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MULTI-ROBOT SYSTEMS IN ADVERSARIAL SETTINGS: ADVERSARY

DETECTION, RESILIENT COORDINATION AND COOPERATION

ABSTRACT

Networked autonomous mobile robots, such as unmanned aerial and ground vehicles,

represent a burgeoning class of cyber-physical systems (CPS) within critical infras-

tructure sectors. This dissertation addresses the imperative to ensure the safe and

secure cooperation of these systems in the face of adversarial challenges. The ad-

versaries are a class of worst-case scenario vulnerabilities in wireless communication

networks of multi-robot systems and their perceptual sensing modalities, such as cam-

eras. Such vulnerability can be perceived as the dynamical blind spots for multi-robot

systems in the sense that adversarial attacks can be crafted based on the dynamics

of the system so as to compromise, severely and shortly, not only the system’s oper-

ation but also information confidentiality, integrity, and availability, while remaining

stealthy (unnoticeable in the monitoring data) until a critical failure.

In the first part of this dissertation, we propose three principled algorithmic

frameworks that allow for the detection and mitigation of adversarial attacks on

multi-robot coordination. Our results extend the resilient consensus (coordination) of

multi-agent (robot) systems to the case of time-varying communication topology with

intermittent connections and provide theoretical stability and performance analysis

in the continuous-time domain. This is addressed by, first, characterizing control-

theoretic and graph-theoretic conditions under which specific classes of adversarial

attacks on the communication networks exist, second, by developing the theoretical

conditions that determine the degree to which a multi-robot system maintains a cer-

tain level of communication-related performance in a cooperative task while enduring
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a specific number of adversarial/compromised robots in a given network, and third, by

developing decentralized and distributed attack detection frameworks that allow for

resilient coordination of the remaining uncompromised robots. We validate our the-

oretical findings and illustrate their performance through various tests in numerical

simulations, high-fidelity simulations, and real-world experiments.

In the second part of this dissertation, we consider multi-robot (quadrotor)

coordination with adversarial perception. We demonstrate that a class of adver-

sarial image attacks on the robots’ perception modules cause categorically similar

effects, including misclassification and mislocalization, which can be formulated as

sporadic (intermittent) and spurious data measurements. We propose a framework

that allows for state estimation and perception-based relative localization in the pres-

ence of intermittent and spurious measurements caused by adversarial image attacks

on the perception module. Additionally, we present two open-source vision-enabled

multi-robot (quadrotor) platforms, together with developed software packages. We

demonstrate the capability of these platforms and the resilience of our framework

through experiments on perception-based multi-robot coordination under adversarial

image attacks targeting their learned perception modules.

By providing principled algorithms and open-source software, this disserta-

tion contributes to advancing the resilience and security of autonomous multi-robot

systems in safety- and time-critical applications, with potential implications for en-

hancing operational safety across various sectors.
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5.1 An example that illustrates how intermittent communication can dras-

tically change the graph/network’s algebraic connectivity λ2(·) and

thus its robustness. Let graph Gσ(t) = (V , Eσ(t)) such that |V| = N +1,

with V = V1 ∪ V2 and |V2| = N , where N ≥ 3, and that the subgraph

Ḡσ(t) = (V \ V1, Ēσ(t)) induced by removing the set V1 and its inci-

dent edges is a complete graph K|V2| = Ḡσ(t). Note that the singleton

i ∈ V1 can be connected to any pair of disjoint nodes j ̸= k ∈ V2, and

thus S = {j, k} ⊂ V and the bidirectional edge set Ecut = {(i, j), (i, k)}

make, respectively, the minimum vertex cutset and edge cutset of Gσ(t).

Accordingly, one can verify that λ2(Gσ(t)) ≤ κ(Gσ(t)) = e(Gσ(t)) =

δmin(Gσ(t)) = 2, where e(·) and δmin(·) are, resp., the edge connectivity

and minimum node-degree. Also, if ∃ t ∈ R≥0 s.t Gσ(t) = (V , E \ Ecut)

because of an intermittent connection of the edges Ecut, we have graph

disconnection with λ2(Gσ(t) = (V , E \ Ecut)) = 0. Yet, the induced sub-

graph K|V2| holds even a higher algebraic connectivity since λ2(K|V2|) =

|V2| = N , and κ(K|V2|) = e(K|V2|) = δmin(K|V2|) = N−1. This example

has been constructed based on the discussions in [48, Ch. 13.5]. 84
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5.2 Communication network Gσ(t) in (a) and its algebraic connectivity in

the integral sense of (5.2.1) in (b) for Section 5.5-Example 1. (a) The

network switches between two modes every 0.5 sec whose union forms

a static overlay network Gµ
T with λ2(L) = 2.1049 that is 3-robust [67,

Fig. 4], ensuring (3, 1)-robustness, and (3, 1)-vertex-connectivity (see

Section 5.2 and (5.2.7)). per Section 5.1.3, the network Gσ(t) is subject

to a 2-total and 2-local set of malicious agents A = {5, 6}. It is also

subject to a distributed DoS whose link dropouts follow a binomial dis-

tribution with 100 trials and a success probability of 0.3 during 10 sec.

(b) The illustration of positive algebraic connectivity λ2(·) in the in-

tegral sense (5.2.1) for for the network Gσ(t) and its induced network

Ḡσ(t) in (5.1.9) despite their intermittent connections (See also remark

5.2.2). The results in (b) are from resilient consensus in Fig. 5.3-(a)

through Algorithm 4. The decrements in λ2(·) during t ∈ [0, 5.66] are

due to the permanent link disconnections that occurred in the attack

detection and isolation procedure, see Fig. 5.3-(a). 97
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ative agents detected and disconnected from their respective neighbor-
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mial distribution, with 600 trials and a success probability of 0.4 during
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ing the preferential-attachment model in [67, Thm. 5] based on the

topology in [67, Fig. 6]. Despite intermittent connections, the network

Gσ(t) is (2, 1)-robust and (3, 1)-vertex-connected (see Definitions 5.2.2

and 5.2.3, and Lemma 5.2.3). (2, 1)-robustness, then, ensures resilience

to any 1-local set A as it follows from Lemma 5.3.2 and Theorem 5.3.5.
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Gσ(t) in (a) and in the presence of the 1-local malicious set A. 100
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RWB =: R and RBC =: R̄ which yields RCW = RCBRBW = R̄⊤R⊤. Finally,

without loss of generality, we assume that the body frame {Bi} and

the camera frame {C} have no offset and differ only in orientation. 106
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integrates (Visual-Inertial Odometry) VIO data and detected objects

from the object detection module to provide state estimation for the

ego-robot, along with capabilities for relative localization and object

tracking. The blue box shows the consensus-based coordination al-

gorithm and the adversary detection algorithm developed in Chapter

5. These two modules allow for resilient coordination in the presence

of adversarial attacks on images or transmitted information over the

communication network. 107
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tection. 128
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Chapter 1

Introduction

Cyber-physical systems (CPS), such as transportation networks, smart power grids,

autonomous vehicles, and mobile sensor networks, are considered indispensable to

the critical infrastructure of developed countries (see Fig. 1.1). The cooperation of a

network of autonomous mobile robots, such as unmanned aerial or ground vehicles,

is of paramount importance since network-enabled cooperation provides distributed

coverage, reconfigurability, and mobility in a wide range of applications such as smart

transportation, search and rescue missions, surveillance, wildfire monitoring, and de-

livery. Nonetheless, the deployment of such systems in critical infrastructures has

been hampered by various challenges including assurance of safety and security. The

safety and security challenges arise, in part, from the vulnerability of wireless commu-

nication networks as well as perceptual sensing modalities such as cameras on which

networked autonomous mobile robots rely for information exchange, decision-making,

and operation. It has been shown that the foregoing vulnerabilities can be exploited in

an adversarial manner to design attacks on the transmitted or measured information

so as to compromise, severely and shortly, the network-level system stability while

remaining stealthy (unnoticeable in the monitoring data) until a critical breakdown.

This dissertation proposes solutions to bring about resilience in multi-robot

systems cooperating in adversarial settings where there may exist cyberattacks on

information exchanged over wireless communication networks as well as adversarial

disruptions in perceptual sensing modalities such as cameras.
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(a) Proteus, © 2022, Amazon (b) Vertical farming, © 2021, AeroFarms &
Nokia Bell Labs

(c) Digital firework © 2018, Intel (d) Semi-autonomous platooning ©2018, Scania

Figure 1.1: Examples of deployment of autonomous and semi-autonomous multi-
agent systems in various infrastructures sectors underscores the importance of safe
and reliable operation. a) Proteus is Amazon’s first fully autonomous warehouse
robot. b) Autonomous monitoring of the vertical farming. c) small drones formation
for digital fireworks. d) vehicle platooning in intelligent transportation systems.

1.1 Security and Resilience of Cyber-Physical System

The grand challenges of ensuring security and resilience for cyber-physical systems

(CPS) have motivated the study and characterization of possible adversarial attacks

against these complex systems. The seminal position paper in [18] initially put forth

an interpretation of the security of CPS based on the traditional security goals, known

as the CIA triad, allowing for the study and characterization of cyber threats (adver-

sarial attacks). Such security specifications are defined as follows:

• Integrity : the trustworthiness of transmitted data.
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Figure 1.2: Cyber-physical attack space - Reproduced from [131, 96]. This disserta-
tion addresses the adversarial attacks highlighted in red in the context of coordination
of multi-agent (robot) systems.

• Availability : the availability of resources (e.g., information exchanged over com-

munication networks) for CPS.

• Confidentiality (privacy): the ability to prevent any disclosure of system infor-

mation to unauthorized entities. Lack of confidentiality is associated with the

breach of privacy and eavesdropping attacks.

Having specified the foregoing security goals, adversarial attacks on CPS can be clas-

sified as deception attacks, targeting the integrity1/trustworthiness of transmitted

data, and denial-of-service (DoS) attacks, targeting the data availability upon de-

mand [18]. There exists a vast literature on the study and characterization of CPS’s

vulnerability to various attacks and defense mechanisms against them [131, 77, 38].

Particularly for networked control systems, as a class of CPS, [131, 96] proposed a

general framework to characterize adversarial attacks based on their level of disrup-

tion and the adversary’s resources and knowledge of the targeted system (see Fig.

1The deception attacks are also referred to as integrity attacks [147].
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1.2). Deception attacks such as Zero-dynamics Attacks (ZDA) and covert attacks are

known as stealthy attacks with the highest level of disruption that require a priori full

knowledge of the targeted system whereas DoS attacks have a relatively lower level

of disruption with no need for a priori knowledge of the system. These adversarial

attacks have been also studied in the context of multi-agent systems that are tasked

with cooperation (e.g., formation, flocking, and swarming [113, 116, 144]) and coor-

dination (e.g., consensus on a quantity of interest [98, 67, 78, 110, 144, 111, 14, 86]).

In terms of resilience, which was initially defined as the survivability of CPS

[17], the property of interest is the system capability of graceful degradation in its op-

erational goals (e.g., stability, safety, performance) when under attack. The resilience

of multi-robot systems, however, is inherently contingent and poses difficulties in its

quantification [102]. Therefore, resilience to specific classes of adversarial attacks is

rigorously studied [38]. Examples of specific resilience problems related to the con-

text of this dissertation are the resilience of network (graph) connectivity to node

and link failures [146, 71], attack-resilient state estimation [94], resilient consensus

[97, 67, 36, 37, 110, 144].

In this dissertation, we consider a class of deception and DoS attacks on multi-

robot systems in consensus and consensus-based formation settings (cf. Fig. 1.2).

1.2 Network-enabled Coordination and Cooperation of Mutli-Robot Sys-

tems

Network-enabled coordination and cooperation of mobile autonomous robots are cen-

tral to many safety-critical and time-critical applications such as search and rescue

missions, surveillance and monitoring, platooning of autonomous Vehicles, motion

and time coordination [108, 79, 32, 103, 55, 144]. These complex tasks often entail
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consensus over a quantity of interest. For instance, coordination can be obtained by

consensus over certain quantities such as time in time-coordination or inter-vehicle

distances in formation control [92, 32, 103, 107, 109]. Also, a team of robots can

achieve and maintain formation by exchanging their spatial information (e.g., posi-

tion and velocity states) and in different settings such as leader-follower, leaderless

consensus-based, and virtual structure approaches [91, 106]. Therefore, a reliable

communication network for information exchange among robots is an integral part of

the secure and safe operation of multi-robot systems.

However, the mobility and limited communication capabilities of mobile au-

tonomous robots (e.g., small Unmanned Aerial Vehicles) give rise to an ad hoc and

intermittent network connectivity of robots in distributed settings, posing practical

and theoretical challenges to the safety-critical applications of such systems [55, 144].

The network connectivity challenge has motivated various studies of the connectivity

maintenance in multi-robot cooperation subject to ad hoc or time-varying communi-

cation [79, 33, 53, 59, 39, 43].

This dissertation focuses on the consensus and consensus-based formation con-

trol of a team of robots with time-varying communication topology subject to inter-

mittent connections.

1.3 Detection and Mitigation of Adversarial Attacks

As discussed in Section 1.1, the reliance on wireless communication networks renders

the networked systems vulnerable to a large class of adversarial attacks, possibly

introduced by a group of malicious (compromised) agents in the network, disrupting

normal cooperation.

Detection of adversarial attacks, particularly deception attacks that are intro-
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duced to the networked systems through a group of malicious or compromised agents

(e.g., mobile robots), is inherently a challenging problem. First, a priori knowl-

edge of the system dynamics can be exploited to design sophisticated deception at-

tacks that are stealthy to the common anomaly detectors [131]. Examples of such

attacks in decentralized and distributed settings are zero-dynamics attack (ZDA)

[97, 78, 131], covert attack [42], and replay attack [110]. Second, the body of effective

system-theoretic approaches (e.g., observer/model-based frameworks) developed for

distributed detection of faults and stealthy attacks in spatially invariant systems such

as power networks and smart grids [130, 98, 9, 42, 99] are premised on having a pri-

ori known and more often static communication topology which is not the case in a

spatially distributed multi-robot system with a time-varying communication network

that is subject to ad hoc connections [79, 59].

Considerable effort has been devoted to the detection and mitigation of ad-

versarial attacks on multi-agent systems, allowing for a characterization of resilience

in terms of a maximum number of malicious (compromised) agents tolerable in a

given network. The prevailing approaches in multi-agent settings can be classified as

graph-theoretic [101, 52] and system-theoretic approaches [97, 98, 99]. It has been

shown that the resilience to a given type of adversarial attack and/or a group of

malicious (compromised) agents in a network can be characterized through certain

connectivity-related properties of the underlying communication network. Partic-

ularly for coordination/consensus of multi-agent systems with first-order dynamics,

primary studies have characterized the worst-case bounds for the total number of ma-

licious (non-cooperative) agents that can be detected and identified in a given static

communication network with certain degree of vertex-connectivity [97].

Alternatively, to circumvent the detection and identification problems, a family

of algorithms, known as Mean-Subsequence Reduced (MSR) algorithms, were devel-
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oped [67] for resilient consensus. The MSR-like algorithms enable each agent (robot)

to simply disregard part of the information received from its neighbors, ensuring

the exclusion of malicious data to a certain degree. To ensure sufficient redundancy

of exchanged information between agents, a connectivity-related notion of graph r-

robustness was proposed in [67, 146] that allows for the quantification of resilience

to a certain number of malicious agents in a given static network. The MSR-like

algorithms have been also extended to the cases of multi-agent systems with double-

integrator dynamics [36, 37], and higher-order dynamics [110]. See also the surveys

in [52, 101].

However, the common challenge of the above-mentioned results in the context

of mobile autonomous robots with time-varying communication networks is to main-

tain the connectivity constraints constantly throughout time. Although connectivity

maintenance for multi-robot systems with limited communication capability has a

rich history in the literature [79, 33, 53, 59, 39, 43, 55], the prior studies do not

address the detection of attacks or non-cooperative robots in time-varying networks.

Only a few studies have recently considered resilient consensus over time-varying

communication networks. In [116], a hybrid controller was proposed for achieving

resilient flocking. Consensus over networks with stochastic link failures and noisy

communication was studied in [110]. Consensus and leader-follower consensus over

periodically time-varying networks with intermittent communication were considered

in [144, 135]. Another defense mechanism is the incorporation of strategically switch-

ing communication networks to minimize the space of possible stealthy attacks such

as ZDA. We refer to [129, 78] and the references therein for a comprehensive review.

Finally, among the other recent but less prevalent approaches are the study

in [14] proposing a decentralized framework to detect communication and sensor at-

tacks that are stealthy to the current state-of-the-art residual-based methods. Also,
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in [86], a control barrier function (CBF) approach was proposed for safety and objec-

tive specifications serving as metrics for the identification of adversarial agents and

resilient control of multi-agent systems.

1.4 Statement of Contributions

This dissertation extends the prior results on adversary detection for resilient multi-

agent (robot) systems to the case where the communication network is subject to

topology switching and a priori unknown intermittent connections. Additionally, we

consider adversarial image attacks on the robot’s perception module on which the

robot relies for localization in a map. More specifically, this dissertation considers

coordination (e.g., consensus) and cooperation (e.g., formation) of multi-robot sys-

tems with second-order dynamics in adversarial settings where either or some of the

CPS security goals, introduced in Section 1.1, are compromised (see also Fig. 1.2).

In this dissertation, a group of malicious (compromised) robots introduces a class

of deception attacks to disrupt the normal operation of the system. We consider

vulnerabilities to data injection attacks and stealthy attacks, namely zero-dynamics

attacks and covert attacks. We provide control-theoretic and graph-theoretic bounds

that characterize the resilience of the multi-robot systems with the consensus (coor-

dination) task to the foregoing adversarial attacks.

Chapter 3 considers the security goals of confidentiality and integrity for multi-

agent systems (see Section 1.1). It presents2 a two-layered decentralized attack detec-

tion framework to detect stealthy attacks, namely covert attacks and zero-dynamics

attacks, on multi-agent control systems seeking consensus. The detection structure

2Chapter 3 is adapted from a publication by the author of this dissertation. © 2021 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2021, December). Privacy-
preserving stealthy attack detection in multi-agent control systems. In 2021 60th IEEE Conference
on Decision and Control (CDC) (pp. 4194-4199).
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consists of a global (central) observer and local observers for the multi-agent sys-

tem partitioned into clusters. The proposed structure addresses the scalability of

the approach and the privacy preservation of the multi-agent system’s state informa-

tion. The former is addressed by using decentralized local observers, and the latter

is achieved by enforcing unobservability at the global level. Also, the communication

graph model is subject to topology switching, triggered by local observers, allowing

for the detection of stealthy attacks by the global observer. Theoretical conditions are

derived for detectability of the stealthy attacks using the proposed detection frame-

work.

Chapter 4 considers experimental studies of detecting stealthy attacks on net-

worked UAVs in formation control settings. Compared to the results of Chapter 3, this

chapter presents3 an alternative local monitoring approach that allows for the distri-

bution detection of stealthy attacks for relatively smaller networks of UAVs. The local

detection framework, implemented onboard each UAV in the network, uses the model

of networked UAVs and locally available measurements. Additionally, the software

package developed for this dissertation has been released as an open-source project,

which is available at https://github.com/SASLabStevens/TelloSwarm. Addition-

ally, a video demonstration of our framework and experimental results is available at

https://www.youtube.com/watch?v=lVT_muezKLU.

Chapter 5 considers4 the security goals of availability and integrity for the

multi-agent systems whose communication network is arbitrarily time-varying and

3Chapter 4 is adapted from a publication by the author of this dissertation. © 2022 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2022, June). Detection of
Stealthy Adversaries for Networked Unmanned Aerial Vehicles. In 2022 International Conference
on Unmanned Aircraft Systems (ICUAS) (pp. 1111-1120).

4Chapter 5 is adapted from a publication by the author of this dissertation. © 2024 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2024, August). Distributed
Detection of Adversarial Attacks for Resilient Cooperation of Multi-Robot Systems with Intermittent
Communication. Provisionally Accepted at IEEE Transactions on Control of Network Systems.

https://github.com/SASLabStevens/TelloSwarm
https://www.youtube.com/watch?v=lVT_muezKLU


10

subject to intermittent connections, possibly imposed by denial-of-service (DoS) at-

tacks. The results of this chapter extend observer-based approaches [97, 78] of adver-

sary detection by relaxing their dependency on point-wise-in-time network connectiv-

ity/robustness and quantifying resilience to concurrent adversarial attacks. Specif-

ically, this chapter presents explicit bounds for network connectivity in an integral

sense that allows for the characterization of the system’s resilience to certain classes

of adversarial attacks. It will be shown that under connectivity in an integral sense

uniformly in time, the system is finite-gain L stable and uniformly exponentially

fast consensus and formation are achievable, provided malicious agents are detected

and isolated from the network. This chapter also presents a distributed and re-

configurable framework with theoretical guarantees for detecting malicious agents,

allowing for the resilient cooperation of the remaining cooperative agents. We have

released our principled framework as an open-source project, which is available at

https://github.com/SASLabStevens/rescue.

Chapter 6 presents a framework for perception-based multi-robot coordination

subject to a class of adversarial image attacks. Specifically, the framework tackles ad-

versarial image perturbations that lead to misclassification and mislocalization in the

learned perception model, which performs object detection on onboard camera images

to provide detection measurements for relative localization on a map. We propose that

the effect of misclassification and mislocalization can be formulated as sporadic (inter-

mittent) and spurious (false positive) measurement data. We propose a method for in-

tegrating data from Visual-Inertial Odometry (VIO) and the learned perception model

to achieve robust relative localization and state estimation in the presence of sporadic

and spurious measurements, which may be caused by adversarial image perturbations

targeting the perception module. To test our proposed framework, we also present

two multi-robot platforms equipped with open-source software packages for running

https://github.com/SASLabStevens/rescue
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learned perception modules and wireless communication capabilities. Our pack-

ages are available at https://github.com/SASLabStevens/TelloSwarm and https:

//github.com/SASLabStevens/AutonomyStack.

Finally, Chapter 7 summarizes the findings of this dissertation and outlines

future research directions.

https://github.com/SASLabStevens/TelloSwarm
https://github.com/SASLabStevens/AutonomyStack
https://github.com/SASLabStevens/AutonomyStack
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Chapter 2

Preliminaries

2.1 Notation

We use R, R>0, R≥0, N, Z≥0, and C to denote the set of reals, positive reals, nonneg-

ative reals, natural, nonnegative integers, and complex numbers, respectively. 1n, 0n,

In and 0n×m stand for the n-vector of all ones, the n-vector of all zeros, the identity

n-by-n matrix, and the n-by-m zero matrix, respectively1. We use e in to denote the

i-th canonical vector in Rn, and ∥·∥p to denote the p-norm Euclidean (resp. infinity)

norm of vectors and the induced norm of matrices. In addition, for any piecewise con-

tinuous, real-valued Lebesgue measurable signal x(t) ∈ Rn, we use
∥∥(x)Td∥∥Lp

, were

1 ≤ p ≤ ∞ and Td ∈ [0,∞), to denote the Lp norm of its truncation signal that is

defined as

(x)Td =


x(t), 0 ≤ t ≤ Td,

0, Td < t.

The extended space Lpe consists of all measurable signals whose truncations belong

to Lp, that is Lpe = {x(t) | (x)Td ∈ Lp, ∀Td ∈ [0, ∞)}. Also, the notation x(m)(t)

denotes the m-th order time derivative of x(t). The notations spec(·) and λi(·) de-

note the spectrum of a matrix in the ascending order by magnitude and its i-th

eigenvalue, respectively. We use col(·) and diag(·) to denote the column and di-

agonal concatenation of vectors or matrices, and ⊗ to denote the Kronecker prod-

uct. The support of vector x ∈ Rn is the set of nonzero components defined as

1We may omit the subscripts when clear from the context.
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supp(x) = {i ∈ {1, . . . , n} | xi ̸= 0}. We also define the set of nonzero columns of the

n-by-n matrixM by colsupp(M) = {i ∈ {1, . . . , n} | [M ]:,i ̸= 0n}. Finally, for any set

S, |S| denotes its cardinality, and for any subset of indices A ⊂ V = {1, 2, . . . , N},

where N ∈ N, the binary matrix IA ∈ RN×F denotes the concatenation of the i-th

columns of I|V| where i ∈ A (i.e. IA =

[
ei1N ei2N . . . e

i|A|
N

]
).

2.2 Graph Theory

We let G = (V , E) denote an undirected graph with the set of nodes V = {1, 2, . . . , N},

where N ∈ N, and the set of edges E ⊂ V × V . For any pair of nodes i, j ∈ V , i ̸= j,

the edge (j, i) ∈ E indicates a path from the j-th node to the i-th node. Accordingly,

the symmetric adjacency matrix A := [aij] ∈ RN×N

≥0 is defined such that aij > 0 if and

only if (j, i) ∈ E , and otherwise aij = 0. The Laplacian matrix L := [lij] ∈ RN×N is

defined as lii =
∑

j ̸=i aij and lij = −aij if i ̸= j. N i(1) = {j ∈ V | (j, i) ∈ E} denotes

the set of (1-hop) neighbors of node i. The Laplacian matrix of an undirected graph

is symmetric and its spectrum, spec(L) admits 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN(L) ≤ N

(see [48, Ch. 13]).

Definition 2.2.1. (Algebraic connectivity). The second-smallest eigenvalue λ2

of the symmetric Laplacian matrix L of an undirected graph G is called the algebraic

connectivity of G. λ2 is also referred to as the Fiedler eigenvalue.

An undirected graph G is connected if and only if its algebraic connectivity is

positive i.e. λ2(L) > 0.

Definition 2.2.2. (Graph component [48, Ch. 1.2], [87, Ch. 6.12]). The compo-

nents of an undirected graph G are its maximal connected induced subgraphs; that is

there exists at least a path connecting every two nodes of a component but not from



14

a node in the component to any other nodes of the graph. A component is trivial if

it has no edges; the special case where a singleton node of a graph is connected to no

others is considered to be a component of size one.

Definition 2.2.3. (Vertex and edge connectivity). For a connected graph G, a

vertex cutset (resp. an edge cutset) is a set of vertices (resp. edges) whose deletion

increases the number of connected components of G. The vertex connectivity, denoted

by κ(G), (resp. edge connectivity, denoted by e(G)) is the minimum number of

vertices (resp. edges) in a vertex cutset (resp. edge cutset). Accordingly, a graph is

called κ-vertex-connected (or simply κ-connected) if κ ≤ κ(G) ∈ R>0.

Definition 2.2.4. (r-robust graph [67]). A static graph G = (V , E) is r-robust,

where r = r(G) ∈ Z≥0 with 0 ≤ r(G) ≤ ⌈|V|/2⌉, if for any pair of nonempty, disjoint

subsets of V , at least one of the subsets, denoted as S, holds |N i(1) \ S| ≥ r, ∃ i ∈ S.

We make the convention that the time-varying graph Gσ(t) = (V , Eσ(t)) with

a right-continuous switching signal σ(t) : R≥0 → {1, 2, . . . ,q} =: Q, where q ∈ N,

denotes a finite2 set of graphs, indexed by finite set Q, that each holds all properties of

graph G. For instance, an undirected graph Gσ(t) is connected at a given time instant

t = t′ ∈ R≥0 if and only if its algebraic connectivity holds λ2(Lσ(t′)) > 0. Also, Gσ(t) is

κ-vertex-connected at a given time instant t = t′ ∈ R≥0 if κ ≤ κ(Gσ(t′)) ∈ R>0.

We also make the convention that, in any active mode σ(t) ∈ Q (σ in short),

N i(k)
σ ⊆ V denotes the set of k-hop neighbors of the agent i ∈ V , that is for j ∈ N i(k)

σ

there exists a path of length k, where k ∈ Z≥0 \ {0}, in mode σ, between the agents

i and j.

2The set of possible communication graphs, Q, is finite by 2(
N
2 ) possible cases because an undi-

rected graph with N nodes at most is complete with
(
N
2

)
= N(N − 1)/2 edges [139, Ch. 1, P. 11]

.
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2.3 Dynamical Systems Theory

A linear system of the form ẋ(t) = Ax(t)+Bu(t) with the output y(t) = Cx(t)+Du(t),

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, is represented by the tuple Σ(A,B,C,D).

Definition 2.3.1. (Zeroing direction and zero-dynamics attack [152, Ch. 3],

[78]). Scalar λo ∈ C is a zero of the tuple Σ(A,B,C,D) if, and only if, there exists

zeroing direction col(x0,u0) ̸= col(0,0) associated with λo such that

λoIn − A −B

C D


x0

u0

 =

0
0

 . (2.3.1)

Then, the signal u(t) = u0e
λot is a zero-dynamics attack that generates non-zero state

trajectories x(t) = x0e
λot while the output y = Cx+Du satisfies y(t) = 0.

Lemma 2.3.1. (Observability of linear switched systems [128]). Given a

system of the form ẋ = Aσ(t)x, with measurements y = Cx, (x ∈ Rn and y ∈

Rp), over the interval [t0, tm) that includes switching instances {tk}m−1
k=1 for modes

σ(t) = k ∈ Q with the dwell time τk = tk − tk−1, the output of system is given by

y(t) = CeAk(t−tk−1)
∏1

l=k−1 e
Al(τl)x(t0), t ∈ [tk−1, tk). Then, the following statements

hold:

1. The system is observable and the initial condition x(t0) is reconstructable from

y(t) if, and only if, the matrix O defined in (2.3.2) is full rank (i.e., Nm
1 :=

ker(O) = {0}).

2. If the matrix O in (2.3.2) is rank deficient, the unobservable subspace of the

system for t ∈ [t0, tm), which is the largest Aσ(t)-invariant subspace contained

in ker(C), can be recursively computed using (2.3.3)-(2.3.4).
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O = col(O1,O2e
A1τ1 , · · · ,Om

1∏
i=m

eAiτi), (2.3.2)

Nm
m = ker(Om), (2.3.3)

Nm
k = ker(Ok) ∩

[
m⋂

i=k+1

ker

(
Oi

k∏
j=i−1

eAjτj

)]
, (2.3.4)

where

Ok = col (C,CAk, . . . ,CA2N−1

k ) , 1 ≤ k ≤m−1, (2.3.5)

Ak = Aσ(t), t ∈ [tk−1, tk). (2.3.6)
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Chapter 3

Privacy-Preservation and Stealthy Attack Detection for Multi-Agent

Control Systems

Motivated by safety and security specifications concerning the vulnerability of wireless

communication networks to cyberattacks such as data injection attacks [36, 78, 97],

this section presents1 an attack detection framework for consensus-based coordination

of multi-agent systems subject to privacy-preservation constraints on the exchanged

information.

Having the confidentiality of transmitted information including agents’ initial

condition (i.e., position and velocity states) and the final agreement value (consensus

value) as a security goal, we propose enforced unobservability constraints on the

network topology to preserve the privacy of state information at the global level

(i.e. network-level dynamics). Second, we propose a glocal (global-local) attack

detection framework for which the networked multi-agent system is partitioned into

clusters (subsystems) with their respective globally and locally monitored agents that

satisfy specific conditions related to the network privacy and the detectability of

stealthy attacks, namely zero-dynamics attack and covert attack. Finally, we derive

the theoretical conditions for topology switching (Theorem 3.2.4) under which local

detectors trigger switches in the system’s communication topology such that stealthy

attacks become detectable for the global (centralized) observer. We further discuss

different types of topology switching and their outcome for the detection of stealthy

attacks.

1This chapter is adapted from a publication by the author of this dissertation. © 2021 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2021, December). Privacy-
preserving stealthy attack detection in multi-agent control systems. In 2021 60th IEEE Conference
on Decision and Control (CDC) (pp. 4194-4199).
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3.1 Problem Formulation

3.1.1 System Dynamics and Communication Topology

Agent dynamics. Consider a multi-agent system consisting of N ≥ 3 mobile agents

with double-integrator dynamics as follows:

Σi :

 ṗi(t) = vi(t)

v̇i(t) = ui(t)
, i ∈ V = {1, . . . , N}, (3.1.1)

in which pi(t) ∈ R, and vi(t) ∈ R are the position and velocity states. ui(t) ∈ R

denotes the control input2 of each mobile agent to be computed given local information

exchange with its 1-hop neighbors, N i(1)
σ , over a switching communication network

Gσ(t) with finite number of modes σ(t)’s. Motivated by the vulnerability of wireless

communication networks to deception and DoS attacks [18, 78, 97], we let an unknown

subset of agents, denoted by A ⊂ V and referred to as malicious agents, update their

control inputs ui, i ∈ A, such that ui = un
i + ua

i in (3.1.1), where un
i is the normal

control input (to be designed) and ua
i is an injected attack signal. We also refer to

the rest of the agents, V \ A, as cooperative (or normal) agents. In this adversarial

setting, the cooperative (resp. malicious) agents seek to achieve (resp. prevent) the

cooperation objective that is defined as

lim
t→∞

∣∣pi(t)− pj(t)− p⋆
ij

∣∣ = 0, ∀ i, j ∈ V , (3.1.2a)

lim
t→∞
|vi(t)| = 0, ∀ i ∈ V , (3.1.2b)

2For brevity, we may omit the time argument, t, from expressions whenever possible in the rest
of this chapter.
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where the predefined constants p⋆
ij = p⋆

i − p⋆
j are the desired relative positions for

any pair of mobile agents in the cooperative settings (e.g., formation control). In this

section, we consider coordination problems (e.g., the consensus of the system states)

with p⋆
ij = 0.

Having specified the cooperation and adversary objectives, we consider the

following distributed control protocol

ui = un
i + ua

i , i ∈ V , (3.1.3a)

un
i = −α

∑
j∈N i(1)

σ

aσij(pi − pj − p⋆
ij)− γvi, (3.1.3b)

which relies only on communication with 1-hop neighbors N i(1)
σ . Also, the constants

α, γ ∈ R>0 are the control gains, and a
σ
ij’s are the entries of the symmetric adjacency

matrix Aσ(t) associated with the graph Gσ(t) representing the switching communication

network of agents Σi’s in (3.1.1).

Communication topology. The switching communication network (topology) of

N ≥ 3 mobile agents, indexed by the set V = {1, . . . , N}, is described by a finite

collection of undirected graphs Gσ(t) = (V , Eσ(t)), where the edge set Eσ(t) ⊂ V × V

denotes the communication links. More specifically, an edge (i, j) ∈ Eσ(t) if and only if

the i-th and j-th agents are adjacent neighbors exchanging information in the active

communication mode σ(t) ∈ {1, 2, . . . ,q} =: Q, q ∈ N.

Assumption 3.1.1. The agents Σi’s in (3.1.1) initially communication in a normal

mode of communication topology Gσ(t) specified by σ(t) = 1 ∈ Q, for all t ∈ [t0, t1),

where t1 > t0 ∈ R≥0, until switching to a safe mode following the detection of an

attack at a time instant t1 > ta, where ta is the attack’s starting time. In the safe

mode for t ≥ t1, the communication topology switching is specified by the switching
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signal σ(t) = {2, . . . ,q} ∈ Q whose switching policy will be determined later (See

Section 3.2.5).

Network-level dynamics. Given (3.1.1) and (3.1.3), the network-level dynamics of

the multi-agent system can be represented by a family of linear switched systems as

follows:

Σσ(t) :

ṗ
v̇

 =

 0 I

−αLσ −γI


p
v

+

 0

IA

uA =: Aσx+BAuA, x0 = x(t0),

(3.1.4a)

y = Cx− uS , C = diag {Cp, Cv} , (3.1.4b)

where x = col(p,v) with p ∈ RN and v ∈ RN being the stacked position states and

velocity states of all N agents. Lσ is the Laplacian matrix of the network Gσ(t), en-

coding the communication links. uA = col (ua
i )i∈A ∈ R|A| and IA =

[
ei1N ei2N . . . e

i|A|
N

]
∈

RN×|A|, where e iN specifies the input direction in RN , corresponding to the i-th ma-

licious agent among N agents. The system measurements y = col(y1, · · · ,y|M|)

corresponding to the output matrix C such that:

colsupp(Ck) ∈Mk ⊂ V , k ∈ {p, v} , M = {Mp,Mv} , (3.1.5)

where the set M (to be selected) represents the set of indices of agents that are

monitored (e.g., by a ground control station). Finally, uS = col(us1 , . . . , us|M|) is a

vector of injected malicious signals in the compromised measurement sensor channels.
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3.1.2 Adversary Model

Let A ⊂ V denote the set of agents with a compromised (under attack) control

channel, and S ⊂ M represent the set of agents with compromised sensor channels.

The dynamics of the adversarial attack are given by3

ΣA :


˙̃x = Ãσ(t)x̃+BAuA, x̃(ta) = x̃0,

uS = C̃x̃,
(3.1.6)

where the vector attack uA is generally a function of disclosed information, i.e., uA :=

f(t, x̃,ui,y) by which the attacker steers the system towards undesired states, and

ta ≥ t0 is the attack’s starting time. For example, the attack signal is in the form of

uA(t) = u0e
λo(t−ta) in the case of ZDA, where λo and u0 are introduced in Definition

2.3.1.

Assumption 3.1.2. (Disclosed information). In the normal mode, where σ(t) =

1 ∈ Q, t ∈ [t0, t1), the attacker

1. has perfect knowledge of the system model, that is

ΣA(Ãσ(t),BA, C̃, σ = 1) = Σσ(t)(Aσ(t),BA,C, σ = 1),

2. does not know the system’s initial condition, i.e., x̃(ta) ̸= x(t0), and x̃(ta) =

x̃0 = 0 in a covert attack.

3. has no knowledge of the system switching time instants {tk}m−1
k=1 , where m ∈ N,

associated with the safe mode when σ(t) = {2, . . . ,q} ∈ Q, t ∈ [t1, ∞),

4. starts the attack at ta ≥ t0 = 0.

Assumption 3.1.3. (Defender’s policy). The defender

3The matrix BA in (3.1.6) is the same as in (3.1.4).
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1. selects the monitored agents and designs the attack detection framework,

2. designs the communication topology for the safe mode and its corresponding

switching policy.

Proposition 3.1.4. (Stealthy attacks). Consider system (3.1.4), under the attack

model (3.1.6), and Assumptions 3.1.1 and 3.1.2, an attack is stealthy4 if the system

output in (3.1.4) satisfies

y(t;x0,uA,uS) = y(t; x̄0,0,0), ∀ t ∈ [t0, t1), (3.1.7)

where x0 and x̄0 are the actual and possible initial states, respectively. Then, (3.1.7)

can be realized in two senses;

1. Covert Attack: Under Assumption 3.1.2, if the attacker sets the initial condition

x̃(ta) = 0 or alternatively x̃(t0) ∈ N 1
1 = ker(O1) in (3.1.6), then the attack uA

on (3.1.4) is covert, that is there exists a vector uS , injected in (3.1.4), canceling

out the effect of uA on the system output y(t).

2. Zero-dynamics Attack (ZDA): the attacker can excite the zero dynamics of the

system by an unbounded signal and remains stealthy with no need to alter the

system measurements (i.e., uS(t) = 0 in (3.1.4)) if x̃0 ∈ ker(C) and uA(t) =

u0e
λo(t−ta), ta = t0, where λo, x̃0 and u0 are obtained using Definition 2.3.1.

Proof. Clearly before an attack starts, (3.1.7) is met over t ∈ [t0, ta). Consider

x(ta) as the system states when the attack starts,

(i): in the case of covert attack, the output of the system (3.1.4) with the initial

4The stealthy attacks defined by the condition (3.1.7) are also known as undetectable attacks in
the literature [98].
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normal mode σ(t) = 1 over t ∈ [ta, t1) is given by

y(t) = CeA1(t−ta)x(ta) +C

∫ t

ta

eA1(t−τ )BuA(τ )dτ − uS(t), (3.1.8)

and the last term which is the output of the attacker’s model (3.1.6) is given by

uS(t) = C̃eÃ1(t−ta)x̃(ta) + C̃

∫ t

ta

eÃ1(t−τ )BuA(τ )dτ . (3.1.9)

Substituting (3.1.9) into (3.1.8) and considering Assumption 3.1.2 yields

y(t) = CeA1(t−ta)(x(ta)− x̃(ta)), t ∈ [ta, t1). (3.1.10)

The measurement (3.1.10) matches the attack-free response if the attacker simply

sets x̃(ta) = 0. Also, in the case x̃(ta) ̸= 0, ta = t0 = 0, it is immediate from lemma

2.3.1 that if x̃(t0) ∈ N 1
1 ̸= {0} =⇒ CeA1(t−ta)x̃(t0) = 0, ta = t0 = 0 in (3.1.10),

and thus y(t) = CeA1(t−ta)x(ta), t ∈ [ta, t1). In both of the cases, condition (3.1.7),

guaranteeing the covertness of the attack, is met. We, however, focus on the first

case under Assumption 3.1.2-(ii), therefore the system state x(t), without any jump,

continuously holds the following

x(t) = x̄(t) + x̃(t), (3.1.11)

where

x̃(t) = 0 =⇒ x(t) = x̄(t), ∀ t ∈ [t0, ta), (3.1.12)

x̃(t) =

∫ t

ta

eA1(t−τ )BuA(τ )dτ , ∀ t ∈ [ta, t1), (3.1.13)
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with x̄(t), ∀ t ∈ [t0, t1) denoting the state of the system in (3.1.4) in the absence of

covert attack (i.e. ˙̄x = A1x̄, x̄0 = x0).

(ii): In the case of ZDA, let ta = t0 = 0 for simplicity, and x̄0 = x0 − x̃0. Under

Assumption 3.1.2 and using Definition 2.3.1, the attacker can solve the following:

λoI −A1 −BA

C 0


x̃0

u0

 =

0
0

 , (3.1.14)

to design the ZDA signal uA(t) = u0e
λot causing unbounded system states

x(t) = x̄(t) + x̃0e
λot, (3.1.15)

while (3.1.7) is met, where x̄(t) is the state of the system in (5) assuming the initial

condition x̄0 and no attack signal. The second equation in (3.1.14), Cx̃0 = 0, implies

x̃0 ∈ ker(C). It is an immediate result from Definition 2.3.1 that the attack signal

ua(t) = u0e
λ0t results in uS(t) = Cx̃(t) = 0 in (3.1.6) while the system states

x̃(t) = x̃0e
λot ∈ ker(C), ∀ t ∈ [t0, t1) is unboundedly increasing. Consider (3.1.15)

and the superposition principle in linear systems, then injecting the designed ZDA

signal ua(t) in (3.1.4) yields the solution y = Cx(t) = Cx̄(t) + Cx̃0e
λot, which by

considering (3.1.14) is equivalent to (3.1.7), guaranteeing the stealthiness of ZDA for

(3.1.4).

3.1.3 Problem Statement

Given the system and attack models in the previous section, we now state the two

problems which this chapter aims to address in the following:

Problem 3.1.5. (Privacy-preserving average consensus). Given the switching



25

consensus system (3.1.4), we seek to preserve the following privacy requirements:

1. neither the system’s initial states x(t0) nor the final agreement values (p∗ =

1
N

∑N
i=1 pi(t0), v

∗ = 0) should be revealed or be reconstructable.

2. the system’s communication topology Gσ(t) should not be reconstructable.

Problem 3.1.6. (Scalable attack detection). Given the system in (3.1.4) under

the attack model (3.1.6), we seek to develop a stealthy attack detection framework

such that:

1. it features a decentralized and scalable structure.

2. it satisfies the privacy-preserving requirements defined in Problem 3.1.5.

3.2 Privacy Preservation and Attack Detection

In this section, we describe the attack detection framework and characterize the

conditions required to address Problems 3.1.5 and 3.1.6.

3.2.1 Attack Detection Scheme

The proposed framework, depicted in Fig. 3.1, is a two-level attack detection frame-

work. It is privacy-preserving and relies on topology switching generating model

discrepancy between the attacker model (3.1.6) and the actual system (3.1.4). The

system is decomposed into a set of subsystems based on the characteristics of its

communication topology such as sparsity. Then, a set of monitored agents will be

characterized such that each subsystem (the dynamics of agents within a cluster) is

fully observable with respect to its locally available measurements while the main sys-

tem (3.1.4) is partially observable with respect to its globally available measurements

(3.1.5). We show how unobservability and system clustering can be used respectively
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Figure 3.1: Attack detection architecture. It includes a centralized observer and a set of
local observers. The centralized observer only monitors some of the agents from a ground
station with bandwidth limitation. The local observers deployed onboard allow for local
monitoring and local decision-making for network topology switches, enabling the detection
of stealthy attacks by the centralized observer of the ground station.

to address Problem 3.1.5 and 3.1.6. Building upon global and (private) local measure-

ments, the attack detection framework consists of a centralized observer, implemented

in the control center, and local observer(s) in each cluster (Pi, i ∈ {1, 2} in Fig. 3.1).

As increasing data transmission between agents and the centralized observer in the

control center raises scalability and privacy concerns (cf. Problem 3.1.6), local ob-

servers play a vital role in our attack detection framework. They are hidden from the

attacker because they are distributed among clusters of the multi-agent system, and

their output is not sent to the control center but kept locally for attack detection.

If a local observer detects a stealthy attack, it triggers a network topology switch

whereby the stealthy attack becomes detectable in the global measurements available

for the centralized observer. The local decision-making for network topology switches

and indirect communication with the control center allow for agile reconfigurability

in autonomous multi-agent systems (e.g., networks of autonomous aerial or ground

vehicles) while eliminating the need for additional data exchange at the global level,

which otherwise is required for monitoring and stealthy attack detection.
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3.2.2 Privacy Preservation

Problem 3.1.5 on privacy preservation can be addressed by imposing an unobservabil-

ity constraint on system (3.1.4). Indeed, one can select the set of monitored agents

M in (3.1.5) such that (Aσ(t),C) is not an observable pair on t ∈ [t0, ∞), making

the globally available measurement y in (3.1.5) insufficient to reconstruct either the

entire system states’ information or the system’s switching structure (cf. privacy

requirements in Problem 3.1.5).

The following lemma provides sufficient conditions to determine whether the

global system measurement (3.1.5) is consistent with the privacy requirements.

Lemma 3.2.1. (Invariant unobservable subspace of system (3.1.4)).

The subspace span
{

1N
0N

}
is an Aσ(t)-invariant unobservable subspace of the switching

system in (3.1.4) provided that it lies in ker(C) and Gσ(t) features only connected

undirected (or strongly connected and balanced directed) graphs.

Proof. See Appendix A.2.

Remark 3.2.1. (Generality of Lemma 3.2.1). The result suggests that moni-

toring only the agents’ velocity causes the agents’ positions not to be reconstructable

independently for system (3.1.4). This is a generic solution to Problem 3.1.5 that

holds for all undirected graphs. It is also worth noting that the monitored agents

corresponding to set M in (3.1.5) can also be selected differently from the results in

Lemma 3.2.1 for any particular graph.

We next introduce the system partitioning method followed by observer design

to address Problem 3.1.6.
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3.2.3 System Partitioning

Consider the communication graph Gσ(t) = (V , Eσ(t)) of the system (3.1.4), let the

set of agents V be partitioned into disjoint clusters P := {P1, . . . ,P|P|} such that

∪|P|
i=1Pi = V with Pi ∈ RNi and inter-cluster couplings

Ecut := {(j, i)) | i ∈ Pi, j ∈ Pj, Pi ∩ Pj = ∅} .

Accordingly, after relabeling the system states, the system (3.1.4) is partitioned into

|P | subsystems described as

ΣPi
:


ẋi = Ai

σ(t)xi +
∑

j∈NPi

Aij
σ(t)xj +B i

Auai ,

yii = Ciixi, i ∈Mi ⊂ Pi,

xi(0) = x0i , i ∈ {1, · · · , |P |} ,

(3.2.1)

with

Ai
σ(t) =

 0 I

−αLiσ(t) −γI

 , Aij
σ(t) =

 0 0

−αLijσ(t) 0

 , (3.2.2)

Lσ(t) =


L1

σ(t) · · · L1,|P|
σ(t)

...
. . .

...

L|P|,1
σ(t) · · · L|P|

σ(t)

 , B i
A =

 0

IAi

 , (3.2.3)

where xi :=

[
(p)⊤i (v)⊤i

]⊤
∈ R2Ni with (p)i and (v)i representing the vectors of

position and velocity states belonging to cluster Pi ⊂ V . Also, uai associated with

the set Ai is the vector-valued attack on actuator channels in the cluster as defined

in (3.1.4). The output signal yii(t), associated with the output matrix Cii , denotes



29

the local measurements that are available at node i in cluster Pi. Finally, NPi
:= {j ∈

{1, · · · , |P |} | ∃ (j, i) ∈ Ecut, i ∈ Pi, j ∈ Pj} denotes the index set of the neighboring

clusters of cluster Pi.

We note that the decomposition of (3.1.4) into (3.2.1) leads to a concatenated

set M̄ :=
{
M,M1, . . . ,M|P|

}
, where the setM is associated with global measure-

ments (3.1.5) available for the control center and setsMi’s, i ∈ P are associated with

the local measurements yii available at a node i in respective clusters P1, . . . ,P|P| in

(3.2.1).

We make the following assumptions:

Assumption 3.2.2. (Local information).

1. local knowledge: in each cluster, the agent i ∈ Pi serves as the local control

center that has the local system model of the cluster (matrices Ai
σ(t), A

ij
σ(t) and

Cii) and the local measurement yii(t).

2. local measurements: the measured output yii(t) in (3.2.1) is locally available at

the node i and, unlike global measurements, it is not sent to the control center

to keep the output secure and inaccessible to the attacker.

3. cross-cluster communication: every local control center, i.e., the node i in cluster

Pi, considers coupling terms
∑

j∈NPi
Aij
σ(t)xj as unknown inputs to ΣPi

. More-

over, inter-cluster couplings do not change, i.e., Aij
σ(t) = Aij

1 , ∀ t ∈ [t0, ∞).

Thus there is no need for the exchange of xj’s information between local control

centers.

The assumption 3.2.2-1 is common in the literature (cf. [42]) as the model-

based detection of cyber attacks on exchanged data over a network requires augmented
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knowledge of the neighboring agents’ model to estimate their states and further com-

pare them with the received data. Minimizing the local information exchange affects

the scalability and depends on the sparsity of the communication network as well as

on applications.

3.2.4 Observer Design and Attack Detectability Analysis

As described in Section 3.2.1, the attack detection framework is composed of a cen-

tralized observer for monitoring the system (3.1.4) from the control center, and a

set of local observers in clusters, that serve as local attack detectors and trigger for

communication topology switching. In what follows, we describe the observer design

procedure based on the conditions derived in the previous section.

Decentralized observer. Consider the dynamics of the system partitions described

in (3.2.1) and Assumption 3.2.2, we use the unknown input observer (UIO) scheme in

[24] to estimate the cluster state x̂i independent of the states xj’s of the neighboring

clusters (i.e. j ∈ NPi
). This is achieved by considering the interconnection of local

models as unknown inputs and rewriting them such that

∑
j∈NPi

Aij
σ(t)xj := Eixdi , σ(t) = 1, ∀ t ∈ [t0, ∞), (3.2.4)

where Ei is a full column rank5 matrix and xdi is a vector of the states of neighboring

clusters that are received by cluster Pi. Now, introducing the UIO state zi = x̂i−hiyii ,

5The columns of Ei for cluster Pi are corresponding to the edge-cuts connecting Pi to its neigh-
boring clusters.
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the dynamics of the local UIO is given by

Σ
Zi
O :


żi = Fi

σ(t)zi +
(
Kσ(t) + K̄σ(t)

)
yii ,

x̂i = zi + hiyii ,

x̂i(0) = 0, Pi ⊂ V , i ∈ {1, · · · , |P |} ,

(3.2.5)

where Fi
σ(t),Kσ(t), K̄σ(t), and hi are matrices satisfying conditions

Ti =
(
I − hiCii

)
,
(
hiCii − I

)
Ei = 0, (3.2.6)

Fi
σ(t) =

(
Āi
σ(t) − K̄σ(t)Cii

)
, Kσ(t) = Fi

σ(t)h
i, (3.2.7)

Āi
σ(t) = Ai

σ(t) − hiCiiA
i
σ(t). (3.2.8)

Furthermore, Fi
σ(t) is Hurwitz stable over t ∈ [t0, tm) for all normal and safe modes.

Consider (3.2.1), (3.2.5) and let ei := xi − x̂i, one can use the conditions in

(3.2.6)-(3.2.8) to obtain the error dynamics of UIO as follows

Σei
O :

 ėi = Fi
σ(t)ei +TiBiuai , ei(0) = xi(0),

rii = Ciiei, Pi ⊂ V , i ∈ {1, · · · , |P |} .
(3.2.9)

In the absence of adversarial attacks, uai = 0, it is straightforward to show that

limt→∞ ei(t) = 0 as Fi
σ(t) is Hurwitz stable in all modes. LMI-based approaches can

be used to design (3.2.7) such that (3.2.9) remains stable under arbitrary switching

[28].

Recall Assumption 3.2.2-2, unlike the case of global measurements (cf. Propo-

sition 3.1.4-(i)), the local measurements yii ’s are hidden and thus cannot be altered

by the attacker to cancel out the effect of the attack uai on the output of (3.2.1). This

difference also manifests itself in the residual of local observer (3.2.9). Therefore, in
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order to determine the stealthiness of attack uai with respect to the local residual sig-

nal rii , it is necessary and sufficient to investigate whether the stealthiness conditions

presented in Proposition 3.1.4 are satisfied for the system in (3.2.9).

In the following proposition, we formally characterize the conditions for the

detection of stealthy attacks using the local observer in (3.2.5).

Proposition 3.2.3. (Attack detectability of local observers). For a strongly

connected cluster Pi with E inter-clustering edges and |Ai| compromised agents, there

exists a local observer given by (3.2.5) to locally detect the stealthy attacks if

1. there is a k-connected node i ∈ Pi as the local monitored agent such that k ≥

E + |Ai|,

2. rank
(
CiiE

i
)
= rank

(
Ei
)
,

3. the matrix pencil P in (3.2.10) is full (column) rank,

P =

λoI −Ai
σ(t) B i

A Ei

Cii 0 0

 . (3.2.10)

where the tuple
(
Ai
σ(t),B

i,Cii

)
and matrix Ei are defined in (3.2.1) and (3.2.4),

respectively.

Proof. See Appendix A.3.

Remark 3.2.2. (Evaluation of the condition in (3.2.10)). Conditions (1)-

(3) in Proposition 3.2.3 are equivalent to necessary and sufficient conditions for the

existence of UIO in (3.2.5) [24]. It is worth noting that as matrix Bi in (3.2.10) is

unknown to the defender, it can be replaced with INi
, i.e., assuming all the nodes of the

cluster are under attack, in analysis and selecting locally monitored agents associated
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with Cii. This, however, may require further communication between agents within

a cluster. Alternatively, as in a set cover problem setting, a set of local monitoring

agents that each of them satisfies the conditions (1)-(3) for part of a cluster can be

used to cover all of the nodes of the cluster [130]. Minimizing the number of local

measurements versus the number of local observers is a trade-off problem that will be

the subject of future work.

Centralized observer. Consider the dynamical system (3.1.4), a Luenberger-type

centralized observer, derived based on the normal mode σ(t) = 1, is given by

ΣM
O :


˙̂x = Aσ(t)x̂+Hσ(t)(y − ŷ), σ(t) = 1,

ŷ = Cx̂, x̂(0) = 0,

r0 = (y − ŷ), residual,

(3.2.11)

where Hσ(t) is the observer gain and r0(t) denotes the residual signal available in the

control center for monitoring purposes.

In order to design the observer gain Hσ(t), the partial observability of pair

(Aσ(t),C) imposed in Section 3.2.2 and the activated mode σ(t) should be taken into

account. An immediate solution is to define an LMI optimization problem finding a

constant Hσ(t) := H by which (Aσ(t)−HC) is (Hurwitz) stable in all modes [29, 27].

From Assumption 3.1.2 and condition (3.1.7), it is straightforward to show

that the attack ua remains stealthy for the observer (3.2.11) in the normal mode over

the time span t ∈ [t0, t1) where Aσ(t) = A1.

Recall (3.1.11) and (3.1.15), and let

ē := x̄− x̂ (3.2.12)

e := x− x̂ = x̄+ x̃− x̂ = ē+ x̃ (3.2.13)
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be the estimation error of the states of an attack-free system ( ˙̄x = Aσ(t)x̄, y = Cx̄)

and the under attack system in (3.1.4), respectively. Then using (3.1.4) and (3.2.11),

the error dynamics of the centralized observer is given by

Σe
O :


ė = (A1 −HC)e+ (Aσ(t) −A1)x+HuS +BuA,

e(0) = x0,

r0 = (y − ŷ) = Ce− uS = Cē, residual,

(3.2.14)

where for measurement y in (3.2.11) we used the expression y = Cx− uS as defined

in (3.1.4). Consider (3.1.6) and (3.1.7), y in (3.2.11) also satisfies y = Cx − uS =

Cx−Cx̃ = Cx̄. Then using y = Cx̄, (3.1.4), (3.1.6), (3.2.11), (3.2.12), the following

dynamics is obtained

Σē
O :


˙̄e = (A1 −HC)ē+ (Aσ(t) −A1)x̄,

ē(0) = x̄0,

r̄0 = Cē, residual.

(3.2.15)

Note that, during normal mode σ(t) = 1 over the time span ∀ t ∈ [t0, t1), the residual

r0 in (3.2.14) is the same as that of (3.2.15) that is the dynamics of the estimation

error of system states in the absence of attacks. This implies that, in the case of a

covert attack with uS ̸= 0, as long as signal uS(t) cancels out the effect of ua(t) on

the output y(t), the residual r0(t) = Cē(t) converges to zero as t1 → ∞, yielding

the stealthiness of the covert attack, in the normal mode, for the centralized observer

(3.2.11).

In the case of a ZDA, uS = 0 in (3.2.14) although (3.1.7) still holds that leads to

the stealthiness of a ZDA for the observer (3.2.11). To show this, one needs to verify

the attack uA remains in the zeroing direction of (3.2.14). Using Definition 2.3.1 for



35

(3.2.14) in the normal mode, we obtain

λoI − (A1 −HC) −B

C 0


ẽ(0)

u0

 =

0
0

 , (3.2.16)

where ẽ(0) := e(0) − ē(0) = x0 − x̄0 = x̃0. Recall x̃0 ∈ ker(C) in (3.1.14), then the

second equation of (3.2.16) yields Cẽ(0) = Cx̃0 = 0. Applying Cẽ(0) = 0 into the

first equation of (3.2.16) simplifies the matrix pencil in (3.2.16) into that of (3.1.14)

over t ∈ [t0, t1) where Aσ(t) = A1. This ensures the stealthiness of ZDA in the normal

mode for the observer (3.2.11).

The following Theorem provides conditions to address Problem 3.1.6-2 by char-

acterization of switching modes that lead to attack detection with respect to global

measurements.

Theorem 3.2.4. (Attack detectability under switching communication).

Consider system (3.1.4) under the stealthy attacks modeled in (3.1.6), and let intra-

cluster topology switching satisfy

1. Im(∆Lq) ∩ ker ([C⊤
p C⊤

v ]
⊤) = ∅,

2. Lq features distinct eigenvalues,

3. [Uq]i,ℓ − [Uq]j,ℓ ̸= 0, ∀ ℓ ∈ V \ {1}, ∀ i, j ∈ Dc, ∀ c ∈ {1, · · · , c},

where ∆Lq := Lσ(t) − L1, with σ(t) = q ∈ Q, t ∈ [t1, ∞), C⊤
x and C⊤

v are given in

(3.1.4)-(3.1.5) and Dc ⊂V , denotes the set of nodes in c-th connected component of

∆Lq corresponding to agents involved in connected switching links, and finally Uq is

a unitary matrix (UqU⊤
q = I) diagonalizing Laplacian Lq.

Then, ZDA and covert attacks undetectable for the centralized observer (3.2.11) are

impossible only if the topology switching satisfies conditions 1-3. If additionally the
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system is not at its exact consensus equilibrium when the attack is launched, conditions

1-3 are sufficient for the detection of ZDA.

Proof. See Appendix A.4.

Remark 3.2.3. (Safe topology switching). For a given pair (Aσ(t),C) in (3.1.4),

one can compute a set of switching modes by evaluating the conditions 1-3 of Theo-

rem 3.2.4. This could be performed through iterative algorithms changing graph con-

nections. Furthermore, if Z be an unknown subspace associated with system states

affected by stealthy attack ua(t) i.e. x̃(t) ∈ Z. Then, in view of x̃0 = x0 − x̄0

(see Proposition 3.1.4), the discrepancy term (Aσ(t) −A1)x in the dynamical system

(3.2.14) will be bounded and vanishing if

X q ∩Z = ∅. (3.2.17)

Therefore, if condition (3.2.17) holds, (Aσ(t)−A1)x does not affect the stability of the

system, as a consequence of input-to-state stability property of consensus systems [81].

It is also noteworthy that although identifying Z beforehand is practically impossible

as B and x̃0 in (3.1.6) are unknown to the defender, local observers detecting stealthy

attacks in a cluster can locally identify and trigger a safe switching mode that satisfies

(3.2.17).

3.2.5 Attack Detection Procedure

The results in the previous section provide conditions for the detectability of stealthy

attacks locally, at the cluster level, and globally, at a ground control station equipped

with a centralized observer. As described earlier, the attack detection framework

relies on switching communication links generating a discrepancy between the attacker

model (3.1.6) and the actual system (3.1.4). To this end, at the local level (clusters),
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unknown-input observers in (3.2.5), satisfying conditions of Proposition 3.2.3, locally

detect stealthy attacks. Followed by the detection, a local observer triggers a topology

switching, Gσ(t), that satisfies conditions 1-3 of Theorem 3.2.4, yielding stealthy attack

detection in the control center. This procedure is presented in Algorithm 1.

Algorithm 1 Topology switching for attack detection

1: procedure Attack detection(Gσ(t), Obs. in (3.2.11), (3.2.5))

2: do run global observer (3.2.11) and local observers (3.2.5).

3: if rii(t) > threshold then

4: do Identify a safe mode σ(t) = q ∈ Q for Lσ(t) that satisfies conditions 1-3

in Theorem. 3.2.4

5: do Trigger an identified safe mode σ(t) = q ∈ Q

6: if r0(t) > threshold then

7: Stealthy attack is detected.

8: end if

9: end if

10: end procedure

As presented in Algorithm 1, the observers (attack detectors) require an appro-

priate threshold for their residuals to avoid false attack detection. These thresholds

can be designed by considering an upper bound on the estimation error of observers

in the attack-free case. An analytical analysis, however, will be the subject of future

work.

3.3 Simulation Results

We use a numerical example to validate the performance of the attack detection

framework. We consider a network of N = 19 agents and investigate, in three cases,
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the effect conditions proposed in Proposition 3.2.3 and Theorem 3.2.4 on stealthy

attack detection. It is assumed that the network has been partitioned into three clus-

ters P1 = {1, · · · , 7}, P2 = {8, · · · , 12}, P3 = {13, · · · , 19}. Each cluster is equipped

with the local observer (3.2.5) (the nodes highlighted in blue in Fig. 3.2) whose lo-

cal measurements are consistent with Assumption 3.2.2 and Proposition 3.2.3. More

specifically, In cases 1 and 2, cluster P1 has two local observers that each has access

to its neighboring agents’ measurements. In cluster P2, however, we considered one

local observer having more communication with other agents within the cluster for its

realization (cf. Remark 3.2.2). Similar analysis is applied to case 3. Moreover, there

is a centralized observer with global measurements as Mx = ∅, Mv = {1, 12, 14}

consistent with Lemma 3.2.1. In the simulations, the system’s initial conditions are

considered to be known for observers although this is not a requirement for the pre-

sented theoretical results. Also, the constant thresholds were selected by evaluating

the observers’ performance in different case studies.

In cases 1 and 2 (shown respectively in Figs. 3.2-(a) and 3.2-(b) with their

communication topology in Fig. 3.2-(d)) a ZDA occurs in cluster P1 and particularly

affects agents 3 and 4. As depicted, ZDA is stealthy in the global residuals r0i ’s, i ∈

{1, 12, 14} before topology switching. It is, however, detectable in local residual r15(t).

The local control center, node 5, can trigger either of case 1’s or case 2’s switching

topologies shown in Figs. 3.2-(d). While the conditions 1-3 of Theorem 3.2.4 are met

in both cases, only case 2 meets (3.2.17) of remark 3.2.3. Consequently, the global

residual r01(t) for case 1 is bounded and vanishing after topology switching while that

of case 2 is unbounded.

In cases 3 (shown in Fig. 3.2(c) with its communication topology in 3.2-(d))

a ZDA occurs in cluster P2 and particularly affects agents 11. Note that, unlike in

cases 1 and 2, none of the Theorem 3.2.4’s conditions are met in case 3, yielding the
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global residuals r0i(t), i ∈ {1, 12, 14} remain unaffected by the switching topology.

Consequently, stealthy attack is not detectable.

Moreover, comparing the bounded global residual in cases 1 with the un-

bounded global residual in case 2, suggests that meeting condition (3.2.17) presents a

trade-off between a faster attack detection at a price of further exposing system states

to ZDA and a slower detection by keeping uncompromised system states bounded.
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Figure 3.2: Simulation results of privacy-preserving stealthy attack detection for a
multi-agent control system with 19 agents. [Continued on next page]
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Figure 3.2: [cont’d]: The state trajectory x(t) consists of the agents’ positions (in
blue) and velocities (in green) as well as the red trajectories showing the affected
agents by the stealthy attack (ZDA). (a)-(c) the results of attack detection for three
cases with their respective network topology switching depicted in (d). In all cases
of (d), the green nodes represent the agents globally monitored by the centralized
observer, the blue nodes indicate the local control centers equipped with local ob-
servers, the red-bordered nodes show compromised agents, and the red-colored nodes
represent compromised agents affected by the stealthy zero-dynamics attack (ZDA).
Finally, the dashed lines (edges) represent the switching communication links. In the
figures displaying local residuals, with a slight abuse of notation (cf. (3.2.9)), the
scalar residual rii shows only the velocity estimation error of node i.
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Chapter 4

Detection of Stealthy Attacks for Networked Unmanned Aerial Vehicles

This chapter1 extends the previous chapter to the case of formation control, as a

cooperative task, of unmanned aerial vehicles (UAVs). It presents model-based cen-

tralized and decentralized observer techniques for detecting a class of stealthy attacks,

namely zero-dynamics and covert attacks, on networked UAVs in formation control

settings. The centralized observer that runs in a control center leverages switching in

the UAVs’ communication topology for attack detection, and the decentralized ob-

servers, implemented onboard each UAV in the network, use the model of networked

UAVs and locally available measurements. Experimental results are provided to show

the effectiveness of the proposed detection schemes in different case studies.

4.1 Problem Formulation

4.1.1 Quadrotor’s Dynamics

We consider a team of N homogeneous unmanned aerial vehicles (quadrotor UAVs)

that cooperate to achieve a geometric shape/formation in R2. Attached to the center

of mass of each quadrotor, the body frame {Bi} with unit axes {b⃗i1, b⃗i2, b⃗i3}, i ∈

{1, . . . , N} =: V , whose position and orientation with respect to the inertial global

frame {W} with unit vectors {⃗ex, e⃗y, e⃗z} (see Fig. 4.1a) are, respectively, determined

by a vector pi = col
(
pxi , p

y
i , p

z
i

)
∈ {W}, ∀ i ∈ V and a rotation matrix Ri(ψi, ϕi, θi) ∈

SO(3) in the special orthogonal group with ψi, ϕi, and θi being the respective z−x−y
1This chapter is adapted from a publication by the author of this dissertation. © 2022 IEEE.

Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2022, June). Detection of
Stealthy Adversaries for Networked Unmanned Aerial Vehicles. In 2022 International Conference
on Unmanned Aircraft Systems (ICUAS) (pp. 1111-1120).
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Euler angles. Then, the rigid body motion of the quadrotors follows [76]

ṗi = vi, mv̇i = −mg⃗ez +Rifi, (4.1.1a)

Ṙi = RiΩ
×
i , JΩ̇i = −Ωi × JΩi + τ i, (4.1.1b)

where pi ∈ R3 and Ri(ψi, ϕi, θi) ∈ SO(3) are the position and orientation of the i-

th quadrotor in the inertial frame {W}, m is the mass of the quadrotor, g is the

gravitational acceleration, and finally fi ∈ {Bi} is the total thrust. Also, in the

rotational dynamics, Ωi ∈ R3 is the angular velocity, J ∈ R3×3 is the inertia matrix,

and τ i ∈ R3 is the total torque, all expressed in respective body-fixed frames. Finally,

the notation Ω×
i denotes the skew-symmetric matrix, such that Ω×

i r = Ωi× r for any

vector r ∈ R3 and the cross product ×.

4.1.2 Formation Control

The cooperative control of quadrotor UAVs, shown in Fig. 4.1b, follows a hierarchical

structure, where at the high level, the UAVs coordinate with each other and their

formation/position controller cooperatively generates the desired attitude/orientation

and the desired total thrust for a low-level attitude controller. In this chapter, we

focus on 2D formation in the x−y plane, for which cooperative control protocols

will be designed based on a linearized model of the UAVs’ transnational dynamics

in (4.1.1a) around a hovering state and under small-angle approximations as follows
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Figure 4.1: (a) Illustration of reference frames. (b) The coordination control archi-
tecture.

[76]:

p̈xi = g(∆θi cos(ψi) + ∆ϕi sin(ψi)), (4.1.2a)

p̈y
i
= g(∆θi sin(ψi)−∆ϕi cos(ψi), (4.1.2b)

p̈zi = −g + fi/m, (4.1.2c)

in which ∆θi and ∆ϕi denote, respectively, the deviation of pitch and roll angles of

the i-th quadrotor from their equilibrium point θi = ϕi = 0. Associated with each

UAV, we define an intermediary frame {I ′} with unit axes {⃗ex′, e⃗y′, e⃗z′} and orientation

Rz(ψi) such that pi = Rz(ψi)p
′
i for vectors pi ∈ {W} and p′i ∈ {I ′} (see Fig. 4.1a).

Assuming all UAVs have consensus on a desired yaw angle ψi = ψ∗, ∀ i ∈ V , {I ′}
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will be the common reference frame of the UAVs in which the linearized equation of

motion in (4.1.2) can be represented by

p̈x
′

i = +g∆θi, (4.1.3a)

p̈y
′

i
= −g∆ϕi, (4.1.3b)

p̈z
′

i = −g + fi/m, (4.1.3c)

that shows the decoupled dynamics in the x′i, y
′
i, z

′
i directions

2. We let the reference

commands for pitch and roll angles in (4.1.3a)-(4.1.3b) be

θcmdi = +uxi /g, ϕcmd
i = −uyi /g, (4.1.4)

where uxi and u
y
i are the formation control inputs to be designed, respectively, in the x

and y directions. It is also necessary to mention that θcmdi and ϕcmd
i in (4.1.4) will be

desired setpoints for each UAV’s low-level (on-board) attitude controller, and that we

use independent PID controllers to stabilize the altitude of quadrotors (zi-dynamics in

(4.1.2c)) around a desired hovering point. Therefore, the altitude dynamics in (4.1.2c)

and the rotational dynamics in (4.1.1b) are dropped from the high-level state space of

networked UAVs and the reduced-order planar dynamics is obtained by substituting

(4.1.4) for ∆θi and ∆ϕi in (4.1.3a) and (4.1.3b) as follows:

Σi :

 ṗi(t) = vi(t)

v̇i(t) = ui(t)
, i ∈ V = {1, . . . , N}, (4.1.5)

in which pi(t) := col(pxi , p
y
i ) ∈ R2, and vi(t) := col(ṗxi , ṗ

x
i ) ∈ R2 are the stacked

positions and velocities in the x and y directions, and ui(t) := col(uxi , u
y
i ) ∈ R2

2We will omit the superscript ′ in the rest of chapter for notational simplicity.
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denotes their corresponding control input for each UAV.

Desired formation reference. We define a desired configuration (formation shape)

by specifying a set of N desired setpoints p⋆
1 ,p

⋆
2 , . . . ,p

⋆
N in R2 that form the desired

relative positions3 {p⋆
ij = p⋆

i − p⋆
j ∈ R2 | ∀ i, j ∈ V , i ̸= j}, all expressed in the

UAVs’ common frame. The formation references are transmitted to the UAVs from a

ground control center. We follow the consensus-based formation settings [109] where

the UAVs coordinate their relative positions to reach the desired relative positions

p⋆
ij’s, which is formulated as

lim
t→∞

∣∣pi(t)− pj(t)− p⋆
ij

∣∣ = 0, ∀ i, j ∈ V , (4.1.6a)

lim
t→∞
|vi(t)| = 0, ∀ i ∈ V . (4.1.6b)

Inter-UAV communication. We model the switching inter-UAV communication

by an undirected graph Gσ(t) = (V , Eσ(t)), where the vertex set V = {1, . . . , N} rep-

resents the index set of N UAVs in (4.1.1) (with their respective reduced models in

(4.1.5)), and the edge set Eσ(t) ⊂ V × V represents the communication links such

that an edge (i, j) ∈ Eσ(t) implies information exchange between the i-th and j-th

UAV in a given active mode determined by the right-continuous switching signal

σ(t) : R≥0 → Q := {1, 2, . . . ,q}, q ∈ N, at time t, with Q being the finite index set

of possible communication graphs.

Assumption 4.1.1. Throughout this chapter, we assume the inter-UAV’s communi-

cation graphs Gσ(t)’s are connected in all modes σ(t) ∈ Q.

To meet the formation constraints in (4.1.6), we use the following consensus-

3In the context of formation control, these reference states are called formation states [109] or
shape vectors [134] depending on the design methods and their underlying assumptions.
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based distributed control protocol:

ui = uni + uai , i ∈ V , (4.1.7)

uni = −α
∑

j∈N i(1)
σ

a
σ(t)
ij (pi − pj − p⋆

ij)− γvi (4.1.8)

where uni ∈ R2 denotes the nominal control input with a
σ(t)
ij being the entry of the

symmetric adjacency matrix associated with the UAVs’ switching communication

graph Gσ(t). Also, α ∈ R>0 and γ ∈ R>0 are the control gains. uai ∈ R2 is the

vector-valued malicious signal injected in the control channel of the i-th UAV.

We let an unknown subset A = {i1, i2, . . . } ⊂ V denote the set of UAVs subject

to attack uai ̸= 0, which we refer to as compromised UAVs, and we refer to the rest

of UAVs Σi’s with uai = 0, ∀ i ∈ V \ A, in (4.1.5) as uncompromised UAVs.

Network-level dynamics. Given (4.1.5), (4.1.7) and (4.1.8), the dynamics of the

networked UAVs can be represented by

Σ : ẋ = Aσ(t)x+BF
σ(t)x

∗ +BAuA, x(t0) = x0, (4.1.9)

in which, the system states and matrices are given by

x(t) = col (p1, . . . ,pN ,v1, . . . ,vN) ∈ R4N , (4.1.10a)

x∗ = col (p⋆
1 , . . . ,p

⋆
N ,02, . . . ,02) ∈ R4N , (4.1.10b)

Aσ(t) = Aσ(t)⊗I2, BF
σ(t)=−Aσ(t), BA=BA⊗I2, (4.1.10c)

Aσ(t) =

 0N×N IN

−αLσ(t) −γIN

 , BA =

 0

BA

 , (4.1.10d)

BA =
[
ei1 ei2 . . . ei|A|

]
, uA = col (uai)i∈A , (4.1.10e)
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where Lσ(t) is the Laplacian matrix of graph Gσ(t), encoding the inter-UAVs’ communi-

cation links, defined as Lσ(t) := [l
σ(t)
ij ] ∈ RN×N with l

σ(t)
ii =

∑
j ̸=i a

σ(t)
ij and l

σ(t)
ij = −aσ(t)ij

if i ̸= j. ei is the i-th vector of the canonical basis in RN corresponding to the i-th

UAV compromised by attack uai , i ∈ A.

Network-level measurements. We define the system measurements y to be com-

posed of the position of a set of UAVs, indexed byMp = {p1, p2, . . . } ⊂ V , and/or the

velocity of a set of UAVs, indexed byMv = {v1, v2, . . . } ⊂ V , that are transmitted

to a ground control center for monitoring. More precisely,

y = Cx− uS , C = C ⊗ I2, M = {Mp,Mv}, (4.1.11a)

C = diag (Cp, Cv) , (4.1.11b)

Cp = col
(
e⊤p1 , e

⊤
p2
, . . . , e⊤p|Mp|

)
∈ R|Mp|×N , (4.1.11c)

Cv = col
(
e⊤v1 , e

⊤
v2
, . . . , e⊤v|Mv|

)
∈ R|Mv|×N , (4.1.11d)

where uS = col
(
us1 ,us2 , . . . ,us|M|

)
∈R2|M| denotes the vector-valued sensory attacks

on the measurements.

Proposition 4.1.2. (Formation convergence). Assume that the formation con-

figuration is feasible and that the communication graph is connected in each mode.

Then, under the control protocol (4.1.7), and in the absence of attacks, the states of

the UAVs in (4.1.5) converge to the desired formation configuration in (4.1.6).

Proof. The proof follows a change of variables as in [106] and a convergence

analysis similar to that in [78]. A more comprehensive proof follows from the proof

of Proposition 5.2.6 of this dissertation.

Note that the UAV’s dynamics in (4.1.5) as well as the control protocol (4.1.8)

for the x and y directions are decoupled. Thus, for notational simplicity, we may use
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the following

Σ : ẋ = Aσ(t)x +BF
σ(t)x

∗ +BAuA, x(t0) = x0, (4.1.12a)

y = Cx− uS , (4.1.12b)

to represent the dynamics in (4.1.9) with its monitored states in (4.1.11b) in only

one direction of the x−y plane. Accordingly, x = col (p, v) ∈ R2N in (4.1.12) denotes

the stacked vector of all positions p = col (pi)i∈V and velocities v = col (vi)i∈V in one

direction with their corresponding formation references x∗ ∈ R2N as well as attack

inputs uA ∈ R|A| and uS ∈ R|M|, and other system matrices are given in (4.1.10d)-

(4.1.10e) and (4.1.11b) with BF
σ(t) = −Aσ(t).

4.1.3 Attack Stealthiness

We consider the worst-case scenario adversarial settings where an attacker leverages

a priori system knowledge of the UAVs’ coordination or a prerecorded sequence of

sensory data to design sophisticated stealthy attacks implementable through actuator

attacks uai(t)’s, i ∈ A in (4.1.7) and sensor attacks uS(t) in (4.1.11a).

Here, a priori system knowledge refers to the initial configuration of the net-

worked system (4.1.9) with the measurements (4.1.11) (or equivalently (4.1.12)), de-

noted by the tuple Σ̂(Âσ(t), Ĉ, σ(t) = 1) with Âσ(t) and Ĉ being the approximations

of their counterparts in (4.1.9) and (4.1.11). The amount of a priori system knowl-

edge needed for designing stealthy attacks varies for different attacks [131], and will

be quantified in Section 4.2.1.

Stealthy attacks refer to a class of adversarial attacks (cyber attacks [124, 82])

uai ’s, i ∈ A in (4.1.7) and uS in (4.1.11a) that disrupt the system’s normal operation
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while remaining stealthy in the monitored measurements (4.1.11), that is (cf. (3.1.7))

y(t;x0,uA,uS) = yn(t;xn
0,0,0), ∀ t ∈ [t0, td), (4.1.13)

where yn(t;xn
0,0,0) = Cxn is the output associated with an attack-free system with

the same dynamics as in (4.1.12a), and x0 and xn
0 are the actual and a possible initial

states, respectively. Also, t0 is the initial time instant, and td is the attack detection

time instant, i.e., the time instant at which condition in (4.1.13) no longer holds and

attacks lose their stealthiness.

4.1.4 Problem Statement: Attack Detection

We consider the attack detection problem as a hypothesis testing problem with the

null and alternative hypotheses

H0 : attack-free, vs. H1 : attacked, (4.1.14)

for which we present detection frameworks in Section 4.2.2.

4.2 Observer Design and Analysis for Attack Detection

In this section, we characterize the models for stealthy attacks on the networked

UAVs in (4.1.9) and develop centralized and decentralized detection schemes.

4.2.1 Realization of Stealthy Attacks

Given system in (4.1.9), letM in (4.1.11a) be a set of monitored states and let A be

a set of compromised UAVs subject to attack uai ̸= 0 in (4.1.7). In what follows, we

characterize stealthy attacks in terms of different realizations of (4.1.13).
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Zero-dynamics attack (ZDA). ZDA refers to the class of attacks based on the

zero dynamics of the system (Aσ(t), BA, C, σ(t) = 1) in (4.1.12) that are (nontrivial)

state trajectories excited through input directions BA and invisible at the output y,

and that can be characterized by the rank deficiency of matrix pencil

P (λo) =

λoIN − A1 −BA

C 0

 , (4.2.1)

for some λo ∈ R>0 [78].

Proposition 4.2.1. Assume the system in (4.1.9) in its initial active mode σ(t) = 1

has unstable zero dynamics, i.e., the matrix pencil P (λo) in (4.2.1) is rank deficient

for some λxo , λ
y
o,∈ R>0, and that the attacker’s a priori knowledge of the system

Σ̂(Âσ(t), Ĉ, σ(t) = 1) = (Aσ(t),C, σ(t) = 1). Then, there exists a stealthy attack

policy

uA=col (uai)i∈A , uai =[uxai(0)e
λxo t uyai(0)e

λyot ]⊤, (4.2.2)

in dynamics (4.1.9) that causes part of system states exponentially deviate from the

formation configuration in (4.1.6) while the condition in (4.1.13) holds. In this attack

model, the measurement signals are not compromised, i.e., uS = 0.

Proof. The proof follows from Proposition 3.1.4 and so is omitted here.

It is noteworthy that the assumption on a priori system knowledge in Propo-

sition 4.2.1 can be relaxed. In the cases that only a subset of the system model as a

priori is disclosed to the attacker, that is Σ̂(Âσ(t), Ĉ, σ(t) = 1) ≈ (Aσ(t),C, σ(t) = 1),

a ZDA can be realized that only affects the UAVs within the known subset of the

system, which is known as local ZDA [131].



52

Covert attack [124]. Covert attacks are a class of intrusions through input channels

BA whose covertness at the output is obtained by alteration of the measurement

signals (4.1.11a) and whose realization requires perfect knowledge of the system i.e.

Σ̂(Âσ(t), Ĉ, σ(t) = 1) = (Aσ(t),C, σ(t) = 1). Let attack policy uA(t) = col (uai)i∈A :

R≥0 7→ R2 in (4.1.9) be any continuous signal initiated at time instant ta ∈ R≥0.

Then, the attack is covert and (4.1.13) holds if the attacker alters the measurement

(4.1.11a) by

uS(t) = C

∫ t

ta

eA1(t−τ)BAuA(τ)dτ . (4.2.3)

We refer to Chapter 3 for the details of the derivation and proof.

Cooperative DoS and replay attack. It is shown that a denial-of-service (DoS),

interfering in a UAV’s communication, causes unstable and unsafe flights [25]. We

formulate a scenario where replay attacks4 [82] are implemented in cooperation with a

DoS in order to keep the DoS stealthy in the networked-level measurements (4.1.11a).

Here, the cooperatively-stealthy DoS and replay attack takes place when the UAVs

have reached the formation configuration in (4.1.6) and thus are hovering only, giving

the attacker the opportunity to record and store slow-varying measurements (4.1.11a)

for a time interval Tr ∈ R>0 before starting the attacks uA and uS respectively in

(4.1.9) and (4.1.11a) that is uA(t) = 0 and uS(t) = 0, ∀ t ∈ [t0 ta) where ta > Tr.

Then, upon starting a DoS at a time instant ta ∈ R>0, causing one or more UAVs

to lose their inter-communication and deviate from the equilibrium states (4.1.6), a

4A replay attack is the case that the attacker replays (periodically) a sequence of stored data as
real-time measurements to conceal any deviation from a normal operation.
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concurrent replay attack uS in (4.1.11a) given by

uS(t) = Cx(t)− y(t− nTr), n ∈ N, t ≥ ta, (4.2.4)

causes the stealthiness condition in (4.1.13) holds.

We note that a priori system knowledge is not required for the cooperative

DoS and replay attack that is Σ̂(Âσ(t), Ĉ, σ(t)) = ∅.

4.2.2 Observer-based Detection Framework

We present centralized and decentralized detection schemes to address the attack

detection problem formulated as in (4.1.14).

Centralized detection scheme. In the centralized detection scheme, we lever-

age switching links in the inter-UAVs’ communication topology to generate model

discrepancy rendering the stealthy attacks detectable in the measurements (4.1.11)

monitored in a ground control center. Note that the UAVs’ communication may be

subject to switching connections in two senses. First, a communication link failure

induced due to operation in uncertain environments, and second, a planned switch

(addition or removal of connections) triggered for security and performance reasons.

Regardless of the underlying causes of switching links in the inter-UAVs’ communi-

cation, we investigate their effect on the detection of stealthy attacks.

Consider the dynamical system in (4.1.12), a centralized attack detection mon-

itor (central monitor), derived based on the initial (normal) communication mode of

UAVs (σ(t) = 1), is given by



54

ΣM
O :


˙̂x = Aσ(t)x̂ +BF

σ(t)x
∗ +H(y − ŷ), σ(t) = 1,

ŷ = Cx̂, x̂(0) = 0,

r0 = y − ŷ, central residual,

(4.2.5)

where H is an observer gain such that (Aσ(t) − HC) is stable in all modes and

limt→∞ r0 = 0 in the absence of attacks (See Section 3.2.4)). Also, we let rj0(t) =

Cj(x − x̂) denote the j-th component of the residual r0 with Cj being the j-th row

vector of matrix C in (4.1.11b). Then, in the absence of attacks, an upper bound on

the residuals is obtained as follows:

|rj0(t)| ≤ k̄je
−λ̄jtω̄ + ϵ0 =: ϵj0, (4.2.6)

where k̄j and λ̄j are positive constants such that |Cje(A1−HC)t|≤ k̄je−λ̄jt, ω̄ is an upper

bound such that |e(0)|= |x(0)− x̂(0)|= |x(0)| ≤ ω̄, and ϵ0∈R>0 is a sufficiently small

constant to account for measurement noises.

Given the central monitor (4.2.5) and its corresponding thresholds in (4.2.6),

the hypothesis testing problem in (4.1.14) can be quantified either by

H0 : attack-free, if |rj0(t)| ≤ ϵj0, ∀ j ∈M, (4.2.7a)

H1 : attacked, if |rj0(t)| > ϵj0, ∃ j ∈M, (4.2.7b)

or by

r⊤0 Σ
−1
r0
r0

H0

⋚
H1

threshold, (4.2.8)

with Σr0 being the covariance of the residual r0 having a zero-mean Gaussian distri-

bution in stochastic settings where a discretized version of (4.2.5) as a Kalman filter
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is used, together with χ2 (chi-squared) tests, for attack detection [82].

As shown in [82] and here in Section 3.2.4, χ2 detectors, Kalman filters, and

Luenberger-type observers/monitors fail in detecting the stealthy attacks that were

defined in Section 4.2.1 provided the stealthiness condition (4.1.13) holds, causing a

false validation of the null hypothesis (4.2.7a). Here, based on the results in Theorem

3.2.4 we evaluate the effect of switching connections in inter-UAVs’ communication

on the violation of (4.1.13) and thus on the validation of the null hypothesis (4.2.7a).

This procedure will be presented in Algorithm 3 in Section 4.3.

Decentralized detection scheme. In the decentralized detection scheme, a set of

UAVs, equipped with on-board (local) monitors, leverage the information exchange

with their neighboring UAVs to locally detect the stealthy attacks on their neighbors.

Upon attack detection, a local monitor triggers an inter-UAV communication switch

and informs other local monitors as part of a contingency plan (see Algorithm 3).

Note that in the networked UAVs with a connected communication graph Gσ(t),

any UAV has access to the states of itself as well as the position states of the set of

its immediate neighbors N i(1)
σ (cf. control protocol (4.1.8)). Accordingly, we define,

for the i-th UAV in the network, a set of local measurements, indexed by setMi, as

follows:

Mi = N i(1)

σ ∪ {i}, σ(t) = 1 ∈ Q, (4.2.9a)

yi = Cix, and yi = Cix, Ci = Ci ⊗ I2, (4.2.9b)

Ci = diag (Cp,i, e
⊤
i ) , Cp,i = col

(
e⊤j
)
j∈Mi . (4.2.9c)

where x and x are the system states in (4.1.9) and (4.1.12), respectively. Different

from the networked measurements in (4.1.11), the local measurements in (4.2.9) are

not transmitted through compromised network channels to the control center for
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monitoring. Instead, they are locally available for each UAV and thus are not subject

to alterations by sensory attacks.

Given the local measurements (4.2.9) and dynamics (4.1.12), we define the

local attack detector Σ i
O for the i-th UAV as follows:

Σ i
O :


˙̂xi = Aσ(t)x̂i +BF

σ(t)x
∗ +H i(yi − ŷi), σ(t) ∈ Q,

ŷi = Cix̂, x̂(0) = 0,

ri = yi − ŷi, local residual,

(4.2.10)

where x̂i is the local estimation of x in (4.1.12), and H i is an observer gain such

that (Aσ(t) − H iCi) is stable in all modes. Therefore, in the absence of attacks,

limt→∞ ri = 0, and similar to the central monitor’s, the j-th component of local

residuals, rji ’s, hold an upper bound (threshold) as follows:

|rji (t)| ≤ k̄i,je
−λ̄i,jtω̄ + ϵi =: ϵji , (4.2.11)

where k̄i,j and λ̄i,j are positive constants such that |Cj
i e

(A1−HiCj
i )t| ≤ k̄i,je

−λ̄i,jt, ω̄ is

an upper bound such that |ei(0)| = |x(0) − x̂i(0)| = |x(0)| ≤ ω̄, and ϵi ∈ R>0 is a

sufficiently small constant to account for measurement noises.

Now, the hypothesis testing problem in (4.1.14) can be revisited and quantified

using local residuals as follows:

H0 : attack-free, if |rji (t)| ≤ ϵji , ∀ j ∈Mi, ∀ i ∈ D, (4.2.12a)

H1 : attacked, if |rji (t)| > ϵji , ∃ j ∈Mi, ∃ i ∈ D, (4.2.12b)

where D is the set of all the UAVs equipped with a local detector as in (4.2.5).

Note that a successful attack detection using the hypothesis testing (4.2.12)
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does depend on the sensitivity of the local residuals, ri’s, to the stealthy attacks.

In this regard, the following results characterize the capability of local detectors in

detecting stealthy attacks.

Proposition 4.2.2. Consider dynamics (4.1.12) and let the i-th UAV be equipped

with the local attack detector Σ i
O in (4.2.5) and local measurements (4.2.9). Then,

stealthy ZDA and covert attacks are detectable in Σ i
O’s residual ri if the set of com-

promised UAVs satisfies A ⊆ N i(1)
σ , σ(t) = 1 ∈ Q.

Proof. See Appendix B.2.

Note that the i-th UAV’s local monitor, Σ i
O, i ∈ D secures the networked

UAVs against the stealthy attacks on its neighbors’ set N i(1)
σ . Therefore, the problem

of interest is to determine a set D ⊆ V of local detectors Σ i
O’s, i ∈ D such that they

cover the entire set V of UAVs.

Proposition 4.2.3. Consider the networked UAVs with the dynamics in (4.1.12)

subject to stealthy attacks on a set of compromised UAVs A ⊆ V and let the set

D := {i ∈ V |
⋃
i∈D

N i(1)

σ = V , σ(t) = 1 ∈ Q}, (4.2.13)

represent the set of UAVs equipped with local attack detectors Σ i
O’s in (4.2.5). Then,

stealthy ZDA and covert attacks undetectable in Σ i
O’s residual ri, ∀ i ∈ D, is impossi-

ble, securing the entire network set V of UAVs against stealthy attacks.

Proof. See Appendix B.3.
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Algorithm 2 Attack detection by the i-th local monitor, i ∈ D
Input: Σ i

O, i ∈ D in (4.2.5) and (4.2.13), yi in (4.2.9), ϵji in (4.2.11)

1: procedure local hypothesis testing (4.2.12)

2: while H0 in (4.2.12a) do

3: Compute local residual ri as in (4.2.5)

4: Compute corresponding thresholds ϵji as in (4.2.11)

5: if |rji | > ϵji then

6: Reject the null hypothesis H0 in (4.2.12a) ▷ Stealthy

attack is locally detected.

7: cooperate with other local detectors in D to

run a contingency plan for the entire network.

8: end if

9: end while

10: end procedure
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Algorithm 3 Topology switching for centralized attack detection

Inputs: local observer: Σ i
O, i ∈ D in (4.2.5) and (4.2.13), yi in (4.2.9), ϵji in (4.2.11);

centralized observer: ΣM
O in (4.2.5), y in (4.1.11), ϵj0 in (4.2.6)

1: procedure Central hypothesis testing (4.2.7)

2: Run Algorithm 2

3: if H1 in (4.2.12b) then

4: Switch to a new comm. mode σ(t) ∈ Q \ 1 ▷ Stealthy

attack has been detected locally.

5: end if

6: while H0 in (4.2.7a) do

7: Compute central residual r0 as in (4.2.5)

8: Compute corresponding thresholds ϵj0 as in (4.2.6)

9: if |rj0| > ϵj0 then

10: Reject the null hypothesis H0 in (4.2.7b) ▷ Stealthy

attack is detected globally at the control center.

11: end if

12: end while

13: end procedure

It is worth mentioning that a trivial solution for (4.2.13) is D = V that is all

of the UAVs are equipped with a local detector, although this set can be optimally

selected.

Given Propositions 4.2.2 and 4.2.3, one can verify that the networked UAVs

can be secured against stealthy attacks using a set of local monitors, given by (4.2.5),

that locally detect stealthy attacks, addressing problem (4.2.12). A procedure for this

local hypothesis testing will be presented in Algorithm 2 in Section 4.3.
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Figure 4.2: Multi-UAV’s formation and communication topology. (a) Formation
references specifying a V-shape in the x−y plane. (b) V-shape formation of UAVs. (c)-
(f) Inter-UAV’s communication graph Gσ(t) with four modes σ(t) = {1, 2, 3, 4} =: Q.
UAVs initially communicate in mode σ(t) = 1 and may switch to other modes σ(t) =
{2, 3, 4} if activated by a local detector. Blue nodes indicate the UAVs equipped with
a local monitor and orange nodes specify the UAVs monitored by the ground control
center.

4.3 Experimental Results

We conducted a set of experiments that served two purposes. First, the evaluation

of the stealthiness of intrusions/deception attacks, described in Section 4.2.1, on the

wireless communication network of a team of quadrotor UAVs in real-time practical

settings. Second, the performance evaluation of the detection schemes is presented in

Section 4.2.2.
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4.3.1 Experimental Setup

Our experimental setup consists of a team of five homogeneous quadrotors (Tello

Drones5), shown in Fig. 4.2b, flying in a 6 m× 4 m× 3 m flight area that is equipped

with a VICON6 motion capture system with 10 cameras. The VICON system provides

the ground truth position and orientation of each UAV at 50 Hz for a central PC

running Ubuntu 20.04 with ROS Noetic.

In our experiments, we use the VICON system’s ground truth data available in

the central PC to compute the high-level formation control commands that are sent

to each UAV at 50 Hz and to run the central and local monitors, presented in Section

4.2.2. The central PC transmits the high-level formation control commands to the

UAVs through different Wi-Fi channels and the UAVs’ on-board attitude controllers

use the received control commands to stabilize and steer the UAVs to their desired

pose (see Fig. 4.1b). This connection setup allows us to replicate the peer-to-peer

communication of the UAVs and also to implement stealthily intrusions on the Wi-Fi

channels in a controlled setting.

4.3.2 Results

We conducted several experiments that serve as proof of concept of the real-world

applicability of the proposed attack detection methods in multi-UAV cooperation

settings. In these tests, the UAVs are tasked with achieving a V-shape formation.

The special configuration of the V-shape formation and a picture of its real-world

implementation are shown in Figs. 4.2a and 4.2b, respectively.

A video of our experiments is available at https://www.youtube.com/watch?

v=lVT_muezKLU.

5https://www.ryzerobotics.com/tello.
6https://www.vicon.com.

https://www.youtube.com/watch?v=lVT_muezKLU
https://www.youtube.com/watch?v=lVT_muezKLU
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Additionally, our framework is open-source and available at https://github.

com/SASLabStevens/TelloSwarm.

In our experiments, the UAVs, indexed by V = {1, 2, 3, 4, 5}, coordinate using

the control protocol (3.1.3b), initially in communication mode, σ(t) = 1, shown in

Fig. 4.2c, to achieve the V-shape formation. The UAVs also have consensus on their

yaw angle ψi = ψ∗ = 0, ∀ i ∈ V as well as their hovering altitude. We select the

position of UAVs 3 and 5 as the network-level monitored states at the ground control

center that isMp = {3, 5} andMv = ∅ in (4.1.11). These measurements are used in

the realization of the central monitor (attack detector ΣM
O ) in (4.2.5) and its residuals

in (4.2.6). We also let D = {1, 3} in (4.2.13), that is UAVs 1 and 3, which have

the respective set of neighbors N 1
σ(t)=1 = {3, 4, 5} and N 3

σ(t)=1 = {1, 2, 5}, and the

local measurements yi(or yi), i ∈ D in (4.2.9), are selected as the host UAVs for local

monitors (attack detectors Σ i
O’s) in (4.2.5). Accordingly, the condition (4.2.13) holds

which in turn guarantees the local monitors of UAVs 1 and 3 are sufficient to locally

detect the stealthy attacks on the entire network of UAVs in a decentralized manner.

Also, as described earlier in Sections 4.1.2, the UAVs follow a decoupled dynamics

in the x and y directions, and therefore we implement central and local monitors

independently for the x- and y-direction dynamics based on the discretized models of

(4.1.12), (4.2.5), and (4.2.5) with the sampling time Ts = 0.02 sec.

In the following, we present the results of attack detection through the central-

ized detection scheme with central (global) hypothesis testing (4.2.7) and the central

monitor (4.2.5) as well as through the decentralized detection scheme with local hy-

pothesis testing (4.2.12) and the local monitors of UAVs 1 and 3. The procedure

of the local hypothesis testing is presented in Algorithm 2 and that of the central

hypothesis testing is presented in Algorithm 3.

Stealthy zero-dynamics attack. We conducted two experiments evaluating

https://github.com/SASLabStevens/TelloSwarm
https://github.com/SASLabStevens/TelloSwarm
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the effectiveness of the central and local monitors in the detection of stealthy zero-

dynamics attacks (ZDA). In the first experiment, UAVs 1, 4, and 5 are compromised

such that their control channels are subject to the discretized version of ZDA signals in

(4.2.2) as uA = col (uai)i∈A, A = {1, 4, 5} with uai = [uxai(0)e
λxo (kTs) uyai(0)e

λyo(kTs) ]⊤,

λxo = λyo = 0.5, k ∈ Z≥0,

uxa(0) = [uxa1(0) u
x
a4
(0) uxa5(0)]

⊤ = [−2.34xa4(0) 10.24xa4(0) −2.34xa4(0)]⊤,

uya(0) = −0.7uxa(0), xa4(0) = 0.0086, and the starting time t = (kTs) = 0, k = 0. The

network-level measurements (4.1.11) with Mp = {3, 5} and Mv = ∅, on the other

hand, are not subject to sensory attacks that is uS = 0.

In the first experiment, as shown in Fig. 4.3a, all the UAVs start from some

initial positions and coordinate to achieve the desired formation while the stealthy

ZDA steers UAV 4 away from its desired configuration that meets (4.1.6). This effect

has been illustrated in Fig. 4.3b showing the relative positions of the UAVs as well

as their desired values in the y direction over time. It is necessary to note that UAV

4 hits the safety net enclosing the indoor flight area at t ≈ 9.8 sec.

In terms of attack detection, Figs. 4.4a and 4.4b show the residuals of local

monitors Σ i
O’s, i ∈ {1, 3} in (4.2.5) for UAVs 1 and 3, respectively. Also, Fig. 4.4c

shows the residuals of the central monitor ΣM
O in (4.2.5) available in the control

center. One can verify that the local monitor of UAV 1, Σ 1
O, running Algorithm 2,

has detected the stealthy ZDA in a timely manner (t = 3.22 sec) that is before UAV

4 collides with the safety net of the flight area at t ≈ 9.8 sec. However, the ZDA

remains stealthy in the residuals of the UAV 3’s local monitor, Σ 3
O, and those of

the central monitor running Algorithm 3, regardless of the switch in the inter-UAV’s

communication topology from mode 1 to mode 4 (see Fig. 4.2) that is triggered by
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the local monitor Σ 1
O at t = 3.22 sec. This is due to the fact that switching from mode

1 to mode 4 does not meet the necessary conditions required for a topology switching

to render stealthy attacks detectable for the central monitor in (4.2.5). The details

of such conditions have been studied in Theorem 3.2.4.

In the second experiment, with the results shown in Fig. 4.5, the UAVs are

under the same ZDA as in the first experiment expect xa4(0) = 0.012. The local

monitor Σ 1
O successfully detects the ZDA at t = 5.08 sec (see Fig. 4.5b) and then

triggers a switch in the UAVs’ communication from mode 1 to mode 3 (cf. Fig.

4.2) that as opposed to Experiment 1, this topology switching results in detection of

stealthy ZDA by the central monitor ΣM
O at t = 5.6 sec (see Fig. 4.5c).

It is necessary to note that any topology switching in the inter-UAV commu-

nications results in a discrepancy between the actual dynamics of networked UAVs

and its nominal counterpart that is used by the attacker to design stealthy attacks.

Yet, the model discrepancy in Experiment 1 did not interfere with the stealthiness

of ZDA in the central monitor’s residuals while it renders ZDA detectable in the

central monitor’s residuals in Experiment 2. These results indicate that not only

zero-dynamics attacks (ZDA) can be implemented in real-time on networked UAVs

with partial measurements, but they also can remain stealthy regardless of switches

in the inter-UAVs’ communication topology. Theoretical results to detect stealthy

ZDA through topology switching in networked systems with full-state measurements

and with partial measurements can be found, respectively, in [78] and Section 3.2.

Covert attack. Similar to the ZDA case, we evaluated the detection of covert

attacks on networked UAVs subject to topology switching by using the local monitors

Σ 1
O and Σ 3

O, and the central monitor ΣM
O . In this experiment, a covert attack, uai , i ∈

A = {2}, in the form of a ramp signal with a slope of 3 Deg , as the roll and pitch

angles’ perturbation, and the starting time of ta = 5 sec is injected through the
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control channel of UAV 2. The covert attack’s effect on the UAVs’ formation is

shown in Fig. 4.6a. As illustrated, all of the UAVs have deviated from their desired

formation configuration that meets (4.1.6). The effect of this deviation/perturbation

on the measurements y in (4.1.11) is simultaneously canceled out by implementing

the discretized version of the sensory attack uS given in (4.2.3). Fig. 4.6b illustrates

how the alteration of actual measurement y of the monitored UAV 3 using the sensory

attack uS gives rise to a false state estimation by the central monitor ΣM
O , rendering

the injected attack covert in the central residuals. The local monitors, however, are

not subject to such alterations and thus are capable of detecting the covert attack in

a timely manner as shown in Fig. 4.6c for the local monitor Σ 3
O of UAV 3. We note

that the local monitor Σ 3
O triggers a topology switch from mode 1 to mode 2 (cf. Fig.

4.2) at t = 6.4 sec to make the covert attack detectable in the residuals of the central

monitor ΣM
O . However, the attack remains stealthy in the central residuals, shown in

Fig. 4.6d, regardless of topology switching. The results, consistent with those in the

ZDA case, show the outperformance of the decentralized detection scheme (Algorithm

2) over the centralized detection scheme (Algorithm 3). It is worth mentioning that

one can leverage a larger number of switching communication links on which the

centralized monitor relies to improve the performance of the centralized detection

scheme. However, this solution raises other challenges such as switching-induced

unobservability as well as communication overhead. In the case of the decentralized

detection scheme that relies on the network model of UAVs, scalability is a concern

for larger teams of UAVs, for which clustering-based solutions such as the one in

Section 3.2 can be applied.
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(a) UAVs’ position trajectories in the x−y plane.
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(b) Coordination of UAVs in the y direction.

Figure 4.3: Experiment 1: ZDA on UAVs 1, 4, 5 and topology switching from mode
1 to 4. (a) UAVs’ position trajectories in the x−y plane with the colorbars quan-
tifying the timespan. The × markers and the colored circles show, respectively, the
UAVs’ initial position and final position during the experiment. Finally, the gray
lines visualize the V-shape formation achieved by the final position of the UAVs. (b)
The relative positions of UAVs in the y direction, corresponding to the inter-UAV
communication links in mode σ(t) = 1, shown in Fig. 4.2c. Also, the dashed lines,
labeled by p∗

ij, i, j ∈ V , denote the desired relative positions based on the formation
references in Fig. 4.2a.
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(a) Residuals of local monitor Σ 1
O run on UAV 1. The stealthy ZDA is locally detected at

t = 3.22 sec.
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(b) Residuals of local monitor Σ 3
O run on UAV 3.
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(c) Residuals of central monitor ΣM
O run on the control center.

Figure 4.4: Experiment 1: ZDA on UAVs 1, 4, 5 and topology switching from mode
1 to 4, which is triggered by local monitor Σ 1

O at t = 3.22 sec. [Continued on next
page]
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Figure 4.4: [cont’d]: (a)-(b) The notation ri1, i ∈ {1, 3, 4, 5} (ri3, i ∈ {1, 2, 3, 5}),
denotes the residual of position estimation for the UAV 1’s (3’s) neighbors obtained
by its local monitor Σ 1

O (Σ 3
O) in the x and y directions with the respective thresholds

ϵx1 (ϵx3) and ϵ
y
1 (ϵy3) as given in (4.2.11). (c) The notation ri0, i ∈ {3, 5}, denotes the

residual of position estimation for UAVs 3 and 5 by the central monitor ΣM
O in the x

and y directions with the threshold ϵ0 as given in (4.2.6).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x-position [m]

−0.5

0.0

0.5

1.0

1.5

y
-p

os
it

io
n

[m
]

UAV 1

UAV 2

UAV 3

UAV 4

UAV 5

0.0

2.5

5.0

7.5

10.0

12.5

T
im

e
[s

ec
]

(a) UAVs’ position trajectories in the x−y plane. The central monitor ΣM
O detects the ZDA at

t = 5.6 sec and ends the experiment.
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(b) Residuals of local monitor Σ 1
O run on UAV 1. The stealthy ZDA is locally detected at

t = 5.08 sec.

Figure 4.5: Experiment 2: ZDA on UAVs 1, 4, 5 and topology switching from mode
1 to 3, which is triggered by local monitor Σ 1

O at t = 5.08 sec. (a) UAVs’ position
trajectories in the x−y plane with the same annotations as in Fig. 4.3a. (b) The
residuals of local monitor Σ 1

O with the same annotations as in Figs. 4.4a and 4.4c,
respectively. [Continued on next page]
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(c) Residuals of central monitor ΣM
O run on the control center. The stealthy ZDA is detected at

t = 5.6 sec using Algorithm 3.

Figure 4.5: [cont’d]: (c) The residuals of the central monitor ΣM
O with the same

annotations as in Figs. 4.4a and 4.4c, respectively.
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(a) UAVs’ position trajectories in the x−y plane.
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(b) Realization of stealthiness condition (4.1.13) using uS in (4.2.3) with the starting time ta =
5 sec.

Figure 4.6: Experiment 3: covert attack on UAV 2 and topology switching from
mode 1 to 2, which is triggered by local monitor Σ 1

O at t = 6.4 sec. (a) UAVs’
position trajectories in the x−y plane with the same annotations as in Fig. 4.3a,
except the gray lines that visualize the V-shape formation achieved by the UAVs at
ta = 5 sec, the starting time of the covert attack. (b) The effect of measurement
alteration using sensory attack uS starting at ta = 5 sec. [Continued on next page]
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(c) Residuals of local monitor Σ 3
O run on UAV 1. The stealthy ZDA is detected at t = 6.4 sec

using Algorithm 2.
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(d) Residuals of central monitor ΣM
O run on the control center.

Figure 4.6: [cont’d]: (c)-(d) The residuals of local monitor Σ 3
O and central monitor

ΣM
O with the same annotations as in Figs. 4.4a and 4.4c, respectively.
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Chapter 5

Distributed Deception-Attack Detection for Resilient Cooperation of

Multi-Robot Systems with Intermittent Communication

This chapter1 extends the results of previous chapters by considering both decep-

tion attacks and Denial-of-Service (DoS) attacks as well as arbitrarily time-varying

(switching) communication networks. We consider time-varying communication net-

works subject to intermittent connections, which may be caused by DoS attacks,

rendering the information exchange unreliable. We will show if the arbitrarily time-

varying (switching) communication network maintains its connectivity only in an

integral sense, uniformly in time, the following results are guaranteed:

In Section 5.2, we characterize and provide explicit bounds for the network

resilience to both intermittent and permanent disconnections. The former is relevant

toDoS attacks, and the latter is relevant to deception attacks. We also provide explicit

bounds for uniformly exponentially fast convergence of the multi-agent systems in the

presence of a class of DoS attacks as well as for their bounded-input-bounded-output

(BIBO) stability in the presence of a class of deception attacks. Compared to the

previous results [144, 37, 135], the network resilience is quantified explicitly based on

algebraic connectivity in an integral sense, and the connectivity and stability analyses

for both types of attacks are in the continuous-time domain.

In Section 5.3, we characterize the system vulnerability to a class of stealthy

deception attacks, based on zero dynamics of the switched systems, and provide

explicit worst-case bounds on the number of malicious agents subject to deception

1This chapter is adapted from a publication by the author of this dissertation. © 2024 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2024, August). Distributed
Detection of Adversarial Attacks for Resilient Cooperation of Multi-Robot Systems with Intermittent
Communication. Provisionally Accepted at IEEE Transactions on Control of Network Systems.
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attacks that can be detected in a given network. Compared to the previous results

[97, 37], we show some of these well-known bounds can be improved, provided some

extra information on the local dynamics is available only in an integral sense. We

then present a distributed and reconfigurable framework with theoretical guarantees

for the distributed detection of malicious agents introducing deception attacks. Com-

pared to centralized frameworks [78], our framework relies solely on locally available

information in an integral sense, making it well-suited for mobile agent applications

subject to intermittent connectivity.

Additionally, in Section 5.4, we present an algorithmic framework for detaching

from the detected set of malicious agents and for achieving resilient coordination and

cooperation.

5.1 Problem Formulation

5.1.1 System Dynamics

Consider the multi-agent (robot) system in (3.1.4a), and let y i
σ denote the state

measurements available for the i-th mobile agent consisting of the (relative) position

states of a set of neighboring agents {i}∪N i(1)
σ ⊆ Ii ⊆ V (where Ii will be determined

later, and is different than (3.1.4b), (3.2.1), and (3.1.5)) and the velocity state vi.

Then, we have

Σσ(t) :

 ˙̃p

v̇

 =

 0 I

−αLσ −γI


p̃
v

+

 0

IA

uA

=: Aσx+BAuA, x0 = x(t0), (5.1.1)

y i
σ = col(p̃j∈Ii ,vi) =: C i

σx. (5.1.2)
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It is necessary to note that the nature of arbitrary switching modes σ(t) ∈ Q,

induced by the unreliability of network Gσ(t), renders a priori unknown knowledge of

system matrix Aσ in (5.1.1). This imposes stability and observability challenges in

distributed settings which will be addressed in Sections 5.2 and 5.3.

5.1.2 Communication Topology

The switching2 communication network, Gσ(t) = (V , Eσ(t)), σ(t) ∈ Q, with a piece-

wise constant and right-continuous switching signal σ(t) : R≥0 → Q, is considered to

the represent time-varying communication links, intermittent communication, and

lossy datalinks between mobile agents. We let the subgraphs Gi′σ(t) = (V i′σ , E i
′
σ ),

Ḡiσ(t) = (V i′σ , Ē iσ), and Gi
′′

σ(t) = (V i′′σ , E i
′′
σ ), denote, respectively, the 1-hop proximity

communication network, the 1-hop induced communication network, and the 2-hop

proximity communication network of the i-th mobile agent with its k-hop neighbors,

k ∈ {1, 2}, for which the vertex and edge sets are defined as

V i′σ := {i} ∪ N i(1)

σ , Ē iσ := {i} × N i(1)

σ ⊆ Eσ, (5.1.3a)

Ē iσ :=
(
V i′σ × V i

′

σ

)
∩ Eσ, (5.1.3b)

V i′′σ := V i′σ ∪N i(2)

σ , E i′′σ := E i′σ ∪
((
N i(1)

σ ×N i(2)

σ

)
∩ Eσ

)
. (5.1.3c)

Having defined the k-hop neighbors, the Laplacian matrix Lσ can be partitioned

according to the incoming flow of information to the agent i ∈ V . Let i ∈ V be the

first agent and accordingly V i′σ come first, N i(2)
σ come second, and V \ {V i′σ ∪ N i(2)

σ }
2interchangeably time-varying
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come last, then Lσ can be rewritten as

Lσ =


L
(11)
σ L

(12)
σ 0

L
(21)
σ L

(22)
σ L

(23)
σ

0 L
(32)
σ L

(33)
σ

 , L′′σ =

 L
(11)
σ L

(12)
σ

L
(21)
σ L(′′ \′)

σ

 , (5.1.4a)

L(11)σ = L′σ + L̃σ,

[
L̃σ L

(12)
σ

]
1 = 0, (5.1.4b)

L(22)σ = L(′′ \′)
σ + ˜̃Lσ, [˜̃Lσ L

(23)
σ

]
1 = 0, (5.1.4c)

in which L′σ is the Laplacian matrix of the 1-hop proximity graph Gi′σ(t) = (V i′σ , E i
′
σ ).

L̃σ encodes the edge set Ē iσ \ E i
′
σ , that is the set of existing edges between the 1-hop

neighbors with one another, and the set of existing edges between the 1-hop neighbors

and the 2-hop neighbors. L(′′ \′)
σ is the Laplacian matrix encoding the edge set E i′′σ \E i

′
σ

that is the connections of the 2-hop neighbors with the 1-hop neighbors, and ˜̃Lσ
encodes the existing edges between the 2-hop neighbors with one another, and those

existing between the 2-hop neighbors and the rest, i.e. V \ {V i′σ ∪ N i(2)
σ }. Finally, L′′σ

is the Laplacian matrix associated with the 2-hop proximity graph Gi′′σ(t) = (V i′′σ , E i
′′
σ ).

5.1.3 Adversary Model

We consider two classes of adversarial attacks, namely deception attacks and denial-

of-service (DoS) attacks.

Deception attacks. In this model, a set of malicious agents A ⊂ V , as

described in Section 5.1.1, inject some undesirable data 0 ̸= ua
i (t) ∈ Lpe, ∀ i ∈

A, ∀ t ∈ [tai , ∞), where tai ∈ R≥0 is the activation time instant in (3.1.3). Among the

well-studied deception attacks including data injection attack [36, 67], zero-dynamics

attacks (ZDA) [97, 78, 5], covert attack [42, 4], replay attack [110], and Byzantine

attacks [67], our analysis covers the first two models. Similar to [67, 37], the worst-case
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upper bounds on the number of malicious agents in the network are parameterized

as follows:

Definition 5.1.1. (F -local and F -total adversary sets). The unknown adversary

set A ⊂ V is termed F -total if |A| ≤ F , where F ∈ Z≥0, that is there exist at most

F malicious agents in the network with 0 ̸= ua
i (t) ∈ Lpe in (3.1.3). The set A ⊂ V is

termed F -local if ∀ i ∈ V \A, |A∩N i(1)| ≤ F , where F ∈ Z≥0 and the aggregated set

of 1-hop neighborsN i(1) = {j ∈ V | (i, j) ∈ EµT} with the edge set EµT (to be specified)

defined uniformly over the time interval [t, t + T ), ∀ t ∈ R≥0, ∃T ∈ R>0. i.e., each

cooperative agent has no more than F malicious agents with 0 ̸= ua
i ∈ Lpe in (3.1.3)

among its aggregated set of 1-hop neighbors defined uniformly in time.

An explicit upper bound on F , and the explicit definition of the edge set EµT

will be given in Section 5.3.

Remark 5.1.1. The F -local model presented herein is a relaxation of the model in

[67, 146] that required the upper bound inequality holds point-wise in time. (cf. the

discrete-time version in [37, Sec. 4.4] and [113]).

Denial-of-Service (DoS) attack. We consider a time-constrained (dis-

tributed) DoS attack on the communication network Gσ(t) = (V , Eσ(t)) that causes the

intermittent unavailability of (state) information exchange, either partially or fully

[2, 34, 74]. We take into account such DoS attacks by the inclusion of some modes

σ(t) ∈ Qa ⊂ Q for the network Gσ(t) where an unknown subset of edges Eσ(t) are

nullified. Accordingly, Gσ(t)∈Qa is at most disconnected as a consequence of nullified

(blocked) edge links, that is

∃ Eaσ(t) =
{
(i, j) ∈ Eσ(t) | (i, j) = ∅, i, j ∈ V

}
s.t.

λ2(Lσ(t)) = 0, ∀ t ∈ T a = {T a
k}nk∈Z≥0

, (5.1.5)
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where λ2(Lσ(t)) is the algebraic connectivity at t, T a = {T a
k}nk∈Z≥0

with k ≤ n ∈

Z≥0, denotes a finite sequence of n DoS attacks having bounded but not necessarily

contiguous time intervals T a
k ’s, where T a

k = [tk, tk + T a
k ) with T a

k ∈ R>0 and σ(tk) ∈

Qa.

We will show that if the set T a in (5.1.5) is sufficiently small the cooperation

objective (5.1.8) is achievable.

Remark 5.1.2. We note that the time-constrained DoS attack model (5.1.5) is con-

sistent with the assumptions and discussions in [34, 74, 2]. It is also worth mentioning

that blocking the communication channels (i.e., nullifying part of the edge set Eσ(t))

can take place independently for each communication link in the communication set-

tings with multiple transmission channels [74] (e.g., P2P communication over IEEE

801.11s networks) or centrally for a large group (or all) of transmission channels in

the single-channel architectures [34, 2].

5.1.4 Problem Statement

Consider the multi-agent system Σσ(t) in (5.1.1) with an unreliable communication

network, Gσ(t), σ(t) ∈ Q, subject to the DoS attack in (5.1.5) as well as deception

attacks that are injected by a set of malicious agents A ⊂ V . The problems of

interest are distributed detection of the set of malicious agents A, and the resilient

cooperation of the remaining cooperative agents V \ A.

Distributed attack detection. We cast the attack detection problem as a

form of distributed hypothesis testing problem where each mobile agent Σi in (3.1.1)

locally verifies either the null hypothesis H0 : attack-free, if N i(1)
σ ∩ A = ∅ or the

alternative hypothesis H1 : attacked, if N i(1)
σ ∩ A ̸= ∅. For this purpose, we equip

each Σi in (3.1.1) with a reconfigurable local attack detector module of the form
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ΣO

Vi′′
σ

: r iσ(t) = Oi
σ(y

i
σ), in which Oi

σ(·) is a stable linear filter (e.g., a Luenberger-type

observer) in each mode σ ∈ Q, whose explicit expression will be given in Section 5.3.3.

Also, its inputs and outputs are, resp., y i
σ in (5.1.2) and the residual r iσ(t) = y i

σ− ŷ i
σ,

where ŷ i
σ is the estimation of y i

σ. Given the switching nature of Σσ(t) in (5.1.1) with

possibly unknown modes of Gσ(t) subject to the DoS attack in (5.1.5), it is necessary

to note that the realization and reconfiguration of ΣO

Vi′′
σ

, rely on (a minimum amount

of) local information that is available intermittently not point-wise in time. This

contains the set of 2-hop information available for each agent i ∈ V , defined as

Φ i
σ(t) =

{
Gi′′σ(t) = (V i′′σ , E i

′′

σ ), pj(t), ∀ j ∈ V i
′′

σ ,vi(t)
}
, (5.1.6)

where the topological knowledge Gi′′σ(t), defined by (5.1.3c), can be either obtained

via information exchange with only the 1-hop neighbors N i(1)
σ , i ∈ V upon network

availability or be pre-programmed as in autonomous monitoring scenarios [144, 78].

We remark that we do not explicitly address the case of F -total Byzantine agents

that transmit inconsistent information to their neighbors, and refer to [67].

The attack detector module ΣO

Vi′′
σ

allows for quantification and verification of

the simple null and alternative hypotheses using the local residuals, r iσ(t)’s, as follows:

H0 : attack-free, if ∀ j ∈ N i(1)

σ , ∀ i ∈ V \ A, |ri,jσ (t)| ≤ ϵi,jσ , ∀ t ∈ R≥0, (5.1.7a)

H1 : attacked, if ∃ j ∈ N i(1)

σ , ∃ i ∈ V \ A, |ri,jσ (t)| > ϵi,jσ , ∃ t ∈ R≥0, (5.1.7b)

where ri,jσ (t) is the j-th component of the residual signal of the local attack detector

ΣO
V′′
i
, and ϵi,jσ ’s are the corresponding (dynamic) thresholds that will be defined later

in Section 5.3.3.
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Remark 5.1.3. The detection scheme herein is also known as change detection and

sequential hypothesis testing in stochastic settings [16, 138] and has been used for

observer-based attack detection in distributed settings [42]. For any given class of

dynamical systems subject to deception attacks, the choices of thresholds and the norm

of the residuals are of significant importance to the trade-off between false alarms,

namely false positive alarms and false negative alarms that give rise to a class of

stealthy deception attacks (see [131, 147], and the references therein for a review).

Resilient cooperative control. Resilient cooperation refers to detaching

from the detected set of malicious agents A ⊂ V and convergence of the remaining

cooperative mobile agents, V \ A, to a modified version of the cooperation objective

in (3.1.2), which is defined as:

lim
t→∞

∣∣pi(t)− pj(t)− p⋆
ij

∣∣ = 0, ∀ i, j ∈ V \ A, (5.1.8a)

lim
t→∞
|vi(t)| = 0, ∀ i ∈ V \ A, (5.1.8b)

for which the cooperative agents communicate over the induced network Ḡσ(t) =

(V̄ , Ēσ(t)) defined3 as

V̄ := V \ A, Ēσ(t) := Eσ(t) ∩ (V̄ × V̄). (5.1.9)

Then, the problem of interest is to investigate under what conditions the resilient

cooperation (5.1.8) over Ḡσ(t) is achievable.
3We note that the communication network of the cooperative agents V̄ does not necessarily need

to be an induced subgraph of Gσ(t) for which the communication links admit Ēσ(t) = Eσ(t) ∩ (V̄ × V̄).
It is possible to have designed and pre-programmed other communication typologies as part of a
contingency plan upon attack detection. This, however, is a context-dependent problem and is
outside the scope of this dissertation.
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5.2 Network Resilience and Stability analysis

In this section, we investigate the network resilience to intermittent and permanent

disconnections, as well as the stability and convergence of the multi-agent system in

(5.1.1) with the unreliable communication network Gσ(t). In what follows, we present

some assumptions on the communication network Gσ(t) = (V , Eσ(t)) of the system in

(5.1.1)-(5.1.2), allowing for the analysis of network resilience and system stability.

Assumption 5.2.1. It is assumed that there exists a finite number of switches in any

finite time interval. This allows us to rule out the Zeno phenomenon. Formally, there

exists a finite sequence {tk}mk=0 = t0, . . . , tm, where m ∈ Z≥0 and m > n in (5.1.5),

that forms the set of m time instants in the ascending order of occurrence during any

given time interval [t0, t0+T ), where t0 ∈ R≥0, and T ∈ R>0 are defined such that T >

(tm−t0) ≥ 0. Accordingly, the m+1 (possibly unknown) modes σ(t0), σ(t1), . . . , σ(tm)

({σ(tk) ∈ Q′ ⊆ Q, k ∈ {0, . . . ,m}}) denote the respective active modes of Σσ(t) in

(5.1.1) during the interval [t0, t0 + T ).

Remark 5.2.1. The switches, in Assumption 5.2.1, may include proactive (pre-

programmed) and reactive topology switching, random link dropouts, and adversar-

ial link dropouts. It is also worth mentioning that, the assumption of finitely many

switching modes does not generally pose practical challenges since it is compliant with

the nature of establishing communication links in the case of topology switching and

random link dropouts. It is also known that in the case of adversarial disruption

(e.g., DoS attacks), the attacker’s capability is limited in terms of the frequency and

duration of occurrence [34].

Definition 5.2.1. ((µ, T )-PE connected communication network). A commu-

nication network Gσ(t) = (V , Eσ(t)) is called (µ, T )-PE connected with some T ∈ R>0
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and µ ∈ (0, N ] if its associated Laplacian matrix Lσ(t) satisfies a (µ, T )-Persistence of

Excitation (PE) condition of the form

1

T

∫ t+T

t

QLσ(τ)Q
⊤ dτ ≥ µIN−1, ∀ t ∈ R≥0, (5.2.1)

where the matrix Q ∈ R(N−1)×N is defined such that

Q1N = 0, QQ⊤ = IN−1, Q
⊤Q = IN −

1

N
1N1

⊤
N . (5.2.2)

Assumption 5.2.2. The communication network Gσ(t) of the system Σσ(t) in (5.1.1)

is assumed to be (µ, T )-PE connected.

Remark 5.2.2. The (µ, T )-PE connectivity has appeared in the literature in different

forms [32, 3]. It relaxes the strict point-wise in-time connectivity to the case of con-

nectivity only in the integral sense of (5.2.1), whereby positive algebraic connectivity

in the integral sense that λ2(
1
T

∫ t
t−T Lσ(τ) dτ) > µ holds ∀ t ≥ T and ∃µ, T ∈ R>0 as in

(5.2.1). This relaxation allows for modeling a class of networks including periodically

switching networks, [78], periodic with intermittent communications [113, 144], and

jointly connected networks [108], as well as for quantifying resilience to the deception

and DoS attacks defined in Section 5.1.3. See Proposition 5.2.6. Finally, the matrix

Q ∈ R(N−1)×N in (5.2.2) can be recursively obtained as follows [32, rmk. 2]:

Qk =


√

k−1
k
− 1√

k(k−1)
1⊤
k−1

0 Qk

 , (5.2.3a)

Q⊤
kQk =

 k−1
k

− 1
k
1⊤
k−1

− 1
k
1k−1 Q⊤

k−1Qk−1 +
1

k(k−1)
1k−11

⊤
k−1

 , (5.2.3b)
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where k ∈ {2, . . . , N} with the initial matrix Q2 =

[
1/
√
2 −1/

√
2

]
and the final

matrix QN =: Q ∈ R(N−1)×N .

We next show the equivalence of the (µ, T )-PE condition presented herein

and that in [3] for ensuring a positive algebraic connectivity in the integral sense.

The equivalent conditions will later be used in the stability and robustness analyses,

particularly in Theorem 5.2.5 and Lemma 5.3.2.

Lemma 5.2.3. (Equivalence of (µ, T )-PE conditions for Network Connec-

tivity). Consider a (µ, T )-connected network Gσ(t) = (V , Eσ(t)) with the associated

Laplacian matrix Lσ(t). The following statements are equivalent:

1. The condition (5.2.1) holds.

2. There exist µm, µM , T ∈ R>0 such that ∀ t ∈ R≥0,

µmIN ≤
1

T

∫ t+T

t

(
Lσ(τ) +

1N1
⊤
N

N

)
dτ ≤ µMIN . (5.2.4)

3. There exist δ, T ∈ R>0 such that the set of edges

EµT =
{
(i, j) ∈ Eσ(t) |

1

T

∫ t+T

t

a
σ(τ)
ij dτ ≥ δ,

∀ t ∈ R≥0, i, j ∈ V , i ̸= j
}
, (5.2.5)

forms a connected graph in the integral sense, denoted by Gµ
T = (V ,EµT ), where

1
T

∫ t+T
t

a
σ(τ)
ij dτ ’s in (5.2.5) form the entries of the corresponding weighted adja-

cency matrix A and Laplacian matrix L that are defined as follows:

A =
1

T

∫ t+T

t

Aσ(τ) dτ, L =
1

T

∫ t+T

t

Lσ(τ) dτ . (5.2.6)
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Proof. See Appendix C.2.

We next show the relation between the (µ, T )-PE connectivity and the bounds

on the vertex connectivity and robustness of graphs. The connectivity-related bounds

provide a measure of the network resilience to intermittent and permanent discon-

nections. The former is associated with resilience to DoS attack in (5.1.5) and the

latter is required for resilience to malicious agents though disconnecting from them

(see (5.1.9)).

Definition 5.2.2. ((r, T )-robust network). A time-varying network Gσ(t) = (V , Eσ(t))

is called (r, T )-robust4 with some T ∈ R>0 and r ∈ Z≥0 \ {0} if the resultant static

network Gµ
T = (V ,EµT ) with EµT in (5.2.5), obtained under the (µ, T )-PE condition

(5.2.1), is r-robust, where r ≤ r(Gµ
T ).

Definition 5.2.3. ((κ, T )-vertex-connected network). A time-varying network

Gσ(t) = (V , Eσ(t)) is called (κ, T )-vertex-connected with some T ∈ R>0 and κ ∈

Z≥0 \ {0} if the resultant static network Gµ
T = (V ,EµT ) with EµT in (5.2.5), obtained

under the (µ, T )-PE condition (5.2.1), is κ-vertex-connected, where κ ≤ κ(Gµ
T ).

Proposition 5.2.4. Let Gσ(t) = (V , Eσ(t)) be a (µ, T )-PE connected network under

Assumptions 5.2.1 and 5.2.2. Then, Gσ(t) is at least (
⌈
µ
2

⌉
, T )-vertex-connected and

(
⌈
µ
2

⌉
, T )-robust, and the following inequalities hold for the resultant network Gµ

T =

(V ,EµT ) with EµT in (5.2.5).

⌈
µ̂

2

⌉
≤ r(Gµ

T ) ≤ κ(Gµ
T ) ≤ |V| − 1, µ̂ := λ2 (L) ≥ µ, (5.2.7)

4The (r, T )-robust network herein is robustness in an integral sense as a relaxation of the r-robust
static network (cf. the discrete-time version in [144, Def. 2.2]). The (r, T )-robust in Definition 5.2.2
should not be confused by the notation of (r, s)-robustness, for some r ∈ Z≥0 and 1 ≤ s ≤ |V|, that
is a strict generalization of r-robustness defined for a static graph [67].
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where the robustness r(Gµ
T ), vertex connectivity κ(Gµ

T ) are defined based on the ad-

jacency and Laplacian matrices in (5.2.6). Additionally, if Gµ
T is a noncomplete, we

have λ2(L) ≤ κ(Gµ
T ) ensuring that Gσ(t) is at least (⌈µ⌉ , T )-vertex-connected.

Proof. See Appendix C.3.

………

V1

V2

i

j k

Figure 5.1: An example that illustrates how intermittent communication can dras-
tically change the graph/network’s algebraic connectivity λ2(·) and thus its robust-
ness. Let graph Gσ(t) = (V , Eσ(t)) such that |V| = N + 1, with V = V1 ∪ V2 and
|V2| = N , where N ≥ 3, and that the subgraph Ḡσ(t) = (V \ V1, Ēσ(t)) induced by re-
moving the set V1 and its incident edges is a complete graph K|V2| = Ḡσ(t). Note that
the singleton i ∈ V1 can be connected to any pair of disjoint nodes j ̸= k ∈ V2,
and thus S = {j, k} ⊂ V and the bidirectional edge set Ecut = {(i, j), (i, k)}
make, respectively, the minimum vertex cutset and edge cutset of Gσ(t). Accord-
ingly, one can verify that λ2(Gσ(t)) ≤ κ(Gσ(t)) = e(Gσ(t)) = δmin(Gσ(t)) = 2, where
e(·) and δmin(·) are, resp., the edge connectivity and minimum node-degree. Also, if
∃ t ∈ R≥0 s.t Gσ(t) = (V , E \ Ecut) because of an intermittent connection of the edges
Ecut, we have graph disconnection with λ2(Gσ(t) = (V , E \ Ecut)) = 0. Yet, the induced
subgraph K|V2| holds even a higher algebraic connectivity since λ2(K|V2|) = |V2| = N ,
and κ(K|V2|) = e(K|V2|) = δmin(K|V2|) = N − 1. This example has been constructed
based on the discussions in [48, Ch. 13.5].

Theorem 5.2.5. (Network resilience to node and edge disconnections). Let

a (µ, T )-PE connected network Gσ(t) = (V , Eσ(t)) be (r, T )-robust (resp. (κ, T )-vertex-

connected) under Assumptions 5.2.1 and 5.2.2. Let A ⊂ V be a (r − 1)-local (resp.

(κ− 1)-total) adversary set. Then, the induced subgraph Ḡσ(t) = (V̄ = V \A, Ēσ(t)) in

(5.1.9) admits the (µ̄, T̄ )-PE connectivity condition in (5.2.1), for some µ̄, T̄ ∈ R>0,

where T̄ ≤ T and µ ≤ µ̄+ |A|.
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Proof. See Appendix C.4.

In other words, Theorem 5.2.5 together with (5.2.7) implies that if the network

Gσ(t) = (V , Eσ(t)) holds algebraic connectivity λ2(L) ≥ µ ≥ 2F + ϵ with F ∈ Z≥0 and

ϵ ∈ R>0 in the integral sense of (5.2.1), it will be at least (F +1, T )-vertex-connected

(resp. (F+1, T )-robust) which in turn ensures the resulting network from the removal

of an F -total (resp. F -local) adversary set, i.e. (5.1.9), still maintains its connectivity

in the sense of (5.2.1) to a lower degree, allowing to achieve (5.1.8).

Remark 5.2.3. We remark that we use the parameter µ in (5.2.1) and (5.2.7) as a

rather conservative proxy metric of the resilience of time-varying networks to discon-

nections of sorts (i.e. permanent and/or intermittent). Moreover, µ̂ in (5.2.7) can be

interpreted as the quality of service (QoS) [32] associated with communication. It is

also noteworthy that the lower bound
⌈
1
2
λ2 (L)

⌉
≤ r(Gµ

T ) in (5.2.7) is tight as shown in

[120, lemma 1], [116, Thm. 2] for fixed graphs. On the other hand, the gap between

r(Gµ
T ) and κ(Gµ

T ) can be arbitrarily large ([67, 120]) depending on a priori unknown

intermediary typologies Gσ’s, σ ∈ Q′ that form a network Gµ
T . We refer to Fig. 5.1

as an illustrative example that demonstrates how an intermittent connection of edges

in a class of graphs can affect the bounds in (5.2.7). Moreover, in the special case of

complete graphs over N nodes, denoted by KN , we have ⌈λ2(K3)/2⌉ = δmin(K3) = 2

for N = 3 nodes, that shows the bound in (5.2.7) is tight. If the exclusion of com-

plete graphs can be guaranteed the lower bound to µ̂ ≤ κ(Gµ
T ) can be used for node

connectivity. (cf. [48, Cor. 13.5.2]).

We now provide a convergence bound for the consensus/formation equilibrium

in (5.1.8). Associated with (5.1.8), we define an output (coordinate) vector Y ∈ R2N−1
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as

Y =

ζ
v

 :=

Q 0(N−1)×N

0N IN


p̃
v

 = Ceqx, (5.2.8)

where p̃, v and Q are given in (5.1.1) and (5.2.2), respectively. It then follows that

ζ = Qp̃ = 0N−1 and v = 0N imply p̃i − p̃j = 0, ∀ i, j ∈ V and vi = 0, ∀ i ∈ V (that

is Y(t)→ 0 ≡ (5.1.8)).

Proposition 5.2.6. (Stability under (µ, T )-PE connectivity). Consider the

system in (5.1.1) and let Assumptions 5.2.1 and 5.2.2 hold. Also, let
∑n

k∈Z≥0
T a
k < T ,

where T is the period in (5.2.1), hold uniformly in time for the DoS attack in (5.1.5).

Then, there exists a sufficiently large control gain γ for (3.1.3) that ensures, for each

∥x(t0)∥ ≤ ∞ and for every uA ∈ Lpe with supt0≤t≤Td ∥uA(t)∥ <∞, the system (5.1.1)

with the output Y(t) in (5.2.8) is finite-gain Lp stable with the following upper bound:

∥Y(t)∥Lp
≤ κxe

−λx(t−t0) ∥x(t0)∥+ κu ∥(uA)Td∥Lp
, ∀ t ≥ t0 ∈ R≥0, (5.2.9a)

κx = ∥C∥
√

max
{
λ−1
χ , β

}
min

{
γ
αN
, β
} ∥C−1∥ , κu = ∥C∥ max

{
λ−1
χ , β

}
λx min

{
γ

2αN
, β
2

} , (5.2.9b)

0 < λx < λχ = ηe−2ηT , C =

 1
γ
IN−1 − 1

γ
Q

0N×(N−1) IN

 , (5.2.9c)

where η = − 1
2T

ln(1− (α/γ)µT
1+(α/γ)2N2T 2 ) and β ∈ R>0. Additionally, if uA = 0 (or A = ∅),

the system’s state trajectories uniformly exponentially converge to the equilibrium
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(5.1.8), (provided the formation configuration is feasible) with the bound

∣∣pi(t)− pj(t)− p⋆
ij

∣∣ ≤ √2κxe−λx(t−t0) ∥x(t0)∥ , (5.2.10a)

|vi(t)| ≤ κxe
−λx(t−t0) ∥x(t0)∥ , ∀ i, j ∈ V (5.2.10b)

for all t ≥ t0 ∈ R≥0, with κx, λx ∈ R>0 as given in (5.2.9).

Proof. See Appendix C.5.

We remark that the choice of γ = αN , for α ≥ 1 yields a convergence rate λχ

in (5.2.9) that depends only on µ, T , with the maximum occurring at µ = N, T = 1,

associated with complete network connectivity, see (5.2.1) and Remark 5.2.2. This,

however, is not the only valid choice.

We also note to [30, 31] provide insightful results on the stability of multi-agent

systems using passivity-based control and contraction theory.

5.3 Observer Design and Attack Detection

Here, we consider the design of observers serving the reconfigurable local attack de-

tector module ΣO

Vi′′
σ

in Section 5.1.4. The observer design for Σσ(t) in (5.1.1) is subject

to two constraints. First, a priori full knowledge of Aσ may not be available for

each mobile agent due to random communication link dropouts or switching links.

Second, local state information y i
σ in (5.1.2), which is available for each mobile agent,

is subject to change since the respective k-hop neighbors change in an a priori un-

known time-varying network. Consequently, ensuring the uniform observability of

(Aσ,C
i
σ), ∀ t ∈ R≥0, ∀ i ∈ V may not be tractable or feasible.

In what follows, we, first, characterize network-level conditions under which

almost any set of adversarial inputs uA is observable at the measurements of the
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cooperative agents that are y i
σ’s, for i ∈ V \ A. Second, we propose a class of

local observers for ΣO

Vi′′
σ

that are realizable using (5.1.6), enabling distributed attack

detection through (5.1.7).

5.3.1 Detectability of Adversarial Inputs

We note that the switched system Σσ(t) in (5.1.1)-(5.1.2) represents a family of linear

time-invariant (LTI) systems, each of which is associated with one mode σ(t) ∈ Q.

Therefore, similar to [78, 97], the results herein are derived based on the concepts of

output-zeroing and state and input observability of the (switched) LTI systems.

Consider a generic solution x(t;x(t0),uA(t)) to Σσ(t) in (5.1.1) under Assump-

tions 5.2.1 and 5.2.2. Then, the concatenation of the measurements y i
σ’s, given in

(5.1.2), of the set of cooperative agents, V \ A = {i1, . . . , i|V\A|}, is defined as

yV\A
σ (t;x(t0),uA(t)) = col(y i1

σ , . . . ,y
i|V\A|
σ ) =

col(C i1
σ , . . . ,C

i|V\A|
σ )x(t;x(t0),uA(t)) =

CV\A
σ x(t;x(t0),uA(t)). (5.3.1)

It is necessary to note that the entirety of measurement yV\A
σ (t;x(t0),uA(t))

is not available for any agent i ∈ V . We use this collective set of the measurements

of cooperative agents V \ A and a generic set of adversarial inputs uA introduced by

the set of malicious agents A, in an input observability context for attack detection

analyses.

Definition 5.3.1. (Stealthy and Indistinguishable Attacks). For Σσ(t) in (5.1.1)

under Assumptions 5.2.1 and 5.2.2, any generic set of inputs uA(t) ∈ Lpe injected by
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a set of malicious agents A is stealthy for the remaining cooperative agents V \ A if

∃ x(t0),x′(t0) ∈ R2N s.t. ∀ t ∈ [t0, t0 + T ),

yV\A
σ (t;x(t0),uA(t)) = yV\A

σ (t;x′(t0),0), (5.3.2)

with yV\A
σ (t; ·, ·) as in (5.3.1), t0 ∈ R≥0, and T ∈ R>0 as in (5.2.1). Likewise, for any

given two generic sets uA1(t) ∈ Lpe and uA2(t) ∈ Lpe injected, resp., by a nonempty set

of malicious agentsA1 ∈ A and someA2 ∈ A, whereA1 ̸= A2, uA1 is indistinguishable

from uA2 for the cooperative agents V \A if

∃ x(t0),x′(t0) ∈ R2N s.t. ∀ t ∈ [t0, t0 + T ),

yV\A
σ (t;x(t0),uA1(t)) = yV\A

σ (t;x′(t0),uA2(t)). (5.3.3)

Lemma 5.3.1. (Characterization of Stealthy and Indistinguishable At-

tacks). Consider Σσ(t) in (5.1.1) and let Assumptions 5.2.1 and 5.2.2 hold. Also, let

BA1uA1(t) and BA2uA2(t) be two generic sets of adversarial Lpe-norm bounded inputs

injected by a nonempty set of malicious agents A1 ∈ A and some A2 ∈ A, where

A1 ̸= A2. Then, uA1(t) and uA2(t) are indistinguishable for the cooperative agents

V \ A during t ∈ [t0, t0 + T ), if and only if ∃ x(t0) ∈ R2N such that

CV\A
σ(tk)

eAσ(tk)(t−tk)x(tk) =

CV\A
σ(tk)

∫ t

tk

eAσ(tk)(t−τ)
(
BA1uA1(τ)−BA2uA2(τ)

)
dτ, t ∈ [tk, tk+1), (5.3.4)

where 0 ≤ k ≤ m and tm+1 =: t0 + T , with m and T as in Assumptions 5.2.1 and

5.2.2, and x(t0) = (x′(t0) − x(t0)) when k = 0, and for k ̸= 0, we have x(tk) =
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x′(tk)− x(tk), where

x(tk) =
1∏
i=k

eAσ(ti−1)
(ti−ti−1)x(t0) +

k∑
i=1

i+1∏
j=k

e
Aσ(tj−1)

(tj−tj−1)

∫ ti

ti−1

eAσ(ti−1)
(ti−τ)(BA1uA1(τ)−BA2uA2(τ)) dτ

)
. (5.3.5)

Additionally, if (5.3.4)-(5.3.5) hold for uA2(t) = 0, ∀ t ∈ [t0, t0 + T ), then uA1(t) is

stealthy.

Proof. See Appendix C.6.

It is necessary to note that the realization of (5.3.4) requires a priori knowledge

of the system which is not available for any agent. Moreover, based on the concepts of

state and input observability [15, Thm. 2], [152, Ch. 3.11], and the invariant zeros of

the switched LTI systems [78], the realizations of (5.3.4) in each mode coincide with

the existence of the set of vector-valued adversarial input uA unobservable at the

vector-valued output yV\A
σ (see Definition 2.3.1). For LTI systems, it is well-known

that such a set of inputs, referred to as zero-dynamics attacks (see [78, 97] and Section

5.1.3), is not generic, and is characterized using the output-zeroing directions of the

system. Particularly, for Σσ(t) in each mode σ ∈ Q, it follows from [152, Ch. 3.11]

that the output-zeroing directions are induced by the rank deficiencies of the matrix

pencil P (λo, σ) for some λo ∈ C, where

P (λo, σ) =

λoI −Aσ −BA

CV\A
σ 0

 . (5.3.6)

We next present conditions under which the intersection of the output-zeroing

subspaces of Σσ(t) in (5.1.1) make an empty set, ensuring almost no deception attacks,

defined in Section 5.1.3, can be stealthy in the sense of (5.3.2).
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Lemma 5.3.2. Consider Σσ(t) in (5.1.1)-(5.1.2) with (5.1.6) during an interval [t0, t0+

T ) defined under Assumptions 5.2.1 and 5.2.2. Let Σσ(t) be subject to any generic

set of adversarial inputs uA(t) ∈ Lpe injected by an F -total (resp. F -local) set A of

malicious agents such that 0 ≤ F ≤ κ(Gµ
T )− 1 (resp. 0 ≤ F ≤ r(Gµ

T )− 1). Then, the

following statements are equivalent.

1. There exists no generic set of inputs uA(t) ∈ L∞e stealthy in the sense of (5.3.2).

2. For almost all λo ∈ C, ∩σ∈Q′ ker (P (λo, σ)) = ∅, where P (λo, σ) is given by

(5.3.6).

Proof. See Appendix C.7.

In other words, Lemma 5.3.2 states that (F + 1, T )-vertex connectivity (resp.

(F +1, T )-robustness), where F ∈ Z≥0, ensures almost no F -total (resp. F -local) set

of malicious agents with the deception attacks defined in Section 5.1.3 is stealthy in

the sense of (5.3.2) for the cooperative agents in (5.1.1) with (5.1.6). (cf. [97, 37]

where (F +1)-vertex connectivity and (2F +1)-robustness are required point-wise in

time.)

We next investigate the level of local observability for each agent given the lo-

cally available information Φ i
σ(t) in (5.1.6) and measurements yiσ in (5.1.2), as opposed

to ensuring the global observability of the pair (Aσ,C
i
σ) associated with (5.1.1)-(5.1.2)

that might not be tractable.

5.3.2 Local Dynamics and Observability Analysis

Consider the set of 2-hop information available for each agent i ∈ V as defined by

Φ i
σ(t) in (5.1.6), and local measurements yiσ in (5.1.2). Let Ii = V i′′σ (I in short)

in (5.1.2) and Ri = V \ V i′′σ and assume Ii and Ri (R in short) are sorted in the
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ascending order of agents’ indices. Then, by using (5.1.4), the Σσ(t)’s dynamics in

(5.1.1) with y i
σ in (5.1.2) can be partitioned as

Σ
V i′′
σ

:

 ẋI = AI
σxI + ρ(xI,xR) +BA′′uA′′ ,

y i
σ = CI

σxI

(5.3.7)

ΣRi
: ẋR = AR

σxR +AR,I
σ xI +BAruAr , (5.3.8)

where x• := col (p̃•,v•) , • ∈ {I,R} denotes the position and velocity states of the

agents in each set, and the system matrices are defined as

AI
σ =

0|I|×|I| I|I|

−αL′′σ −γI|I|

 , BA′′ =

[
0|I|×|A′′|

IA′′

]
, (5.3.9a)

CI
σ = diag(I|I|, e

1

|I|
⊤), (5.3.9b)

ρ(xI,xR) =
˜̃AI
σxI +AI,R

σ xR =



0|I|×1

0
|V i′

σ |×1

ρ


, ρ = −α

(˜̃Lσp̃N i(2)
σ

+ L(23)σ p̃R

)
, (5.3.9c)

˜̃AI
σ =


0|I|×|I| 0|I|

0 0

0 −α˜̃Lσ 0|I|

 , AI,R
σ =


0|I|×|R| 0|I|×|R|

0
|V i′

σ |×|R|

−αL(23)σ

0

 , (5.3.9d)

AR
σ =

 0 I|R|

−αL(33)σ −γI|R|,

 , AR,I
σ =

 0 0 0

0 −αL(32)σ 0

 , (5.3.9e)

A′′ = A ∩ V i′′σ , Ar = A \ A′′. (5.3.9f)

where uA′′ = col (ua
i )i∈A′′ ∈ R|A′′|, IA′′ =

[
e i1
|I| e

i2
|I| . . . e

i|A′′|
|I|

]
∈ R|I|×|A′′|.
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We note that ΣV′′
i
with known AI

σ and CI
σ, is the dynamics available for each

agent i ∈ V given Φ i
σ(t), ∀ t ∈ R≥0, and the dynamics ΣRi

and the possibly existing

coupling term ρ(xI,xR) are unknown to the agent i ∈ V . Moreover, for every agent i ∈

V , y i
σ in (5.3.7) and (5.1.2) are the same set of measurements obtained by reordering

CI
σ and C i

σ.

The following results address the effect of ΣRi
on Σ

V i′′
σ

as well as the observ-

ability of Σ
V i′′
σ
, which will be used later in local observer design.

Proposition 5.3.3. Consider (5.3.7) and (5.3.8) under Assumptions 5.2.1 and 5.2.2.

The coupling term ρ(xI,xR) in Σ
V i′′
σ

of agent i ∈ V, holds the bound ∥ρ(xI,xR)∥ ≤

ακxe
−λx(t−t0) ∥x(t0)∥ + ακu supt0≤t≤Td ∥uA(t)∥ , ∀ t ≥ t0 ∈ R≥0, where α is given in

(3.1.3), and κx, κu, and λx are given in (5.2.9). Additionally, if A = ∅, the coupling

term exponentially converges to 0 with ∥ρ(xI,xR)∥ ≤ ακxe
−λx(t−t0) ∥x(t0)∥ , ∀ t ≥

t0 ∈ R≥0.

Proof. See Appendix C.8.

Proposition 5.3.4. Consider the 2-hop dynamics Σ
V i′′
σ

in (5.3.7) for each agent

i ∈ V \ A communicating over Gσ(t) under Assumptions 5.2.1 and 5.2.2. Then, the

following statements hold.

1. the pair (AI
σ,C

I
σ) in Σ

Vi′′
σ
, ∀ i ∈ V, is observable in each mode σ ∈ Q.

2. There exists no generic set of inputs uA(t) ∈ Lpe stealthy in the sense of (5.3.2),

where y i
σ’s are given in (5.3.7), provided the set A of malicious agents is F -total

(resp. F -local), with 0 ≤ F ≤ κ(Gµ
T )− 1 (resp. 0 ≤ F ≤ r(Gµ

T )− 1).

Proof. See Appendix C.9.

Having quantified the conditions on the attack stealthiness and local observ-

ability, we next propose the reconfigurable local attack detector module that relies
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only on the time-varying local information Φ i
σ(t) in (5.1.6) and that performs the

distributed hypothesis testing in (5.1.7).

5.3.3 Reconfigurable Attack Detector (local observer)

For each agent i ∈ V with the 2-hop dynamics ΣV′′
i
in (5.3.7) and local information

Φ i
σ(t) in (5.1.6), the local attack detector ΣO

Vi′′
σ

is proposed as follows

ΣO

Vi′′
σ

:


˙̂xI = AI

σx̂I +HI
σ(y

i
σ − ŷ i

σ)

ŷ i
σ = CI

σx̂I

r iσ = y i
σ − ŷ i

σ

, (5.3.10a)

x̂I(tk) =


IIixI(tk), if V i′′σ(tk) ̸=V

i′′

σ(tk−1)
OR k = 0,

x̂I(tk), if V i′′σ(tk) = V
i′′

σ(tk−1)
,

(5.3.10b)

where x̂I is the estimation of xI in (5.3.7), and the initial conditions x̂I(tk) are up-

dated at {tk}mk=0 , m ∈ Z≥0 corresponding to the modes σ(tk)’s ∈ Q (see Assumption

5.2.1), and IIi = diag(I|Ii|, e
1
|Ii|

e 1
|Ii|

⊤). HI
σ =

0|I|×|I| 0|I|

HI
σ hσe

1
|I|

 is the observer’s gain

matrix with a scalar hσ ∈ R>0 and a symmetric positive definite matrix HI
σ ∈ R|I|×|I|

>0

such that ĀI
σ = (AI

σ −HI
σC

I
σ) is Hurwitz stable in every mode σ ∈ Q. Note that the

availability of Φ i
σ(t) in (5.1.6) allows each agent to readily update ΣO

Vi′′
σ

upon a switch

occurs between the communication modes.

Let estimation error eI = xI − x̂I, its dynamics are obtained from (5.3.7) and

(5.3.10) as follows

ΣÕ

Vi′′
σ

:

 ėI = ĀI
σeI + ρ(xI,xR) +BA′′uA′′

r iσ = CI
σeI

, (5.3.11)
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in which eI(tk) = diag(0|Ii|+1×|Ii|+1, I|Ii|−1)xI(tk) if V i′′σ(tk) ̸= V
i′′

σ(tk−1)
or k = 0, and

eI(tk) = xI(tk)− x̂I(tk) otherwise, with {tk}mk=0 , m ∈ Z≥0.

The following result characterizes the dynamical response of the attack detec-

tors (local observers) in the presence and absence of adversaries. The results can be

used in threshold design for residual signals later in attack detection.

Theorem 5.3.5. Consider Σσ(t) in (5.1.1) with a κ(Gµ
T )-vertex-connected (resp. r(Gµ

T )-

robust) communication network as defined in (5.2.7) under Assumptions 5.2.1 and

5.2.2. Let (5.1.1) be subject to an F -total, where F ≤ κ(Gµ
T ) − 1, (resp. F -local,

where F ≤ r(Gµ
T ) − 1) adversary set with input uA ∈ Lpe. Let each mobile agent

i ∈ V be equipped with a reconfigurable local attack detector ΣO

Vi′′
σ

given by (5.3.10)

and local information (5.1.6). Then, for each ∥eI(tk)∥ < wI, with wI ∈ R>0, (5.3.11)

is finite-gain Lp stable and the residuals r iσ(t)’s hold the bound

∣∣ri,jσ (t)
∣∣ ≤ κI

ewIe
−λIe (t−tk) +

(
κIr
λIe
∥x(t0)∥ e−λx(tk−t0)

)(
1− e−λIe (t−tk)

)
+(

1+κIr
λIe

)
sup

t0≤t≤Td
∥uA(t)∥

(
1− e−λIe (t−tk)), ∀ t ∈ [tk, tk+1

)
, (5.3.12)

where ri,jσ (t) is the j-th component of r iσ(t) and denotes the position estimation of the

two-hop neighbors, corresponding to the j-th row of C i
σ, in each mode σ(tk) ∈ Q, ∀ t ∈

[tk tk+1), k ∈ Z≥0. Also, κI
r = ακxκ

I
e, with the known constants5 κI

e, λ
I
e ∈ R>0, such

that ∥eĀ
I
σ(tk)

(t−tk)∥ ≤ κI
ee

−λIe (t−tk), and κx and λx are given in Proposition 5.2.6.

Additionally, if A = ∅, each ΣO

V i′′
σ

is exponentially stable with eI(t) → 0, and the

residuals in (5.3.12) hold the following bound

∣∣ri,jσ (t)
∣∣ ≤ κI

ewIe
−λIe (t−tk) +

(
κIr
λIe
∥x(t0)∥ e−λx(tk−t0)

)(
1− e−λIe (t−tk)

)
:= ϵi,jσ , (5.3.13)

5Recall that I is a shorthand for the set Ii = V i′′

σ and thus the constants are mode-dependent
for each cooperative agent i ∈ V \ A.
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Algorithm 4 Resilient & Reconfigurable Cooperation

Input: Φ i
σ(t) in (5.1.6), ΣO

Vi′′
σ

in (5.3.10), and ϵi,jσ in (5.3.13), ∀ i ∈ V \ A
1: // Accept the null H0 in (5.1.7a) and assume A′′ = ∅
2: procedure 1: distributed Detection & Isolation
3: // Use the most recent info Φ i

σ(t) to (re)initialize ΣO
V′′
i

4: Compute the residual r iσ(t) and the corresponding thresholds ϵi,jσ
5: for j ∈ N i(1)

σ do
6: if |ri,jσ (t)| > ϵi,jσ then
7: Reject the null hypothesis H0 in (5.1.7a) ▷ Detection: Malicious agent j ∈ N i(1)

σ

is detected by the cooperative agent i.

8: A′′ ← j ∈ N i(1)
σ

9: Set aσij = 0, j ∈ A′′ ∩N i(1)
σ ▷ Stop communication withA′′

10: Update Φ i
σ(t)

11: end if
12: end for
13: end procedure
14: procedure 2: Resilient Cooperation defined in (5.1.8)
15: Run un

i (t) given in (3.1.3) with the information from N i(1)
σ \ A′′

16: end procedure

where ϵi,jσ is a threshold that can be used in (5.1.7).

Proof. See Appendix C.10.

Theorem 5.3.5 shows that the local observer (5.3.10) with residual r iσ has

bounded-input bounded-output (BIBO) stability for the worst-case number of mali-

cious agents with deception attacks that are defined in Section 5.1.3, and that whose

detectability is ensured by a certain degree of network connectivity that is quantified

in Lemma 5.3.2.

5.4 Resilient Cooperation

Building upon the results in the previous sections, we present an algorithmic frame-

work, summarized in Algorithm 4, as a solution to the resilient cooperation problem

stated in Section 5.1.4. Algorithm 4 comprises two simultaneous procedures address-

ing the distributed detection and isolation of malicious agents by using (5.1.7) for
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Figure 5.2: Communication network Gσ(t) in (a) and its algebraic connectivity in the
integral sense of (5.2.1) in (b) for Section 5.5-Example 1. (a) The network switches
between two modes every 0.5 sec whose union forms a static overlay network Gµ

T with
λ2(L) = 2.1049 that is 3-robust [67, Fig. 4], ensuring (3, 1)-robustness, and (3, 1)-
vertex-connectivity (see Section 5.2 and (5.2.7)). per Section 5.1.3, the network Gσ(t)
is subject to a 2-total and 2-local set of malicious agents A = {5, 6}. It is also subject
to a distributed DoS whose link dropouts follow a binomial distribution with 100
trials and a success probability of 0.3 during 10 sec. (b) The illustration of positive
algebraic connectivity λ2(·) in the integral sense (5.2.1) for for the network Gσ(t) and
its induced network Ḡσ(t) in (5.1.9) despite their intermittent connections (See also
remark 5.2.2). The results in (b) are from resilient consensus in Fig. 5.3-(a) through
Algorithm 4. The decrements in λ2(·) during t ∈ [0, 5.66] are due to the permanent
link disconnections that occurred in the attack detection and isolation procedure, see
Fig. 5.3-(a).

decision-making, and resilient cooperation. In what follows, we present the technical

discussions of Algorithm 4.

Isolation of the set of the malicious agents A ⊂ V . Upon detection

of neighboring malicious agents by each cooperative agent i ∈ V \ A, there follows

the isolation (removal) of the detected malicious agents from the network (Lines 7-

10 in Algorithm 4). Note that the results in Proposition 5.3.4, Lemma 5.3.2, and

Theorem 5.3.5 allow each cooperative agent i ∈ V \ A in a (F + 1, T )-robust (resp.

(F + 1, T )-vertex-connected) network to perform the distributed hypothesis testing

in (5.1.7) and detect a candidate set of malicious agents within its 1-hop neighbors,

provided the actual set of malicious agents, A, is at most F -local (resp. F -total).
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Here, the distinction between a candidate set and the actual set of malicious agents

is due to the possibility of false alarms in (5.1.7). (i.e., a candidate set is almost

always a superset of the actual set for a sufficiently small threshold in (5.1.7)). The

foregoing sets coincide if ĀI
σ = (AI

σ−HI
σC

I
σ) in (5.3.10) features distinct eigenvalues,

guaranteeing that each residual’s component ri,jσ in (5.3.12) is most sensitive to only

one of the input directions associated with the malicious agents within the 1-hop

neighbors.

State-dependent switching We note the isolation process based on (5.1.7)

(lines 7-10 in Algorithm 4) imposes a finite number of state-dependent switches that

are not explicitly incorporated in the condition (5.2.1) for Lσ(t) with time-dependent

switches σ(t) : R≥0 → Q. On the other hand, the results of Theorem 5.2.5 for

the bound on the network connectivity in the integral sense of (5.2.1) after node

and edge removal holds independent of the type of switches. Therefore, upon a link

removal between a cooperative and malicious agent(s), there exists a new Laplacian

matrix Lσ(t) that holds the connectivity condition of the from (5.2.1) for the system

in (5.1.1) starting from the new initial condition x(tk) ∈ R2|V| with tk, k ∈ Z≥0,

being the time instant of the newly active mode σ(tk) ∈ Q. Having the integral

connectivity as in (5.2.1) independent of the states’ initial condition, Proposition 5.2.6

can be applied. It is worth mentioning that the independence from the states’ initial

conditions for the (µ, T )-PE connectivity in (5.2.1) is a special case of having (5.2.1)

parameterized of the form 1
T

∫ t+T
t

QLσ(τ,λ)Q
⊤ dτ ≥ µIN−1, ∀ t ∈ R≥0, that holds for

each λ := (to,xo) ̸= (t0,x(t0)) with the switching signal σ(t,x(tk)) : R≥0 × X → Q,

X ⊂ R2|V| (see [73]).
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Figure 5.3: Example 1: Comparison of resilient consensus in an 8-agent network Gσ(t)
that is, as shown in Fig. 5.2, (3, 1)-robust and subject to DoS attacks and a 2-total
and 2-local set of malicious agents A = {5, 6} with u5(t) = 0.3t and u6(t) = 0.5t in
(3.1.3). (a) Resilient consensus using Algorithm 4 whose resilient to the 2-total/2-local
set A in the (3, 1)-robust network is guaranteed by Lemma 5.3.2 and Theorem 5.3.5.
Also, the vertical orange dashed lines specify the time instants where cooperative
agents detected and disconnected from their respective neighboring malicious agents
(lines 7-10 of Algorithm 4 with ϵi,jσ = 0.95) using its local attack detector in (5.3.10).
(b) Resilient consensus using the DP-MSR algorithm that for a 3-robust network has
provable resilient consensus only in the presence of up to 1-local or 1-total malicious
agents [37, 36], accounting for the failure of the approach in this case where A is
2-local and 2-total.
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Figure 5.4: Example 2: Resilient consensus in an 84-agent network Gσ(t) subject to
deception and DoS attacks defined in Section 5.1.3. The deception attacks are intro-
duced by a 1-local set of 9 malicious agents, A = {1, 4, 16, 19, 29, 33, 46, 60, 73}, which
are shown in red color. The distributed DoS attack (5.1.5) imposes link dropouts
following a binomial distribution, with 600 trials and a success probability of 0.4
during 150 sec. (a) The static overlay network Gµ

T is 2-robust, constructed using the
preferential-attachment model in [67, Thm. 5] based on the topology in [67, Fig. 6].
Despite intermittent connections, the network Gσ(t) is (2, 1)-robust and (3, 1)-vertex-
connected (see Definitions 5.2.2 and 5.2.3, and Lemma 5.2.3). (2, 1)-robustness, then,
ensures resilience to any 1-local set A as it follows from Lemma 5.3.2 and Theorem
5.3.5. (b) Resilient consensus using Algorithm 4 over the intermittent network Gσ(t)
in (a) and in the presence of the 1-local malicious set A.
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5.5 Simulation Results

We conduct two simulation studies to illustrate the theoretical results and compare

them with the state-of-the-art [78, 37]. We also provide the code at https://github.

com/SASLabStevens/rescue.

Example 1. We compare our proposed Algorithm 4 with the DP-MSR algo-

rithm [36, 37]. Employing Algorithm 4, we achieve resilient consensus in an 8-agent

network that is subject to switching topology and both deception and DoS attacks.

See Figs. 5.2 and 5.3(a). In contrast, the DP-MSR algorithm fails to achieve resilient

consensus for the same network (Fig. 5.3(b)), despite the advantage of operating

over a network that is the union of the two modes shown in Fig. 5.2(a). The outper-

formance of Algorithm 4 is because of its observer-based nature that leverages local

information Φ i
σ in (5.1.6) to detect a larger set of malicious agents in a network with

a specific degree of connectivity and r-robustness (see Lemma 5.3.2), a capability not

shared by the DP-MSR algorithm. We note that the analysis of resilient consensus

via the DP-MSR algorithm was originally developed for a discretized version of (5.1.1)

in [37, 36] while our results are in the continuous-time domain. To have the results

in a comparable time scale, we used the DP-MSR procedure with the small sample

time Ts = 0.001 and the gains γ = 3 and α = 1 in the zero-order-hold discretization

of (3.1.3). This set of parameters does not completely satisfy the sufficient condition

in [37, eq. (9)], but does satisfy a relaxation thereof, similar to the discussion in a

footnote in [37]. This enables an asymptotic resilience consensus in the case A = ∅

(shown with the gray-colored state trajectories) and also in the cases of (F =1)-local

and (F =1)-total adversary sets (not shown herein) over any 3-robust network.

Example 2. We evaluate the scalability of our framework on an 84-agent

network subject to a DoS attack and 9 malicious agents that form a 1-local set, see

https://github.com/SASLabStevens/rescue
https://github.com/SASLabStevens/rescue
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Fig. 5.4. Notably, each agent has at most 9 neighbors (less than 11% of total agents),

resulting in a sparse graph. Despite sparsity, the graph has the required robustness

properties. This observation underscores the significance of sparse graphs with strong

robustness/connectivity properties (e.g., expander graphs), offering resilience without

excessive communication overhead.

Scalability and computational complexity. We remark that the proposed

Algorithm 4 improves the scalability of the system-theoretic frameworks relying on

observers for attack detection [97, 98, 78]. Note that, for each agent, attack detection

in Algorithm 4 (lines 4-10), requires only one observer with a 2-hop dynamics AI
σ

in (5.3.10) with worst-case complexity O(|V i′′σ |2) rather than the complete model

Aσ in (5.1.1) with O(|V|2), (|V i′′σ | ≤ |V|, see (5.1.3)), which is the case in [78].

This local topological information, AI
σ can be pre-programmed [144] or transmitted

as formalized in (5.1.6), in which case it may incur only a minimal communication

overhead, given the often sparse communication topology of mobile robots due to their

mobility (see Fig. 5.4). Moreover, the local information (5.1.6) allows for detecting a

greater number of malicious agents in a given network, compared to the prior work [97]

including the graph-theoretic MSR-like algorithms [36, 37, 113] (see Fig. 5.3), whose

worst-case complexity is quadratic in time O(|n|2) and linear in space O(n), w.r.t.

the size of inclusive 1-hop neighbors [66], i.e. n = |V i′σ |, see (5.1.3). Finally, given

the switching nature of the local observer (5.3.10) with resetting initial conditions,

an increased frequency of topology switching, potentially violating Assumption 5.2.1,

would lead to significant performance degradation in attack detection as observer’s

residuals would persist in a transient convergence phase.
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Chapter 6

Multi-Robot Coordination with Adversarial Perception

Learning-enabled visual perception is of significant importance to many robotic tasks,

particularly in the forms of visual servoing [68], visuomotor policies [70], learned vi-

sual odometry (VO) [80, 22], foundation models for visual navigation [119] and object

tracking [75], drone flocking [117, 148] and collaborative perception [154]. However,

learned perception models are vulnerable to adversarial instances [49, 63] where a

human-imperceptible level of noise on the input data (e.g., camera images) can signif-

icantly mislead the model’s output (e.g., object misclassification and mislocalization

that may be dynamically infeasible or unsafe [54, 143, 21, 58]).

This chapter extends the prior work on perception-based multi-robot coordi-

nation to the case of adversarial image attacks [49, 19, 143, 54] that incur misclassi-

fication and mislocalization in the learned perception module1 of the robots. More

specifically, we consider a network of robots that rely on an onboard sensor suite of

IMU and RGB camera images for relative localization in a map and coordination

with one another over a wireless communication network. Similar to [117, 44, 100],

a custom-trained object detection model processes each camera frame to output 2D

bounding boxes around objects (e.g., robots) within the field of view (FoV). Adver-

sarial image attacks targeting this perception model can cause misclassification and

mislocalization of the objects in the FoV. We formulate these adversarial misclassifica-

tions and mislocalizations as spurious measurements (false-positive detections) and

1In the context of statistical inference, this adversarial effect can be formulated, subject to certain
conditions, as a covariate shift [10]. That is for a given learned model y = f̂θ(x) trained over a
dataset D = {(xi, yi)}ni=1 with probability distribution ptrain(xi), a covariate shift is induced by the
perturbations δx on the input data at test-time such that ptest(xi + δx) ̸= ptrain(xi). This causes
type I (false positive) and type II errors (false negative) at inference.



104

sporadic measurements (intermittent measurements incurred by misclassifications),

and propose a system-theoretic approach based on a variant Kalman filter to evalu-

ate their effects on relative localization and multi-robot coordination.

We evaluate our proposed framework through experiments. Additionally, we

present two multi-robot platforms equipped with open-source software used in our

experiments. Our framework is lightweight and well-suited for real-time applications.

6.1 Related Work

Adversarial Perturbations on Vision Tasks. Adversarial instances in a single-

task and static settings such as image classification are an active field of research

[49, 19, 65]. The adversarial samples are designed by adding carefully designed noise

or patches to the original image to mislead the model. The noise-based adversarial

samples are designed by two metrics: Euclidean Lp-norms to bound the noise level [19]

or human-level perceptual similarity measured by Learned Perceptual Image Patch

Similarity (LPIPS) distance [65]. As most of these methods entail an iterative op-

timization process, some studies proposed the design of a universal (single) small

perturbation, for all images in image classification, semantic segmentation, and ob-

ject detection tasks [85, 137, 26]. The transferability of a designed adversary across

different architectures was studied in [72, 145]. Alternatively, some adversarial attacks

target the availability of object detection models by overloading the module, which

causes a significant increase in the inference time [121, 23]. A few studies extended

the previous results to the dynamical settings (e.g., object detection and following,

[54, 143], pose estimation [21], and perception-based control [58]) where the system

dynamics are of consideration in designing successful adversarial perturbations in

real-time.
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We further extend the prior results to the case of multi-robot coordination

where adversarial perturbations on the visual measurements may lead to the insta-

bility of the entire system.

Object Tracking, Localization, and Data Association. Tracking objects

(robots) using perceptual observations is a well-studied task [6, 115, 123, 44, 100, 150].

State-of-the-art approaches employ a tracking-by-detection paradigm, a sequential

process of (object) detection to obtain measurements, and then data association to

determine which measurement is associated with which track (e.g., relative position

to the object of interest [117]), enabling object tracking via a tracking filter. Some of

the widely used algorithms for solving the data association problem are GNN, JPDA,

PHD, MHT [100, 44, 123, 60, 105], and more recently learning-enabled solutions

such as SORT [13] and BYTE [150]. Alternative approaches follow a simultaneous

detection and tracking paradigm, wherein the association and detection are learned

jointly as one module [153].

However, the robustness of these methods for multi-robot coordination under

adversarial perception conditions is not well understood.

Adversarial Robustness and Defences for Learned Perception Mod-

els. We only review the most relevant work here and refer to [95] for a comprehen-

sive review of adversarial threat models and defense mechanisms for learning-enabled

frameworks. A very common approach to adversarial robustness in test-time is adver-

sarial training. Either Lp-norm bounded perturbations [19, 145, 26] or human-level

perceptual similarity metrics that approximate the set of all imperceptible adversarial

perturbations [65] are used to generate the adversarial samples. The former is faster

while the latter results in a higher level of robustness. Moreover, adversarial training

has inherently a larger sample complexity and can cause standard vs. adversarially

robust generalization trade-offs in both static [118, 104] and dynamic settings [149].
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Figure 6.1: Illustration of reference frames and the perspective camera projection
model. {W} is the common inertial (world) frame, and {Bi} is the body-fixed frame
of the i-th agent (robot) on which a forward-pointing centered camera is attached
with the coordinate frame {C}. We let RWB =: R and RBC =: R̄ which yields RCW =
RCBRBW = R̄⊤R⊤. Finally, without loss of generality, we assume that the body frame
{Bi} and the camera frame {C} have no offset and differ only in orientation.

Evaluating the consistency between the outputs of two perception modules can be

used to detect adversarial cases [61]. Alternatively, adversarial purification is used to

purify the adversarial perturbation before running the task [89]. Finally, conformal

prediction can be adopted to obtain a set of valid answers for any given adversarial

sample in classification tasks [45, 133, 10].

6.2 Methodology

Notations. We refer to Fig. 6.1 for the notations of robots’ poses, and the coordinate

frames. In particular, pij = pi − pj denotes the relative position expressed in the

global frame {W}, while pC
ij = RCWpij denotes the relative position expressed in the

camera frame {C}i of the i-th agent (robot).
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Figure 6.2: Overview of the perception-based multi-robot coordination. The contribu-
tion of this chapter is highlighted in the gray box, which encompasses the perception
module shown in the green box. This module integrates (Visual-Inertial Odometry)
VIO data and detected objects from the object detection module to provide state es-
timation for the ego-robot, along with capabilities for relative localization and object
tracking. The blue box shows the consensus-based coordination algorithm and the
adversary detection algorithm developed in Chapter 5. These two modules allow for
resilient coordination in the presence of adversarial attacks on images or transmitted
information over the communication network.

6.2.1 Objectives

We propose a framework to evaluate the resilience of multi-robot coordination with

learned perception modalities against adversarial image attacks. We model the effects

of a class of adversarial image attacks as producing sporadic (intermittent) and spu-

rious (false) measurements in perception-based relative localization. Our proposed

framework is shown in Fig. 6.2. It integrates the following modules: Detection in

Section 6.2.2: This module uses a learned perception model to process onboard RGB

camera images in real-time, detecting objects of interest (e.g., landmarks or neighbor-

ing robots) within the Field of View (FoV). The robot’s localization depends on this

module, which is vulnerable to adversarial attacks [49, 143]. Vision-based Relative

Localization in Section 6.2.4: This module converts the 2D bounding-box detections

from the perception module into relative positions of the robot to the objects of in-
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terest, and assigns a level of uncertainty to these 3D relative positions. Here, we

represent the effects of adversarial mislocalization as spurious localization measure-

ments. State Estimation in Section 6.2.5: This module employs a variant of the

Kalman filter to integrate the recovered 3D relative positions and VIO data, provid-

ing an accurate estimate of the robot’s position relative to the object of interest. It

addresses spurious and intermittent measurement data caused by adversarial image

attacks on the perception module through gating and data association techniques.

Coordination and Control in Section 6.2.6: This module provides consensus-based

coordination using relative positions provided by the state estimation (Kalman filter)

module.

In Section 6.3, we present two multi-robot platforms with open-source software

projects developed for this study. Finally, experimental results in Section 6.4 eval-

uate the resilience of the proposed framework for the perception-based multi-robot

coordination subject to adversarial image attacks.

6.2.2 Perception Model: Object Detection

We consider a multi-task learned perception model Ŷ = P (I) for object detection

(e.g., YOLOv7 [136] or RT-DETR [151]). P (·) takes an RGB images I as input and

outputs m ≥ 0 detections of the form {Y }mi=0 = {box, class, pr}mi=0, where the 4D

vector box = (xI, yI,wI, hI) is a bounding box at image space, centered at (xI, yI)

with the width wI and height hI, around each detected object belonging to a class

with a confidence probability pr. Here, we custom-trained the original YOLOv7

model with 80 classes to detect 82 classes that include drones and jackal-UGV in our

experiments. See Section 6.4.1 for details. We also note we use YOLOv7 since it is

fast (30 FPS), and it also has a better detection performance for small objects (e.g.,

small quadrotors) compared to its Transformer-based counterpart, RT-DETR [151].
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6.2.3 Adversarial Image Attacks as Adversarial Measurements

In adversarial settings [19, 65, 21, 143], a human-imperceptible adversarial perturba-

tion (noise) δI is designed and added to the original image frame I such that the error

of perception model P (·) is maximized by some metrics. There are various methods

to design the adversarial perturbation either δI online [143] or offline through a uni-

versal image attack [85, 137]. Despite the variety of methods for designing adversarial

image perturbations, their effects on the perception model’s output are categorically

similar. Specifically, for object detection models, such adversarial attacks can cause

misclassification [65, 10, 49], mislocalization [143, 54, 58, 21], and increased latency

[121, 23]. Formally, for a perception (object detection) model P (·) and any two

samples S1 = (I1, {Ŷ1}mi=0) and S2 = (I2, {Ŷ2}m′
i=0), where I2 = I1 + δI1, we define

d(S1, S2) =


dI(I2, I1), if class = class′,

∞, otherwise,

(6.2.1a)

P (I) = {Ŷ1}mi=0 = {box, class, pr}mi=0, (6.2.1b)

P (I+ δI) = {Ŷ2}m
′

i=0 = {box′, class′, pr′}m
′

i=0. (6.2.1c)

in which dI(·, ·) can be either an Lp distance with p ∈ {0, 1, 2,∞}, as defined in [19],

or a Learned Perceptual Image Patch Similarity (LPIPS) distance [65]. Additionally,

overload (latency) attacks [23] cause m′ ≫ m in (6.2.1).

In static settings, the fast-gradient sign method (FGSM) [63] to design adver-
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sarial image attacks as follows2:

I2 = I1 + ϵsign(∇I1J(Y, Ŷ )),

s.t.

dI(I2, I1) = ∥I2 − I1∥∞ = ∥δI∥∞ ≤ η,

I2 ∈ [0, 255],

(6.2.2)

where ϵ is a hyper-parameter chosen to ensure that η remains sufficiently small,

the sign operator sign(·) is applied element-wise to the gradient of the loss function

∇I1J(Y, Ŷ ). In the Fast Gradient Method (FGM), the gradient of the loss function

is used directly without applying sign(·). In our case, the loss function of YOLOv7

[136] is defined by three terms as follows:

J(Y, Ŷ ) =

classification︷ ︸︸ ︷
Lobj + Lclass+

regression︷︸︸︷
Lbox , (6.2.3)

where Y = {box, class, pr} denotes the target (i.e. true class labels with confidence

probability pr = 1 and their respective box coordinates) and Ŷ = P (I) is the model’s

inference output. We refer to [136] for details on the terms of the loss function.

Example 6.2.1. (FGSM adversarial image attack on YOLO Object Detec-

tion). Fig. 6.3 demonstrates the effect of FGSM adversarial image attack, as defined

in (6.2.2) with η = 10/255 on our custom-trained YOLOv7 object detection model.

To calculate the adversarial noise, we used minimally perturbed ground-truth boxes

and kept the class IDs unchanged to focus the adversarial attack’s impact on the lo-

calization and objectness terms of the cost function (6.2.3). As shown, the adversarial

noise resulted in a false positive by detecting a giraffe, a false negative by failing to

2We note that similar to [19], we normalize the 8-bit RGB values to the range [0, 1] when
calculating the adversarial perturbation and then remap them back to the range [0, 255].
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detect a drone, and a reduction in classification confidence for other detected objects.

In real-time dynamic settings, designing adversarial attacks and assessing their

effects pose additional challenges. Adversarial attacks on perception data can have a

longitudinal impact on the system’s stability and dynamics [143, 54, 57]. Given that

object detection outputs are used as measurements in a closed-loop control system (see

Fig. 6.4), we propose that adversarial image attacks targeting classification integrity/

accuracy (i.e. d(S1, S2) = ∞ in (6.2.1)) cause the unavailability of measurements.

In contrast, adversarial image attacks targeting localization integrity/accuracy (i.e.

d(S1, S2) ̸= ∞ in (6.2.1)) induce (bounded) perturbations in measurements, specif-

ically affecting the localization of 2D bounding boxes in the image space. These

perturbations translate into 3D localization errors in Euclidean space and affect state

estimation, which will be modeled in Sections 6.2.4 and 6.2.5. Therefore, adversarial

misclassification and mislocalization are modeled as sporadic (intermittent) and spu-

rious measurements. This formulation facilitates resilience analysis that is agnostic to

both the specific adversarial image attack model and the targeted learned perception

(object detection) model.

Remark 6.2.1. (The Scope of Adversarial Image Attacks). It is important

to note that adversarial attacks causing norm-bounded disturbances on measurements

have been explored previously for perception-based control [1, 35] and state estima-

tion [149] in single-robot scenarios. In this dissertation, we extend this consideration

to both spurious and sporadic measurements induced by adversarial image attacks in

multi-robot coordination settings. Additionally, we note that we do not address the

class of generative adversarial image attacks, where inauthentic (fake) images are gen-

erated to replace the original robot’s camera image frames, resulting in perceptual data

injection (alteration) attacks with maximum disruption capability. For fundamental
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limitations on the detectability of such attacks, we refer to [57, 58].

6.2.4 Relative Localization with Adversarial Perception Data (Mislocal-

ization Effect)

Recall that the perception model P (Ik) provides detections as bounding boxes, box =

(xI, yI,wI, hI), for the objects with position pr ∈ {W} visible at the RGB image Ik

observed at a time instant tk ∈ R≥0 by the i-th robot in pi ∈ {W}. Following the

pinhole camera model [50, 20], the mapping from the observed 3D point pr ∈ {W}

onto the 2D image space is given by

x̄ :=
xI − cx
fc

=
xC

zC
, ȳ :=

yI − cy
fc

=
yC

zC
, (6.2.4a)[

zC yC zC

]⊤
= −pC

i = −RCWpi = −RCW(pi − pr), (6.2.4b)

in which the camera intrinsics (i.e. the focal length fc and the principal point

(cx, cy) = (W/2, H/2) in pixels) are known in a calibrated camera (see Fig. 6.1).

Next, we describe the robot’s relative localization with respect to a known

object of a known size (e.g., a landmark or another robot) detected by the object

detection module.

Assumption 6.2.1. We assume that the object of interest is in the field of view of all

robots coordinating in a common inertial frame (the world frame). Additionally, the

object is either sufficiently distant from the robots or small with uniform dimensions,

ensuring that the orthographic projection assumption holds.

Under Assumption 6.2.1, and for a planer object of known size (i.e. width

WObj and height HObj) and given the detected bounding box box = (xI, yI,wI, hI) in
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the image plane, one can readily estimate of the object’s depth3 as follows:

fc
WObj

wI

≈ zC, (6.2.5)

where zC,wI, and fc are given in (6.2.4).

Using the camera orientation RCW , which is available from the VIO pipeline,

and (6.2.4)-(6.2.5), one can approximately recover the nominal relative position of the

robot with respect to the center of the object of interest, denoted by pn
i ≈ (pi−po) ∈

R3 and expressed in the common reference frame {W}, as follows:

pn
i ≈ R⊤

CW

(
fc
WObj

wI

)
x̄

ȳ

1

 , (6.2.6)

Additionally, note that an adversarial image attack δI as in (6.2.1) that induces lo-

calization error can be modeled as an offset δbox = (δxI, δyI, δwI, δhI) in the detected

box. As such, this offset affects the 3D localization in (6.2.6). Therefore, we modify

(6.2.6) to incorporate the effect of localization error and define a relative localization

uncertainty term for the recovered relative position as follows:

pi := pn
i + δpi ≈ R⊤

CW

(
fc

WObj

wI + δwI

)
x̄+ δx̄

ȳ + δȳ

1

 , (6.2.7a)

Rpos
i = ((1− pr)ϵ̄+ ϵ) I3, (6.2.7b)

3For planar objects, under the orthographic projection assumption, the depth is approximately
equal to the distance from the camera to the object along the z-direction of the camera frame. (see
Fig. 6.1).
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where the additive term δpi represents the 3D localization error caused by the adver-

sarial image attack, pr is the confidence probability of object detection module, and

ϵ̄, ϵ are small positive constants in the measurement covariance matrix Rpos
i , modeling

the relative localization uncertainty. We will later use the covariance term (6.2.7b)

in a gating and data association problem in Section 6.2.5.

Finally, we remark that the assumption of known object size is common in

prior work on relative localization using single-view monocular cameras [117]. Al-

ternative approaches can be employed for depth estimation and relative localization

when detection is available from multiple views [112, 88].

6.2.5 State Estimation with Intermittent Adversarial Perception Data

(Misclassification Effect)

We use a variant of the Kalman filter with intermittent measurements [122, 140] to

integrate Visual-Inertial Odometry (VIO) data with perception data from the object

detection module. This integration compensates for the four-dimensional unobserv-

able subspace4 in the VIO pipeline [127], allowing us to estimate the positions of

robots with respect to an object of interest within a map (e.g., a landmark in the

map). Additionally, it is important to note that the adversarial image attacks (per-

turbations) on the perception module can cause spurious and sporadic (intermittent)

measurement data (see Section 6.2.3), which do not follow the Gaussian noise distri-

bution assumed in the standard (optimal) Kalman filter derivation. It is known that

such measurement degeneracy can lead to instability in the optimal Kalman filter

[11, 122, 84, 142]. We empirically evaluate such degeneracy induced by adversarial

image attacks on the Kalman filter defined in what follows.

4The 4D unobservable subspace is induced by unknown initial conditions in 3D translational
dynamics and the heading (yaw) angle of the robot in the inertial (world) frame.
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Consider the robot’s relative position to a stationary object of interest, denoted

by pi =: p in5 (6.2.7), the robot’s velocity v, and finally a common reference velocity,

denoted by vref.. We let the Kalman filter state x̂k = col (p̂, v̂) ∈ R6 be the estimation

of p and v = v − vref., with the covariance Pk, and the update rules as follows:

x̂k|k−1 = F x̂k−1, Pk|k−1 = FPk−1F
⊤ +Q, (6.2.8a)

x̂k = x̂k|k−1 + β̄kKpos(ypos − Cposx̂k|k−1) +Kvel(yvel − Cvelx̂k|k−1), (6.2.8b)

Pk = Pk|k−1 − β̄kKposCposPk|k−1 −KvelCvelPk|k−1, (6.2.8c)

K• = Pk|k−1C
⊤
• S

−1
k ,

Sk =
(
C•Pk|k−1C

⊤
• +R•

i

)
, • ∈ {pos, vel}, (6.2.8d)

where F =

I3 TsI3

0 I3

, Q =

σ2
posI3 0

0 σ2
velI3

, Cpos =

[
I3 0

]
, Cvel =

[
0 I3

]
, and

β̄k = (1− βk) ∈ {0, 1} is a binary random variable that quantifies the availability of

relative position measurements ypos = p obtained using the perception data as de-

scribed in (6.2.7), while the velocity measurements yvel = v = v−vref. are constantly

available from the VIO module. In other words, βk = 1 at tk ∈ R≥0 corresponds

to the case of missed measurements of (6.2.7) due to an adversarial image attacks.

Therefore the rate of missed measurements (i.e. the distribution of βk) is directly

influenced by the rate of successful adversarial misclassification as well as by the

magnitude of mislocalization errors in (6.2.7).

We note that the adversarially intermittent observation model in (6.2.8) is

adopted from the formulation of Kalman filter with intermittent measurements trans-

mitted over wireless networks [122, 11, 140]. Additionally, the fusion of VIO and

5For notational brevity and with a slight abuse of notation, we will drop the subscript i in this
section.
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perception data using a Kalman filter is similar to the approach in [41].

Gating and Data Association. Recall that the object detection model

generates multiple bounding boxes and thus multiple relative position measurement

candidates {p}mo=0’s are available for the Kalman filter in (6.2.8) through relative

localization (6.2.7) with the uncertainty quantified by Rpos
i . To reduce the number

of candidate measurements for the Kalman filter, we use the Mahalanobis distance

[6, 100] to select an admissible subset of relative position measurements that are close

to the tracked relative position. This is achieved through gating as follows:

V =
{
po | (1− βk) (po − p̂)⊤ S−1

k (po − p̂) ≤ τ 2p

}
, (6.2.9)

where βk and innovation covariance Sk are given in (6.2.8), and is τp is the gating

threshold. We then associate the relative position with the minimum Mahalanobis

distance as the new measurement for the Kalman filter (see Fig. 6.2).

Remark 6.2.2. (Stability of Kalman Filter with Adversarial Measure-

ments). The stability of the Kalman filter in (6.2.8) is influenced by both the system

dynamics and the characteristics of adversarial measurements. First, the second-

order dynamics of the system, represented by the matrix F in (6.2.8), feature defec-

tive eigenvalues on the unit circle. This poses challenges for the stability analysis

of the Kalman filter with intermittent measurements [84, 140]. Additionally, since

the relative position measurements in (6.2.7) of the double-integrator system are sub-

ject to adversarial perturbations, the conditions for designing undetectable attacks are

satisfied [58, 64], [83, Thrm. 2], posing fundamental challenges (See also Remark

6.2.1). Moreover, the probability distribution of βk, which reflects the success rate

of adversarial image attacks on the relative localization measurements (6.2.7), is un-

known a priori. Previous studies have investigated the stability of the Kalman filter
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under the assumption that β̄k = (1− βk) follows a Bernoulli random process [122] or

the Gilbert-Elliott model [140]. Generally, there exists a critical threshold for the rate

of missed measurements (i.e., the probability distribution of β̄k = 0) below which the

estimation error covariance remains bounded with high probability, while it becomes

unbounded above this threshold.

Remark 6.2.3. (Kalman Filter with Adversarial Training). An alternative

approach to (6.2.8), originally proposed in [149], can be adapted to adversarially train

a Kalman gain that allows for robustness to measurement perturbations δpi. The ap-

proach in [149], however, does not consider adversarially intermittent measurements,

which are modeled by the binary variable β̄k ∈ {0, 1} in (6.2.8).

6.2.6 Resilient Multi-Robot Coordination

Consider a multi-robot system consisting of N ≥ 3 mobile robots (quadrotors) with

states xi = col (p̃i, ṽi) ∈ R6, with p̃i = pi − p⋆
i and ṽi = vi − vref., ∀ i ∈ V =

{1, . . . , N}. Similar to Chapter 4, one can obtain a reduced-order model of quadrotor

dynamics as follows:

Σi : ẋi =

A︷ ︸︸ ︷0 I3

0 0

xi +

B︷ ︸︸ ︷03

I3


ui(xi,xj,θi)
−g + fi

m

 , (6.2.10)

ui(xi,xj,θi) = g

cosϕi sinϕi

cosϕi − cosϕi


︸ ︷︷ ︸

R(ψi)

∆θ∗i
∆ϕ∗

i

 , (6.2.11)
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for which the control commands are obtained using feedback linearization as follows:

∆θ∗i
∆ϕ∗

i

 =
1

g
R−1(ψ∗

i )u
∗
i , (6.2.12)

with the coordination protocol

u∗
i = −α

∑
j∈V

a
σ(t)
ij (p̃i − p̃j)− γṽi + v̇ref.,

= −α
∑
j∈V

a
σ(t)
ij ((pi − p⋆

i )− (pj − p⋆
j ))− γ(vi − vref.) + v̇ref., (6.2.13)

where we obtain the robot’s relative position pi and velocity vi from the Kalman filter

in (6.2.8) and the neighbors’ position pj’s (or p̃j) from the communication network

(see Fig. 6.2). With a slight abuse of notation, the right-hand side of (6.2.13) refers

to the 2D positions in the x-y plane of the common reference frame {W}. The robots

can coordinate at the same altitude through altitude consensus or other approaches

[5].

Effect of adversarial image attacks. Recall (6.2.7) that models the 3D

localization error caused by adversarial image attacks on the i-th robot. Then (6.2.13)

can be represented as

u∗
i = −α

∑
j∈V

a
σ(t)
ij (p̃n

i − p̃n
j )− γṽi + v̇ref.

ua
i︷ ︸︸ ︷

−α
∑
j∈V

a
σ(t)
ij δpi, (6.2.14)

which implies adversarial image attacks on the i-th robot perception can be modeled

as bounded attacks on the control channel of the i-th robot that will be propagated

to the neighboring robots as well. In Chapter 5, we designed an observer-based moni-

toring framework that allows for detecting robots with compromised control channels
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(Also, see Fig. 6.2). We refer to the MSR-like algorithms as alternative approaches to

discarding compromised agents in a consensus-based coordination problem [37, 67].

6.3 Multi-Robot Platform Development

We have developed two multi-robot platforms for vision-based coordination with

learned perception modules over wireless communication networks. The first plat-

form includes a software package, TelloSwarm+, which we developed6 for Tello-EDU7

quadrotors with SDK 3. The second platform includes two custom-built quadro-

tors equipped with VOXL flight kit8 manufactured with ModalAI. We are currently

developing a software package9 for the custom-built quadrotors (see Fig. 6.4).

6.3.1 Communication Network Architecture

A low-latency communication network is central to the safe operation of multi-robot

systems with decentralized and/or distributed tasks. This communication encom-

passes information transmission both between the robots and between the robots

and a workstation (PC). We refer to [47, 46] for a critical review of communica-

tion networks and their open problems in the context of multi-robot systems. Here,

we employ the server-client model which has been demonstrated to be an efficient

communication approach for multi-robot systems with collaborative tasks [132].

In what follows we elaborate on the communication network of Tello-EDU

quadrotors in TelloSwarm+ (see Fig. 6.5). It is important to note that Tello-EDUs

are small quadrotors that can communicate over 2.4 GHz Wi-Fi but cannot run algo-

rithms onboard. Therefore, an efficient communication network must be established

6https://github.com/SASLabStevens/TelloSwarm
7https://www.ryzerobotics.com/tello-edu
8https://www.modalai.com/
9https://github.com/SASLabStevens/AutonomyStack

https://github.com/SASLabStevens/TelloSwarm
https://www.ryzerobotics.com/tello-edu
https://www.modalai.com/
https://github.com/SASLabStevens/AutonomyStack
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to replicate peer-to-peer communication among the robots on a centralized PC, al-

lowing distributed algorithms to be executed for each robot in a controlled setting.

To this end, we use a server-client model to establish the communication network for

TelloSwarm+.

Our network includes one UDP client that sends control commands from a

workstation PC to the robots, and two UDP servers on two threads to receive the

robot’s onboard state information (e.g., IMU data) and the acknowledgment message

for received control commands. Additionally, onboard video streams from each drone

are available through separate threads running an OpenCV UDP stream module10.

Overall, the network runs (2 +N) threads for N Tello-EDU quadrotors.

We note that using threads as independent units of execution within a pro-

cess with shared memory enables not only lightweight, low-latency communication

between the robots and the PC but also efficient inter-robot message passing, which

is essential for decentralized control and monitoring algorithms. It is also noteworthy

that an alternative ROS implementation of this architecture, particularly for video

streaming, encounters considerable latency due to the more computation-intensive

nature of message passing between ROS nodes. For a detailed latency analysis of

ROS, we refer to [62, 90].

6.4 Experimental Results

We conducted 15 experiments to evaluate the framework shown in Fig. 6.2, excluding

the adversary detection component, using the developed TelloSwarm+ platform11.

The objective is to evaluate how adversarial image attacks targeting the learned

perception module (object detection), with varying success rates, induce different

10VideoCapture()
11The open-source code is available at https://github.com/SASLabStevens/TelloSwarm.

https://github.com/SASLabStevens/TelloSwarm
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levels of degeneracy in the relative localization, state estimation, and coordination of

robots that rely on the compromised perception module (See Remark 6.2.2).

6.4.1 Custom-trained Object Detection Model

We fine-tuned a YOLOv7 model [136] to extend its detection capability from the 80

classes of the COCO-MS dataset to 82 classes, including our drones (the quadrotors

in Fig. 6.4) and jackal-UGV12.

Custom dataset. We collected 720 images of the quadrotors shown in Fig.

6.4 and jackal-UGV in the flight area of the Safe Autonomous Systems Lab at Stevens

as well as some high-fidelity synthetic images of the parrot ar drone 2.0 (quadrotor)

in the AirSim simulation environments. The images were split into 500 for training,

150 for validation, and 70 for testing. We then augmented the training dataset to

a total of 1,500 images. Our dataset is available as open source13. Additionally, for

the rest of the 80 classes of COCO-MS, we used a mini training set14 (25K images

≈ 20% of the original COCO dataset 2017) that has been shown to have a strong

performance correlation with the original dataset [114].

Training procedure on the custom dataset. We first pre-trained the

YOLOv7-tiny model using its original weights on our custom dataset for 15 epochs,

with a batch size of 32 and a learning rate of 0.001. Next, we froze the backbone

(the first 28 layers) and fine-tuned the pre-trained model for 50 epochs, with a batch

size of 32 and a learning rate of 0.0001. During both the training and experimental

phases, we used an image size of 640 × 640. The accuracy of the custom-trained

model is reported in Fig. 6.6.

Adversarial Image Attacks. As discussed in Section 6.2.3, adversarial image

12https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
13https://universe.roboflow.com/saslab/saslab-multirobot.
14https://github.com/giddyyupp/coco-minitrain

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://universe.roboflow.com/saslab/saslab-multirobot
https://github.com/giddyyupp/coco-minitrain
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attacks, regardless of their design method, can cause categorically similar adversarial

effects that are misclassification [65, 10, 49], mislocalization [143, 54, 58, 21], and

increased latency [121, 23] in learned perception models (e.g., object detection [143,

54] and pose estimation [23]). Therefore, we manually generate adversarial effects

of varying severity to evaluate our framework shown in Fig. 6.2. This approach

allows for resilience analysis of the proposed framework, independent of the specific

adversarial image attack model and the targeted learned perception (object detection)

model.

6.4.2 Perception-based Multi-Robot Coordination

Fig. 6.7 shows an overview of our experimental setup. In the experiments, two Tello-

EDU quadrotors were equipped with VIO and a custom-trained YOLOv7 model and

communicated over a wireless network as detailed in Fig. 6.5. To achieve higher

quality, we use pose data from a Vicon motion capture system to simulate the VIO

data. Each quadrotor then runs the framework outlined in Fig. 6.2 and detailed in

Section 6.2 on a separate thread for 1,000 iterations, with each iteration taking an

average of 35 milliseconds15 on a workstation PC running Ubuntu 20.04 LTS.

In the experiments, the jackal-UGV is the point of interest pr in the map.

Each Tello-EDU quadrotor uses a custom-trained YOLOv7 object detection model to

detect the jackal-UGV and then calculates its relative position to the detected jackal-

UGV as detailed in Section 6.2.4. The quadrotors then coordinate using the control

protocol defined in (6.2.13) with α = 0.72828 and γ = 1.09242. In the x-direction

of the common frame (see Fig. 6.7), the control protocol sets the common velocity

15The value, 35+74
−15 milliseconds per iteration, is reported under standard settings (i.e., no ad-

versarial attack), associated with the experiment listed in the first row of Table 6.1). Adversarial
attacks causing overload can increase this value to 41+100

−21 milliseconds per iteration, associated with
the experiment listed in the second row of Table 6.2, or potentially higher.
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Table 6.1: Adversarial Misclassification as Intermittent Measurements (False Nega-
tives) - 11 Experiments

Adversary Performance Metrics1

βk ∼ Bin(n, p) RMS(p̃21,
̂̃p21) RMS(p⋆

21, p̂21) RMS(p⋆
21,p21) supk≥1 ∥Pk∥2

∑1000
k=1 ∥Pk∥2

n = 0, p = 0 0.16 0.06 0.18 0.09 41.46
n = 1000, p = 0.2 0.29 0.08 0.30 1.05 56.92

n = 1000, p = 0.4 0.15 0.09 0.17 0.40 75.20

n = 1000, p = 0.6 0.13 0.09 0.11 1.40 124.88

n = 1000, p = 0.8 0.10 0.10 0.09 1.40 231.77

n = 1000, p = 0.95 1.99 0.62 1.49 11.88 1985.12

n = 200, p = 0.2 0.07 0.06 0.05 0.60 87.87

n = 200, p = 0.4 0.12 0.10 0.16 1.54 213.00

n = 200, p = 0.6 0.38 0.11 0.42 2.54 294.12

n = 200, p = 0.8 0.15 0.12 0.21 3.31 586.10

n = 200, p = 0.95 0.55 0.32 0.55 12.86 3613.21

1 Root mean square (RMS) was calculated for the 2D position in the x-y plane for t ≥ 10 sec to exclude

the effects of initial conditions.

reference vref. = 0, and p⋆
21 = p⋆

2 − p⋆
1 = −0.9 meters. In the y-direction, the control

protocol sets the common velocity reference vref. = 2πf cos( 2π
500
k), where f = 0.1 and

k ∈ [0, 1000], and p⋆
21 = p⋆

12 = 0. We set the IoU and confidence thresholds of the

object detection model to 0.45 and 0.15, respectively, at inference time. The Kalman

filter in (6.2.8) is initialized with x̂0|−1 = 0, P0|−1 = diag (I3, 0.05I3), Ts = tk− tk−1 ≥

0.02 in the state transition matrix F , σ2
pos = 0.05, σ2

vel = 0.04 in the covariance of the

process noise Q, and finally ϵ̄ = 0.4, ϵ = 0.01 for Rpos
i in (6.2.7b) and Rvel

i = 0.078I3.

We also set the gating threshold τp = 2.4476 in (6.2.9).

Experiment Set I (Adversarial Misclassification as Sporadic Measurements).

We conducted a set of 11 experiments, listed in Table 6.1, to evaluate the degenera-

tive effect of adversarial misclassification (6.2.1), modeled as sporadic (intermittent)

measurements, on the perception-based relative localization and state estimation in

the framework shown in Fig. 6.2. The perception (YOLOv7 object detection) model

of agent (quadrotor) 2, shown in Fig. 6.7, is subject to adversarial misclassification.
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The success rate of adversarial misclassification (equiv. the failure rate of inter-

mittent measurements) is quantified by the probability distribution of the binary

variable βk ∈ {0, 1} in (6.2.8) and (6.2.9). We let βk follow a binomial distribution,

βk ∼ Bin(n, p), with n trials and a success probability16 of p. As detailed in Remark

6.2.2, the probability distribution of β̄k = (1−βk), which reflects the rate of intermit-

tent measurements, has a direct degenerative effect on the stability of Kalman filter

in (6.2.8).

In the experiments listed in Table 6.1, the jackal-UGV (the reference point

for coordination) was adversarially misclassified as an airplane by the compromised

perception of agent (quadrotor) 2, which caused missed measurements, represented

by βk = 1 in (6.2.8) and (6.2.9). From the induced 2-norm of the state estimation co-

variance matrix Pk of the Kalman filter, reported in the last column of Table 6.1, one

can conclude that as the rate of missed measurements increases (i.e. the probability

of adversarial misclassification p in the Adversary column), the uncertainty in state

estimation correspondingly increases. Additionally, for a given success probability

p of adversarial misclassification, experiments with fewer trials (n = 200 compared

to n = 1000, as listed in the Adversary column) have longer consecutive periods of

misclassification, which causes a larger increase in state estimation uncertainty, as

reported in the last column. This effect is also demonstrated in Figs. 6.8 and 6.9.

Fig. 6.8 shows the evolution of the induced 2-norm of state estimation covariance

matrix Pk in (6.2.8) over time over time for three cases of no adversarial attack, and

adversarial attacks at two different rates, corresponding to the first, third, and sev-

enth rows of Table 6.1. The induced norm of the state estimation covariance matrix

serves as a metric for evaluating the peak-covariance stability of the Kalman filter

16The probability of success of a single trial, p, in the binomial distribution represents the prob-
ability of successful misclassification in (6.2.1) and equivalently represents the probability of single
failed relative localization measurement (i.e. β̄k = 1) for the Kalman filter in (6.2.8).
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with intermittent measurements [140]. Additionally, Fig. 6.9 shows the evolution of

the trace of the state estimation covariance matrix Pk, as another stability metric

[122], together with timestamped image frames and perception data for the adversar-

ial case of βk ∼ Bin(n = 200, p = 0.4) listed in the seventh row of Table 6.1. Finally,

Figs. 6.10 and 6.11 show the coordination trajectories of the quadrotors for the stan-

dard and adversarial cases, respectively, corresponding to the first and seventh rows

of Table 6.2. Overall, the results suggest the higher rate of adversarial misclassifi-

cation causes a larger level of degradation in the Kalman filter (6.2.8) that relies on

the localization measurements (6.2.7). In our experiment, we observed that a higher

rate of missed measurements caused the compromised agent (quadrotor 2) to stall

(hover) for larger periods (see (6.2.13)), leading to a drift in the coordination. Also,

the experiment listed in the fifth row of Table 6.1 resulted in a crash. However, it is

also important to note that the proposed framework, shown in Fig. 6.2, significantly

reduced the level of degradation and maintained the system’s stability in the presence

of adversarial misclassification that caused intermittent measurements. For instance,

despite the presence of missed measurements and spurious measurements, Fig. 6.11a

shows the successful state estimation of the second robot’s relative position to the

jackal-UGV, denoted by p2, that is used in the coordination protocol (6.2.13).

Experiment set II: Adversarial Mislocalization as Spurious Measurements.

We conducted a set of 4 experiments, listed in Table 6.2, to evaluate the degener-

ative effect of adversarial mislocalization (6.2.1) that cause spurious measurements

and adversarial overload [23], on the perception-based relative localization, state esti-

mation (6.2.8) and gating (6.2.9) in the framework shown in Fig. 6.2. The perception

(YOLOv7 object detection) model of agent (quadrotor) 2, shown in Fig. 6.7, is sub-

ject to adversarial mislocalization at different rates. In the experiments, the bounding
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Table 6.2: Adversarial Mislocalization as Spurious Measurements (False Positives) -
4 Experiments

Adversary1 Performance Metrics2

δbox RMS(p̃21,
̂̃p21) RMS(p⋆

21, p̂21) RMS(p⋆
21,p21) supk≥1 ∥Pk∥2

∑1000
k=1 ∥Pk∥2

b = 10, q = ±15% 1.07 0.12 1.07 0.07 40.40

b = 10, q = ±30% 0.65 0.20 0.59 1.20 44.32

b = 10, q = ±45% 1.12 0.25 0.99 1.25 46.08

b = 10, q = ±75% 0.80 0.21 0.74 1.25 45.71

1 b = 10 spurious bounding boxes were adversarially generated by perturbing the nominal detected

bounding box around the object of interest by q ∈ {±15%,±30%,±45%,±75%}. Additionally, their

probability confidence pr was set 10% more than the nominal one.
2 Root mean square (RMS) was calculated for the 2D position in the x-y plane for t ≥ 10 sec to exclude

the effects of initial conditions.

boxes of detected jackal-UGV (the reference point for coordination) were adversarially

mislocalized as described17 in the footnote of Table 6.2.

Figs. 6.12 and 6.13 shows the results associated with the experiment listed in

the second row of Table 6.2. As shown in Fig. 6.13, adversarial mislocalization can

generate a significant number of spurious bounding boxes, leading to a substantial

increase in spurious relative position measurements (6.2.7). These spurious mea-

surements impose a computational overhead on the components of the perception

module, shown in Fig. 6.2, which resulted in latency for the compromised quadrotor.

Additionally, the adversarial mislocalization caused the failure of the data associa-

tion module at t ≈ 11, shown in Fig. 6.13a. This failure led to a large error in the

Kalman filter’s estimation of the relative measurements, resulting in a significant drift

in multi-robot coordination.

Experiment set III: Mixed Adversarial Misclassification and Mislocaliza-

tion. We conducted an experiment, listed in Table 6.3, to evaluate the degenerative

effect of both adversarial misclassification and mislocalization (6.2.1) that cause spo-

17We note that the perturbations applied to the nominal bounding boxes were calculated based on
the top-left and bottom-right corners, (x1, y1, x2, y2), of the bounding box, rather than (xI, yI,wI,hI)
coordinates.
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Table 6.3: The Effect of Mixed Adversarial Misclassification and Mislocalization

Adversaries1 Performance Metrics2

βk ∼ Bin(n, p) & δbox RMS(p̃21,
̂̃p21) RMS(p⋆

21, p̂21) RMS(p⋆
21,p21) supk≥1 ∥Pk∥2

∑1000
k=1 ∥Pk∥2

n = 200, p = 0.2
0.23 0.12 0.22 1.55 103.100

b = 5, q = ±75%
1 b = 5 spurious bounding boxes were adversarially generated by perturbing the nominal detected bounding

box around the object of interest by q = ±75% and by increasing the probability confidence by 10%.
2 Root mean square (RMS) was calculated for the 2D position in the x-y plane for t ≥ 10 sec to exclude the

effects of initial conditions.

radic and spurious measurements, on the perception-based relative localization, state

estimation (6.2.8) and gating (6.2.9) in the framework shown in Fig. 6.2. The per-

ception (YOLOv7 object detection) model of agent (quadrotor) 2, shown in Fig. 6.7,

is subject to adversarial attacks. In the experiments, the bounding boxes of detected

jackal-UGV (the reference point for coordination) were adversarially misclassified as

an airplane, which caused missed measurements, represented by βk = 1 in (6.2.8) and

(6.2.9). Additionally, the bounding boxes of detected jackal-UGV were adversarially

mislocalized as described in the footnote of Table 6.3. Adversarial misclassification

and mislocalization occur simultaneously at some time instances during the experi-

ment.

Figs. 6.14 and 6.15 show the result of the experiment. The evolution of

the trace of the state estimation covariance matrix Pk, together with timestamped

image frames and perception data subject to adversarial mislocalization as well as

adversarial misclassification with βk ∼ Bin(n = 200, p = 0.2) are shown in Fig.

6.14. One can observe the degenerative effect of missed measurements as peaks in

the Trace(Pk). Fig. 6.15 shows the coordination trajectories of the quadrotors. This

experiment demonstrates the effectiveness of the proposed framework, shown in Fig.

6.2, in mitigating degradation caused by adversarial image attacks and providing an

estimation of relative positions despite adversarially induced sporadic (intermittent)

and spurious measurements.



128

Figure 6.3: The effect of FGSM adversarial image attack on YOLOv7 object detec-
tion.
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(a) TelloSwarm+ Platform

(b) Custom-built VOXL-equipped Platform

Figure 6.4: Multi-robot Platforms. (a) The TelloSwarm+ platform is an extension of
our prior work [4] with vision capability and efficient multi-threaded wireless commu-
nication capability. (b) The VOXL-equipped platform is a custom-built quadrotor
that allows for the onboard implementation of control, monitoring, and deep learning
algorithms.
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Modification to improve latency and reduce computational cost:
Our Old API ---- (3*N) threads for N Tello EDUs
Our New API --> (N+2) threads for N Tello EDUs
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Figure 6.5: Multi-robot communication architecture for TelloSwarm+. The network
establishes a multithreaded server-client architecture over Wi-Fi 802.11 using the
UDP protocol to achieve fast, low-latency communication with each robot. A motion
capture system provides the ground truth poses of the robots.
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Figure 6.6: The accuracy of custom-trained YOLOv7 model. mAP (mean average
precision) is calculated based on the Intersection over Union (IoU) between the de-
tected bounding boxes and ground-truth bounding boxes, with IoU thresholds of 0.5
and ranging from 0.5 to 0.95.



132

Figure 6.7: Experimental setup for perception-based multi-robot coordination subject
to adversarial image attacks. The experiments use the framework shown in Fig. 6.2.
Two Tello-EDU quadrotors perform relative localization with respect to the jackal-
UGV using their respective VIO and object detection model that detects the jackal-
UGV. The quadrotors also coordinate their estimated relative positions through the
control protocol (6.2.13).
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Figure 6.8: The induced 2-norm of state estimation covariance to adversarial mis-
classification as intermittent measurements at different rates. see Table 6.1 for more
comparisons.
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(a) The trace of state estimation covariance matrix

(b) Timestamped perception and relative localization of agent 2

Figure 6.9: Results from a two-agent perception-based coordination experiment using
the framework shown in Fig. 6.2, subject to adversarial misclassification as detailed
in the seventh row of Table 6.1. The peaks in (a) reflect the degenerative effect
of adversarial misclassification inducing missed measurements in the Kalman filter
(6.2.8). (b) The boxes with labels on top are the detections from the custom-trained
YOLOv7 model, while the green boxes with labels underneath are calculated by
projecting the 3D relative position estimations from the Kalman filter into the image
space to determine the box’s center, and by using the object’s known size to compute
the box’s width and height in the image. Additionally, the image frames in (b) have
been cropped for better visualization. The original camera image size was 640 × 480
pixels.
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(b) Velocity Trajectories
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(c) Trajectories of Relative Position Coordination

Figure 6.10: Results from a two-agent perception-based coordination experiment in
standard settings (i.e., no adversarial attacks on the perception module), using the
framework illustrated in Fig. 6.2. Performance metrics and comparisons for this
experiment are detailed in the first row of Table 6.1.
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(c) Trajectories of Relative Position Coordination

Figure 6.11: Results from a two-agent perception-based coordination experiment with
adversarial misclassification in the perception module, using the framework illustrated
in Fig. 6.2. The adversarial misclassification rate is modeled by a binomial distribu-
tion βk ∼ Bin(n = 200, p = 0.4) in (6.2.8). Performance metrics and comparisons for
this experiment are detailed in the seventh row of Table 6.1.
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Figure 6.12: Timestamped perception and relative localization of agent 2 subject to
adversarial mislocalization. The results are associated with the experiment listed in
the second row of Table 6.2. The boxes with labels on top are the detections from
the custom-trained YOLOv7 model, while the green boxes with labels underneath
are calculated by projecting the 3D relative position estimations from the Kalman
filter into the image space to determine the box’s center, and by using the object’s
known size to compute the box’s width and height in the image. Additionally, the
image frames have been cropped for better visualization. The original camera image
size was 640 × 480 pixels.
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(c) Time-synchronized Trajectories of Relative Position Coordination

Figure 6.13: Results from a two-agent perception-based coordination experiment with
adversarial mislocalization in the perception module, using the framework illustrated
in Fig. 6.2. The adversarial mislocalization involves augmenting the nominal output
of the object detection model with b = 10 spurious bounding boxes. The spurious
boxes were generated by adversarially perturbing the nominal detected bounding box
around the object of interest (jackal-UGV) by q = ±30% and increasing their proba-
bility confidence by 10%. Performance metrics and comparisons for this experiment
are detailed in the second row of Table 6.2.
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Figure 6.14: Results from a two-agent perception-based coordination experiment us-
ing the framework shown in Fig. 6.2, subject to both adversarial misclassification
and mislocalization as detailed in Table 6.3. The peaks in (a) reflect the degenerative
effect of adversarial misclassification inducing missed measurements in the Kalman
filter (6.2.8). (b) The boxes with labels on top are the detections from the custom-
trained YOLOv7 model, while the green boxes with labels underneath are calculated
by projecting the 3D relative position estimations from the Kalman filter into the
image space to determine the box’s center, and by using the object’s known size to
compute the box’s width and height in the image. Additionally, the image frames in
(b) have been cropped for better visualization. The original camera image size was
640 × 480 pixels.
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(c) Time-synchronized Trajectories of Relative Position Coordination

Figure 6.15: Results from a two-agent perception-based coordination experiment with
adversarial misclassification and mislocalization in the perception module, using the
framework illustrated in Fig. 6.2. The adversarial misclassification rate is modeled
by a binomial distribution βk ∼ Bin(n = 200, p = 0.2) in (6.2.8). The adversarial
mislocalization involves augmenting the nominal output of the object detection model
with b = 5 spurious bounding boxes. The spurious boxes were generated by adver-
sarially perturbing the nominal detected bounding box around the object of interest
(jackal-UGV) by q = ±30% and increasing their probability confidence by 10%. Per-
formance metrics for this experiment are detailed in Table 6.3.
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Chapter 7

Conclusion and Future Work

In this dissertation, we considered the resilience of multi-robot systems with wire-

less communication and learned perception modules in the context of coordination

and formation control. We first considered resilience to worst-case scenario adver-

saries that exploit the vulnerabilities of wireless communication. Our results extend

the previous results to the case of switching communication networks with intermit-

tent connections that require to maintain connectivity only in an integral sense rather

than constantly throughout time. This relaxation allowed us to design principled algo-

rithms to detect and mitigate a class of adversarial attacks. We also characterized the

system resilience to a worst-case set of malicious agents (robots) in a network as well

as the network resilience to permanent and intermittent disconnections. In the second

part of this dissertation, we considered a class of adversarial image attacks target-

ing the robots’ learned perception models in the form of adversarial misclassification

and mislocalization. We demonstrated that the resilience of multi-robot coordination

under adversarial perception can be formulated and enhanced as resilience against

sporadic (intermittent) and spurious measurements in a state estimation problem.

7.1 Summary

In Chapter 3, we considered the security goals of data confidentiality and integrity for

a class of multi-agent (robot) control systems seeking average consensus. We proposed

a decentralized attack detection framework designed to detect stealthy attacks that

target the data integrity and stability of the multi-agent control systems. The frame-

work includes two sets of observers: local and central (global) observers. It leverages
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topology switching at the global level and local monitoring to detect the attacks.

The approach is scalable as it relies on decentralized local observers for detection.

Additionally, by enforcing partial observability, the framework preserves the privacy

(confidentiality) of the initial conditions of the multi-agent system’s states. In our

analysis, we derived theoretical conditions for the detectability of stealthy attacks.

Chapter 4, extends the results of Chapter 3 to the case of formation control

for a network of small Unmanned Aerial Vehicles (UAVs). Based on the theoretical

finding of Chapter 3, we proposed a distributed attack detection framework for a

relatively small group (e.g., N ≤ 10) of UAVs that are subject to stealthy attacks.

We have also developed an open-source software package for conducting indoor flight

experiments using a class of small UAVs. We illustrated the performance of our

proposed framework through various experiments. We demonstrated the performance

of our proposed framework through various experiments. We believe this open-source

software package will be beneficial for the robotics and control community.

In Chapter 5, we considered the security goals of data integrity and availability

for a class of multi-agent (robot) systems. We considered the consensus and formation

of multi-agent (robot) systems over a time-varying communication network subject

to deception and DoS attacks. deception attacks target the data integrity in wireless

communication and DoS attacks target the data availability. We showed, for a given

integer number F , the communication network requires to be at least (F +1)-vertex-

connected (resp. (F + 1)-robust) in an integral sense and uniformly in time over

a period of time T for resilience to an F -total (resp. F -local) adversary set that

upper bounds the number of malicious agent with deception attacks. These bounds

provide a relaxed compared to the existing ones in the literature. We presented

theoretical guarantees and explicit bounds for exponentially fast convergence to the

consensus/formation equilibrium in the presence of constrained DoS attacks. We
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also presented a distributed attack detection framework with theoretical guarantees,

which allows for resilient cooperation.

In Chapter 6, we developed two multi-robot platforms with perception and

wireless communication capabilities. The platforms allow for experimental studies

on adversarial image attacks on the perception module of multi-robot systems. We

demonstrated that a class of adversarial image attacks on the robots’ perception mod-

ules cause categorically similar effects including misclassification and mislocalization,

which can be formulated as sporadic (intermittent) and spurious measurement data.

We then proposed a framework that allows for state estimation and perception-based

relative localization in the presence of intermittent and spurious measurements caused

by adversarial image attacks on the perception module.

7.2 Future Directions

The development of resilient cyber-physical systems (CPS), particularly multi-robot

systems, continues to be an active area of research with many open problems [102]

and security goals outlined in [18].

In our proposed frameworks in Chapters 3-5, we implicitly assumed that agents

(robots) have pre-designed collision-free set-points. In the face of attack detection

and reconfiguration, collision-free trajectory planning as a contingency plan could be

considered as a future research direction for resilient multi-robot coordination.

We proposed the (µ, T )-PE connectivity in (5.2.1) as relaxation to point-wise

in-time connectivity (e.g, static network), whose connectivity uniformly in time allows

for exponential stability and convergence in the presence of time-constrained DoS

attacks (see Proposition 5.2.6). The uniformly in-time persistent excitation (PE) of

connectivity requirement in (5.2.1) can be further relaxed [7, 8] to allow for asymptotic
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stability and convergence in the presence of arbitrarily persistent DoS attacks.

In terms of privacy and data confidentiality, one promising research direction

involves designing communication network topologies based on geometric symmetry

and automorphisms [126, 125]. This principled approach enables the creation of un-

observable subspaces that limit the ability to reconstruct the entire network from the

locally available data of each (compromised) agent, thereby ensuring confidentiality.

Finally, considerable effort could be devoted to resilience against adversarial

perception models in multi-robot settings. In particular, the derivation of theoreti-

cal bounds for resilience to adversarial sporadic and spurious measurement data in

a state estimation problem for systems with degenerative dynamics (i.e. repeated

eigenvalues) is an area of interest.
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Appendix A

Proofs of Chapter 3

A.1 Auxiliary Results

The following Definition and Lemma are used in the Proof of Theorem 3.2.4.

Definition A.1.1. The Laplcaian matrix of the graph composed of switching links

between two communication graphs is block diagonalizable, where each block, also

called a component, encodes either a single (added/removed) switching link or a group

of them are connected.

The foregoing definition can be formally presented as follows: consider a net-

work topology that switches between two distinct topological configurations with

respective Laplacian matrices Lσ(t)=q′ and Lσ(t)=q, where q′,q ∈ Q with q′ ̸= q,

and let ∆Lq = Lq − Lq′ denote the difference between these two Laplacian matri-

ces. Then, from Definition 2.2.2, ∆Lq is associated with the induced graph ∆Gq =

(Vq,∆Eq,∆Aq), that specifies connected graph component(s) corresponding to added/

removed communication link(s) in the communication network such that

Vq = (∪cc=1Dc) ∪ Ds, s.t Vq = V , (A.1.1)

(i, j) ∈ ∆Eq if [∆Aq]i,j = aqij − a1ij ̸= 0 ⇐⇒ [∆Lq]i,j ̸= 0, (A.1.2)

where Dc denotes the set of nodes (agents involved in switching links) in c-th con-

nected component with |Dc| ≥ 2 and Di′ ∩ Dj′ = ∅ for any i′, j′ ∈ {1, · · · , c}, i′ ̸= j′.

Also, Ds denotes the set of singletons i.e. single nodes that are not involved in any

switching link. Then, there exists a permutation matrix P, PP⊤ = I to relabel the
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nodes and represent the Laplacian matrix ∆Lq in block diagonal form, (cf. [87, Ch.

6.12]), as follows

P∆LqP
⊤ = L̆q = diag {∆Lq(D1), · · · ,∆Lq(Dc),∆Lq(Ds)}, (A.1.3)

where ∆Lq(Dc) denotes the Laplacian matrix of the c-th connected component and

∆Lq(Ds) = 0.

Lemma A.1.1. Consider system in (3.1.4) with topology switching from normal mode

σ(t) = 1 to a safe mode σ(t) = q ∈ Q and the measurements set M in (3.1.5), and

let ∆Lq = Lq− L1 denote the difference of the Laplacian matrices in safe and normal

mode. Then under condition

Im(∆Lq) ∩ ker ([C⊤
x C⊤

v ]
⊤) = ∅, (A.1.4)

every connected graph component has at least one globally monitored node (agent),

that is

Dc ∩M ≠ ∅, ∀ c ∈ {1, · · · , c}. (A.1.5)

where Cx and Cv are diagonal elements of C in (3.1.5) and Dc denotes the set of

nodes in c-th connected component of ∆Lq as given in (A.1.1).

Proof. We first show (A.1.4) is invariant under permutation of ∆Lq which is

introduced in (A.1.3) and accordingly permutation of [C⊤
x C⊤

v ]
⊤. To this end, from
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the definition of nullspace, we have

ker


Cx

Cv

∆Lq

 =

x ∈ RN |

Cx

Cv

∆Lqx = 0

 , (A.1.6)

from which we obtain either

∆Lqx /∈ Im (∆Lq) ⇐⇒ ∆Lqx = 0, (A.1.7)

or

0 ̸= Y = ∆Lqx ∈ Im (∆Lq) =⇒

Cx

Cv

Y = 0, (A.1.8)

where the latter, (A.1.8), is in contradiction with condition (A.1.4). Now under the

permutation defined in (A.1.3),

Cx

Cv

∆Lqx = 0 in (A.1.6) can be rewritten in block-

partitioned diagonal form as

Cx

Cv

P⊤L̆qPx =

Cx

Cv

P⊤L̆qχ =

C̆x

C̆v

 L̆qχ = 0, (A.1.9)

in which χ = Px denotes the relabeled x such that

χ = col (χ1, . . . , χc) = Px, with

χc = col (xi), ∀ i ∈ Dc, ∀ c ∈ {1, · · · , c}. (A.1.10)

Also, C̆k = CkP
⊤ =

[
C1

k · · · Cc
k

]
, k ∈ {x, v} is a block-partitioned binary matrix
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that specifies monitored agents of each component 1. To show the results in (A.1.7)

and (A.1.8) hold also for the transformed form in (A.1.9), one need to verify the

invariance of (A.1.4) under the permutation by P, that is

Im(∆Lq) ∩ ker ([C⊤
x C⊤

v ]
⊤) = ∅ ⇐⇒ Im(L̆q) ∩ ker ([C̆⊤

x C̆⊤
v ]

⊤) = ∅. (A.1.11)

To show this, from the range and nullspace definition, for subspaces in (A.1.11) we

have

Im(∆Lq) =
{
Y ∈ RN | Y = ∆Lqx(t)

}
, (A.1.12)

ker


Cx

Cv


 = ker(Cx) ∩ ker(Cv) =

{
X ∈ RN | CxX = 0, CvX = 0

}
, (A.1.13)

and

Im(L̆q) =
{
Y̆ ∈ RN | Y̆ = L̆qχ(t) = L̆qPx(t)

}
=
{
Y̆ ∈ RN | P⊤Y̆ = P⊤L̆qPx(t) = Y

}
= P Im (∆Lq), (A.1.14)

1Note that P⊤ permutes the columns of binary matrix Ck whose row-vector elements are e⊤i , ∀ i ∈
Mk, k ∈ {x, v}.
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where we used (A.1.3) and χ(t) = Px(t) as in (A.1.10) and (A.1.12). Similarly,

ker


C̆x

C̆v


 = ker(C̆x) ∩ ker(C̆v)

=
{
X̆ ∈ RN | C̆xX̆ = 0, C̆vX̆ = 0

}
=
{
X̆ ∈ RN | CxP

⊤X̆ = 0, CvP
⊤X̆ = 0

}
=
{
X̆ ∈ RN | CxX = 0, CvX = 0, PX = X̆

}
= P ker


Cx

Cv


 . (A.1.15)

Then

Im(L̆q) ∩ ker


C̆x

C̆v


 = P Im (∆Lq) ∩ P ker


Cx

Cv




= P

Im (∆Lq) ∩ ker


Cx

Cv



 = P (∅) = ∅. (A.1.16)

where we used fact 2.9.29 in [12] and condition 1.

Now one can prove (A.1.5) by contradiction. Assume (A.1.5) does not hold,

that is ∃ c′ ∈ {1, · · · , c}, s.t. Dc′ ∩M = ∅, under which we have the c′-th block in

(A.1.9) such that

C̆c′
x

C̆c′
v

∆Lq(Dc′)χc′(t) = 0, C̆c′

x = C̆c′

x = 0, (A.1.17)

which holds for all χc′(t) with ∆Lq(Dc′)χc′(t) ∈ Im (∆Lq(Dc′)) ⊆ Im (L̆q) as in
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(A.1.17) Im (∆Lq(Dc′)) ∈ ker


C̆c′

x

C̆c′
v


 =⇒ Im (L̆q) ∩ ker ([C̆⊤

x C̆⊤
v ]

⊤) ̸= ∅ that

contradicts (A.1.11).

A.2 Proof of Lemma 3.2.1

Note that the Laplacian matrix Lσ(t) of every connected undirected (or strongly con-

nected and balanced directed) graph has only one zero eigenvalue, λ = 0, with the

corresponding eigenvector 1N such that Lσ(t)1N = 0 [93]. Then, given the structure

of Aσ(t) in (3.1.4), (λ = 0, wr =
[

(1/N)1N
0N

]
) is an eigenpair of system matrix Aσ(t)

associated with that of Laplacian Lσ(t) with σ(tk−1) = q ∈ Q, t ∈ [tk−1, tk). Also,

it can be verified that the eigenpair (λ = 0, wr) lies in the unobservable subspace of

system (3.1.4) as it is a nontrivial solution to the PBH test for observability:

λI −Aq

C

wr = 0, λ = 0 ∈ C, (A.2.1)

C = diag {0, Cv} . (A.2.2)

Therefore, one can conclude that the right eigenvector wr contained in ker(C) belongs

to ker(Ok) that is defined in (2.3.5) [51, Th. 15.8]. Furthermore, as (λ = 0, wr) is the

eigenpair associated with the equilibrium subspace (3.1.2) of every Aq with Laplacian

Lq, it is straightforward from Lemma 2.3.1 that span {wr} = span
{[

1N
0N

]}
⊆ N∞

1 =

ker(O) over t ∈ [t0,+∞).
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A.3 Proof of Proposition 3.2.3

Let σ(t) = q ∈ Q, t ∈ [tk−1, tk) and consider the error dynamics of local observers in

(3.2.9). According to Definition 2.3.1, a ZDA for (3.2.9) should satisfy

λ0I − Fi
q −TiBi

Cii 0


ẽi(0)

u0i

 =

0
0

 , (A.3.1)

where ẽi(0) := ei(0) − ēi(0) = x̃0i . Also, by considering (3.2.7) and the fact that

Cii ẽi(0) = Ciix̃i(0) = 0 in the second equation of (A.3.1), matrix pencil (A.3.1) can

be rewritten as
P̄︷ ︸︸ ︷λ0I − Āi
q −TiBi

Cii 0


x̃i(0)

u0i

 =

0
0

 . (A.3.2)

It follows immediately from Definition 2.3.1 that a stealthy attack uai in (3.2.9),

whether it is a ZDA or covert attack2, loses its stealthiness with respect to the local

residual rii if, and only if, there is no non-trivial zeroing direction associated with

matrix pencil in (A.3.1) or equivalently P̄ in (A.3.2), which in turn implies P̄ has full

rank. Moreover, from Definition 2.3.1 and condition (3.2.4), it is straightforward that

matrix pencil P, defined in (3.2.10), is associated with the zeroing direction of the

local system (3.2.1). We now show how conditions (1)-(3) establish the equivalence

between the rank sufficiency of P in (3.2.10) and P̄ in (A.3.2). Given P in (3.2.10),

2Note that a covert attack is defined in (3.1.4) based on the network-level measurements (3.1.4b)
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one can write 
I − hiCii λ0h

i

0 I

hiCii −λ0hi

P =


λ0I − Āi

q −(I − hiCii)B
i 0

Cii 0 0

−hiCiiA
i
q hiCiiB

i Ei

 , (A.3.3)

where hi := Ei(CiiE
i)† is a solution to (3.2.6) that exists under condition (ii) [24,

Lemma 1]. Then, postmultiplying (A.3.3) by


I 0 0

0 I 0

(CiiE
i)†CiiA

i
q (CiiE

i)†CiiB
i I

 , (A.3.4)

and considering (3.2.7) yields


λ0I − Āi

q −TiBi 0

Cii 0 0

0 0 Ei

 . (A.3.5)

Since node i ∈ Pi is k-connected, we have |Ni| = k and k ≤ rank (Cii) ≤ 2k (cf.

(3.1.5)). Then, from condition (i), one can verify that rank (Cii) ≥ rank
(
Bi
)
+

rank
(
Ei
)
guarantees (3.2.10) is a tall or square matrix pencil having only a finite

number3 of output-zeroing directions [69, Ch. 2]. Also, the pre- and post-multiplied

3This condition is not valid for degenerate systems which are out of scope of this work.
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matrices in (A.3.3) and (A.3.4) are full column ranks. Therefore, we have

rank (P) = rank

λ0I − Āi
q −TiBi

Cii 0


︸ ︷︷ ︸

P̄

+rank
(
Ei
)
. (A.3.6)

Recall Ei is full column rank, and hence P in (3.2.10) is full rank if, and only if, P̄

in (A.3.6) is full rank. This guarantees that a locally undetectable stealthy attack is

impossible.

A.4 Proof of Theorem 3.2.4

Consider (3.2.14) over t ∈ [t0,+∞), and let the safe mode σ(t)=q∈Q, t ∈ [t1,+∞)

the continuous system residual r0(t) and its successive derivatives can be rewritten

as

R = O1e(t)−H(HC)E+H(B)Ua +H(H)Us −Us +H(∆Aq)X, (A.4.1)
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where

R =

[
r⊤0 (t) ṙ⊤0 (t) · · · (r⊤0 (t))

(d)

]⊤
, (A.4.2)

Uȷ =

[
u⊤
ȷ (t) u̇⊤

ȷ (t) · · · (u⊤
ȷ (t))

(d)

]⊤
, (A.4.3)

E =

[
e⊤(t) ė⊤(t) · · · (e⊤(t))(d)

]⊤
, (A.4.4)

X =

[
x⊤(t) ẋ⊤(t) · · · (x⊤(t))(d)

]⊤
, (A.4.5)

H(b) =



0 0 0 · · · 0

Cb 0 0 · · · 0

CA1b Cb 0 · · · 0

...
...

. . . . . .
...

CAd
1b CAd−1

1 b · · · Cb 0


, (A.4.6)

with ȷ ∈ {a, s}, b ∈ {B,HC,H,∆Aq}, ∆Aq = (Aq −A1) and d ∈ N \ {1, 2}.

From (3.1.7) in Proposition 3.1.4 and (3.2.12)-(3.2.13), it can be easily verified

that (A.4.1) is simplified to R = O1ē(t) −H(HC)Ē +H(∆Aq)X where Ē has the

same form as (A.4.4) while whose elements are ē and its derivatives. Therefore, in

a stealthy attack case limt1→∞R = 0 during normal mode over t ∈ [t0, t1). The

objective is to characterize the effect of switching communication, modeled as dis-

crepancy ∆Aq in (3.2.14) and (A.4.1), on the stealthiness of attacks in the residual

r0(t) of centralized observer (3.2.11) during safe mode over t ∈ [t1,+∞) (cf. Problem

3.1.6). Given the input-output matrix (A.4.6) for the switching perturbations ∆Aq

in (A.4.1), note that H(∆Aq)X = 0 over t ∈ [t1,+∞) in (A.4.1) is the necessary

condition under which the stealthy attacks, modeled in (3.1.6), remain undetectable

in the residual r0(t) of (3.2.14), regardless of the perturbation ∆Aqx caused by topol-



11

ogy switching. Therefore, H(∆Aq)X ̸= 0 in (A.4.1) implying the system switching

∆Aq affects R(t), t ∈ [t1,+∞) in (A.4.1) guarantees attack detectability in r0(t).

Consider Markov parametersCAd
1∆Aq, d ∈ N0 in (A.4.6), the termH(∆Aq)X

in (A.4.1) can be rewritten as

d∑
l=0

CAd
1∆Aqx

(d−l)(t) = 0, ∀ d ∈ N0. (A.4.7)

We show that under condition 1, the first two terms in (A.4.7) are non-zero (and so

is H(∆Aq)X ̸= 0) unless ∆Aqx(t) = 0, ∀ t ∈ [t1,+∞).

By setting d = 0, 1, and expanding (A.4.7) we obtain

d = 0
(A.4.7)⇒ Cv∆Lqx(t) = 0, ∀ t ∈ [t1,+∞), (A.4.8)

d = 1
(A.4.7)⇒ Cv∆Lqv(t) = 0, and,

Cx∆Lqx(t) = 0, ∀ t ∈ [t1,+∞), (A.4.9)

where Cx and Cv are diagonal elements of C as given in (3.1.4)-(3.1.5), ∆Lq =

Lq − L1 is the non-zero submatrix of ∆Aq = (Aσ(t) −A1) =
[

0 0
−α∆Lq 0

]
, and x(t) =

col(x(t), v(t)) as in (3.1.4). Then, using (A.4.8) and (A.4.9), we have

Cx

Cv

∆Lqx(t) = 0, ∀ t ∈ [t1,+∞). (A.4.10)

Under condition 1, one can verify that (A.4.10) implies

∆Lqx(t) /∈ Im (∆Lq) ⇐⇒ ∆Lqx(t) = 0, ∀ t ∈ [t1,+∞). (A.4.11)
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otherwise, for any x(t) such that 0 ̸= ∆Lqx(t) = Y ∈ Im (∆Lq), we obtain

[C⊤
x C⊤

v ]
⊤Y = 0, Y ∈ ker ([C⊤

x C⊤
v ]

⊤)

for (A.4.10), which is in contradiction with condition 1.

Now considering the consensus protocol (3.1.3), it can be verified that ∆Lq (or

equivalently ∆Aq in (A.4.7)), encodes connected graph component(s) corresponding

to added/removed communication link(s) in the communication network (cf. Defini-

tion 2.2.2 and A.1.1). Then, applying an elementary transformation using a permu-

tation matrix P defined in (A.1.3), transforms (A.4.11) into block-diagonal form as

follows:

∆Lqx(t) = 0 ⇐⇒ L̆qχ(t) = 0, ∀ t ∈ [t1,+∞), (A.4.12)

where the block-diagonal matrix L̆q is given in (A.1.3) and χ(t) = Px(t) denotes the

relabeled system states such that

χ(t) = col (χ1(t), . . . , χc(t)) = Px(t), with

χc(t) = col (xi(t)), ∀ i ∈ Dc, ∀ c ∈ {1, · · · , c}, (A.4.13)

with Dc being the set of nodes (agents involved in switching links) in c-th connected

component4 as in (A.1.1). Also, note that the permutation matrix P is a binary

nonsingular matrix by definition. Additionally, the Laplacian matrix is a zero row-

sum matrix, and if connected, its nullspace is spanned by 1, a vector of all ones [93].

Therefore, from (A.4.12) and considering nodes involved in (connected) switching

4Although the analysis here is at the global level, it is worth mentioning that ∆Lq at cluster
levels i.e. Pi, i ∈ {1, · · · , |P |} may have more than one connected component.
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links, i.e., for all ∀ i, j ∈ Dc, i ̸= j, one can conclude that

xi(t)− xj(t) = 0⇔

xi(t) = xj(t), ∀ i, j ∈ Dc, ∀ c ∈ {1, · · · , c},

∀ t ∈ [t1,+∞), (A.4.14)

which by considering the continuity of the system states can be extended for its

higher-order time derivatives and be rewritten as follows:

(e⊤i − e⊤j )x
(m)(t) = 0, ∀ i, j ∈ Dc, ∀ c ∈ {1, · · · , c},

∀m ∈ N0, ∀ t ∈ [t1,+∞), (A.4.15)

with ei, ej being i-th and j-th standard-basis vectors in RN .

Also, from (A.4.7), (A.4.12), (A.4.15) and by considering the structure Aσ(t)

and system state x(t) = col(x(t), v(t)) in (3.1.4), we obtain

∆Aqx
(m)(t) = 0⇔

∆Lqx
(m)(t) = 0, ∀m ∈ N0, ∀ t ∈ [t1,+∞). (A.4.16)

Therefore, under condition 1, one can conclude that unless (A.4.11)/(A.4.15) holds

that is the system states (positions xi(t), xj(t) and their successive derivatives) of all

agents within each graph component, i.e. agents involved in connected intra-cluster

switching links, are respectively identical ∀ t ∈ [t1,+∞), the left side of (A.4.8) and

(A.4.9) is non-zero and so is (A.4.7), implying ∆Aq affects R(t) whereby the attacks

are detectable.

We now show under conditions 2-3 the domain of existence of (A.4.11) is shrunk
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into the only case that the entire system states, except for those affected by stealthy

attacks, are at an equilibrium.

Zero-dynamics attack (ZDA) case: it can be shown that under condition 1,

(A.4.11) holds (and so does (A.4.15)) only in the worst-case scenario, in the sense of

attack detection, that none of the agents involved in intra-cluster switching links are

affected by the ZDA in a safe mode. To this end, consider (A.4.12) under which ZDA

remains stealthy in residual r0(t) in the safe modes and recall

x(t) = x̄(t) + x̃(t), x̃0e
λ0t, ∀ t ∈ [t0,+∞), (A.4.17)

in a stealthy ZDA case with x̃0e
λ0t1 ∈ ker(C) being the initial condition of ZDA (cf.

(2.3.1), and (3.1.14) in Proposition 3.1.4) at t = t1 for a safe mode. Similar to (3.2.16),

by evaluating ZDA condition (2.3.1) for the tuple (Aq,B,C) with Aq = (A1+∆Aq)

and considering (A.4.16) we obtain

λ0I − (A1 −HC) (Aq −A1) −B

C 0 0



ẽ(t1)

x̃(t1)

uA(t1)

 =


0

0

0

 , (A.4.18)

where as in (3.2.16), ẽ(t1) = x̃(t1) with x̃(t1) = x̃0e
λ0t1 and uA(t1) = u0e

λ0t1 . Then

(A.4.18) is simplified to

λ0I − (Aq −HC) −B

C 0


x̃(0)

u0

 =

0
0

 , (A.4.19)
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where further simplification, similar to that in (3.2.16), and expanding it out yields



λ0IN −IN 0

α(L1 +∆Lq) (λ0 + γ)IN −IA
Cx 0 0

0 Cv 0




x̃(t0)

ṽ(t0)

u0

 =


0

0

0

 , (A.4.20)

from which and also from (3.1.14) we have

λ0x̃i(t0) = ṽi(t0), ∀ i ∈ V , (A.4.21)

αL1x̃(t0) + (λ0 + γ)ṽ(t0)− IAu0
(3.1.14)
= 0, (A.4.22)

∆Lqx̃(t0) = 0, (A.4.23)

Cxx̃(t0) = 0, Cvṽ(t0) = 0. (A.4.24)

Then one can conclude from (3.1.5), (A.4.17), (A.4.21), and (A.4.24) that

x̃i(t0) = ṽi(t0) = 0 =⇒ x̃i(t) = ṽi(t) = 0, ∀ i ∈M ⊂ V , (A.4.25)

and by applying the same permutation as defined in (A.1.3) and used in (A.4.12) to

equation (A.4.23) as well as by considering (A.4.17) and (A.4.21) that

x̃i(t0) = x̃j(t0) =⇒ x̃i(t) = x̃j(t), ∀ i, j ∈ Dc ⊂ V , (A.4.26)

ṽi(t0) = ṽj(t0) =⇒ ṽi(t) = ṽj(t), ∀ i, j ∈ Dc ⊂ V . (A.4.27)

Also, as shown in Lemma A.1.1, under condition 1 we have

Dc ∩M ≠ ∅, ∀ c ∈ {1, · · · , c}, (A.4.28)
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with set Dc given in (A.4.13).

Now under (A.4.28), it is concluded from (A.4.25), (A.4.26)-(A.4.27) that

x̃i(t) = x̃j(t) = 0, ṽi(t) = ṽj(t) = 0, ∀ i, j ∈ Dc, (A.4.29)

which by considering (A.4.17) implies that (A.4.15) is simplified to

(e⊤i − e⊤j )x
(m)(t) =

(e⊤i − e⊤j )x̄
(m)(t) = 0, ∀ i, j ∈ Dc, ∀ c ∈ {1, · · · , c},

∀m ∈ N0, ∀ t ∈ [t1,+∞), (A.4.30)

where x̄i and x̄j are the elements of state vector x̄ in (A.4.17) denoting the states of

an attack-free system that satisfies (3.1.7) (i.e. ˙̄x = Aqx̄ obtained using ẋ-dynamics

in (3.1.4) with BuA = 0 and unknown initial condition x̄0 as defined in Proposition

3.1.4). Then using the attack-free dynamics ˙̄x = Aqx̄, the term (e⊤i − e⊤j )x̄
(m)(t) = 0

in (A.4.30) can be rewritten as

(e⊤i − e⊤j )L
m
q x̄(t) = 0, ∀ i, j ∈ Dc, ∀m ∈ N0, ∀ t ∈ [t1,∞), (A.4.31)

(e⊤i − e⊤j )L
m
q v̄(t) = 0, ∀ i, j ∈ Dc, ∀m ∈ N0, ∀ t ∈ [t1,∞). (A.4.32)

Moreover, note that (A.4.31) and (A.4.32) have the same form as equations (109a)

and (109b) in [78]. Then under further conditions 2 and 3, it can be verified using

the same procedure as in [78, Th. 2] that (A.4.31) and (A.4.32) yield

x̄i(t) = x̄j(t), ∀ i, j ∈ V , ∀ t ∈ [t1,+∞), (A.4.33)

v̄i(t) = v̄j(t), ∀ i, j ∈ V , ∀ t ∈ [t1,+∞), (A.4.34)
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which means that the entire states of the attack-free system have achieved consensus.

Considering the equilibrium subspace (3.1.2) as a result of the consensus protocol

(3.1.3), one can conclude that (A.4.33)-(A.4.34) and (3.1.2) coincide. Therefore, from

(A.4.30) and (A.4.33)-(A.4.34), obtained under conditions 1-3, one can conclude that

stealthy ZDA is undetectable in r0(t) of (3.2.11) only in the worst-case scenario that

intra-cluster switching links are between agents whose trajectories are not affected

by ZDA as well as all of the system (3.1.4)’s attack-free trajectories, characterized in

(A.4.30), are at the consensus equilibrium (3.1.2).

Covert attack case: consider (A.4.12) under which a covert attack remains

stealthy in a safe mode and note that

x(t) = x̄(t) + x̃(t), ∀ t ∈ [t1,+∞), with

x̃(t) = eA1(t−t1)x̃(t1) +

∫ t

t1

eA1(t−τ )BuA(τ )dτ (A.4.35)

according to the attack model (3.1.6) and Proposition 3.1.4. Given (A.4.35), (A.4.15)

can be rewritten as

[(e⊤i − e⊤j ) 0] x̄(m)(t) = [(e⊤i − e⊤j ) 0] x̃(m)(t), ∀ i, j ∈ Dc,

∀ c ∈ {1, · · · , c}, ∀m ∈ N0, ∀ t ∈ [t1,+∞), (A.4.36)

Notice that the attack-free system states, x̄(t) in (A.4.35), converge to (3.1.2) as

t→ +∞, then the left side of (A.4.36) converges to zero and one can conclude from

(A.4.35) and (A.4.36) that continuous states x̃(t) = col(x̃(t), ṽ(t)) exist in either of

the following cases

case 1 : x̃i(t) = x̃j(t) ̸= 0, ∀ i, j ∈ Dc, ∀ t ∈ [t1,+∞) (A.4.37)
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case 2 : x̃i(t) = x̃j(t) = 0, ∀ i, j ∈ Dc, ∀ t ∈ [t1,+∞) (A.4.38)

Note that here case 1 in (A.4.37) implies the attack input uA in (A.4.35) has driven

and kept the states of agents involved in switching into an unknown equilibrium over

the time interval [t1,+∞). Also, case 2’s interpretation and analysis coincide with

that of ZDA in (A.4.29). Then following the same analysis as the ZDA’s, one can

conclude that under conditions 1-3, covert attack is undetectable in r0(t) of (3.2.11)

only in the worst-case scenarios that 1) intra-cluster switching links are between

agents whose trajectories are identical over time under the effect of covert attack;

and 2) intra-cluster switching links are between agents whose trajectories are not

affected by covert attack as well as all of the system (3.1.4)’s attack-free trajectories

are at the consensus equilibrium (3.1.2).
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Appendix B

Proofs of Chapter 4

B.1 Auxiliary Results

Lemma B.1.1. Let L ∈ RN×N be the Laplacian matrix of a connected graph G and

let W ∈ RN×N
≥0 be a diagonal matrix with at least one nonzero entry. Then, L+W is

a positive definite matrix.

Proof. The proof follows [141, lemma 1] and is therefore omitted here.

B.2 Proof of Proposition 4.2.2

Let the estimation error be ei = x − x̂ with ei(0) = x(0) as x̂(0) = 0. Then, from

(4.1.12) and (4.2.10), the error dynamics is given by

Σei
O :


˙̂ei = (Aσ(t) −H iCi)êi +BAuA, σ(t) ∈ Q,

ri = Ciei, local residual.
(B.2.1)

Recall that before attack detection, the system operates in normal mode, σ(t) = 1 ∈

Q. Therefore, we investigate the attack detection in mode σ(t) = 1.

As described in Section 4.2.1, a system is vulnerable to ZDA if it has unstable

zero dynamics (cf. Definition 2.3.1). Accordingly, system (Aσ(t)−H iCi, BA, Ci, σ(t) =

1) in (B.2.1) is vulnerable to ZDA if its matrix pencil P (λo), given in (4.2.1), is rank

deficient for a λo ∈ R>0 that is

λoIN − (A1 −H iCi) −BA

Ci 0


 xa0

uA(0)

 = 0, (B.2.2)
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has a nontrivial solution for state-zero direction xa0 = col (pa
0, v

a
0) ̸= 0 and input-zero

direction uA(0) ̸= 0. By using (4.1.10d) and (4.2.9c) in expanding (B.2.2) we obtain

(
αL1 + λo(λo + γ)IN

)
pa0 = BAuA(0), λop

a
0 = va0, (B.2.3a)

Cp,ip
a
0 = 0, e⊤i v

a
0 = 0. (B.2.3b)

without loss of generality, one can reorder the nodes such that those in setMi, given

in (4.2.9a), come first and accordingly

L1 =

L1,11 L1,21

L2,11 L2,21

 , pa0 =

(pa0)1
(pa0)2

 , va0 =

(va0)1
(va0)2

 , (B.2.4a)

BA =

I|A|

0

 , Cp,j=

[
Ik+1 0

]
, (B.2.4b)

where k = |N i
σ(t)|, σ(t) = 1 ∈ Q. Given (B.2.3) and (B.2.4), one can verify that

if A ⊆ N i
σ(t), σ(t) = 1 ∈ Q =⇒ rank (BA) ≤ rank (Ci), and a nontrivial solution

to (B.2.2) satisfies (pa
0)1 = 0 and (αL2,21 + λo(λo + γ)I)(pa

0)2 = 0. Noticing that

(αL2,21 +λo(λo+γ)I) is positive definite for any λo ∈ R>0 associated with an unstable

invariant zero (cf. Lemma B.1.1), it is concluded that a nontrivial solution, i.e.

(pa
0)2 ̸= 0, only exists for λo < 0 and thus the system’s zero dynamics is stable.

In terms of the detectability of covert attacks, note that in the ZDA analy-

sis, we showed the output-nulling of non-vanishing intrusions is not feasible if A ⊆

N i
σ(t), σ(t) = 1 ∈ Q. Also, local measurements (4.2.9) are not subject to alter-

ations by the attacker. Therefore, any non-vanishing intrusion ua in (B.2.1) yields a

non-vanishing residual i.e. limt→∞ ri ̸= 0.
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B.3 Proof of Proposition 4.2.3

Note that from Proposition 4.2.2, the i-th UAV with a local detector Σ i
O, i ∈ D

can detect stealthy attacks within its set of immediate neighbors in normal mode

i.e. N i
σ(t), σ(t) = 1 ∈ Q. Therefore, by induction, a set D of local detectors Σ i

O’s

holding (4.2.13) covers the entire network set V of UAVs and thus is sufficient to

detect stealthy attacks anywhere in the communication network of UAVs.



22

Appendix C

Proofs of Chapter 5

C.1 Auxiliary Results

The following result quantifies the inaccessible state measurements for the system in

(5.1.1) with the collective measurements in (5.3.1) obtained under Assumptions 5.2.1

and 5.2.2. It shows that the only states that are inaccessible at any time for any

cooperative agent are the velocity states of the malicious agents.

Lemma C.1.1. Consider the system in (5.1.1)-(5.1.2) over a time interval [t0, t0+T )

under Assumptions 5.2.1 and 5.2.2. Let Ii = V i′′σ in (5.1.2) and let (5.1.1) be subject

to an F -total (resp. F -local) adversary set with 0 ≤ F ≤ κ(Gµ
T )− 1 (resp. 0 ≤ F ≤

r(Gµ
T )− 1). Then, the nullspace of the matrix CV\A

σ in (5.3.1), defined uniformly over

[t0, t0 + T ), ∀ t0 ∈ R≥0 is given by

X[t0, t0+T )=∩σ∈Q′ kerCV\A
σ = span

{[
0N

e iN

]
, ∀ i ∈ A

}
. (C.1.1)

Proof. Without loss of generality, let x in (5.1.1) be partitioned as x =

col(p̃V\A, p̃A,vV\A,vA) ∈ R2N . Also, from the definition of the nullspace, we have

X[t0, t0+T ) = ∩σ∈Q′ kerCV\A
σ =

{
x ∈ R2N | CV\A

σ x = 0, ∀σ ∈ Q′} , (C.1.2)

which by using (5.1.2) and (5.3.1) yields ∀σ ∈ Q′,

p̃i = vi = 0, ∀ i ∈ V \ A, (C.1.3a)

p̃j = 0, ∀ j ∈ V i′′σ , i ∈ V \ A. (C.1.3b)



23

where we used Ii = V i′′σ . Then, (C.1.3) can be rewritten as

∀σ ∈ Q′,


I|V\A| 0

0 I(Aσ)

⋆ 0


p̃V\A

p̃A

 = 0,

[
I|V\A| 0

]vV\A

vA

 = 0, (C.1.4)

where ⋆ is a binary matrix, determining redundant position measurements of the

neighboring cooperative agents, and whose structure is immaterial to this particular

analysis. I(Aσ) is a binary matrix-valued function of the adjacency matrix, determin-

ing the availability of the position measurements of the malicious agents A for the

cooperative agents V \ A. I(Aσ) is defined as

I(Aσ) =


I1(AV\A,A

σ )

...

I|V\A|(A
V\A,A
σ )

 =


diag(row1(A

V\A,A
σ )

...

diag(row|V\A,A|(A
V\A,A
σ )



=


diag(a

σ(t)
i1j1

, . . . , a
σ(t)
i1j|A|

)

...

diag(a
σ(t)
i|V\A|j1

, . . . , a
σ(t)
i|V\A|j|A|

)

 , (C.1.5)

where AV\A,A
σ , taken from Aσ(t) =

AV\A
σ(t) AV\A,A

σ(t)

AA,V\A
σ(t) AA

σ(t)

, indicates the mode-dependent

communication links between the sets V \ A = {i1, . . . , i|V\A|} and A = {j1, . . . , j|A|}.

Recall that consistent with (3.1.3), each element, a
σ(t)
ij in (5.1.1), is equal to 1 if

two distinct agents i, j are in communication over a link (i, j) ∈ Eσ and is 0 otherwise.

We next show that the ∩σ∈Q′ ker I(Aσ) = ∅ obtained uniformely over a time interval

[t0, t0+T ), ∀ t0 ∈ R≥0. Under Assumptions 5.2.1 and 5.2.2, it follows from Proposition

5.2.4 that each agent has at least κ(Gµ
T ) neighbors over [t0, t0 + T ), ∀ t0 ∈ R≥0, not
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necessarily connected to at all time instants and that r(Gµ
T ) ≤ κ(Gµ

T ). Therefore,

in the case of an F -local (resp. F -total) adversary set with F ≤ r(Gµ
T ) − 1 (resp.

F ≤ κ(Gµ
T ) − 1), each malicious agent j ∈ A ⊂ V should have at least one neighbor

outside of its set, i.e. the set V \ A, over some period of time. Formally,

∀ j ∈ A, ∃ i ∈ V \ A, ∃σ ∈ Q′ s.t. j ∈ N i(1)

σ ⊆ V i′′σ ⇐⇒

(i, j)∈ Eσ Lemma 5.2.3⇐⇒ 1

T

∫ t0+T

t0

a
σ(τ)
ij dτ ≥ δ, ∀ t0 ∈ R≥0,

by which, one can readily show for I(Aσ) in (C.1.5) that

(1/T )

∫ t0+T

t0

I⊤(Aσ)I(Aσ) dτ ≥ δI|A|, ∀ t0 ∈ R≥0, ∃ δ ∈ R>0 =⇒

∩σ∈Q′ ker I(Aσ) = ∅. (C.1.6)

Then, from (C.1.6) and (C.1.4) we can conclude for (C.1.2) that ∀σ ∈ Q′, CV\A
σ x =

CV\A
σ

[
0|V\A|
0|A|
0|V\A|
vA

]
= 0, ∀vA ∈ R|A|, which in turn implies ∩σ∈Q′ kerCV\A

σ = span

{[
0|V|
0|V\A|
1|A|

]}
.

This concludes the proof.

C.2 Proof of Lemma 5.2.3

The proof of the equivalence of the statements is achieved by demonstrating that

each ensures positive algebraic connectivity in an integral sense for the graph Gσ(t) =

(V , Eσ(t)), that is λ2(L = 1
T

∫ t+T
t

Lσ(τ) dτ) > µ holds ∀ t ∈ R≥0 and ∃µ, T ∈ R>0 as

defined in (5.2.1). Note that 1N1
⊤
N/N and Q⊤Q = IN−1N1⊤

N/N are both orthogonal

projection matrices (i.e. (1N1
⊤
N/N)2 = 1N1

⊤
N/N = (1N1

⊤
N/N)⊤) and thus their

corresponding spectrum belongs to {0, 1} which in turn implies 1N1
⊤
N/N and Q⊤Q

are positive semi-definite. Then, from rank(1N1
⊤
N/N) = 1 and the construction of Q



25

in (5.2.2), one can conclude

spec(1N1
⊤
N/N) = {

N−1︷ ︸︸ ︷
0, · · · , 0, 1}, (C.2.1a)

spec(Q⊤Q) = {0,
N−1︷ ︸︸ ︷

1, · · · , 1}, (C.2.1b)

spec(QLσ(τ)Q
⊤) = spec(Lσ(τ)) \ {0} =⇒

λ1(QLσ(τ)Q
⊤) = λ2(Lσ(τ)), (C.2.1c)

where (C.2.1c) is from [32], and (C.2.1b) follows from the fact that 1N1
⊤
N/N and

Q⊤Q = IN − 1N1
⊤
N/N are orthogonal projections and that rank(1N1

⊤
N/N) = 1.

Then, there exists a unitary matrix U , where UU⊤ = IN , such that 1N1
⊤
N/N =

U diag(1, 0, . . . , 0)U⊤. Now, one can write

Q⊤Q = IN − 1N1
⊤
N/N = UU⊤ − U diag(1, 0, . . . , 0)U⊤

= U(IN − diag(1, 0, . . . , 0))U⊤ = U diag(0, 1, . . . , 1)U⊤.

2 =⇒ 1: if 2 holds, then (1/T )
∫ t+T
t

(Lσ(τ) + 1N1
⊤
N/N) dτ is positive definite. Then,

note that 0 = λ1(Lσ(t)) ≤ λ2(Lσ(t)) ≤ · · · ≤ λN(Lσ(t)) ≤ N at any time instant (see

[48, Corrollary 13.1.4]) and that spec(1N1
⊤
N/N) = {

N−1︷ ︸︸ ︷
0, . . . , 0, 1} in (C.2.1a) has the

eigenpair (1,1N) which shares the eigenvector 1N with the eigenpair (0,1N) of Lσ(t).

This implies that [3, Thm. 1]

λ2

(
1

T

∫ t+T

t

Lσ(τ) dτ

)
≥ µm. (C.2.2)
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Also, note that (5.2.4) can be rewritten as

µmIN −
1N1

⊤
N

N
≤ 1

T

∫ t+T

t

Lσ(τ) dτ ≤ µMIN −
1N1

⊤
N

N
,

which by pre-multiplying and post-multiplying, respectively, by Q and Q⊤, using

(5.2.2), and invoking Proposition 8.1.2 [12], yields

µmIN−1 ≤
1

T

∫ t+T

t

QLσ(τ)Q
⊤ dτ ≤ µMIN−1, ∀ t ∈ R≥0,

that is equivalent to (5.2.1) with µm = µ. The existence of the upper bound, µMIN−1,

for (5.2.1) is trivial because of the boundedness of a
σ(t)
ij ’s in the adjacency matrix and

the integration over a finite interval [t, t+ T ), ∀ t ∈ R≥0, ∃T ∈ R>0.

1 =⇒ 2: Let (5.2.1) hold. It follows from (5.2.1) and (C.2.1c) that

λ2(
1
T

∫ t+T
t

Lσ(τ) dτ) ≥ µ (cf. (C.2.2)). Also by following the same argument as given

in the previous part of the proof, (5.2.1) admits an upper bound, denoted by µ′
MIN−1,

where µ′
M ∈ R>0. Now, by pre-multiplying and post-multiplying (5.2.1), respectively,

by Q⊤ and Q, and invoking Proposition 8.1.2 [12], we obtain

µQ⊤Q ≤ 1

T

∫ t+T

t

Q⊤QLσ(τ)Q
⊤Q dτ ≤ µ′

MQ
⊤Q, (C.2.3)

which by considering (5.2.2) and the fact that Lσ(τ)Q
⊤Q = Q⊤QLσ(τ) = Lσ(τ) yields

µQ⊤Q ≤ 1

T

∫ t+T

t

Lσ(τ) dτ ≤ µ′
MQ

⊤Q, (C.2.4)

in which Q⊤Q is positive semi-definite (see (C.2.1)). By adding 1N1
⊤
N/N to the sides

of the inequality (C.2.4) we obtain
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µQ⊤Q +
1N1

⊤
N

N
≤ 1

T

∫ t+T

t

Lσ(τ) dτ +
1N1

⊤
N

N
=

1

T

∫ t+T

t

(
Lσ(τ) +

1N1
⊤
N

N

)
dτ

≤ µ′Q⊤Q +
1N1

⊤
N

N
, (C.2.5)

where it follows from (C.2.1) that the left and right side matrices are bounded and

positive definite such that µQ⊤Q +
1N1⊤

N

N
= U diag(1, µ, . . . , µ)U⊤ and µ′Q⊤Q +

1N1⊤
N

N
= U diag(1, µ, . . . , µ′)U⊤, making the foregoing condition equivalent to (5.2.4)

with µm = min{1, µ} and µM = max{1, µ′}.

2 ⇐⇒ 3: This has been proven in [3, Thm. 1]. We conclude the proof by

restating that

λ2

( 1

T

∫ t+T

t

Lσ(τ) dτ︸ ︷︷ ︸
(5.2.6)
= L

)
= λ1

( 1
T

∫ t+T

t

QLσ(τ)Q
⊤ dτ

)
≥ µ.

C.3 Proof of Proposition 5.2.4

It follows from Lemma 5.2.3 that a (µ, T )-PE connected Gσ(t) forms, uniformly in

time, the connected static graph Gµ
T = (V ,EµT ) with the edge set EµT in (5.2.5) and

algebraic connectivity λ2(L) ≥ µ > 0. Then, from [120] and [116, Thm. 2] we

have
⌈
λ2(L)

2

⌉
≤ r(Gµ

T ) for 0 ≤ r(Gµ
T ) ≤ ⌈|V|/2⌉, and one can conclude from [120]

and [67, Thm. 6] that r(Gµ
T ) ≤ κ(Gµ

T ). It also follows from [48, Ch. 13.5] for any

simple non-complete graph Gµ
T , that λ2(L) ≤ κ(Gµ

T ) ≤ |V| − 1. Finally, note that

0 = λ1(L) < λ2(L) ≤ · · · ≤ λN(L) ≤ |V| = N holds for Gµ
T and that the equality

λ2(L) = N holds for complete graphs [48, Corr. 13.1.4]. Then (5.2.7) is concluded.
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C.4 Proof of theorem 5.2.5

Recall from Proposition 5.2.4 that a (µ, T )-PE connected Gσ(t) forms, uniformly in

time, a static network Gµ
T = (V ,EµT ) whose robustness r(Gµ

T ) and vertex-connectivity

κ(Gµ
T ) are lower bounded by ⌈µ/2⌉. It then follows from [146, Thm. 1] for an r-

robust network Gµ
T , where r ≤ r(Gµ

T ), that, by definition, no F -local adversary subset

A ⊂ V , where F ≤ r − 1, make a vertex cutset for Gµ
T . Therefore, the removal of up

to F ≤ r − 1 malicious nodes (agents) and their incident edges from the neighbors

of the remaining nodes (cooperative agents) does not render the induced subgraph

Ḡ = (V \ A, Ē) disconnected (equiv., λ2(L̄) > 0, where L̄ is the Laplacian matrix of

Ḡ).

Likewise, given the vertex-connectivity κ(Gµ
T ), it follows, by definition, that

no F -total adversary subset A ⊂ V , with F ≤ κ − 1 ≤ κ(Gµ
T ) − 1, make a vertex

cutset for Gµ
T . Therefore, the removal of up to F ≤ κ − 1 (malicious) nodes, in

total, and their incident edges does not render the induced subgraph Ḡ = (V \ A, Ē)

disconnected (equivalently, λ2(L̄) > 0).

Finally, note that the induced subgraph Ḡσ(t) = (V̄ , Ēσ(t)) associated with the

connected graph Ḡ with 0 < λ2(L̄) =: µ̄ meets the conditions in Lemma 5.2.3-3 for

some T̄ ≤ T (where the inequality holds because |V̄| < |V| and |Ē| < |EµT |). Moreover,

it follows from [48, Thm. 13.5.1] for the graph Gµ
T and its induced subgraph Ḡ, resp.,

with L and L̄ that λ2(L) ≤ λ2(L̄) + |A|. Then, from λ2(L) ≥ µ (see (5.2.7)) and

µ̄ = λ2(L̄) > 0, one can conclude µ ≤ µ̄+ |A|.
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C.5 Proof of Proposition 5.2.6

The first part of the proof has two steps similar to that in [32, Thm. 1]. First, we

consider a system of the form

χ̇ = −α
γ
Lσ(t)χ, χ(t0) ∈ RN−1, (C.5.1)

in which Lσ(t) = QLσ(τ)Q
⊤ satisfies the (µ, T )-PE condition in (5.2.1). It follows from

[40, lemma 1] that1 (C.5.1) is globally uniformly exponentially stable (GUES) with

the convergence rate λχ ∈ R>0 such that

∥χ(t)∥ ≤ κχ ∥χ(0)∥ e−λχt, ∀ t ∈ R≥0, (C.5.2)

in which κχ =
√

αN
γλχ

and λχ = ηe−2ηT with η = − 1
2T

ln(1 − (α/γ)µT
1+(α/γ)2N2T 2 ), where

N is obtained from
∥∥Lσ(t)∥∥ ≤ N (see [48, Corrollary 13.1.4]). Given the GUES of

(C.5.1) under condition (5.2.1), it follows from [73, Lemma 1] and [56, Thm. 4.12]

that there exists a Lyapunov function v(t, χ(t)) = χ(t)⊤P (t)χ(t) with P (t) = P (t)⊤ ∈

R(N−1)×(N−1) > 0 such that ∀ t ∈ R≥0 the following inequalities hold:

0 <
γ

2αN
IN−1 ≤ P (t) ≤ 1

2λχ
IN−1, (C.5.3a)

Ṗ (t)− α

γ
Lσ(t)P (t)−

α

γ
P (t)Lσ(t)+IN−1 = 0. (C.5.3b)

In the second step, we use the stability properties of (C.5.1) as given in (C.5.2)

and (C.5.3) in the stability analysis of (5.1.1). By defining an intermediary state

1We note [40, lemma 1] has defined the function of the form Lσ(t) in (C.5.1) to be continuous.
Yet, a unique solution to (C.5.1) exists (see [56, Thm. 3.2]) in the case Lσ(t) is piecewise continuous
and bounded with a finite set of point-wise discontinuities, and the results hold as stated herein.
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transformation as given by

χ =

ξ
v

 =

γIN−1 Q

0N×(N−1) IN


ζ
v

 = C−1Y , (C.5.4)

the system Σσ(t) in (5.1.1) with (5.2.8) can be rewritten as

χ̇ =

−α
γ
QLσ(t)Q

⊤ +α
γ
QLσ(t)

−α
γ
Lσ(t)Q

⊤ −(γIN − α
γ
Lσ(t))

χ+

QIA
IA

uA, (C.5.5a)

Y = Cχ, (C.5.5b)

Associated to (C.5.5), a Lyapunov function is defined as

V (t,χ(t)) =

ξ
v


⊤ P (t) 0

0 β
2
IN


ξ
v

 , (C.5.6)

where P (t) is given in (C.5.3) and β ∈ R>0. Taking the derivative of V (t,χ(t)) along

the trajectories of (C.5.5) yields

V̇ (t,χ(t)) = −

ξ
v


⊤

M

ξ
v

+ 2

ξ
v


⊤ P (t)QIA

β
2
IA

uA,

where

M=

−(Ṗ (t)− α
γ
P (t)Lσ(t) − α

γ
Lσ(t)P (t))

α
γ
(β
2
IN−1 − P (t))QLσ(t)

Lσ(t)Q
⊤(β

2
IN−1 − P (t))αγ β(γIN − α

γ
Lσ(t))

 .
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By using (C.5.3),
∥∥Lσ(t)∥∥ ≤ N , and ∥Q∥ ≤ 1, we obtain

V̇ (t,χ(t)) ≤−

∥ξ∥
∥v∥


⊤

M︷ ︸︸ ︷ 1 −α
γ
(β + 1

λχ
)N
2

−α
γ
(β + 1

λχ
)N
2

β(γ − α
γ
N)


∥ξ∥
∥v∥


+max{λ−1

χ , β}

∥ξ∥
∥v∥


⊤

12 ∥uA∥ . (C.5.7)

Note that by selecting λx < λχ and a sufficiently large γ (e.g., γ = αN , for α ≥ 1),

one can verify that the following matrix is positive definite2,

M − 2λx

 1
2λχ

0

0 β
2

=
(1− λx

λχ
) −α

γ
(β + 1

λχ
)N
2

−α
γ
(β + 1

λχ
)N
2

β(γ − α
γ
N − λx)

>0 . (C.5.8)

Then from (C.5.3), (C.5.6), (C.5.7), and (C.5.8), we obtain

V̇ (t,χ(t))≤−2λxV (t,χ(t)) +
√
2max{λ−1

χ , β} ∥χ(t)∥∥uA∥ .

Applying the comparison lemma [56, Lemma 3.4] and considering (C.5.3) and (C.5.6)

yields

∥χ(t)∥ ≤
√

max
{
λ−1
χ , β

}
min

{
γ
αN
, β
} ∥χ(t0)∥ e−λx(t−t0)+

max
{
λ−1
χ , β

}
λx min

{
γ

2αN
, β
2

} sup
t0≤t≤Td

∥uA(t)∥ , ∀ t ≥ t0 ∈ R≥0. (C.5.9)

Now one can conclude from (C.5.9) that the origin χ = 0, is GUES equilibrium of the

2The determinant of (C.5.8) yields a cubic function of γ, to which applying the Routh’s stability
criterion indicates the existence of one positive root.
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unforced system (C.5.5) (i.e., uA = 0). Additionally, (C.5.5) is input-to-state stable

(ISS) in the case uA ̸= 0, provided supt0≤t≤Td ∥uA(t)∥ < ∞ for every Td ∈ [0, ∞). It

then follows from (C.5.9) that

∥(Y)Td∥Lp
≤ κxe

−λx(t−t0) ∥x(t0)∥+ κu ∥(uA)Td∥Lp
, (C.5.10)

where we used (5.2.8), (C.5.4), ∥Y(t0)∥ ≤ ∥x(t0)∥, and κx and κu as given in (5.2.9).

One can conclude from (C.5.10) that for every ∥x(t0)∥ ≤ ∞ and every uA ∈ Lpe
with supt0≤t≤Td ∥uA(t)∥ <∞, the system in (C.5.5) (equiv. Σσ(t) in (5.1.1)) with the

output Y(t), associated with (5.1.8), is finite-gain Lp stable (see [56, Thm. 5.1 and

Corollary 5.1]).

Finally, to calculate the bounds in (5.2.10), note that

Q⊤ζ
(5.2.8)
= Q⊤Qp̃

(5.2.2)
= p̃− 1Npavg, pavg = (

1

N
1⊤
N p̃), (C.5.11)

and let Q be partitioned as Q =

[
q1 | q2 | · · · | qN

]
, where qi ∈ RN−1. We also have

Q⊤Q = IN − (1/N)1⊤
N1N =⇒ ∥qi∥2 = 1 − 1/N for every i ∈ {1, . . . , N}. Then,

using (C.5.11), one can write for every i, j ∈ V that

∣∣p̃i(t)− p̃j(t)
∣∣ = ∣∣q⊤i ζ(t)− q⊤j ζ(t)∣∣ ≤ ∥∥q⊤i − q⊤j ∥∥ ∥ζ(t)∥
≤
√
2 ∥Y(t)∥ ≤

√
2κxe

−λx(t−t0) ∥x(t0)∥ ,

where we used (5.2.8),
∥∥q⊤i − q⊤j ∥∥ ≤ 2 ∥qi∥ ≤ 2

√
(1− 1/N) ≤

√
2, and (C.5.10) with

uA = 0. Similarly, we can obtain (5.2.10b). This concludes the proof.
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C.6 Proof of Lemma 5.3.1

The proof follows directly from the definitions in (5.3.2)-(5.3.3) and the system

(5.1.1)’s solution for the state trajectories.

Under Assumptions 5.2.1 and 5.2.2, the system Σσ(t) in (5.1.1) subject to the

(vector-valued) attack signal uA ∈ Lpe is an LTI system in each mode σ ∈ Q with

initial conditions x(t0),x(t1), . . . during an interval [t0, t0 + T ). Then, the state

trajectories of Σσ(t) in each mode σ, is recursively obtained as follows:

x(t;x(t0),uA(t)) = eAσ(tk)(t−tk)x(tk)+∫ t

tk

eAσ(tk)(t−τ)BA1uA1(τ) dτ, t ∈ [tk, tk+1), (C.6.1)

where tm+1 = t0+T , and the initial conditions x(tk)’s for k ∈ {1, 2, . . . } are given by

x(tk) =

( 1∏
i=k

eAσ(ti−1)
(ti−ti−1)x(t0)

+
k∑
i=1

i+1∏
j=k

e
Aσ(tj−1)

(tj−tj−1)

∫ ti

ti−1

eAσ(ti−1)
(ti−τ)BA1uA1(τ) dτ

)
, (C.6.2)

in which
∏i+1

j=k e
Aσ(tj−1)

(tj−tj−1) = eAσ(tk−1)
(tk−tk−1) · · · eAσ(ti)

(ti+1−ti) when k ≥ i+1 and∏i+1
j=m e

Aσ(tj−1)
(tj−tj−1) = I2N when k < i+ 1.

Using the generic form of Σσ(t)’s state trajectories in (C.6.1)-(C.6.2), and

(5.3.1), one can expand (5.3.3) for any two initial conditions x(t0),x
′(t0) ∈ R2N

as follows
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∀ t ∈ [t0, t0 + T ),

yV\A
σ (t;x(t0),uA1(t))− yV\A

σ (t;x′(t0),uA2(t)) = 0 ≡

CV\A
σ(tk)

eAσ(tk)(t−tk)

x(tk)︷ ︸︸ ︷
(x′(tk)− x(tk)) =

CV\A
σ(tk)

∫ t

tk

eAσ(tk)(t−τ)(BA1uA1(τ)−BA2uA2(τ)) dτ,

t ∈ [tk, tk+1), ∀ k ∈ {0, . . . ,m}, (C.6.3)

where we used the linearity of Σσ(t) and x(tk) = x′(tk)−x(tk) for the initial conditions

with the generic form of (C.6.2). This concludes the proof.

C.7 proof of Lemma 5.3.2

The equivalence of 1 and 2 follows from the definition of state and input observability

(SIO) and the invariant zeros of the switched LTI systems: Recall that Σσ(t) in (5.1.1)

is an LTI system in each mode σ ∈ Q under Assumptions 5.2.1 and 5.2.2. Without

loss of generality, let σ(tk) = q ∈ Q′, for some k ∈ Z≥0. Then, it follows from [15]

that if an LTI system, here Σq, is SIO, then, any non-zero input uA(t) is observable

at the output yV\A
q in (5.3.1). It also follows from [152, Ch. 3.11] and [15, Thm. 2]

that the necessary and sufficient condition for Σq to be SIO (here, attack detectable)

is that P (λo, σ = q) in (5.3.6) is full column rank. Thus, in a mode q ∈ Q′, for a

uA(t) ̸= 0 to be unobservable at yV\A
q (stealthy in the sense of (5.3.2) as characterized

by (5.3.4) in Lemma 5.3.1), it is required that P (λo, σ = q) is rank deficient, inducing

an output-zeroing subspace such that
[

x(tk)
uA(tk)

]
∈ ker (P (λo, σ = q)) holds for some

λo ∈ C and some nontrivial initial conditions x(tk) ̸= 0. By construction, it follows for

Σσ(t) in (5.1.1) with finitely many switches over any given interval [t0, t0 + T ), that a

non-zero input uA(t) stealthy in the sense of (5.3.2), requires ∩σ∈Q′ ker (P (λo, σ)) ̸= ∅
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for some λo ∈ C.

The proof of statement 2 follows from a contradiction argument: Assume for a

nontrivial output-zeroing direction col(x0, u0), where x0 ̸=0, u0 ̸=0, ∃λo∈C, s.t. ∀q ∈

Q′,P (λo,q)

x0
u0

=0. Then, from (5.1.1), (5.3.1), (5.3.6), we have

∃ λo ∈ C, s.t. ∀q ∈ Q′,

λo

pV\A
0

pA
0

 =

vV\A
0

vA
0

 , (C.7.1a)

λ2oI + λoγI + αLV\A
q αLV\A,A

q

αLA,V\A
q λ2oI + λoγI + αLA

q


pV\A

0

pA
0

 =

0
I|A|

 u0, (C.7.1b)

CV\A
q col

(
pV\A
0 , pA

0 , vV\A
0 , vA

0

)
= 0. (C.7.1c)

where we used x0 = col(p0, v0), and the Laplacian matrix Lq partitioned such that

the set of cooperative agents V \ A comes first and the set of malicious agents A

comes second. Under Assumptions 5.2.1 and 5.2.2 and for an F -total/F -total with

the given bounds, it follows from Lemma C.1.1 that (C.7.1c) results in ∀q ∈ Q′,

pV\A
0 = vV\A

0 = 0, I(Aq)p
A
0 = 0, where I(Aσ), is given in (C.1.5), with kerσ∈Q′ I(Aσ) = ∅

over [t0, t0 + T ), ∀ t0 ∈ R≥0, and vA
0 to be an arbitrary state vector. Therefore,

pA
0 = vA

0 = 0 is the only solution to (C.7.1). Noting that for any λ0 ∈ C with

a positive real part
(
λ2oI + λoγI + αLA

q

)
is positive definite. It then follows from

(C.7.1b) that 0 = I|A|u0 =⇒ u0 = 0. This contradicts the assumption made at the

beginning of this section, thereby concluding that statement 2 holds.
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C.8 proof of Proposition 5.3.3

First, note that similar to the last part of the proof of Proposition 5.2.6, from (C.5.10)

and (C.5.11), one can obtain

∥∥p̃− 1Npavg

∥∥ ≤ κxe
−λx(t−t0) ∥x(t0)∥+ κu sup

t0≤t≤Td
∥uA(t)∥ , ∀ t ≥ t0 ∈ R≥0. (C.8.1)

Now, consider ρ = α

[˜̃Lσ L
(23)
σ

]p̃N i(2)
σ

p̃R

 in ρ(xI,xR) as given in (5.3.9). Also, note

that from the definition of Laplacian matrix and the matrix decomposition in (5.1.4),

we have

[˜̃Lσ L
(23)
σ

]
1 = 0 (i.e. the matrix is zero row-sum), where ˜̃Lσ is positive

semi-definite, all the elements of L
(23)
σ are either 0 or −1, and the all-ones vector 1

is of the mode-dependent dimension R|N i(2)
σ |+|Ri|. Then, one can write for ρ in (5.3.9)

that

ρ = −α
[˜̃Lσ L

(23)
σ

]p̃N i(2)
σ

p̃R

 = −α
[˜̃Lσ L

(23)
σ

]
p̃N i(2)

σ

p̃R

− 1pavg

 . (C.8.2)

Using (C.8.1) and (C.8.2), we have

∥ρ(xI,xR)∥ ≤
∥∥ρ∥∥ ≤ α

∥∥∥∥[˜̃Lσ L
(23)
σ

]∥∥∥∥
∥∥∥∥∥∥∥
p̃N i(2)

σ

p̃R

− 1pavg

∥∥∥∥∥∥∥
≤ α

∥∥∥∥[˜̃Lσ L
(23)
σ

]∥∥∥∥ ∥∥p̃− 1Npavg

∥∥
(C.8.1)

≤ ακxe
−λx(t−t0) ∥x(t0)∥+ ακu sup

t0≤t≤Td
∥uA(t)∥ , ∀ t ≥ t0 ∈ R≥0.

where we used

∥∥∥∥[˜̃Lσ L
(23)
σ

]∥∥∥∥ ≥ 1 that holds when the matrix is not all zero (i.e. when
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ρ exists). Additionally, if uA(t) = 0, then we have ∥ρ(xI,xR)∥ ≤ ακxe
−λx(t−t0) ∥x(t0)∥ , ∀ t ≥

t0 ∈ R≥0. This concludes the proof.

C.9 Proof of Proposition 5.3.4

Proof of 1: Given Φ i
σ(t) in (5.1.6) and (5.3.7), the observability of ΣV′′

i
, ∀ i ∈ V directly

follows from a PBH test for each active mode of σ ∈ Q. W.l.o.g., let σ(t) = q ∈

Q denote an active mode. It then follows after some algebraic manipulation that

rank
[
λoI−AI

q

CI
q

]
= 2|V i′′q | = 2|Ii|, ∀λo ∈ C. In what follows we provide the details

that the full rank condition is met in each mode, albeit the rank number is mode-

dependent.

rank

λoI −AI
q

CI
q

 (5.3.9)
= rank



λoI 0 −I
|V i′

q |
0

0 λoI 0 −I
|N i(2)

q |

αL
(11)
q αL

(12)
q (λo+γ)I 0

αL
(21)
q αL

(′′ \′)
q 0 (λo+γ)I

I
|V i′

q |
0 0 0

0 I
|N i(2)

q |
0 0

0 0 e 1
|V i′

q |

⊤
0



(a)
= rank



0 0 −I
|V i′

q |
0

0 0 0 −I
|N i(2)

q |

θ1(λo) αL
(12)
q 0 0

αL
(21)
q θ2(λo) 0 0

I
|V i′

q |
0 0 0

0 I
|N i(2)

q |
0 0

0 0 e 1
|V i′

q |

⊤
0


(b)
= rank



0 0 −I
|V i′

q |
0

0 0 0 −I
|N i(2)

q |
0 0 0 0
0 0 0 0

I
|V i′

q |
0 0 0

0 I
|N i(2)

q |
0 0

0 0 e 1
|V i′

q |

⊤
0


=2|V i′q |+ 2|N i(2)

q | = 2|Ii|, (C.9.1)

where θ1(λo) = λ2oI + λoγI + αL(11)
q , θ2(λo) = λ2oI + λoγI + αL(′′ \′)

q , and we applied

block row operations in (a) as follows: row 3 = row 3+(λo+γ) row 1, row 4 = row 4+

(λo + γ) row 2 and then row 1 = row 1 − λo row 5, row 2 = row 2 − λo row 6. Finally,

in (b), noting that the fifth and sixth block row vectors are linearly independent with
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their respective dimensions equal to those of the third and fourth block row vectors,

and applying some row operations on them results in the final rank-equivalent matrix.

Proof of 2: Recall that the dynamics in (5.3.7)-(5.3.8) are a representation of

(5.1.1) from the i-th agent perspective, and the measurements y i
σ’s in (5.3.7) and

(5.1.2) are the same set of measurements (see (5.3.9)). Therefore, this statement

directly follows from Lemma 5.3.2 under Assumptions 5.2.1 and 5.2.2 and for any

F -total (resp. F -local) set A of malicious agents with 0 ≤ F ≤ κ(Gµ
T ) − 1 (resp.

0 ≤ F ≤ r(Gµ
T )− 1).

C.10 Proof of Theorem 5.3.5

Note that each agents’ local attack detector ΣO

Vi′′
σ

’s in (5.3.11), have decoupled dy-

namics that are reinitialized based on (5.3.10b). Therefore, without loss of generality,

we consider the stability of one ΣO

Vi′′
σ

and start off with the proof of its input-to-state

stability (ISS), in each mode σ ∈ Q. From (5.3.7), (5.3.8), (5.3.9), and (5.3.11), we

have

Σσ :

ẋI

ẋR

=
AI

σ +
˜̃
AI
σ AI,R

σ

AR,I
σ AR

σ


xI

xR

+
BA′′ 0

0 BAr


uA′′

uAr

 ,
ρ(xI,xR) =

[ ˜̃
AI
σ AI,R

σ

]xI

xR

 ,
ΣO

Vi′′
σ

: ėI = ĀI
σeI + ρ(xI,xR) +BA′′uA′′ .
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Let each mode σ(t) = q ∈ Q, ∀ t ∈ [tk, tk+1), k ∈ Z≥0. Then, we have from (5.3.11),

which is also appeared in last equation above, that

eI(t) = eĀ
I
q(t−tk)eI(tk) +

∫ t

tk

eĀ
I
q(t−τ)ρ(xI,xR) dτ +∫ t

tk

eĀ
I
q(t−τ)BA′′uA′′(τ) dτ. (C.10.2)

Recall that ĀI
q in (C.10.2) is Hurwitz stable, as defined in (5.3.10), ensuring the

inequality
∥∥∥eĀI

q(t−tk)
∥∥∥ ≤ κI

ee
−λIe (t−tk) holds for some constants κI

e, λ
I
e ∈ R>0 in each

mode q ∈ Q. Moreover, in each mode, eI =0 is the exponentially stable equilibrium

point of the unforced system ΣO

Vi′′
σ

(i.e. no attack or coupling term perturbation).

We also have from Propositions 5.2.6 and 5.3.3 that the unknown input ρ(xI,xR) in

(5.3.11) and (C.10.2) is Lpe-bounded for any Lpe-bounded ∥x(t0)∥ and any bounded

input

uA′′

uAr

=uA∈Lpe that are injected by an F -local/F -total set A with the given

upper bounds. Then, from (C.10.2), we have

∥eI(t)∥ ≤ κI
ee

−λIe (t−tk) ∥eI(tk)∥+ ακI
eκx ∥x(t0)∥ e−λx(tk−t0)

∫ t

tk

e−λ
I
e (t−τ)dτ+

ακI
eκu sup

t0≤t≤Td
∥uA(t)∥

∫ t

tk

e−λ
I
e (t−τ)dτ + sup

t0≤t≤Td
∥uA′′(t)∥

∫ t

tk

e−λ
I
e (t−τ)dτ

≤ κI
e ∥eI(tk)∥ e−λ

I
e (t−tk) +

κI
r

λI
e

∥x(t0)∥ e−λx(tk−t0)(1− e−λ
I
e (t−tk))+

(
1 + κI

r

λI
e

) sup
t0≤t≤Td

∥uA(t)∥ (1− e−λ
I
e (t−tk)), ∀ t ≥ tk ≥ t0 ∈ R≥0, (C.10.3)

where we used ∥ρ(xI,xR)∥ ≤ ακxe
−λx(tk−t0) ∥x(t0)∥ + ακu supt0≤t≤Td ∥uA(t)∥ , ∀ t ≥

tk ≥ t0 ∈ R≥0, with Td ∈ [0, ∞) from Proposition 5.3.3, ∥uA′′∥ ≤ ∥uA∥, and

κI
r = ακxκ

I
e. Noting that the first two terms in the right-hand side of (C.10.3) are

exponentially decreasing and that ∥eI(tk)∥ ≤ ∥x(tk)∥ when V i′′σ(tk) ̸= V
i′′

σ(tk−1)
or k = 0
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(see (5.3.11)), it can be verified, along the same lines as in [56, Lemma 4.6], that each

ΣO

Vi′′
σ

is ISS, and that an arbitrarily large wI ∈ R>0 exist such that ∥eI(tk)∥ < wI <∞

holds3 for all tk’s with V i′′σ(tk+1)
= V i′′σ(tk). Also, note that ∥C

I
σ∥ = 1 with its j-th row be-

ing (e j2|I|)
⊤, where j ∈ {1, . . . , |Ii|+1} (see (5.3.9b)). Then, along the same lines as in

[56, Cor. 5.1, Thm. 5.3], the finite-gain Lp stability of (5.3.11) with r iq(t) = CI
qeI(t)

can be concluded from (C.10.3) with the bound (5.3.12) for the j-th component of

r iq(t). Finally, if uA(t) = 0, ∀ t ∈ R≥0, we obtain from (5.3.12), the bound in (5.3.13).

3Any ∥eI(tk)∥ ≤ (1/κI
e)w, with 0 < w < wI − (κI

r/λ
I
e) ∥x(t0)∥ e−λx(tk−t0), and

supt0≤t≤Td
∥uA(t)∥ ≤ λI

ew
1+κI

r
ensures ∥eI(tk+1)∥ ≤ w+ (κI

r/λ
I
e) ∥x(t0)∥ e−λx(tk−t0) < wI for (C.10.3).
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[130] André Teixeira, Iman Shames, Henrik Sandberg, and Karl H Johansson. Dis-
tributed fault detection and isolation resilient to network model uncertainties.
IEEE transactions on cybernetics, 44(11):2024–2037, 2014.
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