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ABSTRACT
Quantifying the embodied carbon emissions of computer systems
is a growing area of interest and several models to do so have al-
ready been established. However, these models are fundamentally
deterministic and do not account for the fact that hardware and
software characteristics of systems have inherent uncertainties –
spatial, temporal, process-driven, and system-driven – which can
cause extensive variation in carbon emission estimates. Our work
aims to investigate the e!ect of these uncertainties on embodied
carbon footprint estimates and system design choice trade-o!s. We
propose a novel probabilistic framework that generates distribution
based outputs of embodied carbon emissions. We demonstrate the
approach on modeling chip manufacturing carbon footprint by "rst
characterizing uncertainty in the energy-per-area, gas-per-area,
yield, and carbon intensity of fabrication parameters and observ-
ing how embodied carbon per area estimates change for various
technology process nodes. We then apply this distribution-based
framework to a case study focusing on laptop GPU chip choice,
comparing the NVIDIA RTX A3000 Mobile with the Intel Arc Pro
A60M from a sustainability perspective. Lastly, we investigate how
the probability of making the correct carbon optimal choice changes
when the carbon footprint is embodied-dominated or operational-
dominated.
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1 INTRODUCTION
The Information and Communication Technology (ICT) industry
currently accounts for 2.1-3.9% of global carbon emissions (mea-
sured in gCO2) [14]. This number is only projected to grow as global
computing demands scale over the next decade. A key priority is
to therefore collectively reduce these emissions; for example, the
ICT industry has committed to reducing greenhouse gas (GHG)
emissions by 45% by 2030 in accordance with the Paris Agreement
[18]. An essential step to achieving this target is to accurately quan-
tify emissions generated by computer systems. Hardware vendors
currently publish life cycle assessments (LCAs) for their devices
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Figure 1: Benchmarking total emissions of various technol-
ogy process nodes generated by two di!erent LCA databases
published in di!erent years, illustrating how updates to em-
bodied parameters change carbon footprint estimations (left),
adapted from [6]. Distribution of estimated storage embod-
ied factors for 94 SSDs (right), adapted from Figure 5 in [25].

[1, 2, 21, 22, 25]. These LCAs and recent studies have shown that
embodied emissions of ICT hardware — the emissions from man-
ufacturing, raw materials, transport, and installation — can be as
signi"cant as or more signi"cant than operational emissions —
emissions from energy consumed during operation [1, 2, 17, 20–
22, 32]. In addition to industry product environmental reports, re-
searchers are actively developing new methods to enable "ner-
grained, component-level carbon modeling estimates, producing
tools and models such as ACT [16], ECO-CHIP [24], GreenChip
[19], and 3D-Carbon [33]. These tools consider hardware parame-
ters such as process technology, silicon area, storage capacity, etc.
to provide hardware embodied carbon estimates.

However, a fundamental limitation of all of these models is that
they generate singular deterministic carbon footprints. These out-
puts contradict the fact that hardware and software characteristics
of systems have inherent uncertainties – spatial, temporal, process-
driven, and system-driven –which can cause extensive variations in
embodied and operational carbon emission estimates [9, 13, 25]. For
example, carbon-per-area estimates between the 2020 [5] and 2023
[6] iMec assessments, shown in Figure 1 (left), vary as much as 1.5x
for some process nodes. Similar variations exist for SSD embodied
carbon estimates — Tannu and Nair compiled 94 LCA reports from
Apple, Dell, HP, and Seagate and found that the reported embodied
carbon footprint per GB can vary from less than 0.1 kgCO2e to
more than 0.4 kgCO2e, as shown in Figure 1 (right) [25]. Unaware
of these data uncertainties, designers who use deterministic carbon
models for sustainable device design may believe they are meeting
their sustainability goals while actual results may deviate greatly
from expectations.
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Accounting for uncertainty during hardware design has already
been explored in the context of performance — past work by Cui
and Sherwood proposed the notion of architectural risk which
accounts for projection, process, and design uncertainties within a
system’s performance model [9]. In light of the large uncertainties
associated with embodied carbon estimates, a similar probabilistic
approach is needed to inform hardware designers of sustainability
risks. This work aims to investigate the bottom-up e!ect of such
uncertainties on embodied carbon footprint estimations to provide
device designers with a probabilistic carbonmodeling tool, allowing
them to make risk-aware, informed sustainable design decisions.
This analysis also has the potential to address complex problems
such as ensuring a company’s worst-case footprint remains below
a certain threshold. Our contributions are as follows:

(1) We propose a novel framework that generates distribution-
based outputs of embodied carbon emissions instead of singu-
lar values, allowing hardware designers to make risk-aware
sustainable design decisions.

(2) We characterize uncertainty of energy-per-area (EPA), gas-
per-area (GPA), yield, and carbon intensity of fabrication
(CI𝐿 𝑀𝑁 ) parameters to estimate embodied carbon per area
distributions for various technology process nodes, using
semiconductor manufacturing reports, power grid data, and
governmental industrial process reports.

(3) We apply the framework to a case study about optimal laptop
GPU chip choice, comparing the NVIDIA A3000 Mobile with
the Intel A60M from a sustainability perspective. We show
that there is a 27.08% chance that using a deterministic model
can lead to choosing the wrong device when optimizing for
embodied carbon.We also demonstrate how the optimal GPU
choice, indicated by the probability of making the correct
carbon-optimal choice, changes when the carbon footprint
is embodied-dominated or operational-dominated.

2 MODELING APPROACH
2.1 A Probabilistic Embodied Carbon Model
To formalize a probabilistic embodied carbon model, we transform
an existing deterministic model to a distribution-based one. Speci"-
cally, let us take ACT as an example [16]. The ACT model is de"ned
as a combination of the operational and embodied carbon footprints
of a given computer system. The embodied carbon is discounted by
the fraction of application run-time (T) with respect to the overall
system lifetime (LT):

CF = OPCF +
T
LT

ECF (1)

We are interested in the embodied portion of this model, which
is categorized on a per-component level (E𝑂 ) for each of the applica-
tion processors (SoC), memory (DRAM) and storage (SSD and HDD)
elements. In this work, we characterize the uncertainty associated
with several of the embodied SoC parameters:

ESoC = Area → CPA =
Area
Y

→ (CIfab → EPA + GPA +MPA) (2)

The embodied footprint is a combination of various semiconduc-
tor fab parameters including the fab yield (0 ↑ Y ↑ 1), the energy

consumed per unit area manufactured (EPA), emissions per unit
area from gasses used during hardware manufacturing (GPA), emis-
sions from procuring raw materials for fab manufacturing (MPA),
and the carbon intensity of energy used during fabrication (CI𝐿 𝑀𝑁 ).
To make this model into a probabilistic one, we transform several
independent parameters into distributions as shown in Figure 2.
Then, we leverage an outer sum or outer product operation if per-
forming operations between two parameter distributions. Output
matrices are then #attened and visualized as a histogram.

2.2 Model Assumptions and Distribution
Construction Techniques

This work focuses on characterizing uncertainty in several of the
embodied parameters of the ACT framework. Distributions for
these parameterswere generated either by leveraging kernel density
estimation or by using a prior implied by the style of uncertainty
chosen for the parameter’s data. Kernel density estimation (KDE)
is a technique used to estimate the probability density function
of a random variable by applying a Gaussian kernel weighting
technique to data. It is used when the behavior of a sparse data
sample is extrapolated to resample data to a larger sample size
[31]. The second distribution construction technique we used was
inferring a prior based on the style of uncertainty chosen for a
parameter’s component data. For example, 95% con"dence intervals
of relative errors on emission factors indicate that the data follows a
normal distribution with a standard deviation that can be obtained
using the relative errors.

We augment the original ACT framework [16] by modeling EPA,
GPA, yield, and CI𝐿 𝑀𝑁 probabilistically and assume "xed values
for MPA. The lack of available data prevents us from generating a
probability distribution for MPA, but the model is parametric and
can include MPA as a source of uncertainty should data become
available or by using synthetic user-de"ned distributions. Moreover,
while the number of metal layers a!ects EPA and GPA and can
thus be a source of uncertainty, we assume that they are "xed per
process node as that is the assumption made by our source on EPA
and GPA data [6]; we do not have EPA and GPA data at a layer
granularity.

2.3 Parameter-Level Uncertainty
Characterization

2.3.1 EPA Distribution. EPA represents the energy consumed per
unit area manufactured and is represented by fabrication energy
numbers. Uncertainty in these values arises from temporal shifts
in process energy e$ciencies. To construct EPA distributions, we
leveraged TSMC’s annual improvement of process energy e$ciency
data for several technology process nodes [29]. We developed two
di!erent iterations of distributions for EPA values: one based on
EPA values from the original ACT framework (ranging from 0.8 -
3.5 kWh per cm2) and the other using updated fabrication electricity
consumption data published by imec (ranging from 1.56 - 3.77 kWh
per cm2) [6, 16]. Distributions were constructed by normalizing
each process node’s energy e$ciency numbers by the "rst annual
value in its respective series and then dividing the corresponding
EPA values by the normalized yearly improvements on the energy
e$ciency. A key choice we made was to assume that the discrete
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Figure 2: Diagram of our proposed framework that generates distribution-based outputs of embodied carbon emissions. The
model’s main parameters are hardware or manufacturing characteristics that are either single-value inputs, shown in grey,
or distribution-based inputs, shown in purple. To characterize these parameters and their associated uncertainties, we use
published fab characterization, hardware design attributes, power grid data, and industry environmental reports. These data
and uncertainty sources are highlighted in orange. The output embodied carbon footprint distribution can be leveraged for
probabilistic analysis of system design choices.

Figure 3: Kernel density estimate (KDE) of temporally dis-
tributed EPA values derived from TSMC’s annual improve-
ment of process node energy e"ciency data [29] (left) and
an example of a resampled distribution of EPA data using
the KDE for a 10nm process node (right).

EPA values were the ones corresponding to the energy e$ciency
at time of mass production. Modifying how this is instantiated can
impact the numbers within the EPA distributions. These distribu-
tions were turned into histograms and their density functions were
estimated using KDE. Their kernel density estimates were used to
resample to larger distribution sizes as shown in Figure 3.

2.3.2 GPA Distribution. GPA represents the greenhouse gas emis-
sions produced by fabrication facilities in semiconductor manu-
facturing (kgCO2 per wafer). Uncertainty in these values is due to
relative errors in process gas values during the fabrication process.
To develop GPA distributions, we used 95% con"dence intervals
of relative errors on process gas emission factors published by the
Intergovernmental Panel on Climate Change (IPCC) [7, 13]. This
style of uncertainty indicates that the GPA data follows a normal
distribution. Another layer of uncertainty in the GPA values also
arises due to temporal change in gas composition during fabrication.

Figure 4: GPA distributions for a 10nm process node devel-
oped using two combinations of data sources. The green dis-
tribution uses 2006 iMec gas composition data in conjunction
with 2020 IPCC process gas uncertainties [5, 13]. The red
distribution uses 2023 iMec gas composition data in conjunc-
tion with 2019 IPCC process gas uncertainties [6, 7]. These
distributions illustrate the e!ect of changing process-level
uncertainties on the spread of GPA values.

We address both process-level and temporal uncertainties by de-
veloping two iterations of GPA distributions, considering changes
in error values published by IPCC as well as updates made to gas
compositions used in fabrication processes [5, 6].

The "rst iteration utilizes emission errors and process gas com-
positions from earlier dates (2006 and 2020) [5, 13]. Normal distri-
butions for each composite gas were generated using Tier 2a errors
for both 95% and 99% abatement processes. The second iteration
uses updated errors and gas compositions (2019 and 2023) [6, 7],
utilizing Tier 2c abatement errors. For gases lacking speci"ed errors,
deterministic values were sampled multiple times. To generate a
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Figure 5: Yield values for the 10nm process node for two
di!erent chips (Snapdragon 845 and NVIDIA GA102) derived
fromTSMCdefect density data [10] (left) and a kernel density
estimate example for the 10nm process node in a Snapdragon
845 (right).

composite distribution, the distribution of each composite gas was
randomly sampled (with replacement) and added to an array. This
approach ensures that each gas in the composite distribution has an
independent chance of being selected for inclusion in each sample.
Figure 4 compares these two iterations of GPA distributions, illus-
trating how process-level and temporal uncertainties a!ect GPA
distribution spread.

2.3.3 Yield Distribution. Yield represents the ratio of defect-free
dies on a wafer relative to the total number of dies on the wafer.
The uncertainty in this value arises from temporal shifts in defect
density of fabrication facilities. We leverage TSMC’s defect density
data over time (defects/cm2) for 3 di!erent process nodes [10] and
the Poisson yield model to generate corresponding yield numbers
over time [12]. Yield data for a 10nm process node for two chips, the
Snapdragon 845 mobile SoC and NVIDIA GA102 GPU, are shown in
Figure 5 (left) [15, 28]. Histograms for yield data were then created
and KDE was used to generate the probability density function of
this data for resampling. Figure 5 illustrates this process for the
Snapdragon 845 mobile SoC.

2.3.4 Carbon Intensity of Fabrication. CI𝐿 𝑀𝑁 represents the energy
consumed by manufacturing equivalent in carbon emissions. This
value is dependent on a fab’s energy source (e.g. renewables vs.
non-renewables) or a fab’s geographical location. The uncertainty
in carbon intensity values arises from temporal shifts in carbon in-
tensity values throughout the year due to seasonal energy demands.
In the instance where we are certain about a chip’s manufacturing
location, each fab region will have its own distribution generated us-
ing historical CI𝐿 𝑀𝑁 trends. Speci"cally, we leverage three years of
Electricity Maps’ historical carbon intensity data [3, 4] that changes
over time and construct histograms using these values as shown in
Figure 6 (left).

In the case where we are uncertain of a chip’s manufacturing
location, we can de"ne the choice of fabrication facility region as
a discrete random variable with probabilities proportional to total
production capacity for relevant process nodes [8]. For instance, in
the case of a 10nm process node, the global production capacity is
distributed between South Korea (31% as of 2022) and Taiwan (69%
as of 2022) [8]. These proportions are assumed to represent the
likelihood that each geographical location is selected for fabrica-
tion. A mixture distribution for this process node was constructed

Figure 6: Histograms of monthly carbon intensity data from
Korea and Taiwan between 2021-2023 with their individual
kernel density estimates (KDEs) [3, 4] (left) and a weighted
combination of their KDEs that form their composite mix-
ture probability distribution function (right).

by sampling from each region. For this example, we assumed that
the 10nm process node is equivalent to <10nm nodes in terms of
global production capacity. Kernel density estimates (KDEs) for
each region were constructed using carbon intensity data from
2021 to 2023. Lastly, a composite mixture distribution for a 10nm
process node was generated by randomly sampling from each re-
gion’s KDE, with the likelihood of choosing a sample from each
KDE weighted by the global production capacity of that region.
The composite mixture distribution is constructed by aggregating
these weighted samples. Figure 6 (right) illustrates this composite
distribution construction process.

2.4 Embodied Carbon Distributions
Now that we have formalized probability distributions for several
embodied parameters, let us examine the outputs of our framework.
We select two chips, Snapdragon 845 and NVIDIA GA102, of dif-
ferent sizes and generate the E𝑃𝑄𝑅 distributions for them, focusing
on their 7nm and 10nm process node emissions. We present the
distribution-based carbon footprint outputs in Figure 7. We can
make several observations from this data. First, the GA102 dis-
tributions exhibit higher variance than the Snapdragon 845 ones,
indicating that chip area is proportional to distribution variance.
This can be attributed to the fact that the embodied distributions are
directly scaled by area. Second, smaller technology process nodes
yield higher embodied carbon footprints, likely because smaller
nodes require denser integration of components on the chip, leading
to increased energy consumption during manufacturing. Addition-
ally, advanced materials and fabrication techniques in smaller nodes
may contribute to greater environmental impact throughout pro-
duction (which manifests in higher EPA and GPA values). Overall,
we conclude that embodied carbon footprint distributions exhibit
larger variance in uncertainty for larger chip areas and smaller
process nodes.

3 CASE STUDY
Now that we have established this distribution-based framework,
we apply it to a system design choice case study. In our case study
scenario, we are building a sustainable notebook computer and
choosing from two notebook GPUs of the same performance class:
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Figure 7: Embodied carbon footprint distributions for 7nm
and 10nm process nodes for two di!erent chips: Snapdragon
845 and NVIDIA GA102. These distributions show that larger
chip areas and smaller process nodes have greater variance
in their embodied carbon footprint estimates.

the Intel A60M and the NVIDIA A3000 Mobile. The two GPUs
have di!erent chip areas and are made with di!erent processes:
the Intel A60M is 269 mm2 using TSMC’s N6 process where as the
NVIDIA A3000 Mobile is 392 mm2 using Samsung’s 8N process
[26, 27]. TSMC’s N6 process is part of its 7nm class of processes
and we use public 7nm manufacturing data for it [30]; Samsung’s
8N process is part of its 10nm class of processes and we use public
10nm manufacturing data for it [23]. We assume the probability
distributions of the Intel A60M and NVIDIA A3000 Mobile are
independent as they are from di!erent vendors, built with di!erent
processes at di!erent fabs, and released in di!erent years (2021 and
2023).

From a power-e$ciency standpoint, NVIDIA A3000 Mobile is
more e$cient, with a thermal design power (TDP) consumption of
70 W as compared to the Intel A60M’s 95 W TDP [26, 27]. However,
the Intel A60M is more optimal in terms of area. We generate the
E𝑃𝑄𝑅 distributions for both hardware components as depicted in
Figure 8 by "rst generating a set of carbon-per-area (CPA) samples
per our methods and data in Section 2.3.

Initially, our instinct is to use the central tendencies (e.g. mean,
median, mode) of these distributions to inform our decision-making
process. Based on this approach, we observe that the embodied
carbon footprint of the Intel A60M’s distribution is lower than that
of the NVIDIAA3000Mobile, suggesting that the Intel A60Mmay be
the better choice from a sustainability standpoint. However, there is
signi"cant overlap in the distributions of the NVIDIA A3000 Mobile
and the Intel A60M, suggesting there is a substantial possibility
than the Intel A60M carbon footprint can actually be higher. With
the distributions generated by our method, as shown in Figure 8,
we calculate there to be a 27.08% chance that the embodied carbon
footprint of the Intel A60M is actually higher than that of NVIDIA
A3000 Mobile.

Embodied carbon alone does not represent the entirety of a
device’s carbon footprint; we must also consider operational carbon
emissions which are driven by operational power. We leverage the

Normalized Carbon Footprint (NCF) metric "rst proposed as part
of the FOCAL framework [11]. This metric can be used to compare
the carbon footprint of two di!erent designs and is a weighted
sum of the normalized embodied and operational footprint of the
two designs X and Y. The weight, de"ned by the parameter 𝐿 ,
is determined by an anticipated use case (whether a workload is
foreseen as more operational or embodied intensive).

NCF!,𝑆 (X, Y) = 𝐿
EX
EY

+ (1 ↓ 𝐿) 𝑀𝑇
𝑀𝑈

(3)

where the normalized embodied footprint is computed as the
ratio of the embodied distributions, E𝑇 and E𝑈 , and the normalized
operational footprint is the ratio of the power consumption, P𝑇
and P𝑈 , respectively. An NCF value <1 implies that X has a lower
footprint than Y whereas an NCF value >1 implies that X has a
higher footprint than Y. We want to ensure that we are making the
correct decision for a given X and Y con"guration; this happens
when we choose X with an NCF < 1. In cases where X and Y are not
perfect substitutes and we would prefer X for another reason such
as cost or performance, we can de"ne a threshold NCF value higher
than 1, NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 , to represent the sustainability trade-o! we
are willing to make. On the other hand, if X is less preferred than Y
given the same carbon footprint, we can set NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 lower
than 1 to represent the amount of sustainability gains required
to shift the preference in favor of X. This allows us to de"ne the
probability of choosing the correct carbon-optimal device as the
area under an NCF distribution curve that falls below NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 .

In the default scenario where X and Y are perfect substitutes
otherwise, the NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 is 1. The carbon-optimal choice varies
across operational intensive and embodied intensive regimes which
are characterized by varying 𝐿 values — when 𝐿 is large, the em-
bodied carbon footprint dominates overall carbon footprint, while
operational carbon footprint dominates when alpha is small. For
example, when a CPU is powered o! or idle for most of its use
life, then its lifetime operational carbon footprint is relatively small
compared to its embodied carbon footprint. This case is in the
embodied-dominant regime and modeled with a large 𝐿 . On the
other end, a CPU that consistently runs at high utilization levels
will have its lifetime carbon emissions dominated by operational
carbon emissions and is modeled by a small 𝐿 .

To investigate this, we sweep 100 𝐿 values to generate 𝑀 (𝑁𝑂𝑃 <
1)values for two con"gurations: (X=NVIDIA A3000 Mobile, Y=Intel
A60M) and the inverse (X=Intel A60M, Y=NVIDIA A3000 Mobile),
denoted as con"guration 1 and 2 respectively. These results are pre-
sented in Figure 9.We de"ne high certainty decisionmaking regions
as ones where 𝑀 (𝑁𝑂𝑃 < 1)> 90% or 𝑀 (𝑁𝑂𝑃 < 1)< 10%. When
𝑀 (𝑁𝑂𝑃 < 1)> 90% for a given X, Y con"guration, we pick X as the
optimal designwith high certainty. In contrast, when 𝑀 (𝑁𝑂𝑃 < 1)<
10%, we choose Y as the optimal design with high certainty. Our
data reveals that for an NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 of 1, the NVIDIA A3000
Mobile is the optimal choice for operational-intensive workloads
(0 ↑ 𝐿 ↑ 0.5) with high certainty. The NVIDIA A3000 Mobile is also
the optimal choice with relative certainty when (0.5 < 𝐿 ↑ 0.8),
whereas the Intel A60M is the optimal choice with relative cer-
tainty for the highly embodied-dominant regime (0.8 < 𝐿 ↑ 1).
(0.5 ↑ 𝐿 ↑ 1) de"ne the region of where we have a <90% chance
of choosing correctly. Through this analysis, we demonstrate that
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Figure 8: Embodied carbon distributions of two laptop GPU
chips: the NVIDIA A3000 Mobile and the Intel A60M. While
the distribution peaks indicate that the Intel A60M incurs less
embodied carbon, there is a region of uncertainty in which
both distributions intersect, leading to a 27.08% chance that
the Intel A60M actually incurs more carbon than the NVIDIA
A3000 Mobile.

Figure 9: Probability of choosing correctly (P(NCF <
NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 )) when choosing between the NVIDIA A3000
Mobile and the Intel A60M across embodied and operational
dominant regimes. We identify distinct regions where the
optimal decision can either be made with high or relative
certainty. The relative-certainty regions imply there is a sig-
ni#cant probability that we will select a non-optimal GPU.

an optimal design choice from a sustainability perspective cannot
be made based on a single deterministic carbon footprint. Instead,
workload characteristics (embodied-intensive versus operational
intensive) and hardware parameter uncertainty distributions must
also be considered.

We can further extend this analysis by varying the desired
NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 , or the factor of improvement we want X to exhibit
with respect to Y. We vary NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 between 0.7 - 1.5 and plot
the P(NCF < NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 ) values as shown in Figure 10. These

Figure 10: Probability of choosing correctly when choosing
between the NVIDIA A3000 Mobile and the Intel A60M for
various NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 values (left) and for a #xed embodied-
dominant regime where we show high-certainty decision
making regions de#ned by the choice of NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 (right).

curves demonstrate that as the NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 increases, the range of
𝐿 values for which X, the NVIDIA A3000 Mobile in this case, is the
optimal solution widens, indicating that the choice of this threshold
value can also impact which design choice is optimal for a given
workload. We "x 𝐿 = 0.8, which is a scenario where the embodied
footprint dominates, and identify NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 values for which
we can make a optimal decision with high certainty. In Figure 10,
we use con"guration 1 and identify high-certainty decision mak-
ing regions as being where one of the choices has a >90% chance
of being carbon-optimal, i.e. P(NCF < NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 ) > 90% or <
10%. We "nd that the NVIDIA A3000 Mobile is optimal with high
certainty at 𝐿 = 0.8 for NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 > 1.16 and the Intel A60M is
optimal with high certainty at the same 𝐿 for NCF𝑉𝑊𝑂𝑋𝑌𝑊𝑄𝑍𝑎 < 0.87.

4 SUMMARY AND FUTURE
This work, as far as we know, is the "rst attempt at integrating un-
certainty into embodied carbon footprint estimations for computer
systems. We proposed a novel probabilistic framework to generate
distribution-based outputs of embodied carbon. Next, we character-
ized the temporal and process-driven uncertainties present in EPA,
GPA, yield, and CI𝐿 𝑀𝑁 parameters. We then applied our distribution-
based framework to a system design choice case study and demon-
strated that our probabilistic carbon footprint estimates can help
designers make more risk-aware sustainable design choices. Future
avenues of research include mapping carbon footprint probabilities
to a cost function (e.g., "nancial cost, carbon cost) to incentivize
more robust con"guration practices. In the long term, we also aim
to integrate this style of probabilistic analysis into the hardware
design loop itself to guide sustainable hardware design.
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