
GauRast: Enhancing GPU Triangle Rasterizers to
Accelerate 3D Gaussian Splatting

Sixu Li1,2, Ben Keller2, Yingyan (Celine) Lin1, and Brucek Khailany3
1School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

2NVIDIA, Santa Clara, CA, USA
3NVIDIA, Austin, TX, USA

{sli941, celine.lin}@gatech.edu, {benk, bkhailany}@nvidia.com

Abstract—3D intelligence leverages rich 3D features and stands
as a promising frontier in AI, with 3D rendering fundamental to
many downstream applications. 3D Gaussian Splatting (3DGS),
an emerging high-quality 3D rendering method, requires signifi-
cant computation, making real-time execution on existing GPU-
equipped edge devices infeasible. Previous efforts to accelerate
3DGS rely on dedicated accelerators that require substantial
integration overhead and hardware costs. This work proposes an
acceleration strategy that leverages the similarities between the
3DGS pipeline and the highly optimized conventional graphics
pipeline in modern GPUs. Instead of developing a dedicated
accelerator, we enhance existing GPU rasterizer hardware to
efficiently support 3DGS operations. Our results demonstrate
a 23→ increase in processing speed and a 24→ reduction in
energy consumption, with improvements yielding 6→ faster end-
to-end runtime for the original 3DGS algorithm and 4→ for
the latest efficiency-improved pipeline, achieving 24 FPS and
46 FPS respectively. These enhancements incur only a minimal
area overhead of 0.2% relative to the entire SoC chip area,
underscoring the practicality and efficiency of our approach for
enabling 3DGS rendering on resource-constrained platforms.

Index Terms—Hardware Architecture, Graphics Processors,
3D Gaussian Splatting

I. INTRODUCTION

3D intelligence is set to become the next major frontier in
AI by leveraging rich 3D features to enhance understanding
and interaction within complex environments. As Prof. Fei-
Fei Li, co-founder of ImageNet, emphasized, “...we need
spatially intelligent AI that can model the world and reason
about objects, places, and interactions in 3D space and
time...” [38]. This underscores the importance of 3D intelligent
applications such as autonomous driving [39], robotics [32],
and augmented/virtual reality (AR/VR) [4] shown in Fig. 1. A
foundational task within 3D intelligence is 3D scene rendering,
which provides essential features for downstream AI tasks that
require spatial information.

Recently, 3D Gaussian Splatting (3DGS) [14] has emerged
as the leading method for 3D scene rendering. As summarized
in Table I, unlike previous techniques like triangle meshes [33]
and neural radiance fields (NeRF) [20], 3DGS maps 3D
scenes onto a set of Gaussian balls, offering superior rendering
quality and automated scene reconstruction. Thanks to these
advantages, 3DGS has been rapidly adopted in various 3D
applications, including autonomous driving [13], [30], [42],
robotics [1], [12], [19], and AR/VR [18], [31], [40].

Autonomous Driving Robotics AR/VR
Fig. 1. Representative examples of 3D intelligent applications, including
autonomous driving, robotics, and augmented/virtual reality [11], [21], [27].

TABLE I
COMPARISON OF RENDERING METHODOLOGIES

Triangle Mesh [33] NeRF [20] 3D Gaussian [14]

Scene Reconstruction Manual Automatic Automatic

Rendering Quality Manually Decided High Very High

Rendering Speed on GPU [22] Fast Slow Medium

Despite its robust performance on high-powered (→ 200 W)
GPUs [25], achieving real-time rendering of → 30 frames
per second (FPS), 3D Gaussian Splatting cannot achieve high
framerates on edge computing platforms with GPUs, such as
those with power limitations (↑ 10 W) like the NVIDIA Jetson
Orin NX [22]. These platforms are increasingly crucial due to
the growing demand for 3D processing in mobile and em-
bedded systems [11], [27]. Specifically, 3DGS achieves only
2-5 FPS on these platforms [22] with commonly used real-
world, large-scale datasets [3], falling short of the performance
requirement for most practical applications. This performance
gap poses challenges for deploying advanced 3D intelligence
in resource-constrained environments, highlighting the need
for hardware acceleration of 3DGS.

Existing efforts to accelerate 3D Gaussian Splatting [16] and
similar rendering pipelines [10], [17] typically focus on devel-
oping dedicated hardware accelerators. While these specialized
units can provide performance benefits, they require exclusive
hardware resources and often lead to increased system com-
plexity and cost. Moreover, the integration of dedicated accel-
erators may not be feasible for all edge platforms, especially
those with stringent area and power constraints. However,
modern GPUs are already equipped with optimized fixed-
function graphic acceleration hardware for triangle meshes.
As these fixed-function units also target graphics rendering,
their inherent capabilities present an opportunity to leverage

(a) Rendered RGB Image (b) Gaussian Ball Representation

Fig. 2. Visualization of a 3D Gaussian representation: (a) Rendered RGB
image depicting the scene with realistic color and detail; and (b) the
corresponding Gaussian ball representation of the same scene, showing the
underlying 3D structure before rendering. Both images are rendered using the
’Bonsai’ scene from the NeRF-360 [3] dataset.

existing resources to accelerate 3DGS rendering without in-
troducing significant additional overhead.

To mitigate the challenges associated with designing ded-
icated memory systems and software stacks for specialized
accelerators [6], we propose an alternative solution: enhancing
the existing graphics units—specifically, the rasterizer for
triangle meshes—within GPUs to accelerate 3DGS rendering.
By leveraging the capabilities of current GPU hardware, we
aim to enhance performance without the need for additional
dedicated accelerators. We begin with an in-depth profiling
of the 3DGS rendering pipeline to identify time-consuming
operations and analyze its similarities with operators in the
triangle mesh rendering pipeline, which are already supported
by the GPU’s native graphic hardware units. This analysis
reveals opportunities to adapt and enhance these units to
efficiently process 3D Gaussian operations.

Building on these insights, we propose and develop an en-
hanced rasterizer, GauRast, for GPUs that enables the efficient
execution of the dominant operator in the 3DGS rendering
pipeline while preserving the original capabilities for standard
triangle mesh rendering. This design ensures compatibility
with existing GPU architectures and minimizes disruptions
to conventional workflows. By enhancing existing hardware
rather than introducing entirely new components, our approach
strikes a balance between performance improvements and
resource utilization. Our contributions are as follows:

• We advocate an alternative direction for accelerating
3DGS, the leading algorithm in neural rendering, by

enhancing existing GPU units originally dedicated to
traditional workloads.

• We detail comprehensive profiling and analysis of the
3DGS rendering pipeline [14] to identify the critical
operators requiring acceleration, and demonstrate that the
bottleneck operator in the 3DGS rendering pipeline shares
similarities with the triangle rendering pipeline, which
is already well-accelerated by existing GPU’s triangle
rasterizer.

• We propose an enhanced rasterizer, named GauRast, to
support the dominant operator in the 3DGS rendering
pipeline while maintaining its functionality for standard
triangle mesh rendering tasks.

• We present a GauRast hardware prototype that achieves
a 23↓ speedup and a 24↓ improvement in energy ef-
ficiency on the target SoC for the dominant operator
with the original 3DGS rendering pipeline. This leads
to a 6↓ end-to-end speedup in the original 3DGS ren-
dering pipeline [14] and a 4↓ end-to-end speedup in the
latest efficiency-optimized 3DGS rendering pipeline [9],
achieving 24 FPS and 46 FPS, respectively. Notably,
GauRast incurs an area overhead of only 21% for the
enhanced graphics units, corresponding to 0.2% of the
total SoC area.

Taken together, our proposals demonstrate a promising
approach to enabling real-time 3DGS rendering on future edge
devices.

II. 3DGS AND ITS RENDERING BOTTLENECK

A. 3D Gaussian Splatting Algorithm

3D Gaussian Scene Representation. The state-of-the-
art (SOTA) method for 3D scene rendering employs a 3D
Gaussian-based representation [14] as illustrated in Fig. 2.
This approach strikes a balance between high rendering quality
and efficient rendering speed, especially on standard desktop-
level GPUs. In this representation, objects are modeled as
collections of elliptical 3D Gaussian balls. Each Gaussian
ball is characterized by a 3D Gaussian probability density
function and an associated color vector. The rendering process
distributes colors over the regions covered by the Gaussians’
probability densities, collectively forming the complete scene.

(a) Scene Represented By
3D Gaussian Balls

Viewpoint

Pixel
Plane

Preprocessing Sorting Rasterization-1
Compute Color

(b) 2D Gaussians (c) 2D Gaussians
Sorted By Depth

(d) Gaussian Color
For Each Pixel

Rasterization-2
Accumulate Color

(e) Output Pixel Color

Fig. 3. Overview of the 3DGS pipeline [14]: (a) Scene representation: The scene is depicted as 3D Gaussian balls, viewed from a specific viewpoint and
projected onto a 2D pixel plane. (b) Preprocessing: These 3D Gaussians are projected onto the 2D plane, resulting in 2D Gaussian representations. (c) Sorting:
2D Gaussians are ordered by depth to ensure the correct rendering sequence and handle occlusion properly. (d) Initial rasterization: Colors for each pixel are
calculated based on the Gaussians covering that pixel. (e) Color accumulation: Colors are accumulated to produce the final pixel color output.

Th
ro

ug
hp

ut
 (F

PS
)

Fig. 4. Throughput achieved by the 3DGS rendering pipeline [14] across
all seven scenes from the large-scale, real-world NeRF-360 dataset [3], as
measured on the NVIDIA Jetson Orin NX [22] with a 10W power limit.

Rendering an image from a specific viewpoint using this
representation (described in Fig. 3) involves three main steps:

Step 1: Preprocessing. The first stage of 3DGS rendering,
depicted in Fig. 3(a), is preprocessing, which serves three
purposes: projecting all 3D Gaussians onto a 2D plane ac-
cording to the specified viewing position and angle, converting
the color vector of each Gaussian to an RGB representation
based on the viewing parameters, and computing the depth of
each 3D Gaussian relative to the given viewpoint. This step
transforms the 3D representation into a set of 2D Gaussians,
each characterized by an opacity function o, an assigned RGB
color c, a depth value d, a covariance matrix ! representing
the 2D Gaussian probability distribution, and a center point µ.

Step 2: Sorting. The second stage, as illustrated in Fig. 3(b),
involves sorting the projected 2D Gaussians. Due to the
potential overlap of Gaussians, each pixel may be influenced
by multiple Gaussians. The rendering order impacts their
visibility since Gaussians rendered earlier can obscure those
rendered later. To maintain correct occlusion relationships and
ensure visual consistency, the 2D Gaussians are sorted by their
depth values. This depth-based sorting ensures that Gaussians
nearer to the viewing position are rendered first, preserving
proper occlusion handling.

Step 3: Gaussian Rasterization. The final step, Gaussian
rasterization, applies the color of each Gaussian to the pixels it
covers, based on opacity and Gaussian probability, and follows
the depth order determined in Step 2. As shown in Fig. 3(c),
for each Gaussian applied to a specific pixel, the density ωP,i

is computed using the formula:

ωP,i = oie
→ 1

2 (P→µi)
T!i

→1(P→µi)

where P represents the pixel coordinate, i is the index of the
Gaussian, and oi is the opacity of the Gaussian. This density
reflects the contribution of the Gaussian to the pixel. Once the
density ωP,i is calculated, the RGB color contribution for that
pixel is accumulated as follows, as shown in Fig. 3(d):

CP =

n∑

i=1

TP,iωP,ici

The term TP,i =
∏i→1

j=1(1↔ ωP,j) represents the accumulated
density of all previously applied Gaussians at the pixel,
accounting for the occlusion effects from preceding Gaussians.

Step 1: Preprocessing Step 2: Sorting Step 3: Gaussian Rasterization

Fig. 5. Runtime breakdown of the 3DGS rendering pipeline [14] across
all seven scenes from the large-scale, real-world NeRF-360 dataset [3] as
measured on the NVIDIA Jetson Orin NX [22] with a power limit of 10W.

This ensures that only visible portions of overlapping Gaus-
sians contribute to the final rendered color in Fig. 3(e).

B. Locating the Bottleneck of 3DGS Rendering

To identify bottlenecks in rendering 3D Gaussians on
edge SoCs, we conducted detailed profiling to analyze the
runtime distribution across various rendering steps. Profiling
was performed on the widely used 3D rendering dataset
NeRF-360 [3], which includes seven real-world multi-object
scenes. Kernel runtimes for the different rendering steps were
measured using NVIDIA Nsight Systems [28] on the NVIDIA
Jetson Orin NX [22] operating under a 10W power limit
typical for edge devices [8], [41]. The average runtime for
rendering all viewpoints in each scene is summarized in Fig. 4.
The results indicate that the edge SoC achieves only 2-5 FPS,
necessitating significant speedups before it can be used in
real-world applications. The detailed runtime breakdown for
each rendering step is shown in Fig. 5. Step 3, the Gaussian
rasterization stage, dominates the overall runtime, accounting
for over 80% of the total rendering time across all scenes,
thereby representing the primary performance bottleneck.

III. LEVERAGING THE GPU RASTERIZER FOR 3DGS

A. Opportunities in GPU’s Rasterizer

The computational demands of dominant Gaussian rasteri-
zation in the 3DGS rendering pipeline have motivated various
acceleration efforts [16]. Current research primarily empha-
sizes the development of dedicated hardware accelerators for
emerging 3D rendering pipelines such as 3DGS [16] and
NeRF [10], [17]. Although these accelerators offer perfor-
mance improvements, they can introduce significant trade-offs,
including increased complexity in memory systems and soft-
ware stacks [6] and the need for exclusive hardware resources.
Unlike these dedicated approaches, our strategy focuses on
enhancing existing GPU hardware to leverage the built-in
capabilities of modern GPUs. This approach enhances 3DGS
performance while preserving compatibility with conventional
GPU operations and the original programming interface, mini-
mizing disruptions to established workflows and fully utilizing
the GPU’s existing data path.

Modern GPUs have dedicated units optimized for triangle
mesh rasterization [23]. This process involves iterating over

Triangle
Rasterization

Gaussian
Rasterization

Input
Primitive

(Pri. 1)

Current
Pixel

w/ Pri. 1

Input
Primitive

(Pri. 2)

Current
Pixel

w/ Pri. 2
…

…

…

Time

Apply Apply

Check Depth
Keep Smaller

Accumulate

Similarity

Difference 2
Difference 1

Ellipse

Triangle

Fig. 6. Comparison of triangle and Gaussian rasterization. Both techniques
sequentially apply primitives to pixels with key differences in primitive type
(Difference 1) and reduction algorithm (Difference 2).

primitives (here referring to triangles) and mapping their pa-
rameters to display pixels. The pipeline is highly parallelized,
relying on fixed-function accelerators for rapid computation
[2], [5], [37]. Our approach begins with an investigation of
the similarities and differences between Gaussian rasterization
and triangle rasterization, the latter of which is efficiently
supported by these optimized GPU hardware units.

B. Contrasting Gaussian and Triangle Rasterization Methods
3DGS rasterization shares key foundational elements with

traditional triangle mesh rasterization. As illustrated in Fig. 6,
both processes iterate over primitives—triangles in conven-
tional rendering and Gaussians in 3DGS—and map their
respective parameters onto pixels. This similarity in the basic
dataflow and computation pattern provides an opportunity
to adapt existing GPU rasterizers to support 3D Gaussian
operations.

However, there are also differences between the two ras-
terization processes. First, in triangle rasterization, the algo-
rithm involves determining if a pixel lies within a triangular
boundary. In contrast, 3DGS requires calculating Gaussian
probability distributions to assess the coverage. This distinc-
tion necessitates modifications to the detection function to
accommodate elliptical shapes rather than triangles. Second,
for triangle mesh rasterization, the reduction method relies
on a minimum-depth selection to determine which primi-
tive’s parameters should be applied to each pixel, whereas
3D Gaussian Splatting aggregates color contributions from
multiple overlapping Gaussians. This approach increases the
complexity of the reduction function, as overlapping Gaussians
contribute to pixel color based on their calculated densities and
occlusion effects. Effectively addressing these differences is
essential to adapting current rasterization hardware for 3DGS,
ensuring compatibility and preserving performance.

C. Enhancing the Triangle Rasterizer for 3DGS
Building on our identified similarities and differences be-

tween Gaussian and triangle rasterization, we propose en-
hancing the existing triangle rasterizer to support 3DGS. A
comparison of the resource requirements for triangle and
Gaussian rasterization is summarized in Table II. As shown
in the table, both rasterization processes have identical input

TABLE II
COMPUTATIONAL PRIMITIVES FOR RASTERIZATION

Subtask Triangle Rasterization [33] Gaussian Rasterization [14](Operator)

Input Vertices’ Coordinates !, o, µ, c
(9 FP Numbers) (9 FP Numbers)

1 Coordinate Shift Coordinate Shift
(ADD, MUL) (ADD, MUL)

2 Intersection Detection Gaussian Probability Computation
(ADD, MUL, DIV) (ADD, MUL, EXP)

3 UV Weight Computation Color Weight Computation
(ADD, MUL) (ADD, MUL)

4 Min-Depth Color Hold Color Accumulation
(ADD, MUL) (ADD, MUL)

Output UV Weight, Depth Accumulated Color
(3 FP Numbers) (3 FP Numbers)

and output parameter sizes and follow a similar procedure:
initializing pixel storage and then applying primitives to each
pixel. Owing to this shared I/O width and access pattern, the
existing memory interface can be directly reused from the
existing triangle rasterizer.

Regarding computational resources, as highlighted in Ta-
ble II, both processes primarily require multipliers and adders
for their core tasks. This similarity allows us to introduce a
reconfigurable datapath capable of supporting both triangle
and Gaussian primitives with the same hardware resources.
However, each primitive type has specific resource require-
ments: triangle rasterization requires a divider, while Gaussian
rasterization necessitates an exponentiation unit. To address
these specialized needs, we propose adding dedicated hard-
ware units for these distinct operations, enabling seamless
support for both types of rasterization.

IV. PROPOSED GAURAST HARDWARE

A. Overview of the GPU architecture with GauRast

Building on the analysis in Section III-C, we present the
hardware design of GauRast, an enhanced rasterizer that
extends existing hardware capabilities to efficiently support
3DGS. Unlike previous approaches that rely on dedicated
accelerators, GauRast utilizes the built-in GPU rasterization
hardware, specifically the triangle rasterizer, to execute 3DGS
rendering tasks. This approach ensures seamless integration
with existing GPU workflows, maintaining compatibility with
conventional rendering while introducing minimal overhead.

As shown on the left side of Fig. 7(a), the GauRast
hardware builds upon the Graphics Processing Cluster (GPC)
of modern GPU architectures [24], [26]. Each GPC contains
multiple Streaming Multiprocessors (SMs) for general-purpose
computations and specialized fixed-function units for graphics
processing. Within this architecture, we implemented an en-
hanced rasterizer capable of handling both triangle and Gaus-
sian rasterization, extending the functionality of the original
rasterizer that only supports triangle rasterization. As shown
in Fig. 7(a), our modifications are confined to the rasterizer
within the GPC, leaving the SMs untouched and preserving the
overall GPU structure. The enhanced rasterizer is optimized

Proposed Enhanced
Rasterizer (GauRast)

Graphics Processing
Cluster (GPC)

L2 Cache & DRAM
Controller

Top Controller

Tile Buffer A

Tile Buffer B

Cache/Memory Interface

Memory Bus

Instruction
Data Primitive Data

Pixel Data

M
U

X

Control
Signal

...

Dispatch Controller

Result Collector

PE Block

(a) (b)

Input Buffer

Data Staging (Flip-Flops)

Data Staging (Flip-Flops)

...

Shared
Logic

(Pre-Existing)

Shared
Logic

(Pre-Existing)

Shared
Logic

(Pre-Existing)

Logic
Only for

Gaussians
(Enhanced

Logic)

Logic
Only for

Triangles
(Pre-

Existing)

(c)

L2 Cache & DRAM
Controller

Streaming
Multi-

Processor
(SM)

SM

SM

SM

Triangle
Rasterizer

Graphics Processing
Cluster (GPC)

Streaming
Multi-

Processor
(SM)

SM

SM

SM

Original GPU Arch GPU with GauRast

Untouch

Enhance

Proposed Enhanced Rasterizer (GauRast) Processing Element (PE)

PE: The Only Module
Needs Enhancement

PE PE PE

Fig. 7. Overview of the proposed hardware architecture: (a) Block diagram of the GPU’s Graphics Processing Cluster (GPC) with proposed enhancements.
(b) Detailed view of the enhanced rasterizer. (c) Internal structure of each PE, displaying dedicated and shared logic paths for Gaussian and triangle primitives.

to process Gaussian splatting, incorporating new logic paths
alongside the existing hardware inside of each Processing
Element (PE) as shown in Fig. 7(c), thus enabling seamless
switching between traditional triangle rendering and Gaussian
rasterization.

B. Proposed GauRast Hardware

The enhanced rasterizer consists of several key components,
as shown in Fig. 7(b):

Tile Buffers (A and B). These ping-pong buffers store
primitives (either Gaussians or triangles) and pixel data, en-
abling efficient data management during the rendering process.
By alternating between Tile Buffer A and Tile Buffer B,
GauRast minimizes memory latency and allows concurrent
data access for both Gaussian and triangle primitives.

PE Block. The core computation of the rasterization process
is handled by the PE Block, which contains multiple PEs. Each
PE is tasked with computations required for either Gaussian or
triangle primitives. The PE Block operates with a high degree
of parallelism, leveraging the intrinsic parallel structure of the
rendering task for acceleration.

Processing Element (PE). Each PE supports both Gaussian
and triangle rasterization and is equipped with a combination
of shared and dedicated logic units, as shown in Fig. 7(c).
The shared logic handles common operations, while dedicated
logic paths manage primitive-specific computations, such as
evaluating Gaussian probability distributions for 3DGS ren-
dering and performing depth division for triangle meshes. Im-
portantly, the existing triangle rasterizer includes both shared
and triangle-specific logic; thus, only Gaussian-specific logic
is added. Compared to a standard triangle rasterizer, our design
requires minimal additional hardware in each PE: two adders,
one multiplier, and one exponentiation unit for Gaussian
support, while reusing nine adders and nine multipliers from
the triangle rasterizer. The PE is the only module requiring
additional logic to facilitate 3DGS rendering.

The GauRast hardware optimizes performance and resource
utilization by reusing existing memory interfaces, such as Tile
Buffers and Controllers, and incorporates minimal additional
logic for 3DGS tasks. This design ensures that the enhanced

rasterizer remains compatible with the existing triangle ren-
dering pipeline, thus minimizing hardware complexity.

C. CUDA-Collaborative Scheduling
In triangle mesh rasterization, CUDA cores and the hard-

ware rasterizer collaborate to complete the rendering process.
Specifically, non-dominant tasks such as 3D-to-2D projection
and color querying are handled by the CUDA cores, while
the rasterization is managed by the hardware rasterizer [23].
Similarly, we adopt a hybrid scheduling strategy to enhance ef-
ficiency, assigning non-dominant operations like preprocessing
and sorting to the CUDA cores, while the enhanced rasterizer
handles the dominant rasterization workload which is the
primary bottleneck in 3DGS rendering.

V. EVALUATION

A. Evaluation Setup
Dataset & Baselines. To evaluate the processing speedup

and efficiency improvement achieved by our proposed
GauRast, we conducted experiments using the widely adopted
NeRF-360 dataset [3], a large-scale, real-world dataset using
both the original 3DGS algorithm [14] and its latest efficiency-
optimized variant [9]. For baselines, we consider both the
NVIDIA Jetson Orin NX SoC [22], a representative edge
GPU, and the only previously published accelerator proposal
for 3DGS, GScore [16].

Hardware Implementation. We implemented a prototype
of the enhanced rasterizer with 16 PEs using C++ and syn-
thesized the design into RTL using Siemens Catapult [34].
This RTL was then synthesized, placed, and routed using
Synopsys Fusion Compiler [36], targeting a 28 nm CMOS
technology node (typical corner, 0.9V, 1GHz clock), fol-
lowing the methodology described in [15]. Fig. 8 shows the
layout and area breakdown of the prototype. The typical
power consumption of the prototype is 1.7W as reported by
Synopsys PrimePower [35] based on post-layout netlists and
RTL simulation activities using randomly sampled test images
from the target dataset. To ensure correct implementation,
we validated the functional accuracy of both triangle and
Gaussian rasterization against the software implementations,
confirming that the RTL implementation’s rendering output

Layout of Our Enhanced Rasterizer

Tile
Buffers

1.57 mm

1.
55

 m
m

Controller & PE Block (16 PEs)

Controller
0.1% Tile Buffers

10.1%

Area Breakdown

16 PE - 99%

(a) (b)

79%
Area For Triangle

Rasterization
Enhanced Area
For Gaussian

21%

Breakdown of One PE

PE Block
89.2%

Fig. 8. Layout and area breakdown of the proposed enhanced rasterizer.

for both triangle rasterization [7] and 3DGS rendering [14]
matches perfectly without any loss in rendering quality.

Simulator Setup. To match the effective area of the triangle
rasterizer units in the baseline SoC [22], we scaled up our
GauRast design to include 15 instances of the 16-PE rasterizer
module, totaling 300 PEs. Consequently, the enhanced portion
of the hardware occupies approximately 0.2% of the total area
of the baseline Jetson Orin NX SoC [22]. We further developed
a cycle-accurate simulator for fast evaluation of this scaled-
up design. The simulator’s runtime and power outputs were
validated against the aforementioned RTL simulation results
to ensure accuracy and reliability.

B. Comparison Against the Baseline SoC
Fig. 9 illustrates the speedup and efficiency improvements

achieved by GauRast in Gaussian rasterization compared to
CUDA implementations across all scenes in the benchmark
dataset, for both the original algorithm [14] and its latest
efficiency-optimized version [9]. The results show that our
enhanced rasterizer achieves an average runtime reduction
of 23↓ and an average energy efficiency improvement of
24↓ for the original algorithm. For the efficiency-optimized
algorithm, it achieves a 20↓ runtime reduction and a 22↓
improvement in energy efficiency. Additionally, as shown
in Fig. 10, replacing CUDA-based rasterization with our
proposed enhanced rasterizer leads to substantial end-to-end
performance improvements. GauRast achieves a 6↓ reduction
in runtime for the original 3D Gaussian Splatting algorithm
and a 4↓ reduction for the optimized algorithm, yielding
average frame rates of 24 FPS and 46 FPS, respectively.

C. Comparison Against SOTA 3DGS Accelerator
SOTA work GSCore [16] on 3DGS rendering acceleration

achieved a 20↓ speedup on an edge SoC [29] for Gaussian
rasterization, utilizing a dedicated area of 3.95mm

2 with
FP16 precision. If we re-implement GauRast to perform
FP16 operations, our design achieves equivalent performance
to GSCore but requires only 0.16mm

2 area, achieving a
24.7↓ improvement in area efficiency. This efficiency gain
is attributed to the reuse of existing resources built in the
triangle rasterizer. These results highlight the effectiveness of
our enhancement approach in efficiently leveraging existing
GPU components.

R
un

tim
e

Sp
ee

du
p

(×
)

Original 3DGS Algorithm Efficiency-Optimized 3DGS Algorithm

En
er

gy
 E

ffi
ci

en
cy

Im

pr
ov

em
en

t
(×

)

Fig. 9. Speedup and energy efficiency improvements achieved by GauRast in
Gaussian rasterization, compared to CUDA implementations on the NVIDIA
Jetson Orin NX [22]. Evaluations were conducted using both the original
3DGS algorithm [14] and its latest efficiency-optimized version [9], across
all seven scenes of the large-scale, real-world NeRF-360 dataset [3].

w/o GauRast w/ GauRast

End-to-End FPS on the Original 3DGS Algorithm

End-to-End FPS on the Latest Efficiency-Optimized 3DGS Algorithm

FP
S

FP
S

Fig. 10. End-to-end FPS comparison between the baseline SoC [22] and
the baseline SoC enhanced with GauRast, using both the original 3DGS [14]
and its latest efficiency-optimized version [9]. The evaluation was conducted
across all seven scenes from the large-scale, real-world NeRF-360 dataset [3].

VI. CONCLUSION

This work presents GauRast, an enhancement for existing
GPU rasterizers designed to accelerate 3DGS rendering. Ex-
periment results show that our enhanced rasterizer achieves
a 6↓ speedup in end-to-end runtime for the original 3DGS
and a 4↓ speedup for the latest efficiency-optimized pipeline
on the NVIDIA Jetson Orin NX, with an area overhead of
only 0.2%, demonstrating a promising path forward to enable
real-time 3DGS rendering on edge devices.

VII. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable questions and constructive feedback. This
work is supported by an internship at NVIDIA Research, the
National Science Foundation (NSF) Computing and Commu-
nication Foundations (CCF) program (Award ID: 2312758),
and the Department of Health and Human Services Advanced
Research Projects Agency for Health (ARPA-H) under Award
Number AY1AX000003.

REFERENCES

[1] J. Abou-Chakra, K. Rana, F. Dayoub, and N. Suenderhauf, “Physi-
cally Embodied Gaussian Splatting: A Visually Learnt and Physically
Grounded 3D Representation for Robotics,” in 8th Annual Conference
on Robot Learning, 2024.

[2] H.-J. Ackermann, “Single chip hardware support for rasterization and
texture mapping,” Computers & Graphics, vol. 20, no. 4, pp. 503–514,
1996.

[3] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman,
“Mip-nerf 360: Unbounded anti-aliased neural radiance fields,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 5470–5479.

[4] M. Q. Blog, “Tackling telepresence: ’spatial’ delivers collaborative
computing on oculus quest,” https://www.meta.com/nl-nl/blog/quest/
tackling-telepresence-spatial-delivers-collaborative-computing-on-
oculus-quest, 2020.

[5] C.-H. Chen and C.-Y. Lee, “Reduce the memory bandwidth of 3D
graphics hardware with a novel rasterizer,” Journal of Circuits, Systems,
and Computers, vol. 11, no. 04, pp. 377–391, 2002.

[6] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated {End-to-End}
optimizing compiler for deep learning,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018, pp.
578–594.

[7] Dmitry V. Sokolov, “TinyRenderer,” 2022, https://github.com/ssloy/
tinyrenderer, accessed 2022-05-20.

[8] M. Elgamal, D. Carmean, E. Ansari, O. Zed, R. Peri, S. Manne,
U. Gupta, G.-Y. Wei, D. Brooks, G. Hills, and C.-J. Wu, “Carbon-
efficient design optimization for computing systems,” in Proceedings of
the 2nd Workshop on Sustainable Computer Systems, ser. HotCarbon
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3604930.3605712

[9] G. Fang and B. Wang, “Mini-splatting: Representing scenes with a
constrained number of gaussians,” in European Conference on Computer
Vision, 2024.

[10] Y. Feng, Z. Liu, J. Leng, M. Guo, and Y. Zhu, “Cicero: Addressing
Algorithmic and Architectural Bottlenecks in Neural Rendering by
Radiance Warping and Memory Optimizations,” in 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA),
2024, pp. 1293–1308.

[11] D. Graham-SmithMar, “What is the Metaverse?” https:
//www.techfinitive.com/explainers/what-is-the-metaverse/, (Accessed
on 11/02/2024).

[12] J. Hu, X. Chen, B. Feng, G. Li, L. Yang, H. Bao, G. Zhang, and
Z. Cui, “Cg-slam: Efficient dense rgb-d slam in a consistent uncertainty-
aware 3D gaussian field,” in European Conference on Computer Vision.
Springer, 2025, pp. 93–112.

[13] N. Huang, X. Wei, W. Zheng, P. An, M. Lu, W. Zhan, M. Tomizuka,
K. Keutzer, and S. Zhang, “S3Gaussian: Self-Supervised Street Gaus-
sians for Autonomous Driving,” arXiv preprint arXiv:2405.20323, 2024.

[14] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian
Splatting for Real-Time Radiance Field Rendering.” ACM Trans. Graph.,
vol. 42, no. 4, pp. 139–1, 2023.

[15] B. Khailany, E. Khmer, R. Venkatesan, J. Clemons, J. S. Emer, M. Fojtik,
A. Klinefelter, M. Pellauer, N. Pinckney, Y. S. Shao et al., “A modular
digital vlsi flow for high-productivity soc design,” in Proceedings of the
55th Annual Design Automation Conference, 2018, pp. 1–6.

[16] J. Lee, S. Lee, J. Lee, J. Park, and J. Sim, “GSCore: Efficient Radiance
Field Rendering via Architectural Support for 3D Gaussian Splatting,” in
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2024, pp. 497–511.

[17] S. Li, C. Li, W. Zhu, B. Yu, Y. Zhao, C. Wan, H. You, H. Shi, and
Y. Lin, “Instant-3D: Instant neural radiance field training towards on-
device ar/vr 3D reconstruction,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1–13.

[18] S. Ma, Y. Weng, T. Shao, and K. Zhou, “3D gaussian blendshapes for
head avatar animation,” in ACM SIGGRAPH 2024 Conference Papers,
2024, pp. 1–10.

[19] H. Matsuki, R. Murai, P. H. Kelly, and A. J. Davison, “Gaussian splatting
slam,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024, pp. 18 039–18 048.

[20] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–106,
2021.

[21] NVIDIA, “Isaac Sim - Robotics Simulation and Synthetic Data —
NVIDIA Developer,” https://developer.nvidia.com/isaac, (Accessed on
11/02/2024).

[22] ——, “Jetson Orin for Next-Gen Robotics — NVIDIA,”
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-orin/, (Accessed on 04/02/2024).

[23] ——, “Life of a triangle - NVIDIA’s logical pipeline,” https:
//developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline,
(Accessed on 11/02/2024).

[24] ——, “NVIDIA AMPERE GA102 GPU ARCHITECTURE,”
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-
architecture-whitepaper-v2.pdf, (Accessed on 11/02/2024).

[25] ——, “NVIDIA RTX A6000 For Powerful Visual Computing
— NVIDIA,” https://www.nvidia.com/en-us/design-visualization/rtx-
a6000/, (Accessed on 11/02/2024).

[26] ——, “NVIDIA TESLA V100 GPU ARCHITECTURE,”
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf, (Accessed on 11/02/2024).

[27] ——, “Recreate High-Fidelity Digital Twins with Neural Kernel
Surface Reconstruction,” https://developer.nvidia.com/blog/recreate-
high-fidelity-digital-twins-with-neural-kernel-surface-reconstruction/,
(Accessed on 11/02/2024).

[28] NVIDIA, “NVIDIA Nsight Systems,” 2024, https://
developer.nvidia.com/nsight-systems, accessed 2024-05-20.

[29] NVIDIA Inc., “Jeston Xavier NX Series Modules,” 2022,
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-xavier-nx/, accessed 2022-06-01.

[30] Z. Qi, J. Ma, J. Xu, Z. Zhou, L. Cheng, and G. Xiong, “GSPR: Multi-
modal Place Recognition Using 3D Gaussian Splatting for Autonomous
Driving,” arXiv preprint arXiv:2410.00299, 2024.

[31] Z. Qian, S. Wang, M. Mihajlovic, A. Geiger, and S. Tang, “3dgs-
avatar: Animatable avatars via deformable 3D gaussian splatting,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 5020–5030.

[32] W. Shen, G. Yang, A. Yu, J. Wong, L. P. Kaelbling, and P. Isola, “Dis-
tilled Feature Fields Enable Few-Shot Language-Guided Manipulation,”
in 7th Annual Conference on Robot Learning, 2023.

[33] P. Shirley, M. Ashikhmin, and S. Marschner, Fundamentals of Computer
Graphics. AK Peters/CRC Press, 2009.

[34] Siemens, “Catapult High-Level Synthesis and Verification,” https://
eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/, (Accessed
on 11/02/2024).

[35] synopsys, “PrimePower,” 2022, https://www.synopsys.com/
implementation-and-signoff/signoff/primepower.html, accessed 2022-
05-20.

[36] Synopsys, “Fusion Compiler: RTL-to-GDSII Design Solution,” 2024,
https://www.synopsys.com/implementation-and-signoff/physical-
implementation/fusion-compiler.html, accessed 2024-05-20.

[37] X. Wang, F. Guo, and M. Zhu, “A more efficient triangle rasterization
algorithm implemented in FPGA,” in 2012 International Conference on
Audio, Language and Image Processing. IEEE, 2012, pp. 1108–1113.

[38] World Labs, “Hello, World Labs,” 2024, https://www.worldlabs.ai/about,
accessed 2024-11-01.

[39] Z. Xie, J. Zhang, W. Li, F. Zhang, and L. Zhang, “S-NeRF: Neural Radi-
ance Fields for Street Views,” in The Eleventh International Conference
on Learning Representations, 2023.

[40] Y. Yuan, X. Li, Y. Huang, S. De Mello, K. Nagano, J. Kautz, and
U. Iqbal, “Gavatar: Animatable 3D gaussian avatars with implicit mesh
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024, pp. 896–905.

[41] Y. Zhang, R. Wang, Y. Huo, W. Hua, and H. Bao, “Powernet: Learning-
based real-time power-budget rendering,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 28, no. 10, pp. 3486–3498, 2022.

[42] X. Zhou, Z. Lin, X. Shan, Y. Wang, D. Sun, and M.-H. Yang, “Driv-
inggaussian: Composite gaussian splatting for surrounding dynamic au-
tonomous driving scenes,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 21 634–21 643.

https://www.meta.com/nl-nl/blog/quest/tackling-telepresence-spatial-delivers-collaborative-computing-on-oculus-quest
https://www.meta.com/nl-nl/blog/quest/tackling-telepresence-spatial-delivers-collaborative-computing-on-oculus-quest
https://www.meta.com/nl-nl/blog/quest/tackling-telepresence-spatial-delivers-collaborative-computing-on-oculus-quest
https://github.com/ssloy/tinyrenderer
https://github.com/ssloy/tinyrenderer
https://doi.org/10.1145/3604930.3605712
https://www.techfinitive.com/explainers/what-is-the-metaverse/
https://www.techfinitive.com/explainers/what-is-the-metaverse/
https://developer.nvidia.com/isaac
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://developer.nvidia.com/blog/recreate-high-fidelity-digital-twins-with-neural-kernel-surface-reconstruction/
https://developer.nvidia.com/blog/recreate-high-fidelity-digital-twins-with-neural-kernel-surface-reconstruction/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/implementation-and-signoff/physical-implementation/fusion-compiler.html
https://www.synopsys.com/implementation-and-signoff/physical-implementation/fusion-compiler.html
https://www.worldlabs.ai/about

	Introduction
	3DGS and Its Rendering Bottleneck
	3D Gaussian Splatting Algorithm
	Locating the Bottleneck of 3DGS Rendering

	Leveraging the GPU Rasterizer for 3DGS
	Opportunities in GPU's Rasterizer
	Contrasting Gaussian and Triangle Rasterization Methods
	Enhancing the Triangle Rasterizer for 3DGS

	Proposed GauRast Hardware
	Overview of the GPU architecture with GauRast
	Proposed GauRast Hardware
	CUDA-Collaborative Scheduling

	Evaluation
	Evaluation Setup
	Comparison Against the Baseline SoC
	Comparison Against SOTA 3DGS Accelerator

	Conclusion
	Acknowledgment
	References

