute crucial linguistic information to the meaning of

signs [120, 117]. Analysis of information content in speech vs. everyday motion using the

visual properties of the signal and optical flow [118, 12] has indicated that signers transmit

more information (in the sense of mathematical entropy) than humans carrying out dynamic

tasks, and that the intelligibility of a signing stream is crucially dependent on the ability

to parse entropy changes in visual information [121, 14]. RF sensors allow for improved

measurements of these temporal dynamics in conjunction with shape dynamics, combining

information picked up from the moving hands with the information on other articulators

(head and body).
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1.3 Sign Language-Sensitive Cyber-Physical & Human Systems

There has been extensive research towards technologies for the Deaf and HoH people

over the past three decades, and most of these works have focused on the translation of

sign language into text or voice. While Sign Language (SL) translation contributes towards

facilitating interaction between Deaf/HoH and hearing people, potential of more broad range

of applications to make their lives easier is overlooked. In contrast with many works focused

on sign language translation, this dissertation is concerned with recognition only to facilitate

interaction, which can be accomplished without needing to recognize all the words comprising

ASL.

Smart Deaf spaces [9] are environments that can respond to the natural language of the

Deaf community for the purposes of remote health, environment control, Human Computer

Interaction (HCI), and security. There are several key design considerations when designing

Deaf-centric smart spaces:

1. Culture: The Deaf culture and what feels more comfortable and natural for them

should be prioritized for the device control commands. Having an open space and

less visual noise in the room/office are important to facilitate a visually comfortable

environment.

2. Representation: Deaf people have very diverse backgrounds and the data used by

the prediction model (if there are any) should be comprehensive enough to represent

data of all the signers. Regional dialects and different versions of the same sign are also

other important factors to take into account while designing a sign language recognition

system.

3. Data Authenticity: The data utilized in the system should be acquired from Deaf/HoH

people and not from hearing individuals since SL is a language with an involved

grammar and has contextual nuances, and should be articulated by the fluent signers

to be able to capture those features. In our earlier study [69], we have found that there
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are significant differences in the data distribution of fluent and imitation signers which

affect the model performance. In another work [104], we have shown the importance

of acquiring data in a natural setting instead of having strict experimental limitations

and assumptions which do not represent the real world scenarios.

4. Ease of Operation: Usage of an accessible system should be intuitive and easy enough

so that it does not require any technical expertise or external assistance. In an RF

sensor based system, this would correspond to having a standalone system operating

continuously without needing user to connect it to an edge device or computer and set

it up every time when the system is being used.

Omitting any of these items can result in unfavorable user experiences. Therefore, a

special attention needs to be paid in the design process of Deaf-centric spaces.

A wide range of sensor modalities from cameras to wearable-based devices have been

proposed for SL recognition. Although sensor augmented gloves typically yield the most

accurate 3D positioning of the hands and fingers, they cannot capture facial expressions

and other body movements which play a significant role in SL grammar and can completely

change the meaning of a phrase. In addition, they are often cumbersome devices to be used

in a daily living scenario, and found intrusive by the Deaf community [47]. Since they need

to be worn every time when the user wants to use the system, it interferes with other daily

activities and causes uncomfortable experiences.

Video-based solutions, on the other hand, are currently the most effective way to capture

facial expressions. High 2D spatial resolution provides sufficient precision for scene understanding

and enables further methods like skeleton and body landmark estimation from 2D video

frames by utilizing Deep Learning (DL)-based methods. Inclusion of Infrared (IR) sensors

in cameras enables depth estimation as well with the cost of increased price and size. While

video-based solutions have a lot to offer, they have certain limitations which preclude them

to be ubiquitously used in home environments. First, they collect visual imagery which

raises serious privacy concerns about data security. Second, they can easily get affected by
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the lighting conditions of the environment, and skin and dress color of the people. Finally,

they require direct Line of Sight (LOS) within a close distance to be able to understand the

human motions accurately. These drawbacks limit the deployment of video-based solutions

for Sign Language Recognition (SLR) in indoor environments. Therefore, a more secure,

non-intrusive and non-invasive modality is needed.

Devices for interaction and communication with humans in a home environment should

utilize sensors with several key characteristics:

1. Privacy: Not acquiring any personal data which can compromise identity or personal

information of the individuals.

2. Data Security: The data should be acquired, processed, transferred and stored

securely without allowing intruders to interfere.

3. Accuracy and Precision: Perceiving the environment and people with enough

resolution and no or minimal error.

4. Reliability and Robustness: Environmental conditions and other external factors

should not affect the sensor in a degree that it malfunctions or provides misinformation.

While each sensor has its own pros and cons, RF sensors check all these requirements and

present distinct advantages over other sensor types. They can provide range, velocity and

angle information with high resolution in various data representation formats. Furthermore,

radars provide these information through physical measurements instead of relying on estimation

methods as used in video-based solutions. Time-varying radial range information can be

attained through round-trip time delay of the transmitted signal. Velocity information can

be obtained from the Doppler shifts of the transceived signal. Finally, azimuth and elevation

angles can be extracted from the time delay between the receiving antenna elements. The

raw RF data is flexible enough to generate range, velocity, angle profiles, Range-Doppler

Map (RDM), Range-Angle Map (RAM), Doppler-Angle Map (DAM), point clouds and any
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other RF data representations. This flexible nature of RF data becomes especially handy

when computational resources or the time allocated for data processing are limited. The

generated data representations then can be used to train various DL models which lead to

end CPHS applications.

Radars can also operate in adverse weather conditions from long distances which make

them suitable sensors for autonomous driving and other surveillance applications. They

can even be used for through-the-wall sensing in certain center-frequency bands. The

development of low-cost, low-power, high-resolution and small size antenna modules enabled

new research topics by allowing the use of RF sensors almost anywhere as a part of Internet-of-Things

(IoT) applications, smart home systems, autonomous driving, wearables and even cell phones

(e.g., Google Pixel 4). As a result, businesses including Google [112], NXP [143], Aptiv [147],

Motional and Ghost have started to build and commercialize radar-based devices.

1.3.1 Radar as an Emerging Modality

Figure 1.2: Radar-based CPHS applications.

Development of commercially available, small package, high frequency radars has enabled

numerous applications in automotive, health monitoring, security and IoT fields. Automotive

applications include traffic sign detection, object detection and tracking, pedestrian detection,
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blind spot detection, automated parking systems, and in-cabin sensing applications such

as occupancy count, and infant monitoring. Health monitoring applications such as vital

sign monitoring, fall detection and gait abnormality detection have also been investigated.

Other indoor applications include but not limited to gesture recognition, Human Activity

Recognition (HAR), SLR and presence detection.

There are several reasons why radars have such a wide range of applications:

• Data Reliability: Radars can provide consistent data in unfavorable conditions such

as adverse weather, very high or very low temperatures.

• Low Cost: Radars are relatively cheaper sensors when compared to LiDARs which

makes them more affordable to integrate into various systems.

• High Resolution Data: Radars can provide high range, velocity and angle resolution

depending on the RF waveform parameters and the antenna layout.

• Privacy Protection: Radars do not acquire personal imagery which alleviates the

privacy concerns for indoor applications.

• Small Package: Commercially available RF sensors have very small package sizes

that makes them easy to deploy in various environments.

• Color, Texture and Lighting Agnostic: Radars do not get affected from the color

or texture of the object, and having very high or very low lighting conditions in the

environment.

These features make radars well-suited sensors for various applications, and draw more

attention from the researchers each day. Figure 1.2 depicts the radar-based CPHS applications

for various objectives along with their sensing challenges.
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Figure 1.3: The Cycle of Adaptation.
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1.3.2 Adaptive RF Sensing

RF waveforms used in radar systems are often selected and adjusted based on the

application needs. These include maximum unambiguous range and velocity, range, velocity

and angle resolution, sampling rate, computational overhead and storage space. While having

a fixed set of waveform parameters work well for a particular task, when there exists multiple

tasks or a dynamic environment, utilization of different waveform becomes a necessity. For

instance the RF sensor might need to adjust its parameters based on existence of a person

in the room, or the activities they are performing.

With the development of software-defined RF sensors, it has become possible adjust

transmitted signal’s waveform parameters such as center frequency, bandwidth, Analog-to-Digital

Converter (ADC) sampling rate, Pulse Repetition Frequency (PRF), and number of receiving

antenna elements to be used depending on the needs of the application. However, these

selections are made manually prior to deployment of the system. In addition to sensing, if the

radar can understand the surroundings and takes action to adjust its waveform parameters

in an autonomous fashion, it would count towards cognition, and the radar can operate in

more optimal modes for different scenarios.
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Human brain considered to be the most powerful cognitive dynamic system. Haykin [74]

describes the functions of five building blocks of a cognitive dynamic system attributed to

Fuster’s Paradigm [52]:

1. Perception/Action Cycle (PAC): Extracting information about the environment

by processing the received signal, where the amount of information gain increases at

each cycle.

2. Memory: Encoding and storing the information, and recalling it when queried by

some cue.

3. Attention: Utilizing computational resources in an effective and efficient manner in

order to avoid the information overload problem.

4. Intelligence: Enabling an algorithmic decision-making process to choose a strategy

for the optimal solution of a predefined objective.

5. Language: Enabling an effective and efficient communication between people. Therefore,

Haykin discards the language form its model in the concept of cognitive radar and it

is not considered further.

Cognition mechanism is often depicted with PAC [71, 60]. Similarly, adaptation of radar

parameters for the environment can be depicted with Cycle of Adaptation as depicted in

Figure 1.3. Here, adaptation cycle first starts with RF sensor’s response acquisition from the

environment. This collection is realized by transceiving antenna elements. Upon extracting

the relevant information from the data, they are passed to the actuator to interpret and take

intelligent actions to optimize the resource allocation and radar parameters. When the new

actions are realized and used on the environment, the cycle is complete. The main objective

of the adaptation cycle is to mimic human operator to adjust the radar parameters and other

computational resources. By doing so, the RF sensor will be able to perceive, understand

and adapt to the environment intelligently.
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In addition to adaptive optimization processes we can perform on the hardware side,

there are certain computational stages we can optimize on the signal processing side as

well. For instance, generating high resolution optical images/videos from raw RF data using

computationally intensive algorithms in order to obtain range, velocity and angle information

can be cumbersome, and also increases the overall response delay of the system. Continuously

running these algorithms also allocates so much space in the random access memory (RAM)

of the processor and can interfere or block concurrently running computational threads used

by other modules of the system. This can be processing of other sensor’s data or a DL

model used for prediction. Such software-related artifacts can result in software crashes

and unfavorable user experience. Therefore, it is important to adapt the signal processing

pipeline for the environmental feedback to maximize the system efficiency.

Similarly, for the inference part, various DL models with different computational complexities

can be present in the system. Light-weight models can be used for initial device trigger (i.e.,

wake-word) detection and more sophisticated models can be preferred for actual command

sign/gesture understanding. This would alleviate the heavy computational load on the

Graphics Processing Unit (GPU) and keep its memory more accessible to other units.

1.4 Vision and Objectives of This Dissertation

This dissertation aims to enable accessible, interactive RF technologies controlled via sign

language. While the scope of this dissertation is not complete sign language translation, we

aim to explore the ways how RF technology can be utilized to build accessible applications for

Deaf/HoH people in an indoor environment. We first tackle the word-level ASL recognition

task and propose various signal processing and Machine Learning (ML) techniques to improve

the recognition performance of the system. Next, we consider the use case of sign language

in a daily living scenario where other human activities can also be part of the observed

data. Then, we consider the case of presence of multiple people in the radar Field of View

(FoV) and how to recognize activities of people individually. Next, we explore the ways
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of automating the data collection and annotation procedure via gamification. Finally, we

aim to improve the intelligence of the RF system by dynamically adjusting the waveform

parameters based on the actions in the environment.

Putting it all together, we examine different components of a sign language-sensitive

smart spaces. While our objective is not to replace our modalities in SLR, we rather show

how RF sensors can provide a new source of information and how they can be a well-suited

complimentary sensors when other sensors become suboptimal or inadequate.

Outcomes of this dissertation can be leveraged in other applications including building

STEM applications to teach RF sensing and AI/ML for high school students, or controlling

other electronic devices via sign language. Complete translation of ASL (ASL-to-text or

text-to-ASL) will only be viable when a large amount of annotated sentence-level data

are acquired, perhaps with the utilization of multiple sensors and adequate amount of

computational resources.

1.5 Related Work

Radar-based CPHS applications has been expanded to various fields and applications

including HAR [48], fall/fall risk detection [4], gait analysis [148, 67], healthcare monitoring

[131] and many more. A great deal of these innovative solutions utilize the recent advances in

GPU technology - enabling powerful ML and DL models to be used on end user devices. DL

methods used in radar-based recognition technology exploit different RF data representations

and processing techniques. This is due to flexible nature of the raw radar data in a sense that

it can be processed in many different ways to obtain range, velocity or angle information.

In the past, radar-based recognition frameworks often adopted conventional ML methods

such as Support Vector Machines (SVMs) [187], decision trees [126], random forest [174],

k-Nearest Neighbors (k-NN) [35] and Dynamic Time Warping (DTW) [156]. Different

feature extraction methods are used while employing these methods for recognition problems.

Although conventional ML methods work well on different radar-based tasks, they have
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several drawbacks which prevent the further improvement of robustness and generalization.

Firstly, in order to employ these methods domain expertise need to manually and heuristically

extract the features. Further feature selection algorithms may also needed to choose the

only most important features to maximize the model’s performance. Minimum Redundancy

Maximum Relevancy (MRMR) [115], neighborhood component analysis [54] and sequential

feature selection can be given as example to some of the popular feature selection methods.

Secondly, hand-crafted features, in most cases, refer to low-level statistical information such

as mean, median, variance, power level and amplitude, which are task specific. When the

model is trained with these low-level features and tested on a new dataset, the performance

of the model usually degrades. Therefore, conventional ML methods are not competent

enough to train a robust model with good generalization capability.

Deep neural networks (DNNs), on the other hand, tend to break these limitations as a

new branch of ML. DL approaches are able to extract a wide range of low-level to high-level

features without requiring any manual or heuristic effort, through hierarchical architectures.

Moreover, thanks to recent advances in GPU and parallel computing technology, they are

capable of processing large amounts of data within a very short time interval. However,

since DL approaches are data-driven methods, they require a handful amount of quality

data to be able to train the model with a good generalization capability. While there exists

a broad range of publicly available datasets for many image-based recognition tasks, this is

not the case for radar datasets. They are not only limited by the certain application areas,

also the number of samples is often not adequate to train very deep networks. Quality of

the provided datasets are also questionable. Moreover, since there exists a large number

of commercially available RF sensors, research groups use different RF sensors depending

on their budget and project requirements. These sensors’ operation characteristics and the

hardware/software artifacts observed in the data are so different that it is almost impossible

to utilize a data collected with a different sensor model even if they are operating at the same
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center frequency. Collecting real radar samples is also a labor intensive, time consuming and

an expensive task.

In order to overcome these problems, different synthetic data generation methods are

proposed such as Variational Auto-encoder (VAE) [97] and Generative Adversarial Network

(GAN) [57]. Most of the data augmentation techniques used in computer vision such as

flipping, rotating or shearing are also not applicable to radar data since RF data are often

presented to the networks in the form of heat maps, and the location of each blob in

the heat map has a physical meaning. Therefore, any modification made on the image

would correspond to a physical change in the observed environment and hamper the model’s

performance. As an alternative to synthetic data generation methods, Transfer Learning

(TL) techniques [149] are often employed to initialize the network weights with a better

starting point. In this way, a network trained on a different task with large amount data

can be leveraged to be used in a different task by only fine-tuning the network weights with

a small amount of real data. ImageNet [40] weights which are trained with over one million

images can be given as example to one of most popular network initialization methods.

While the earlier layers of the DNN models extract the low-lewel features such as edges,

corners and curves which are common in most computer vision tasks, deeper layers capture

higher-level features such as eyes, lips or nose in a facial image. Therefore, keeping weights of

the initial layers fixed and fine tuning the latter layers with the task of interest is a common

approach while employing TL methods. Although such pre-trained networks are not initially

going to be familiar with spatial features of RF data, they can extract primitive features

very effectively and can learn high level RF data features as more data acquired over time.

1.5.1 Gesture versus Sign Language Recognition

Machine learning algorithms are data greedy methods that require large amounts of

training samples to enable the network to learn complex models. Thus, it is a common

practice for researchers to acquire data from non-native signers, who may not know any

sign language, since it is an expeditious source of data. Although ASL is often likened to
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gesturing, it is important to recognize that ASL is a language, and not reduce signing to

mechanical hand and arm movements that can be easily imitated. Thus, while gestures can

be made using any participant, studies of ASL require participants for whom sign language

is their native language, e.g. Deaf/HoH individuals.

In an earlier study [66], it is found that there are also significant differences between

fluent ASL signers and imitation signers who do not know ASL but imitates a learned

sign for the experimental study, and signing of hearing imitation signers is distinguishable

from that of fluent ASL signers, exhibiting greater kinematic variation, more erratic cadence

and significant signing errors. Although some studies, e.g. [89, 162, 32, 49, 116], of ASL

recognition have employed hearing imitation signers or ASL learners, perhaps due to the

greater ease in recruiting a larger number of participants, the intended benefactor of Deaf

spaces are fluent ASL signers.

1.5.2 Machine Learning

Various ML methods are used to learn important data statistics and features of moving

targets from the radar signal. A handful amount of studies have been published in the

literature for radar target recognition using ML approaches [21, 2, 141]. Rathi et al. [141]

proposed a method which uses SVM and Näıve Bayes for classifying airborne targets. An

airborne radar is employed to obtain the measurements of the moving targets on the ground

and the sea surface. The authors in [2] employed a ground penetration radar data and

presented an automatic target recognition method based on an ML algorithm. The proposed

system is able to detect complex features which are relevant to threading targets. Carrera

et al. [21] presents an ML-based approach for target detection employing radar processors,

where the performances of random decision forests and Recurrent Neural Network (RNN) are

compared. It is shown that although the ML-based approaches are capable of differentiating

the targets from clutter with a good precision, they require feature extraction before the

final prediction. Gurbuz et al. [66] has benchmarked k-NNs, random forests and SVMs for
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different RF sensors operating at 10, 24 and 77 GHz center frequencies for ASL recognition

task.

With the recent advances in DL methods due to data availability and better hardware

components (e.g., GPUs), ML-based methods are regarded as outdated and inferior in

performance. However, they are lighter methods in terms of the computational complexity

when compared to DL methods, and high performances can be obtained even with a low

amount of training data.

1.5.3 Convolutional Neural Networks

Convolutional neural networks are one of the most popular DL models in many computer

vision tasks. They can effectively capture the spatial relationships of the input data with

2D and 3D kernels. Most popular Convolutional Neural Network (CNN) approaches include

VGG-Net [154], Alex-Net [99], Google-Net [165], Res-Net [75], Dense-Net [82] and Mobile-Net

[80].

In the last few years, different CNN methods are successfully used with different radar

system data types for various tasks such as object detection and recognition, HAR [150],

Hand Gesture Recognition (HGR) [164], SLR [106] and many other tasks [107, 19, 6, 129,

38, 173] with high accuracy performance. This is due to ability of convolutional kernels to

capture the spatial relationships in different RF data representations such as RDM, RAM,

µD, range profiles and point cloud data. In [164], a multi-feature encoder is designed to

extract 4D range-velocity-azimuth-elevation information, and followed by a CNN model on

an edge computing platform for real-time HGR. One weakness of CNNs is that they cannot

capture the temporal relationships in sequential data. Although 3D-CNNs are proposed

instead of 2D-CNNs for temporal data, the long term dependencies are still not being

captured effectively by the convolutional kernels.

1.5.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) [145, 94], on the other hand, proposed as a new

approach to capture the long term dependencies, utilizing memory cells. However, RNNs
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suffered from the vanishing and exploding gradient problems, especially when the input

sequences are long. Next, Long Short Term Memory (LSTM) networks [77] are proposed as

an alternative to RNNs, which were able to overcome the vanishing and exploding gradient

problems by using three different gates in their structure, namely, input, output and forget

gates.

In radar-based HAR problems, it is shown that RNNs can capture temporal and spatial

characteristics of the radar signal, which is crucial in HAR [6]. In [106], a short-time

averaging over long-time averaging-based motion detector is implemented to extract the

motion detected intervals in a time sequence data. A multi-task learning-based multi-branch

temporal CNN + LSTM model is proposed for SLR. In [189], hand gestures are decomposed

into sub-classes similar to the phonemes in speech recognition methods. The proposed

method predicts the class labels from in-progress gestures in unsegmented input streams.

1.5.5 Encoder-Decoder Networks

Encoder-decoder networks are type of networks which are composed of two subnetworks

to map the input data to output data. The encoder part tries to create a dense representation

of the input data (i.e., latent space), while the decoder part tries to reconstruct the output

from the latent space representation. Such models are heavily used in Natural Language

Processing (NLP) and image-to-image translation tasks. Some encoder-decoder variances

include VAEs, Convolutional Autoencoder (CAE) and stacked autoencoder (SAE). These

models are employed in various radar signal processing tasks as well [176]. Taking the

advantage of unsupervised pre-training technique, the network weights can be better initialized

before the actual task is started to learn when compared to training the network from scratch.

In [93], multi-branch sparse autoencoders are stacked to fuse the information obtained from

time-range and time-Doppler maps. In [92], a similar stacked autoencoder approach is

presented with a decision level fusion of multiple input representations (i.e., time-range,

time-Doppler and RDMs. The decision level fusion is implemented on the softmax outputs

with a majority voting approach. Seyfioğlu et al. [150] used convolutional autoencoders to
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classify human activities and shown that they can outperform CNN models since the model

weights has a better initialization when compared to training from scratch.

1.5.6 Training Under Low Sample Support

Although DL methods are proven to be very effective in various radar-based recognition

tasks, they are data-greedy methods. Therefore, when the number of samples in a dataset

is not sufficient or the distribution of the training data is different than the testing data,

their performance degrade and the models are more likely to be overfitting. In order to

eliminate this problem, different DL-based data augmentation methods are proposed which

are covered in this section.

Variational Autoencoders

VAEs are a type of encoder-decoder networks whose aim is to generate similar synthetic

samples to the original input. They achieve this goal by outputting a 2-dimensional vector

with mean and variance from a random variable. The created vector is used to sample an

encoding which is passed to the decoder. Since latent spaces are generated from a distribution

consisting of the same mean and variance, the decoder part learns from the nearby points

referred to the same encoded space. The diversity of the generated samples are controlled

through KL divergence. Reducing the KL divergence corresponds to optimizing the mean

and variance to be similar to that of the target distribution. Optimizing both the encoder and

the decoder parts together (reconstruction loss, decoding and KL divergence loss) generates

a latent space which preserves the resembling of close encodings on the local scale. VAEs

are considered to be effective generative methods since they work seamlessly on various data

types including continuous or discrete, temporal or non-temporal and 1D, 2D or 3D data.

Charlish et al. [25] employed VAEs to generate non-linear FM radar waveforms using

a custom reconstruction loss. The proposed VAE has capability to synthesize new radar

waveform modulations which have required ambiguity function characteristics, even though

they were not represented in the training data. In [91], VAE is coupled with an RNN to
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compute the anomaly level of the body motion based on the acquired point cloud. The

proposed model generates a spike in the anomaly level when an abnormal motion, such as

fall, occurs. Stephan et al. [159] proposed a parametrically constrained VAE with residual

and skip connections, which can generate the clustered and localized target detections on

the RA map. They present domain adaptation strategies whereby the neural network is first

trained using ray tracing based model data and then fine-tuned on the real sensor data. This

method improves the generalization and scalability of the proposed model even though it is

trained with limited real radar data.

Generative Adversarial Networks

GANs are one of the most popular generative methods. They are composed of two subnetworks:

a generator and a discriminator. While generator takes a noise vector as input and tries to

output a fake sample which resembles to the data distribution, the discriminator takes both

fake and a real sample and tries to differentiate them. The generator tries to minimize a joint

loss function while the discriminator tries to maximize it. GANs take longer time to train

when compared to VAEs, and they more sophisticated architectures for generative modeling.

Therefore, the use of GANs is considered and proved a lot more stable.

Labeling of the real data is one of the most labor-intensive tasks in computer vision and

radar-based recognition problems. However, utilizing the unsupervised generative models

like GANs, a large amount of synthetic data can be generated in an unsupervised manner to

be used in the training stage without needing the labor-intensive labeling tasks. Although

GANs are powerful methods for generative modeling, they suffer from a critical issue called

mode collapse where the model starts to output the same fake after certain number of

iterations. More recent GAN architectures propose various techniques to overcome this

specific problem.

Lekic et al. [109] proposed a Conditional Multi-Generator Generative Adversarial Network

(CMGGAN) which can produce scene images conditioned on the radar sensor measurements.
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The proposed model fuses the features from both radar and camera sensors. Rahman

et al. [137, 138, 134] tackled the problem of synthetic µD spectrogram generation using

Physics-Aware Generative Adversarial Network (PhGAN) architectures for HAR and SLR

tasks. They present a modified GAN architecture which makes use of the envelope trajectory

of the spectrograms. A custom loss function is proposed which takes the consistency of the

envelopes of the generated fake samples into account. This helps loss function to better

guide the training process, and generate more kinematically accurate µD samples.

Transfer Learning

TL is a sub-field of ML whose aim is to store the knowledge gained while solving a problem

and applying it to another but related problem. It is a popular approach in many computer

vision and NLP tasks. TL methods are alternative ways to synthetic data generation

techniques under low sample support scenarios. They can be utilized in combination with

other generative methods as well. In computer vision tasks, applying TL with ImageNet

weights is a common method, however since radar data looks significantly different than

other image datasets, the TL may not necessarily be as efficient as in the case of computer

vision tasks.

Seyfioglu et al. [150] used CAE to pretrain the network weights in an unsupervised

manner for identity mapping. The decoder part of the trained CAE is then removed and the

model is augmented with fully connected layers for classification. The modified architecture

transforms into a CNN model with pretrained weights instead of random or Gaussian weight

initialization. Later added layers are, then, fine-tuned for the task of interest. The pretrained

CAE model performed significantly better than other ImageNet-based TL methods. A

similar approach is followed in [68] for HAR using multiple radars operating at different

center frequencies. It is shown that while CNN models trained at different center frequencies

perform poorly on a cross-frequency dataset testing, TL across different frequency bands

helps to alleviate this problem.
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Huang et al. [85] proposed a method to transfer knowledge gained from a large unlabeled

dataset to small amount of labeled dataset. The proposed CNN architecture is composed of

stacked CAEs, along with a feedback bypass additionally. First, the reconstruction pathway

with stacked CAEs is trained in an unsupervised manner. Then, the pretrained CNN layers

are reused to transfer knowledge to the classification task, with feedback bypass introducing

the reconstruction loss simultaneously. In [84], fully connected network and U-Net based

two TL methods are proposed for classification with only 50 image patches. Chen et al.

[26] proposed a modified CNN which incorporates expert knowledge of target scattering

mechanism interpretation and polarimetric feature mining that assists the training of the

model and increases the classification performance.

Zhang et al. [188] presents a semi-supervised TL method based on GANs. Initially, the

GAN is trained with a variety of unlabeled samples in order to learn generic features of radar

images. Next, the learned network parameters are reused to initialize the target network

weights to transfer the knowledge gained from the unsupervised stage to specific recognition

task. Finally, the network is fine-tuned in a semi-supervised manner using both the labeled

and unlabeled training samples. It is shown that the proposed TL method outperforms the

randomly initialized model by accuracy difference of 23.58%. Zheng et al. [190] proposed a

semi-supervised recognition method composed of a GAN and a CNN. A handful amount of

unlabeled images are generated using the GAN, and they are fed into the CNN subnetwork

as input along with the original labeled images. In order to address the mode collapsing issue

faced in GANs, a dynamic adjustable multi-discriminator GAN architecture is introduced.

At the same time, label smoothing regularization method is applied to better regularize the

semi-supervised recognition model of the CNN. In other studies [50, 72, 96, 152], publicly

available pretrained models and radar datasets are utilized for TL.
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Other RF Data Augmentation and Model Regularization Techniques

Data augmentation techniques used in computer vision such as mirroring, shearing, random

cropping cannot be directly employed in radar-based recognition methods because of the

structural differences in the data types. Radar images correspond to physical measurements

and such distortions change the underlying physical structure of the observed scene. This

section covers the data augmentation and model regularization techniques tailored to RF

data.

In order to eliminate the overfitting problem on a small RF dataset, Ding et al. [43]

proposed three ways to augment the data, namely, translation, speckle noising and pose

synthesis. Pei et al. [133] introduced a multi-view DL framework for limited RF data. They

present a novel multi-branch CNN architecture to generate multiple views of the data as

input. The features of multiple views are progressively fused in consecutive layers of the

network. Song et al. [158] introduced an autoencoder-based cyclic network using adversarial

learning to generate synthetic samples at different azimuth angles. Hua et al. [81] proposed a

dual-channel CNN model for classifying the dataset with a small number of labeled samples.

The proposed method, first, enlarges the labeled sample set using a neighborhood minimum

spanning tree, and then extracts the spatial features using the dual-channel CNN.

Zhang et al. [186] proposed a feature augmentation and ensemble learning method. The

selected features from the CNN layers are concatenated to obtain an enriched representation

for the recognition. The Adaboost rotation forest is proposed instead of using a softmax

layer for classification to realize the low sample-based recognition task with merged features.

In [181, 151] fully connected layers are replaced with CNN layers and deep memory CNNs

are proposed to alleviate the overfitting problem caused by low-sample support. Zhai et

al. [185] presents a transferred max-slice CNN with L2-regularization term. The proposed

method augments the feature space and enables the recognition of the targets with a greater

performance using a small number of samples.
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1.6 Challenges

Just like any other modality radars also have certain limitations yet to be tackled. The

proposed radar-based recognition methods in this work make use of the dynamic movements

of the arms, hands and fingers. Therefore, static hand shapes cannot be recognized since

they require 3D imaging of the skeleton joints. Although imaging radars have capability to

reconstruct the depth map of the objects and the scene, they require longer observation times

and large number of TX-RX antenna elements in both azimuth and elevation dimension.

Schuessler et al. [146] proposed a radar-based solution to detect static hand shapes in ASL.

However, since it is an imaging radar, the target (hands) should be stationary during radar’s

observation time. Having longer observation times reduces the frame rate and hinders the

applicability of the proposed solution for the recognition of dynamic motions which are

crucial for most of the signs. In addition, the designed radar system has 47 RX antenna in

both azimuth and elevation directions with a bulky hardware, which makes it hard to deploy

in indoor environments with limited spaces.

In this work, we are not concerned with the reconstruction of the object. Instead, our

objective is to extract the characteristics of kinematic motions over time and utilize them to

recognize different activities and signs. It has been shown that high temporal resolution of

radar can compensate for the low spatial resolution for hand gesture recognition applications

[112]. Note that motivation of employing RF sensors in CPHS applications is not to replace

other sensor modalities with radar. Instead, we show the capabilities of the radar with

its distinct advantages like high temporal resolution and high sensitivity towards radial

motions, and show that radars have valuable information to offer where other sensors can

become suboptimal or inefficient. Therefore, radars can be great complimentary sensors

when integrated into a system with other sensor modalities like camera or LiDAR.

RF-based recognition methods in CPHS applications have several other challenges which

preclude machine understanding of human activities and gestures with high accuracy and

robustness:

24



1. Temporal Segmentation: RF data are usually in the form of time stream of raw

In-Phase and Quadrature (I/Q) ADC samples. There is no prior information regarding

where a motion is occurring in the time-series data which is crucial to spot when

an activity or gesture starts and ends. Missegmentation of the data can result in

incomplete actions/gestures which would confuse classifiers and can cause wrong predictions.

Therefore, a way to autonomously and accurately segment the data in temporal domain

is a necessity.

2. Open-Set Problem: The number of possible human motions/activities are almost

infinite. However, most of the existing studies limit the number of experimental

activities to be very small (10-20). These methods are often not expandable to new

classes, and when the RF sensor experiences a data sample which does not resemble

to any of the learned classes, it is unconfidently dumped into one of the classes. Usage

of an ”unknown” class is also a sub-optimal solution since the unknown sample’s data

distribution might resemble more to one of the valid classes, and the representation

and generalization capability of the unknown class is also questionable considering so

many possible human movements.

3. Multi-Person Differentiation: When multiple people exist in the radar FoV, back-scattered

signals from all the targets superimpose on top of each other. This causes generated

RF data representations to have signatures from different targets and it becomes

challenging for classifiers to identify the correct motion. Resolving targets in range-angle

domain and differentiating their signatures from each other is both a crucial and a

challenging task, especially when targets are close to each other.

4. Data Scarcity: Collecting real RF data with human subjects in a laboratory environment

is a time consuming, labor intensive and an expensive task. This becomes even

more challenging when the focus group of people are not easily accessible (e.g., Deaf

community). In addition, there is no consensus on the radar type, waveform parameter
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selection and format of the publicly available datasets, leaving them unusable when

any of these items do not match-up.

5. Robustness Across Multiple Tasks: Radar waveform parameters affect range,

velocity and angle resolutions along with their maximum and minimum unambiguous

boundaries. They are often optimized according to application requirements. However,

when the applications consists of different tasks, using the same waveform can be

suboptimal and can introduce unnecessary computational overhead to the system.

Therefore, the waveform parameters need to be adjusted based on dynamic environmental

changes and for different tasks in an autonomous fashion.

Sensing challenges in RF data are the root causes of the subsequent learning challenges.

Figure 1.4 depicts the aforementioned issues yet to be solved.

Figure 1.4: Sensing and learning challenges of RF data.
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1.7 Contribution of This Dissertation

RF-based CPHS applications present both sensing and learning-related challenges. Overlooking

or omitting any of these issues can result in suboptimal and unfavorable CPHS applications.

This dissertation aims to tackle all of these challenges individually, but in a correlated and

compatible fashion. Main contributions of this dissertation can be listed as:

1. Automated Motion Detector: RF data are often in the form of a time-series of

complex I/Q samples. An automated labeling strategy is needed to locate where a

motion is starting and ending. This work presents a short-time averaging over long-time

averaging (STA/LTA) based motion detector [106] to spot the starting and ending times

of a motion. The method first generates the µD spectrogram of the data. Then, upper

and lower envelopes of the spectrogram are extracted, and their Euclidean distance

is computed. The resulting 1D vector is passed to STA/LTA-based detector to find

the starting and ending points of the motions. A 1D binary masking vector with the

same length as the input vector is outputted for subsequent segmentation of individual

activities. Details of the proposed method are explained in Section 3.4.

2. RF Data Fusion Classifier: The raw complex RF data do not provide any meaningful

information without certain pre-processing steps to extract range, velocity and angle

measurements through various signal processing techniques. It is common practise

to generate µD spectrograms, RDMs, RAMs, range profiles, point clouds and other

data representations to visualize and inspect the data. These data representations are

further used to train DL classifiers and enabling them to learn certain spatial features

of RF data better instead of enforcing the Deep Neural Network (DNN) model to figure

out these features by itself. In this dissertation, we propose a Joint-Domain Multi-Input

Multi-Task Learning (JD-MIMTL) network [106] to fuse information gathered from

multiple RF data representations. Each data representation is processed parallelly

with time-distributed 2D and 3D CNN blocks followed by LSTM layers to capture the
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temporal dependencies. Auxiliary tasks for SLR such as one versus two handedness,

major hand location, hand movement type, daily activity versus SL and number of arm

strokes are used to regularize the network training. The proposed method is shown to

outperform other State-of-the-Art (SOTA) methods by a large margin. Architectural

and implementation details of the JD-MIMTL network are discussed in Section 3.5.4.

3. Trigger Sign Detection: In order to activate a SL-enabled CPHS device, a wake

sign should be accurately recognized within a stream of RF data, and the device

should activate only when the articulation of the wake sign is completed. Trigger sign

detection task differs from conventional classification in a sense that trigger sign should

be intuitive and making sense for the context. In addition, it should be recognized

with high recognition rate to prevent false alarms and false rejections (i.e., missing the

actual trigger). Incomplete or overextended trigger attempts should also be taken into

account. Therefore, this work studies the design considerations of trigger signs both

from device perception and user experience point of views. In this work, an adaptive

double-threshold Cumulative Score Aggregation (CSA) approach [106] is proposed to

recognize the wake sign in RF data streams. The proposed method is shown to yield

better detection rates with lower false rejections while preserving the low false alarm

rate. Details of the proposed motion detection approach are provided in Section 3.6.1.

4. Automation of Natural ASL Data Collection via Gamification: An important

challenge in SL-sensitive CPHS applications is the lack of publicly available RF datasets

for model training. Not just the amount of data, but the quality of data is also

critical. Just like any other language, SLs have their own grammar, linguistic features,

dialectal nuances and diversities across people. Traditional way of collecting SL data

in a laboratory environment from people whose primary way of communication is

not SL results in pristine datasets which do not well represent the features of actual

SL. Training learning models with such datasets unsurprisingly yield overoptimistic
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results. When these models are tested on real-world SL data collected free from

experimental restrictions and assumptions, they are likely to underperform and cause

poor user experience. In this work, we developed an ASL-controlled chess game where

the pieces are moved on the board with ASL sign articulations instead of mouse

clicks. The proposed method [104] acquires data from both camera and an RF sensor

simultaneously during the game play, and processes it, uploads it to a cloud platform,

and runs the prediction model and the chess engine in the backend. This CPHS

application eliminates the need for an external operator to monitor the data collection

procedure. Moreover, the game interactively communicates with the user through a

pop-up window to correct the ground truth labels of the mispredicted samples. Finally,

the game is designed in a way that more words can be added to its dictionary. Such

flexibility paves the way to curate a large and diverse multi-modal SL datasets for

SLR tasks. This approach enables acquisition of natural SL, in an enjoyable and

sustainable manner in long term. Implementation and gameplay details of the designed

SL-controlled chess game are provided in Section 5.2.2.

5. Multi-Person Separation: Most RF-based CPHS techniques assume only one target

in the radar FoV. However, presence of multiple targets in the scene is a very typical

case in real-world environments. Their backscattered radar signal returns superimpose

on top of each other, making generated data representations hard to interpret. Consequently,

DL models trained with single target data samples will fail to correctly classify the

activity of the targets individually. Many of the CPHS works considering multiple

targets focus on counting the number of people present and tracking them in a room

environment. Moreover, separation techniques applied on the pre-processed data are

not scalable to other domain representations. In this work, we propose an Angular

Subspace Projection-Based Separation (ASPS) method [103] to resolve the raw data

of the targets in the scene. This approach differs from current SOTA target separation

methods in a sense that it can output projected raw data for each target. This low-level
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separation technique enables to generate any RF data representation using the project

raw data for a particular target. Efficacy of the proposed method is demonstrated

for a HAR application in an end-to-end framework. In addition, a multi-view DNN

is also proposed for very close targets when the angular resolution of the device is

not sufficient to completely resolve the targets in angular domain. Algorithmic details

and performance for varying number of antenna elements of the ASPS method are

explained and discussed in Section 4.2.3.

6. Human-Centric Adaptive RF Sensing: It is a common practise to optimize

the radar waveform parameters based on the application requirements. However, for

RF-controlled CPHS applications, these parameters are often fixed before deploying the

system. Continuously running the radar system in its fully functional mode with high

sampling rate and a large bandwidth allocates so many resources like high memory

and RAM usage to store and process the data, GPU memory to make inference

using the DL-based prediction model on the edge device. Therefore, a more strategic

approach is needed to intelligently switch between working modes. This work presents

an automated framework to switch between different working modes of the RF system

based on the activities of the person. To the best of our knowledge, this dissertation

is the first study on introducing human-centric adaptive RF system where radar takes

action to adjust the waveform parameters and the operation characteristics according

to human behavior. The proposed system not only optimize the resource allocation

intelligently, but also reduces the computational overhead significantly without compromising

the recognition performance. Details of the proposed fully-adaptive RF waveform

selection approach are discussed in Section 6.3.
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CHAPTER 2

RADAR BACKGROUND

2.1 Introduction

RADAR is an acronym for ”RAdio Detection and Ranging”. It is a technology that

uses radio waves to detect, locate, track and identify objects. It is used in a wide range of

applications including aviation, military, navigation, weather monitoring and traffic control.

Radar systems are often customized to meet the application requirements and for specific

objectives. For instance, weather radar is used to monitor precipitation and severe weather

conditions. Air traffic control radars are used to track the position of planes and aircrafts in

the airspace. Military radars are used to detect missiles, aircrafts and other potential targets.

Ground penetrating radars are used for subsurface imaging in archaeological and geological

studies. Police radars are used to measure the velocity of the vehicles on the roads.

Until the last decade, radar was mostly associated with military, intelligence and defense

related applications with strict regulations. In the past decade, recent developments of

low-cost, small package, high frequency radar systems enabled more civilian applications of

off-the-shelf radars. Automotive radars are started to be used in semi-autonomous and

fully-autonomous driving applications. Smart home devices and even cell phones (e.g.,

Google Pixel 4) have started to utilize radars as a complimentary sensor. Radar’s capability

to provide range, velocity and angle information of the objects in the scene with high

resolution makes it an indispensable sensor for certain applications.
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2.2 Radar Principle

Radar operates based on the principles of broadcasting radio waves, receiving their

back-scattered reflections from objects in the environment, and analyzing the received signal

to extract certain information about the objects. First, the radar system generates short

pulses of radio waves using a transmitter antenna. The generated pulses propagate through

the airspace with the speed of light. A portion of the waves is reflected back to radar

when they encounter an object or obstacle. Reflected signal strength is related to object’s

shape, material and reflectivity coefficient. This constant is often referred as Radar Cross

Section (RCS). The reflected waves are received by a receiver antenna. The receiver module

is typically scheduled to listen for reflected waves during the idle times between transmitted

pulses.

Radial distance of the targets from the radar antenna can be computed from the round-trip

time delay of the transceived waves. Velocity of the moving targets can be found using the

Doppler principle. Moving objects in the radar FoV cause frequency shift between the

transmitted the received waves. This phenomenon is called Doppler shift, and it’s value is

related to object’s moving direction, center frequency of the radar system and the radial

speed of the object. If there are multiple transmitter or receiver antennas, azimuth and

elevation angles of the targets can also be computed by analyzing the phase shift between

the antenna elements considering the antenna array geometry. The received signal often

undergoes certain signal processing steps to enhance the signal quality, filter out the noise

and clutter, and extract useful information. The specifications and capabilities of a radar

system can vary depending on the use case.

2.2.1 Radar System and Hardware

A typical radar system consists of the following components:

• RF Generator

• Amplifiers
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• Transmitter

• Receiver

• Mixer

• Analog to Digital Converter

An electromagnetic wave is created, amplified and transmitted through RF Generator,

Amplifier and Transmitter, respectively. The back-scattered signal from the objects is

collected by the Receiver, amplified and passed to a Mixer which mixes it with the transmitted

signal. The output signal from the mixer is called as Intermediate Frequency (IF) signal.

IF signal’s instantaneous frequency and phase are equal to the difference of instantaneous

frequencies and phases of the two input signals, respectively. The IF signal is sampled and

digitized by an ADC to be further processed by a computer. Figure 2.1 depicts the overall

block diagram of a typical radar system.

Figure 2.1: Radar system block diagram [86].

2.2.2 Radar Types Based on the Waveform

This section discusses and provides information about different types of radar systems.

Radar systems can be classified into two types based on the type of signal they are operating

with:
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• Pulse Radar

• Continuous Wave Radar

Pulse Radar

Pulse radar operates by transceiving a high power signal. It waits for the reflected signal

to get received and then transmits the next signal. It employs a single antenna for both

transmitting and receiving signals with the help of a duplexer which isolates the receiver

from the transmitter modules while permitting them to share a common antenna. The

antenna transmits a pulse signal at every clock cycle. The time interval between the two

clock pulses should be long enough so that the reflected signal corresponding to the current

clock pulse should be collected before the next clock pulse.

A variant of pulse radar is Moving Target Indication (MTI) Radar. It uses the Doppler

effect phenomenon to differentiate the moving targets from stationary objects.

Continuous Wave Radar

Continuous Wave (CW) radar transmits a continuous signal or wave at a constant frequency

at all times. Similarly, they utilize Doppler effect for moving target detection and speed

measurement. CW radar systems can further be divided into two categories: Modulated

and Unmodulated radar systems.

Unmodulated CW radar systems require two separate antennas for transmitting and

receiving the signal. They can only measure the velocity of the targets, but not the radial

distance of the targets from the radar. Velocity is extracted from the instantaneous rate of

change of the target’s radial range by calculating the Doppler shift of the reflected signal.

Frequency Modulated Continuous Wave Radar

A variant of modulated CW radar is called Frequency Modulated Continuous Wave (FMCW)

radar whose center frequency linearly increases during each pulse. Each pulse sweeps a
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Figure 2.2: Chirp signal representation [86].

certain bandwidth. Such pulse whose frequency increases with a constant rate over time

is called a chirp. This radar system requires two separate antennas for transmitting and

receiving the radio waves. It can measures not only the velocity of the target, but also the

radial distance of the target from the radar system. Figure 2.2 (left) shows the time-frequency

representation while the right one shows the time-amplitude plot for a chirp signal. A chirp

is typically characterized by its start frequency (fc), bandwidth (BW ) and duration (Tc).

The slope (S) of the chirp defines the rate at which the chirp ramps up.

Figure 2.3: FMCW radar system block diagram [86].
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Figure 2.3 depicts the FMCW radar system. Here, the frequency synthesizer generates

the FMCW chirp together with the Voltage Controlled Oscillator (VCO). The output of the

power amplifier is passed to transmitter antenna for broadcasting, and mixer to down-convert

the received and amplified signal. The resulting IF signal from the mixer is then low pass

filtered, amplified and finally passed to an ADC. The sampled signal is then transferred to

a computing device for further processing.

A frequency mixer is a 3 port device with 2 inputs and 1 output which combines two

input signals to generate a new signal with a new frequency [87, 140]. For two sinusoidal

input signals x1 and x1, the output signal, xoutput, can be written as:

x1 = sin(ω1t+ ϕ1) (2.1)

x2 = sin(ω2t+ ϕ2) (2.2)

xoutput = sin((ω1 − ω2)t+ (ϕ1 − ϕ2)) (2.3)

Notice that the instantaneous frequency of xoutput is equal to the difference of the instantaneous

frequencies of x1 and x2. The phase of the xoutput is also equal to the difference of the phases

of x1 and x2.

The fundamental advantages of an FMCW radar include:

• Ability to measure both range and velocity simultaneously.

• High range and velocity resolution.

• Enabling of performing signal processing at a low frequency range.

2.3 FMCW Radar Metrics and Parameters

The received FMCW signal is a time-delayed and frequency-shifted version of the transmitted

signal. The time-of-flight of the transceived signal, τ can be derived as:
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τ =
2d

c
(2.4)

where d is the radial distance of the object from the radar platform and c is the speed of

light. A single target in the radar FoV creates an IF signal with a constant frequency given

by:

IFfrequency =
2Sd

c
, where S =

BW

Tc

(2.5)

where S is the slope of the chirp. IF bandwidth is limited by the ADC sampling rate Fs

given by:

Fs =
S2Rmax

c
(2.6)

where Rmax is the maximum unambiguous range. This gives the maximum unambiguous

range of the radar as:

Rmax =
Fsc

2S
=

FscTc

2BW
(2.7)

Range resolution, Rresolution, of a radar system is the ability to differentiate two or more

objects in range domain. It solely depends on the BW and can be computed by:

Rresolution =
c

2BW
(2.8)

It can be noticed that higher BW yields better range resolution. The relationship between

Rmax and Rresolution can also be written as:

Rmax =
Rresolution

2
Nsamples (2.9)
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where Nsamples is the number of ADC samples per chirp. When two targets are closer than

Rresolution, they will look like a single target in the frequency spectrum. The maximum

allowed BW of the RF system should comply with Federal Communications Commission

(FCC) legislation.

When two targets moving at different speeds are equidistant from the radar, their range

spectrum will have a single peak they cannot be resolved in range domain. Phases of the two

targets can be used to estimate the velocity of the targets by computing the phase difference

measured across two consecutive chirps. The maximum unambiguous velocity, vmax that can

be measured by consecutive two chirps is given by:

vmax =
λ

4PRI
, PRI =

1

PRF
, λ =

c

fc
(2.10)

where λ is the wavelength in meters, fc is the center frequency, PRI is the pulse repetition

interval and PRF is the pulse repetition frequency. If any of the targets move faster than vmax,

aliasing (i.e., wrapping of the peak to the opposite side of the spectrum) in Doppler spectrum

would be observed. Estimating over more chirps instead of two would yield better estimation

results. Coherent processing of Nc chirps constructs a Coherent Processing Interval (CPI)

(i.e., frame). The velocity resolution, vresolution, can then be written as:

vresolution =
2vmax

Nc

(2.11)

The total frame duration, Tframe, can also be computed as:

Tframe = NcPRI (2.12)

Figure 2.4 depicts the attributes of a typical FMCW radar chirp, while Figure 2.5 shows

the frame structure.

In order to locate the object in the 2D or 3D space, azimuth and elevation angles of the

object is also needed in addition to the radial distance. DoA of a target can be estimated by
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Figure 2.4: Typical FMCW chirp [42].

Figure 2.5: Typical FMCW frame structure [42].

utilizing the phase difference of the collected signal from multiple receivers which are spaced

apart with a distance, d. Therefore, estimating the DoA of an object requires at least two

RX antennas.

Figure 2.6: DoA estimation using two RX antennas [139].
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Figure 2.6 depicts the geometry of a radar antenna array with two RX antennas separated

by distance d. The reflected signal approaches at an angle of θ with respect to the radar, and

is collected by both RX antennas. The signal received at the secondary RX antenna travels

an additional distance of d sin θ which corresponds to a phase difference of ω = (2π/λ)dsinθ

between the two RX antennas. Therefore, the DoA, θ, can be computed as:

θ = sin−1

(
ωλ

2πd

)
(2.13)

Since ω, can be estimated only within the range (–π, π), the equation 2.13 can be

re-written with the unambiguous FoV of the radar as:

θFoV = ± sin−1

(
λ

2d

)
(2.14)

When the inter-antenna distance, dRX = λ/2, the maximum FoV is achieved, θFoV = ±90◦.

In general, a MIMO radar system has more than two RX antennas. Angular resolution, ∆θ,

of a radar system can be written as:

∆θ =
λ

NRXdRX cos θ
(2.15)

where NRX is the number of RX antennas. Notice that ∆θ depends on target’s DoA, θ, and

when the target is located in the bore-sight view (θ=0) and dRX=λ/2, angular resolution

becomes ∆θ = 2
NRX

.

2.3.1 Principle of MIMO Radar

Angle resolution of a radar system can be doubled by doubling the number of RX antennas

(i.e., NRX). The same enhancement can be achieved by utilizing the MIMO concept where

one more TX antenna is added to the array geometry. The radar system depicted in Figure

2.7 has two TX and four RX antennas. The signal emitted from the right TX antenna will

have phases of [0, ω, 2ω, 3ω] at the receiver Uniform Linear Array (ULA). Since the left TX

antenna is placed at a distance of 4d from the right TX antenna, any signal emitted from
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Figure 2.7: Virtual array formation with MIMO concept.
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it will travel additional distance of 4dsin θ. Consequently, they will have additional phase

shift of 4ω which can be listed as [4ω, 5ω, 6ω, 7ω]. The phase sequence of [0, ω, 2ω, 3ω,k

4ω, 5ω, 6ω, 7ω] can be obtained by concatenating the phase sequences of four receivers for

the signals emitted from two TX antennas. Such phase sequence is equal to the one can

obtained from one TX and eight RX antennas. This process is called virtual array formation

or synthesis, and it can be generalized to arbitrary number of NTX × NRX virtual arrays

elements. Therefore, utilization of MIMO radar principle has the advantage of multiplicative

increase in the number of virtual antenna channels, which results in finer angle resolution.

The MIMO concept can also be extended to multi-dimensional array geometries.

Multiplexing Strategies for MIMO Radar

In MIMO arrays, RX antennas must be able to separate the signals emitted from each TX

antenna. There exists various techniques to achieve this separation, and in this section

two of these methods are discussed: Time Division Multiplexing (TDM) and Binary Phase

Modulation (BPM).
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Figure 2.8: MIMO radar multiplexing methods.
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Time Division Multiplexing

In TDM-MIMO, TX antennas emit signals in a scheduled manner. Depending on the chirp

sequence in the frame configuration, they can transmit chirps consecutively. Figure 2.8a

depicts the TDM-MIMO chirp sequencing for the case of NTX=2. In the collected data,

each channel will correspond to one virtual antenna (i.e., TX-RX pair).

Binary Phase Modulation

TDM-MIMO is a simple method to implement, however it does not utilize full transmission

capability of the system since only one transmitter is activated at a time. Different from

TDM-MIMO technique, BPM-MIMO activates and transmits signal from both TX antennas

simultaneously. While configuring the chirps, the first chirp, Ca, is configured to use both

TX antennas with zero phase (Φ=0◦), while the second chirp, Cb, is configured to use again

both antennas but with phases of 0◦ and 180◦, which is equivalent to multiplying each chirp

with +1 and –1. One iteration of transmission of Ca and Cb is called a chirp loop. This

process allows received data to be subsequently decoded by each virtual channel. Allowing

simultaneous transmission from all TX antennas increases the total transmission power per
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Figure 2.9: Range information extraction from raw data.
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time slot which results in an Signal-to-Noise Ratio (SNR) increase of 10log10(NTX). Figure

2.8b visualizes the chirp configuration for BPM-MIMO multiplexing.

One downside of employing MIMO techniques is the reduction in PRF which results in

lower maximum unambiguous velocity.

2.4 Radar Signal Processing

Although radar signal processing is a wide topic to cover, this section primarily discusses

the most common ways of processing raw data of FMCW MIMO radars. RF data are often

in the form of time-series of complex I/Q samples. After a reshaping operation, the data

can be converted to a 3D array with the shape of (Nsamples, Nc, NTX ×NRX). ADC samples

in the first and the second dimensions are also referred as fast-time and slow-time samples,

respectively.

Fast Fourier Transform (FFT) is one of the most commonly employed radar signal

processing technique to extract useful information from the raw data. FFT is more efficient

version of Discrete Fourier Transform (DFT). It transforms a data from its original domain
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to a representation in the frequency domain. In essence, it decomposes a signal into the

frequency components that build it up.

2.4.1 Range Extraction

Applying FFT along the fast-time samples, range spectrum can be obtained. Peak

locations along the spectrum indicate the radial distance of the targets, and the magnitude

indicates the received signal strength. Figure 2.9a shows an FFT along the fast-time samples

for range extraction for human arm gesture movement. Repeating this for each chirp results

in a time series of range information in a heatmap matrix called Range Profile (RP). Figure

2.9b shows a sample of RP for human arm gesture for 3 sec.

2.4.2 Micro-Doppler Spectrogram

In human activity observation, the occurrence of kinematic motions in the radar FoV

are reflected in the received signal’s frequency components. Micro motions generated by

hand, fingers and limbs result in µD [27] modulations centered around the main Doppler

shift caused by the torso motion. The µD spectrogram, S, (also called µD signature) is

a time-frequency analysis technique that can be used to observe these patterns and can

Figure 2.10: µD spectrogram sample for different activities and hand gestures.
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Figure 2.11: Range-Doppler processing and target detection of two targets.

(a) Range-Doppler map. (b) CA-CFAR target detection result.

be computed as the square modulus of the Short-Time Fourier Transform (STFT) of the

discretized input signal:

S(t, w) =

∣∣∣∣∫ ∞

−∞
h(t− u)x(u)e−jwt du

∣∣∣∣2 (2.16)

where h(·) is the windowing function, x(·) is the received signal. Reflected signals from the

stationary objects such as the walls or furniture, will locate at 0 Hz or 0 m/s in the µD

spectrogram. Figure 2.10 shows a sample µD spectrogram for different human activities.

2.4.3 Range-Doppler Processing

Both range and velocity information can be jointly obtained via range-Doppler processing.

While a range-FFT along fast-time resolves objects in range, a Doppler-FFT along the

slow-time resolves each row (i.e., range bin) in velocity. Doppler FFT should be applied

separately for each CPI in a non-overlapping windowing fashion, resulting in time-series of

range-Doppler heatmaps with the same frame rate as the radar CPI. Peaks appear at targets’

range and velocity bins. The resulting heatmap matrix is called range-Doppler map. Figure

2.11a shows a sample RDM for two targets located at 50 and 100 m away from the radar

with radial velocities of 10 and -15 m/s, respectively.
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2.4.4 Target Detection

A target detection method is needed in order to determine the number of targets, and

range, velocity and angle information of the targets. In essence, most detection methods

work by comparing the signal with threshold. The threshold is, in general, a function of

both the probability of detection and the probability of false alarm. In this section, we

study one of the most widely used adaptive thresholding method: Cell Averaging Constant

False Alarm Rate (CA-CFAR). CA-CFAR extracts noise samples from both leading and

lagging RDM bins (i.e., training cells) around the cell under test (CUT). The noise power

estimate, Pn, can be computed as [142]:

Pn =
1

NT

NT∑
m=1

xm (2.17)

where NT is the number of training cells and xm is the sample in each training cell. Guard

cells are chosen adjacent to the CUT, both leading and lagging it. They serve for avoiding

signal components from leaking into the training cells, which could adversely affect the noise

estimate. The threshold factor, a, can be written as:

a = NT (P
−1/NT

fa − 1) (2.18)

where Pfa is the desired false alarm rate. When the power of CUT exceeds a, detection

occurs. Figure 2.11b shows the CA-CFAR detection result for the RDM given in Figure

2.11a.

2.4.5 Angle Estimation

In order to locate a target in 2D or 3D space, estimation of azimuth and elevation angles

are needed. After detecting targets in range-Doppler domain for each channel (i.e., TX-RX

pair), the measured phase difference across channels can be used to estimate the angle of

arrival of the object. An FFT across channels of detected CA-CFAR peaks resolves the

objects in angle domain even if they are located in the same range-Doppler bin. Other angle
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estimation methods like digital beamforming, MUSIC [73] and ESPRIT [144] can also be

applied for enhanced angular resolution.

2.5 Conclusion

Recent advances in FMCW MIMO radar technology enables various ways of processing

data and achieving better target detection and tracking results. Software-defined adaptability

of radar parameters also paves the way for environment-aware waveform selection. Such

functionality leads to more optimal use of the hardware based on the application.
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CHAPTER 3

SIGN LANGUAGE RECOGNITION IN A DAILY LIVING

3.1 Introduction

There has been much research on the use of RF sensing for hand gesture recognition

[61, 177], especially since the development of low-cost, low-power, high resolution, integrated

millimeter wave RF transceivers [7]. However, most current research involves controlled data

acquisition with the participant located in a fixed position relative to the radar, articulating

only a single gesture or sign. A critical challenge that has not been adequately addressed

in the literature, however, is the challenge of ASL recognition in the context of daily living.

To the best of our knowledge, this study [106] represents the first to consider triggering

and command recognition of RF-sensor enabled devices under more realistic conditions,

where the RF data is acquired in a continuous fashion to capture mixed sequences of

gross body motion/activity intertwined with ASL signing. In particular, we analyze the

design considerations for selection of a trigger sign based on kinematics, replicability, and

recognition accuracy. Whereas current approaches rely on just one RF data representation,

we propose a JD-MIMTL framework coupled with a motion detector to isolate the intervals

over which the user is engaged in meaningful movement, and thus prevent unnecessary

expenditure of computation resources when the RF system is not being used. Figure 3.1

shows a flowchart providing an overview of the proposed approach. Our results show that

the proposed approach exceeds that offered by approaches common in the literature and can
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Figure 3.1: Flowchart for the proposed approach.

recognize a sequence of 3 activities and 15 ASL signs with 92% accuracy, while detecting

trigger signs with rates as high as 98.9%.

3.2 Sequential Human Activity and Sign Language Dataset

3.2.1 RF Sensor

In this study, a TI AWR1642BOOST 77 GHz RF transceiver paired with a DCA1000EVM

data capture card were used to record data directly to a laptop. The TI 77 GHz transceiver is

a FMCW short-range automotive radar that has two TX and four RX antennas, which offer

additional sensing capabilities in comparison to other commercially available RF sensors that

may have only 1 TX/RX channel. The antenna for the sensor has a roughly ±70◦ azimuth

and ±15◦ elevation beamwidths. The sensor was positioned on a small table at a distance

of about 1 meter from the ground.

3.2.2 Participants

Although ASL has been used as example motions in some gesture recognition studies

[128, 110], sign language greatly differs from gesturing in that it possesses a much greater

degree of physical complexity and Shannon information [123, 13, 125]. Like other complex

system-generated signals, raw physical signal from signing data contains information at

multiple timescales, spanning phonological, semantic, syntactic, and prosodic cues [11, 178].
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Table 3.1: Listing of ASL Signs Acquired

Water Good Want Thank You Paper Lawyer I Love you He Book Yes Coffee
Teach You Time Mountain Bed Knife Nothing Father Car Bring Always
Eat Drink Tired Don’t Like Work Engineer Oh, I see See Tie up City Evening
Deaf My Breath Doesn’t matter School Me Why Better Shoes Read Write
Hold Soon Teacher Technology Sleep Where Go Ahead Hot Pet Ready Like
Shop Maybe Help Earthquake Mother Your Walk Can Month License Please

Morning Gas Hello Tomorrow Again Cook OK Should Go Again This
Have Excited Week Let me see Fine Friend Summon Home Three More Push

Kitchen What Wrong Breakfast Money Come Health Today Night Must One

Table 3.2: Description of Mixed Activity/Sign Sequences

Seq. # Motion Sequence

1 Walking, sitting, tired, book, sleep, standing up
2 Walking, sitting, evening, ready, hot, standing up
3 Walking, sitting, month, cook, again, standing up
4 Walking, sitting, summon, maybe, night, standing up
5 Walking, sitting, something, teacher, teach, standing up

While some studies [49, 116] have utilized imitation signers - i.e., hearing participants

who mimic signs observed in video - it has been shown [10] that it takes at least three years

before the signing of ASL learners is perceived as fluent by native ASL users. Imitation

signers exhibit greater kinematic variations, erratic cadence and signing errors, especially

in replicating repetitive signs. Indeed, in our previous works [66, 69], we have found

that imitation signing is distinguishable from native signing using classification of RF µD

signatures.

Thus, in this study, RF data from both imitation signers and native ASL users were

acquired and used for comparative study in trigger sign selection. A total of 110 single

ASL signs were recorded from participants sitting 1 meter away from the radar. A total of

19 participants contributed to the database, including 4 native ASL users, who were either

Deaf or Child of Deaf Adult (CODA), and 6 hearing individuals. Continuous recordings of

mixed activity/signing sequences were recorded from 13 hearing participants, while testing

on native users was conducted with 2 CODAs and 2 ASL learners, who were not used in

acquisition of training samples.

3.2.3 RF Datasets

A total of two different datasets were acquired:
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Figure 3.2: Signal processing diagram for computation of various RF data representations.

1. Single ASL Signs: 110 of the more frequently used ASL signs were selected from the

ASL-LEX Database [23], including nouns, verbs, and adjectives. A complete listing of

the signs acquired is given in Table 3.1. Each participant was asked to repeat the signs

5 times, resulting in 20 native and 30 imitation samples per sign.

2. Mixed Motion Sequences: Of these 110 signs, based on kinematics and replicability,

a subset of 15 ASL signs are selected. Five different sequences of three ASL signs

mixed with three different gross motor activities (walking, sitting, and standing up)

were acquired, as shown in Table 3.2. For example, in sequence 1, the participant

first walks for a few seconds, then sits on a chair located in front of the radar and enacts

3 different signs (tired, book, sleep), and finally stands up. The participants were

instructed to perform these activities consecutively in the line-of-sight of the radar. A

total of 200 hearing participant samples and 94 native participant samples for each

sequence were acquired, and made available for download 1.

1https://github.com/ci4r/ASL-Sequential-Dataset
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3.2.4 RF Data Representations

From the radar data cube, several different ways of representing the information acquired

by the radar may be formed. In this work, RDMs, µD spectrograms and RAMs are used as

RF data representations.

The visibility of target-related motion in the RAMs may be enhanced using optical flow,

which indicates the spatial change in the location of pixels from one frame to another in

a video. In this work, we compute the optical flow using the Horn-Schunck method [79]

and take its element-wise multiplication with the pixels in the RA maps to accentuate

motion-related returns. This process puts more weight on pixels where there is a moving

target, and suppresses pixels comprised of clutter or minimal motion. Because the MUSIC

algorithm is relatively prone to noise, this approach can enable significant visual enhancements

in the RA maps. An overview of the radar signal processing steps utilized to compute the

stated RF data representations are summarized in Figure 3.2.

3.3 Trigger Sign Fidelity Analysis and Selection

There are many different considerations for the design of a device trigger sign (also known

as a wake word). Trigger signs should be distinct, not easily confused with signs frequently

used in daily discourse, easy to articulate and culturally appropriate. In Deaf culture, for

example, while it is common for finger-spelling to be used to state the names of a hearing

individuals, personal name signs can only be used if the name sign has been given by a

member of the Deaf community. Moreover, ASL does have some differences in dialects used in

different geographical regions within the U.S., such as Black ASL, which represents a unique

ethnic sub-culture in the South [76]. The cultural context of signs may differ and take on

different meanings in different regions. Therefore, the design of culturally-appropriate trigger

signs can only be accomplished through partnership with Deaf community organizations, who

can provide cultural perspectives and facilitate studies soliciting Deaf community feedback

on the design.
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Figure 3.3: Selection of replicable ASL signs using DFD and DTW.

Thus, this study focuses on technical aspects of trigger sign design as a precursor to

a subsequent Deaf-centric design study. First, as RF sensors are sensitive to distance and

motion, signs that are dynamic, with strong radial velocity components (i.e., include primary

arm motion, as well as secondary motion of the hand, such as hand shape or orientation

change), or which traverse greater distance and have a longer flight times are better suited

as trigger signs for automatic detection. This is in contrast with signs primarily characterized

by secondary hand motion, such as finger-spelled words.

Second, the replicability of the trigger sign is important to enable consistent and robust

recognition. Although native ASL users are the target population for ASL-sensitive user

interfaces, there is a wider community of ASL learners and non-native ASL users, such

as interpreters, who could also be using the interface. However, there can be noticeable

differences in the articulation of signs based on fluency. Thus, the replicability of the 110

signs listed in Table 3.1 were evaluated using a comparison of the imitation signing and native

ASL µD signatures. This was done by first computing the upper and lower envelopes of each

sign based on the percentiles of the cumulative amplitude distribution [44, 95]. Next, both

the Discrete Fréchet Distance (DFD) [45] and DTW were used to compare the replicability

of signs based on fluency.

DTW is a method for measuring the similarity between two time-series and finds the

optimal match [1] between sequences that satisfy all restrictions and rules with the minimum
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cost. The DFD computes the similarity between two curves by taking into account both

ordering of the points and the location along the curves. It is defined as the shortest

cord-length required to join a point traveling forward along one curve and one traveling

forward along the other curve, and the rate of travel for either point may not necessarily be

uniform. As the similarity of two curves increases, DFD gets closer to zero. As an example,

consider the comparison of the upper envelopes of the µD signatures for imitation signing

and native signing for the sign want, shown in Figure 3.3(a), where the grey lines represent

the cord-length.

To identify the most easily replicable signs (independent of fluency), the envelopes of

the native ASL signatures and those from hearing imitation signers are compared on a

sign-by-sign basis. The DTW and DFD metrics are averaged and re-scaled between 0 and

1. Once the distance metrics, dtw and dfd, are normalized, the fidelity scores, sdtw and

sdfd, for each class (sign) are found by taking the inverse of the normalized distance (i.e.,

sdtw = 1/dtw, sdfd = 1/dfd). The results are shown in Figure 3.3(b). It may be observed that

both the DTW and DFD are consistent in their assessment of which signs are consistently

articulated across deaf, CODA, and hearing users.

The top 15 signs that have the shortest distance (i.e. highest similarity) between native

ASL and imitation signing users were selected as trigger sign candidates, which will next be

evaluated based on detection rate and sequential recognition accuracy. The selected signs

are listed in Figure 3.3(c) along with their kinematic properties, as given by ASL-LEX.

3.4 Motion Detection and Segmentation

Continuous activities and ASL signing create a time series of sequential activities, for

which segmentation is an important initial step in the analysis of sequential data. Utilization

of a motion detector can facilitate segmentation, which helps define the length of the input

samples to be fed to a learning model. It can also improve the power and computational

efficiency of the system by making a prediction only when an activity or sign is detected as
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Figure 3.4: Illustration of the operation of STA/LTA based motion detector on Sequence
3.

(a) Operation of detector on absolute
distance vectors.

(b) Intervals with motion detected by
STA/LTA detector.

opposed to every time step. While motion detection can be done with a human-in-the-loop

approach, this is not desirable in automate, stand-alone systems. Instead, a power-based

automated segmentation algorithm, such as STA/LTA [170, 164], Dynamic Boundary Detection

(DBD) [163] or Power Burst Curve (PBC) [184] may be utilized.

The PBC can be used for motion detection using thresholding. The start and end of

the motion is determined by when the input power exceeds or falls below this threshold,

respectively. An important drawback of this method, however, is that it is prone to a high

rate of false triggering, especially in the presence of noise, because the threshold is not

adaptive and unaware of past and future power levels.

STA/LTA-based techniques solve this problem by defining two consecutive windows;

namely, short-time and long-time windows. Their relative average power is used to define

an adaptive threshold value. The STA/LTA method proposed in [164] has proven to be very

successful in detecting the tail (end point) of hand gestures. However, the method uses fixed

length detection windows, whose duration is selected based on the duration of the longest

gesture in the dataset. This approach is not well suited to sign language, since ASL signs

possess great variability in duration. Basing window size on the longest duration sign can

result in a long blank period at the beginning of the detected region for short signs, thereby

introducing non-informative or redundant input to the feature space.
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DBD, on the other hand, requires application of high-pass filtering to the Doppler

information, resulting in elimination of the low and zero frequency components of the

spectrograms. Prior work [66] has shown, however, that filtering at 77 GHz results in

significant loss of low-frequency information in the signal, together with removal of the

clutter, thereby degrading classification accuracy.

Thus, this work proposes a variable window STA/LTA-based motion detection algorithm

to identify both the starting and ending point of a motion. First, the absolute difference

between the upper and lower envelopes at a time index is computed to create absolute

distance vectors. An exemplary, normalized absolute distance vector is shown in Figure 3.4a.

The absolute distance for each data recording, i, can be computed as vi = |ui − li|, where vi
is the absolute distance vector, ui and li are the upper and lower envelopes, respectively.

Then, STA(t) and LTA(t) can be defined as the leading and lagging windows at time t

as:

STA(t) =
1

T1

t+T1∑
k=t+1

vi(k), LTA(t) =
1

T2

t∑
k=t−T2+1

vi(k) (3.1)

where T1 and T2 are the lengths of short and long windows respectively. The starting point

of a motion is detected when the following conditions are satisfied:

STA(t) > σ1 and
STA(t)

LTA(t)
> σ2 (3.2)

where σ1 and σ2 are predefined detection thresholds. Similarly, the ending point is detected

if

STA(t) < σ3 and
STA(t)

LTA(t)
< σ2 (3.3)

where σ3 is the detection threshold for the stopping point.

Note that in order to locate the starting point, according to (3.2), STA(t) needs to exceed

the threshold σ1, implying that the the motion has to appear in the short window. Also,

the ratio of average power in the short and the long window should be higher than σ2. In
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this way, if there is noise, the system will not be triggered unless the ratio exceeds the σ2.

Similar conditions apply to ensure correct detection of the endpoint; i.e., the case when the

motion disappears from the proceeding window and the ratio drops below the threshold σ2.

The resulting detection mask found with the proposed vw -STA/LTA approach is able to

separate the intervals with and without motion, as shown in Figure 3.4b.

While DBD requires the optimal selection of a threshold based on the returned signal

strength, fixed length STA/LTA bases selection on the window length. In contrast, the

proposed variable length STA/LTA approach adaptively changes its detection window interval

irrespective of the returned signal strength. A comparison of the segmentation accuracy for

these three methods is presented in Figure 3.5. Segmentation accuracy is computed by

comparing segmentation mask with the ground truth generated by a human analyst for

each time step. Note that the segmentation accuracy of DBD and fixed-window STA/LTA

exhibit great variance in efficacy for different thresholds or window lengths. Fixed-window

STA/LTA achieves a peak accuracy of 75.7% when the window length is 2.3 seconds. DBD

performs better by comparison, achieving a peak accuracy of 84.2% when the threshold is set

to 61, but with the cost of information loss in low frequency components. This peak value

is only slightly higher than the 83.5% accuracy achieved by the proposed motion detector,

while the propose approach can maintain this accuracy irrespective of any parameter values

due to the use of variable, adaptive window lengths.

3.5 Joint-Domain Multi-Input Multi-Task Learning

Conventional approaches to RF signal classification rely on a single data representation,

presented as either 2D or 3D inputs. In contrast, to take advantage of all available physics-based

information (range, velocity, frequency and angle), we propose a JD-MIMTL-based DNN

architecture, where each input representation is processed in parallel and the final feature

space is constructed by fusing individual feature spaces. Auxiliary tasks are used to regularize

60



Figure 3.5: Comparison of the segmentation accuracy of DBD, fixed-window STA/LTA and
the proposed variable-window STA/LTA.

and better guide the training loss. The accuracy of the proposed approach surpasses that of

conventional single-input models by over 13%.

3.5.1 Mixed Motion Sequential Recognition

Sequential classification of daily activities and ASL signs differs from conventional hand

gesture recognition tasks because it is not comprised of just an isolated, short duration,

single type of motion. Instead, it consists of a time series of consecutive motions, which

might belong to different classes of gross daily activities or ASL signs. A typical approach

to classify a continuous time series data includes: 1) temporal segmentation, 2) making

prediction for each time step. The former is achieved using a motion detector described in

Section 3.4, while the latter will be discussed in this section. In real-world scenarios, training

a model with the entire stream of data sequences (24 sec each) is not feasible, because this

significantly increases the computation time, rendering outputs only after a long delay, which

is undesirable in interactive systems. However, when models are trained with shorter input

sequences, performance also tends to drop gradually, because performance of LSTMs are

dependent on input sequence lengths [90]. Since LSTM networks have the flexibility to be

trained with varying sequence lengths, the data segments isolated by the motion detector
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were used as input sequences. These segments will have varying lengths depending on the

user’s pace and the motion itself.

3.5.2 Training a Spatio-Temporal Model

In this section, the effect of input sequence length on prediction accuracy is examined. For

this purpose, we use a DNN consisting of 3 time-distributed (TD) 2-D convolutional blocks

with kernel sizes of 3, followed by max pooling layers and a bidirectional long-short-term-memory

(BiLSTM) layer. A TD softmax layer is employed for temporal classification. While

convolutional layers extract the spatial features, the TD wrapper enables application of

the same nested layer to each time step. BiLSTM is a kind of recurrent neural network

which is used to extract temporal relationships between time steps. They have proven to be

very successful in terms of learning long term dependencies in various tasks such as natural

language processing [183], and speech recognition [58]. By employing LSTMs in our final

encoded feature space, both spatial and temporal features are extracted for classification.

In µD spectrogram (µDS) classification, spectrograms are divided into 0.2 sec non-overlapping

windows to be used as time steps. In RD and RA map classification, the interval between

each RD/RA map or frame is 40 milliseconds, so to obtain a data structure corresponding

to the same (0.2s) duration, five RD/RA frames were stacked (5×40ms = 0.2s). For both

inputs, 80% of the data is used for training and 20% for testing, with an equal number

of samples from each sequence. Adam optimizer and categorical cross entropy is used

along with early stopping with patience of 10 epochs to train the model. Hence, the input

data has the shape of (batch size, number of windows, width, height, channels).

A 2D-CNN+BiLSTM network for µDS and 3D-CNN+BiLSTM network for RD/RA maps

are employed. The impact of the motion detector is discussed next.

Original Sequential Data

Table 3.3 shows the classification accuracy for each input data representation as a function

of various input durations. It may be observed that the accuracy of the models for all
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Table 3.3: Sequential Classification with CNN+BiLSTM

Data
Length of
Sequences

µD Spectrogram RD Map RA Map

O
ri
gi
n
al

S
eq
u
en
ce
s

1/24 (1 sec) 69.2% 72.5% 69.9%
1/12 (2 sec) 78.6% 76.3% 73.7%
1/6 (4 sec) 81.3% 82.4% 79%
1/3 (8 sec) 84.3% 89.9% 85.9%
Half (12 sec) 84.6% 90% 87%
Full (24 sec) 86.1% 92.4% 89.7%

MDI Varying 78.8% 72.8% 67.5%

Table 3.4: Computation Times Spent for Prediction

Length of Sequences µD Spectrograms RD Map RA Map
1 second 201.8 sec 207.5 sec 205.8 sec
2 seconds 111.7 sec 125.7 sec 123.1 sec
MDIs 61.4 sec 69.3 sec 67.8 sec

input domains decreases as the length of input sequences gets shorter. Best performances

are obtained using longest sequences with RD maps providing a 92.4% accuracy. The

performance using µDS changes around 17% while that using RD maps and RA maps

change around 20% from 1 sec. sequences to 24 sec. sequences. While the longer sequences

give better performance, they also result in greater prediction delay and higher memory

requirement due to increased data size. This situation demonstrates the challenge of deciding

an appropriate input length while doing sequential classification and the trade-off between

prediction performance and delay.

Motion Detected Intervals (MDI)

The detector extracts data segments containing motion, eliminating periods of no movement.

Thus, each MDI is of varying duration, and models are trained using variable length data.

The testing accuracies obtained when using µDS, RD and RA maps are 78.8%, 72.8%, 67.5%

respectively. These results are comparable to those obtained with fixed length sequences of

2 sec. for µD, and 1 sec. for RD/RA maps, while the length of detected segments vary

between 0.6 and 10 sec. Moreover, using MDI rather than fixed length windows significantly
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Table 3.5: Classification Accuracy of the Motion Detectors

Motion Detector µD Spectrogram RD Map RA Map
DBD 72.4% 70.9% 63.8%

Fixed STA/LTA 76.8% 71.5% 67.1%
Varying STA/LTA 78.8% 72.8% 67.5%

reduces the computation time for prediction by masking out the intervals that do not contain

any motion. Table 3.4 presents the total computation time of an NVIDIA Titan V GPU

to make predictions for data durations of 1 sec and 2 sec. The total computation time

is reduced by 45% on average for different input representations when compared with 2 sec

length sequences. Note that the amount of computational savings obtained using the motion

detector does depends on the data, in that as MDI increases so does the time savings. As

daily life often involves extended stationary periods, in practical settings the use of MDI can

result in significant savings.

3.5.3 Effect of Motion Detector on Classification Accuracy

The performance of DNN models rely heavily on the data presented at the input, which

in turn is extracted based upon the starting and ending points of the MDIs as determined by

the motion detector. Thus, the ability of a motion detector to accurately extract intervals

containing movement impacts the efficacy of classifiers. Table 3.5 compares the classification

accuracy attained from different input representations extracted using DBD, fixed-length

STA/LTA and the proposed variable-length STA/LTA motion detectors. It may be observed

that the proposed variable-length STA/LTA detector yields greater classification accuracy

in comparison to other approaches, surpassing fixed-length STA/LTA by 0.4-2% and DBD

by 1.3-6.4%. Note that the relatively worse accuracy of DBD is due to information loss

incurred during the high-pass filtering, which removes low-frequency signal as well as clutter

components, and hence degrades the resulting classification accuracy.
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3.5.4 Proposed Approach: JD-MIMTL

To improve the classification accuracy obtained with just one input representation, this

paper proposes utilizing fusion of multiple input representations in a multiple-task learning

[22] framework with connectionist temporal classification (CTC) [59]. Although MTL has

been implemented successfully in computer vision [53] and natural language processing [34],

these applications all involve a single data representation (image, text, speech signal). In RF

sensing, the various physical variables measurable by radar - namely, range, µD, and angle

versus time - are reflected in different data representations, to base recognition decisions on

all physical properties, multiple inputs to MTL are advantageous. The joint feature space

derived from multiple input representations is enriched by fusing in a concatenation layer.

MTL jointly optimizes multiple objectives by exploiting domain-specific information

contained in commonalities and differences across tasks. By sharing representations among

related (auxiliary) tasks, the generalization capability of the model can be improved on the

main task. ASL classification can be aided by basing decisions on consistency with certain

physical properties of signing, based on the categorization provided in Figure 3.3(c). Five

auxiliary tasks are defined:

• Task 1: One versus two handedness;

• Task 2: Major location of hands;

• Task 3: Movement type;

• Task 4: Daily activity versus ASL sign; and

• Task 5: Number of strokes.

The overall loss function, Ltotal, utilized in the JD-MIMTL framework is the weighted

sum of the CTC loss, λctc, and the loss Li specific to each task i:

Ltotal = λctcLctc +
I∑
i

λiLi (3.4)
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Figure 3.6: Proposed multi-input multi-task learning network.

where λ are the weights assigned to the various loss terms. Since each task has its own

loss function, and, hence, varying convergence times, the weights λ needs to be jointly

optimized. Three different loss optimization techniques [56] were compared, namely, the

uniform combination of losses (i.e. equal weights across all tasks), the uncertainty based

weighing method [33], and grid search. The first two methods minimize Ltotal without

taking into account the importance of each individual task. Since we aim to minimize

Lctc, which is derived from the prediction layer, the grid search method was preferred.

The use of smaller auxiliary task weight values during grid search was found to perform

better than that obtained with using the uniform combination of losses or uncertainty-based

weighting. Specifically, weight values of λctc = 1 and λi = 0.2 were used. The overall

proposed JD-MIMTL approach is depicted in Figure 3.6. After training the model, all of

the auxiliary task and CTC output layers are removed and the model is augmented with a

softmax layer for classification.

The probability distribution of the classes, which is obtained as the output of the JD-MIMTL,

can be decoded two ways in parallel for sequential classification and trigger word detection.

Best path decoding is used as the decoding scheme of the CTC outputs for both objectives.
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However, the final prediction class is defined as the statistical mode of the time steps of an

MDI for sequential classification, and as the prediction scores for the trigger sign accumulated

over the time steps of an MDI for trigger word detection.

3.6 Results and Discussion

3.6.1 Trigger Word Detection

To activate a device, the trigger sign must be correctly recognized from within a stream

of data, and the activation should occur when the articulation of the sign is completed.

One approach is cumulative score aggregation (CSA) [166], where the scores (i.e., prediction

probabilities) of the trigger sign are accumulated over time, and a detection is recorded when

the accumulated score, sa, exceeds a predefined threshold. The threshold can be adjusted

to ensure the detection is triggered only when the trigger sign is complete.

In this work, an adaptive, double-threshold CSA approach is proposed for trigger sign

detection. Since the MDIs have varying lengths, the value of the threshold, T , is adaptively

determined based on the interval length as: T = w∗γ, where w is the length of the MDI and

γ is a predefined confidence factor. To mitigate the false rejection rate (FRR) of the detector,

a second (lower) threshold, Tlow, is also defined. When the accumulated score exceeds the

Tlow, but not T , the detector is alerted to the possibility of a trigger and begins recording

the duration over which the score stays above Tlow. The system is triggered if score exceeds

Tlow for more than w/2 seconds and the motion is classified as the trigger sign.

In trigger word detection, effect of using single versus double thresholding can been seen

from Figure 3.7a, which shows the trade-off between the false alarm rate (FAR) and FRR for

γ ∈ {0.01 : 0.99} for the word again. When a single threshold is used, the FRR can climb

as high 0.6, while double thresholding limits this value to just over 0.2. This is significant

because decreasing the FRR boosts the detection rate, Dr = 1− FRR− FAR, where FRR

and FAR are defined as:

FRR =
nt − nd

nt

, FAR =
nf

nt

(3.5)
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Figure 3.7: Trigger word detection results.
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where nt, nd and nf are the number of total, detected and false detected samples respectively.

As shown in Figure 3.7b, when the resulting detection rates for single thresholding versus

the proposed double thresholding approach are compared, it may be observed that for each

considered trigger sign, the proposed approach yields a same or improved detection rate.

The word teacher has the highest detection rate for both thresholding methods, achieving

a detection rate of 0.93 and 0.96, while the word month (self-occluded) has the lowest score

of 0.65 for both cases. Signs with higher classification accuracy tend to have higher detection

rates as well, such as teacher and teach.

The number of strokes (i.e., length) of the sign is an important consideration in trigger

sign selection. For the purposes of automatic detection, strokes were defined as components

surrounding the sign-initial and sign-final handshapes; thus, both the motion inherent to

the sign (i.e., the stroke as defined in sign language phonology), and transitional motions

preceding and following the sign, were included in the analysis. This approach approximated

predictive processing in human sign language recognition [122, 51], while remaining consistent

with ecological paradigm of wake sign use. Signs with few strokes defined in this manner

(less than 3) were found to have many false alarms, while those with more than 4 were prone
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Table 3.6: Comparison of DNNs for MDI Classification

Architecture µD RD Map RA Map Feature-Level Fusion

CNN + BiLSTM 78.8% 72.8% 67.5% 84.3 %
CNN + BiLSTM + CTC 80.6% 78.4% 71.3% 87.5%

CNN + BiLSTM + CTC + MTL 83.6% 78.6% 71.4% JD-MIMTL 92%

to a high number of false rejections. This is similar to results in speech recognition, which

report optimal wake word lengths of 3 to 4 syllables [167] - or, in quantitative terms, several

entropy (high information-density) peaks within the continuous signal.

3.6.2 Sequential ASL Recognition

A testing accuracy of 92% is achieved using the proposed JD-MIMTL approach, and

surpasses the results achieved with various state-of-the-art sequential recognition approaches,

as shown in Table 3.6. This result is also quite close to the 93.5% accuracy attained

using JD-MIMTL when the motion detector is replaced with ground truth segmentation.

Moreover, the baseline established in Section 3.5.2 using CNN+BiLSTM on single-input

representation MDI data is improved to 84.3% by application of feature-level fusion. Consideration

of CTC loss improves the results obtained for both single-input and fusion of multi-input

representations.

The accuracy using µDS increased to 80.6%, RD maps to 78.4% and RA maps to 71.3%,

thus providing an average improvement of 3.73%. For RD maps and RA maps, MTL only

slight improves performance by just 0.1%-0.2%, while the accuracy with µDS increases by

3%. The proposed JD-MIMTL approach yields a performance improvement of 8.4% over

µDS as a single-input to MTL, and 4.5% improvement over multi-input feature level fusion

without using MTL.

The confusion matrix for the proposed architecture is provided in Figure 3.8. It can

be seen JD-MIMTL exhibits the most confusion in signs with low radial motion (evening,

maybe, night) and self-occlusion (month). The signs with high radial motion (teacher,
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teach) have the highest recognition rates. This is due to higher sensitivity of radars to

radial velocity components.

3.6.3 Performance Across Different Fluency Groups

The proposed approach is tested on different fluency groups to evaluate is efficacy across

different users. This is done by training the model solely with data from non-ASL users, but

testing on ASL users’ data. Thus, not only are the participants between training and test

sets different, but also their fluency levels. In Figure 3.7c, the overall testing accuracy for all

signs, and the trigger detection rate for the selected trigger word, teacher, are presented for

different fluency groups. While the first two columns report average results, the remaining 4

columns break down the results for specific participants, indicating whether the participant

was an ASL learner or CODA. On average, the sequential ASL classification accuracy for

ASL users was 10% less than that attained from non-ASL users. But, the trigger detection

rates remained above 94% irrespective of fluency. In fact, 3 out of 4 ASL users’ trigger word

is detected with 100% accuracy.

3.6.4 Discussion

Because RF sensors rely on kinetic properties of signing during recognition, signs that

inherently contain greater movement (especially inter-sign movements) are easier to recognize.

Figure 3.8: Confusion matrix of the proposed JD-MIMTL.
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For example, the signs teacher and teach both involve raising the hands to the level of the

head, whereas month involves just a short swipe of a finger downward and night involves

a more subtle downward, curved motion of the hand/arm, resulting in a detection rate that

is over 20% lower. Effective ASL-based device triggering will require the design of a unique

sign for this purpose, as commonly used daily expressions may mistakenly trigger a device.

In this regard, it is important to note that it is not necessary for such a trigger sign to

have meaning in English; e.g. that knock might be sensible in meaning has little bearing

on efficacy in terms of detectability, practical and cultural considerations. In future work,

we aim to work with deaf community partners to jointly evaluate usability and efficacy of

kinetically unique trigger signs.

Another important consideration for device operation with ASL is real-time implementation

on dedicated edge computing platforms. Although there have been some studies of real-time

gesture recognition using micro-Doppler signatures [164, 114, 28, 130], these works have

considered only a small number of classes (less than 12), and focus on hardware acceleration

or reduction of the computational complexity of the model itself. However, our initial work [3]

in evaluating computational latency in the processing pipeline has shown that a significant

part of the latency is not in the classification stage, but in the computation of the input

representations themselves, especially micro-Doppler signatures. Latency depends not just

on the duration (length) of the data, but also on short-time Fourier transform parameters,

such as window length and overlap, which determine the dimensionality of the resulting

spectrogram and impacts classification accuracy. Joint optimization of input representation

generation and DNN model will be necessary to maximize real-time recognition performance.

3.7 Conclusion

The proposed techniques in this chapter enables trigger sign detection for device activation

and sequential recognition of ASL in the context of daily living. While conventional approaches

to RF signal classification utilize just one RF data representation, this work exploits µD
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spectrograms, RDmaps, and RAmaps in a JD-MIMTL framework for sequential classification.

By defining tasks in terms of physically-relevant concepts for ASL recognition, sequences

involving a mixture of 18 different daily activities and ASL signs was classified with 92%

accuracy. The proposed double-thresholding trigger detection method achieves detection

rates of 96% and 98.9% for non-ASL and ASL users, respectively, for the sign teacher.

Potential selections for trigger signs are evaluated based on sequential activity recognition

accuracy and replicability across the fluency levels of users. The results demonstrate the

potential for RF sensing to be used for ASL-sensitive HCI.
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CHAPTER 4

MULTI-PERSON SEPARATION VIA ANGULAR PROJECTION

4.1 Introduction

Most of the current RF-based activity/gesture recognition literature is limited to consideration

of just single target scenarios, even though the presence of multiple targets is typical in

real-world environments. In multi-target scenarios, the RF µD signature computed from the

raw I/Q data will result in the signature for each target super-imposed upon each other.

Consequently, DNNs trained with data with just a single target present will not be able to

correctly recognize the targets’ activity. Many of the works involving multiple targets focus

on counting the number of people present [30, 29, 182, 8], while just a few works actually

aim at separating the micro-Doppler signatures. Vishwakarma, et al. [172] propose a sparse

coding dictionary learning based algorithm to separate the µD returns from multiple targets.

However, the approach relies on parametric models for simulating the human and fan returns

considered as part of a binary classification problem. The Boulic model used to simulate

human returns only approximates walking, thus precluding the approach from being effective

when generalized human activities, which are not easily represented by a parametric model,

are observed. Even in the limited case presented, the separated µD signatures suffer from

losses in comparison to their measured counterparts.

Alternatively, Huang, et al. [83] applies a multi-stage separation scheme in which range

gating is first applied for preliminary separation, followed by design of a multi-task learning

network for fine signature separation and recognition. However, because multiple targets can
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be present at the same range, this approach is essentially relying on the DNN to figure out

the signal separation solely based on a learned, data-driven model. This inherently limits the

applicability of the proposed approach to only those target signatures for which the model

has been trained, and will not generalize easily to previously unseen target µD signatures.

Another common approach is to explicitly track the components of the overall µD

signature. Wang, et al. [175] formulates the problem as one of path planning and proposes

ant colony optimization to identify the points corresponding to different paths within the

overall µD signature. Simulation-based results are presented only for sinusoidal µD curves

- in real measured signatures where the backscatter from each target is not comprised

of a distinct curve, it is not clear how effective this approach would be. Moreover, the

µD signatures of more complicated targets, such as humans, are comprised of multiple

trajectories corresponding to the movements of each body part. This approach does not

address the subsequent association problem that would ensue for target signatures comprised

of multiple trajectories. A similar challenge is faced by the multiple target tracking approach

proposed in [24], where the coning targets considered similarly consist of distinct sinusoidal

trajectories.

To overcome these limitations, Pegoraro, et al. [132] proposed a density clustering and

tracking based technique to separate the µ-D for up to four people walking back and forth

along a corridor. A trajectory association algorithm is utilized to match clusters with tracked

trajectories, and a CNN that incorporates a reconstruction loss term in the cost function

is utilized to correctly identify the person walking in case tracking fails and clusters of

some subjects cannot be separated. Although this method in principle can generalize to

realistic target signatures, results are only presented for identification of walking people -

HAR for multiple people in a scene is not considered. Moreover, it can potentially suffer

from trajectory instability due to missed detections, a probable event in scenes where there is

significant clutter, and ghost targets resulting from multi-path reflections. Significant effort
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Figure 4.1: Conventional vs. angular projection-based radar signal processing (RSP) chain
for multi-target scenarios.
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is involved for trajectory management, a task that is increasingly complicated as the number

of targets present increases.

A common limitation of all of the aforementioned works, however, is that they can

perform separation only after tracking results are obtained or after radar images are computed

from the raw data cube. The computation of tracking trajectories introduces additional

delays in the classification process, which is detrimental to real-time applications. For cases

like multiple close targets or gesture recognition for right and left hands, separation of

targets in range-angle domain is generally not possible, detrimentally effecting performance

of existing approaches. Additionally, decomposition or target separation made at the image

level is not scalable to other data domains as the raw I/Q signals of the targets are still

superimposed. This precludes the utilization of joint domain classification techniques, which

require lower-level signal separation in the raw radar data and hence RDC itself.

The proposed angular subspace projection-based separation (ASPS) technique [103] projects

the raw radar data onto an angle subspace and generates multiple low-level RDC-ω representations

for the targets at different aspect angles. Figure 4.1 shows the fundamental differences

between radar signal processing stages with and without the proposed projection method

along with its advantages and disadvantages. In particular, we show that the proposed

projection method improves the similarity between a target’s original signal and the decomposed

multi-target signal after projection. This enables the utilization of a DNN trained for the
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single-target case to be utilizable even in multi-target scenarios. For a 9-class µD signature

recognition problem, a four-layer CNN achieves 97.8% when three targets are present within

the radar field-of-view. In cases where multiple targets are positioned with close proximity

to each other, the RDC-ω representation offers multi-view inputs, which highlights the

differences at each angle that can be exploited via a multi-view deep neural network to

achieve improved classification accuracy. This work expands on preliminary work presented

as a conference paper [105] by 1) adding a weighting stage to the projection pipeline, 2)

characterizing target separability as a function of the number of antenna elements and

aspect angle for an expanded number of targets, which includes human activities and several

different gaits of a robotic dog, 3) demonstrating improved classification results for a 9-class

HAR scenario using a 4-layer CNN and 10-class gesture/sign language recognition scenario

using a multi-view DNN on an expanded dataset that has a greater number of samples per

class.

The specific contributions of this study are as follows:

1. We propose the ASPS method to separate and boost the relative SNR of targets at

different aspects angles, generating raw multi-view RDC-ω data representations.

2. The effect of the number of antenna channels and target aspect angle on ASPS performance

is evaluated.

3. The effectiveness of ASPS is demonstrated for a HAR application in an end-to-end

framework.

4. We propose a novel multi-view DNN that utilizes multiple RDC-ω derived micro-Doppler

signatures as its input to boost classification performance when targets are in close

proximity, such as when separately considering left and right hand movements for sign

language recognition.
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4.2 Multiple Target Signal Model

In an FMCW radar, the frequency of the transmit signal changes over time, typically

as a linear sweep across the bandwidth, so that both range and velocity measurements can

be acquired. [113]. In MIMO FMCW radar systems, the presence of multiple channels also

enables the estimation of the angle of arrival of the radar backscatter from a target. The

transmitted FMCW signal, ST (t), can be modelled as:

ST (t) = exp(j2πfct+ jπαt2) (4.1)

where, fc is the carrier frequency, α is the chirp rate defined as the ratio of bandwidth, B,

to the sweep duration, T, as α = B
T
.

Now suppose that once transmitted, the signal reflects back from a set of K targets with

corresponding ranges Ri and radial velocities vi i = 1, 2, . . . , K. The received signal in one

channel of the radar system can be expressed as:

SR(t) =
K∑
i=1

Ai exp(j2πfc(t− ti) + jπα(t− ti)
2) (4.2)

where, Ai is a complex constant related to target radar cross section, and ti is the round

trip time delay for the ith target. Each RF sensor channel’s raw data is collected as a time

stream of in-phase (I) and quadrature (Q) samples. In FMCW transceivers, the received

signal is mixed with a copy of the transmitted signal and then low-pass filtered to remove

unwanted high-frequency mixing byproducts. The output of the filter as an intermediate

frequency (IF) signal SIF (t):

SIF (t) =
K∑
i=1

Ai exp(j2παtit+ ϕi), (4.3)

where ϕi is a constant phase term over time and is function of time delays, chirp rate and

carrier frequency. Sampling the IF return signal results in N fast-time samples for each pulse,
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Figure 4.2: Target separation in range, Doppler and angle domain for a multi-target scenario.
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while computation of its Fourier transform reveals the beat frequencies Fb = αti, which are

directly related to the round-trip travel time and distance between the radar and target.

The velocity of a target can be obtained through transmission and coherent processing of

P pulses. Because the PRI is typically much longer than the ADC sampling interval, the

pulse number is typically referred to as slow-time, while the ADC samples are referred to

as fast-time. For a MIMO radar with a ULA consisting of M virtual channels, a RDC with

dimensions of (N × P ×M) can be formed. Fourier processing can be utilized to compute

from the RDC various RF data representations, such as RD or RA versus time.

When multiple targets are present in the radar FoV, the received signal is comprised

of the backscatter from all the targets in the scene. Thus, the µD spectrogram consists of

the superposition of the µD signatures for all targets. Figure 4.2a illustrates the resulting

µ-D spectrogram obtained when two people present in the FoV - one person is walking

towards radar and the other is walking away from the radar. Comparing the multi-target

spectrogram with the one obtained when the same activities are recorded individually in the

radar FoV, it can be observed that the µD for each person exhibits the same patterns, but

that in the multi-target spectrogram these signatures are overlayed or superimposed so that
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they interfere with each other. As DNNs for HAR are typically trained on µD signatures

recorded when just a single person is present, such activities of the subjects in multi-target

spectrograms will not be accurately classified. Thus, the signatures for each person need to

be separated prior to input to a DNN for classification.

4.2.1 Rationale of Proposed Approach

Rather than immediately compute the µD, the potential separability of targets can be

observed through the use of other radar data representations, especially the RD and RA

maps. Consider the case of three people walking towards a radar. The RD and RA maps

for this scenario is shown in Figure 4.2b. When a CA-CFAR detector is applied to the

RD and RA maps, the presence of several distinct targets can be seen. In the RD map,

however, despite three targets being present, only two can be detected as two of the people

were located at the same distance from the radar. Consequently, in the RD map, their RF

returns fall into the same range-Doppler bin and cannot be distinguished. On the other

hand, in the CA-CFAR results for the RA map, three separate targets can now be observed.

Hence multiple targets live in the range-Doppler or angle domains and might not be always

be separated. Our goal is to generate multi-view raw radar data representations that will

enhance target classifications even for cases that might not be separated in RA domains.

Towards this goal, we propose an angular subspace projection technique for signal separation

that decomposes the raw complex RDC of multiple targets from each other by generating

individual RDCs for each angle subspace. This process strengthens the signals received

from the projection angle subspace, but weakens the signals received from any other angle.

Because the signal separation is accomplished at the RDC-level, subsequently any desired

radar data representation for the separated multi-view RDCs, including micro-Doppler signature,

RD and RA maps, can be computed. This yields advantages over trajectory tracking-based

approaches in the literature because the joint use of multiple input representations has given

improved classification performance over just using micro-Doppler signatures. In essence, a
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Figure 4.3: Proposed end-to-end framework of the angular projection method for a
classification application.
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more fundamental form of signal separation is being accomplished at the raw radar signal

level.

The proposed framework, shown in Figure 4.3, consists of two main stages. The first

stage involves target detection and angular projection. RD maps are obtained through

2D FFT on the fast and slow-time dimensions of each channel of the acquired raw RDC.

Then, CA-CFAR adaptive thresholding is applied on the RD maps to detect the targets.

Angle-of-arrival (AoA) of the detected targets are estimated using the MUltiple SIgnal

Classification (MUSIC) [73] super-resolution algorithm. Next, the proposed projection approach

is applied with the detected angles to form new, projected RDCs for each target. The second

stage involves the implementation of task-specific processing on each individual target RDC.
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For the task of classification, individual µD signatures can be generated by applying any

desired time-frequency transformation on the projected RDCs. The µD signatures can then

be given as input to a DNN to separately classify each target. Although µD is used as

the input representation for classification here, different representations from multi-view

RDC can also be computed. Even though angular subspace projection is applied to detected

targets here, we also show that the proposed projection idea boosts the classification performance

even for targets that were not separated at the initial stage such as right or left-hand gestures.

The details of the computations comprising each stage are presented next.

4.2.2 Target Detection and AoA Estimation

The first stage to decompose multiple target RDC into individual RDCs of each target is

the detection of targets in range-Doppler-angle domain. Number of targets in the radar FoV

along with their angles are utilized to apply the projection algorithm. If the user has the

priori knowledge of this information, angles of the targets can directly be fed into the angular

projection algorithm without the initial detection stage. Otherwise, a target detection and

an angle estimation method is applied.

A 2D FFT can be applied on the fast and slow-time dimension of the multi-target RDC

to obtain the RD maps spanning each coherent processing interval, a.k.a. frame. In order to

detect the targets in the RD maps, a widely used adaptive thresholding method, CA-CFAR

detection, is applied.

Once CA-CFAR is applied on the RD maps, the detected target range-Doppler bins are

passed through the MUSIC algorithm for angle estimation. This procedure is applied to

all frames. To reduce grid effects, clustering is applied in angle space (i.e., detections with

close angles are clustered into one group). If the number of detections for a particular angle

cluster exceeds the pre-defined threshold, the center angle of the cluster is added to the list

of projection angles, which is then given as input to the projection algorithm.
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4.2.3 Projection of RDC

The previous detection stage generates angle estimates of each target. In this part, we

project the raw multi-target radar data to the angular subspace of each target. To do this

let us first define the angular space. If there is a target at a specific angle with respect to

the array, the steering vector defines the signal model received at the array. For the case of

a ULA the steering vector, a, can be formulated as follows:

a(θ) = [1 e−j(2πd sin (θ)/λ) ... e−j(2π(M−1)d sin (θ)/λ)]T (4.4)

where θ is the aspect angle, λ is the signal wavelength, d is the spacing between array

elements, and M is the total number of channels in the ULA. Repeating equation 4.4 for

each discretized angle θ yields the steering matrix. The projection method takes the lower

and upper bounds of the desired projection angular interval (i.e., θl and θu, respectively) as

inputs. For a given angle space [θl, θu], we can discretize this space and create a steering

matrix, as B = [a(θ1) a(θ2), . . . , a(θi), . . . , a(θS)] where each column is a steering vector for

the corresponding aspect angle θi ∈ [θl, θu]. Here the column space of B spans the angular

subspace we want to project and slow time index k can be projected onto the column space

of B as follows:

x̂nk = (B(BTB)−1BT )xnk (4.5)

where x̂nk is the projected data. Repeating the projection for relevant fast-time and slow-time

indexes will construct the projected RDC for the given angle subspace. The angle subspace

can be selected as the angular extent of the detected targets. In some cases the angular

subspace can also be designed depending on the application. For example, in radar-based sign

language recognition, to better represent right and left-hand activities, angular projections

for each hand can be done considering an angular subspace that can include all angles at
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Figure 4.4: Virtual array generation from MIMO array using TDM (a-b) and the
experimental setup (c).
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one hand can be. As the output of this subspace projection multi-view RDCs are obtained

and varying feature representations can be computed for each RDC.

4.3 Experimental Setup and Dataset

In this work, Texas Instrument’s AWR2243 Cascade MIMO radar is employed as the RF

sensor which uses a sawtooth FMCW model. Frequency of the transmitted signal linearly

increases as a function of time during sweep repetition period or sweep time, T . The start

frequency in the radar system is 77 GHz and a bandwidth of 4 GHz is used. So, the signal is

linearly increased up to 81 GHz. The radar system can be configured as a long-range radar

(LRR) in the beamforming mode for higher signal-to-noise ratio (SNR) or as a short-range

radar (SRR) using the MIMO mode for enhanced angular resolution. In this work, MIMO

configuration is utilized.

4.3.1 Virtual Array Generation with MIMO Processing

The experimental MIMO radar contains 4 radar sensor chips cascaded together, where

each containing 3 transmitter TX and 4 RX antennas, resulting in a total of 12 TX and 16

RX channels. 9 of the 12 TX antennas are in the same vertical position and remaining 3 of

them are at different heights. As for the Rx antennas, all of them are located at the same
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Table 4.1: The acquired dataset for different number of targets.

Number of Targets Angles Number of Samples

1
0◦, ±45◦ 476

±15◦, ±30◦ 16

2 0◦, ±45◦ 15

3 0◦, ±45◦ 6

height with a sparse distribution in the horizontal axis as depicted in Figure 4.4a. Utilizing

relative positions of different TX-RX pairs in MIMO radars, one can form a virtual array

with a larger aperture size than what is provided on the hardware. It can be achieved by

employing different modulation techniques such as TDM, BPM, code-division multiplexing

(CDM).

BPM works by introducing binary phase difference (i.e., 0and180) between consecutive

pulses which is not effectively applicable when there exists more than two TX channels. In

this work, TDM is used as the virtual array generation scheme which schedules each TX-RX

pair to transmit pulses. Using 12 TX and 16 RX, a virtual array with 192 channels (including

the overlapping TX-RX pairs) can be formed as depicted in Figure 4.4b where 86 of these

192 channels can be used to form a ULA in azimuth direction, providing angular resolution

of as small as 1.4◦.

4.3.2 Data Collection

In order to assess the effectiveness of the proposed method, a HAR dataset with 9

activities are acquired where 5 of them are human activities and 4 of them belong to a

robotic dog (i.e., Boston Dynamics’s Spot). The acquired classes for human participants

can be listed as: walking towards radar, walking away from radar, picking up an object

from the ground, sitting down to a chair, standing up from a chair. The classes for Spot

are: walking towards radar, walking away from radar, crawling towards radar, crawling away

from radar. The experiment is conducted in a 4.5 m × 6.4 m indoor area. Figure 4.4c shows

84



Figure 4.5: µD spectrogram samples of different classes.
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the experimental setup and the layout of the room where the data are acquired. Each of the

activities are performed at the angles of 0◦ and ±45◦. Few more samples are also collected

at ±15◦ and ±30◦ in order assess the limitations of the proposed method. Each recording

for an activity is lasted for 7 sec, and walking/crawling activities are started at 4.5m away

from the radar. Single and multi-target cases are considered, and Table 4.1 summarizes the

acquired dataset for varying number of targets.

In this study, µD spectrogram is used as the RF data representation type for similarity

analysis and classification. Sample µD spectrograms belonging to different classes are provided

in Figure 4.5. Three different datasets are generated from the acquired samples:

1. The first dataset consists of single activity samples where only one target present in

the radar FoV. This dataset is referred as single activity dataset.
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2. Secondly, merging of raw I/Q signals of the targets located at different aspect angles

by summing the raw signals up allows us to create a scene with multiple targets in a

synthetic way. This dataset is referred as merged multi-target dataset throughout the

chapter.

3. Finally, the data of multiple subjects located at different aspect angles are also recorded

which are named as real multi-target dataset.

Next, we present the performance analysis of the proposed approach and the effect of

several radar system parameters. Classification performance for two additional applications

and their corresponding datasets will also be presented.

4.4 Performance Analysis of the ASPS Method

4.4.1 Similarity Comparison

Projection of the raw signal onto the angular subspace spanned by B keeps the returned

signal strength from the targets located at the angular interval spanned by B, while fades

out the return signals of the targets located at other angles. In order to quantitatively

evaluate the quality of the projected RDCs, their similarity with the original, single target

spectrograms are compared by applying the following steps:

• Step 1: Raw data with single targets at different aspect angles are recorded, their

RDCs are formed and corresponding µD spectrograms are generated.

• Step 2: Multiple single target RDCs are merged by adding them up to create a

combined RDC which contains the raw return signals of multiple targets, and the µ-D

spectrogram of the merged RDC is generated.

• Step 3: The combined RDC is projected onto the target angular subspace. Resulting

projected RDCs are used to generate new, projected µD spectrograms for each projection.
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Figure 4.6: Projection results for two and three target cases.
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• Step 4: Compare the similarity of the projected spectrograms to the original, single

target spectrograms with varying metrics.

Figure 4.6 illustrates the aforementioned steps with the µ-D spectrograms for two and

three target cases. In the first row of the Figure 4.6a, single target spectrograms for walking

away (at 0◦) and standing up (at +45◦) activities and their merging result is presented. After

the projection of the combined RDC onto 0◦ and +45◦, it can be seen that individual targets’

signals are recovered almost perfectly. Second row, presents the results for standing up and

walking towards activities where both of them have mostly positive Doppler frequencies.

It can be seen that the projection method is still able to separate two targets quite well,

indicating that the performance of ASPS method is agnostic to the signature of the Doppler
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frequency caused by the direction of the target’s radial motion. Figure 4.6b presents the

projection results for a three-target case performed at -45◦, 0◦ and +45◦ angles. In the first

row, while Spot’s walking towards and walking away activities seem to be well separated

than others, projection result for picking up an object has some leftover signals of Spot’s

activities before and after the picking up an object ’s signature. This is due to the fact that

the projection angle subspaces are not fully orthogonal and still some weak projections from

other angles are observed.

In order to quantitatively assess the similarity of the projected spectrograms to the

original (i.e., single target) ones, three different similarity metrics are considered, namely,

structural similarity index (SSI), pixelwise mean-squared error (MSE) and peak signal-to-noise

ratio (PSNR). Table 4.2, presents the averaged similarity results across all the samples of

merged multi-target dataset for two and three target cases where X, Y, Z ∈ {±45, 0}. It can be

observed that when the target angle and the projection angle matches, resulting spectrograms

have higher SSI and PSNR and lower MSE than non-matching case as expected. Although

the presented results are the average of all samples, having higher SSI and PSNR with

lower MSE when the target and the projection angle matches is consistent for all individual

samples.

4.4.2 Effect of Angular Difference of the Targets

So far, only angles of -45◦, 0◦ and +45◦ are considered for the similarity measures. In

order to understand the effect of angular difference, ∆Θ, of the targets on the projection

results, more data samples are collected from -30◦, -15◦, 0◦, +15◦, and +30◦ for the activity

of walking away from radar. These samples are then merged with a picking up an object

activity sample recorded at -45◦ one-by-one, resulting in varying ∆Θ between two targets

where ∆Θ ∈ {15◦, 30◦, 45◦, 60◦, 75◦ and 90◦}. Table 4.3 presents the similarity results for

µD spectrograms when RDCs of the targets at varying angles merged with the RDC of the

target located at -45◦, and projected onto the target’s original angle. It can be observed

that as ∆Θ increases, SSI and PSNR increase as well and MSE decreases, meaning that
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Table 4.2: Mean similarity results for the µD spectrograms where
X, Y, Z ∈ {±45◦, 0◦}.

Num. of
Targets

Target
Angle

Projection
Angle

SSI MSE PSNR

2

X 0.59 1.82e3 16.93
X

Y 0.46 3.6e3 13.16
X 0.47 3.56e3 13.2

Y
Y 0.55 2.17e3 16.46

3

X 0.56 2.22e3 16.43
Y 0.45 3.68e3 13.14X
Z 0.42 4e3 12.8
X 0.46 3.73e3 13.07
Y 0.57 2.06e3 16.52Y
Z 0.44 3.9e3 12.9
X 0.44 3.95e3 12.88
Y 0.44 3.79e3 12.97Z
Z 0.53 2.48e3 16.05

the projected spectrogram resembles more to the original single target spectrogram. Figure

4.7 shows the geometry of the multi-target scenario and resulting projected spectrograms

belonging to Table 4.3. It can be seen that the projection method has hard time to separate

targets when ∆Θ = 15◦ where both activities are well visible in the resulting spectrogram.

When ∆Θ = 30◦, although a complete isolation of two targets is not achieved yet, picking up

an object activity is mostly suppressed and walking away seems to be the dominant activity.

When ∆Θ = 45◦, µD signature of the picking up an object activity is barely noticeable and

there exists only a small portion of the leftover weak signatures. When ∆Θ = 60◦ or 75◦

a complete separation can be observed with µD spectrograms containing only one target’s

signatures. From these results, it can be inferred that as ∆Θ between targets increases, a

better separation is achieved and all similarity metrics perform better.

4.4.3 Effect of Number of Antennas

The created virtual array has 86 channels which forms a ULA in the azimuth direction. In

any kind of angle estimation method, the angular resolution is proportional to the number

of channels in the antenna array. However, it worsens as the aspect angle deviates from
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Table 4.3: Similarity results when two activities (i.e., picking up an object and walking
away) with angular difference of ∆Θ are merged, and projected onto the targets’ original
angle.

∆Θ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

SSI 0.67 0.72 0.77 0.83 0.85 0.85
MSE 1.75e3 0.63e3 0.55e3 0.45e3 0.39e3 0.3e3
PSNR 15.7 20.15 20.73 21.63 22.25 23.36

Figure 4.7: Generated µD spectrograms after projecting multi-target (picking up an object
and walking away) RDCs onto original target angles.
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the direct line-of-sight of the radar. A similar phenomenon can be observed in the ASPS

method as well. In some cases, it can be seen that the projected µD spectrograms still contain

signatures of some portion of the activities from other angles. This due to the fact that the

steering vector, a(θ), for an angle, θ, is not fully orthogonal to the other angles. Figure

4.8a shows the correlation between the steering vector of angle 0◦ and the steering vectors of

other angles for different number of antenna elements. It can be stated that although there

are some ups and downs, especially noticeable for 4-elements case, the correlation between
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Figure 4.8: Correlation of angles and similarity between the original single target and
projected µD spectrograms for varying number of antenna elements.
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steering vectors gets smaller as the number of antenna elements increases which is in favor

of the projection algorithm as lower correlation between two angles will lead to a better

separation of the targets located at those angles.

Figure 4.8b presents the normalized SSI, MSE and PSNR values of the projected and

the original spectrogram pairs for different number of enabled antenna elements. It can

be observed that SSI and PSNR increase as with the number of antenna elements while

MSE decreases, indicating that the projections made with a larger antenna aperture size

resembles more to the original target signatures. Qualitative results for this observation are

presented in Figure 4.9. Figure 4.9a shows the µD spectrograms belonging to 3 different

activities at different angles and their merging result. Figure 4.9b shows the resulting µD

spectrograms for projections for the target angles with different number of antenna elements.

While the separation is barely noticeable and poor for lower number of antenna elements, it

gets better as the number of MIMO channels increases. Isolation of individual targets start

to become quite clear after 32 channels, and 72 and 86 channels yield very close results.
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Figure 4.9: Projection results for varying number of antenna elements.
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These qualitative results are found to be in-line with the quantitative results obtained in

Figure 4.8b.

4.5 Classification with RDC-ω Representation

In this section, utilization of ASPS derived RDC-ω representation for multi-target activity

classification is presented. First, multi-person HAR where there is sufficient angular separation

is considered. The RDC-ω representation for each target is input to a DNN trained with
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data from single-target. Next, two cases where targets are in close proximity is considered:

1) the left and right hands during articulation of two-handed gestures/sign language and

2) two-people doing different activities next to each other. In these cases, the proposed

multi-view DNN, taking multiple spectrograms generated from the RDC-ωs as inputs, is

shown to boost the multi-target classification performance.

4.5.1 Multi-Person Activity Recognition

HAR and indoor monitoring are drawing more attention as with the development of

state-of-the-art end-to-end solutions utilizing RF sensing. HAR dataset is used to assess the

effectiveness of the method. First, a very basic case, classification of the single activity dataset

is considered. µD spectrograms of single targets are fed into a 4-layer CNN followed by two

fully connected layers and one more fully connected layer having number of nodes equal to

the number of classes for classification. There exists a Reshape layer before the final Dense

layer, so that the output of the model will have the shape of Tmax × Nclass where Tmax is the

predefined maximum number of detectable targets and Nclass is the number of classes. This

modification allows model to give prediction for each target. softmax activation function

is often employed in the last layer of a classification network for multi-class classification

problems. It enables normalization of the output of a network to a probability distribution

over predicted output classes, based on Luce’s choice axiom. In this work, in the final

classification layer, sigmoid activation function is preferred over softmax which is more

common for multi-class classification problems. Such unconventionality is needed because

output values of the softmax should add up to 1, however, when there are less number of

targets than Tmax in the scene, all the output values for non-existent target nodes should be

close to 0, but softmax cannot provide such output while sigmoid can. In this application,

Tmax is set to 3. The trained model achieved the testing accuracy of 98.7% for the single

activity dataset. However, when the trained model is tested on merged multi-target and real

multi-target datasets where multiple targets present in the scene, accuracies drop down to
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Figure 4.10: Angle estimation accuracy for different angular tolerance values.
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5.8% and 8.3%, respectively. Such performance drop is expected as the latent space of the

multi-target spectrograms may not resemble to any of the individual classes.

Application of the projection idea can be quite useful in this scenario as it has capability

to isolate µ-D signatures of the individual targets. As mentioned earlier, estimation of

the target angles is a necessary step in this framework, and the ground truth label of the

projected spectrogram will depend on the ground truth class of the original target. If the

original target angle and the estimated projection angle matches, they will share the same

class label. In order to decide whether the estimated angle and the original angle matches,

the angular grid needs to be divided into angular bins. If the estimated angle and the original

are in the same angular bin, they are said to be matching and will share the same class label,

otherwise, the target will be regarded as a false detection, and will not be classified since its

ground truth becomes vague. Figure 4.10 shows the angle estimation accuracy for varying

angular bin widths for 2 and 3-target cases of the real multi-target dataset. Accuracy here is

defined as the ratio of the number of correct angle estimations divided by the total number

of estimated targets in the dataset. It can be seen that the angle estimation accuracies for

the 3-target case is higher than the 2-target case, especially for lower angular bin widths.

One reason of this could be that the ground truth of the 3-target case spans a larger angular
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Table 4.4: Classification accuracy of the projected spectrograms for the real
multi-target dataset.

Angular
Bin Width

5◦ 10◦ 15◦ 20◦ 30◦ 35◦ 45◦

Accuracy (%) 96.9 97.8 93.8 92.2 92.3 88.9 79

Table 4.5: Classification accuracy of the projected spectrograms for varying
number of MIMO channels.

Number of MIMO Channels 4 16 32 72 86

Accuracy (%) 46.8 82 93.1 94.6 94.6

interval than 2-target case, hence it is more likely for an estimated angle to fall into detection

interval of a ground truth angle.

After obtaining the ground truth labels for the projected spectrograms, they are given

as input to the model trained with single activity dataset. Table 4.4 presents the prediction

accuracies of the projected spectrograms for the real multi-target dataset for varying angular

bin widths. It can be seen that the accuracy reaches its maximum with 97.8% at 10◦ which

is only 1% lower than the single target prediction task, although none of the real multi-target

dataset samples are used in the training stage. This shows the benefit of utilizing the

ASPS method in a multi-target scenario by decomposing the multi-target spectrograms into

individual spectrograms and enabling flexibility to treat them as single target spectrograms,

and classify them in that way. Finally, Table 4.5 presents the testing accuracy results for

different number of virtual channels in the MIMO array. It can be observed that the accuracy

improves with increasing number of MIMO channels since more number of channels yields

better separation of µD signatures and the projected spectrograms start to resemble more

to the single target samples.
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Figure 4.11: µD spectrograms of the projected ASL signs.
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4.5.2 Multi-view DNN for Multiple Targets in Close Proximity

American Sign Language Recognition

ASL recognition using radars has become an emerging research field, especially with the

development of small package, commercially available RF sensors. ASL signs are composed

of a mixture of various hand movement types (e.g., circular, straight, and back-and-forth).

While some signs are articulated with one hand, some are articulated using both hands.

Separation of return signals from left and right hands can be quite useful in order to retrieve

the individual characteristics of each hand’s motion. However, rapid change in the spatial

position of the hands and two hands being very close to each other introduce challenging

scenarios and classical representations such as RA domain cannot separate the right and left

hand as two separate targets.

In order to demonstrate the performance of the proposed ASPS approach, an ASL

dataset with 10 different signs (you, hello, walk, drink, friend, knife, well, car,

engineer, mountain) are collected from 6 participants. Moreover, considering not all the

commercially available MIMO radars have antenna apertures as large as 86 channels, TI’s

AWR1642BOOST single-chip radar with 2 TX and 4 RX channels is employed as the RF
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Figure 4.12: Proposed multi-view CNN model where Wi denotes the shared weights at the
ith layer.
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Table 4.6: Classification accuracy (%) comparison results for the ASL
recognition task for varying projection angle intervals.

Projection Angle IntervalNo
Projection 0 to ±30 ±30 to ±60 ±60 to ±90

93.3 96.9 93.9 93.3

sensor. A virtual array of 8 channels is formed using BPM scheme for MIMO processing.

ASL samples are then projected onto left and right angular intervals of (0◦ to ±30◦), (±30◦

to ±60◦) and (±60◦ to ±90◦). Figure 4.11 shows the original and projected samples for the

words hello and mountain. In the first row, it can be seen that while projecting onto (0◦,

30◦) interval strengthens the power of first negative and second positive peaks, projecting

onto (-30◦, 0◦) strengthens the power of first positive and the last negative peaks. A similar

observation can be made for the word mountain in the second row. Although ASPS method,

in this case, cannot completely separate µD signatures of left and right hands, the resulting

spectrograms can be used to enrich the feature space in the learning-based classification

algorithms.

For this 10-class ASL recognition problem, a multi-branch DNN model which takes left

and right projected spectrograms as inputs is proposed. The network has 2 input layers and

4 CNN blocks. Weights of two branches are shared across corresponding layers to reduce the

number of trainable parameters, hence better regularizing the model. Two branches are then
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merged in a concatenation layer and softmax is employed for classification. The proposed

network model is presented in Figure 4.12. The performance of this model is then compared

with the baseline model which is essentially the same network, but with a single branch that

takes the original spectrograms as inputs. Table 4.6 presents the classification results when

the projection is employed and not employed. It can be seen that while baseline model’s

mean accuracy is limited to 93.3%, the classification accuracy of the projected spectrograms

with the proposed network can go up to 96.9%. The reason projection performs better

for angular subspaces of [0,±30] might be because the articulating ASL signs mostly live

in this angular subspace. These results show that although the ASPS method has some

limitations for challenging scenarios such as separation of left and right hands signals, it can

still be employed to enrich the feature space in the model which yields a better recognition

performance.

Two People Performing Activities Side-by-Side

Similar to the ASL case, when the targets are very close to each other or side-by-side, it is

a challenging task to individually isolate and extract each target’s µD signal as depicted

in Figure 4.7. When the generated spectrograms from the ASPS method have major

µD components from multiple targets, it is not plausible to feed the resulting projected

spectrograms into a DNN model trained with only single target samples as their feature

spaces are different from the single target samples. Therefore, a similar approach can be

followed as in the ASL case, and the ASPS method can still be benefited in the cases when

there is a prior knowledge about the number of targets present in the scene.

In order to demonstrate an alternative use of the ASPS method for closely located

targets, a separate HAR dataset is acquired where two targets were performing the same or

different activities in the direct line of sight of the radar, very closely on the lateral axis and

side-by-side for the stationary activities like sitting down, standing up and picking up an

object. In total, 276 samples for 5 different activities are acquired including walking towards
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Table 4.7: Classification accuracy (%) comparison results for closely
located targets for varying projection angle intervals.

Projection Angle IntervalNo
Projection 0 to ±5 0 to ±30 ±30 to ±60 ±60 to ±90

91.1 92.9 94.6 92.9 87.5

and away from the radar. The acquired samples are projected onto different pairs of left and

right angular intervals: (0◦ to ±5◦), (0◦ to ±30◦), (±30◦ to ±60◦) and (±60◦ to ±90◦). The

projected left and right samples are then used to train the multi-input CNN model presented

in Figure 4.12 by only modifying the number of nodes in the softmax layer according to the

number of classes. Performance of the multi-input CNN model with projected samples is

compared with the single branch model with no projection. Single branch model has the

same hyperparameters and the identical architecture to the one branch of the multi-branch

CNN model.

Table 4.7 presents the testing results for the single branch baseline model (i.e., no

projection) and the proposed multi-branch CNN with the projected spectrograms. It can

be seen that all the projected angular intervals except (±60◦ to ±90◦) outperform the the

baseline method with no projection. Obtaining lower performance for the (±60◦ to ±90◦)

case is an expected result since all the activities were performed in the direct line of sight

of the radar, hence not much information is present in the higher angular intervals. On the

other hand, projection on (±0◦ to ±30◦) yields the highest performance with 94.6% which

is more than 3% performance gain when compared to the baseline method.

4.6 Discussion and Conclusions

This study proposes two techniques to address the challenge of multi-target recognition:

1) an angular subspace projection-based separation (ASPS) method to emphasize at the raw

signal-level the data of targets located at different aspect angles with respect to the radar;

and 2) a multi-view DNN, which takes as input spectrograms generated from the multiple

99



RDC-ω representations generated via ASPS. The approach was demonstrated for several

use cases: multi-person/robot motion recognition, HAR for closely spaced targets and sign

language recognition, where ASPS is used to generate RDC-ω representations for the left and

right hands that are then used in a multi-view network for classification. The significance

of the new RDC-ω representation is that the angle-depended boosting of target signatures

is accomplished at the level of the raw RDC, not after post-processing in images as is done

with current approaches. The RDC-ω representation can thus be also used to develop DNNs

that directly operate on the raw RDC-ω data or other 2D/3D radar data representations

than micro-Doppler, such as range-Doppler, range-Angle maps.

The case studies presented in this paper show that the proposed method is able to

generate individual RDCs for each target so that the newly generated RF data representations

from the projected RDCs can be treated as samples belonging to a single target in a

classification task. For a nine-class activity recognition scenario, the projected multi-target

RF data samples were classified with 97.8% accuracy by a CNN model which is trained solely

on single target samples, despite multiple targets being within the field of view. We also

characterize the effect of the number of MIMO channels on the performance of the projection

method in terms of different similarity metrics and classification accuracy. In the case of

close proximity between targets, we show that the multiple RDC-ω representations can be

used in a multi-input DNN framework to boost classification performance.

In future work, we plan to further investigate the design of DNNs operating on the

raw RDC-ω representations to enable real-time recognition applications, such as RF-enabled

cyber-physical human systems for explicit and implicit control of personal assistants and

autonomous vehicle in-cabin driver/passenger monitoring sub-systems. Future work will also

include multi-target activity classification under more challenging scenarios such as moving

clutter.
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CHAPTER 5

INTERACTIVE LEARNING OF NATURAL SIGN LANGUAGE

5.1 Introduction

An important challenge to the development of RF-sensing based human motion recognition

algorithms, and sign language processing technologies more broadly, is the lack of availability

of adequate datasets for model training. Not just the amount of data, but the quality of

data is critical. Sign language is comprised of not just physical spatio-temporal articulations,

but also non-manual markers (such as eyebrow, eye, cheek, and mouth postures, head and

body position) to convey linguistically and emotionally rich messages. Like all languages,

sign language is influenced by personal, regional, and cultural traits that can result unique

variations in expression, as well as linguistic properties influenced by grammar and prosidy

[124]. In prior work, we have shown that RF sensing data also captures these human and

linguistic qualities, including co-articulation [65] and degree of fluency [69]. In particular,

we showed that a support vector machine (SVM) could be trained on RF micro-Doppler

signatures to discriminate between fluent users of American Sign Language (ASL) and

imitation signers - hearing participants who strive to replicate ASL signs after watching and

practicing from videos of fluent signers. More significantly, we found that using imitation

data to train and validate machine learning (ML) algorithms, as done in some works [49, 116],

over-optimistically predicts the recognition accuracy of 20-signs by as much as 20% in

comparison with that obtained using data from fluent signers - the actual prospective users

of ASL recognition technologies.
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Given the great variety and complexity of the expression of sign language, existing ASL

datasets (for any sensing modality) lack adequate size and diversity to adequately train

models that can generalize to signers of all ethnicities, regions and accents. Traditional in-lab

data collection typically involves inviting participants to articulate ASL in a directed fashion

and in a controlled setting. However, this type of data collection has many disadvantages,

from both a sociological and technical perspective. In-lab data collection may attract

participants from only a certain demographic [17], unwittingly resulting in datasets that

contain inherent biases and that do not adequately represent certain groups of signers.

Moreover, the controlled settings of a lab result in pristine data, which may not be representative

of real-world environments or natural articulation. For example, in collecting directed

datasets, the signer may position the hands on the knees before repeating the directed sign,

subsequently returning the hands to the same position. This type of scripting precludes

capture of variations due to co-articulation - the variation in the spatio-temporal properties

of the sign due to the preceeding or proceeding word or activity. Moreover, it is just human

nature to behave differently when we know that we are recorded [127]. In daily settings,

when one is not explicitly focusing on what one is saying, the participant may behave and

sign differently. Circumstances may also dictate differences in signing with two hands versus

one, if the person is signing while holding a cup of coffee, for example.

Finally, directed dataset collection is simply not scalable. The costs in terms of time to

collect the data and money to compensate participants for their contributions are often too

prohibitive to collect massive amounts of data. This has driven efforts to develop alternative

means for acquiring sign language datasets. In 2021, Bragg, et al. [18] proposed using

crowdsourcing to record videos with specific content to facilitate automatic labeling and

perform quality control with experts to check for consistency. In another work, Bragg, et

al. [15] also conducted a user study to explore the data quality that could be obtained by

participants playing ASL Sea Battle, a variant of Battleship that uses ASL, and reported

favorable user experiences and reliable collection of videos for 20 ASL signs. However, this
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work utilized an approach similar to the ”Wizard of Oz” [36] procedure. In particular, a

researcher was required to interact with the technology alongside participants. Moreover,

the quality of the data collected was only visually evaluated by experts - no investigation or

demonstration of the data’s utilization for model training or ASL recognition was conducted.

In contrast, this study proposes ChessSIGN1, an interactive chess game autonomously

controlled via video to collect natural ASL from both video and radar. To the best of our

knowledge, this paper is the first to explore the learning via interaction of radar micro-Doppler

signatures, considering both pre-deployment batch training and post-deployment model

updates. First, Section 5.2 describes the design of the ChessSIGN game, interface design,

model training, and real-time recognition accuracy. Next, Section 5.3 shows how directed

datasets are not effective even for model pre-training of DNNs to classify natural articulations.

Section 5.4 then describes several possible solutions to this challenge, including the use of

physics-aware generative adversarial networks (PhGANs) for synthetic training data generation,

style transfer and domain adaptation networks for leveraging directed data for model training,

and post-deployment training strategies for improving recognition accuracy as an increasing

amount of data is acquired. Beyond ASL recognition, the results of this paper provide

insights into the real-world challenges in the development and deployment of effective ML

models for classification of human RF signatures, and show that post-deployment interaction

can be used to improve recognition of natural signing over time. Section 5.5 discusses key

conclusions and plans for future work, including the use of ChessSIGN as an interface for

evaluating real-time radar-based recognition algorithms and closed-loop sensing paradigms,

such as cognitive radar.

1We refrained from utilizing ASL in the name to reflect the broader applicability of the proposed approach
to all sign languages, not just ASL.
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5.2 Interactive ASL-Enabled Chess Game

Chess is a popular strategy game that as drawn great interest from people of all age

groups and backgrounds. It is well-suited for our proposed interactive data acquisition

approach because it is a slow-paced game, which gives users enough time to decide and

select their move. As such, it alleviates real-time processing constraints and allows enough

time for locally saving and transferring the data, signal processing, and model prediction.

Furthermore, chess is flexible enough to allow for the addition of other features for collecting

more complex signing sequences and collecting user feedback using a small pop-up window.

This can enable users to effectively self-annotate their data, minimizing subsequent quality

control efforts.

When the data collection procedure is transformed into a gaming environment, several

concerns emerge that do not exist in controlled experiments, such as designing the game in an

enjoyable manner and ensuring that any overhead for self-annotation is not overwhelming or

so intrusive that users get bored or frustrated with the interface. Additionally, it is important

to minimize computational overhead due to data processing so as to avoid introducing delays

in the game, which can then degrade a user’s playing experience. Finally, predictions made

by the game control model should be accurate enough so that users do not have to often

undo their move, or feel like they are doing something wrong or are not skilled enough to

play the game.

The proposed interactive ASL-enabled chess game is designed to acquire data from both

an RGB camera and an FMCW radar simultaneously. In our initial pilot version, the game

itself is controlled using predictions made using video data only. To minimize potential user

frustration due to misclassifications, we took advantage of a publicly available video-based

ASL dataset to train our initial game control model, as described in the next section.
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water yes book sleep car hello
home read time better drink tomorrow
see hot bed why where like

please have morning fine go night
can table there finish hate -

Table 5.1: ASL signs utilized in the chess game.

5.2.1 Video Dataset

We used Google’s Isolated Sign Language Recognition (GISLR) dataset [31] to train our

initial video-based control model. This dataset contains 250 of the first concepts/vocabulary

based signs that are taught to infants in any language. Around 100k videos (∼400 samples

per class) of isolated signs are articulated by 21 Deaf participants fluent in ASL. The corpus

itself is a collection of hand and facial landmarks generated by MediaPipe Holistic pipeline. It

integrates separate models for pose, face and hand components, each of which are optimized

for their particular domain. This dataset is mainly used in the PopSign mobile game2 to

improve the ability of the game to help relatives of Deaf/Hard-of-Hearing(HoH) children

learn basic signs and communicate better with their loved ones. In this work, a subset of 29

signs - the maximum number of different positions the most mobile piece, the Queen, can

move - from the GISLR dataset is utilized to control the movement of game pieces.

Command sign selection was done based on the basis of several factors, including the

selection of signs that were unique in their articulation (e.g. not signs that had many

variants based on regional dialects), were more kinetic in nature (did not rely exclusively

on shape for distinction), and which were one of the 100 signs acquired in prior studies

[138] conducted with directed data collection using radar. This enabled comparison of our

proposed interactive approach with conventional directed data and study of its implications

for ML model training and recognition of natural ASL - the core contribution of this paper.

A list of signs utilized is given in Table 5.1.

105



Figure 5.1: Screenshots of the ASL-enabled chess game.

(a) Highlighted possible moves
with assigned words for a
selected piece (left Bishop).

(b) UNDO button for
correcting wrong predictions.

(c) Feedback GUI for
correcting misclassifications.

5.2.2 Chess Interface Design and Game Play

The graphical user interface (GUI) of the game is comprised of a central region showing

the chess board itself, captioned with an banner at the top to provide information and

instructions to the user. The game begins by the user selecting the piece they wish to move

by hovering over the piece with a mouse and clicking. This triggers the GUI to reveal to

the user all of the possible moves for the selected piece by highlighting those squares on

the chess board and displaying text for the English word that has the closest conceptual

correspondence an ASL sign, randomly selected from among the 29 command signs. Note

that there is no guarantee that the user will respond by articulating exactly the same sign as

recorded in the training data, due to regional and cultural variations of ASL. In our initial

selection of command signs, we aimed to select signs that had unique articulations and no

significantly different variants. A screenshot showing the textual prompts for moving a chess

piece using ASL is illustrated in Figure 5.1a.

Once the user decides to which position they want to move the piece, the user clicks

the green ”CLICK HERE” botton on the top right corner of the screen to trigger the data

2https://www.popsign.org/
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recording of both the camera and radar sensors. A pop-up appears on the center of the

screen and counts down from 3 to 1, after which the word ”GO” is displayed to indicate to

the user when to begin signing. Both sensors record the users signing for 3 seconds, after

which the camera data is processed and input to the video-based model, described in Section

5.2.3, to recognize the user’s articulation.

The prediction made is displayed to the user and the chess engine makes the move

accordingly. An ”UNDO” button is then displayed on the top right corner of the screen, as

shown in Figure 5.1b. If the prediction is correct, the user selects another piece and continues

to play. Otherwise, the user can click on the ”UNDO” button to reverse the move. When

a move is undone, the last move is reversed (i.e., the game goes back to the previous board

state before the prediction), and it opens-up a small GUI to allow user to select the actual

word they signed from a drop-down menu, as shown in Figure 5.1c, and enables correct

labeling of the recorded signs as ground truth. The game history, along with a record of

the incorrectly predicted samples, is logged into a file to allow further offline analysis of the

data. The recorded data samples are transferred to a local hard drive and backed-up to a

cloud platform automatically after each recording for storage safety purposes.

The interactive ASL-enabled chess game essentially inherits all the features and preserves

the rules of a regular chess game. The main difference from a regular chess game comes from

the way it is being played from a user point of view. Instead of clicking on the position users

want to move their piece on, they use ASL signs to give the move command to the game.

The game, on the other hand, operates sensors, collects user’s data and runs the prediction

model and the chess engine in the backend. Such operating capability eliminates the need

for an operator during the game play and the data collection process and the need for an

annotator to label the acquired dataset.

5.2.3 Video Prediction Model

The GISLR dataset was first introduced in an online hackathon organized by Google

on Kaggle. The first place was achieved with a network composed of a 1D-CNN and
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a Transformer subnetworks by Hoyeol Sohn [157]. Combining CNNs with Transformers

is a prevalent idea applied in different networks such as CoAtNet [37], Conformer [62],

MaxViT [168] and Next-ViT [111]. In the proposed solution, the Transformer is applied

with batch normalization and Swish activation function instead of typical layer normalization

and Gaussian Error Linear Unit (GELU) activation since the former yielded slightly lower

inference time with the same accuracy than the latter one. The proposed model has around

1.85M trainable parameters. Handling variable-length input was achieved with padding

and truncation. This approach provided sufficient inference speed and enabled the use of

reasonably large models. In this work, we modified the network for 29 output classes and

re-trained the model.

The final model consists of 12 convolutional and 4 Transformer blocks stacked in 3+1

fashion for four times. After global average pooling (GAP) for flattening, a multi-layer

perceptron (MLP) with Softmax activation function is applied for classification. Drop-path

[108] - a high rate of dropout (p=0.8) - and Adversarial Weight Perturbation (AWP) [179]

is applied for regularization. These methods were very crucial to prevent overfitting when

training for long epochs (≥ 300), and removing any one of them resulted in significant

performance drops. To improve generalization, temporal and spatial augmentation techniques

were applied to the training data, such as random re-sampling (0.5× - 1.5× the original

length), random masking, horizontal flip of the skeleton, random affine transformations

(scale, shift, rotate and shear) and random cutout.

5.2.4 ASL Datasets Acquired

Both directed and interactive data was acquired during this study. Directed data is

acquired via a controlled experiment in which the users is specifically directed to articulate a

particular sign. Interactive data is acquired via the proposed ASL-enabled chess game, and

the data is acquired in free form during game play with limited instructions and no external

intervention. IRB approval was obtained prior to the study, and data was collected with

informed consent from each participant.
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Figure 5.2: Dataset acquisition environments.

(a) Directed RF Dataset Acquisition. (b) Natural Multi-Modal Dataset
Acquisition.

Directed RF ASL Data

This initial dataset is acquired under controlled experimental settings in a laboratory environment.

The RF sensor was placed around 1.5m away from the participants and 0.91m elevated

from the ground. Participants were seated on a chair directly facing towards a monitor

that was placed behind the RF sensor. The monitor is used to prompt the words to be

articulated. This ensures the dialectal consistency across participants by displaying a specific

articulation of each sign. The experimental setup for the directed RF ASL dataset acquisition

is demonstrated in Figure 5.2a. Since there exists different ways of articulating a sign, the

signing videos were also displayed to the participants in order to have a consistent way of

signing a word across participants.

Data was acquired in 2022 from 19 participants at Gallaudet University, the only university

in the U.S. for Deaf/HoH students where ASL is used as the primary language of instruction,

and 4 participants at the Lab for Computational Intelligence in Radar (CI4R) at the University

of Alabama. Of these participants, twenty-one were Deaf, while two were Child-of-Deaf

Adults (CODAs) fluent in ASL. All experiments were conducted using the same RF settings

and operators. A total of 110 signs were acquired, based on selection from the ASL-Lex

Database [23] including nouns, verbs and adjectives based on their usage frequency and
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kinematic variance. A total of 4,455 samples were acquired for 110 signs which corresponds

to around 40 samples per class.

Interactive Multi-Modal ASL Dataset Acquired

This dataset is acquired during the course of interactive ASL-enabled chess game play. An

integrated RGB camera is used for recording the videos, while an RF sensor (the same

sensor as used in the directed ASL dataset) was placed in front of a laptop that runs the

game as shown in Figure 5.2b. This data was acquired in 2023 from 23 Deaf participants

at Gallaudet University. Note that the people who participated in the 2022 Directed ASL

data collection are not the same individuals as those who played ChessSIGN to provide

interactively-acquired data. To assess the difference between the directed and the natural

signing, 29 common words between the directed dataset and the GISLR are selected as listed

in Table 5.1. The dataset is acquired in a synchronized, multi-modal fashion and in total

1,078 samples were collected for 29 signs (∼37 samples per class). Since the chess game is a

slow-paced game, total number of samples acquired during the experiment is relatively lower

when compared to the directed case. However, number of samples per class is comparable

to that of the directed case.

5.3 Directed versus Natural ASL Data

In this section, we examine the differences between RF ASL signatures acquired through

natural interactions versus that of the conventional, directed (controlled) experimental approach.

In particular, we first show qualitatively through observation of the RF signatures, the

various ways in which directed experiments fail to capture the nuances of natural signing.

Then, we show the detrimental impact of using directed ASL data in model training for sign

language recognition.
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Figure 5.3: µD signatures of directed and natural ASL samples for the signs hot (left), like
(center) and please (right).
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5.3.1 Comparison of µD Signatures

Consider the pairs of directed versus natural µD signatures shown in Figure 5.3 for the

signs hot, like, and please. For the same sign, the natural signature exhibit significantly

greater variance. These variations are not just slight variations in the spatio-temporal

artifacts of the signature, but can be significant differences in the shape, speed (µD bandwidth),

number and bandwidth of repetitive features and strength of the signatures.

For example, based on viewing video recordings of the articulation corresponding to the

µD signatures, it may be observed that for the word hot, the signer articulating the word

in a natural, interactive setting repeats the sign two times, hence two positive peaks can

be observed in the µD signature while there is only one repetition and one positive peak

in the directed samples. For the word like, in an unconstrained, interactive setting, the

signer shakes her hand after finishing the sign. This causes some jittering effect at the lower

frequencies of the µD spectrogram. For the word please, the signer moves her hand towards

her chest in two steps instead of one which causes two consecutive negative peaks in the µD

spectrogram. Also, the negative and the positive peaks at the beginning and at the ending

of the sign when the arms are being moved towards and away from the chest are not as sharp

as in the directed case.
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Figure 5.4: Maximum and minimum velocity distributions of directed and natural ASL
signing.
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Table 5.2: Statistical comparison of speed in directed and natural.

Data
Type

Avg. Max.
Velocity

Var. of Max.
Velocity

Avg. Min.
Velocity

Var. of Min.
Velocity

Directed 2.58 m/s 1.06 (m/s)2 -2.46 m/s 0.89 (m/s)2

Natural 2.61 m/s 1.59 (m/s)2 -2.28 m/s 1.03 (m/s)2

5.3.2 Comparison of Velocity and Feature Distribution

Figure 5.4 shows maximum and minimum velocity distributions of directed and natural

ASL signing. From the histograms, it can be observed that although directed and natural

samples have close mean maximum and minimum velocity values, variance of natural samples

are much larger as the histograms bins are more evenly distributed. Table 5.2 summarizes

the average and variance values of maximum and minimum velocities of directed and natural

ASL samples. It can be seen that while the variance of maximum velocity of the directed
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Figure 5.5: Data distribution difference exploration of directed and natural ASL samples via
dimension reduction techniques.
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(b) t-SNE analysis of directed and natural
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samples are 1.06 (m/s)2, it is 1.59 (m/s)2 for the natural signing samples. Similarly, for the

variance of minimum velocity, while it is 0.89 (m/s)2 for directed samples, it is 1.03 (m/s)2

for the natural case. This quantifies the statistical difference between the two datasets.

The impact on the statistical distribution of features can be visualized by utilizing the

principal component analysis (PCA) [5] and t-SNE [171] dimension reduction techniques.

Figure 5.5a and 5.5b present the 2-dimensional PCA and t-SNE maps for directed and

natural ASL samples. From these visualizations, it may be observed that the directed ASL

samples exhibit - as expected - some overlap with the natural signing samples. However,

there are significant regions overwhich the two distributions do not overlap, indicating that

for many samples, the directed data is not representative of natural signing.

5.3.3 Impact on Model Training

The significance of the difference between the distributions is underscored when its impact

on model training is examined. In particular, the distributions of direct data signatures

versus natural signing is so significant that models trained with data collected in a directed
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fashion are entirely unable to recognize natural signing at all - a result seen not just with

radar data, but with video data as well.

First, it should be noted that there are actually two different ways of evaluating model

performance: computation of the ”in-game accuracy” and evaluation of 29-sign model accuracy

once the game has concluded based on recorded data. Although the complete model is

trained for 29 signs, during a game, the selected piece will only be able to move to a much

lower number of possible positions. This reduces the classification problem to one of just

recognizing the signs for the possible positions. For example, a Pawn can move one square

forward if unobstructed (or two on the first move), or one square diagonally forward when

making a capture. This results in three possible positions. Or a completely unobstructed

Knight may only move to eight different positions. In contrast, once the game is completed,

all the data acquired for all 29 command signs can be utilized as test data for the model,

resulting in a true assessment of the ability of the interactive data to train a 29-class model.

Due to the few number of classes encountered during the game, the in-game accuracy of a

model is typically higher than that of the true 29-class accuracy.

Video-Based Model Accuracy

When the video-based model is trained and tested with directed data from the GISLR

dataset, an accuracy of 92.3% was obtained for the 29 signs selected to control the movement

of chess pieces during the game. However, during the actual chess game, this model performed

significantly worse, achieving a 76.62% in-game classification accuracy. The confusion matrix

for in-game predictions are shown in Figure 5.6. A number of words appear to be consistently

confused over 10% of the time: hot with finish, fine and hello with go, and better

with have. All of these signs are more kinetic in nature, which may be one reason for

higher misclassification by video: video tends to be more effective in characterizing spatial

variance, rather than temporal variance (a weakness remedied by radar, which is effective in

recognizing signing dynamics - not shapes).
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Figure 5.6: Confusion matrix of the video-based prediction model with in-game restrictions.
(All the values are in terms of percentages.)
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In-Game Video Prediction Results

If we evaluate the efficacy of the GISLR-trained model to classify 29 signs outside the

constraints of the game, however, a natural signing classification accuracy of just 48.24%

is attained. This result demonstrates the inherent limitations of existing sign language

video databases, which utilize directed data collection and hence cannot capture the natural

features of sign language, which emerge in the interactive game environment.

Radar-Based Model Accuracy

A similar effect is observed in radar data as well. First, let us consider the baseline training

scenario of training the RF model with directed data, but also testing the model on directed

data. The directed RF dataset used in this work has significantly lower number of samples

per class when compared to the GISLR video dataset (i.e., 40 vs 400 samples per class).

With only real data itself used during training, a classification accuracy of 68.9% is obtained

using a 4-layer CNN comparised of 2D convolutional blocks followed by max-pooling layers
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and two fully connected layers for classification. The Adam optimizer and cross-entropy loss

function are used in the training phase.

This performance can be boosted, however, through the use of synthetic data generation

to increase the size of the training sample support. In prior work, physics-aware generative

adversarial network (PhGAN) [137] was shown to be effective in improving the classification

accuracy of both sign language and, more broadly, human activity datasets. The PhGAN

model improves the kinematic fidelity of synthetically generated RF signatures by adding

another branch to the discriminator that takes as input not just the µD signature, but

its envelope as well. The envelope represents the maximum velocity incurred during the

articulation of a certain movement and as such represents an important physical bound

on the resulting signatures. Moreover, a physics-based loss was also added into the cost

function of the network to quantify how effectively the envelopes of the synthetic versus real

signatures matched. The utilization of these two innovations was shown to result in the

fewest kinematic errors as comparison to alternative GAN [57] architectures. In this work,

a dual-branch PhGAN network was utilized to generate an additional 500 synthetic samples

per class for the directed RF dataset. When trained using PhGAN-synthesized signatures,

the same 4-layer CNN yielded 100% recognition accuracy on directed radar-based ASL data.

Inasmuch as this is a great result when training and testing on directed ASL data,

this model completely fails to recognize any natural ASL samples: only a 9.56% accuracy

is obtained when testing on the natural ASL samples acquired via the interactive chess

game. This result is substantially worse than that obtained from video, which exhibited a

44% performance drop. Here, the radar-based model exhibits a 90% drop in performance!

One possible reason for radar being more effected could be that one of the major ways in

which directed ASL data differs from that of natural ASL is that the kinematics - temporal

progression and revelation of co-articulation - is much different even though the spatial

component of the signal is still similar. As radar is much more sensitive than video to
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Table 5.3: Performance comparison of different training methods and datasets.
(Note that no natural signing data are used in the training phase of Exp. 5).

Exp.
ID

Training
Data

Testing
Data

Modality Model Acc.
%

1 GISLR GISLR Video 1D-CNN +
Transformer

92.3

2 GISLR Natural
ASL

Video 1D-CNN +
Transformer

48.2

3 Directed
ASL

Directed
ASL

RF 2D-CNN +
MLP

68.9

4
PhGAN(Dir.

ASL)
Directed
ASL

RF 2D-CNN +
MLP

100

5
PhGAN(Dir.

ASL)
Natural
ASL

RF 2D-CNN +
MLP

9.6

kinematics rather than hand shape or spatial variables, its performance is more negatively

effected.

5.4 Interactive Learning of Natural ASL

The results of the prior section clearly show the challenge of recognizing natural ASL

and validate the necessity of the proposed interactive ASL-enabled chess game for capturing

and learning from natural ASL. But the question then remains of how to best train an RF

system prior to deployment so that the prediction accuracy improves as we get an increasing

amount of natural ASL data: interactive learning in-situ.

5.4.1 Fine-Tuning Model Pre-Trained with Directed ASL

The results given in Table 5.3 do not utilize any natural signing data during the training

phase. However, after the ChessSIGN game is deployed, we will be acquiring an increasing

number of natural ASL samples that can then be leveraged to fine-tune models initially

trained using 1) real RF samples acquired in a directed fashion, or 2) synthetic RF samples

generated from directed ASL data. Synthetic RF data generation using GANs has been

shown to be an effective method for increasing the sample support during model training,

especially when the availability of real data is limited.
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Figure 5.7: Accuracy of 4-layer CNN pre-trained with Directed and PhGAN-Directed ASL
data, and fine-tuned with natural ASL data.
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Figure 5.7 shows how utilizing varying amounts of natural signing data for fine-tuning the

model improves prediction accuracy. Note that the 4-layer CNN has the identical architecture

and hyperparameters as used in Exp. 4 in Table 5.3. It should be noted that while the use of

PhGAN-synthesized samples for training offered tremendous performance gains when testing

on directed ASL data (accuracy increases from 68.9% to 100%), when testing on natural ASL

data, as shown in Figure 5.7, increasing the amount of training data using PhGAN synthesis

does not offer an performance benefits. This is because there is a fundamental difference in

the distributions of directed versus natural ASL data, and GAN-based synthesis does not

bridge this gap - it only generates more samples from the same distribution. As directed ASL

does not accurate capture the articulation of signs that occurs during natural signing, the

fundamental differences in kinematics severely limits the efficacy of directed data to inform

model training of networks intended for classification of natural ASL.

Ultimately, while fine-tuning with natural ASL samples collected in-situ increases the

testing accuracy, this increase is not sufficient to train a viable model as accuracy remains

under 20%.
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Figure 5.8: Accuracy of VGG-16 pre-trained with Directed/PhGAN-Directed data only
versus initialization with ImageNet.
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5.4.2 Fine-Tuning Model Pre-Trained with ImageNet

One potential way to improve the efficacy of pre-training with RF datasets is to initialize

the network with optical imagery from a large database, such as ImageNet [40], a database of

1.5 million RGB images. While such pre-trained network is not initially going to be familiar

with the spatial features of the RF data except certain primitive image features such as

edges and corners, directed dataset can be utilized to introduce the spatial features of RF

data to the network. In this section, we examine the impact of using a two-step pre-training

process for the 16-layer CNN architecture of VGG-16 [155] by 1) utilize the stored VGG-16

weights obtained from training with ImageNet, and 2) training VGG-16 again using Directed

or PhGAN-synthesized Directed ASL data.

Figure 5.8 shows the resulting accuracy as we fine-tune the network with increasing

amounts of natural ASL samples. First, it may be observed that using Directed or PhGAN-Directed

samples for training VGG-16 results in the worst performance - baseline results consistent

with that seen in Figure 5.7. If we utilize the two-step training process with ImageNet-based

initialization, we can see a significant performance improvement by as much as 25% when
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25 samples per class natural ASL is used in fine-tuning. The best performance is attained

when both ImageNet weights and training with Directed ASL samples are used. However,

notice that this is only slightly better than the result obtained if would have just fine-tuned

from ImageNet only initialization. Using a second round of training with Directed ASL

offers greater initial performance when fewer samples of natural ASL are used in fine tuning;

however, once we have at least 25 samples per class natural ASL, utilizing a second round

of training with Directed ASL does not offer much benefit.

This result is significant because essentially it is showing that when an interactive learning

paradigm is utilized, we are better off just initializing with ImageNet, and learning as we go.

5.4.3 Domain Adaptation of Directed to Natural ASL

Rahman et al. [138] showed how the degree of fluency of the ASL user effected classification

accuracy. For example, an often encountered practice is the use of hearing participants to

imitate actual sign language based on videos showing ASL articulations - also known as

”imitation signing”. It is shown that discrepancies in the fluency level of signers in training

and test data resulted in significantly degraded classification accuracy, but that domain

adaptation techniques could be use to bridge the gap.

In this study, we consider the efficacy of utilizing domain adaptation techniques to bridge

the gap between the distributions of directed versus natural ASL data. In particular, rather

than directly using the natural ASL samples for fine-tuning, we consider two alternative ways

of exploiting the interactively acquired natural ASL samples: 1) utilization for training a

PhGAN to general additional synthetic samples from the distribution of natural ASL, and 2)

utilization for training a domain adaptation network to learn the mapping from the directed

data distribution to the natural ASL distribution. In particular, we consider two domain

adaptation networks: CycleGAN [191] and Pix2Pix [88] (abbreviated as P2P in this study).

CycleGAN is a network that aims to learn a mapping from directed (D) to the natural

(N) ASL domain, G : D→N such that the distribution of µD spectrograms from G(D) is

indistinguishable from the distribution N using an adversarial loss. This mapping is coupled
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Figure 5.9: Upper and lower envelope extraction.

with an inverse mapping F : N→D, and a cycle consistency loss is introduced to push

F (G(D)) ≈ D (and vice versa). One advantage of CycleGAN is that it can generate more

synthetic samples than the number of images provided during training.

Pix2Pix, on the other hand, is an image-to-image translation method that utilizes conditional

adversarial networks. In addition to learning the mapping from input image to output image,

this network also learns a loss function to train this mapping. This enables Pix2Pix to apply a

consistent process across all datasets without having to explicitly modify the loss function for

each case. However, Pix2Pix requires matching input-output image pairs during its training

process. This is in contrast to CycleGAN, which can be trained on unpaired samples drawn

from each distribution. Because the amount of real data available is limited, we use PhGAN

to generate a greater number of synthetic-Directed and synthetic-Natural samples. We then

create input-output pairs by matching samples from the same class to train Pix2Pix.

To improve the kinematic fidelity of the synthetic data generated by the two networks,

in addition to vanilla CycleGAN and Pix2Pix networks, modified versions that utilizes

a physics-based loss term based on consistency of the upper and lower envelopes is also

developed. The modified versions, CycleGAN-Env and Pix2Pix-Env, extract the upper and

lower envelopes of the µD signatures using the percentile method [44]. Figure 5.9 shows

the results of the envelope extraction for a sample µD signature. The mean-squared error
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Figure 5.10: µD signatures of the PhGAN-generated directed and natural samples, and
benchmarking of transformed samples generated by CycleGAN, CycleGAN-Env, Pix2Pix
and Pix2Pix-Env models.
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(MSE) between the envelopes of the generated and target signatures is computed as the

physics-aware loss. Thus, the total loss of the generator, LGAN, is computed as

LGAN(G,DN , D,N) = En[log(DN(n))] + Ed[log(1−DN(G(d)))] + λLenv, (5.1)

where G is the generator, DN is the discriminator for natural domain, λ is the weighting

factor and Lenv is the MSE between generated and target envelopes. While the first two terms

represent the discriminator and the generator losses, respectively, the last term computes

the error rate between generated and target envelopes. λ is empirically selected to be 0.001

to balance multiple loss terms in Equation 5.1.

Figure 5.10 shows examples for visual comparison of PhGAN-generated directed and

natural µD signatures, and the transformed samples generated by Cycle-GAN, CycleGAN-Env,

Pix2Pix and Pix2Pix-Env methods. It may be observed that while initial and final peaks

are well represented by both CycleGAN and CycleGAN-Env, peaks in the center of the

signature are not replicated effectively by the vanilla CycleGAN model. The signal power

of the CycleGAN-Env sample is also noticeably higher than that of CycleGAN. A similar

phenomenon can be observed in the Pix2Pix model. While the vanilla model is performing

very poorly and incapable of reconstructing the peaks in the µD signatures, Pix2Pix-Env

can replicate periodic peaks with high signal power. However, much of the detail of the

signature is lost in the synthetic Pix2Pix-Env samples. While our goal does not necessarily
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Figure 5.11: Accuracy of 4-layer CNN fine-tuned with synthetic samples generated from
natural ASL or adapted from directed ASL data.
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require perfect emulation of natural ASL signatures, we did observe that this loss of detail

does degrade the ability of Pix2Pix-Env samples to adequately train classifiers of natural

signing, as discussed more in the next section.

5.4.4 Fine-Tuning Model with Synthetic Natural ASL

Synthetic data generated from a small amount of natural ASL or adapted from directed

ASL data can be used to augment and improve the training of networks for recognition of

natural ASL. Figure 5.11 shows the improvement of the classification accuracy of a 4-layer

CNN when incrementally fine-tuned with 500 synthetic samples per class that are generated

from 25 natural ASL samples/class (70% of data). Note that 30% of the natural signing

data is always preserved for testing.

It may be observed that the best performance is attained when a PhGAN is used to

synthesize additional samples from the natural ASL data itself, irrespective of the amount

of natural ASL samples available for training. The domain adaptation method that yields

the most comparable results - when a larger amount of natural ASL data is available - is
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Table 5.4: Final classification results of VGG-16 for RF data of natural ASL.

Method PhGAN CycleGAN
CycleGAN
with Env.

P2P P2P-Env

Acc. (%) 69.14 62.04 62.35 61.73 60.49

Pix2Pix. However, with only a small about of natural ASL data, CycleGAN-Env provides

the best results.

As more data are acquired, all models begin to level off at about 58% accuracy. We believe

this is because all 25 samples/class is used to train the PhGAN model that synthesizes the

augmented directed and natural ASL data required to train the domain adaptation methods.

If even more natural ASL data were acquired interactively, the sample support for the domain

adaptation step would also be increased, and consequently increase the fidelity of synthesized

samples.

Nevertheless, an important benefit of synthetic data generation, however, is that also a

deeper network can be trained to further improve classification accuracy. For each of the

different synthesis approaches - PhGAN synthesis from natural ASL, CycleGAN/CycleGAN-Env/Pix2Pix/Pix2Pix-Env

adaptation from directed ASL - the VGG-16 model is trained and used to compute the final

achieved classification accuracy for the interactively-acquired, natural ASL dataset. Table

5.4 presents the accuracy achieved 70% of the training data (25 samples/class) are used to

train the network. It may be observed that utilizing PhGAN to synthesize samples from

natural ASL itself provides the best accuracy of 69.1%, while CycleGAN and Pix2Pix-based

methods yield between 60-62% accuracy. In general, utilizing training data synthesized via

domain adaptation from directed ASL underperformed that of simply synthesizing from

natural ASL itself.

Thus, even in combination with domain adaptation, the utilization of directed ASL

samples in the training process does not offer tangible benefits that would render worthwhile

the time, cost and effort involved with the acquisition of directed ASL data, even if from
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Figure 5.12: µD signatures of different participants for the sign finish.

Person - 1 Person - 2 Person - 3 Person - 4

participants who are Deaf and fluent in ASL. In all cases, we achieve better results by simply

learning interactively and in-situ from natural signing only.

5.4.5 Generalization Across Participants

It is critical for user interfaces to be effective regardless of the user or study participant.

This is especially significant for interfaces reliant on sign language recognition as different

participants may articulate ASL differently based on regional and cultural differences. For

example, consider the variation in sign articulation for four different participants, illustrated

in Figure 5.12 for the µD signatures of the sign finish. While significant differences in peak

velocities may be observed by comparing Person 1 and 2’s samples, the Person 3’s second

positive stroke (i.e., arm motion) is faster than the initial positive stroke; however, this

situation is reverse for Person 1, whose second positive peak is much wider - indicating a

longer duration motion with less acceleration - than that of Person 3. Person 4, on the other

hand, has the longest sign articulation duration by spanning over 2.5 s interval with higher

positive and negative peaks, which indicates greater peak speed.

Due to the individualized differences in articulation across participants, in this section,

we evaluate the robustness of the proposed system across different group of participants

using the leave-one-group-out (LOGO) method: the data of certain group of participants are

used for training the model while the remaining participants’ data are used for testing only.
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Figure 5.13: Recognition performance of different participant groups when
leaving-one-group-out for testing.
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LOGO cross-validation is repeated for three participant groups, where in each repetition, the

data of randomly selected seven participants used for testing and the remaining data of 16

participants are used for training the recognition model. Figure 5.13 presents the recognition

performance across different participant groups. It may be observed that the random

selection of different participants does result, as expected, in a variation of performance

based on the participants, but this variation is only +/- 2.45%. However, the average LOGO

cross-validation accuracy is about 10% lower than data for all participants are utilized in

training. As data from more and more participants is acquired, we expect this discrepancy to

become increasingly smaller. This result corroborates the conventional wisdom that building

a very diverse dataset for training effective models is crucial to the performance of real-world

systems.

5.4.6 Discussion

Our results show that there is a significant difference in the RF and video recordings

of sign articulations that are acquired under a controlled setting (a.k.a. directed data

126



collection format) versus the natural articulations acquired via the proposed interactive

gaming environment. While conventional wisdom may lead us to believe that despite these

differences there is still value in acquiring directed ASL data for model pre-training, in fact

our results show that this is not the case. Pre-training with ImageNet and Directed ASL

yields the best performance irrespective of the amount of natural ASL acquired. However,

once 25 samples/class of natural ASL is available, there is no significant difference between

pre-training on ImageNet only, versus pre-training on ImageNet and Directed ASL.

It is important to note that video data also exhibits significant performance degradation

due to the difference between directed and natural ASL articulations. Fine-tuning the

video-based GISLRmodel with 70% of our acquired natural ASL data improves the prediction

accuracy from 48.2% to 88.1%. Note that direct comparison of this result with the radar-based

accuracy of 69% achieved via our proposed approach is not a fair comparison of the sensor

modalities, as the GISLR model is pre-trained with an enormous amount of ASL data

acquired by Google. However, both modalities exhibit massive performance gains when

data acquired via the interactive ChessSIGN is utilized to fine-tune models for recognition of

natural ASL. We do not view either the 88% video-based accuracy or the 69% radar-based

accuracy as the ultimate achievable classification performance for the 29 ASL signs considered

in this work as these accuracies will further increase as the interactive ChessSIGN game is

continually played and the increasing amount of data is used to further improve model

training.

In fact, the proposed interactive game ChessSIGN can be used to expand the dictionary

to as many words as desired, since the words used for moving pieces during gameplay are

randomly selected among a list of words.

5.5 Conclusion

This work proposes an interactive gaming environment, ChessSIGN, as a new way of

acquiring video and radar recordings of natural sign language acquired in an unconstrained,
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real-world setting. We show that the conventional way of collecting human RF signatures

via directed experiments results in data that does not reflect how sign language is typically

articulated in natural settings. The differences in movement result in a shift in distribution if

directed data is used to train models for classification of natural ASL. This difference can be

observed in both video-based models as well as radar-based models, which are more severely

impacted due to its exclusive reliance on kinematic features, rather than spatial features, for

ASL recognition.

In particular, radar-based ASL recognition performance for a 29-sign dataset is shown

to drop from 100% to just 9% when natural ASL is used as test data rather than directed

data. Several possible ways to exploit directed data for data synthesis via generative learning

and domain adaptation are explored, but we show that such methods cannot overcome the

differences in sign articulation due to participants being directed on when/what to articulate.

Ultimately, our work shows that network initialization using transfer learning from ImageNet

is sufficient to enable learning via interaction with the ChessSIGN game. As an increased

amount of natural ASL data are acquired, we show the performance gains of augmenting

natural ASL data using a physics-aware generative adversarial network (PhGAN). Fine

tuning of the RF model with PhGAN-augmented natural samples yields promising results

even when a small amount of data (around 25 samples per class) are acquired. In this way,

we achieve a classification accuracy of 69% for a 29-sign natural ASL dataset acquired using

the ChessSIGN game.

In future work, we aim to expand the concept of gaming-enabled interaction to the

domain of embodiment games coupled with virtual reality to naturally engage participants

in a wider range of natural movements and daily activities. We believe that the proposed

interactive gaming approach can evolve into a valuable interface for evaluating real-time

radar-based recognition algorithms. Moreover, as the software-defined radar systems, such

as that used in ChessSIGN, can be controlled via command-line, the proposed interactive
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learning framework can contribute to the testing and evaluation (T&E) of closed-loop sensing

paradigms, such as cognitive radar.
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CHAPTER 6

HUMAN-AWARE FULLY-ADAPTIVE RF SENSING

6.1 Introduction

Selection of RF waveform parameters play a crucial role in the quality and the characteristics

of the received signal. As discussed in Section 2.2.2, selection of certain parameters affect

range, velocity and angle resolution, unambiguous velocity and range, frame rate and other

metrics. These parameters are often optimized and selected based on the end-application’s

needs. For instance, while front-looking automotive radars require higher maximum ranges

(e.g., ≥ 150 m) without needing fine range resolution (e.g., ≤ 30 cm), human activity and sign

language recognition applications typically require much less maximum range (≤ 10 m) but

with a finer range resolution (≤ 5 cm). Therefore, a special attention should be paid while

adjusting the RF waveform parameters as the data cannot be recovered or enhanced after

the data acquisition if there are certain errors or sub-optimal selections in the parameters.

Most of the RF-based sign language recognition studies select a certain set of fixed

parameters and acquire all the data with the same parameter set (i.e., parameter profile).

This is a viable option for developing an end-to-end functional system. However, it requires

radar to be continuously operational in high data rate mode while occupying all the RF-related

and computational resources (e.g., bandwidth, random access memory (RAM), data storage

memory, GPUs etc.) even if there is no informative or communicative action occurring in

the radar FoV. Constantly allocating a large bandwidth can raise interference problems

in the presence of other RF sensors. Time-scheduled allocation of it can enable more
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spectrum-efficient solutions. RAM is often utilized by other computational modules of the

system as well and unnecessary occupation of it can cause processing delays or out-of-memory

issues for certain applications. Therefore it should be occupied only when a computational

resource is needed with a reasonable amount. In addition, it is often desired for the system to

be able to store the acquired data locally or in a cloud platform. When a daily living scenario

is considered where an RF sensor is mounted in a corner or on a wall of the room to observe

and recognize sign language, continuous recording of the acquired data can easily result in a

very large amount of storage memory without containing much informative data since there is

not much communicative interaction between the sign language recognition systems and the

people during the day. Therefore, an automated system is needed to understand the presence

of the people in a room, temporally isolate the individual activities and differentiate daily,

non-communicative activities from the communicative sign language articulations. This way,

the informative data can be separated from other activities and can be efficiently stored

without needing to manually segment and label the data which is a labor-intensive and an

expensive task. GPUs, on the other hand, are the hardware units used to make inference

from the trained prediction model. Although modern computers and laptops are equipped

with high-end GPU units, smaller edge-computing devices such as NVIDIA-Jetson Nano

usually have GPUs with less computational capabilities and memory. Considering GPUs

are also used in rendering other graphical displays, they can be in high demand by several

modules of the system. Hence, they should be utilized in an effective manner to maximize

the system efficiency and mitigate the unwanted computational overhead.

Optimization of RF waveform in the context of data quality is still a pristine area

with a very limited amount of study. Hong et al. [78] recently proposed a reinforcement

learning-based cognitive Doppler radar approach to optimize the carrier frequency and the

sampling rate (PRF is referred as sampling rate throughout the paper). They used Carnegie

Mellon University (CMU) Graphics Lab’s human activity motion capture data to simulate

the RF µD spectrograms and evaluate the proposed method. It is found that for 7 human
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Figure 6.1: Doppler bandwidth and sampling rate on µD spectrogram (a), and Doppler
aliasing affect due to low PRF in parameter selection (b).
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activity classes there is an optimal interval for the carrier frequency and going beyond

that results in lower classification accuracy. However, when the accuracy of the individual

activities are considered, this interval is subject to change. Therefore, there is no clear

pattern which can be generalized to all human activities or sign language recognition tasks.

Nonetheless, it is a fact that the center frequency is proportional to the Doppler resolution of

the signature. For a more expressive and detailed µD spectrograms, higher carrier frequencies

are desired. Figure 6.1a shows the Doppler bandwidth and the PRF/2 frequency span on a

µD spectrogram. PRF is also another important parameter which determines the maximum

unambiguous velocity. If the PRF is not chosen wisely, unambiguous velocity can be lower

than application needs, and when targets move faster than the upper limit, Doppler aliasing

effect can be observed. Doppler aliasing is basically wrapping of the Doppler components to

the other side of the spectrum if they exceed the maximum unambiguous velocity. Figure

6.1b illustrates this effect. Such artifact causes corrupt and kinematically incorrect data

representations. When such data are used to train or test the ML/DL models, they result

in sub-optimal performances.
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Figure 6.2: µD spectrogram for the word have when sampling rate, fs=1 MHz (a), and
when fs=2 MHz (b).

(a) (b)

It is also found that there is a clear pattern which suggests higher sampling rates yield

higher accuracies. This is an expected result as higher sampling rates result in higher SNRs

in the collected signal. Figure 6.2 illustrates this phenomenon for the ASL word have. It

can be observed that when the sampling rate is higher, SNR of the µD signature increases

drastically.

Gong et al. [55] studied the effect of CPI and PRF on the µD signals of a DJI Phantom

4 drone and a P750 aircraft. They observed that changes in CPI and PRF values have

differential effects on Jet Engine Modulation (JEM) spectra and the blade flash patterns of

the µD spectrograms.

In this chapter, we propose an adaptive RF waveform parameter adjustment framework

according to the observed scene of the radar. The system is able to observe, understand

and adapt to the environment by changing its operation mode and waveform characteristics.

Specifically, we define three operation modes: presence await (PA), trigger await (TA) and

fully-active (FA) mode. The main objective of the radar in PA mode is to determine if

there is a moving target/subject in the room or not. The PA mode makes use of waveform

parameters with relatively low data rate and bandwidth. Therefore, its computational cost

is very low. It utilizes a small fraction of the full bandwidth and do not store any data during

acquisition. No prediction model or GPU memory is used since determination of the target
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Figure 6.3: Fully-adaptive RF cycle.
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presence is based on the received power strength and do not need any learning model to

make this decision. Once target presence is detected, the system switches to the TA mode.

The TA mode is used to spot the trigger or wake sign from the user. Its computational

cost is relatively higher than the PA mode and lower than the FA mode. The TA mode is

continuously tries to determine if the trigger sign is articulated or not. When the system

is turned on with the trigger sign, the system switches to the FA mode. The FA mode

enables the full capabilities of the system by temporally segmenting activities, separating

daily activities from ASL signs and recognizing different signs. After switching to TA or

FA mode, if there is no moving target in the radar FoV for a certain duration the system

goes back to the idle (i.e., PA) mode. In the FA mode, if the performed activities are not

communicative ASL signs, but random movements or daily activities, the system goes back

to the TA mode. Figure 6.3 depicts the proposed fully-adaptive RF cycle framework. It is

found that the proposed method maintains high level ASL sign recognition performance while

minimizing the computational costs and allocation of computational units in the system.
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6.2 Adaptive RF Dataset and Experimental Setup

6.2.1 RF Sensor and Dataset Description

In order to evaluate the proposed method, we use Infineon’s BGT60TR13C Demo FMCW

radar operating at 60 GHz. This device has several advantages over other FMCW sensors

for indoor monitoring. First, the device has a very small package size (40.64mm x 25.4mm)

enabling it to be deployed in any corner of the room seamlessly. Second, it has a relatively

large bandwidth (5.5 GHz) which yields very fine range resolution of 0.027m. The device

also has MATLAB and Python software development kit (SDK) support to be operable in

real-time without needing to rely on manufacturer’s GUI for end-applications. Finally, the

RF sensor also has an L-shaped RX antenna array with 3 receivers in a single-input-multiple-output

(SIMO) fashion which enables angle estimation in both azimuth and elevation directions.

As discussed in the previous section, the proposed fully-adaptive RF cycle approach has

three operation modes: PA, TA and FA mode. Each of these modes have their own respective

waveform parameter profiles: PA-RF, TA-RF and FA-RF. The adaptive RF dataset consists

of 6 ASL signs (hello, have, teacher, table, bed, car) and 1 unknown class for

random motions and daily activities like walking, sitting and standing up. For the unknown

class, participants were free do whatever they want in the radar FoV. The ASL signs are

performed in the direct line-of-sight of the radar in a sitting position. The RF sensor was

placed 1.5 away from the subjects and approximately 0.9 above the ground. The experiment

is repeated for each parameter profile. In total approximately 1,500 samples were collected

for each parameter set with a uniform distribution across classes (∼ 210 samples/class for

each parameter set). 5 participants have attended the study with various ages. The acquired

data are then split into 70% and 30% portions for training and testing.

Range-Doppler maps, µD spectrograms, range profiles and angle profiles are used as

RF data representations in this study. While computation of range-Doppler maps, µD

spectrograms and range profiles are described in detail in Section 2.4, for angle profile

computation, two different angle estimation approaches are considered: Fast Fourier Transform
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Figure 6.4: Range, Doppler and Angle Profiles of fully-adaptive RF dataset samples.
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(FFT) and Capon beamforming (i.e., minimum variance distortionless response (MVDR)

beamformer) [20]. While MVDR has better resolution with the cost of higher computational

complexity, FFT has lower resolution with the advantage of requiring less computation.

In this work, both methods are evaluated and it is found that using MVDR increases the
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computation time to the extend that radar frame rate drops when operated in real-time and

causes buffering issue. Since the proposed method is designed to operate in real-time, we

opted for using FFT-based angle estimation. Figure 6.4 shows range, Doppler and angle

profile samples for each class of the dataset.

6.2.2 Parameter Profiles

Parameter profiles play a crucial role in the adaptive RF paradigm as they directly affect

the operation and waveform characteristics of the system. Therefore, this section describes

the parameter selection and the reasoning behind it for each parameter profile.

PA-RF parameters are used in the PA mode to determine the presence of a moving target

in the radar FoV. PA-RF parameters are empirically optimized to be both computationally

light and sensitive to detect the moving targets. The presence detection algorithm uses

range-Doppler maps to make a decision. If the cumulative power level from the moving

targets are above certain threshold, detection occurs. Considering an indoor environment

(e.g., room, lab, office etc.), presence detection for targets closer than ∼5m should suffice.

Frame interval of 0.1s (i.e., 10 FPS) is also determined to be temporally satisfying for the

application needs. Sampling rate and PRF kept lower than other parameter profiles since

this parameter profile is going to be used by the PA mode which will be running during a

great portion of the day with the assumption that there is no moving person or object in the

environment most of the day time. Keeping sampling rate and PRF reduces the data size

drastically and the computational overhead on the computational units like RAM and the

CPU. Finally, only one RX antenna is used since there is no need for the angle information

in the presence detection algorithm.

TA-RF parameters are used when radar is operating in the TA mode which is activated

when presence of a target is detected in the PA mode. TA-RF profile has the same bandwidth

of 1 GHz as the PA-RF has. Higher allocation of bandwidth is not needed in TA-RF

since only µD spectrograms are used for trigger sign detection and range resolution has no

effect on them which is the only motivation for allocating larger bandwidths. Sampling
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Figure 6.5: RF waveform selection of different parameter profiles.
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rate and the PRF are higher than the PA-RF profile since the TA mode is using µD

spectrograms to make predictions on whether the trigger sign is articulated or not, and

the spectrograms should have high temporal and frequency resolution. Increasing PRF, also

increases the maximum unambiguous velocity which prevents the aforementioned aliasing

effect. Maximum unambiguous velocity of 6.41 m/s is obtained for the TA-RF parameter

selection which is sufficient for indoor activity/signing monitoring applications considering

average signing speed is ≤ 3 m/s. TA-RF profile also utilizes single RX antenna since angle

information is not used in the trigger sign detection algorithm.

Finally, FA-RF parameters are used in the FA mode upon the trigger sign detection

in the TA mode and switching to the FA mode. FA-RF profile utilizes the full available

bandwidth of 5.5 GHz yielding 0.027m range resolution. Sampling rate and the PRF are

also maximized to the limit allowed by the real-time processing frame rate requirements.

Different than the TA-RF profile, FA-RF profile utilizes the all 3 RX antennas for angle

estimation. The maximum unambiguous velocity of 6.17 m/s and velocity resolution of

0.096 m/s is obtained with the selected parameters. The maximum unambiguous range is
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set to 3.49 m which is the shortest range amongst different parameter profiles, expecting

user to be present close to the radar for greater returned signal SNR. Figure 6.5 summarizes

the three parameter profiles.

6.3 Fully-Adaptive RF Cycle

6.3.1 Adaptive RF Operation Modes

This section describes the three modes of the adaptive RF operation cycle in detail and

compares them.

Presence Await Mode

The radar starts with the PA mode. In this mode, it continuously observes the scene

with the purpose of detecting a moving object. For that, we use a power-based presence

detection algorithm. The acquired raw data are first reshaped into a 3D array with the

shape of (number of ADC samples × number of chirps × number of RX channels). After

the reshaping operation, a moving target indicator (MTI) filter is applied to suppress the

signals reflected back from stationary objects and enhance the SNR of the moving target

signals. Then, a 2D-FFT is applied to obtain the range-Doppler map. Total energy of the

range-Doppler is computed by summing up the power levels (dB) of all the range-Doppler

bins. If the cumulative power level exceeds a predefined threshold, detection occurs and the

radar switches to the TA mode.

Trigger Await Mode

In the TA mode, the system utilizes the TA-RF parameter profile to detect the occurrence of

the trigger sign. In order to detect the beginning and the ending of a sign and isolate its raw

data, the STA/LTA based motion detector presented in an earlier study [106] is utilized. In

the original study, the presented motion detector operates on µD spectrogram envelopes.

Although the presented method works well when the data is processed offline without
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considering real-time processing challenges, it becomes computationally costly and infeasible

due to the high computational complexity of generating µD spectrograms in real-time with

high resolution and their upper and lower envelope extraction process. Therefore, a more

lightweight method is needed to run the motion detector in real-time.

In order to reduce the computational complexity of the µD envelope-based motion detector,

in this work, we propose a modified STA/LTA-based motion detector which makes use of

the total power, PT , in the range-Doppler map. The total power in a 2D range-Doppler map

(RDM) can be computed by:

PT =
R∑

r=1

D∑
d=1

20 log10 |RDM(r, d)| (6.1)

where R and D are the number of range and Doppler bins respectively. Then, STA(t) and

LTA(t) can be defined as the leading and lagging windows at time t as:

STA(t) =
1

T1

t+T1∑
k=t+1

PT (k), LTA(t) =
1

T2

t∑
k=t−T2+1

PT (k) (6.2)

where T1 and T2 are the lengths of short and long windows respectively. While greater T1

and T2 values are more robust to false alarms in noisy data, they increase the response time

of the system proportionally since at least a total time of T1 should pass after a motion is

performed and for it to appear in the lagging window. Therefore, T1 and T2 values should

be selected based on the application requirements. In this work, we empirically optimized

the window sizes of T1 = T1 = 0.5s. The starting point of a motion is detected when the

following conditions are satisfied:

STA(t) > σ1 and
STA(t)

LTA(t)
> σ2 (6.3)
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where σ1 and σ2 are predefined detection thresholds. Similarly, the ending point is detected

if

STA(t) < σ3 and
STA(t)

LTA(t)
< σ2 (6.4)

where σ3 is the detection threshold for the stopping point.

Once the beginning and ending of a motion is detected, the interval corresponding to

the beginning and the ending point of the motion is isolated from the raw data. µD

spectrogram of the isolated data portion is generated using the STFT method. Since STFT

operation is only performed on a small interval of the data where the motion is occurring,

its computation is light enough and does not hinder the real-time processing. After µD

spectrogram is generated it is passed into a trigger recognition network to determine if the

observed motion is the trigger sign or not. The trigger recognition network is a CNN-based

binary classification model which inherits 4 convolutional blocks from the VGG-16 model

trained with ImageNet weights. The model is fine-tuned with the µD spectrograms of the

trigger sign and non-trigger class samples. non-trigger class samples include daily

activities (e.g., walking, sitting, standing up, arm gestures) and other 5 ASL signs in the

acquired dataset. Since the number of samples in the non-trigger class is significantly

larger (≥ 5×) than the trigger class, class-weighting approach based on the number of

samples for each class is applied in the loss function. This step is crucial to prevent network

to bias its weight optimization process towards non-trigger class samples. If the observed

motion is predicted as trigger, the system switches to the FA mode. Otherwise, the system

stays in the TA mode and continues to isolate and predict different motions occurring in the

radar FoV. If there is no motion for a certain duration, the system cycles back to the PA

mode.

Fully-Active Mode

When the trigger sign is detected, the FA mode gets activated. The FA mode is the

operation mode where capabilities of the system are maximized. The system uses the full
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Figure 6.6: Multi-input ASL recognition network.
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available bandwidth, all the RX channels and high data rate. Computational hardware units

such as memory, RAM and GPU are also occupied accordingly. The motivation behind this

selection is to maximize the acquired data quality and information and utilize them to make

better sign language predictions and increase the user experience by yielding more accurate
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results. Similar to the TA mode, the FA mode also utilizes the proposed STA/LTA-based

motion detector for temporal segmentation of the individual activities/signs. Upon isolation

of the raw data of an individual activity/sign, range profile, µD spectrogram and angle

profile of the data are generated. The generated RF data representations are then passed to

a multi-input CNN-based network to recognize a particular sign.

The multi-input CNN network inherits 4 convolutional blocks of the VGG-16 network

pretrained with ImageNet weights. Range profiles, µD spectrograms and angle profiles are

processed in the network with identical but separate CNN layers in a parallel fashion. After

the CNN blocks, a global average pooling layer is used to flatten the feature embeddings.

Feature spaces of three inputs are fused in a concatenation layer which is followed by two

fully-connected layers. The model is finally augmented with a softmax layer with 7 nodes

for 6 ASL signs and 1 unknown class. The overall architecture of the proposed model is

presented in Figure 6.6. If the predicted sign is an ASL sign, the system stays in the FA

mode and continues to interact with the user. If the predicted sign is the unknown class

which includes random movements or daily activities and gestures, the system goes back to

the TA mode since these activities are non-communicative and it is highly likely that the

user has finished interacting with the system. Similar to the TA mode, if there is no motion

for a certain duration, the system cycles back to the PA mode which lowers and stops the

occupation of certain computational resources.

6.4 Non-Adaptive versus Adaptive RF Sensing

In conventional RF-based activity or sign language recognition applications, it is a

common practise to optimize the RF waveform parameters and use a fixed set of parameters

(i.e., non-adaptive) to collect all the data and make inference on the trained model. Although

this approach works well when the radar is coupled with high-end computational units and

do not interfere with other modules of the system, when the edge-computing device has

limited computational capabilities such as low RAM, GPU or memory, and need to share
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Resource \ Mode Non-Adaptive RF Adaptive RF
Parameter Profile PA-RF TA-RF FA-RF Switching between 3 profiles

Bandwidth (GHz) 1 1 5.5 Varying [1, 5.5]
Storage Memory (MB/s) 0.67 2.5 7.49 7.49 after the system trigger

RAM (MB) 487 591 744 Varying [487, 591, 744]

Table 6.1: Resource allocation comparison of non-adaptive versus adaptive parameter
selection approaches.

the computational resources with other modules of the system, allocation of computational

units needs to be taken into account and utilized in an effective manner. Therefore, in this

section, we compare the non-adaptive and the proposed adaptive RF sensing approach in

terms of both resource allocation efficiency and overall recognition capability of the system.

6.4.1 Resource Allocation Efficiency Benchmark

In order to compare the resource allocation efficiency of the non-adaptive and adaptive

RF approaches, we evaluate them using three different metrics: bandwidth allocation,

storage memory allocation and RAM allocation. These spectral and computational resources

are common in almost all radar-based recognition applications. Non-adaptive approach is

evaluated by fixed utilization of PA-RF, TA-RF and FA-RF parameter profiles without any

transition between them.

Table 6.1 summarizes the resource allocation results for two approaches. It can be

seen that non-adaptive parameter profiles always allocate a fixed bandwidth. While lower

bandwidths has the advantage of less chance of interference with other RF sensors might be

present in the environment, they provide poor range resolution. Higher bandwidths, on the

other hand, yield superior range resolution with a higher chance of interfering with other

RF sensors. Considering this phenomenon, a fixed selection of PA-RF or TA-RF will be

more advantageous when the system is not actively being used as the RF system will have

less chance of affecting other sensors or being affected by them. Fixed selection of FA-RF,

on the other hand, has the advantage of providing more high quality data with the cost

of allocating a larger bandwidth continuously. Adaptive RF approach, basically, takes the
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good part of different bandwidth selections by using a lower bandwidth when the system is

not active and switching to the full-bandwidth after the system is triggered. This ensures

the acquisition of high resolution data during interaction with the user while minimizing the

interference when the system is not actively being used.

In terms of storage memory allocation, using lower sampling rate, PRF and less number

of RX channels reduces the acquired data size drastically with the cost of low resolution,

lower unambiguous velocity and not being able to estimate the target’s direction-of-arrival.

However, DNN models used in RF data recognition tasks are data driven models and the

quality of the training data plays a crucial role in the recognition performance of the model.

Therefore, data with rich spatial and temporal features are needed to train a robust learning

model. While non-adaptive fixed PA-RF and TA-RF yield small data size, they compromise

the data quality and features can be useful during the model training. Fixed FA-RF profile,

on the other hand, yields high quality data but the data size is always large even when

the system is not actively used. Considering such RF-controlled interactive system will

potentially be used less than a few hours a day and the cost of cloud-based storage solutions

per GB such as Microsoft’s Azure, Google Cloud Platform or AWS Cloud Storage, it is not

needed to save data always in high quality when data are not informative. The adaptive RF

approach optimizes this problem by reducing the data size during non-communicative actions

in PA and TA modes in a daily scenario and increasing the data rate during interaction with

the user by switching to the FA-RF profile for a higher data quality and performance.

Finally, RAM allocations of non-adaptive and adaptive RF approaches are compared.

RAM is a significant computational resource which stores all the variables and data in

its memory during a program’s execution. Several modules of a system and the operation

system can make use of the RAM simultaneously and continuously. Since it is a shared unit, it

should be occupied efficiently in order to mitigate system response delays and out-of-memory

errors. In the fixed PA-RF and TA-RF parameter selection, the RF sensor occupies a smaller

portion in the memory with 487 MB and 591 MB of space respectively when compared to
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the FA-RF profile which allocates 744 MB of space. This is mainly due to the smaller data

size per frame and the lighter computational cost on a smaller data chunk. The adaptive

RF approach minimizes the RAM allocation by using PA-RF profile when no moving target

present in the environment. It starts to occupy a larger space as a result of switching to the

TA-RF and FA-RF profiles when a target is detected and the system is triggered respectively.

Therefore, it minimizes the unnecessary RAM occupation during idle times.

6.4.2 Classification Results

While optimizing the usage efficiency of computational resources are important from a

system point-of-view, we should also ensure and maximize the recognition capability of the

system. Compromising the recognition performance of the system for the sake of minimizing

computational cost can result in poor user experience due to wrong predictions. Therefore,

it is important to balance and maximize the two metrics. The proposed approach listens for

the trigger sign in the TA mode before switching to the FA mode for ASL recognition. Once

the trigger sign is detected, it starts to predict the ASL signs in the FA mode.

Trigger Sign Recognition Results

It is a common practise to trigger/awake an interactive system before starting to use it such as

”Hey Siri” phrase in Apple’s products, ”Hey Alexa” in Amazon’s products or ”Okay Google”

for Google Home. In this work, we follow a similar approach and evaluate the detection

performance of each trigger candidate word separately by training individual models for

each word. For the evaluation of trigger sign recognition task, we define two metrics false

alarm rate (FAR) and false rejection rate (FRR). They are defined as:

FAR =
FP

TN + FP
, FRR =

FN

TP + FN
(6.5)

where FP is the number of false positives (i.e., predicting trigger when it is not), TN is the

number of true negatives (i.e., predicting non-trigger motions correctly), FN is the number of
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Param. Profile Metric \ Word hello have teacher table bed car

P
A
-R

F FAR (%) 13.25 7.23 16.87 13.25 10.84 16.87
FRR (%) 13.24 2.6 5.41 5.33 13.58 2.56

Detection Rate (%) 73.51 90.17 77.73 81.41 75.58 80.57
T
A
-R

F FAR (%) 8.14 4.65 8.14 10.47 5.81 9.3
FRR (%) 2.6 2.9 2.74 1.32 6.78 3.61

Detection Rate (%) 89.26 92.45 89.12 88.22 87.41 87.08

F
A
-R

F FAR (%) 21.52 0 12.66 20.25 16.46 18.99
FRR (%) 4.29 6.06 1.41 2.5 1.19 5.13

Detection Rate (%) 74.2 93.94 85.93 77.25 82.35 75.88

Table 6.2: Trigger sign recognition results of each word for different parameter profiles.

false negatives (i.e., missed triggers), and TP is the number of true positives (i.e., predicting

the trigger sign correctly). Based on the FAR and FRR of a sign, detection rate, DR, of a

sign can be computed as:

DR = 1− FAR− FRR (6.6)

Table 6.2 presents the trigger recognition results of each sign for different parameter

profiles. Note that a binary classification model described in Section 6.3.1 is trained for

each word and parameter profile pair separately. It can be observed that the TA-RF profile

has the highest average detection rate of 88.92% for the six signs while the PA-RF and

FA-RF profiles can achieve 79.83% and 81.59%, respectively. The models trained with the

TA-RF profile perform significantly better than the other two parameter sets except for the

word have where the FA-RF profile performs only 1% better which can be due to various

reasons including different number of samples in the training/testing datasets or the way

participant articulates the sign. The poor performance of the models trained with data

collected in PA-RF mode can be attributed to the low quality data and the lower SNR in

µD spectrograms. Although the lower performance for the FA-RF mode is a bit unexpected,

we can see that the lower detection rates are mostly due to high FARs when compared to

the TA-RF mode even though the FRRs remain low. Other reasons can also include the free
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form activities participants perform during the data collection. If the µD signatures of the

motions they perform during data collection resemble to the trigger sign, there is a higher

chance that they might be confused with the trigger sign. Recall that participants were free

to do anything they want during free form activities except the ASL signs. Nonetheless,

the overall trend does not change and we can conclude that the TA-RF parameter set is

well-suited for the trigger recognition task.

It can be seen that for all the parameter profiles the word have yields the highest

detection rates of 90.17%, 92.45% and 93.94% and the lowest FARs of 7.23%, 4.65% and

0%. This might be due to the high radial displacement of the arms while moving both hands

towards the chest and retrieve them back. Radar is the most sensitive to the motions in radial

direction which makes motions with high kinematic variance in radial axis more perceivable

to the radar. The word table consistently has very high FARs for all the parameter profiles

with over 13%, 10% and 20% which indicates the higher chance of being confused with other

motions and unintentional activation of the system. This is not a desired behavior from a

user experience point-of-view. High FAR, on the other hand, seems to reduce the FRR of the

word which is a desired behavior, but it comes with the cost of so many false alarms. The

word table is articulated by parallelly moving both arms stacked on top of each other up

and down. This can cause strong returned signal strengths from the arms which is similar to

torso movements observed on daily activities. Therefore, it can be easier for the DNN model

to confuse the daily activities as if they are trigger signs. The words hello, teacher,

bed, car, on the other hand, have similar detection rates ranging between 87%-89% for

the TA-RF mode. Based on these results, we chose the word have as the trigger sign of the

system for the TA mode.

Sign Language Recognition Results

When the system is activated with the trigger sign, it starts to recognize the ASL signs

articulated by the user. In order to predict the articulated sign, we use the model described in
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Model Input(s) Param. Profile Accuracy (%)

µD Spectrogram
PA-RF 52.24
TA-RF 67.11
FA-RF 82.01

µD Spectrogram
Range Profile

PA-RF 49.63
TA-RF 69.22
FA-RF 86.17

µD Spectrogram
FA-RF

87.5
(Proposed)

Range Profile
Angle Profile

Table 6.3: ASL recognition results of the parameter profiles with various model input(s).

Section 6.3.1 and Figure 6.6. Performance of the proposed network is evaluated by applying

certain ablation studies on the network architecture and the RF parameter profile.

First, we compare the performance of different parameter profiles for the classification of

µD spectrograms in a single input network. Such CNN-based network is the baseline model

which is commonly used µD spectrogram classification tasks. The single input network

has the identical architectural structure to the proposed method with the exception of

having only one branch since only µD spectrograms are used to train/test the model. Other

training settings such as optimizer, number of layers, kernel sizes, learning rate, learning rate

scheduler, dropouts also kept the same to have a fair comparison. The models trained with

the data acquired in PA-RF, TA-RF and FA-RF profiles yielded the accuracies of 52.24%,

67.11% and 82.01%, respectively for the 7-class (6 ASl sign + 1 unknown class) ASL

recognition task. It can be observed that as the sampling rate, PRF, and SNR increases,

the learning models can achieve higher accuracies as a result of having more expressive and

high quality data samples.

Next, we expand the network to two branches in order to incorporate the range information

into the model. This model takes both µD spectrogram and range profile as separate inputs

and processes them parallelly, and fuses their feature spaces after the global average pooling

operation. This network resembles to the proposed network illustrated in 6.6 with the
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Figure 6.7: Range profile comparison of different RF waveform profiles.

(a) PA-RF. (b) TA-RF. (c) FA-RF.

exception of not having the third branch for the angle profile. After training, the augmented

two-branch model yielded the accuracies of 49.63%, 69.22% and 86.17% for PA-RF, TA-RF

and FA-RF profiles. It can be observed that while there is not much improvement for the

PA-RF and TA-RF profiles, accuracy of the FA-RF profile is increased over 4%. This can

be due to the high bandwidth selection in the FA-RF profile which results in finer range

resolution as depicted in Figure 6.7. The detrimental effect observed in the PA-RF profile

for around 3% can be because of the increased number of trainable parameters while not

providing very informative and distinct input samples.

Finally, we evaluate the performance of the proposed three-input network which incorporates

range, Doppler and angle information by expanding the network with a third branch which

processes angle profiles. This method is evaluated only for the FA-RF profiles since other

parameter profiles utilize single RX antenna data and the angle estimation cannot be performed.

The proposed model outperformed other method by achieving the testing accuracy of 87.5%

on 7-class ASL recognition task. These results show the efficacy of utilizing all the physical

information about the environment RF sensors can offer. Table 6.3 summarizes the performances

of different waveform profiles along with different RF data representations as DNN inputs.

Figure 6.8 shows the final confusion matrix of the proposed model. The words have and

teacher yield the highest recognition rate with over 95% accuracy. These results are also

in line with the trigger recognition results obtained in Section 6.4.2 where the word have

had the highest trigger recognition rate among other signs. The word hello, on the other
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Figure 6.8: Confusion matrix of the proposed multi-input network for ASL recognition.
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Overall Accuracy: 87.5%

hand, has the lowest recognition rate with the accuracy of 74.3%. It is mostly confused with

the word teacher. This potentially be because of the similarity of the way the beginning

of these signs are articulated. While the word hello is articulated by raising one hand

to the forehead and moving forward towards the person of interest, the word teacher is

articulated by raising both hands to the forehead and moving them forward for a certain

distance, and lowering them parallelly at the end. Confusion of the unknown activities

with the other signs seem to be distributed across the signs.

6.5 Conclusion

This chapter introduces the idea of fully-adaptive RF where the waveform parameter

as well as the operation characteristics of the RF-based ASL recognition system changes.

Advantage of the proposed method is evaluated both in terms of computational and spectral
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resource allocation, and the recognition performance of the overall system. We propose a

cyclic multi-state operation diagram for the RF system where each state utilizes a certain set

of waveform parameters to optimally use the computational resources without compromising

the recognition performance. Resource allocation and recognition performances of different

parameter profiles are evaluated for an ASL dataset consisting of 6 ASL signs and daily

activities. Incorporation of range and angle information in addition to the Doppler in a

multi-input network is shown to be a promising approach for enriching the feature space and

achieving better recognition performance than the baseline methods.
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CHAPTER 7

CONCLUSION AND DISCUSSION

This dissertation is mainly focused on the utilization of RF sensors for ASL-enabled smart

environments. We tackle several challenges in RF-based ASL recognition systems including

data variance stemming from background-related and cultural dialects, pre-processing of

RF data, presentation of RF data to the deep learning models, temporal segmentation of

sequential activities/signs, differentiation of ASL signs from daily activities, limitations in

real-time recognition, separation and isolation of RF data of multiple people, automation of

data collection and annotation stages, and adaptively changing of RF waveform parameters

to optimize the resource allocation and to maximize the recognition performance. While

most of these are on-going and not well-explored challenges, we propose intuitive solutions

for them collectively. We provide both qualitative and quantitative results for the each

proposed method/approach.

7.1 Summary of the Contributions

For the temporal segmentation problem, an STA/LTA-based motion detector is presented

to locate the starting and ending point of a motion. The proposed method is shown to

outperform other power-based methods and it eliminates the need for relying on fixed length

windows. The method utilizes the Euclidean distance between upper and lower envelopes

of the µD spectrograms to decide when a motion is starting and ending. Efficacy of the

method is shown on a sequential mixed activity/signing data to isolate individual activities

and signs in RF data in a daily living scenario.
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Next, a joint-domain multi-input multi-task learning network is presented to aggregate

information from different RF data representations including µD spectrograms, range-Doppler

maps and range-angle maps. Each data representation is processed in parallel branches of the

network. In the proposed network, while time-distributed 2D and 3D CNN layers are used

to extract spatial features, temporal dependencies are obtained with bidirectional LSTM

layers. We define certain auxiliary tasks for the signs such as one versus two handedness,

major hand location, hand movement type, daily activity versus SL and number of arm

strokes to better regularize the network in the training stage. The proposed technique is

shown to outperform other SOTA methods in the sequential sign language recognition task.

When the RF sensors are deployed in an indoor environment to interact with the users

via sign language, it is a natural need to turn on/off the system with certain gestures or

signs similar to the wake/trigger words in voice-based personal assistant systems. In this

study, we explore the design considerations and radar’s capability to perceive and recognize

these words. Accurate recognition of the trigger sign is crucial to reduce and eliminate

the false triggers and false trigger rejections. The system should be robust enough to

spot incomplete or overextended trigger attempts as well. In this work, we present an

adaptive double-threshold cumulative score aggregation approach to recognize the trigger

sign in continuous RF data streams.

Collecting data with RF sensors is often a time consuming and expensive task. A certain

number of participants need to be recruited to attend the study and follow the instructions

of the researchers to help with the data collection. In sign language recognition tasks, it is

even harder to find and recruit the participants since the target community (Deaf/HoH) is

narrower. Recruiting hearing participants is shown to be not a viable solution since there are

significant differences between the signings of fluent and non-fluent (i.e., imitation) signers,

and imitation signing cannot effectively represent the nuances of sign language. In addition,

recruiting fluent signers (Deaf/HoH) for data collection in a laboratory environment is also

not a sustainable solution since there are cultural differences across Deaf communities and
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sign language is also an evolving language with the addition of new words and dialects in

everyday life. In this work, we propose an interactive gamification approach to integrate sign

language into the chess game where users control the pieces on the chess board with sign

language instead of mouse clicks. The game collects, processes and classifies the collected

signs. Users also have chance to correct the mispredictions of the game by canceling the

last motion. This feature of the game eliminates the need for manual data annotation. The

designed game also presents a new way to acquire data without boring the participants. This

approach enable to curate a diverse, multi-modal sign language datasets in a sustainable and

enjoyable fashion.

Presence of multiple people in the environment presents certain challenges in the RF data

since the received signal becomes superimposition of the individual signals from each target.

Although there exists certain methods to estimate target ranges and angles, they can be

applied only after certain signal processing steps, and unprocessed raw data of the individual

targets cannot be recovered. In this work, we present an angular subspace projection-based

separation technique to separate the signals of individual targets at a low level. Achieving

separation at the raw data level enables further signal processing and learning techniques

for individual targets. We show the efficacy of the proposed method on human activity

recognition and sign language recognition tasks. For closely spaced targets, we present a

multi-view DNN model which incorporates left and right side of the boresight view.

In radar-based recognition tasks, RF waveform parameters are often optimized on the

software based on the application needs. Although this is a commonly applied approach,

software-defined RF sensors allow users to change the waveform parameters at any given

time. There are certain pros and cons, and trade-offs while adjusting the radar parameters.

Therefore, ideally, we want to keep the radar parameters optimal and aware of the surroundings

so that it can perceive, understand and adapt to the environment. RF sensors are often

coupled with other computational units to process and store the data. It is highly likely that

these systems are also hosts for other modules of the system where computational resources
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are shared across the units. Therefore, RF system should adjust its parameters and operation

characteristics so that it does not occupy the spectral and computational resources it does

not need especially when users are not interacting with the RF system. In this work, we

propose a fully-adaptive cyclic RF sensing paradigm where radar has three operation states

and each state is associated with a RF waveform profile. It is shown that the proposed

paradigm can understand the presence of a person, whether the trigger sign is articulated

and different ASL signs. The proposed method is shown to be effective in reducing the

unnecessary occupation of the spectral and computational resources while preserving the

high recognition performance.

7.2 Discussion

This work explores and tackles on-going challenges in RF sensor-based end-to-end sign

language and human activity recognition systems. The presented studies and experiments

show and prove that RF is a promising modality for indoor monitoring and human-computer

interaction especially considering they are non-intrusive, non-invasive and robust against

lightning conditions. While the purpose and claim of this research are not to replace the

existing modalities such as video or wearables, we show what radars can offer and how they

can be integrated into existing systems as a compatible modality seamlessly.

Other challenges current RF sensor-based recognition systems face include data scarcity.

Although certain synthetic data generation methods have been proposed including GANs,

simulated data, transfer learning and other physics-based methods, still each recognition

task require at least certain amount of real data to be collected to drive the DNN-based

solutions. Also, generalization capability of the synthesized data are often questionable as

their variance is limited by the distribution of real data samples.

Low spatial resolution in point cloud data is also another on-going challenge especially

for the autonomous driving scenarios. Accurate 3D reconstruction of the hand and finger

shapes are still not possible with the existing RF systems. This limits radar’s capability to
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recognize only dynamic motions with high radial movement. Recognition of static shapes

and finger-spelling are still challenging tasks without high resolution 3D hand and finger

point clouds. However, this challenge can be alleviated in a near future with the recent

advances in high resolution imaging radar technology and AI-based oversampling and RF

data-to-skeleton methods.

Overall, radar looks like will be in our lives especially with smart home and human-computer

interaction applications as a key player.
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[36] Nils Dahlbäck, Arne Jönsson, and Lars Ahrenberg. Wizard of oz studies: Why and how.
In Proceedings of the 1st International Conference on Intelligent User Interfaces, IUI
’93, page 193–200, New York, NY, USA, 1993. Association for Computing Machinery.

[37] Zihang Dai, Hanxiao Liu, Quoc V. Le, and Mingxing Tan. Coatnet: Marrying
convolution and attention for all data sizes, 2021.

[38] Andreas Danzer, Thomas Griebel, Martin Bach, and Klaus Dietmayer. 2d car detection
in radar data with pointnets. In 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pages 61–66, 2019.

[39] D. Deiana, E.M. Suijker, R.J. Bolt, A.P.M. Maas, W. J. Vlothuizen, and A.S. Kossen.
Real time indoor presence detection with a novel radar on a chip. In 2014 International
Radar Conference, pages 1–4, 2014.

161



[40] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009.

[41] Aashaka Desai, Maartje De Meulder, Julie A. Hochgesang, Annemarie Kocab, and
Alex X. Lu. Systemic biases in sign language ai research: A deaf-led call to reevaluate
research agendas, 2024.

[42] Vivek Dham. Programming chirp parameters in ti radar devices. https://www.ti.

com/lit/an/swra553a/swra553a.pdf, 2020. Texas Instruments.

[43] Jun Ding, Bo Chen, Hongwei Liu, and Mengyuan Huang. Convolutional neural network
with data augmentation for sar target recognition. IEEE Geoscience and Remote
Sensing Letters, 13(3):364–368, 2016.

[44] P. V. Dorp and F. C. A. Groen. Feature-based human motion parameter estimation
with radar. IET Radar, Sonar Navigation, 2(2):135–145, 2008.

[45] Thomas Eiter and Heikki Mannila. Computing discrete frechet distance. Technical
Report 94/64, Christian Doppler Lab., Vienna Univ. of Technology, 1994.

[46] M. Erard. Why sign language gloves don’t help deaf people.
https://www.theatlantic.com/technology/archive/2017/11/

why-sign-language-gloves-dont-help-deaf-people/545441/, November 2017.

[47] Michael Erard. Why sign-language gloves don’t help deaf people. The Atlantic,
November 2017.

[48] Baris Erol and Moeness G. Amin. Radar data cube processing for human activity
recognition using multisubspace learning. IEEE Transactions on Aerospace and
Electronic Systems, 55(6):3617–3628, 2019.

[49] Biyi Fang, Jillian Co, and Mi Zhang. Deepasl: Enabling ubiquitous and non-intrusive
word and sentence-level sign language translation. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems. Association for Computing
Machinery, 2017.

162

https://www.ti.com/lit/an/swra553a/swra553a.pdf
https://www.ti.com/lit/an/swra553a/swra553a.pdf
https://www.theatlantic.com/technology/archive/2017/11/why-sign-language-gloves-dont-help-deaf-people/545441/ 
https://www.theatlantic.com/technology/archive/2017/11/why-sign-language-gloves-dont-help-deaf-people/545441/ 


[50] Jeremy Fix, Israel Hinostroza, Chengfang Ren, Giovanni Manfredi, and Thierry
Letertre. Transfer learning for human activity classification in multiple radar setups.
In 2022 30th European Signal Processing Conference (EUSIPCO), pages 1576–1580,
2022.

[51] Linda K Ford, Joshua D Borneman, Julia Krebs, Evguenia A Malaia, and Brendan P
Ames. Classification of visual comprehension based on eeg data using sparse optimal
scoring. J. Neural Engineering, 18(2):026025, 2021.

[52] J. M. Fuster. Cortex and mind: Unifying cognition. Oxford University Press, 2003.

[53] R. Girshick. Fast r-cnn. In Proc. IEEE ICCV, pages 1440–1448, 2015.

[54] Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov.
Neighbourhood components analysis. In L. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems, volume 17. MIT Press, 2004.

[55] Jiangkun Gong, Jun Yan, Deyong Kong, and Deren Li. Introduction to cognitive
micro-doppler radar: Optimization and experiment. In 2023 IEEE International Radar
Conference (RADAR), pages 1–6, 2023.

[56] T. Gong, T. Lee, C. Stephenson, V. Renduchintala, S. Padhy, A. Ndirango, G. Keskin,
and O. H. Elibol. A comparison of loss weighting strategies for multi task learning in
deep neural networks. IEEE Access, 7:141627–141632, 2019.

[57] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
Advances in neural information processing systems, 27, 2014.

[58] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 6645–6649, 2013.

[59] Alex Graves, Santiago Fernández, and Faustino Gomez. Connectionist temporal
classification: Labelling unsegmented sequence data with recurrent neural networks.
In in Proc. Int. Conf. on Mach. Learn., pages 369–376, 2006.

[60] Hugh Griffiths. Introduction to waveform diversity and cognitive radar. Radar, Sonar
and Navigation. Institution of Engineering and Technology, 2017.

163



[61] Changzhan Gu, Jian Wang, and Jaime Lien. Motion sensing using radar: Gesture
interaction and beyond. IEEE Microwave Magazine, 20(8):44–57, 2019.

[62] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei
Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer:
Convolution-augmented transformer for speech recognition, 2020.

[63] Sevgi Z. Gurbuz, Chris Crawford, Darrin J. Griffin, Emre Kurtoglu, Oladipupo
Adeoluwa, and Josh Haeker. Interactive rf game design for deciphering real-world
human motion: Activities, gestures, and sign language. In 2023 IEEE Radar
Conference (RadarConf23), pages 1–6, 2023.

[64] Sevgi Z. Gurbuz, Ali C. Gurbuz, Evie A. Malaia, Darrin J. Griffin, Chris Crawford,
Emre Kurtoglu, M. Mahbubur Rahman, Ridvan Aksu, and Robiulhossain Mdrafi. Asl
recognition based on kinematics derived from a multi-frequency rf sensor network. In
2020 IEEE SENSORS, pages 1–4, 2020.

[65] Sevgi Z. Gurbuz, Ali C. Gurbuz, Evie A. Malaia, Darrin J. Griffin, Chris Crawford,
M. Mahbubur Rahman, Ridvan Aksu, Emre Kurtoglu, Robiulhossain Mdrafi,
Ajaymehul Anbuselvam, Trevor Macks, and Engin Ozcelik. A linguistic perspective on
radar micro-doppler analysis of american sign language. In 2020 IEEE International
Radar Conference (RADAR), pages 232–237, 2020.

[66] Sevgi Z. Gurbuz, Ali Cafer Gurbuz, Evie A. Malaia, Darrin J. Griffin, Chris S.
Crawford, Mohammad Mahbubur Rahman, Emre Kurtoglu, Ridvan Aksu, Trevor
Macks, and Robiulhossain Mdrafi. American sign language recognition using rf sensing.
IEEE Sensors Journal, 21(3):3763–3775, 2021.

[67] Sevgi Z. Gurbuz, Emre Kurtoglu, M. Mahbubur Rahman, and Dario Martelli. Gait
variability analysis using continuous rf data streams of human activity. Smart Health,
26:100334, 2022.

[68] Sevgi Z. Gurbuz, M. Mahbubur Rahman, Emre Kurtoglu, Trevor Macks, and Francesco
Fioranelli. Cross-frequency training with adversarial learning for radar micro-Doppler
signature classification (Rising Researcher). In Kenneth I. Ranney and Ann M. Raynal,
editors, Radar Sensor Technology XXIV, volume 11408, page 114080A. International
Society for Optics and Photonics, SPIE, 2020.

164



[69] Sevgi Z. Gurbuz, M. Mahbubur Rahman, Emre Kurtoglu, Evie Malaia, Ali Cafer
Gurbuz, Darrin J. Griffin, and Chris Crawford. Multi-frequency rf sensor fusion for
word-level fluent asl recognition. IEEE Sensors Journal, 22(12):11373–11381, 2022.

[70] Sevgi Z. Gurbuz, M. Mahbubur Rahman, Emre Kurtoglu, and Dario Martelli.
Continuous human activity recognition and step-time variability analysis with fmcw
radar. In 2022 IEEE-EMBS International Conference on Biomedical and Health
Informatics (BHI), pages 01–04, 2022.

[71] Sevgi Zubeyde Gurbuz, Hugh D. Griffiths, Alexander Charlish, Muralidhar
Rangaswamy, Maria Sabrina Greco, and Kristine Bell. An overview of cognitive
radar: Past, present, and future. IEEE Aerospace and Electronic Systems Magazine,
34(12):6–18, 2019.

[72] Esra Al Hadhrami, Maha Al Mufti, Bilal Taha, and Naoufel Werghi. Transfer learning
with convolutional neural networks for moving target classification with micro-doppler
radar spectrograms. In 2018 International Conference on Artificial Intelligence and
Big Data (ICAIBD), pages 148–154, 2018.

[73] M.H. Hayes. Statistical Digital Signal Processing and Modeling. Wiley India Pvt.
Limited, 2009.

[74] Simon Haykin. Cognitive dynamic systems: Radar, control, and radio [point of view].
Proceedings of the IEEE, 100(7):2095–2103, 2012.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition, 2015.

[76] J. Hill. Black asl. Journal of American Sign Languages and Literatures, 2012.

[77] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, nov 1997.

[78] Amin Hong, Young-Hoon Chun, Sangyeol Oh, and Youngwook Kim. Human activity
classification based on cognitive doppler radar to optimize carrier frequency and
sampling rate using reinforcement learning. IEEE Sensors Journal, 24(2):1696–1705,
2024.

165



[79] Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. Technical report,
Massachusetts Institute of Technology, USA, 1980.

[80] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. CoRR, abs/1704.04861,
2017.

[81] Wenqiang Hua, Shuang Wang, Wen Xie, Yanhe Guo, and Xiaomin Jin. Dual-channel
convolutional neural network for polarimetric sar images classification. In IGARSS
2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, pages
3201–3204, 2019.

[82] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks, 2016.

[83] Xuejun Huang, Jinshan Ding, Dongxing Liang, and Liwu Wen. Multi-person
recognition using separated micro-doppler signatures. IEEE Sensors Journal,
20(12):6605–6611, 2020.

[84] Zhongling Huang, Corneliu Octavian Dumitru, Zongxu Pan, Bin Lei, and Mihai Datcu.
Classification of large-scale high-resolution SAR images with deep transfer learning.
IEEE Geoscience and Remote Sensing Letters, 18(1):107–111, jan 2021.

[85] Zhongling Huang, Zongxu Pan, and Bin Lei. Transfer learning with deep convolutional
neural network for sar target classification with limited labeled data. Remote Sensing,
9(9), 2017.

[86] Infineon. Radar system. RFS SDK Documentation, 2023.

[87] Cesar Iovescu and Sandeep Rao. The fundamentals of millimeter wave radar
sensors. https://www.tij.co.jp/jp/lit/wp/spyy005a/spyy005a.pdf, 2020. Texas
Instruments.

[88] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks. CoRR, abs/1611.07004, 2016.

166

https://www.tij.co.jp/jp/lit/wp/spyy005a/spyy005a.pdf


[89] J. Huang, We. Zhou, H. Li, andW. Li. Sign language recognition using 3d convolutional
neural networks. In 2015 IEEE International Conference on Multimedia and Expo
(ICME), pages 1–6, 2015.

[90] Fereshteh Jafariakinabad, Sansiri Tarnpradab, and Kien Hua. Syntactic recurrent
neural network for authorship attribution. FLAIRS-33, 02 2019.

[91] Feng Jin, Arindam Sengupta, and Siyang Cao. mmfall: Fall detection using 4-d
mmwave radar and a hybrid variational rnn autoencoder. IEEE Transactions on
Automation Science and Engineering, 19(2):1245–1257, 2022.

[92] Branka Jokanovic, Moeness Amin, and Baris Erol. Multiple joint-variable domains
recognition of human motion. In 2017 IEEE Radar Conference (RadarConf), pages
0948–0952, 2017.
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