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MULTI-ROBOT SYSTEMS IN ADVERSARIAL SETTINGS: ADVERSARY
DETECTION, RESILIENT COORDINATION AND COOPERATION

ABSTRACT

Networked autonomous mobile robots, such as unmanned aerial and ground vehicles,
represent a burgeoning class of cyber-physical systems (CPS) within critical infras-
tructure sectors. This dissertation addresses the imperative to ensure the safe and
secure cooperation of these systems in the face of adversarial challenges. The ad-
versaries are a class of worst-case scenario vulnerabilities in wireless communication
networks of multi-robot systems and their perceptual sensing modalities, such as cam-
eras. Such vulnerability can be perceived as the dynamical blind spots for multi-robot
systems in the sense that adversarial attacks can be crafted based on the dynamics
of the system so as to compromise, severely and shortly, not only the system’s oper-
ation but also information confidentiality, integrity, and availability, while remaining
stealthy (unnoticeable in the monitoring data) until a critical failure.

In the first part of this dissertation, we propose three principled algorithmic
frameworks that allow for the detection and mitigation of adversarial attacks on
multi-robot coordination. Our results extend the resilient consensus (coordination) of
multi-agent (robot) systems to the case of time-varying communication topology with
intermittent connections and provide theoretical stability and performance analysis
in the continuous-time domain. This is addressed by, first, characterizing control-
theoretic and graph-theoretic conditions under which specific classes of adversarial
attacks on the communication networks exist, second, by developing the theoretical
conditions that determine the degree to which a multi-robot system maintains a cer-

tain level of communication-related performance in a cooperative task while enduring
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a specific number of adversarial /compromised robots in a given network, and third, by
developing decentralized and distributed attack detection frameworks that allow for
resilient coordination of the remaining uncompromised robots. We validate our the-
oretical findings and illustrate their performance through various tests in numerical
simulations, high-fidelity simulations, and real-world experiments.

In the second part of this dissertation, we consider multi-robot (quadrotor)
coordination with adversarial perception. We demonstrate that a class of adver-
sarial image attacks on the robots’ perception modules cause categorically similar
effects, including misclassification and mislocalization, which can be formulated as
sporadic (intermittent) and spurious data measurements. We propose a framework
that allows for state estimation and perception-based relative localization in the pres-
ence of intermittent and spurious measurements caused by adversarial image attacks
on the perception module. Additionally, we present two open-source vision-enabled
multi-robot (quadrotor) platforms, together with developed software packages. We
demonstrate the capability of these platforms and the resilience of our framework
through experiments on perception-based multi-robot coordination under adversarial
image attacks targeting their learned perception modules.

By providing principled algorithms and open-source software, this disserta-
tion contributes to advancing the resilience and security of autonomous multi-robot
systems in safety- and time-critical applications, with potential implications for en-

hancing operational safety across various sectors.
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List of Figures

1.1

1.2

3.1

3.2

Examples of deployment of autonomous and semi-autonomous multi-
agent systems in various infrastructures sectors underscores the im-
portance of safe and reliable operation. a) Proteus is Amazon’s first
fully autonomous warehouse robot. b) Autonomous monitoring of the
vertical farming. c¢) small drones formation for digital fireworks. d)
vehicle platooning in intelligent transportation systems.

Cyber-physical attack space - Reproduced from [131, 96]. This dis-
sertation addresses the adversarial attacks highlighted in red in the

context of coordination of multi-agent (robot) systems.

Attack detection architecture. It includes a centralized observer and a set of
local observers. The centralized observer only monitors some of the agents
from a ground station with bandwidth limitation. The local observers de-
ployed onboard allow for local monitoring and local decision-making for
network topology switches, enabling the detection of stealthy attacks by the
centralized observer of the ground station.

Simulation results of privacy-preserving stealthy attack detection for a

multi-agent control system with 19 agents. [Continued on next page]
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3.2

4.1

4.2

[cont’d]: The state trajectory x(t) consists of the agents’ positions (in
blue) and velocities (in green) as well as the red trajectories showing
the affected agents by the stealthy attack (ZDA). (a)-(c) the results
of attack detection for three cases with their respective network topol-
ogy switching depicted in (d). In all cases of (d), the green nodes
represent the agents globally monitored by the centralized observer,
the blue nodes indicate the local control centers equipped with lo-
cal observers, the red-bordered nodes show compromised agents, and
the red-colored nodes represent compromised agents affected by the
stealthy zero-dynamics attack (ZDA). Finally, the dashed lines (edges)
represent the switching communication links. In the figures displaying
local residuals, with a slight abuse of notation (cf. (3.2.9)), the scalar

residual r;, shows only the velocity estimation error of node <.

(a) Hlustration of reference frames. (b) The coordination control ar-
chitecture.

Multi-UAV’s formation and communication topology. (a) Formation
references specifying a V-shape in the z—y plane. (b) V-shape forma-
tion of UAVs. (c)-(f) Inter-UAV’s communication graph G, ;) with four
modes o(t) = {1,2,3,4} = Q. UAVs initially communicate in mode
o(t) = 1 and may switch to other modes o(t) = {2, 3,4} if activated by
a local detector. Blue nodes indicate the UAVs equipped with a local
monitor and orange nodes specify the UAVs monitored by the ground

control center.
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4.3

4.4

4.4

4.5

Experiment 1: ZDA on UAVs 1,4, 5 and topology switching from mode
1 to 4. (a) UAVS’ position trajectories in the  —y plane with the
colorbars quantifying the timespan. The x markers and the colored
circles show, respectively, the UAVs’ initial position and final position
during the experiment. Finally, the gray lines visualize the V-shape
formation achieved by the final position of the UAVs. (b) The relative
positions of UAVs in the y direction, corresponding to the inter-UAV
communication links in mode o(t) = 1, shown in Fig. 4.2c. Also,
the dashed lines, labeled by pj;, 7,j € V, denote the desired relative
positions based on the formation references in Fig. 4.2a.

Experiment 1: ZDA on UAVs 1,4, 5 and topology switching from mode
1 to 4, which is triggered by local monitor ¥} at ¢t = 3.22 sec. [Con-
tinued on next page]

[cont’d]: (a)-(b) The notation r%, i € {1,3,4,5} (v}, i € {1,2,3,5}),
denotes the residual of position estimation for the UAV 1’s (3’s) neigh-
bors obtained by its local monitor X} (£2) in the z and y directions
with the respective thresholds €7 (e%) and €] (e}) as given in (4.2.11).
(c) The notation r}y, i € {3,5}, denotes the residual of position esti-
mation for UAVs 3 and 5 by the central monitor £J' in the z and y
directions with the threshold ¢, as given in (4.2.6).

Experiment 2: ZDA on UAVs 1,4, 5 and topology switching from mode
1 to 3, which is triggered by local monitor X! at ¢ = 5.08 sec. (a) UAVS’
position trajectories in the x —y plane with the same annotations as
in Fig. 4.3a. (b) The residuals of local monitor ¥} with the same

annotations as in Figs. 4.4a and 4.4c, respectively. [Continued on next

page]
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4.5

4.6

4.6

[cont’d]: (c) The residuals of the central monitor ¥4" with the same
annotations as in Figs. 4.4a and 4.4c, respectively.

Experiment 3: covert attack on UAV 2 and topology switching from
mode 1 to 2, which is triggered by local monitor ¥} at ¢ = 6.4 sec. (a)
UAVs’ position trajectories in the x —y plane with the same annota-
tions as in Fig. 4.3a, except the gray lines that visualize the V-shape
formation achieved by the UAVs at t, = 5 sec, the starting time of the
covert attack. (b) The effect of measurement alteration using sensory
attack ug starting at ¢, = 5 sec. [Continued on next page]

[cont’d]: (c)-(d) The residuals of local monitor ¥2 and central monitor

XM with the same annotations as in Figs. 4.4a and 4.4c, respectively.
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5.1

An example that illustrates how intermittent communication can dras-
tically change the graph/network’s algebraic connectivity A(+) and
thus its robustness. Let graph G, ) = (V, (1)) such that [V| = N +1,
with V =V, UV, and |V3| = N, where N > 3, and that the subgraph
Q_U(t) = (V\ Vl,c‘,_’g(t)) induced by removing the set V; and its inci-
dent edges is a complete graph Ky, = Q_U(t). Note that the singleton
i € V] can be connected to any pair of disjoint nodes j # k € V5, and
thus S = {j, k} C V and the bidirectional edge set E..c = {(4,J), (¢, k)}
make, respectively, the minimum vertex cutset and edge cutset of G, 4.
Accordingly, one can verify that Ao(Go)) < K(Gow) = e(Gow) =
Omin(Go()) = 2, where e(+) and in(-) are, resp., the edge connectivity
and minimum node-degree. Also, if 3t € Rxq s.t Gy = (V, € \ Ecut)
because of an intermittent connection of the edges &, we have graph
disconnection with A\o(G,) = (V, €\ Ecut)) = 0. Yet, the induced sub-
graph Ky, holds even a higher algebraic connectivity since Ao (KCjry|) =
Vol = N, and &(Ky)) = e(Kjvy) = Omin(Kpip)) = N —1. This example

has been constructed based on the discussions in [48, Ch. 13.5].
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5.2 Communication network G, in (a) and its algebraic connectivity in

the integral sense of (5.2.1) in (b) for Section 5.5-Example 1. (a) The
network switches between two modes every 0.5 sec whose union forms
a static overlay network G# with Ay(L) = 2.1049 that is 3-robust [67,
Fig. 4], ensuring (3, 1)-robustness, and (3, 1)-vertex-connectivity (see
Section 5.2 and (5.2.7)). per Section 5.1.3, the network G, is subject
to a 2-total and 2-local set of malicious agents A = {5,6}. It is also
subject to a distributed DoS whose link dropouts follow a binomial dis-
tribution with 100 trials and a success probability of 0.3 during 10 sec.
(b) The illustration of positive algebraic connectivity Ao(-) in the in-
tegral sense (5.2.1) for for the network G, and its induced network
Go(y in (5.1.9) despite their intermittent connections (See also remark
5.2.2). The results in (b) are from resilient consensus in Fig. 5.3-(a)
through Algorithm 4. The decrements in A\y(-) during ¢t € [0, 5.66] are
due to the permanent link disconnections that occurred in the attack

detection and isolation procedure, see Fig. 5.3-(a).
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5.3 Example 1: Comparison of resilient consensus in an 8-agent network

G-« that is, as shown in Fig. 5.2, (3, 1)-robust and subject to DoS at-
tacks and a 2-total and 2-local set of malicious agents A = {5,6} with
us(t) = 0.3t and ug(t) = 0.5¢ in (3.1.3). (a) Resilient consensus using
Algorithm 4 whose resilient to the 2-total/2-local set A in the (3,1)-
robust network is guaranteed by Lemma 5.3.2 and Theorem 5.3.5. Also,
the specify the time instants where cooper-
ative agents detected and disconnected from their respective neighbor-
ing malicious agents (lines 7-10 of Algorithm 4 with €%/ = 0.95) using
its local attack detector in (5.3.10). (b) Resilient consensus using the
DP-MSR algorithm that for a 3-robust network has provable resilient
consensus only in the presence of up to 1-local or 1-total malicious
agents [37, 36], accounting for the failure of the approach in this case

where A is 2-local and 2-total.
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5.4

6.1

Example 2: Resilient consensus in an 84-agent network G, subject
to deception and DoS attacks defined in Section 5.1.3. The decep-
tion attacks are introduced by a 1-local set of 9 malicious agents,
A ={1,4,16,19,29, 33,46, 60, 73}, which are shown in red color. The
distributed DoS attack (5.1.5) imposes link dropouts following a bino-
mial distribution, with 600 trials and a success probability of 0.4 during
150 sec. (a) The static overlay network G is 2-robust, constructed us-
ing the preferential-attachment model in [67, Thm. 5| based on the
topology in [67, Fig. 6]. Despite intermittent connections, the network
Go@) is (2,1)-robust and (3, 1)-vertex-connected (see Definitions 5.2.2
and 5.2.3, and Lemma 5.2.3). (2, 1)-robustness, then, ensures resilience
to any 1-local set A as it follows from Lemma 5.3.2 and Theorem 5.3.5.
(b) Resilient consensus using Algorithm 4 over the intermittent network

Go(1) in (a) and in the presence of the 1-local malicious set \A.

[lustration of reference frames and the perspective camera projection
model. {W} is the common inertial (world) frame, and {5;} is the
body-fixed frame of the i-th agent (robot) on which a forward-pointing
centered camera is attached with the coordinate frame {C}. We let
R,vs =: R and Rz =: R which yields Reyy = ResRuw = RTRT. Finally,
without loss of generality, we assume that the body frame {B;} and

the camera frame {C} have no offset and differ only in orientation.
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6.2

6.3

6.4

6.5

Overview of the perception-based multi-robot coordination. The con-
tribution of this chapter is highlighted in the gray box, which encom-
passes the perception module shown in the green box. This module
integrates (Visual-Inertial Odometry) VIO data and detected objects
from the object detection module to provide state estimation for the
ego-robot, along with capabilities for relative localization and object
tracking. The blue box shows the consensus-based coordination al-
gorithm and the adversary detection algorithm developed in Chapter
5. These two modules allow for resilient coordination in the presence
of adversarial attacks on images or transmitted information over the
communication network.

The effect of FGSM adversarial image attack on YOLOvVT7 object de-
tection.

Multi-robot Platforms. (a) The TelloSwarm+ platform is an extension
of our prior work [4] with vision capability and efficient multi-threaded
wireless communication capability. (b) The VOXL-equipped platform
is a custom-built quadrotor that allows for the onboard implementation
of control, monitoring, and deep learning algorithms.

Multi-robot communication architecture for TelloSwarm+. The net-
work establishes a multithreaded server-client architecture over Wi-Fi
802.11 using the UDP protocol to achieve fast, low-latency communi-
cation with each robot. A motion capture system provides the ground

truth poses of the robots.
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6.6

6.7

6.8

The accuracy of custom-trained YOLOv7 model. mAP (mean average
precision) is calculated based on the Intersection over Union (IoU) be-
tween the detected bounding boxes and ground-truth bounding boxes,
with IoU thresholds of 0.5 and ranging from 0.5 to 0.95.
Experimental setup for perception-based multi-robot coordination sub-
ject to adversarial image attacks. The experiments use the framework
shown in Fig. 6.2. Two Tello-EDU quadrotors perform relative local-
ization with respect to the jackal-UGV using their respective VIO and
object detection model that detects the jackal-UGV. The quadrotors
also coordinate their estimated relative positions through the control
protocol (6.2.13).

The induced 2-norm of state estimation covariance to adversarial mis-
classification as intermittent measurements at different rates. see Table

6.1 for more comparisons.
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6.9

6.10

6.11

Results from a two-agent perception-based coordination experiment
using the framework shown in Fig. 6.2, subject to adversarial mis-
classification as detailed in the seventh row of Table 6.1. The peaks in
(a) reflect the degenerative effect of adversarial misclassification induc-
ing missed measurements in the Kalman filter (6.2.8). (b) The boxes
with labels on top are the detections from the custom-trained YOLOv7
model, while the green boxes with labels underneath are calculated by
projecting the 3D relative position estimations from the Kalman fil-
ter into the image space to determine the box’s center, and by using
the object’s known size to compute the box’s width and height in the
image. Additionally, the image frames in (b) have been cropped for
better visualization. The original camera image size was 640 x 480
pixels.

Results from a two-agent perception-based coordination experiment in
standard settings (i.e., no adversarial attacks on the perception mod-
ule), using the framework illustrated in Fig. 6.2. Performance metrics
and comparisons for this experiment are detailed in the first row of
Table 6.1.

Results from a two-agent perception-based coordination experiment
with adversarial misclassification in the perception module, using the
framework illustrated in Fig. 6.2. The adversarial misclassification
rate is modeled by a binomial distribution gy ~ Bin(n = 200,p = 0.4)
in (6.2.8). Performance metrics and comparisons for this experiment

are detailed in the seventh row of Table 6.1.
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6.12

6.13

Timestamped perception and relative localization of agent 2 subject to
adversarial mislocalization. The results are associated with the exper-
iment listed in the second row of Table 6.2. The boxes with labels on
top are the detections from the custom-trained YOLOvVT7 model, while
the green boxes with labels underneath are calculated by projecting
the 3D relative position estimations from the Kalman filter into the
image space to determine the box’s center, and by using the object’s
known size to compute the box’s width and height in the image. Addi-
tionally, the image frames have been cropped for better visualization.
The original camera image size was 640 x 480 pixels.

Results from a two-agent perception-based coordination experiment
with adversarial mislocalization in the perception module, using the
framework illustrated in Fig. 6.2. The adversarial mislocalization in-
volves augmenting the nominal output of the object detection model
with b = 10 spurious bounding boxes. The spurious boxes were gen-
erated by adversarially perturbing the nominal detected bounding box
around the object of interest (jackal-UGV) by ¢ = £30% and increasing
their probability confidence by 10%. Performance metrics and compar-

isons for this experiment are detailed in the second row of Table 6.2.
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6.14 Results from a two-agent perception-based coordination experiment

6.15

using the framework shown in Fig. 6.2, subject to both adversarial mis-
classification and mislocalization as detailed in Table 6.3. The peaks in
(a) reflect the degenerative effect of adversarial misclassification induc-
ing missed measurements in the Kalman filter (6.2.8). (b) The boxes
with labels on top are the detections from the custom-trained YOLOv7
model, while the green boxes with labels underneath are calculated by
projecting the 3D relative position estimations from the Kalman fil-
ter into the image space to determine the box’s center, and by using
the object’s known size to compute the box’s width and height in the
image. Additionally, the image frames in (b) have been cropped for
better visualization. The original camera image size was 640 x 480
pixels.

Results from a two-agent perception-based coordination experiment
with adversarial misclassification and mislocalization in the percep-
tion module, using the framework illustrated in Fig. 6.2. The ad-
versarial misclassification rate is modeled by a binomial distribution
Br ~ Bin(n = 200,p = 0.2) in (6.2.8). The adversarial mislocalization
involves augmenting the nominal output of the object detection model
with b = 5 spurious bounding boxes. The spurious boxes were gener-
ated by adversarially perturbing the nominal detected bounding box
around the object of interest (jackal-UGV) by ¢ = £30% and increas-
ing their probability confidence by 10%. Performance metrics for this

experiment are detailed in Table 6.3.
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Chapter 1

Introduction

Cyber-physical systems (CPS), such as transportation networks, smart power grids,
autonomous vehicles, and mobile sensor networks, are considered indispensable to
the critical infrastructure of developed countries (see Fig. 1.1). The cooperation of a
network of autonomous mobile robots, such as unmanned aerial or ground vehicles,
is of paramount importance since network-enabled cooperation provides distributed
coverage, reconfigurability, and mobility in a wide range of applications such as smart
transportation, search and rescue missions, surveillance, wildfire monitoring, and de-
livery. Nonetheless, the deployment of such systems in critical infrastructures has
been hampered by various challenges including assurance of safety and security. The
safety and security challenges arise, in part, from the vulnerability of wireless commu-
nication networks as well as perceptual sensing modalities such as cameras on which
networked autonomous mobile robots rely for information exchange, decision-making,
and operation. It has been shown that the foregoing vulnerabilities can be exploited in
an adversarial manner to design attacks on the transmitted or measured information
so as to compromise, severely and shortly, the network-level system stability while
remaining stealthy (unnoticeable in the monitoring data) until a critical breakdown.

This dissertation proposes solutions to bring about resilience in multi-robot
systems cooperating in adversarial settings where there may exist cyberattacks on
information exchanged over wireless communication networks as well as adversarial

disruptions in perceptual sensing modalities such as cameras.



(a) Proteus, (C) 2022, Amazon

(c) Digital firework (©) 2018, Intel (d) Semi-autonomous platooning (©)2018, Scania

Figure 1.1: Examples of deployment of autonomous and semi-autonomous multi-
agent systems in various infrastructures sectors underscores the importance of safe
and reliable operation. a) Proteus is Amazon’s first fully autonomous warehouse
robot. b) Autonomous monitoring of the vertical farming. ¢) small drones formation
for digital fireworks. d) vehicle platooning in intelligent transportation systems.

1.1 Security and Resilience of Cyber-Physical System

The grand challenges of ensuring security and resilience for cyber-physical systems
(CPS) have motivated the study and characterization of possible adversarial attacks
against these complex systems. The seminal position paper in [18] initially put forth
an interpretation of the security of CPS based on the traditional security goals, known
as the CIA triad, allowing for the study and characterization of cyber threats (adver-

sarial attacks). Such security specifications are defined as follows:

o Integrity: the trustworthiness of transmitted data.
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Figure 1.2: Cyber-physical attack space - Reproduced from [131, 96]. This disserta-
tion addresses the adversarial attacks highlighted in red in the context of coordination
of multi-agent (robot) systems.

o Availability: the availability of resources (e.g., information exchanged over com-

munication networks) for CPS.

e Confidentiality (privacy): the ability to prevent any disclosure of system infor-
mation to unauthorized entities. Lack of confidentiality is associated with the

breach of privacy and eavesdropping attacks.

Having specified the foregoing security goals, adversarial attacks on CPS can be clas-
sified as deception attacks, targeting the integrity!/trustworthiness of transmitted
data, and denial-of-service (DoS) attacks, targeting the data availability upon de-
mand [18]. There exists a vast literature on the study and characterization of CPS’s
vulnerability to various attacks and defense mechanisms against them [131, 77, 38].
Particularly for networked control systems, as a class of CPS, [131, 96] proposed a
general framework to characterize adversarial attacks based on their level of disrup-

tion and the adversary’s resources and knowledge of the targeted system (see Fig.

IThe deception attacks are also referred to as integrity attacks [147].



1.2). Deception attacks such as Zero-dynamics Attacks (ZDA) and covert attacks are
known as stealthy attacks with the highest level of disruption that require a prior: full
knowledge of the targeted system whereas DoS attacks have a relatively lower level
of disruption with no need for a priori knowledge of the system. These adversarial
attacks have been also studied in the context of multi-agent systems that are tasked
with cooperation (e.g., formation, flocking, and swarming [113, 116, 144]) and coor-
dination (e.g., consensus on a quantity of interest [98, 67, 78, 110, 144, 111, 14, 86]).

In terms of resilience, which was initially defined as the survivability of CPS
[17], the property of interest is the system capability of graceful degradation in its op-
erational goals (e.g., stability, safety, performance) when under attack. The resilience
of multi-robot systems, however, is inherently contingent and poses difficulties in its
quantification [102]. Therefore, resilience to specific classes of adversarial attacks is
rigorously studied [38]. Examples of specific resilience problems related to the con-
text of this dissertation are the resilience of network (graph) connectivity to node
and link failures [146, 71|, attack-resilient state estimation [94], resilient consensus
97, 67, 36, 37, 110, 144].

In this dissertation, we consider a class of deception and DoS attacks on multi-

robot systems in consensus and consensus-based formation settings (cf. Fig. 1.2).

1.2 Network-enabled Coordination and Cooperation of Mutli-Robot Sys-

tems

Network-enabled coordination and cooperation of mobile autonomous robots are cen-
tral to many safety-critical and time-critical applications such as search and rescue
missions, surveillance and monitoring, platooning of autonomous Vehicles, motion

and time coordination [108, 79, 32, 103, 55, 144]. These complex tasks often entail



consensus over a quantity of interest. For instance, coordination can be obtained by
consensus over certain quantities such as time in time-coordination or inter-vehicle
distances in formation control [92, 32, 103, 107, 109]. Also, a team of robots can
achieve and maintain formation by exchanging their spatial information (e.g., posi-
tion and velocity states) and in different settings such as leader-follower, leaderless
consensus-based, and virtual structure approaches [91, 106]. Therefore, a reliable
communication network for information exchange among robots is an integral part of
the secure and safe operation of multi-robot systems.

However, the mobility and limited communication capabilities of mobile au-
tonomous robots (e.g., small Unmanned Aerial Vehicles) give rise to an ad hoc and
intermittent network connectivity of robots in distributed settings, posing practical
and theoretical challenges to the safety-critical applications of such systems [55, 144].
The network connectivity challenge has motivated various studies of the connectivity
maintenance in multi-robot cooperation subject to ad hoc or time-varying communi-
cation [79, 33, 53, 59, 39, 43].

This dissertation focuses on the consensus and consensus-based formation con-
trol of a team of robots with time-varying communication topology subject to inter-

mittent connections.

1.3 Detection and Mitigation of Adversarial Attacks

As discussed in Section 1.1, the reliance on wireless communication networks renders
the networked systems vulnerable to a large class of adversarial attacks, possibly
introduced by a group of malicious (compromised) agents in the network, disrupting
normal cooperation.

Detection of adversarial attacks, particularly deception attacks that are intro-



duced to the networked systems through a group of malicious or compromised agents
(e.g., mobile robots), is inherently a challenging problem. First, a priori knowl-
edge of the system dynamics can be exploited to design sophisticated deception at-
tacks that are stealthy to the common anomaly detectors [131]. Examples of such
attacks in decentralized and distributed settings are zero-dynamics attack (ZDA)
(97, 78, 131], covert attack [42], and replay attack [110]. Second, the body of effective
system-theoretic approaches (e.g., observer/model-based frameworks) developed for
distributed detection of faults and stealthy attacks in spatially invariant systems such
as power networks and smart grids [130, 98, 9, 42, 99| are premised on having a pri-
ori known and more often static communication topology which is not the case in a
spatially distributed multi-robot system with a time-varying communication network
that is subject to ad hoc connections [79, 59].

Considerable effort has been devoted to the detection and mitigation of ad-
versarial attacks on multi-agent systems, allowing for a characterization of resilience
in terms of a maximum number of malicious (compromised) agents tolerable in a
given network. The prevailing approaches in multi-agent settings can be classified as
graph-theoretic [101, 52| and system-theoretic approaches [97, 98, 99]. It has been
shown that the resilience to a given type of adversarial attack and/or a group of
malicious (compromised) agents in a network can be characterized through certain
connectivity-related properties of the underlying communication network. Partic-
ularly for coordination/consensus of multi-agent systems with first-order dynamics,
primary studies have characterized the worst-case bounds for the total number of ma-
licious (non-cooperative) agents that can be detected and identified in a given static
communication network with certain degree of vertex-connectivity [97].

Alternatively, to circumvent the detection and identification problems, a family

of algorithms, known as Mean-Subsequence Reduced (MSR) algorithms, were devel-



oped [67] for resilient consensus. The MSR-like algorithms enable each agent (robot)
to simply disregard part of the information received from its neighbors, ensuring
the exclusion of malicious data to a certain degree. To ensure sufficient redundancy
of exchanged information between agents, a connectivity-related notion of graph r-
robustness was proposed in [67, 146] that allows for the quantification of resilience
to a certain number of malicious agents in a given static network. The MSR-like
algorithms have been also extended to the cases of multi-agent systems with double-
integrator dynamics [36, 37], and higher-order dynamics [110]. See also the surveys
in [52, 101].

However, the common challenge of the above-mentioned results in the context
of mobile autonomous robots with time-varying communication networks is to main-
tain the connectivity constraints constantly throughout time. Although connectivity
maintenance for multi-robot systems with limited communication capability has a
rich history in the literature [79, 33, 53, 59, 39, 43, 55|, the prior studies do not
address the detection of attacks or non-cooperative robots in time-varying networks.
Only a few studies have recently considered resilient consensus over time-varying
communication networks. In [116], a hybrid controller was proposed for achieving
resilient flocking. Consensus over networks with stochastic link failures and noisy
communication was studied in [110]. Consensus and leader-follower consensus over
periodically time-varying networks with intermittent communication were considered
in [144, 135]. Another defense mechanism is the incorporation of strategically switch-
ing communication networks to minimize the space of possible stealthy attacks such
as ZDA. We refer to [129, 78] and the references therein for a comprehensive review.

Finally, among the other recent but less prevalent approaches are the study
in [14] proposing a decentralized framework to detect communication and sensor at-

tacks that are stealthy to the current state-of-the-art residual-based methods. Also,



in [86], a control barrier function (CBF) approach was proposed for safety and objec-
tive specifications serving as metrics for the identification of adversarial agents and

resilient control of multi-agent systems.

1.4 Statement of Contributions

This dissertation extends the prior results on adversary detection for resilient multi-
agent (robot) systems to the case where the communication network is subject to
topology switching and a priori unknown intermittent connections. Additionally, we
consider adversarial image attacks on the robot’s perception module on which the
robot relies for localization in a map. More specifically, this dissertation considers
coordination (e.g., consensus) and cooperation (e.g., formation) of multi-robot sys-
tems with second-order dynamics in adversarial settings where either or some of the
CPS security goals, introduced in Section 1.1, are compromised (see also Fig. 1.2).
In this dissertation, a group of malicious (compromised) robots introduces a class
of deception attacks to disrupt the normal operation of the system. We consider
vulnerabilities to data injection attacks and stealthy attacks, namely zero-dynamics
attacks and covert attacks. We provide control-theoretic and graph-theoretic bounds
that characterize the resilience of the multi-robot systems with the consensus (coor-
dination) task to the foregoing adversarial attacks.

Chapter 3 considers the security goals of confidentiality and integrity for multi-
agent systems (see Section 1.1). It presents? a two-layered decentralized attack detec-
tion framework to detect stealthy attacks, namely covert attacks and zero-dynamics

attacks, on multi-agent control systems seeking consensus. The detection structure

2Chapter 3 is adapted from a publication by the author of this dissertation. (C) 2021 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2021, December). Privacy-
preserving stealthy attack detection in multi-agent control systems. In 2021 60th IEEE Conference
on Decision and Control (CDC) (pp. 4194-4199).



consists of a global (central) observer and local observers for the multi-agent sys-
tem partitioned into clusters. The proposed structure addresses the scalability of
the approach and the privacy preservation of the multi-agent system’s state informa-
tion. The former is addressed by using decentralized local observers, and the latter
is achieved by enforcing unobservability at the global level. Also, the communication
graph model is subject to topology switching, triggered by local observers, allowing
for the detection of stealthy attacks by the global observer. Theoretical conditions are
derived for detectability of the stealthy attacks using the proposed detection frame-
work.

Chapter 4 considers experimental studies of detecting stealthy attacks on net-
worked UAVs in formation control settings. Compared to the results of Chapter 3, this
chapter presents® an alternative local monitoring approach that allows for the distri-
bution detection of stealthy attacks for relatively smaller networks of UAVs. The local
detection framework, implemented onboard each UAV in the network, uses the model
of networked UAVs and locally available measurements. Additionally, the software
package developed for this dissertation has been released as an open-source project,
which is available at https://github.com/SASLabStevens/TelloSwarm. Addition-
ally, a video demonstration of our framework and experimental results is available at
https://www.youtube.com/watch?v=1VT_muezKLU.

Chapter 5 considers® the security goals of availability and integrity for the

multi-agent systems whose communication network is arbitrarily time-varying and

3Chapter 4 is adapted from a publication by the author of this dissertation. (C) 2022 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2022, June). Detection of
Stealthy Adversaries for Networked Unmanned Aerial Vehicles. In 2022 International Conference
on Unmanned Aircraft Systems (ICUAS) (pp. 1111-1120).

4Chapter 5 is adapted from a publication by the author of this dissertation. (C) 2024 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2024, August). Distributed
Detection of Adversarial Attacks for Resilient Cooperation of Multi-Robot Systems with Intermittent
Communication. Provisionally Accepted at IEEE Transactions on Control of Network Systems.
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subject to intermittent connections, possibly imposed by denial-of-service (DoS) at-
tacks. The results of this chapter extend observer-based approaches [97, 78] of adver-
sary detection by relaxing their dependency on point-wise-in-time network connectiv-
ity /robustness and quantifying resilience to concurrent adversarial attacks. Specif-
ically, this chapter presents explicit bounds for network connectivity in an integral
sense that allows for the characterization of the system’s resilience to certain classes
of adversarial attacks. It will be shown that under connectivity in an integral sense
uniformly in time, the system is finite-gain £ stable and uniformly exponentially
fast consensus and formation are achievable, provided malicious agents are detected
and isolated from the network. This chapter also presents a distributed and re-
configurable framework with theoretical guarantees for detecting malicious agents,
allowing for the resilient cooperation of the remaining cooperative agents. We have
released our principled framework as an open-source project, which is available at
https://github.com/SASLabStevens/rescue.

Chapter 6 presents a framework for perception-based multi-robot coordination
subject to a class of adversarial image attacks. Specifically, the framework tackles ad-
versarial image perturbations that lead to misclassification and mislocalization in the
learned perception model, which performs object detection on onboard camera images
to provide detection measurements for relative localization on a map. We propose that
the effect of misclassification and mislocalization can be formulated as sporadic (inter-
mittent) and spurious (false positive) measurement data. We propose a method for in-
tegrating data from Visual-Inertial Odometry (VIO) and the learned perception model
to achieve robust relative localization and state estimation in the presence of sporadic
and spurious measurements, which may be caused by adversarial image perturbations
targeting the perception module. To test our proposed framework, we also present

two multi-robot platforms equipped with open-source software packages for running
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learned perception modules and wireless communication capabilities. Our pack-
ages are available at https://github.com/SASLabStevens/TelloSwarm and https:
//github.com/SASLabStevens/AutonomyStack.

Finally, Chapter 7 summarizes the findings of this dissertation and outlines

future research directions.
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Chapter 2

Preliminaries

2.1 Notation

We use R, R, R>g, N, Z>, and C to denote the set of reals, positive reals, nonneg-
ative reals, natural, nonnegative integers, and complex numbers, respectively. 1,, 0,
I, and 0,4, stand for the n-vector of all ones, the n-vector of all zeros, the identity
n-by-n matrix, and the n-by-m zero matrix, respectively!. We use ¢! to denote the
i-th canonical vector in R", and ||-||, to denote the p-norm Euclidean (resp. infinity)
norm of vectors and the induced norm of matrices. In addition, for any piecewise con-

tinuous, real-valued Lebesgue measurable signal z(t) € R", we use ||(z were

)Td||£p7
1 <p<ooand Ty € [0,00), to denote the £, norm of its truncation signal that is

defined as

l‘(t), 0 S t S Tda
('T)Td =
0, Ty < t.

The extended space L, consists of all measurable signals whose truncations belong
to £,, that is L, = {2(t) | (v)r, € L,, YT, € [0, 00)}. Also, the notation x(™(¢)
denotes the m-th order time derivative of x(t). The notations spec(:) and \;(-) de-
note the spectrum of a matrix in the ascending order by magnitude and its i-th
eigenvalue, respectively. We use col(-) and diag(-) to denote the column and di-
agonal concatenation of vectors or matrices, and ® to denote the Kronecker prod-

uct. The support of vector x € R"™ is the set of nonzero components defined as

'We may omit the subscripts when clear from the context.
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supp(xz) = {i € {1,...,n} | z; # 0}. We also define the set of nonzero columns of the
n-by-n matrix M by colsupp(M) = {i € {1,...,n} | [M].; # 0,}. Finally, for any set
S, |S| denotes its cardinality, and for any subset of indices A C V = {1,2,..., N},
where N € N, the binary matrix I, € RV*F denotes the concatenation of the i-th

columns of Ijy) where i € A (le. I4= |l ¢2 ... ef]\‘/f“ ).

2.2 Graph Theory

Welet G = (V, £) denote an undirected graph with the set of nodes V = {1,2,..., N},
where N € N, and the set of edges £ C V x V. For any pair of nodes i,j € V, i # 7,
the edge (j,7) € £ indicates a path from the j-th node to the i-th node. Accordingly,
the symmetric adjacency matrix A = [a;;] € RI;" is defined such that a; > 0 if and
only if (7,7) € &, and otherwise a;; = 0. The Laplacian matrix L = [l;;] € RV*V is
defined as l; = 3, a;y and l; = —ay; if i # 5. N'O = {j € V| (j,i) € £} denotes
the set of (1-hop) neighbors of node i. The Laplacian matrix of an undirected graph
is symmetric and its spectrum, spec(L) admits 0 = A\j(L) < Ao(L) <--- < An(L) < N

(see [48, Ch. 13]).

Definition 2.2.1. (Algebraic connectivity). The second-smallest eigenvalue Ao
of the symmetric Laplacian matrix L of an undirected graph G is called the algebraic

connectivity of G. A, is also referred to as the Fiedler eigenvalue.

An undirected graph G is connected if and only if its algebraic connectivity is

positive i.e. Ag(L) > 0.

Definition 2.2.2. (Graph component [48, Ch. 1.2], [87, Ch. 6.12]). The compo-
nents of an undirected graph G are its maximal connected induced subgraphs; that is

there exists at least a path connecting every two nodes of a component but not from
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a node in the component to any other nodes of the graph. A component is trivial if
it has no edges; the special case where a singleton node of a graph is connected to no

others is considered to be a component of size one.

Definition 2.2.3. (Vertex and edge connectivity). For a connected graph G, a
vertex cutset (resp. an edge cutset) is a set of vertices (resp. edges) whose deletion
increases the number of connected components of G. The vertex connectivity, denoted
by k(G), (resp. edge connectivity, denoted by e(G)) is the minimum number of
vertices (resp. edges) in a vertex cutset (resp. edge cutset). Accordingly, a graph is

called k-vertex-connected (or simply k-connected) if Kk < k(G) € R-o.

Definition 2.2.4. (r-robust graph [67]). A static graph G = (V, &) is r-robust,
where r = r(G) € Zso with 0 < r(G) < [|V|/2], if for any pair of nonempty, disjoint

subsets of V, at least one of the subsets, denoted as S, holds [N\ S| >r, Fie€ S.

We make the convention that the time-varying graph G, = (V, &) with
a right-continuous switching signal o(t) : Rsg — {1,2,...,q} =: Q, where q € N,
denotes a finite? set of graphs, indexed by finite set Q, that each holds all properties of
graph G. For instance, an undirected graph G, is connected at a given time instant
t =t € Ry if and only if its algebraic connectivity holds Aa(Lo)) > 0. Also, Gy is
k-vertex-connected at a given time instant t =1 € R if & < K(G,w)) € Rag.

We also make the convention that, in any active mode o(t) € Q (o in short),
N® C 'V denotes the set of k-hop neighbors of the agent ¢ € V), that is for j € N:®
there exists a path of length k, where k € Z>( \ {0}, in mode o, between the agents

1 and 7.

2The set of possible communication graphs, Q, is finite by 2(%) possible cases because an undi-
rected graph with N nodes at most is complete with (];7) = N(N —1)/2 edges [139, Ch. 1, P. 11]
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2.3 Dynamical Systems Theory

A linear system of the form @(t) = Ax(t)+ Bu(t) with the output y(t) = Cx(t)+Du(t),

where z(t) € R™, u(t) € R™, y(t) € RP, is represented by the tuple (A, B,C, D).

Definition 2.3.1. (Zeroing direction and zero-dynamics attack [152, Ch. 3],
[78]). Scalar A\, € C is a zero of the tuple ¥(A, B,C, D) if, and only if, there exists

zeroing direction col(xg, ug) # col(0, 0) associated with A, such that

AN, — A —B| |xo 0
~ 7. (2.3.1)
C D Uy 0

Then, the signal u(t) = uge*! is a zero-dynamics attack that generates non-zero state

trajectories z(t) = xpe! while the output y = Cz + Du satisfies y(t) = 0.

Lemma 2.3.1. (Observability of linear switched systems [128]). Given a
system of the form x = A,uX, with measurements y = Cx, (x € R" andy €
RP), over the interval [to, tm) that includes switching instances {ty}" for modes
o(t) = k € Q with the dwell time 1, = t;, — tx—1, the output of system is given by
y(t) = CeA=t-0) [T, | eAMx(ty), t € [ty_1, tr). Then, the following statements

hold:

1. The system is observable and the initial condition X(to) is reconstructable from
y(t) if, and only if, the matriz © defined in (2.3.2) is full rank (i.e., N7 =
ker(O) = {0}).

2. If the matriz O in (2.3.2) is rank deficient, the unobservable subspace of the
system for t € [to,tm), which is the largest A, -invariant subspace contained

in ker(C), can be recursively computed using (2.3.3)-(2.3.4).



1
O = col(Oy, O™ 7™+ O [[ ™).

N™ = ker(Op).

= ker(Of) N

where

ﬁlker <Oi f[ eAJ'TJ')],

i=k+ Jj=i—1

O, = col (C,CAy,...,CA>) 1<k <m—1,

Ap = Aq),

t € [tp1,tr).
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(2.3.6)
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Chapter 3
Privacy-Preservation and Stealthy Attack Detection for Multi-Agent

Control Systems

Motivated by safety and security specifications concerning the vulnerability of wireless
communication networks to cyberattacks such as data injection attacks [36, 78, 97],
this section presents! an attack detection framework for consensus-based coordination
of multi-agent systems subject to privacy-preservation constraints on the exchanged
information.

Having the confidentiality of transmitted information including agents’ initial
condition (i.e., position and velocity states) and the final agreement value (consensus
value) as a security goal, we propose enforced unobservability constraints on the
network topology to preserve the privacy of state information at the global level
(i.e. network-level dynamics). Second, we propose a glocal (global-local) attack
detection framework for which the networked multi-agent system is partitioned into
clusters (subsystems) with their respective globally and locally monitored agents that
satisfy specific conditions related to the network privacy and the detectability of
stealthy attacks, namely zero-dynamics attack and covert attack. Finally, we derive
the theoretical conditions for topology switching (Theorem 3.2.4) under which local
detectors trigger switches in the system’s communication topology such that stealthy
attacks become detectable for the global (centralized) observer. We further discuss
different types of topology switching and their outcome for the detection of stealthy

attacks.

'This chapter is adapted from a publication by the author of this dissertation. (©) 2021 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2021, December). Privacy-
preserving stealthy attack detection in multi-agent control systems. In 2021 60th IEEE Conference
on Decision and Control (CDC) (pp. 4194-4199).
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3.1 Problem Formulation

3.1.1 System Dynamics and Communication Topology

Agent dynamics. Consider a multi-agent system consisting of N > 3 mobile agents
with double-integrator dynamics as follows:

5, - pi(t) = vilt) . iev={1,... N}, (3.1.1)

0;(t) = u;(t)
in which p,(t) € R, and v;(t) € R are the position and velocity states. w;(t) € R
denotes the control input? of each mobile agent to be computed given local information
exchange with its 1-hop neighbors, NV over a switching communication network
Gty with finite number of modes o(t)’s. Motivated by the vulnerability of wireless
communication networks to deception and DoS attacks [18, 78, 97], we let an unknown
subset of agents, denoted by A C V and referred to as malicious agents, update their
control inputs u;, ¢ € A, such that uw; = u} + u? in (3.1.1), where u} is the normal
control input (to be designed) and u? is an injected attack signal. We also refer to
the rest of the agents, V \ A, as cooperative (or normal) agents. In this adversarial
setting, the cooperative (resp. malicious) agents seek to achieve (resp. prevent) the

cooperation objective that is defined as

lim |p;(t) — p;(t) — pfj| =0, Vi, jev, (3.1.2a)
lim |v,(1)] = 0, VieV, (3.1.2h)
—00

2For brevity, we may omit the time argument, ¢, from expressions whenever possible in the rest
of this chapter.



19

where the predefined constants py; = pf — pj are the desired relative positions for
any pair of mobile agents in the cooperative settings (e.g., formation control). In this
section, we consider coordination problems (e.g., the consensus of the system states)
with pj; = 0.

Having specified the cooperation and adversary objectives, we consider the

following distributed control protocol

u; = u? + 'u,?, 1 E V, (313&)
ul = —a Y afi(p,—p; — pl) — i, (3.1.3b)
FeNLD

which relies only on communication with 1-hop neighbors N:®. Also, the constants
@,7 € Ry are the control gains, and af;’s are the entries of the symmetric adjacency
matrix A, associated with the graph G, ;) representing the switching communication
network of agents ¥;’s in (3.1.1).

Communication topology. The switching communication network (topology) of
N > 3 mobile agents, indexed by the set ¥V = {1,..., N}, is described by a finite
collection of undirected graphs G, = (V,E(r)), where the edge set £,y C V x V
denotes the communication links. More specifically, an edge (4, j) € &, if and only if
the 7-th and j-th agents are adjacent neighbors exchanging information in the active

communication mode o(t) € {1,2,...,q} =: @, q € N.

Assumption 3.1.1. The agents ;s in (3.1.1) initially communication in a normal
mode of communication topology Go () specified by o(t) =1 € Q, for all t € [to, t1),
where t1 >ty € R, until switching to a safe mode following the detection of an
attack at a time instant t; > t,, where t, is the attack’s starting time. In the safe

mode for t > ty, the communication topology switching is specified by the switching
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signal o(t) = {2,...,q} € Q whose switching policy will be determined later (See
Section 3.2.5).

Network-level dynamics. Given (3.1.1) and (3.1.3), the network-level dynamics of

the multi-agent system can be represented by a family of linear switched systems as

follows:
p 0 I||p 0
Yo = + uy =: Asx + Byuy, xo = X(to),
v —alk, —yI| |v 14
(3.1.4a)
y =Cx—us, C=diag{C,,C.}, (3.1.4Db)

where x = col(p,v) with p € RY and v € RY being the stacked position states and
velocity states of all V agents. L, is the Laplacian matrix of the network G, (), en-
coding the communication links. uy = col (uf),. 4 € R and 14 = [eﬁ& ez ... ej\‘,A‘} €
RN*MI where el specifies the input direction in RY, corresponding to the i-th ma-

licious agent among N agents. The system measurements y = col(y1, -+ ,¥um)

corresponding to the output matrix C such that:
colsupp(Cx) € My C V, ke {p,v}, M= {M,, M.}, (3.1.5)

where the set M (to be selected) represents the set of indices of agents that are
monitored (e.g., by a ground control station). Finally, us = col(us,, ..., us,,) is a

vector of injected malicious signals in the compromised measurement sensor channels.
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3.1.2 Adversary Model

Let A C V denote the set of agents with a compromised (under attack) control
channel, and § C M represent the set of agents with compromised sensor channels.
The dynamics of the adversarial attack are given by?
%= A%+ B, X(h) = %o,
S, = : (3.1.6)
Us = Cf(,
where the vector attack uy is generally a function of disclosed information, i.e., uy :=
f(t,x,u;,y) by which the attacker steers the system towards undesired states, and
t. > to is the attack’s starting time. For example, the attack signal is in the form of

uy(t) = uge %) in the case of ZDA, where )\, and ug are introduced in Definition

2.3.1.

Assumption 3.1.2. (Disclosed information). In the normal mode, where o(t) =

1€ Q,tE€[ty, t1), the attacker

1. has perfect knowledge of the system model, that is
EA(l&cr(f)v B.A7 Ca 0= 1) = EU(iE) (Acr(t)7 B.A7 Ca 0 = 1);

2. does not know the system’s initial condition, i.e., X(t.) # x(to), and x(t,) =

Xo = 0 in a covert attack.

3. has no knowledge of the system switching time instants {tk}g’;ll, where m € N,

associated with the safe mode when o(t) ={2,...,q} € Q, t € [t1, ),
4. starts the attack at t, >ty = 0.

Assumption 3.1.3. (Defender’s policy). The defender

3The matrix B4 in (3.1.6) is the same as in (3.1.4).
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1. selects the monitored agents and designs the attack detection framework,

2. designs the communication topology for the safe mode and its corresponding

switching policy.

Proposition 3.1.4. (Stealthy attacks). Consider system (3.1.4), under the attack
model (3.1.6), and Assumptions 3.1.1 and 3.1.2, an attack is stealthy if the system

output in (3.1.4) satisfies

y (t; %0, 4y, us) = y(t; X0, 0, 0), Vit € [to, t1), (3.1.7)

where xo and Xy are the actual and possible initial states, respectively. Then, (3.1.7)

can be realized in two senses;

1. Covert Attack: Under Assumption 3.1.2, if the attacker sets the initial condition
X(ty) = 0 or alternatively %(ty) € N7 = ker(0y) in (3.1.6), then the attack uy
on (3.1.4) is covert, that is there exists a vector us, injected in (3.1.4), canceling

out the effect of uq on the system output y(t).

2. Zero-dynamics Attack (ZDA): the attacker can excite the zero dynamics of the
system by an unbounded signal and remains stealthy with no need to alter the
system measurements (i.e., us(t) = 0 in (3.1.4)) if xg € ker(C) and uy(t) =

Ao

ettt t, =t,, where Ay, Xo and uy are obtained using Definition 2.3.1.

Proof. Clearly before an attack starts, (3.1.7) is met over ¢ € [to, t,). Consider
x(t,) as the system states when the attack starts,

(i): in the case of covert attack, the output of the system (3.1.4) with the initial

4The stealthy attacks defined by the condition (3.1.7) are also known as undetectable attacks in
the literature [98].
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normal mode o(t) = 1 over t € [t,, t1) is given by
t
y(t) = CeArlt-tlx(t,) + C / AT Buy (7)dr — us(t), (3.1.8)
ta

and the last term which is the output of the attacker’s model (3.1.6) is given by

t
ug(t) = Ce )z (t,) + C / AT Buy (7)dr. (3.1.9)
ta
Substituting (3.1.9) into (3.1.8) and considering Assumption 3.1.2 yields
y(t) = CeM ) (x(t,) — %(ta)), t € [ta, t1). (3.1.10)

The measurement (3.1.10) matches the attack-free response if the attacker simply
sets X(t,) = 0. Also, in the case X(t,) # 0, t, = to = 0, it is immediate from lemma
2.3.1 that if %(to) € N7 # {0} = Ce*(t)x(t)) = 0, t, = t, = 0 in (3.1.10),
and thus y(t) = Ce®1(tt)x(t,), t € [t., t1). In both of the cases, condition (3.1.7),
guaranteeing the covertness of the attack, is met. We, however, focus on the first
case under Assumption 3.1.2-(i7), therefore the system state x(t), without any jump,

continuously holds the following
x(t) = x(t) + x(t), (3.1.11)
where

X(t) =0 = x(t) = x(t), Vit € [to, ta), (3.1.12)

t
(1) = / AT By (1) dr Vte [t t), (3.1.13)
ta
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with x(t), YVt € [to, t1) denoting the state of the system in (3.1.4) in the absence of
covert attack (i.e. x = AjX, Xg = Xg).
(ii): In the case of ZDA, let t, = to = 0 for simplicity, and X9 = xg — Xo. Under

Assumption 3.1.2 and using Definition 2.3.1, the attacker can solve the following:

Al —A; —Byu| | X0 0

= , (3.1.14)
C 0 Ug 0
to design the ZDA signal uy(t) = uge! causing unbounded system states
x(t) = x(t) + Xoe, (3.1.15)

while (3.1.7) is met, where Z(¢) is the state of the system in (5) assuming the initial
condition Zy and no attack signal. The second equation in (3.1.14), Cxo = 0, implies
Xg € ker(C). It is an immediate result from Definition 2.3.1 that the attack signal
u,(t) = uge? results in us(t) = Cx(t) = 0 in (3.1.6) while the system states
x(t) = xpe™! € ker(C), Vt € [to,t1) is unboundedly increasing. Consider (3.1.15)
and the superposition principle in linear systems, then injecting the designed ZDA
signal u,(t) in (3.1.4) yields the solution y = Cx(t) = Cx(t) + Cxoe?!, which by
considering (3.1.14) is equivalent to (3.1.7), guaranteeing the stealthiness of ZDA for
(3.1.4).

3.1.3 Problem Statement

Given the system and attack models in the previous section, we now state the two

problems which this chapter aims to address in the following:

Problem 3.1.5. (Privacy-preserving average consensus). Given the switching
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consensus system (3.1.4), we seek to preserve the following privacy requirements:

1. neither the system’s initial states x(ty) nor the final agreement values (p* =

~ SN py(to), v* = 0) should be revealed or be reconstructable.

2. the system’s communication topology Go () should not be reconstructable.

Problem 3.1.6. (Scalable attack detection). Given the system in (3.1.4) under
the attack model (3.1.6), we seek to develop a stealthy attack detection framework

such that:
1. 1t features a decentralized and scalable structure.

2. it satisfies the privacy-preserving requirements defined in Problem 3.1.5.

3.2 Privacy Preservation and Attack Detection

In this section, we describe the attack detection framework and characterize the

conditions required to address Problems 3.1.5 and 3.1.6.

3.2.1 Attack Detection Scheme

The proposed framework, depicted in Fig. 3.1, is a two-level attack detection frame-
work. It is privacy-preserving and relies on topology switching generating model
discrepancy between the attacker model (3.1.6) and the actual system (3.1.4). The
system is decomposed into a set of subsystems based on the characteristics of its
communication topology such as sparsity. Then, a set of monitored agents will be
characterized such that each subsystem (the dynamics of agents within a cluster) is
fully observable with respect to its locally available measurements while the main sys-
tem (3.1.4) is partially observable with respect to its globally available measurements

(3.1.5). We show how unobservability and system clustering can be used respectively
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Figure 3.1: Attack detection architecture. It includes a centralized observer and a set of
local observers. The centralized observer only monitors some of the agents from a ground
station with bandwidth limitation. The local observers deployed onboard allow for local
monitoring and local decision-making for network topology switches, enabling the detection
of stealthy attacks by the centralized observer of the ground station.
to address Problem 3.1.5 and 3.1.6. Building upon global and (private) local measure-
ments, the attack detection framework consists of a centralized observer, implemented
in the control center, and local observer(s) in each cluster (P;, i € {1,2} in Fig. 3.1).
As increasing data transmission between agents and the centralized observer in the
control center raises scalability and privacy concerns (cf. Problem 3.1.6), local ob-
servers play a vital role in our attack detection framework. They are hidden from the
attacker because they are distributed among clusters of the multi-agent system, and
their output is not sent to the control center but kept locally for attack detection.
If a local observer detects a stealthy attack, it triggers a network topology switch
whereby the stealthy attack becomes detectable in the global measurements available
for the centralized observer. The local decision-making for network topology switches
and indirect communication with the control center allow for agile reconfigurability
in autonomous multi-agent systems (e.g., networks of autonomous aerial or ground

vehicles) while eliminating the need for additional data exchange at the global level,

which otherwise is required for monitoring and stealthy attack detection.
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3.2.2 Privacy Preservation

Problem 3.1.5 on privacy preservation can be addressed by imposing an unobservabil-
ity constraint on system (3.1.4). Indeed, one can select the set of monitored agents
M in (3.1.5) such that (A,y),C) is not an observable pair on t € [ty, 00), making
the globally available measurement y in (3.1.5) insufficient to reconstruct either the
entire system states’ information or the system’s switching structure (cf. privacy
requirements in Problem 3.1.5).

The following lemma provides sufficient conditions to determine whether the

global system measurement (3.1.5) is consistent with the privacy requirements.

Lemma 3.2.1. (Invariant unobservable subspace of system (3.1.4)).
The subspace span { éx } is an A -invariant unobservable subspace of the switching
system in (3.1.4) provided that it lies in ker(C) and G,y features only connected

undirected (or strongly connected and balanced directed) graphs.
Proof. See Appendix A.2.

Remark 3.2.1. (Generality of Lemma 3.2.1). The result suggests that moni-
toring only the agents’ velocity causes the agents’ positions not to be reconstructable
independently for system (3.1.4). This is a generic solution to Problem 3.1.5 that
holds for all undirected graphs. It is also worth noting that the monitored agents
corresponding to set M in (3.1.5) can also be selected differently from the results in

Lemma 3.2.1 for any particular graph.

We next introduce the system partitioning method followed by observer design

to address Problem 3.1.6.
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3.2.3 System Partitioning

Consider the communication graph G, = (V,&,(t)) of the system (3.1.4), let the
set of agents V be partitioned into disjoint clusters P = {Py,...,Pp/} such that

UZ Py =V with P, € RM and inter-cluster couplings
gcut = {(]77')) | 1€ Piv j S Pjv Pi mpj - @}

Accordingly, after relabeling the system states, the system (3.1.4) is partitioned into

|P| subsystems described as

/

o i ij i
Xi = AypXi + Zje Ao AgwX; T Balla,

o yi, = Cixi, 1€ M; CP, (3.2.1)

Xi(0>:X017 16{1, ,"P|},

\

with
i 0 I ; 0 0
o(t) — i ) Ao(t) = . ) (3.2.2)
—ozLU(t) —vI _aLa(t) 0
1P|
L(17(15) LU(t) 0
Lewy=1] : . |, Bi= e (3.2.3)
A
1Pl1 P i
Loy Low

.
where x; = [(p)lT (U)IT] € R?M with (p); and (v); representing the vectors of
position and velocity states belonging to cluster P; C V. Also, u,, associated with
the set A; is the vector-valued attack on actuator channels in the cluster as defined

in (3.1.4). The output signal y;, (¢), associated with the output matrix C;,, denotes
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the local measurements that are available at node 7 in cluster P;. Finally, N = {j €
{L,---,|PI} | 3(,7) € Eutr@ € Pi,j € Pj} denotes the index set of the neighboring
clusters of cluster P;.

We note that the decomposition of (3.1.4) into (3.2.1) leads to a concatenated
set M = {/\/l, My, ... ,M|’p‘}, where the set M is associated with global measure-
ments (3.1.5) available for the control center and sets M;’s, i € P are associated with
the local measurements y;, available at a node ¢ in respective clusters Py, ..., Pp in
(3.2.1).

We make the following assumptions:
Assumption 3.2.2. (Local information).

1. local knowledge: in each cluster, the agent i € P; serves as the local control
center that has the local system model of the cluster (matrices Aia(t), Aij(t) and

C,,) and the local measurement y;, (t).

2. local measurements: the measured output y;. (t) in (3.2.1) is locally available at
the node © and, unlike global measurements, it is not sent to the control center

to keep the output secure and inaccessible to the attacker.

3. cross-cluster communication: every local control center, i.e., the node i in cluster
. ; ; i 5. ' ,
Pi, considers coupling terms Zje N, Ao(t)xJ as unknown inputs to Xp.. More

over, inter-cluster couplings do not change, i.e., Aij(t) = Ailj, Vit € [ty, 00).

g

Thus there is no need for the exchange of x;’s information between local control

centers.

The assumption 3.2.2-1 is common in the literature (cf. [42]) as the model-

based detection of cyber attacks on exchanged data over a network requires augmented
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knowledge of the neighboring agents’ model to estimate their states and further com-
pare them with the received data. Minimizing the local information exchange affects
the scalability and depends on the sparsity of the communication network as well as

on applications.

3.2.4 Observer Design and Attack Detectability Analysis

As described in Section 3.2.1, the attack detection framework is composed of a cen-
tralized observer for monitoring the system (3.1.4) from the control center, and a
set of local observers in clusters, that serve as local attack detectors and trigger for
communication topology switching. In what follows, we describe the observer design
procedure based on the conditions derived in the previous section.

Decentralized observer. Consider the dynamics of the system partitions described
in (3.2.1) and Assumption 3.2.2, we use the unknown input observer (UIO) scheme in
[24] to estimate the cluster state X; independent of the states x;’s of the neighboring
clusters (i.e. j € Np). This is achieved by considering the interconnection of local

models as unknown inputs and rewriting them such that

Z Ag(t)xj =Ex{, ot)=1, Vtelt, ), (3.2.4)

JjEND,

where E! is a full column rank® matrix and x¢ is a vector of the states of neighboring

clusters that are received by cluster P;. Now, introducing the UIO state z; = X; —hiyii,

5The columns of E! for cluster P; are corresponding to the edge-cuts connecting P; to its neigh-
boring clusters.



31

the dynamics of the local UIO is given by

2 =F 7 + (Ko + Kow) ¥,
Egi . )A(i = Z; -+ hiyii7 (325)

5\(1(0):07 PICV7 16{1a7|P|}7

where Fg(t), Ko, I_{(,(t), and h! are matrices satisfying conditions

T'=(I-1C;), (h'C;-I)E' =0, (3.2.6)
F,=(ALy —KoCi), Kop =F,h, (3.2.7)
Asy = Aoy —'Ci Ay (3.2.8)

Furthermore, F;() is Hurwitz stable over ¢ € [tg, tym) for all normal and safe modes.

t
Consider (3.2.1), (3.2.5) and let e; := x; — X;, one can use the conditions in
(3.2.6)-(3.2.8) to obtain the error dynamics of UIO as follows

€ = Ff,(t)ei +T'Blu,, e(0)=x(0),

%8 (3.2.9)

ri, =Cye;, PCV, ie{l,---,|P|}.

In the absence of adversarial attacks, u,, = 0, it is straightforward to show that
lim; . €(t) = 0 as F;(t) is Hurwitz stable in all modes. LMI-based approaches can
be used to design (3.2.7) such that (3.2.9) remains stable under arbitrary switching
28].

Recall Assumption 3.2.2-2, unlike the case of global measurements (cf. Propo-
sition 3.1.4-(i)), the local measurements y;,’s are hidden and thus cannot be altered
by the attacker to cancel out the effect of the attack u,, on the output of (3.2.1). This

difference also manifests itself in the residual of local observer (3.2.9). Therefore, in
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order to determine the stealthiness of attack u,, with respect to the local residual sig-
nal r;,, it is necessary and sufficient to investigate whether the stealthiness conditions
presented in Proposition 3.1.4 are satisfied for the system in (3.2.9).

In the following proposition, we formally characterize the conditions for the

detection of stealthy attacks using the local observer in (3.2.5).

Proposition 3.2.3. (Attack detectability of local observers). For a strongly
connected cluster P; with € inter-clustering edges and |A;| compromised agents, there

exists a local observer given by (3.2.5) to locally detect the stealthy attacks if

1. there is a k-connected node © € P; as the local monitored agent such that k >

E+ Al
2. rank (C;,E') = rank (E),

3. the matriz pencil P in (3.2.10) is full (column) rank,

P = (3.2.10)

C, 0 0

1

where the tuple (A;(t),Bi,CiJ and matriv B' are defined in (3.2.1) and (3.2.4),

respectively.
Proof. See Appendix A.3.

Remark 3.2.2. (Evaluation of the condition in (3.2.10)). Conditions (1)-
(3) in Proposition 3.2.3 are equivalent to necessary and sufficient conditions for the
ezistence of UIO in (3.2.5) [24]. It is worth noting that as matriz B in (3.2.10) is
unknown to the defender, it can be replaced with Iy, i.e., assuming all the nodes of the

cluster are under attack, in analysis and selecting locally monitored agents associated
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with C;,;. This, however, may require further communication between agents within
a cluster. Alternatively, as in a set cover problem setting, a set of local monitoring
agents that each of them satisfies the conditions (1)-(3) for part of a cluster can be
used to cover all of the nodes of the cluster [130]. Minimizing the number of local
measurements versus the number of local observers is a trade-off problem that will be

the subject of future work.

Centralized observer. Consider the dynamical system (3.1.4), a Luenberger-type

centralized observer, derived based on the normal mode o(t) = 1, is given by

A~

;( = Ao’(t)fc + Ho‘(t)(y S y)? U(t> = 17
X5y =Cx, %(0) = 0, (3.2.11)

r,=(y—-y), residual,

where H,(4) is the observer gain and r,(t) denotes the residual signal available in the
control center for monitoring purposes.

In order to design the observer gain Hg(;), the partial observability of pair
(Ao, C) imposed in Section 3.2.2 and the activated mode o(t) should be taken into
account. An immediate solution is to define an LMI optimization problem finding a
constant H(;y := H by which (A, — HC) is (Hurwitz) stable in all modes [29, 27].

From Assumption 3.1.2 and condition (3.1.7), it is straightforward to show
that the attack u, remains stealthy for the observer (3.2.11) in the normal mode over
the time span ¢ € [to, ;) where A, = A;.

Recall (3.1.11) and (3.1.15), and let

e=%X—-x (3.2.12)
e=X—X=X+X—-X=¢€e+X (3.2.13)
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be the estimation error of the states of an attack-free system (x = A,p»X, y = CX)
and the under attack system in (3.1.4), respectively. Then using (3.1.4) and (3.2.11),

the error dynamics of the centralized observer is given by

e = (A1 — HC)e + (Aa(t) — Al)X + HuS + BuA,
EZ : e(O) = Xp, (3214)

r,=(y—y)=Ce—us=Ce, residual,

where for measurement y in (3.2.11) we used the expression y = Cx — ug as defined
in (3.1.4). Consider (3.1.6) and (3.1.7), y in (3.2.11) also satisfies y = Cx — ug =
Cx — Cx = Cx. Then using y = Cx, (3.1.4), (3.1.6), (3.2.11), (3.2.12), the following

dynamics is obtained

€= (A1 - HC)é + (Aa(t) - Al))_(,
e e(0) = %o, (3.2.15)

r, = Ce, residual.

Note that, during normal mode o (t) = 1 over the time span Vt € [to, ), the residual
r, in (3.2.14) is the same as that of (3.2.15) that is the dynamics of the estimation
error of system states in the absence of attacks. This implies that, in the case of a
covert attack with us # 0, as long as signal us(t) cancels out the effect of u,(¢) on
the output y(t), the residual ro(t) = Ce(t) converges to zero as t; — 00, yielding
the stealthiness of the covert attack, in the normal mode, for the centralized observer
(3.2.11).

In the case of a ZDA, us = 0 in (3.2.14) although (3.1.7) still holds that leads to
the stealthiness of a ZDA for the observer (3.2.11). To show this, one needs to verify

the attack uy remains in the zeroing direction of (3.2.14). Using Definition 2.3.1 for
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(3.2.14) in the normal mode, we obtain

Ml — (A —HC) —B]| |80 0
(A ) O _ , (3.2.16)
C 0 Ug 0

where €(0) = e(0) — e(0) = x¢o — X¢9 = Xo. Recall Xy € ker(C) in (3.1.14), then the
second equation of (3.2.16) yields Cé(0) = Cx, = 0. Applying Cé(0) = 0 into the
first equation of (3.2.16) simplifies the matrix pencil in (3.2.16) into that of (3.1.14)
over t € [tg, t1) where A,y = A,. This ensures the stealthiness of ZDA in the normal
mode for the observer (3.2.11).

The following Theorem provides conditions to address Problem 3.1.6-2 by char-
acterization of switching modes that lead to attack detection with respect to global

measurements.

Theorem 3.2.4. (Attack detectability under switching communication).
Consider system (3.1.4) under the stealthy attacks modeled in (3.1.6), and let intra-

cluster topology switching satisfy
1. Im(ALg) Nker ([C] C]]T) =0,
2. Ly features distinct eigenvalues,
3. Uqglie — Uglje #0, YLeV\{1},Vi,jeD,Vee{l, -, c},

where AL = Loy — L1, with o(t) =q€ Q, t € [t1, ), C] and C are given in
(3.1.4)-(3.1.5) and D, CV, denotes the set of nodes in c-th connected component of
AlLq corresponding to agents involved in connected switching links, and finally Uy is
a unitary matrix (Uqun = 1) diagonalizing Laplacian L.

Then, ZDA and covert attacks undetectable for the centralized observer (3.2.11) are

impossible only if the topology switching satisfies conditions 1-3. If additionally the
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system 1s not at its exact consensus equilibrium when the attack is launched, conditions

1-3 are sufficient for the detection of ZDA.
Proof. See Appendix A .4.

Remark 3.2.3. (Safe topology switching). For a given pair (Ayw), C) in (3.1.4),
one can compute a set of switching modes by evaluating the conditions 1-3 of Theo-
rem 3.2.4. This could be performed through iterative algorithms changing graph con-
nections. Furthermore, if Z be an unknown subspace associated with system states
affected by stealthy attack u,(t) i.e. x(t) € Z. Then, in view of Xg = X9 — Xo
(see Proposition 3.1.4), the discrepancy term (Agw — Aq)x in the dynamical system
(3.2.14) will be bounded and vanishing if

X NZ=0. (3.2.17)

Therefore, if condition (3.2.17) holds, (A1) —A1)x does not affect the stability of the
system, as a consequence of input-to-state stability property of consensus systems [81].
It is also noteworthy that although identifying Z beforehand is practically impossible
as B and Xq in (3.1.6) are unknown to the defender, local observers detecting stealthy

attacks in a cluster can locally identify and trigger a safe switching mode that satisfies

(3.2.17).

3.2.5 Attack Detection Procedure

The results in the previous section provide conditions for the detectability of stealthy
attacks locally, at the cluster level, and globally, at a ground control station equipped
with a centralized observer. As described earlier, the attack detection framework
relies on switching communication links generating a discrepancy between the attacker

model (3.1.6) and the actual system (3.1.4). To this end, at the local level (clusters),
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unknown-input observers in (3.2.5), satisfying conditions of Proposition 3.2.3, locally
detect stealthy attacks. Followed by the detection, a local observer triggers a topology
switching, G,(;), that satisfies conditions 1-3 of Theorem 3.2.4, yielding stealthy attack

detection in the control center. This procedure is presented in Algorithm 1.

Algorithm 1 Topology switching for attack detection

1: procedure ATTACK DETECTION( Gy, Obs. in (3.2.11), (3.2.5))

2: do run global observer (3.2.11) and local observers (3.2.5).

3: if r;,(t) > threshold then

4: do Identify a safe mode o(t) = q € Q for L, that satisfies conditions 1-3

in Theorem. 3.2.4

5: do Trigger an identified safe mode o(t) = q € Q
6: if ro(t) > threshold then

7: Stealthy attack is detected.

8: end if

9: end if

10: end procedure

As presented in Algorithm 1, the observers (attack detectors) require an appro-
priate threshold for their residuals to avoid false attack detection. These thresholds
can be designed by considering an upper bound on the estimation error of observers
in the attack-free case. An analytical analysis, however, will be the subject of future

work.

3.3 Simulation Results

We use a numerical example to validate the performance of the attack detection

framework. We consider a network of N = 19 agents and investigate, in three cases,
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the effect conditions proposed in Proposition 3.2.3 and Theorem 3.2.4 on stealthy
attack detection. It is assumed that the network has been partitioned into three clus-
ters Py = {1,--- ,7}, Po ={8,--- ,12}, Py = {13,--- ,19}. Each cluster is equipped
with the local observer (3.2.5) (the nodes highlighted in blue in Fig. 3.2) whose lo-
cal measurements are consistent with Assumption 3.2.2 and Proposition 3.2.3. More
specifically, In cases 1 and 2, cluster P; has two local observers that each has access
to its neighboring agents’ measurements. In cluster P, however, we considered one
local observer having more communication with other agents within the cluster for its
realization (cf. Remark 3.2.2). Similar analysis is applied to case 3. Moreover, there
is a centralized observer with global measurements as M, = 0, M, = {1,12,14}
consistent with Lemma 3.2.1. In the simulations, the system’s initial conditions are
considered to be known for observers although this is not a requirement for the pre-
sented theoretical results. Also, the constant thresholds were selected by evaluating
the observers’ performance in different case studies.

In cases 1 and 2 (shown respectively in Figs. 3.2-(a) and 3.2-(b) with their
communication topology in Fig. 3.2-(d)) a ZDA occurs in cluster P; and particularly
affects agents 3 and 4. As depicted, ZDA is stealthy in the global residuals ry,’s, i €
{1,12, 14} before topology switching. It is, however, detectable in local residual ry, (t).
The local control center, node 5, can trigger either of case 1’s or case 2’s switching
topologies shown in Figs. 3.2-(d). While the conditions 1-3 of Theorem 3.2.4 are met
in both cases, only case 2 meets (3.2.17) of remark 3.2.3. Consequently, the global
residual rg, (t) for case 1 is bounded and vanishing after topology switching while that
of case 2 is unbounded.

In cases 3 (shown in Fig. 3.2(c) with its communication topology in 3.2-(d))
a ZDA occurs in cluster Py and particularly affects agents 11. Note that, unlike in

cases 1 and 2, none of the Theorem 3.2.4’s conditions are met in case 3, yielding the
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global residuals r,(t), i € {1,12,14} remain unaffected by the switching topology.
Consequently, stealthy attack is not detectable.

Moreover, comparing the bounded global residual in cases 1 with the un-
bounded global residual in case 2, suggests that meeting condition (3.2.17) presents a
trade-off between a faster attack detection at a price of further exposing system states

to ZDA and a slower detection by keeping uncompromised system states bounded.
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Figure 3.2: Simulation results of privacy-preserving stealthy attack detection for a
multi-agent control system with 19 agents. [Continued on next page]
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Figure 3.2: [cont’d]: The state trajectory x(t) consists of the agents’ positions (in
blue) and velocities (in green) as well as the red trajectories showing the affected
agents by the stealthy attack (ZDA). (a)-(c) the results of attack detection for three
cases with their respective network topology switching depicted in (d). In all cases
of (d), the green nodes represent the agents globally monitored by the centralized
observer, the blue nodes indicate the local control centers equipped with local ob-
servers, the red-bordered nodes show compromised agents, and the red-colored nodes
represent compromised agents affected by the stealthy zero-dynamics attack (ZDA).
Finally, the dashed lines (edges) represent the switching communication links. In the
figures displaying local residuals, with a slight abuse of notation (cf. (3.2.9)), the
scalar residual r;, shows only the velocity estimation error of node .
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Chapter 4

Detection of Stealthy Attacks for Networked Unmanned Aerial Vehicles

This chapter! extends the previous chapter to the case of formation control, as a
cooperative task, of unmanned aerial vehicles (UAVs). It presents model-based cen-
tralized and decentralized observer techniques for detecting a class of stealthy attacks,
namely zero-dynamics and covert attacks, on networked UAVs in formation control
settings. The centralized observer that runs in a control center leverages switching in
the UAVs’ communication topology for attack detection, and the decentralized ob-
servers, implemented onboard each UAV in the network, use the model of networked
UAVs and locally available measurements. Experimental results are provided to show

the effectiveness of the proposed detection schemes in different case studies.

4.1 Problem Formulation

4.1.1 Quadrotor’s Dynamics

We consider a team of N homogeneous unmanned aerial vehicles (quadrotor UAVs)
that cooperate to achieve a geometric shape/formation in R?. Attached to the center

of mass of each quadrotor, the body frame {B;} with unit axes {b%,b% b}, i €
{1,...,N} =V, whose position and orientation with respect to the inertial global
frame {W} with unit vectors {¢,, ¢,,¢,} (see Fig. 4.1a) are, respectively, determined

by a vector p; = col (pf,pg,pf) € {W}, Vi€V and a rotation matrix R;(¢;, ¢;,0;) €

SO(3) in the special orthogonal group with v;, ¢;, and 6; being the respective z—z—y

1This chapter is adapted from a publication by the author of this dissertation. () 2022 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2022, June). Detection of
Stealthy Adversaries for Networked Unmanned Aerial Vehicles. In 2022 International Conference
on Unmanned Aircraft Systems (ICUAS) (pp. 1111-1120).
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Euler angles. Then, the rigid body motion of the quadrotors follows [76]

pi = v, mv; = —mge, + R, f;, (4.1.1a)

‘i: inli .iz— i X i+ T, 1.1
R RQZX JQ Q; x JQ 4.1.1b

where p; € R? and R;(v;, ¢4, 0;) € SO(3) are the position and orientation of the i-
th quadrotor in the inertial frame {W}, m is the mass of the quadrotor, g is the
gravitational acceleration, and finally f; € {B;} is the total thrust. Also, in the
rotational dynamics, €; € R3 is the angular velocity, J € R3**? is the inertia matrix,
and 7; € R? is the total torque, all expressed in respective body-fixed frames. Finally,
the notation Q° denotes the skew-symmetric matrix, such that Q. r = §; x r for any

vector 7 € R3 and the cross product x.

4.1.2 Formation Control

The cooperative control of quadrotor UAVs, shown in Fig. 4.1b, follows a hierarchical
structure, where at the high level, the UAVs coordinate with each other and their
formation /position controller cooperatively generates the desired attitude/orientation
and the desired total thrust for a low-level attitude controller. In this chapter, we
focus on 2D formation in the z —y plane, for which cooperative control protocols
will be designed based on a linearized model of the UAVs’ transnational dynamics

in (4.1.1a) around a hovering state and under small-angle approximations as follows
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Figure 4.1: (a) Illustration of reference frames. (b) The coordination control archi-
tecture.

[76]:

pf > Q(Aei COS(%’) + Ag; Sin(¢i))> (4-1-23)
pf = g(A0;sin(h;) — Ag; cos(¢;), (4.1.2b)
P = —g+ fi/m, (4.1.2¢)

in which A#; and A¢; denote, respectively, the deviation of pitch and roll angles of
the i-th quadrotor from their equilibrium point 6; = ¢; = 0. Associated with each
UAV, we define an intermediary frame {Z'} with unit axes {¢;/, ¢,, ¢/} and orientation
R.(1;) such that p; = R,(¢;)p} for vectors p; € {W} and p}, € {Z'} (see Fig. 4.1a).

Assuming all UAVs have consensus on a desired yaw angle ¢, = ¢*, Vi € V, {Z'}
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will be the common reference frame of the UAVs in which the linearized equation of

motion in (4.1.2) can be represented by

P = +gAb;, (4.1.3a)
W = —gAd, (4.1.3b)
B =—g+ fi/m, (4.1.3¢)

that shows the decoupled dynamics in the z/, y!, 2/ directions?. We let the reference

commands for pitch and roll angles in (4.1.3a)-(4.1.3b) be

o = +utfg, 6 = —ul/y, (4.1.4)

where v and u! are the formation control inputs to be designed, respectively, in the x
and y directions. It is also necessary to mention that ™4 and ¢$™? in (4.1.4) will be
desired setpoints for each UAV’s low-level (on-board) attitude controller, and that we
use independent PID controllers to stabilize the altitude of quadrotors (z;-dynamics in
(4.1.2¢)) around a desired hovering point. Therefore, the altitude dynamics in (4.1.2c)
and the rotational dynamics in (4.1.1b) are dropped from the high-level state space of
networked UAVs and the reduced-order planar dynamics is obtained by substituting
(4.1.4) for Af; and A¢; in (4.1.3a) and (4.1.3b) as follows:

5, . P =vd ieVv={1,... N} (4.1.5)

(1) = wi(t)
in which p;(t) = col(p?,p¥) € R? and v;(t) = col(p?,p?) € R? are the stacked

positions and velocities in the x and y directions, and w;(t) = col(u¥, u?) € R?

17 7

2We will omit the superscript / in the rest of chapter for notational simplicity.
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denotes their corresponding control input for each UAV.

Desired formation reference. We define a desired configuration (formation shape)
by specifying a set of N desired setpoints p¥, p3, ..., p% in R? that form the desired
relative positions? {py; = pf —pj € R? | Vi,j € V, i # j}, all expressed in the
UAVs’ common frame. The formation references are transmitted to the UAVs from a
ground control center. We follow the consensus-based formation settings [109] where
the UAVs coordinate their relative positions to reach the desired relative positions

pi*j’s, which is formulated as

lim Jo,(t)] =0, VieV. (4.1.6b)
—00

Inter-UAV communication. We model the switching inter-UAV communication
by an undirected graph G,u = (V, & 1)), where the vertex set V = {1,..., N} rep-
resents the index set of N UAVs in (4.1.1) (with their respective reduced models in
(4.1.5)), and the edge set &,4 C V x V represents the communication links such
that an edge (7,7) € &) implies information exchange between the i-th and j-th
UAV in a given active mode determined by the right-continuous switching signal
o(t) :Rsg — Q:={1,2,...,q}, q € N, at time ¢, with Q being the finite index set

of possible communication graphs.

Assumption 4.1.1. Throughout this chapter, we assume the inter-UAV’s communi-

cation graphs G,qu)’s are connected in all modes o(t) € Q.

To meet the formation constraints in (4.1.6), we use the following consensus-

3In the context of formation control, these reference states are called formation states [109] or
shape vectors [134] depending on the design methods and their underlying assumptions.
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based distributed control protocol:

Wi = Uy, + Uy, 1€V, (4.1.7)
un, = —a Y af"(p, — p; — Ply) — Yvi (4.1.8)
jeNf}(l)

where u,, € R? denotes the nominal control input with afj(t) being the entry of the
symmetric adjacency matrix associated with the UAVs’ switching communication
graph G,1. Also, @ € Ry and v € R are the control gains. u,, € R? is the
vector-valued malicious signal injected in the control channel of the i-th UAV.

We let an unknown subset A = {iy, is,... } C V denote the set of UAVs subject
to attack u,, # 0, which we refer to as compromised UAVs, and we refer to the rest
of UAVs ¥;’s with w,, =0, Vi € V' \ A4, in (4.1.5) as uncompromised UAVs.
Network-level dynamics. Given (4.1.5), (4.1.7) and (4.1.8), the dynamics of the

networked UAVs can be represented by
Yix=A;px+ Bf(t)x* + Bauy, x(to) = Xo, (4.1.9)

in which, the system states and matrices are given by

x(t) = col (py, ..., Py, V1, .., vy) € RV, (4.1.10a)

x* = col (p},...,p%,0y,...,0,) € R, (4.1.10b)

Aoty = Aty @1, Bf(t) =—Aost), Ba=Bs®1s, (4.1.10¢)
0 I 0

Ay =| " Yl By = : (4.1.10d)
—alowy —vIn B4

Ba=[e e .. %‘A‘L uy = col (Ua, );c 45 (4.1.10e)
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where L, is the Laplacian matrix of graph G, (), encoding the inter-UAVs’ communi-
cation links, defined as L, = [lfj(t)] € RMY with 17 = i a%(t) and lfj(t) = —afj(t)
if i £ j. ¢; is the i-th vector of the canonical basis in RY corresponding to the i-th
UAV compromised by attack u,,, i € A.

Network-level measurements. We define the system measurements y to be com-
posed of the position of a set of UAVs, indexed by M, = {p1,p2,...} C V, and/or the
velocity of a set of UAVs, indexed by M, = {vy,vs,...} C V, that are transmitted

to a ground control center for monitoring. More precisely,

y=Cx—-—us, C=0C®1L, M={M, M}, (4.1.11a)

C = diag (C,, Cy) , (4.1.11b)

Cp=col (e e, ..., eE.Mp‘) € RMexN, (4.1.11c)

Cy = col (e, 00,08y, ) € RV, (4.1.11d)

where ugs = col (usl, Us,, ..., Uy M‘) € R*MI denotes the vector-valued sensory attacks

on the measurements.

Proposition 4.1.2. (Formation convergence). Assume that the formation con-
figuration is feasible and that the communication graph is connected in each mode.
Then, under the control protocol (4.1.7), and in the absence of attacks, the states of

the UAVs in (4.1.5) converge to the desired formation configuration in (4.1.6).

Proof. The proof follows a change of variables as in [106] and a convergence
analysis similar to that in [78]. A more comprehensive proof follows from the proof
of Proposition 5.2.6 of this dissertation.

Note that the UAV’s dynamics in (4.1.5) as well as the control protocol (4.1.8)

for the x and y directions are decoupled. Thus, for notational simplicity, we may use
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the following

Yk =Aspx+ Bf(t)x* + Bauy, x(to) = o, (4.1.12a)

y = Cx — ug, (4.1.12b)

to represent the dynamics in (4.1.9) with its monitored states in (4.1.11b) in only
one direction of the z—y plane. Accordingly, x = col (p,v) € R*" in (4.1.12) denotes
the stacked vector of all positions p = col (p;),.,, and velocities v = col (v;),.,, in one
direction with their corresponding formation references x* € R*V as well as attack
inputs uy € R and us € R™ and other system matrices are given in (4.1.10d)-

(4.1.10e) and (4.1.11b) with Bf(t) = —Agp)-

4.1.3 Attack Stealthiness

We consider the worst-case scenario adversarial settings where an attacker leverages
a priori system knowledge of the UAVSs’ coordination or a prerecorded sequence of
sensory data to design sophisticated stealthy attacks implementable through actuator
attacks u,(t)’s, i € A in (4.1.7) and sensor attacks us(t) in (4.1.11a).

Here, a priori system knowledge refers to the initial configuration of the net-
worked system (4.1.9) with the measurements (4.1.11) (or equivalently (4.1.12)), de-
noted by the tuple f](AJ(t), C, o(t) = 1) with Aa(t) and C being the approximations
of their counterparts in (4.1.9) and (4.1.11). The amount of a priori system knowl-
edge needed for designing stealthy attacks varies for different attacks [131], and will
be quantified in Section 4.2.1.

Stealthy attacks refer to a class of adversarial attacks (cyber attacks [124, 82])

U,,’s, i € Ain (4.1.7) and ug in (4.1.11a) that disrupt the system’s normal operation
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while remaining stealthy in the monitored measurements (4.1.11), that is (cf. (3.1.7))

y(t;x0, w4, us) =y (t;x3,0,0), Vit € [to, ta), (4.1.13)

where y"(¢;x(,0,0) = Cx" is the output associated with an attack-free system with
the same dynamics as in (4.1.12a), and xo and x{} are the actual and a possible initial
states, respectively. Also, tq is the initial time instant, and ¢, is the attack detection
time instant, i.e., the time instant at which condition in (4.1.13) no longer holds and
attacks lose their stealthiness.

4.1.4 Problem Statement: Attack Detection

We consider the attack detection problem as a hypothesis testing problem with the

null and alternative hypotheses

H® : attack-free, VS. H* : attacked, (4.1.14)

for which we present detection frameworks in Section 4.2.2.

4.2 Observer Design and Analysis for Attack Detection

In this section, we characterize the models for stealthy attacks on the networked

UAVs in (4.1.9) and develop centralized and decentralized detection schemes.

4.2.1 Realization of Stealthy Attacks

Given system in (4.1.9), let M in (4.1.11a) be a set of monitored states and let .4 be
a set of compromised UAVs subject to attack u,, # 0 in (4.1.7). In what follows, we

characterize stealthy attacks in terms of different realizations of (4.1.13).
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Zero-dynamics attack (ZDA). ZDA refers to the class of attacks based on the
zero dynamics of the system (Ay (), Ba,C,0(t) = 1) in (4.1.12) that are (nontrivial)
state trajectories excited through input directions B4 and invisible at the output y,

and that can be characterized by the rank deficiency of matrix pencil

Nly — A —B
PO = | N T T (4.2.1)

C 0

for some A\, € Roq [78].

Proposition 4.2.1. Assume the system in (4.1.9) in its initial active mode o(t) =1
has unstable zero dynamics, i.e., the matriz pencil P(X,) in (4.2.1) is rank deficient
for some X2, N, € R.g, and that the attacker’s a priori knowledge of the system
YAy, Ca(t) = 1) = (Ao, C,o(t) = 1). Then, there exists a stealthy attack
policy

wi=col (U,);e 45 Uay= [0 (0)X! ¥ (0)e! )T, (4.2.2)

a.

in dynamics (4.1.9) that causes part of system states exponentially deviate from the
formation configuration in (4.1.6) while the condition in (4.1.13) holds. In this attack

model, the measurement signals are not compromised, i.e., us = 0.

Proof. The proof follows from Proposition 3.1.4 and so is omitted here.

It is noteworthy that the assumption on a prior: system knowledge in Propo-
sition 4.2.1 can be relaxed. In the cases that only a subset of the system model as a
priori is disclosed to the attacker, that is f](AJ(t), C, o(t) =1) = (Asw), C,o(t) = 1),
a ZDA can be realized that only affects the UAVs within the known subset of the

system, which is known as local ZDA [131].
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Covert attack [124]. Covert attacks are a class of intrusions through input channels
B, whose covertness at the output is obtained by alteration of the measurement
signals (4.1.11a) and whose realization requires perfect knowledge of the system i.e.
(A, C,o(t) = 1) = (Ay, C,o(t) = 1). Let attack policy ua(t) = col (ua,);e 4 :
R + R? in (4.1.9) be any continuous signal initiated at time instant ¢, € Rx.

Then, the attack is covert and (4.1.13) holds if the attacker alters the measurement

(4.1.11a) by
t
us(t) = C / AR (7)dr (4.2.3)
ta

We refer to Chapter 3 for the details of the derivation and proof.

Cooperative DoS and replay attack. It is shown that a denial-of-service (DoS),
interfering in a UAV’s communication, causes unstable and unsafe flights [25]. We
formulate a scenario where replay attacks® [82] are implemented in cooperation with a
DoS in order to keep the DoS stealthy in the networked-level measurements (4.1.11a).
Here, the cooperatively-stealthy DoS and replay attack takes place when the UAVs
have reached the formation configuration in (4.1.6) and thus are hovering only, giving
the attacker the opportunity to record and store slow-varying measurements (4.1.11a)
for a time interval T, € R.q before starting the attacks uy and ug respectively in
(4.1.9) and (4.1.11a) that is us(t) = 0 and us(t) = 0, Vt € [ty ta) where t, > T,.
Then, upon starting a DoS at a time instant ¢, € R., causing one or more UAVs

to lose their inter-communication and deviate from the equilibrium states (4.1.6), a

1A replay attack is the case that the attacker replays (periodically) a sequence of stored data as
real-time measurements to conceal any deviation from a normal operation.
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concurrent replay attack us in (4.1.11a) given by
us(t) = Cx(t) —y(t —nT,), neN, t>t,, (4.2.4)

causes the stealthiness condition in (4.1.13) holds.
We note that a priori system knowledge is not required for the cooperative

DoS and replay attack that is f](AU(t), C,o(t)) = 0.

4.2.2 Observer-based Detection Framework

We present centralized and decentralized detection schemes to address the attack
detection problem formulated as in (4.1.14).
Centralized detection scheme. In the centralized detection scheme, we lever-
age switching links in the inter-UAVS’ communication topology to generate model
discrepancy rendering the stealthy attacks detectable in the measurements (4.1.11)
monitored in a ground control center. Note that the UAVs’ communication may be
subject to switching connections in two senses. First, a communication link failure
induced due to operation in uncertain environments, and second, a planned switch
(addition or removal of connections) triggered for security and performance reasons.
Regardless of the underlying causes of switching links in the inter-UAVs’ communi-
cation, we investigate their effect on the detection of stealthy attacks.

Consider the dynamical system in (4.1.12), a centralized attack detection mon-

itor (central monitor), derived based on the initial (normal) communication mode of

UAVs (o(t) = 1), is given by
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X=A,)X+ Bypyx* + H(y =), ot) =1,
Y58y =C%, x(0) =0, (4.2.5)
rp=y-—7y, central residual,

where H is an observer gain such that (A, — HC) is stable in all modes and
lim;_,ooTo = O in the absence of attacks (See Section 3.2.4)). Also, we let r)(t) =
CI(x — %) denote the j-th component of the residual ry with C7 being the j-th row
vector of matrix C' in (4.1.11b). Then, in the absence of attacks, an upper bound on

the residuals is obtained as follows:
e ()] < kje™'o + eg =: €}, (4.2.6)

where lzrj and S\j are positive constants such that |C7e(A1—HO)| < l;:je*’_\jt, @ is an upper
bound such that |e(0)|=]x(0) —%(0)|=|x(0)] < w, and ¢y €R+ is a sufficiently small
constant to account for measurement noises.

Given the central monitor (4.2.5) and its corresponding thresholds in (4.2.6),

the hypothesis testing problem in (4.1.14) can be quantified either by

H® @ attack-free, if ()| <€, VieM, (4.2.7a)
H* @ attacked, if X)) > €, 3jeM, (4.2.7b)
or by
HO
rOTErfolro § threshold, (4.2.8)
Hl

with 3, being the covariance of the residual ro having a zero-mean Gaussian distri-

bution in stochastic settings where a discretized version of (4.2.5) as a Kalman filter
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is used, together with x? (chi-squared) tests, for attack detection [82].

As shown in [82] and here in Section 3.2.4, x? detectors, Kalman filters, and

Luenberger-type observers/monitors fail in detecting the stealthy attacks that were
defined in Section 4.2.1 provided the stealthiness condition (4.1.13) holds, causing a
false validation of the null hypothesis (4.2.7a). Here, based on the results in Theorem
3.2.4 we evaluate the effect of switching connections in inter-UAVs’ communication
on the violation of (4.1.13) and thus on the validation of the null hypothesis (4.2.7a).
This procedure will be presented in Algorithm 3 in Section 4.3.
Decentralized detection scheme. In the decentralized detection scheme, a set of
UAVs, equipped with on-board (local) monitors, leverage the information exchange
with their neighboring UAVs to locally detect the stealthy attacks on their neighbors.
Upon attack detection, a local monitor triggers an inter-UAV communication switch
and informs other local monitors as part of a contingency plan (see Algorithm 3).

Note that in the networked UAVs with a connected communication graph Gy,
any UAV has access to the states of itself as well as the position states of the set of
its immediate neighbors AV (cf. control protocol (4.1.8)). Accordingly, we define,
for the i-th UAV in the network, a set of local measurements, indexed by set M?, as

follows:

M= NIV U (i}, ot)=1€ Q, (4.2.9a)
Yi = CiX, and Yi = CiX, Cz = Cz X [2, (429b)
C; = diag (Cp,¢; ), Cpi = col (¢]) ;v (4.2.9¢)

where x and x are the system states in (4.1.9) and (4.1.12), respectively. Different
from the networked measurements in (4.1.11), the local measurements in (4.2.9) are

not transmitted through compromised network channels to the control center for
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monitoring. Instead, they are locally available for each UAV and thus are not subject
to alterations by sensory attacks.
Given the local measurements (4.2.9) and dynamics (4.1.12), we define the

local attack detector X for the i-th UAV as follows:

X = AsyXi + Bf(t)X* + H'(y; = 3:), o(t) € Q,
58§ = O, %(0) =0, (4.2.10)

r; =Yyi — Yi, local residual,

where %; is the local estimation of x in (4.1.12), and H' is an observer gain such
that (A, — H'C;) is stable in all modes. Therefore, in the absence of attacks,
lim; ..o r; = 0, and similar to the central monitor’s, the j-th component of local
residuals, rZ’s, hold an upper bound (threshold) as follows:

()] < kige Mta + e =1 €, (4.2.11)

(2

where l;:i,j and j‘i,j are positive constants such that |Cge(A1*Hng)t| < l;:ivje* Gt s
an upper bound such that |e;(0)] = |x(0) — %;(0)| = |x(0)] < w, and ¢ € Ryg is a
sufficiently small constant to account for measurement noises.

Now, the hypothesis testing problem in (4.1.14) can be revisited and quantified

using local residuals as follows:

H® : attack-free, if [tJ(t) <€, Vje M, VieD, (4.2.12a)

H* : attacked, it [tJ(t)]>€, 3jeM, JieD, (4.2.12b)

where D is the set of all the UAVs equipped with a local detector as in (4.2.5).

Note that a successful attack detection using the hypothesis testing (4.2.12)
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does depend on the sensitivity of the local residuals, r;’s, to the stealthy attacks.
In this regard, the following results characterize the capability of local detectors in

detecting stealthy attacks.

Proposition 4.2.2. Consider dynamics (4.1.12) and let the i-th UAV be equipped
with the local attack detector X% in (4.2.5) and local measurements (4.2.9). Then,

stealthy ZDA and covert attacks are detectable in X ’s residual v; if the set of com-

promised UAVs satisfies A C NV o(t) =1¢€ Q.

Proof. See Appendix B.2.

Note that the i-th UAV’s local monitor, X%, ¢ € D secures the networked
UAVs against the stealthy attacks on its neighbors’ set N:. Therefore, the problem
of interest is to determine a set D C V of local detectors ¥2’s, i € D such that they

cover the entire set V of UAVs.

Proposition 4.2.3. Consider the networked UAVs with the dynamics in (4.1.12)

subject to stealthy attacks on a set of compromised UAVs A CV and let the set

D={icV|[JNV =V ot)=1€Q}, (4.2.13)

1€D

represent the set of UAVs equipped with local attack detectors B¢’s in (4.2.5). Then,
stealthy ZDA and covert attacks undetectable in ¥} ’s residual v;, ¥i € D, is impossi-

ble, securing the entire network setV of UAVs against stealthy attacks.

Proof. See Appendix B.3.
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Algorithm 2 Attack detection by the i-th local monitor, i € D

Input: ¥}, i € D in (4.2.5) and (4.2.13), y; in (4.2.9), eg in (4.2.11)

1: procedure LOCAL HYPOTHESIS TESTING (4.2.12)

2:

3:

8:

9:

while 7° in (4.2.12a) do
Compute local residual r; as in (4.2.5)
Compute corresponding thresholds eg as in (4.2.11)
if [r/| > ¢ then
Reject the null hypothesis H° in (4.2.12a)
attack is locally detected.
cooperate with other local detectors in D to
run a contingency plan for the entire network.
end if

end while

10: end procedure

> Stealthy
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Algorithm 3 Topology switching for centralized attack detection
Inputs: local observer: X%, i € D in (4.2.5) and (4.2.13), y; in (4.2.9), eg in (4.2.11);

centralized observer: X3! in (4.2.5), y in (4.1.11), €, in (4.2.6)
1: procedure CENTRAL HYPOTHESIS TESTING (4.2.7)
2: Run Algorithm 2
3: if H* in (4.2.12b) then
4: Switch to a new comm. mode o(t) € Q\ 1 > Stealthy
attack has been detected locally.

5: end if

6: while #° in (4.2.7a) do

7: Compute central residual ro as in (4.2.5)

8: Compute corresponding thresholds eg as in (4.2.6)

9: if ]ré| > 66 then

10: Reject the null hypothesis H® in (4.2.7b) > Stealthy
attack is detected globally at the control center.

11: end if

12: end while

13: end procedure

It is worth mentioning that a trivial solution for (4.2.13) is D = V that is all
of the UAVs are equipped with a local detector, although this set can be optimally
selected.

Given Propositions 4.2.2 and 4.2.3, one can verify that the networked UAVs
can be secured against stealthy attacks using a set of local monitors, given by (4.2.5),
that locally detect stealthy attacks, addressing problem (4.2.12). A procedure for this

local hypothesis testing will be presented in Algorithm 2 in Section 4.3.
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(a) Formation References (b) V-shape Formation
(1) 5) @) 5 (1) 5) (@) 5
3 3 3
O 010 0I0 010 @
(c) mode 1 (d) mode 2 (e) mode 3 (f) mode 4

Figure 4.2: Multi-UAV’s formation and communication topology. (a) Formation
references specifying a V-shape in the z—y plane. (b) V-shape formation of UAVs. (c)-
(f) Inter-UAV’s communication graph G, with four modes o(t) = {1,2,3,4} =: Q.
UAVs initially communicate in mode o(t) = 1 and may switch to other modes o(t) =
{2,3, 4} if activated by a local detector. Blue nodes indicate the UAVs equipped with
a local monitor and orange nodes specify the UAVs monitored by the ground control
center.

4.3 Experimental Results

We conducted a set of experiments that served two purposes. First, the evaluation
of the stealthiness of intrusions/deception attacks, described in Section 4.2.1, on the
wireless communication network of a team of quadrotor UAVs in real-time practical
settings. Second, the performance evaluation of the detection schemes is presented in

Section 4.2.2.



61

4.3.1 Experimental Setup

Our experimental setup consists of a team of five homogeneous quadrotors (Tello
Drones®), shown in Fig. 4.2b, flying in a 6 m x 4 m x 3 m flight area that is equipped
with a VICONS motion capture system with 10 cameras. The VICON system provides
the ground truth position and orientation of each UAV at 50 Hz for a central PC
running Ubuntu 20.04 with ROS Noetic.

In our experiments, we use the VICON system’s ground truth data available in
the central PC to compute the high-level formation control commands that are sent
to each UAV at 50 Hz and to run the central and local monitors, presented in Section
4.2.2. The central PC transmits the high-level formation control commands to the
UAVs through different Wi-Fi channels and the UAVs’ on-board attitude controllers
use the received control commands to stabilize and steer the UAVs to their desired
pose (see Fig. 4.1b). This connection setup allows us to replicate the peer-to-peer
communication of the UAVs and also to implement stealthily intrusions on the Wi-Fi

channels in a controlled setting.

4.3.2 Results

We conducted several experiments that serve as proof of concept of the real-world
applicability of the proposed attack detection methods in multi-UAV cooperation
settings. In these tests, the UAVs are tasked with achieving a V-shape formation.
The special configuration of the V-shape formation and a picture of its real-world
implementation are shown in Figs. 4.2a and 4.2b, respectively.

A video of our experiments is available at https://www.youtube.com/watch?

v=1VT_muezKLU.

Shttps://www.ryzerobotics.com/tello.
Shttps://www.vicon.com.
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Additionally, our framework is open-source and available at https://github.
com/SASLabStevens/TelloSwarm.

In our experiments, the UAVs, indexed by V = {1,2,3, 4,5}, coordinate using
the control protocol (3.1.3b), initially in communication mode, o(t) = 1, shown in
Fig. 4.2¢, to achieve the V-shape formation. The UAVs also have consensus on their
yaw angle 1; = ¢* = 0, Vi € V as well as their hovering altitude. We select the
position of UAVs 3 and 5 as the network-level monitored states at the ground control
center that is M, = {3,5} and M, = 0 in (4.1.11). These measurements are used in
the realization of the central monitor (attack detector ¥') in (4.2.5) and its residuals
in (4.2.6). We also let D = {1,3} in (4.2.13), that is UAVs 1 and 3, which have
the respective set of neighbors Nal(t):l = {3,4,5} and /\/:f(t):l = {1,2,5}, and the
local measurements y;(ory;), i € D in (4.2.9), are selected as the host UAVs for local
monitors (attack detectors 37’s) in (4.2.5). Accordingly, the condition (4.2.13) holds
which in turn guarantees the local monitors of UAVs 1 and 3 are sufficient to locally
detect the stealthy attacks on the entire network of UAVs in a decentralized manner.
Also, as described earlier in Sections 4.1.2, the UAVs follow a decoupled dynamics
in the = and y directions, and therefore we implement central and local monitors
independently for the x- and y-direction dynamics based on the discretized models of
(4.1.12), (4.2.5), and (4.2.5) with the sampling time T = 0.02 sec.

In the following, we present the results of attack detection through the central-
ized detection scheme with central (global) hypothesis testing (4.2.7) and the central
monitor (4.2.5) as well as through the decentralized detection scheme with local hy-
pothesis testing (4.2.12) and the local monitors of UAVs 1 and 3. The procedure
of the local hypothesis testing is presented in Algorithm 2 and that of the central
hypothesis testing is presented in Algorithm 3.

Stealthy zero-dynamics attack. We conducted two experiments evaluating


https://github.com/SASLabStevens/TelloSwarm
https://github.com/SASLabStevens/TelloSwarm
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the effectiveness of the central and local monitors in the detection of stealthy zero-
dynamics attacks (ZDA). In the first experiment, UAVs 1, 4, and 5 are compromised
such that their control channels are subject to the discretized version of ZDA signals in
(4.2.2) as wq = col (Ua,);e 4 A = {1,4,5} with u,, = [u? (0)e**%) uy (0)e**7) T,
AN =X =0.5, k € Z>,

02 (0) = [u® (0) uZ (0) u?(0)]" = [~2.34x3(0) 10.24x2(0) —2.34x%(0)]",

al a4 as

w/(0) = —0.7u?(0), x§(0) = 0.0086, and the starting time ¢ = (kT5) =0, k = 0. The
network-level measurements (4.1.11) with M, = {3,5} and M, = (), on the other
hand, are not subject to sensory attacks that is us = 0.

In the first experiment, as shown in Fig. 4.3a, all the UAVs start from some
initial positions and coordinate to achieve the desired formation while the stealthy
ZDA steers UAV 4 away from its desired configuration that meets (4.1.6). This effect
has been illustrated in Fig. 4.3b showing the relative positions of the UAVs as well
as their desired values in the y direction over time. It is necessary to note that UAV
4 hits the safety net enclosing the indoor flight area at t ~ 9.8 sec.

In terms of attack detection, Figs. 4.4a and 4.4b show the residuals of local
monitors X2’s, ¢ € {1,3} in (4.2.5) for UAVs 1 and 3, respectively. Also, Fig. 4.4c

shows the residuals of the central monitor %' in (4.2.5) available in the control

1
o))

center. One can verify that the local monitor of UAV 1, ¥, running Algorithm 2,

has detected the stealthy ZDA in a timely manner (f = 3.22 sec) that is before UAV

4 collides with the safety net of the flight area at ¢t ~ 9.8 sec. However, the ZDA

3

o, and those of

remains stealthy in the residuals of the UAV 3’s local monitor, X
the central monitor running Algorithm 3, regardless of the switch in the inter-UAV’s

communication topology from mode 1 to mode 4 (see Fig. 4.2) that is triggered by
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the local monitor X7 at ¢ = 3.22 sec. This is due to the fact that switching from mode
1 to mode 4 does not meet the necessary conditions required for a topology switching
to render stealthy attacks detectable for the central monitor in (4.2.5). The details
of such conditions have been studied in Theorem 3.2.4.

In the second experiment, with the results shown in Fig. 4.5, the UAVs are
under the same ZDA as in the first experiment expect x§(0) = 0.012. The local
monitor ¥} successfully detects the ZDA at t = 5.08 sec (see Fig. 4.5b) and then
triggers a switch in the UAVS’ communication from mode 1 to mode 3 (cf. Fig.
4.2) that as opposed to Experiment 1, this topology switching results in detection of
stealthy ZDA by the central monitor ¥4 at ¢ = 5.6 sec (see Fig. 4.5¢).

It is necessary to note that any topology switching in the inter-UAV commu-
nications results in a discrepancy between the actual dynamics of networked UAVs
and its nominal counterpart that is used by the attacker to design stealthy attacks.
Yet, the model discrepancy in Experiment 1 did not interfere with the stealthiness
of ZDA in the central monitor’s residuals while it renders ZDA detectable in the
central monitor’s residuals in Experiment 2. These results indicate that not only
zero-dynamics attacks (ZDA) can be implemented in real-time on networked UAVs
with partial measurements, but they also can remain stealthy regardless of switches
in the inter-UAVs’ communication topology. Theoretical results to detect stealthy
ZDA through topology switching in networked systems with full-state measurements
and with partial measurements can be found, respectively, in [78] and Section 3.2.

Covert attack. Similar to the ZDA case, we evaluated the detection of covert
attacks on networked UAVs subject to topology switching by using the local monitors
¥l and ¥2, and the central monitor 34!, In this experiment, a covert attack, u,,, i €
A = {2}, in the form of a ramp signal with a slope of 3 Deg, as the roll and pitch

angles’ perturbation, and the starting time of t, = 5 sec is injected through the
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control channel of UAV 2. The covert attack’s effect on the UAVs’ formation is
shown in Fig. 4.6a. As illustrated, all of the UAVs have deviated from their desired
formation configuration that meets (4.1.6). The effect of this deviation/perturbation
on the measurements y in (4.1.11) is simultaneously canceled out by implementing
the discretized version of the sensory attack ug given in (4.2.3). Fig. 4.6b illustrates
how the alteration of actual measurement y of the monitored UAV 3 using the sensory
attack ugs gives rise to a false state estimation by the central monitor ¥%', rendering
the injected attack covert in the central residuals. The local monitors, however, are
not subject to such alterations and thus are capable of detecting the covert attack in
a timely manner as shown in Fig. 4.6¢ for the local monitor 33 of UAV 3. We note
that the local monitor ¥2 triggers a topology switch from mode 1 to mode 2 (cf. Fig.
4.2) at t = 6.4 sec to make the covert attack detectable in the residuals of the central
monitor X%'. However, the attack remains stealthy in the central residuals, shown in
Fig. 4.6d, regardless of topology switching. The results, consistent with those in the
ZDA case, show the outperformance of the decentralized detection scheme (Algorithm
2) over the centralized detection scheme (Algorithm 3). It is worth mentioning that
one can leverage a larger number of switching communication links on which the
centralized monitor relies to improve the performance of the centralized detection
scheme. However, this solution raises other challenges such as switching-induced
unobservability as well as communication overhead. In the case of the decentralized
detection scheme that relies on the network model of UAVs, scalability is a concern
for larger teams of UAVs, for which clustering-based solutions such as the one in

Section 3.2 can be applied.
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(a) UAVS’ position trajectories in the z—y plane.
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(b) Coordination of UAVs in the y direction.

Figure 4.3: Experiment 1: ZDA on UAVs 1,4,5 and topology switching from mode
1 to 4. (a) UAVS’ position trajectories in the x —y plane with the colorbars quan-
tifying the timespan. The x markers and the colored circles show, respectively, the
UAVs’ initial position and final position during the experiment. Finally, the gray
lines visualize the V-shape formation achieved by the final position of the UAVs. (b)
The relative positions of UAVs in the y direction, corresponding to the inter-UAV
communication links in mode o(t) = 1, shown in Fig. 4.2c. Also, the dashed lines,
labeled by pj;, 4,7 € V, denote the desired relative positions based on the formation
references in Fig. 4.2a.
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Figure 4.4: Experiment 1: ZDA on UAVs 1,4,5 and topology switching from mode
1 to 4, which is triggered by local monitor X} at ¢ = 3.22 sec. [Continued on next

page]
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Figure 4.4: [cont’d]: (a)-(b) The notation rt, i € {1,3,4,5} (1}, i € {1,2,3,5}),
denotes the residual of position estimation for the UAV 1’s (3’s) neighbors obtained
by its local monitor ¥} (X2) in the x and y directions with the respective thresholds
€7 (€2) and €} (€§) as given in (4.2.11). (c) The notation 1, i € {3,5}, denotes the
residual of position estimation for UAVs 3 and 5 by the central monitor >7' in the z
and y directions with the threshold ¢, as given in (4.2.6).
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(a) UAVS’ position trajectories in the x—y plane. The central monitor X' detects the ZDA at
t = 5.6 sec and ends the experiment.
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(b) Residuals of local monitor £} run on UAV 1. The stealthy ZDA is locally detected at
t = 5.08 sec.

Figure 4.5: Experiment 2: ZDA on UAVs 1,4,5 and topology switching from mode
1 to 3, which is triggered by local monitor ¥} at ¢ = 5.08 sec. (a) UAVS’ position
trajectories in the x—y plane with the same annotations as in Fig. 4.3a. (b) The
residuals of local monitor ¥} with the same annotations as in Figs. 4.4a and 4.4c,
respectively. [Continued on next page]
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(c) Residuals of central monitor ¥2' run on the control center. The stealthy ZDA is detected at
t = 5.6 sec using Algorithm 3.

Figure 4.5: [cont’d]: (c) The residuals of the central monitor 34" with the same
annotations as in Figs. 4.4a and 4.4c, respectively.
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(b) Realization of stealthiness condition (4.1.13) using us in (4.2.3) with the starting time ¢, =
5 sec.

Figure 4.6: Experiment 3: covert attack on UAV 2 and topology switching from
mode 1 to 2, which is triggered by local monitor ¥} at ¢t = 6.4 sec. (a) UAVS’
position trajectories in the x —y plane with the same annotations as in Fig. 4.3a,
except the gray lines that visualize the V-shape formation achieved by the UAVs at
ta = 5 sec, the starting time of the covert attack. (b) The effect of measurement
alteration using sensory attack ug starting at ¢, = 5 sec. [Continued on next page]
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(c) Residuals of local monitor 2 run on UAV 1. The stealthy ZDA is detected at t = 6.4 sec
using Algorithm 2.
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(d) Residuals of central monitor X' run on the control center.

Figure 4.6: [cont’d]: (c)-(d) The residuals of local monitor X3 and central monitor
Y with the same annotations as in Figs. 4.4a and 4.4c, respectively.
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Chapter 5
Distributed Deception-Attack Detection for Resilient Cooperation of

Multi-Robot Systems with Intermittent Communication

This chapter! extends the results of previous chapters by considering both decep-
tion attacks and Denial-of-Service (DoS) attacks as well as arbitrarily time-varying
(switching) communication networks. We consider time-varying communication net-
works subject to intermittent connections, which may be caused by DoS attacks,
rendering the information exchange unreliable. We will show if the arbitrarily time-
varying (switching) communication network maintains its connectivity only in an
integral sense, uniformly in time, the following results are guaranteed:

In Section 5.2, we characterize and provide explicit bounds for the network
resilience to both intermittent and permanent disconnections. The former is relevant
to DoS attacks, and the latter is relevant to deception attacks. We also provide explicit
bounds for uniformly exponentially fast convergence of the multi-agent systems in the
presence of a class of DoS attacks as well as for their bounded-input-bounded-output
(BIBO) stability in the presence of a class of deception attacks. Compared to the
previous results [144, 37, 135], the network resilience is quantified explicitly based on
algebraic connectivity in an integral sense, and the connectivity and stability analyses
for both types of attacks are in the continuous-time domain.

In Section 5.3, we characterize the system vulnerability to a class of stealthy
deception attacks, based on zero dynamics of the switched systems, and provide

explicit worst-case bounds on the number of malicious agents subject to deception

IThis chapter is adapted from a publication by the author of this dissertation. (C) 2024 IEEE.
Reprinted, with permission, from Bahrami, M., & Jafarnejadsani, H. (2024, August). Distributed
Detection of Adversarial Attacks for Resilient Cooperation of Multi-Robot Systems with Intermittent
Communication. Provisionally Accepted at IEEE Transactions on Control of Network Systems.
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attacks that can be detected in a given network. Compared to the previous results
(97, 37], we show some of these well-known bounds can be improved, provided some
extra information on the local dynamics is available only in an integral sense. We
then present a distributed and reconfigurable framework with theoretical guarantees
for the distributed detection of malicious agents introducing deception attacks. Com-
pared to centralized frameworks [78], our framework relies solely on locally available
information in an integral sense, making it well-suited for mobile agent applications
subject to intermittent connectivity.

Additionally, in Section 5.4, we present an algorithmic framework for detaching
from the detected set of malicious agents and for achieving resilient coordination and

cooperation.

5.1 Problem Formulation

5.1.1 System Dynamics

Consider the multi-agent (robot) system in (3.1.4a), and let y! denote the state
measurements available for the i-th mobile agent consisting of the (relative) position
states of a set of neighboring agents {i} UN" C Z; C V (where Z; will be determined
later, and is different than (3.1.4b), (3.2.1), and (3.1.5)) and the velocity state v,.

Then, we have

D 0 1 D 0
2o (t) = + uy
v —al, —yI| |v I
=: A,x + B uy, xo = X(to), (5.1.1)

Yo = col(Pjer,,v;) =: Clx. (5.1.2)
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It is necessary to note that the nature of arbitrary switching modes o(t) € Q,
induced by the unreliability of network G, (), renders a prior: unknown knowledge of
system matrix A, in (5.1.1). This imposes stability and observability challenges in

distributed settings which will be addressed in Sections 5.2 and 5.3.

5.1.2 Communication Topology

The switching® communication network, G,y = (V,E)), o(t) € Q, with a piece-
wise constant and right-continuous switching signal o(t) : R>o — Q, is considered to
the represent time-varying communication links, intermittent communication, and
lossy datalinks between mobile agents. We let the subgraphs gj,’(t) = (VI &Y,
_;(t) = (Y, &), and Qgét) = (V" £!"), denote, respectively, the 1-hop proximity
communication network, the 1-hop induced communication network, and the 2-hop

proximity communication network of the i-th mobile agent with its k-hop neighbors,

k € {1,2}, for which the vertex and edge sets are defined as

V= {i} UNID, = {i} x NIV C &, (5.1.3a)
g =W xVIng, (5.1.3b)
V=V UN®, V=&l U((MOXNP)NE,).  (5.1.30)

Having defined the k-hop neighbors, the Laplacian matrix L, can be partitioned
according to the incoming flow of information to the agent ¢ € V. Let i € V be the

first agent and accordingly V' come first, N“® come second, and V \ {V} U N®}

Zinterchangeably time-varying
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come last, then L, can be rewritten as

L((711) Lng)

Ly = | L@V |2 , (5.1.4a)
0 L232)

=14 T, Lowli-o (1.4

e =14 T, Lowli-o (5140

in which L/ is the Laplacian matrix of the 1-hop proximity graph Qf;(t) = (VI &N).
L, encodes the edge set £\ £, that is the set of existing edges between the 1-hop
neighbors with one another, and the set of existing edges between the 1-hop neighbors
and the 2-hop neighbors. L\ is the Laplacian matrix encoding the edge set £\ £
that is the connections of the 2-hop neighbors with the 1-hop neighbors, and fa
encodes the existing edges between the 2-hop neighbors with one another, and those

existing between the 2-hop neighbors and the rest, i.e. V\ {V? UN:®}. Finally, L

is the Laplacian matrix associated with the 2-hop proximity graph Q’gé By = (Vi/, gi”)_

o Yo

5.1.3 Adversary Model

We consider two classes of adversarial attacks, namely deception attacks and denial-
of-service (DoS) attacks.

Deception attacks. In this model, a set of malicious agents A C V, as
described in Section 5.1.1, inject some undesirable data 0 # u?(t) € L., Vi €
A, YVt € [t2, 00), where t2 € Ry is the activation time instant in (3.1.3). Among the
well-studied deception attacks including data injection attack [36, 67|, zero-dynamics
attacks (ZDA) [97, 78, 5|, covert attack [42, 4], replay attack [110], and Byzantine

attacks [67], our analysis covers the first two models. Similar to [67, 37], the worst-case
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upper bounds on the number of malicious agents in the network are parameterized

as follows:

Definition 5.1.1. (F-local and F-total adversary sets). The unknown adversary
set A C V is termed F-total if |A| < F, where F' € Zs, that is there exist at most
F malicious agents in the network with 0 # u?(t) € L, in (3.1.3). The set A C V is
termed F-local if Vi € V\ A, |ANNW| < F, where F € Z, and the aggregated set
of 1-hop neighbors NV = {j € V | (i,5) € £*} with the edge set £ (to be specified)
defined uniformly over the time interval [t, t + T'), Vt € R, 3T € Ryy. i.e., each
cooperative agent has no more than F’ malicious agents with 0 # u? € £, in (3.1.3)

among its aggregated set of 1-hop neighbors defined uniformly in time.

An explicit upper bound on F', and the explicit definition of the edge set £

will be given in Section 5.3.

Remark 5.1.1. The F-local model presented herein is a relaxation of the model in
[67, 146] that required the upper bound inequality holds point-wise in time. (cf. the
discrete-time version in [37, Sec. 4.4] and [113]).

Denial-of-Service (DoS) attack. We consider a time-constrained (dis-
tributed) DoS attack on the communication network G, = (V, & 1)) that causes the
intermittent unavailability of (state) information exchange, either partially or fully
2, 34, 74]. We take into account such DoS attacks by the inclusion of some modes
o(t) € Q* C Q for the network G, () where an unknown subset of edges &,(t) are

nullified. Accordingly, G,)cg- is at most disconnected as a consequence of nullified

(blocked) edge links, that is

3 ={6.)) €&y | (1,4) =0, i,j €V} st

)\g(l_g(t)) =0, Vte T, = {Tz};clezzoa (5.1.5)
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where Ay(Ly()) is the algebraic connectivity at ¢, To = {T}}icz,, With & < n €
Z>, denotes a finite sequence of n DoS attacks having bounded but not necessarily
contiguous time intervals T3’s, where Ty = [tg, tx + 13) with T3 € Ry and o(tx) €
Q.

We will show that if the set T, in (5.1.5) is sufficiently small the cooperation

objective (5.1.8) is achievable.

Remark 5.1.2. We note that the time-constrained DoS attack model (5.1.5) is con-
sistent with the assumptions and discussions in [34, 74, 2]. It is also worth mentioning
that blocking the communication channels (i.e., nullifying part of the edge set Eq))
can take place independently for each communication link in the communication set-
tings with multiple transmission channels [74] (e.g., P2P communication over IEEE
801.11s networks) or centrally for a large group (or all) of transmission channels in

the single-channel architectures [34, 2].

5.1.4 Problem Statement

Consider the multi-agent system X, in (5.1.1) with an unreliable communication
network, G,q), o(t) € Q, subject to the DoS attack in (5.1.5) as well as deception
attacks that are injected by a set of malicious agents A C V. The problems of
interest are distributed detection of the set of malicious agents A, and the resilient
cooperation of the remaining cooperative agents V \ A.

Distributed attack detection. We cast the attack detection problem as a
form of distributed hypothesis testing problem where each mobile agent ¥, in (3.1.1)
locally verifies either the null hypothesis H° : attack-free, if N N A =0 or the
alternative hypothesis H* : attacked, if NV N A # (. For this purpose, we equip

each ¥, in (3.1.1) with a reconfigurable local attack detector module of the form
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ES;” :rl(t) = Ol (yl), in which O!(-) is a stable linear filter (e.g., a Luenberger-type
observer) in each mode o € Q, whose explicit expression will be given in Section 5.3.3.
Also, its inputs and outputs are, resp., y? in (5.1.2) and the residual v’ (t) = y! —y?,
where y? is the estimation of y!. Given the switching nature of ¥, in (5.1.1) with
possibly unknown modes of G, subject to the DoS attack in (5.1.5), it is necessary
to note that the realization and reconfiguration of 2‘32,,, rely on (a minimum amount
of) local information that is available intermittently not point-wise in time. This

contains the set of 2-hop information available for each agent i € V), defined as

(I);(t) = {gclflét) = (VUi”’gai”% pj(t)v v] € Vaiuavz(t)}? (516)

where the topological knowledge g;’g defined by (5.1.3c), can be either obtained

t)
via information exchange with only the 1-hop neighbors N:® i € V upon network
availability or be pre-programmed as in autonomous monitoring scenarios [144, 78].
We remark that we do not explicitly address the case of F-total Byzantine agents
that transmit inconsistent information to their neighbors, and refer to [67].

The attack detector module Efi,, allows for quantification and verification of

the simple null and alternative hypotheses using the local residuals, r(f)’s, as follows:

H° @ attack-free, if Vje NV VieV\A, [fb(t)| <€, VteRsy, (5.1.7a)

H' @ attacked,  if Jje NP Fie V\ A, [t ()] > €, It € Rsg, (5.1.7b)

where r%(t) is the j-th component of the residual signal of the local attack detector

in Section 5.3.3.

and €%7’s are the corresponding (dynamic) thresholds that will be defined later
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Remark 5.1.3. The detection scheme herein is also known as change detection and
sequential hypothesis testing in stochastic settings [16, 138] and has been used for
observer-based attack detection in distributed settings [42]. For any given class of
dynamical systems subject to deception attacks, the choices of thresholds and the norm
of the residuals are of significant importance to the trade-off between false alarms,
namely false positive alarms and false negative alarms that give rise to a class of

stealthy deception attacks (see [131, 147], and the references therein for a review).

Resilient cooperative control. Resilient cooperation refers to detaching
from the detected set of malicious agents A C )V and convergence of the remaining

cooperative mobile agents, V \ A, to a modified version of the cooperation objective

in (3.1.2), which is defined as:

lim [v;(8)| =0, VieV\ A4, (5.1.8b)

for which the cooperative agents communicate over the induced network Ga(t) =

(V, &, 1)) defined? as

Vi=V\A, Eory = ExpN(V X V). (5.1.9)

Then, the problem of interest is to investigate under what conditions the resilient

cooperation (5.1.8) over Q_U(t) is achievable.

3We note that the communication network of the cooperative agents ¥V does not necessarily need
to be an induced subgraph of Qa(t) for which the communication links admit g{,(t) =&mN (VxV).
It is possible to have designed and pre-programmed other communication typologies as part of a
contingency plan upon attack detection. This, however, is a context-dependent problem and is
outside the scope of this dissertation.
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5.2 Network Resilience and Stability analysis

In this section, we investigate the network resilience to intermittent and permanent
disconnections, as well as the stability and convergence of the multi-agent system in
(5.1.1) with the unreliable communication network G,(. In what follows, we present
some assumptions on the communication network G,y = (V,E)) of the system in

(5.1.1)-(5.1.2), allowing for the analysis of network resilience and system stability.

Assumption 5.2.1. [t is assumed that there exists a finite number of switches in any
finite time interval. This allows us to rule out the Zeno phenomenon. Formally, there
exists a finite sequence {tx}yy = to,...,tm, where m € Zso and m > n in (5.1.5),
that forms the set of m time instants in the ascending order of occurrence during any
given time interval [to, to+T), where ty € Rso, and T € Ry are defined such that T >
(tm—to) > 0. Accordingly, the m+1 (possibly unknown) modes o(ty),o(t1),...,0(tm)
({o(ty) € @ C Q, k€{0,...,m}}) denote the respective active modes of L,u) in

(5.1.1) during the interval [to, to + T).

Remark 5.2.1. The switches, in Assumption 5.2.1, may include proactive (pre-
programmed) and reactive topology switching, random link dropouts, and adversar-
tal link dropouts. It is also worth mentioning that, the assumption of finitely many
switching modes does not generally pose practical challenges since it is compliant with
the nature of establishing communication links in the case of topology switching and
random link dropouts. It is also known that in the case of adversarial disruption
(e.g., DoS attacks), the attacker’s capability is limited in terms of the frequency and

duration of occurrence [34).

Definition 5.2.1. ((¢,T)-PE connected communication network). A commu-

nication network Gy = (V, Exy)) is called (p, T)-PE connected with some 7" € R+
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and p € (0, N] if its associated Laplacian matrix L, satisfies a (p1, T")-Persistence of

Excitation (PE) condition of the form

1 t+T
T/ QLU(T)QT dr > ,U/[th Vit e Rzo, (521)
t

where the matrix @) € RW-*" ig defined such that

1
Qly =0, QQ" =1In_1, Q'Q=1Iy— N1N1;. (5.2.2)

Assumption 5.2.2. The communication network G, of the system X, in (5.1.1)

is assumed to be (u, T)-PE connected.

Remark 5.2.2. The (u,T)-PE connectivity has appeared in the literature in different
forms [32, 3]. It relaxes the strict point-wise in-time connectivity to the case of con-
nectivity only in the integral sense of (5.2.1), whereby positive algebraic connectivity
in the integral sense that Xo(7 ftt_T Lo(rydT) > g holds Vit > T and Ip, T € Ry as in
(5.2.1). This relazation allows for modeling a class of networks including periodically
switching networks, [18], periodic with intermittent communications [113, 144/, and
jointly connected networks [108], as well as for quantifying resilience to the deception
and DoS attacks defined in Section 5.1.3. See Proposition 5.2.6. Finally, the matrix

Q € RW=DXN jin (5.2.2) can be recursively obtained as follows [32, rmk. 2J:

k—1 1 T

k=l 1 T
Qo= |V " VTR (5.2.3a)
I 0 Qx
I k=1 -1,
QI Q1 = lk : k 1— e (5.2.3b)
il Qe @k F L e
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where k € {2,..., N} with the initial matriz Qy = [1/\/5 _1/\/5] and the final

matriz Qn =: Q € RIN-DxN,

We next show the equivalence of the (u,7T)-PE condition presented herein
and that in [3] for ensuring a positive algebraic connectivity in the integral sense.
The equivalent conditions will later be used in the stability and robustness analyses,

particularly in Theorem 5.2.5 and Lemma 5.3.2.

Lemma 5.2.3. (Equivalence of (11,T)-PE conditions for Network Connec-
tivity). Consider o (p, T)-connected network G,uy = (V,E)) with the associated

Laplacian matriz Lyyy. The following statements are equivalent:
1. The condition (5.2.1) holds.

2. There exist [iy,, iy, T € Ry such that Vit € Rxq,
t+T 1 1T

3. There exist 6, T € R~q such that the set of edges

1 t+T ")
5?:“%”E&MIT/ al” dr > 5,
t

VteRso, 4,jEV,i#j}, (5.2.5)

forms a connected graph in the integral sense, denoted by GE = (V,EL), where

t+T a'T

T . dr’s in (5.2.5) form the entries of the corresponding weighted adja-

cency matrix A and Laplacian matriz L that are defined as follows:

1 t+T 1 t+T
A:?[ AmﬂﬂL:TZ Lo(r dr. (5.2.6)
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Proof. See Appendix C.2.

We next show the relation between the (i, T')-PE connectivity and the bounds
on the vertex connectivity and robustness of graphs. The connectivity-related bounds
provide a measure of the network resilience to intermittent and permanent discon-
nections. The former is associated with resilience to DoS attack in (5.1.5) and the

latter is required for resilience to malicious agents though disconnecting from them

(see (5.1.9)).

Definition 5.2.2. ((r, T')-robust network). A time-varying network G, = (V, &)
is called (r,T)-robust* with some T" € Ry and r € Zs \ {0} if the resultant static
network G# = (V, &%) with €% in (5.2.5), obtained under the (u,T)-PE condition

(5.2.1), is r-robust, where r < r(G).

Definition 5.2.3. ((k,T)-vertex-connected network). A time-varying network
Goty = (V,E ) is called (k,T)-vertex-connected with some 7" € Ry and Kk €
Zso \ {0} if the resultant static network G = (V,€X) with £ in (5.2.5), obtained

under the (i, T)-PE condition (5.2.1), is k-vertex-connected, where k < K(G~).

Proposition 5.2.4. Let G,y = (V, &) be a (u, T)-PE connected network under
Assumptions 5.2.1 and 5.2.2. Then, Gy is at least ((%w , T')-vertex-connected and
(P—ﬂ , T)-robust, and the following inequalities hold for the resultant network Gt =

2

(V, EL) with EY in (5.2.5).

M <r(GH) < R(GE) <V =1, =X (L)>p, (5.2.7)

4The (r, T)-robust network herein is robustness in an integral sense as a relaxation of the r-robust
static network (cf. the discrete-time version in [144, Def. 2.2]). The (r, T')-robust in Definition 5.2.2
should not be confused by the notation of (r, s)-robustness, for some r € Z>q and 1 < s < |V|, that
is a strict generalization of r-robustness defined for a static graph [67].
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where the robustness r(G4), vertex connectivity k(G~) are defined based on the ad-
jacency and Laplacian matrices in (5.2.6). Additionally, if G*. is a noncomplete, we

have Ay(L) < k(G) ensuring that Gy is at least ([p],T)-vertex-connected.

Proof. See Appendix C.3.

Figure 5.1: An example that illustrates how intermittent communication can dras-
tically change the graph/network’s algebraic connectivity As(+) and thus its robust-
ness. Let graph G, = (V,&)) such that [V| = N + 1, with ¥V = V; UV, and
|Va| = N, where N > 3, and that the subgraph C;C,(t) =(V\ Vl,é'_a(t)) induced by re-
moving the set V) and its incident edges is a complete graph Ky, = Gg(t). Note that
the singleton ¢ € V; can be connected to any pair of disjoint nodes j # k € V5,
and thus § = {j,k} C V and the bidirectional edge set &t = {(i,7), (i, k)}
make, respectively, the minimum vertex cutset and edge cutset of G,u. Accord-
ingly, one can verify that Ay (Gor)) < K(Gow)) = €(Go)) = Omin(Gor)) = 2, where
e(-) and & (+) are, resp., the edge connectivity and minimum node-degree. Also, if
dt € Ryg 8.t Goy = (V, € \ Eur) because of an intermittent connection of the edges
Eeut, we have graph disconnection with X\o(Gyy = (V, €\ Eut)) = 0. Yet, the induced
subgraph Ky, holds even a higher algebraic connectivity since Ay (KCjv,)) = [Va| = N,
and K(Kpy) = e(Kjy) = 0min(Kjyy)) = N — 1. This example has been constructed
based on the discussions in [48, Ch. 13.5].

Theorem 5.2.5. (Network resilience to node and edge disconnections). Let
a (p, T)-PE connected network G,y = (V,Ex1)) be (r,T)-robust (resp. (k,T)-vertea-
connected) under Assumptions 5.2.1 and 5.2.2. Let A C 'V be a (r — 1)-local (resp.
(k —1)-total) adversary set. Then, the induced subgraph Goy = (V =V \ A, Eyp)) in
(5.1.9) admits the (i, T)-PE connectivity condition in (5.2.1), for some i, T € Ry,

where T <T and p < i + |Al.
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Proof. See Appendix C.4.

In other words, Theorem 5.2.5 together with (5.2.7) implies that if the network
Goty = (V, & 1)) holds algebraic connectivity Ao(L) > p > 2F + € with F' € Z>o and
¢ € R.g in the integral sense of (5.2.1), it will be at least (F'+ 1, T')-vertex-connected
(resp. (F'+1,T)-robust) which in turn ensures the resulting network from the removal
of an F-total (resp. F-local) adversary set, i.e. (5.1.9), still maintains its connectivity

in the sense of (5.2.1) to a lower degree, allowing to achieve (5.1.8).

Remark 5.2.3. We remark that we use the parameter p in (5.2.1) and (5.2.7) as a
rather conservative proxy metric of the resilience of time-varying networks to discon-
nections of sorts (i.e. permanent and/or intermittent). Moreover, i in (5.2.7) can be
interpreted as the quality of service (QoS) [32] associated with communication. It is
also noteworthy that the lower bound [$Xs (L)] < r(GH) in (5.2.7) is tight as shown in
[120, lemma 1], [116, Thm. 2] for fized graphs. On the other hand, the gap between
r(GY) and k(GY) can be arbitrarily large ([67, 120]) depending on a priori unknown
intermediary typologies G,’s, o € Q' that form a network G'.. We refer to Fig. 5.1
as an illustrative example that demonstrates how an intermittent connection of edges
in a class of graphs can affect the bounds in (5.2.7). Moreover, in the special case of
complete graphs over N nodes, denoted by Kn, we have [Aa(K3)/2] = Omin(K3) = 2
for N = 3 nodes, that shows the bound in (5.2.7) is tight. If the exclusion of com-
plete graphs can be guaranteed the lower bound to i < k(GE) can be used for node

connectivity. (cf. [48, Cor. 13.5.2]).

We now provide a convergence bound for the consensus/formation equilibrium

in (5.1.8). Associated with (5.1.8), we define an output (coordinate) vector Y € R?V -1
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as

Ov_1)x
y— ¢ . Q (N—1)xN b ICeqX, (5.2.8)

v 0y Iy v
where p, v and @ are given in (5.1.1) and (5.2.2), respectively. It then follows that

(=0Qp =0y and v =0y imply p, —p; =0, Vi,j €V and v; =0, Vi € V (that
is Y(t) = 0 = (5.1.8)).

Proposition 5.2.6. (Stability under (u,T)-PE connectivity). Consider the
system in (5.1.1) and let Assumptions 5.2.1 and 5.2.2 hold. Also, let 370, T <T,
where T is the period in (5.2.1), hold uniformly in time for the DoS attack in (5.1.5).
Then, there exists a sufficiently large control gain ~y for (3.1.3) that ensures, for each
[x(t0)|| < oo and for every uy € Lye with sup, <7, [[ua(t)]] < oo, the system (5.1.1)

with the output Y(t) in (5.2.8) is finite-gain L, stable with the following upper bound:

Hy(t)Hﬁp < ,ixe—kx(t—to) ||X(t0)|| + Ku H(HA)TdHLp , Vi>tg e R>o, (5.2.9&)
max{)\—l,ﬁ} o max{/\_l,ﬁ}
ix = ICI 55— 1€, ku=Cll—F 55y (5:29D)
min maﬁ} A, Min 51 5
, l[Nil _1
0< A <Ay =ne 2" cC=1" L (5.2.9¢)
0N><(N—1) Iy

where n = —% In(1— %) and B € Ryg. Additionally, if uqg =0 (or A=10),

the system’s state trajectories uniformly exponentially converge to the equilibrium
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(5.1.8), (provided the formation configuration is feasible) with the bound

p;(t) — p;(t) — P | < V2rxe 1) |1x(to)]], (5.2.10a)

0;(1)] < ke T | 1x(t0)||, Vi, jeV (5.2.10b)

for allt >ty € Rsg, with kx, Ax € Rog as given in (5.2.9).

Proof. See Appendix C.5.

We remark that the choice of v = alN, for o > 1 yields a convergence rate A,
in (5.2.9) that depends only on p, T', with the maximum occurring at = N, T = 1,
associated with complete network connectivity, see (5.2.1) and Remark 5.2.2. This,
however, is not the only valid choice.

We also note to [30, 31] provide insightful results on the stability of multi-agent

systems using passivity-based control and contraction theory.

5.3 Observer Design and Attack Detection

Here, we consider the design of observers serving the reconfigurable local attack de-
tector module ES};” in Section 5.1.4. The observer design for X, in (5.1.1) is subject
to two constraints. First, a priori full knowledge of A, may not be available for
each mobile agent due to random communication link dropouts or switching links.
Second, local state information y/ in (5.1.2), which is available for each mobile agent,
is subject to change since the respective k-hop neighbors change in an a priori un-
known time-varying network. Consequently, ensuring the uniform observability of
(A,,Cl), Vt € Rsg, Vi € V may not be tractable or feasible.

In what follows, we, first, characterize network-level conditions under which

almost any set of adversarial inputs uy is observable at the measurements of the
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cooperative agents that are y!’s, for i € V \ A. Second, we propose a class of
local observers for ZSZ.,/ that are realizable using (5.1.6), enabling distributed attack

o

detection through (5.1.7).

5.3.1 Detectability of Adversarial Inputs

We note that the switched system ¥, in (5.1.1)-(5.1.2) represents a family of linear
time-invariant (LTT) systems, each of which is associated with one mode o(t) € Q.
Therefore, similar to [78, 97], the results herein are derived based on the concepts of
output-zeroing and state and input observability of the (switched) LTI systems.
Consider a generic solution x(t;x(y), wa(t)) to 3y in (5.1.1) under Assump-
tions 5.2.1 and 5.2.2. Then, the concatenation of the measurements y!’s, given in

(5.1.2), of the set of cooperative agents, V \ A = {i1,..., iy}, is defined as

y2 A (x(to) ma() = col(yg', ..,y ) =

col(Clt, ..., CMx(t; x(t), ua(t)) =
CM x(t;x(to), ua(t)). (5.3.1)
It is necessary to note that the entirety of measurement yY\*(;x (o), ua(t))
is not available for any agent ¢+ € V. We use this collective set of the measurements
of cooperative agents V \ A and a generic set of adversarial inputs uy introduced by
the set of malicious agents A, in an input observability context for attack detection

analyses.

Definition 5.3.1. (Stealthy and Indistinguishable Attacks). For ¥, in (5.1.1)

under Assumptions 5.2.1 and 5.2.2, any generic set of inputs uy(t) € £, injected by
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a set of malicious agents A is stealthy for the remaining cooperative agents V \ A if

I x(ty),x'(ty) € R* s.t. Vi€ [ty, to+T),

Yo (tx(to), ua(t)) = v, (£:x/(to), 0), (5.3.2)

with y\(¢;-,+) as in (5.3.1), tg € Rsg, and T € Ry as in (5.2.1). Likewise, for any
given two generic sets uy, () € L, and ugu,(t) € L, injected, resp., by a nonempty set
of malicious agents A; € A and some Ay € A, where A; # Aj, uy, is indistinguishable

from wuy, for the cooperative agents V \ A if

Ix(to), X' (t) € R¥ s.t. Vit € [ty, to+T),

Yo (% (to), wa, (1) = yo (8 X (f), wa, (1)). (5.3.3)

Lemma 5.3.1. (Characterization of Stealthy and Indistinguishable At-
tacks). Consider ¥, in (5.1.1) and let Assumptions 5.2.1 and 5.2.2 hold. Also, let
B, ug, () and B g,ua,(t) be two generic sets of adversarial L,.-norm bounded inputs
injected by a nonempty set of malicious agents Ay € A and some Ay € A, where
Ay # Ay, Then, uy, (t) and uy,(t) are indistinguishable for the cooperative agents

V\ A during t € [ty, to+T), if and only if Ix(to) € R*N such that
szg‘;)eAcr(tk)(t_tk)X(tk> —

¢
C;E;}t)/ eAop(t=7) (Bayua, (1) = Bayug, (7)) dr, t € [ty, tiy1), (5.3.4)
Lk

where 0 < k < m and tyyyy =: tg+ 1, with m and T as in Assumptions 5.2.1 and

5.2.2, and x(ty) = (x'(to) — x(to)) when k = 0, and for k # 0, we have x(t) =
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x/(ty) — x(ty), where

1 koit1
x(tr) = H €A"(ti—1)(ti_ti‘1)x(to) + Z H ehotsn Tty
i—k i=1 j=k
t;
/ Aot ti=T) (BA1UA1 (1) — Ba,ug, (7)) dT). (5.3.5)
ti—1

Additionally, if (5.3.4)-(5.3.5) hold for us,(t) = 0,Vt € [ty, to + 1), then uy,(t) is

stealthy.

Proof. See Appendix C.6.

It is necessary to note that the realization of (5.3.4) requires a priori knowledge
of the system which is not available for any agent. Moreover, based on the concepts of
state and input observability [15, Thm. 2], [152, Ch. 3.11], and the invariant zeros of
the switched LTI systems [78], the realizations of (5.3.4) in each mode coincide with
the existence of the set of vector-valued adversarial input uy unobservable at the
vector-valued output y2\* (see Definition 2.3.1). For LTI systems, it is well-known
that such a set of inputs, referred to as zero-dynamics attacks (see [78, 97] and Section
5.1.3), is not generic, and is characterized using the output-zeroing directions of the
system. Particularly, for 3, in each mode o € Q, it follows from [152, Ch. 3.11]
that the output-zeroing directions are induced by the rank deficiencies of the matrix

pencil P(\,,0) for some A, € C, where

Xl —A, —By
P()\,,0) = . (5.3.6)
CoA 0
We next present conditions under which the intersection of the output-zeroing

subspaces of Xy in (5.1.1) make an empty set, ensuring almost no deception attacks,

defined in Section 5.1.3, can be stealthy in the sense of (5.3.2).
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Lemma 5.3.2. Consider ¥, in (5.1.1)-(5.1.2) with (5.1.6) during an interval [to, to+
T) defined under Assumptions 5.2.1 and 5.2.2. Let ¥,y be subject to any generic
set of adversarial inputs ua(t) € Ly injected by an F-total (resp. F-local) set A of
malicious agents such that 0 < F < k(G:) —1 (resp. 0 < F < r(G4)—1). Then, the

following statements are equivalent.
1. There exists no generic set of inputs ua(t) € Lo, stealthy in the sense of (5.3.2).

2. For almost all A\, € C, Nyeg ker (P(Xy,0)) = 0, where P(\,,0) is given by
(5.3.6).

Proof. See Appendix C.7.

In other words, Lemma 5.3.2 states that (F' + 1,T')-vertex connectivity (resp.
(F'+1,T)-robustness), where F' € Zs, ensures almost no F-total (resp. F-local) set
of malicious agents with the deception attacks defined in Section 5.1.3 is stealthy in
the sense of (5.3.2) for the cooperative agents in (5.1.1) with (5.1.6). (cf. [97, 37]
where (F'+ 1)-vertex connectivity and (2F + 1)-robustness are required point-wise in
time.)

We next investigate the level of local observability for each agent given the lo-
cally available information @é(t) in (5.1.6) and measurements y* in (5.1.2), as opposed
to ensuring the global observability of the pair (A, C!) associated with (5.1.1)-(5.1.2)

that might not be tractable.

5.3.2 Local Dynamics and Observability Analysis

Consider the set of 2-hop information available for each agent ¢ € V as defined by
®’ .y in (5.1.6), and local measurements y;, in (5.1.2). Let Z; = V" (T in short)
in (5.1.2) and R; = V\ V" and assume Z; and R; (R in short) are sorted in the
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ascending order of agents’ indices. Then, by using (5.1.4), the X,’s dynamics in

(5.1.1) with y? in (5.1.2) can be partitioned as

Xz = A7Xz + p(Xz,Xz) + Baruar,

i z
Y;_CUXI

Xp = AFxr + AX"x; + B yruyr,

i

(5.3.7)

(5.3.8)

where x, = col (p,,v,), ® € {Z, R} denotes the position and velocity states of the

agents in each set, and the system matrices are defined as

OII\XII\ [II\
Ag = s BAN = |:

0zix]4”| ]
)

1

_Ckl_o_ _’}/Ilz‘

I A

C, = diag(sz e\lzr)a

0|I\><1
P(Xz,XRr) = Alx; + A7 "Xy = » P= _O‘(EoﬁN};@) + LETQS)T?R)v
N
L 2
Oz |0 Oizix=1 | Ojziximy
AZ = AZR = ,
v 0 0 O, e OW; Ix|R| 0 ’
0 —ozto —ozL((TQ?’)
0 I 0 0 0
A% = , AXT =
—al$ —v1 %) 0 —al¥ |0

A"=ANVY, A=A\ A"

” i i N ”
where uyr = col (u), 4 € RM Ty = [e|Il\ eZ ... e“zf“ '} c RIZIXIA"

[

(5.3.9a)

(5.3.9b)

(5.3.9¢)

(5.3.9d)

(5.3.9¢)

(5.3.91)
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We note that %,» with known A7 and C7, is the dynamics available for each
agent ¢ € V given @é(t), Vt € R>p, and the dynamics Y, and the possibly existing
coupling term p(xz, Xz ) are unknown to the agent ¢ € V. Moreover, for every agent i €
V,ylin (5.3.7) and (5.1.2) are the same set of measurements obtained by reordering
CZ and C!.

The following results address the effect of Y. on Zv;‘" as well as the observ-

ability of ¥ ,», which will be used later in local observer design.

Proposition 5.3.3. Consider (5.3.7) and (5.3.8) under Assumptions 5.2.1 and 5.2.2.
The coupling term p(Xz,Xg) in X, of agent i €V, holds the bound llp(xz,xR)|| <
akxe ) |1x(to) || + aky supy, <<, [wa(t)]], VE > to € Rsg, where a is given in
(3.1.3), and kx, ku, and A\x are given in (5.2.9). Additionally, if A =10, the coupling
term exponentially converges to 0 with ||p(xz,xz)|| < arxe >0 ||x (8], Vit >

to € REO'
Proof. See Appendix C.8.

Proposition 5.3.4. Consider the 2-hop dynamics ¥, in (5.3.7) for each agent
i € V\ A communicating over Go) under Assumptions 5.2.1 and 5.2.2. Then, the

following statements hold.
1. the pair (A7, C7) in X, Vi €V, is observable in each mode o € Q.

2. There exists no generic set of inputs ua(t) € L, stealthy in the sense of (5.3.2),
where y!’s are given in (5.3.7), provided the set A of malicious agents is F-total

(resp. F-local), with 0 < F < k(GH) —1 (resp. 0 < F <r(Gt)—1).

Proof. See Appendix C.9.
Having quantified the conditions on the attack stealthiness and local observ-

ability, we next propose the reconfigurable local attack detector module that relies
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only on the time-varying local information @;(t) in (5.1.6) and that performs the

distributed hypothesis testing in (5.1.7).

5.3.3 Reconfigurable Attack Detector (local observer)

For each agent 7 € V with the 2-hop dynamics ¥y, in (5.3.7) and local information

@;(t) in (5.1.6), the local attack detector Z\‘;,, is proposed as follows

(

;(Z = Al% +Hi(y; —y,)
Y0n Q0 yi=CIx, , (5.3.10a)

L ro. =Y, — Y,
(
Iz %z (te), if Vi, #Vi, , ORk=0,
X, (t) = ’ )T g (5.3.10D)

!

x7(1y), if VY

!

=V}

tr) tp—1)’

\

where X; is the estimation of x; in (5.3.7), and the initial conditions X;(#;) are up-

dated at {t;},~,, m € Zx, corresponding to the modes o(t;)’s € Q (see Assumption
Ozixizy Opz

5.2.1), and Iz, = diag({ e} e} ). H = is the observer’s gain
H*  hye!

o IZ]

matrix with a scalar h, € Reo and a symmetric positive definite matrix HZ € R

such that AZ = (AZ — HZCZ) is Hurwitz stable in every mode o € Q. Note that the
availability of (ID(j(t) in (5.1.6) allows each agent to readily update ZS;” upon a switch
occurs between the communication modes.

Let estimation error e; = x; — Xz, its dynamics are obtained from (5.3.7) and

(5.3.10) as follows

. e :Aﬁe +pX , X +BA//uA//
S04 r Pl Xn) , (5.3.11)

i __ (T
r. =Cle;
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in which ez(t;) = diag(0,; 17,1115 L1z, ) Xz () if Vj/(/tk) #* VOZ"/(;IC—I) or k =0, and
er(tr) = X (tx) — X, (tg) otherwise, with {tx}0,, m € Zx.

The following result characterizes the dynamical response of the attack detec-
tors (local observers) in the presence and absence of adversaries. The results can be

used in threshold design for residual signals later in attack detection.

Theorem 5.3.5. Consider ¥, in (5.1.1) with a k(G':)-vertex-connected (resp. r(G":)-
robust) communication network as defined in (5.2.7) under Assumptions 5.2.1 and

5.2.2. Let (5.1.1) be subject to an F-total, where ' < k(GY) — 1, (resp. F-local,

where F' < r(G4) — 1) adversary set with input uq € L,.. Let each mobile agent

1 €V be equipped with a reconfigurable local attack detector ES};” given by (5.3.10)

and local information (5.1.6). Then, for each |ler(tx)| < wz, with w; € Rsg, (5.3.11)

is finite-gain L, stable and the residuals v/ (t)’s hold the bound

v (1)) < rZwge et 4 (52 ||x(to) || e *=Be—10)) (1 — e—AZ(t—tk))_|_

Ky
>\e

(5F) sup Jua(@)l (1= e 20w, Vi€t o), (53.12)

>\I
¢ to<t<Ty

where t (t) is the j-th component of vr’(t) and denotes the position estimation of the

two-hop neighbors, corresponding to the j-th row of C!, in each mode o(ty,) € Q, Vit €

z
e’

[tk thi1), k € Zso. Also, KE = aryrkZ, with the known constants® kZ, N € Rwq, such
that ||6A§(tk>(t_tk)|| < kZeeU%)  and ky and A are given in Proposition 5.2.6.
Additionally, if A = 0, each Z‘ji/, is exponentially stable with e;(t) — 0, and the
residuals in (5.3.12) hold the following bound

<

v’ (8)] < wowee ™= + (5

e

Ix(to) | e*)\x(tk*to)) (1 _ eng(t—tk)) =7, (5.3.13)

5Recall that Z is a shorthand for the set Z; = V" and thus the constants are mode-dependent
for each cooperative agent i € V' \ A.
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Algorithm 4 Resilient & Reconfigurable Cooperation
Input: ¢} in (5.1.6), £%, in (5.3.10), and &’ in (5.3.13), Vi € V\ A
// Accept the null H° 1110(:5.1.721‘) and assume A" = ()
: procedure 1: DISTRIBUTED DETECTION & ISOLATION
: // Use the most recent info @/
: Compute the residual r}
for j e Ng do
if |rs’ (t)| > €5’ then
Reject the null hypothesis H° in (5.1.7a) > Detection: Malicious agent j € A2

is detected by the cooperative agent i.

—_

o )initialize o
(1) to (re)initialize X7,

(t) and the corresponding thresholds e’

8: A" e Ni®

9: Set afj =0,je A ﬂ/\/;m > Stop communication with A"
10: Update @j(t)

11: end if

12: end for

13: end procedure

14: procedure 2: RESILIENT COOPERATION DEFINED IN (5.1.8)

15 Run w?(t) given in (3.1.3) with the information from A"\ A"
16: end procedure

where €57 is a threshold that can be used in (5.1.7).

Proof. See Appendix C.10.

Theorem 5.3.5 shows that the local observer (5.3.10) with residual r! has
bounded-input bounded-output (BIBO) stability for the worst-case number of mali-
cious agents with deception attacks that are defined in Section 5.1.3, and that whose
detectability is ensured by a certain degree of network connectivity that is quantified

in Lemma 5.3.2.

5.4 Resilient Cooperation

Building upon the results in the previous sections, we present an algorithmic frame-
work, summarized in Algorithm 4, as a solution to the resilient cooperation problem
stated in Section 5.1.4. Algorithm 4 comprises two simultaneous procedures address-

ing the distributed detection and isolation of malicious agents by using (5.1.7) for
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Figure 5.2: Communication network G, in (a) and its algebraic connectivity in the
integral sense of (5.2.1) in (b) for Section 5.5-Example 1. (a) The network switches
between two modes every 0.5 sec whose union forms a static overlay network G with
Ao(L) = 2.1049 that is 3-robust [67, Fig. 4], ensuring (3, 1)-robustness, and (3, 1)-
vertex-connectivity (see Section 5.2 and (5.2.7)). per Section 5.1.3, the network G,
is subject to a 2-total and 2-local set of malicious agents A = {5,6}. It is also subject
to a distributed DoS whose link dropouts follow a binomial distribution with 100
trials and a success probability of 0.3 during 10 sec. (b) The illustration of positive
algebraic connectivity As(-) in the integral sense (5.2.1) for for the network G, and
its induced network G,y in (5.1.9) despite their intermittent connections (See also
remark 5.2.2). The results in (b) are from resilient consensus in Fig. 5.3-(a) through
Algorithm 4. The decrements in A\y(-) during ¢ € [0, 5.66] are due to the permanent
link disconnections that occurred in the attack detection and isolation procedure, see

Fig. 5.3-(a).
decision-making, and resilient cooperation. In what follows, we present the technical
discussions of Algorithm 4.

Isolation of the set of the malicious agents A C V. Upon detection
of neighboring malicious agents by each cooperative agent i € V \ A, there follows
the isolation (removal) of the detected malicious agents from the network (Lines 7-
10 in Algorithm 4). Note that the results in Proposition 5.3.4, Lemma 5.3.2, and
Theorem 5.3.5 allow each cooperative agent i € V \ A in a (F' + 1,T)-robust (resp.
(F + 1,T)-vertex-connected) network to perform the distributed hypothesis testing
in (5.1.7) and detect a candidate set of malicious agents within its 1-hop neighbors,

provided the actual set of malicious agents, A, is at most F-local (resp. F-total).
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Here, the distinction between a candidate set and the actual set of malicious agents
is due to the possibility of false alarms in (5.1.7). (i.e., a candidate set is almost
always a superset of the actual set for a sufficiently small threshold in (5.1.7)). The
foregoing sets coincide if AZ = (AZ —HZCZ) in (5.3.10) features distinct eigenvalues,
guaranteeing that each residual’s component r%’ in (5.3.12) is most sensitive to only
one of the input directions associated with the malicious agents within the 1-hop
neighbors.

State-dependent switching We note the isolation process based on (5.1.7)
(lines 7-10 in Algorithm 4) imposes a finite number of state-dependent switches that
are not explicitly incorporated in the condition (5.2.1) for L, with time-dependent
switches o(t) : Rsg — Q. On the other hand, the results of Theorem 5.2.5 for
the bound on the network connectivity in the integral sense of (5.2.1) after node
and edge removal holds independent of the type of switches. Therefore, upon a link
removal between a cooperative and malicious agent(s), there exists a new Laplacian
matrix L) that holds the connectivity condition of the from (5.2.1) for the system
in (5.1.1) starting from the new initial condition x(¢;) € R*Y with ¢, k € Zso,
being the time instant of the newly active mode o(t;) € Q. Having the integral
connectivity as in (5.2.1) independent of the states’ initial condition, Proposition 5.2.6
can be applied. It is worth mentioning that the independence from the states’ initial
conditions for the (u, T')-PE connectivity in (5.2.1) is a special case of having (5.2.1)
parameterized of the form % ftHT C)L,,(T)\)QT dr > pln_1, YVt € Ry, that holds for
each A := (t,,X,) # (to,x(tp)) with the switching signal o(t,x(t;)) : Rsg x X — Q,
X c RV (see [73]).
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Figure 5.3: Example 1: Comparison of resilient consensus in an 8-agent network G,
that is, as shown in Fig. 5.2, (3,1)-robust and subject to DoS attacks and a 2-total
and 2-local set of malicious agents A = {5,6} with u;(t) = 0.3t and ug(t) = 0.5¢ in
(3.1.3). (a) Resilient consensus using Algorithm 4 whose resilient to the 2-total/2-local
set A in the (3, 1)-robust network is guaranteed by Lemma 5.3.2 and Theorem 5.3.5.
Also, the nge dashed specify the time instants where cooperative
agents detected and disconnected from their respective neighboring malicious agents
(lines 7-10 of Algorithm 4 with €%/ = 0.95) using its local attack detector in (5.3.10).
(b) Resilient consensus using the DP-MSR algorithm that for a 3-robust network has
provable resilient consensus only in the presence of up to 1-local or 1-total malicious
agents [37, 36], accounting for the failure of the approach in this case where A is
2-local and 2-total.
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(b) Agents’ State Trajectories During Consensus

Figure 5.4: Example 2: Resilient consensus in an 84-agent network G,(;) subject to
deception and DoS attacks defined in Section 5.1.3. The deception attacks are intro-
duced by a 1-local set of 9 malicious agents, A = {1, 4,16, 19, 29, 33, 46, 60, 73}, which
are shown in red color. The distributed DoS attack (5.1.5) imposes link dropouts
following a binomial distribution, with 600 trials and a success probability of 0.4
during 150 sec. (a) The static overlay network G is 2-robust, constructed using the
preferential-attachment model in [67, Thm. 5] based on the topology in [67, Fig. 6].
Despite intermittent connections, the network G, is (2, 1)-robust and (3, 1)-vertex-
connected (see Definitions 5.2.2 and 5.2.3, and Lemma 5.2.3). (2, 1)-robustness, then,
ensures resilience to any 1-local set A as it follows from Lemma 5.3.2 and Theorem
5.3.5. (b) Resilient consensus using Algorithm 4 over the intermittent network G,
in (a) and in the presence of the 1-local malicious set A.
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5.5 Simulation Results

We conduct two simulation studies to illustrate the theoretical results and compare
them with the state-of-the-art [78, 37]. We also provide the code at https://github.
com/SASLabStevens/rescue.

Example 1. We compare our proposed Algorithm 4 with the DP-MSR algo-
rithm [36, 37]. Employing Algorithm 4, we achieve resilient consensus in an 8-agent
network that is subject to switching topology and both deception and DoS attacks.
See Figs. 5.2 and 5.3(a). In contrast, the DP-MSR algorithm fails to achieve resilient
consensus for the same network (Fig. 5.3(b)), despite the advantage of operating
over a network that is the union of the two modes shown in Fig. 5.2(a). The outper-
formance of Algorithm 4 is because of its observer-based nature that leverages local
information ®! in (5.1.6) to detect a larger set of malicious agents in a network with
a specific degree of connectivity and r-robustness (see Lemma 5.3.2), a capability not
shared by the DP-MSR algorithm. We note that the analysis of resilient consensus
via the DP-MSR algorithm was originally developed for a discretized version of (5.1.1)
in [37, 36] while our results are in the continuous-time domain. To have the results
in a comparable time scale, we used the DP-MSR procedure with the small sample
time Ty = 0.001 and the gains v = 3 and a = 1 in the zero-order-hold discretization
of (3.1.3). This set of parameters does not completely satisfy the sufficient condition
in [37, eq. (9)], but does satisfy a relaxation thereof, similar to the discussion in a
footnote in [37]. This enables an asymptotic resilience consensus in the case A = ()
(shown with the gray-colored state trajectories) and also in the cases of (F'=1)-local
and (F'=1)-total adversary sets (not shown herein) over any 3-robust network.

Example 2. We evaluate the scalability of our framework on an 84-agent

network subject to a DoS attack and 9 malicious agents that form a 1-local set, see


https://github.com/SASLabStevens/rescue
https://github.com/SASLabStevens/rescue
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Fig. 5.4. Notably, each agent has at most 9 neighbors (less than 11% of total agents),
resulting in a sparse graph. Despite sparsity, the graph has the required robustness
properties. This observation underscores the significance of sparse graphs with strong
robustness/connectivity properties (e.g., expander graphs), offering resilience without
excessive communication overhead.

Scalability and computational complexity. We remark that the proposed
Algorithm 4 improves the scalability of the system-theoretic frameworks relying on
observers for attack detection [97, 98, 78]. Note that, for each agent, attack detection
in Algorithm 4 (lines 4-10), requires only one observer with a 2-hop dynamics AZ
in (5.3.10) with worst-case complexity O(|V"|?) rather than the complete model
A, in (5.1.1) with O(|V]?), (V| < |V], see (5.1.3)), which is the case in [78].
This local topological information, AZ can be pre-programmed [144] or transmitted
as formalized in (5.1.6), in which case it may incur only a minimal communication
overhead, given the often sparse communication topology of mobile robots due to their
mobility (see Fig. 5.4). Moreover, the local information (5.1.6) allows for detecting a
greater number of malicious agents in a given network, compared to the prior work [97]
including the graph-theoretic MSR-like algorithms [36, 37, 113] (see Fig. 5.3), whose
worst-case complexity is quadratic in time O(|n|?) and linear in space O(n), w.r.t.
the size of inclusive 1-hop neighbors [66], i.e. n = |V, see (5.1.3). Finally, given
the switching nature of the local observer (5.3.10) with resetting initial conditions,
an increased frequency of topology switching, potentially violating Assumption 5.2.1,
would lead to significant performance degradation in attack detection as observer’s

residuals would persist in a transient convergence phase.
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Chapter 6

Multi-Robot Coordination with Adversarial Perception

Learning-enabled visual perception is of significant importance to many robotic tasks,
particularly in the forms of visual servoing [68], visuomotor policies [70], learned vi-
sual odometry (VO) [80, 22], foundation models for visual navigation [119] and object
tracking [75], drone flocking [117, 148] and collaborative perception [154]. However,
learned perception models are vulnerable to adversarial instances [49, 63] where a
human-imperceptible level of noise on the input data (e.g., camera images) can signif-
icantly mislead the model’s output (e.g., object misclassification and mislocalization
that may be dynamically infeasible or unsafe [54, 143, 21, 58]).

This chapter extends the prior work on perception-based multi-robot coordi-
nation to the case of adversarial image attacks [49, 19, 143, 54] that incur misclassi-
fication and mislocalization in the learned perception module! of the robots. More
specifically, we consider a network of robots that rely on an onboard sensor suite of
IMU and RGB camera images for relative localization in a map and coordination
with one another over a wireless communication network. Similar to [117, 44, 100],
a custom-trained object detection model processes each camera frame to output 2D
bounding boxes around objects (e.g., robots) within the field of view (FoV). Adver-
sarial image attacks targeting this perception model can cause misclassification and
mislocalization of the objects in the FoV. We formulate these adversarial misclassifica-

tions and mislocalizations as spurious measurements (false-positive detections) and

'Tn the context of statistical inference, this adversarial effect can be formulated, subject to certain
conditions, as a covariate shift [10]. That is for a given learned model y = fy(x) trained over a
dataset D = {(z;,y;)}?_, with probability distribution piain(;), a covariate shift is induced by the
perturbations dx on the input data at test-time such that piest(z; + 02) # Pirain(z;). This causes
type I (false positive) and type II errors (false negative) at inference.
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sporadic measurements (intermittent measurements incurred by misclassifications),
and propose a system-theoretic approach based on a variant Kalman filter to evalu-
ate their effects on relative localization and multi-robot coordination.

We evaluate our proposed framework through experiments. Additionally, we
present two multi-robot platforms equipped with open-source software used in our

experiments. Our framework is lightweight and well-suited for real-time applications.

6.1 Related Work

Adversarial Perturbations on Vision Tasks. Adversarial instances in a single-
task and static settings such as image classification are an active field of research
[49, 19, 65]. The adversarial samples are designed by adding carefully designed noise
or patches to the original image to mislead the model. The noise-based adversarial
samples are designed by two metrics: Euclidean L,-norms to bound the noise level [19]
or human-level perceptual similarity measured by Learned Perceptual Image Patch
Similarity (LPIPS) distance [65]. As most of these methods entail an iterative op-
timization process, some studies proposed the design of a universal (single) small
perturbation, for all images in image classification, semantic segmentation, and ob-
ject detection tasks [85, 137, 26]. The transferability of a designed adversary across
different architectures was studied in [72, 145]. Alternatively, some adversarial attacks
target the availability of object detection models by overloading the module, which
causes a significant increase in the inference time [121, 23]. A few studies extended
the previous results to the dynamical settings (e.g., object detection and following,
[54, 143], pose estimation [21], and perception-based control [58]) where the system
dynamics are of consideration in designing successful adversarial perturbations in

real-time.
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We further extend the prior results to the case of multi-robot coordination
where adversarial perturbations on the visual measurements may lead to the insta-
bility of the entire system.

Object Tracking, Localization, and Data Association. Tracking objects
(robots) using perceptual observations is a well-studied task [6, 115, 123, 44, 100, 150].
State-of-the-art approaches employ a tracking-by-detection paradigm, a sequential
process of (object) detection to obtain measurements, and then data association to
determine which measurement is associated with which track (e.g., relative position
to the object of interest [117]), enabling object tracking via a tracking filter. Some of
the widely used algorithms for solving the data association problem are GNN, JPDA,
PHD, MHT [100, 44, 123, 60, 105], and more recently learning-enabled solutions
such as SORT [13] and BYTE [150]. Alternative approaches follow a simultaneous
detection and tracking paradigm, wherein the association and detection are learned
jointly as one module [153].

However, the robustness of these methods for multi-robot coordination under
adversarial perception conditions is not well understood.

Adversarial Robustness and Defences for Learned Perception Mod-
els. We only review the most relevant work here and refer to [95] for a comprehen-
sive review of adversarial threat models and defense mechanisms for learning-enabled
frameworks. A very common approach to adversarial robustness in test-time is adver-
sarial training. Either L,-norm bounded perturbations [19, 145, 26] or human-level
perceptual similarity metrics that approximate the set of all imperceptible adversarial
perturbations [65] are used to generate the adversarial samples. The former is faster
while the latter results in a higher level of robustness. Moreover, adversarial training
has inherently a larger sample complexity and can cause standard vs. adversarially

robust generalization trade-offs in both static [118, 104] and dynamic settings [149].
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Figure 6.1: Illustration of reference frames and the perspective camera projection
model. {W} is the common inertial (world) frame, and {B;} is the body-fixed frame
of the i-th agent (robot) on which a forward-pointing centered camera is attached
with the coordinate frame {C}. We let R,,; =: R and Ry =: R which yields Ry, =
ResRew = RTRT. Finally, without loss of generality, we assume that the body frame
{B;} and the camera frame {C} have no offset and differ only in orientation.

Evaluating the consistency between the outputs of two perception modules can be
used to detect adversarial cases [61]. Alternatively, adversarial purification is used to
purify the adversarial perturbation before running the task [89]. Finally, conformal
prediction can be adopted to obtain a set of valid answers for any given adversarial

sample in classification tasks [45, 133, 10].

6.2 Methodology

Notations. We refer to Fig. 6.1 for the notations of robots’ poses, and the coordinate
frames. In particular, p;; = p, — p; denotes the relative position expressed in the
global frame {W}, while pf; = Reyp;; denotes the relative position expressed in the

camera frame {C}; of the i-th agent (robot).
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Figure 6.2: Overview of the perception-based multi-robot coordination. The contribu-
tion of this chapter is highlighted in the gray box, which encompasses the perception
module shown in the green box. This module integrates (Visual-Inertial Odometry)
VIO data and detected objects from the object detection module to provide state es-
timation for the ego-robot, along with capabilities for relative localization and object
tracking. The blue box shows the consensus-based coordination algorithm and the
adversary detection algorithm developed in Chapter 5. These two modules allow for
resilient coordination in the presence of adversarial attacks on images or transmitted
information over the communication network.

6.2.1 Objectives

We propose a framework to evaluate the resilience of multi-robot coordination with
learned perception modalities against adversarial image attacks. We model the effects
of a class of adversarial image attacks as producing sporadic (intermittent) and spu-
rious (false) measurements in perception-based relative localization. Our proposed
framework is shown in Fig. 6.2. It integrates the following modules: Detection in
Section 6.2.2: This module uses a learned perception model to process onboard RGB
camera images in real-time, detecting objects of interest (e.g., landmarks or neighbor-
ing robots) within the Field of View (FoV). The robot’s localization depends on this
module, which is vulnerable to adversarial attacks [49, 143]. Vision-based Relative
Localization in Section 6.2.4: This module converts the 2D bounding-box detections

from the perception module into relative positions of the robot to the objects of in-
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terest, and assigns a level of uncertainty to these 3D relative positions. Here, we
represent the effects of adversarial mislocalization as spurious localization measure-
ments. State Estimation in Section 6.2.5: This module employs a variant of the
Kalman filter to integrate the recovered 3D relative positions and VIO data, provid-
ing an accurate estimate of the robot’s position relative to the object of interest. It
addresses spurious and intermittent measurement data caused by adversarial image
attacks on the perception module through gating and data association techniques.
Coordination and Control in Section 6.2.6: This module provides consensus-based
coordination using relative positions provided by the state estimation (Kalman filter)
module.

In Section 6.3, we present two multi-robot platforms with open-source software
projects developed for this study. Finally, experimental results in Section 6.4 eval-
uate the resilience of the proposed framework for the perception-based multi-robot

coordination subject to adversarial image attacks.

6.2.2 Perception Model: Object Detection

We consider a multi-task learned perception model Y = P(I) for object detection
(e.g., YOLOVT [136] or RT-DETR [151]). P(-) takes an RGB images I as input and
outputs m > 0 detections of the form {Y}*, = {box, class, pr}’,, where the 4D
vector box = (xr,y1, wr, hy) is a bounding box at image space, centered at (xt,y1)
with the width wy and height hy, around each detected object belonging to a class
with a confidence probability pr. Here, we custom-trained the original YOLOvT7
model with 80 classes to detect 82 classes that include drones and jackal-UGV in our
experiments. See Section 6.4.1 for details. We also note we use YOLOVT since it is
fast (30 FPS), and it also has a better detection performance for small objects (e.g.,

small quadrotors) compared to its Transformer-based counterpart, RT-DETR [151].
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6.2.3 Adversarial Image Attacks as Adversarial Measurements

In adversarial settings [19, 65, 21, 143], a human-imperceptible adversarial perturba-
tion (noise) dI is designed and added to the original image frame I such that the error
of perception model P(-) is maximized by some metrics. There are various methods
to design the adversarial perturbation either ¢I online [143] or offline through a uni-
versal image attack [85, 137]. Despite the variety of methods for designing adversarial
image perturbations, their effects on the perception model’s output are categorically
similar. Specifically, for object detection models, such adversarial attacks can cause
misclassification [65, 10, 49], mislocalization [143, 54, 58, 21|, and increased latency
[121, 23]. Formally, for a perception (object detection) model P(-) and any two
samples 57 = (I, {ﬁ}go) and Sy = (I, {572}?1:/0), where I, = I; + 01, we define

dr(I5, 1), if class = class,

d(Sl, 52) = (621&)
00, otherwise,

P(I) = {Y1}7, = {box, class, pr}™,, (6.2.1b)

P(I+6I) = {Y,}, = {box, class’, pr'}",. (6.2.1¢)

in which dz(-,-) can be either an L,, distance with p € {0, 1,2, 00}, as defined in [19],
or a Learned Perceptual Image Patch Similarity (LPIPS) distance [65]. Additionally,
overload (latency) attacks [23] cause m’ > m in (6.2.1).

In static settings, the fast-gradient sign method (FGSM) [63] to design adver-
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sarial image attacks as follows?:

I, =I; + esign(Vy, J(Y, Y))7
s.t.
(6.2.2)
dI(IQaIl) - ||IQ - Il”oo = ||5I||oo S 777

I, € [0,255],

where € is a hyper-parameter chosen to ensure that 7 remains sufficiently small,
the sign operator sign(-) is applied element-wise to the gradient of the loss function
V1, J(Y,Y). In the Fast Gradient Method (FGM), the gradient of the loss function
is used directly without applying sign(-). In our case, the loss function of YOLOv7

[136] is defined by three terms as follows:

classification regression
e —— gf’\
J<Y7 Y) = Lobj + Lclass + Lbox 3 (623)

where Y = {box, class, pr} denotes the target (i.e. true class labels with confidence
probability pr = 1 and their respective box coordinates) and Y = P(I) is the model’s

inference output. We refer to [136] for details on the terms of the loss function.

Example 6.2.1. (FGSM adversarial image attack on YOLO Object Detec-
tion). Fig. 6.3 demonstrates the effect of FGSM adversarial image attack, as defined
in (6.2.2) with n = 10/255 on our custom-trained YOLOv7 object detection model.
To calculate the adversarial noise, we used minimally perturbed ground-truth boxes
and kept the class IDs unchanged to focus the adversarial attack’s impact on the lo-
calization and objectness terms of the cost function (6.2.3). As shown, the adversarial

noise resulted in a false positive by detecting a giraffe, a false negative by failing to

ZWe note that similar to [19], we normalize the 8-bit RGB values to the range [0, 1] when
calculating the adversarial perturbation and then remap them back to the range [0, 255].
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detect a drone, and a reduction in classification confidence for other detected objects.

In real-time dynamic settings, designing adversarial attacks and assessing their
effects pose additional challenges. Adversarial attacks on perception data can have a
longitudinal impact on the system’s stability and dynamics [143, 54, 57]. Given that
object detection outputs are used as measurements in a closed-loop control system (see
Fig. 6.4), we propose that adversarial image attacks targeting classification integrity/
accuracy (i.e. d(S1,S52) = oo in (6.2.1)) cause the unavailability of measurements.
In contrast, adversarial image attacks targeting localization integrity/accuracy (i.e.
d(S1,S2) # oo in (6.2.1)) induce (bounded) perturbations in measurements, specif-
ically affecting the localization of 2D bounding boxes in the image space. These
perturbations translate into 3D localization errors in Euclidean space and affect state
estimation, which will be modeled in Sections 6.2.4 and 6.2.5. Therefore, adversarial
misclassification and mislocalization are modeled as sporadic (intermittent) and spu-
rious measurements. This formulation facilitates resilience analysis that is agnostic to
both the specific adversarial image attack model and the targeted learned perception

(object detection) model.

Remark 6.2.1. (The Scope of Adversarial Image Attacks). It is important
to note that adversarial attacks causing norm-bounded disturbances on measurements
have been explored previously for perception-based control [1, 35] and state estima-
tion [149] in single-robot scenarios. In this dissertation, we extend this consideration
to both spurious and sporadic measurements induced by adversarial image attacks in
multi-robot coordination settings. Additionally, we note that we do not address the
class of generative adversarial image attacks, where inauthentic (fake) images are gen-
erated to replace the original robot’s camera image frames, resulting in perceptual data

injection (alteration) attacks with maximum disruption capability. For fundamental
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limitations on the detectability of such attacks, we refer to [57, 58].

6.2.4 Relative Localization with Adversarial Perception Data (Mislocal-

ization Effect)

Recall that the perception model P(I) provides detections as bounding boxes, box =
(x1, y1, Wr, hy), for the objects with position p, € {W} visible at the RGB image I}
observed at a time instant ¢, € Rso by the i-th robot in p, € {W}. Following the
pinhole camera model [50, 20], the mapping from the observed 3D point p, € {W}

onto the 2D image space is given by

_ X1 — Cg Xe = Y1 —Cy Ye
L= = ] = — R} 6.2.4a
‘fC Ze Y fc Zc ( )
T
[Zc Ye Zc} = —p; = —Rewpi = —Renw(p; — p,), (6.2.4Db)

in which the camera intrinsics (i.e. the focal length f. and the principal point

(cz,cy) = (W/2,H/2) in pixels) are known in a calibrated camera (see Fig. 6.1).
Next, we describe the robot’s relative localization with respect to a known

object of a known size (e.g., a landmark or another robot) detected by the object

detection module.

Assumption 6.2.1. We assume that the object of interest is in the field of view of all
robots coordinating in a common inertial frame (the world frame). Additionally, the
object is either sufficiently distant from the robots or small with uniform dimensions,

ensuring that the orthographic projection assumption holds.

Under Assumption 6.2.1, and for a planer object of known size (i.e. width

Wop; and height Hoeyp;) and given the detected bounding box box = (x1, y1, wr, hy) in
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the image plane, one can readily estimate of the object’s depth? as follows:

Wop;

W1

fe

~ 7, (6.2.5)

where 7., wy, and f. are given in (6.2.4).

Using the camera orientation Ry, which is available from the VIO pipeline,
and (6.2.4)-(6.2.5), one can approzimately recover the nominal relative position of the
robot with respect to the center of the object of interest, denoted by p! ~ (p, —p,) €

R3 and expressed in the common reference frame {W}, as follows:

T
W .
pl~ R, (fc ObJ) gl (6.2.6)
W1
1

Additionally, note that an adversarial image attack I as in (6.2.1) that induces lo-
calization error can be modeled as an offset dbox = (dxg, dyy, dwy, dhy) in the detected
box. As such, this offset affects the 3D localization in (6.2.6). Therefore, we modify
(6.2.6) to incorporate the effect of localization error and define a relative localization

uncertainty term for the recovered relative position as follows:

d

T+ o0x
. Won;
=p; +0p; & 5 c «J_ Yy U 2.
Pi p; +0pi = R, (f WI+()WI) y+oy| (6 7a)
1
RY” = (1 —pr)é+¢) I, (6.2.7b)

3For planar objects, under the orthographic projection assumption, the depth is approximately
equal to the distance from the camera to the object along the z-direction of the camera frame. (see
Fig. 6.1).
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where the additive term 0p; represents the 3D localization error caused by the adver-
sarial image attack, pr is the confidence probability of object detection module, and
€, € are small positive constants in the measurement covariance matrix R, modeling
the relative localization uncertainty. We will later use the covariance term (6.2.7b)
in a gating and data association problem in Section 6.2.5.

Finally, we remark that the assumption of known object size is common in
prior work on relative localization using single-view monocular cameras [117]. Al-
ternative approaches can be employed for depth estimation and relative localization

when detection is available from multiple views [112, 88].

6.2.5 State Estimation with Intermittent Adversarial Perception Data

(Misclassification Effect)

We use a variant of the Kalman filter with intermittent measurements [122, 140] to
integrate Visual-Inertial Odometry (VIO) data with perception data from the object
detection module. This integration compensates for the four-dimensional unobserv-
able subspace! in the VIO pipeline [127], allowing us to estimate the positions of
robots with respect to an object of interest within a map (e.g., a landmark in the
map). Additionally, it is important to note that the adversarial image attacks (per-
turbations) on the perception module can cause spurious and sporadic (intermittent)
measurement data (see Section 6.2.3), which do not follow the Gaussian noise distri-
bution assumed in the standard (optimal) Kalman filter derivation. It is known that
such measurement degeneracy can lead to instability in the optimal Kalman filter
(11, 122, 84, 142]. We empirically evaluate such degeneracy induced by adversarial

image attacks on the Kalman filter defined in what follows.

4The 4D unobservable subspace is induced by unknown initial conditions in 3D translational
dynamics and the heading (yaw) angle of the robot in the inertial (world) frame.
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Consider the robot’s relative position to a stationary object of interest, denoted
by p; =: p in® (6.2.7), the robot’s velocity v, and finally a common reference velocity,
denoted by v™". We let the Kalman filter state %) = col (p, V) € R® be the estimation

ref.

of p and v =v — v™", with the covariance P}, and the update rules as follows:

)A(k‘k_l = F)A(k_l, Pk|k—1 = FPk_lFT + Q, (628&)
f(k: - fikz|kz—1 + Bkaos(ypos - Cpos*k\k—l) + Kvel(yvel - Cve1§(1c|k—1)7 (628b)
Pir =Pt — BiKposCposPrik-1 — Kyl Cret Prjp—1, (6.2.8c¢)

Ko - Pk|k’—1C]—S];17

Sk = (CoPy—1Cy +R?), o€ {pos,vel}, (6.2.8d)
13 T‘Slg 01:2)0513 0
where F' = ) Q = ) Cpos = |:13 0:|7 Cyel = |:0 ]3:|7 and
0 I3 0 olyls

B = (1 — B) € {0,1} is a binary random variable that quantifies the availability of
relative position measurements y,o,s = p obtained using the perception data as de-

ref- are constantly

scribed in (6.2.7), while the velocity measurements yyo = v =v —v
available from the VIO module. In other words, J; = 1 at ¢, € R>o corresponds
to the case of missed measurements of (6.2.7) due to an adversarial image attacks.
Therefore the rate of missed measurements (i.e. the distribution of ;) is directly
influenced by the rate of successful adversarial misclassification as well as by the
magnitude of mislocalization errors in (6.2.7).

We note that the adversarially intermittent observation model in (6.2.8) is

adopted from the formulation of Kalman filter with intermittent measurements trans-

mitted over wireless networks [122, 11, 140]. Additionally, the fusion of VIO and

5For notational brevity and with a slight abuse of notation, we will drop the subscript i in this
section.
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perception data using a Kalman filter is similar to the approach in [41].

Gating and Data Association. Recall that the object detection model
generates multiple bounding boxes and thus multiple relative position measurement
candidates {p}7,’s are available for the Kalman filter in (6.2.8) through relative
localization (6.2.7) with the uncertainty quantified by RY*. To reduce the number
of candidate measurements for the Kalman filter, we use the Mahalanobis distance
[6, 100] to select an admissible subset of relative position measurements that are close

to the tracked relative position. This is achieved through gating as follows:

V= {p. | (1=5) (P, =) S (P, —P) <72 (6.2.9)

where (), and innovation covariance Sy are given in (6.2.8), and is 7, is the gating
threshold. We then associate the relative position with the minimum Mahalanobis

distance as the new measurement for the Kalman filter (see Fig. 6.2).

Remark 6.2.2. (Stability of Kalman Filter with Adversarial Measure-
ments). The stability of the Kalman filter in (6.2.8) is influenced by both the system
dynamics and the characteristics of adversarial measurements. First, the second-
order dynamics of the system, represented by the matriz F in (6.2.8), feature defec-
tive eigenvalues on the unit circle. This poses challenges for the stability analysis
of the Kalman filter with intermittent measurements [84, 140]. Additionally, since
the relative position measurements in (6.2.7) of the double-integrator system are sub-
ject to adversarial perturbations, the conditions for designing undetectable attacks are
satisfied [58, 64], [83, Thrm. 2], posing fundamental challenges (See also Remark
6.2.1). Moreover, the probability distribution of Sy, which reflects the success rate
of adversarial image attacks on the relative localization measurements (6.2.7), is un-

known a priori. Previous studies have investigated the stability of the Kalman filter
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under the assumption that By = (1 — By) follows a Bernoulli random process [122] or
the Gilbert-Elliott model [140]. Generally, there exists a critical threshold for the rate
of missed measurements (i.e., the probability distribution of B = 0) below which the
estimation error covariance remains bounded with high probability, while it becomes

unbounded above this threshold.

Remark 6.2.3. (Kalman Filter with Adversarial Training). An alternative
approach to (6.2.8), originally proposed in [149], can be adapted to adversarially train
a Kalman gain that allows for robustness to measurement perturbations 0p;. The ap-
proach in [149], however, does not consider adversarially intermittent measurements,

which are modeled by the binary variable B, € {0,1} in (6.2.8).

6.2.6 Resilient Multi-Robot Coordination

Consider a multi-robot system consisting of N > 3 mobile robots (quadrotors) with
states x; = col (p;,v;) € RS, with p, = p; — pf and ¥; = v; — v Vi € V =
{1,..., N}. Similar to Chapter 4, one can obtain a reduced-order model of quadrotor

dynamics as follows:

A B
—— —~
0 I 0 u; Xi,X‘,HZ'
S % = x| (i, %, 6:) , (6.2.10)
0 0 I —g+ L

cos¢;  sin ¢ AN
’U,i(XZ', Xj, 01) =g s (6211)
cos¢; —cos;| |Ap;

REZ@' )
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for which the control commands are obtained using feedback linearization as follows:

Ab; 1
= —R7'(¢})uj, (6.2.12)
Agi| I

with the coordination protocol

u = —« Z a?j(t)@i - 13]) — y0; + ™,
jEV

=—ad_ai((pi=p!) = (p; = P))) — (v =) + "0, (62.13)
JEV

where we obtain the robot’s relative position p; and velocity v; from the Kalman filter
in (6.2.8) and the neighbors’ position p;’s (or p;) from the communication network
(see Fig. 6.2). With a slight abuse of notation, the right-hand side of (6.2.13) refers
to the 2D positions in the z-y plane of the common reference frame {W}. The robots
can coordinate at the same altitude through altitude consensus or other approaches

[5].
Effect of adversarial image attacks. Recall (6.2.7) that models the 3D
localization error caused by adversarial image attacks on the i-th robot. Then (6.2.13)

can be represented as

u

w=—aY a)@ ) — v+ —a > aVip;, (6.2.14)
JEV JjEV

Sl

which implies adversarial image attacks on the ¢-th robot perception can be modeled
as bounded attacks on the control channel of the i-th robot that will be propagated
to the neighboring robots as well. In Chapter 5, we designed an observer-based moni-

toring framework that allows for detecting robots with compromised control channels
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(Also, see Fig. 6.2). We refer to the MSR-like algorithms as alternative approaches to

discarding compromised agents in a consensus-based coordination problem [37, 67].

6.3 Multi-Robot Platform Development

We have developed two multi-robot platforms for vision-based coordination with
learned perception modules over wireless communication networks. The first plat-
form includes a software package, TelloSwarm+, which we developed® for Tello-EDU”
quadrotors with SDK 3. The second platform includes two custom-built quadro-
tors equipped with VOXL flight kit® manufactured with ModalAI. We are currently

developing a software package? for the custom-built quadrotors (see Fig. 6.4).

6.3.1 Communication Network Architecture

A low-latency communication network is central to the safe operation of multi-robot
systems with decentralized and/or distributed tasks. This communication encom-
passes information transmission both between the robots and between the robots
and a workstation (PC). We refer to [47, 46] for a critical review of communica-
tion networks and their open problems in the context of multi-robot systems. Here,
we employ the server-client model which has been demonstrated to be an efficient
communication approach for multi-robot systems with collaborative tasks [132].

In what follows we elaborate on the communication network of Tello-EDU
quadrotors in TelloSwarm+ (see Fig. 6.5). It is important to note that Tello-EDUs
are small quadrotors that can communicate over 2.4 GHz Wi-Fi but cannot run algo-

rithms onboard. Therefore, an efficient communication network must be established

Shttps://github.com/SASLabStevens/TelloSwarm
"https://www.ryzerobotics.com/tello-edu

8h‘ctps ://www.modalai.com/
‘https://github.com/SASLabStevens/AutonomyStack


https://github.com/SASLabStevens/TelloSwarm
https://www.ryzerobotics.com/tello-edu
https://www.modalai.com/
https://github.com/SASLabStevens/AutonomyStack

120

to replicate peer-to-peer communication among the robots on a centralized PC, al-
lowing distributed algorithms to be executed for each robot in a controlled setting.
To this end, we use a server-client model to establish the communication network for
TelloSwarm+.

Our network includes one UDP client that sends control commands from a
workstation PC to the robots, and two UDP servers on two threads to receive the
robot’s onboard state information (e.g., IMU data) and the acknowledgment message
for received control commands. Additionally, onboard video streams from each drone
are available through separate threads running an OpenCV UDP stream module!®.
Overall, the network runs (2 + N) threads for N Tello-EDU quadrotors.

We note that using threads as independent units of execution within a pro-
cess with shared memory enables not only lightweight, low-latency communication
between the robots and the PC but also efficient inter-robot message passing, which
is essential for decentralized control and monitoring algorithms. It is also noteworthy
that an alternative ROS implementation of this architecture, particularly for video
streaming, encounters considerable latency due to the more computation-intensive
nature of message passing between ROS nodes. For a detailed latency analysis of

ROS, we refer to [62, 90].

6.4 Experimental Results

We conducted 15 experiments to evaluate the framework shown in Fig. 6.2, excluding
the adversary detection component, using the developed TelloSwarm+ platform!!.
The objective is to evaluate how adversarial image attacks targeting the learned

perception module (object detection), with varying success rates, induce different

10yideoCapture ()
1 The open-source code is available at https://github.com/SASLabStevens/TelloSwarm.
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levels of degeneracy in the relative localization, state estimation, and coordination of

robots that rely on the compromised perception module (See Remark 6.2.2).

6.4.1 Custom-trained Object Detection Model

We fine-tuned a YOLOV7 model [136] to extend its detection capability from the 80
classes of the COCO-MS dataset to 82 classes, including our drones (the quadrotors
in Fig. 6.4) and jackal-UGV'2.

Custom dataset. We collected 720 images of the quadrotors shown in Fig.
6.4 and jackal-UGYV in the flight area of the Safe Autonomous Systems Lab at Stevens
as well as some high-fidelity synthetic images of the parrot ar drone 2.0 (quadrotor)
in the AirSim simulation environments. The images were split into 500 for training,
150 for validation, and 70 for testing. We then augmented the training dataset to
a total of 1,500 images. Our dataset is available as open source!3. Additionally, for
the rest of the 80 classes of COCO-MS, we used a mini training set'® (25K images
~ 20% of the original COCO dataset 2017) that has been shown to have a strong
performance correlation with the original dataset [114].

Training procedure on the custom dataset. We first pre-trained the
YOLOvVT7-tiny model using its original weights on our custom dataset for 15 epochs,
with a batch size of 32 and a learning rate of 0.001. Next, we froze the backbone
(the first 28 layers) and fine-tuned the pre-trained model for 50 epochs, with a batch
size of 32 and a learning rate of 0.0001. During both the training and experimental
phases, we used an image size of 640 x 640. The accuracy of the custom-trained
model is reported in Fig. 6.6.

Adversarial Image Attacks. As discussed in Section 6.2.3, adversarial image

2https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
3https://universe.roboflow.com/saslab/saslab-multirobot.
“https://github.com/giddyyupp/coco-minitrain


https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://universe.roboflow.com/saslab/saslab-multirobot
https://github.com/giddyyupp/coco-minitrain
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attacks, regardless of their design method, can cause categorically similar adversarial
effects that are misclassification [65, 10, 49], mislocalization [143, 54, 58, 21], and
increased latency [121, 23] in learned perception models (e.g., object detection [143,
54] and pose estimation [23]). Therefore, we manually generate adversarial effects
of varying severity to evaluate our framework shown in Fig. 6.2. This approach
allows for resilience analysis of the proposed framework, independent of the specific
adversarial image attack model and the targeted learned perception (object detection)

model.

6.4.2 Perception-based Multi-Robot Coordination

Fig. 6.7 shows an overview of our experimental setup. In the experiments, two Tello-
EDU quadrotors were equipped with VIO and a custom-trained YOLOv7 model and
communicated over a wireless network as detailed in Fig. 6.5. To achieve higher
quality, we use pose data from a Vicon motion capture system to simulate the VIO
data. Each quadrotor then runs the framework outlined in Fig. 6.2 and detailed in
Section 6.2 on a separate thread for 1,000 iterations, with each iteration taking an
average of 35 milliseconds'® on a workstation PC running Ubuntu 20.04 LTS.

In the experiments, the jackal-UGV is the point of interest p, in the map.
Each Tello-EDU quadrotor uses a custom-trained YOLOvVT object detection model to
detect the jackal-UGV and then calculates its relative position to the detected jackal-
UGV as detailed in Section 6.2.4. The quadrotors then coordinate using the control
protocol defined in (6.2.13) with o = 0.72828 and v = 1.09242. In the z-direction

of the common frame (see Fig. 6.7), the control protocol sets the common velocity

15The value, 35J_FI§ milliseconds per iteration, is reported under standard settings (i.e., no ad-
versarial attack), associated with the experiment listed in the first row of Table 6.1). Adversarial
attacks causing overload can increase this value to 41719 milliseconds per iteration, associated with

the experiment listed in the second row of Table 6.2, or potentially higher.
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Table 6.1: Adversarial Misclassification as Intermittent Measurements (False Nega-
tives) - 11 Experiments

Adversary Performance Metrics!

Brx ~ Bin(n, p) RMS@QD%M) RMS(p3;,Pa1) RMS(p31.pa1)  supisy [Pl lec(fj? IPxll,
n =0, p=0 0.16 0.06 0.18 0.09 41.46
n =1000, p=0.2 0.29 0.08 0.30 1.05 56.92
n =1000, p=04 0.15 0.09 0.17 0.40 75.20
n = 1000, p=10.6 0.13 0.09 0.11 1.40 124.88
n =1000, p=10.8 0.10 0.10 0.09 1.40 231.77
n = 1000, p=0.95 1.99 0.62 1.49 11.88 1985.12
n =200, p=02 0.07 0.06 0.05 0.60 87.87
n =200, p=04 0.12 0.10 0.16 1.54 213.00
n =200, p=0.6 0.38 0.11 0.42 2.54 294.12
n =200, p=0.8 0.15 0.12 0.21 3.31 586.10
n =200, p=0.95 0.55 0.32 0.55 12.86 3613.21

! Root mean square (RMS) was calculated for the 2D position in the 2-y plane for ¢ > 10 sec to exclude
the effects of initial conditions.

ref.

reference v™" = 0, and p3; = p5 — pf = —0.9 meters. In the y-direction, the control

protocol sets the common velocity reference v = 27 f COS(%/{), where f = 0.1 and
k € [0,1000], and p3, = p}, = 0. We set the IoU and confidence thresholds of the
object detection model to 0.45 and 0.15, respectively, at inference time. The Kalman
filter in (6.2.8) is initialized with Xo_1 = 0, Po—y = diag (/3,0.0513), Ts = t}, —tp—1 >
0.02 in the state transition matrix F, o2, = 0.05, 02, = 0.04 in the covariance of the

process noise Q, and finally € = 0.4, ¢ = 0.01 for R?* in (6.2.7b) and Ry = 0.0781.
We also set the gating threshold 7, = 2.4476 in (6.2.9).

Experiment Set I (Adversarial Misclassification as Sporadic Measurements).
We conducted a set of 11 experiments, listed in Table 6.1, to evaluate the degenera-
tive effect of adversarial misclassification (6.2.1), modeled as sporadic (intermittent)
measurements, on the perception-based relative localization and state estimation in
the framework shown in Fig. 6.2. The perception (YOLOvV7 object detection) model

of agent (quadrotor) 2, shown in Fig. 6.7, is subject to adversarial misclassification.
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The success rate of adversarial misclassification (equiv. the failure rate of inter-
mittent measurements) is quantified by the probability distribution of the binary
variable g5 € {0,1} in (6.2.8) and (6.2.9). We let 3 follow a binomial distribution,
B) ~ Bin(n, p), with n trials and a success probability'® of p. As detailed in Remark
6.2.2, the probability distribution of 3;, = (1— 3;), which reflects the rate of intermit-
tent measurements, has a direct degenerative effect on the stability of Kalman filter
in (6.2.8).

In the experiments listed in Table 6.1, the jackal-UGV (the reference point
for coordination) was adversarially misclassified as an airplane by the compromised
perception of agent (quadrotor) 2, which caused missed measurements, represented
by fr = 11in (6.2.8) and (6.2.9). From the induced 2-norm of the state estimation co-
variance matrix Py, of the Kalman filter, reported in the last column of Table 6.1, one
can conclude that as the rate of missed measurements increases (i.e. the probability
of adversarial misclassification p in the Adversary column), the uncertainty in state
estimation correspondingly increases. Additionally, for a given success probability
p of adversarial misclassification, experiments with fewer trials (n = 200 compared
to n = 1000, as listed in the Adversary column) have longer consecutive periods of
misclassification, which causes a larger increase in state estimation uncertainty, as
reported in the last column. This effect is also demonstrated in Figs. 6.8 and 6.9.
Fig. 6.8 shows the evolution of the induced 2-norm of state estimation covariance
matrix Py, in (6.2.8) over time over time for three cases of no adversarial attack, and
adversarial attacks at two different rates, corresponding to the first, third, and sev-
enth rows of Table 6.1. The induced norm of the state estimation covariance matrix

serves as a metric for evaluating the peak-covariance stability of the Kalman filter

16The probability of success of a single trial, p, in the binomial distribution represents the prob-
ability of successful misclassification in (6.2.1) and equivalently represents the probability of single
failed relative localization measurement (i.e. §5 = 1) for the Kalman filter in (6.2.8).
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with intermittent measurements [140]. Additionally, Fig. 6.9 shows the evolution of
the trace of the state estimation covariance matrix Py, as another stability metric
[122], together with timestamped image frames and perception data for the adversar-
ial case of 3y ~ Bin(n = 200, p = 0.4) listed in the seventh row of Table 6.1. Finally,
Figs. 6.10 and 6.11 show the coordination trajectories of the quadrotors for the stan-
dard and adversarial cases, respectively, corresponding to the first and seventh rows
of Table 6.2. Overall, the results suggest the higher rate of adversarial misclassifi-
cation causes a larger level of degradation in the Kalman filter (6.2.8) that relies on
the localization measurements (6.2.7). In our experiment, we observed that a higher
rate of missed measurements caused the compromised agent (quadrotor 2) to stall
(hover) for larger periods (see (6.2.13)), leading to a drift in the coordination. Also,
the experiment listed in the fifth row of Table 6.1 resulted in a crash. However, it is
also important to note that the proposed framework, shown in Fig. 6.2, significantly
reduced the level of degradation and maintained the system’s stability in the presence
of adversarial misclassification that caused intermittent measurements. For instance,
despite the presence of missed measurements and spurious measurements, Fig. 6.11a
shows the successful state estimation of the second robot’s relative position to the

jackal-UGV, denoted by ps, that is used in the coordination protocol (6.2.13).

Experiment set II: Adversarial Mislocalization as Spurious Measurements.
We conducted a set of 4 experiments, listed in Table 6.2, to evaluate the degener-
ative effect of adversarial mislocalization (6.2.1) that cause spurious measurements
and adversarial overload [23], on the perception-based relative localization, state esti-
mation (6.2.8) and gating (6.2.9) in the framework shown in Fig. 6.2. The perception
(YOLOVT object detection) model of agent (quadrotor) 2, shown in Fig. 6.7, is sub-

ject to adversarial mislocalization at different rates. In the experiments, the bounding
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Table 6.2: Adversarial Mislocalization as Spurious Measurements (False Positives) -
4 Experiments

Adversary! Performance Metrics?
dbox RMS(T’217§21) RMS(Pghﬁm) RMS(p3;, Pa1) SUpg>1 HPk||2 Ijﬁl,(i){) HPkHQ
b=10, q==+15% 1.07 0.12 1.07 0.07 40.40
b=10, q==+30% 0.65 0.20 0.59 1.20 44.32
b=10, q=+45% 1.12 0.25 0.99 1.25 46.08
b=10, q==+75% 0.80 0.21 0.74 1.25 45.71

1 = 10 spurious bounding boxes were adversarially generated by perturbing the nominal detected
bounding box around the object of interest by ¢ € {£15%, £30%, £45%, +75%}. Additionally, their
probability confidence pr was set 10% more than the nominal one.

2 Root mean square (RMS) was calculated for the 2D position in the z-y plane for ¢ > 10 sec to exclude
the effects of initial conditions.

boxes of detected jackal-UGV (the reference point for coordination) were adversarially
mislocalized as described!” in the footnote of Table 6.2.

Figs. 6.12 and 6.13 shows the results associated with the experiment listed in
the second row of Table 6.2. As shown in Fig. 6.13, adversarial mislocalization can
generate a significant number of spurious bounding boxes, leading to a substantial
increase in spurious relative position measurements (6.2.7). These spurious mea-
surements impose a computational overhead on the components of the perception
module, shown in Fig. 6.2, which resulted in latency for the compromised quadrotor.
Additionally, the adversarial mislocalization caused the failure of the data associa-
tion module at ¢t ~ 11, shown in Fig. 6.13a. This failure led to a large error in the
Kalman filter’s estimation of the relative measurements, resulting in a significant drift

in multi-robot coordination.

Experiment set III: Mixed Adversarial Misclassification and Mislocaliza-
tion. We conducted an experiment, listed in Table 6.3, to evaluate the degenerative

effect of both adversarial misclassification and mislocalization (6.2.1) that cause spo-

1T"We note that the perturbations applied to the nominal bounding boxes were calculated based on
the top-left and bottom-right corners, (z1, y1, z2, y2), of the bounding box, rather than (x1,y1, wr, hy)
coordinates.
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Table 6.3: The Effect of Mixed Adversarial Misclassification and Mislocalization

Adversaries! Performance Metrics?
B ~ Bin(n,p) & dbox  RMS(Py;, Py) RMS(p31,Py) RMS(p3y, pyr)  supsy [Pl ch(flo [Pl

n =200, p=0.2
b=5, q=+75%

0.23 0.12 0.22 1.55 103.100

1 b = 5 spurious bounding boxes were adversarially generated by perturbing the nominal detected bounding
box around the object of interest by ¢ = £75% and by increasing the probability confidence by 10%.

2 Root mean square (RMS) was calculated for the 2D position in the z-y plane for ¢ > 10 sec to exclude the
effects of initial conditions.

radic and spurious measurements, on the perception-based relative localization, state
estimation (6.2.8) and gating (6.2.9) in the framework shown in Fig. 6.2. The per-
ception (YOLOVT object detection) model of agent (quadrotor) 2, shown in Fig. 6.7,
is subject to adversarial attacks. In the experiments, the bounding boxes of detected
jackal-UGV (the reference point for coordination) were adversarially misclassified as
an airplane, which caused missed measurements, represented by J; = 1 in (6.2.8) and
(6.2.9). Additionally, the bounding boxes of detected jackal-UGV were adversarially
mislocalized as described in the footnote of Table 6.3. Adversarial misclassification
and mislocalization occur simultaneously at some time instances during the experi-
ment.

Figs. 6.14 and 6.15 show the result of the experiment. The evolution of
the trace of the state estimation covariance matrix Py, together with timestamped
image frames and perception data subject to adversarial mislocalization as well as
adversarial misclassification with f; ~ Bin(n = 200,p = 0.2) are shown in Fig.
6.14. One can observe the degenerative effect of missed measurements as peaks in
the Trace(Py). Fig. 6.15 shows the coordination trajectories of the quadrotors. This
experiment demonstrates the effectiveness of the proposed framework, shown in Fig.
6.2, in mitigating degradation caused by adversarial image attacks and providing an
estimation of relative positions despite adversarially induced sporadic (intermittent)

and spurious measurements.
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(a) TelloSwarm+ Platform

(b) Custom-built VOXL-equipped Platform

Figure 6.4: Multi-robot Platforms. (a) The TelloSwarm+ platform is an extension of
our prior work [4] with vision capability and efficient multi-threaded wireless commu-
nication capability. (b) The VOXL-equipped platform is a custom-built quadrotor
that allows for the onboard implementation of control, monitoring, and deep learning
algorithms.
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Figure 6.5: Multi-robot communication architecture for TelloSwarm+. The network
establishes a multithreaded server-client architecture over Wi-Fi 802.11 using the
UDP protocol to achieve fast, low-latency communication with each robot. A motion
capture system provides the ground truth poses of the robots.
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Figure 6.6: The accuracy of custom-trained YOLOvV7 model. mAP (mean average
precision) is calculated based on the Intersection over Union (IoU) between the de-
tected bounding boxes and ground-truth bounding boxes, with IoU thresholds of 0.5
and ranging from 0.5 to 0.95.
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Figure 6.7: Experimental setup for perception-based multi-robot coordination subject
to adversarial image attacks. The experiments use the framework shown in Fig. 6.2.
Two Tello-EDU quadrotors perform relative localization with respect to the jackal-
UGV using their respective VIO and object detection model that detects the jackal-
UGV. The quadrotors also coordinate their estimated relative positions through the
control protocol (6.2.13).
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Figure 6.8: The induced 2-norm of state estimation covariance to adversarial mis-
classification as intermittent measurements at different rates. see Table 6.1 for more
comparisons.
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(a) The trace of state estimation covariance matrix

t=19.57 sec @ 19.65 sec
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(b) Timestamped perception and relative localization of agent 2

Figure 6.9: Results from a two-agent perception-based coordination experiment using
the framework shown in Fig. 6.2, subject to adversarial misclassification as detailed
in the seventh row of Table 6.1. The peaks in (a) reflect the degenerative effect
of adversarial misclassification inducing missed measurements in the Kalman filter
(6.2.8). (b) The boxes with labels on top are the detections from the custom-trained
YOLOvVT model, while the green boxes with labels underneath are calculated by
projecting the 3D relative position estimations from the Kalman filter into the image
space to determine the box’s center, and by using the object’s known size to compute
the box’s width and height in the image. Additionally, the image frames in (b) have
been cropped for better visualization. The original camera image size was 640 x 480

pixels.
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Figure 6.10: Results from a two-agent perception-based coordination experiment in
standard settings (i.e., no adversarial attacks on the perception module), using the
framework illustrated in Fig. 6.2. Performance metrics and comparisons for this

experiment are detailed in the first row of Table 6.1.
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Figure 6.11: Results from a two-agent perception-based coordination experiment with
adversarial misclassification in the perception module, using the framework illustrated
in Fig. 6.2. The adversarial misclassification rate is modeled by a binomial distribu-
tion Sy ~ Bin(n = 200,p = 0.4) in (6.2.8). Performance metrics and comparisons for
this experiment are detailed in the seventh row of Table 6.1.
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Figure 6.12: Timestamped perception and relative localization of agent 2 subject to
adversarial mislocalization. The results are associated with the experiment listed in
the second row of Table 6.2. The boxes with labels on top are the detections from
the custom-trained YOLOv7 model, while the green boxes with labels underneath
are calculated by projecting the 3D relative position estimations from the Kalman
filter into the image space to determine the box’s center, and by using the object’s
known size to compute the box’s width and height in the image. Additionally, the
image frames have been cropped for better visualization. The original camera image
size was 640 x 480 pixels.
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Figure 6.13: Results from a two-agent perception-based coordination experiment with
adversarial mislocalization in the perception module, using the framework illustrated
in Fig. 6.2. The adversarial mislocalization involves augmenting the nominal output
of the object detection model with b = 10 spurious bounding boxes. The spurious
boxes were generated by adversarially perturbing the nominal detected bounding box
around the object of interest (jackal-UGV) by ¢ = £30% and increasing their proba-
bility confidence by 10%. Performance metrics and comparisons for this experiment
are detailed in the second row of Table 6.2.



139

2.0 —
e, i —— agent 2
Q. 1
b : --- agent1
5157 1
© 1
= :
N 1
2101 !
(@) 1
G I
°© |
© 051 ! ‘
© 1
E | UL UL . .-JJL Ml
0.0 T T T T T T T T
0 5 10 15 20 25 30 35
Time [sec]
(a) The trace of state estimation covariance matrix
= 191-32 sec ., t=19.50sec

iackal=l/GV"0.92

jackal=LiC;

track id: 0.0_jackal=UGV| airplane 0.
Cov-trace 0.20
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Figure 6.14: Results from a two-agent perception-based coordination experiment us-
ing the framework shown in Fig. 6.2, subject to both adversarial misclassification
and mislocalization as detailed in Table 6.3. The peaks in (a) reflect the degenerative
effect of adversarial misclassification inducing missed measurements in the Kalman
filter (6.2.8). (b) The boxes with labels on top are the detections from the custom-
trained YOLOvVT model, while the green boxes with labels underneath are calculated
by projecting the 3D relative position estimations from the Kalman filter into the
image space to determine the box’s center, and by using the object’s known size to
compute the box’s width and height in the image. Additionally, the image frames in

(b) have been cropped for better visualization. The original camera image size was
640 x 480 pixels.
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Figure 6.15: Results from a two-agent perception-based coordination experiment with
adversarial misclassification and mislocalization in the perception module, using the
framework illustrated in Fig. 6.2. The adversarial misclassification rate is modeled
by a binomial distribution 8y ~ Bin(n = 200,p = 0.2) in (6.2.8). The adversarial
mislocalization involves augmenting the nominal output of the object detection model
with b = 5 spurious bounding boxes. The spurious boxes were generated by adver-
sarially perturbing the nominal detected bounding box around the object of interest
(jackal-UGV) by ¢ = £30% and increasing their probability confidence by 10%. Per-
formance metrics for this experiment are detailed in Table 6.3.
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Chapter 7

Conclusion and Future Work

In this dissertation, we considered the resilience of multi-robot systems with wire-
less communication and learned perception modules in the context of coordination
and formation control. We first considered resilience to worst-case scenario adver-
saries that exploit the vulnerabilities of wireless communication. Our results extend
the previous results to the case of switching communication networks with intermit-
tent connections that require to maintain connectivity only in an integral sense rather
than constantly throughout time. This relaxation allowed us to design principled algo-
rithms to detect and mitigate a class of adversarial attacks. We also characterized the
system resilience to a worst-case set of malicious agents (robots) in a network as well
as the network resilience to permanent and intermittent disconnections. In the second
part of this dissertation, we considered a class of adversarial image attacks target-
ing the robots’ learned perception models in the form of adversarial misclassification
and mislocalization. We demonstrated that the resilience of multi-robot coordination
under adversarial perception can be formulated and enhanced as resilience against

sporadic (intermittent) and spurious measurements in a state estimation problem.

7.1 Summary

In Chapter 3, we considered the security goals of data confidentiality and integrity for
a class of multi-agent (robot) control systems seeking average consensus. We proposed
a decentralized attack detection framework designed to detect stealthy attacks that
target the data integrity and stability of the multi-agent control systems. The frame-

work includes two sets of observers: local and central (global) observers. It leverages
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topology switching at the global level and local monitoring to detect the attacks.
The approach is scalable as it relies on decentralized local observers for detection.
Additionally, by enforcing partial observability, the framework preserves the privacy
(confidentiality) of the initial conditions of the multi-agent system’s states. In our
analysis, we derived theoretical conditions for the detectability of stealthy attacks.

Chapter 4, extends the results of Chapter 3 to the case of formation control
for a network of small Unmanned Aerial Vehicles (UAVs). Based on the theoretical
finding of Chapter 3, we proposed a distributed attack detection framework for a
relatively small group (e.g., N < 10) of UAVs that are subject to stealthy attacks.
We have also developed an open-source software package for conducting indoor flight
experiments using a class of small UAVs. We illustrated the performance of our
proposed framework through various experiments. We demonstrated the performance
of our proposed framework through various experiments. We believe this open-source
software package will be beneficial for the robotics and control community.

In Chapter 5, we considered the security goals of data integrity and availability
for a class of multi-agent (robot) systems. We considered the consensus and formation
of multi-agent (robot) systems over a time-varying communication network subject
to deception and DoS attacks. deception attacks target the data integrity in wireless
communication and DoS attacks target the data availability. We showed, for a given
integer number F', the communication network requires to be at least (F' + 1)-vertex-
connected (resp. (F + 1)-robust) in an integral sense and uniformly in time over
a period of time T for resilience to an F-total (resp. F-local) adversary set that
upper bounds the number of malicious agent with deception attacks. These bounds
provide a relaxed compared to the existing ones in the literature. We presented
theoretical guarantees and explicit bounds for exponentially fast convergence to the

consensus/formation equilibrium in the presence of constrained DoS attacks. We
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also presented a distributed attack detection framework with theoretical guarantees,
which allows for resilient cooperation.

In Chapter 6, we developed two multi-robot platforms with perception and
wireless communication capabilities. The platforms allow for experimental studies
on adversarial image attacks on the perception module of multi-robot systems. We
demonstrated that a class of adversarial image attacks on the robots’ perception mod-
ules cause categorically similar effects including misclassification and mislocalization,
which can be formulated as sporadic (intermittent) and spurious measurement data.
We then proposed a framework that allows for state estimation and perception-based
relative localization in the presence of intermittent and spurious measurements caused

by adversarial image attacks on the perception module.

7.2 Future Directions

The development of resilient cyber-physical systems (CPS), particularly multi-robot
systems, continues to be an active area of research with many open problems [102]
and security goals outlined in [18].

In our proposed frameworks in Chapters 3-5, we implicitly assumed that agents
(robots) have pre-designed collision-free set-points. In the face of attack detection
and reconfiguration, collision-free trajectory planning as a contingency plan could be
considered as a future research direction for resilient multi-robot coordination.

We proposed the (i, T)-PE connectivity in (5.2.1) as relaxation to point-wise
in-time connectivity (e.g, static network), whose connectivity uniformly in time allows
for exponential stability and convergence in the presence of time-constrained DoS
attacks (see Proposition 5.2.6). The uniformly in-time persistent excitation (PE) of

connectivity requirement in (5.2.1) can be further relaxed [7, 8] to allow for asymptotic
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stability and convergence in the presence of arbitrarily persistent DoS attacks.

In terms of privacy and data confidentiality, one promising research direction
involves designing communication network topologies based on geometric symmetry
and automorphisms [126, 125]. This principled approach enables the creation of un-
observable subspaces that limit the ability to reconstruct the entire network from the
locally available data of each (compromised) agent, thereby ensuring confidentiality.

Finally, considerable effort could be devoted to resilience against adversarial
perception models in multi-robot settings. In particular, the derivation of theoreti-
cal bounds for resilience to adversarial sporadic and spurious measurement data in
a state estimation problem for systems with degenerative dynamics (i.e. repeated

eigenvalues) is an area of interest.



Appendix A

Proofs of Chapter 3

A.1 Auxiliary Results

The following Definition and Lemma are used in the Proof of Theorem 3.2.4.

Definition A.1.1. The Laplcaian matrix of the graph composed of switching links
between two communication graphs is block diagonalizable, where each block, also
called a component, encodes either a single (added /removed) switching link or a group

of them are connected.

The foregoing definition can be formally presented as follows: consider a net-
work topology that switches between two distinct topological configurations with
respective Laplacian matrices L,()—g and L,)—q, Where q',q € Q with q' # q,
and let ALy = Ly — Ly denote the difference between these two Laplacian matri-
ces. Then, from Definition 2.2.2, Al is associated with the induced graph AG, =
(Vq, A&y, AA,), that specifies connected graph component(s) corresponding to added/

removed communication link(s) in the communication network such that

Vq = (U_,D.) U Dy, s.t Vo=V, (A.1.1)

(i,7) € A&q if [AA]ij = af —aj; #0 < [ALgli; #0, (A.1.2)

where D, denotes the set of nodes (agents involved in switching links) in c-th con-
nected component with |D.| > 2 and Dy N Dy = 0 for any ¢, j' € {1,--- ,c}, i # j'.
Also, Dy denotes the set of singletons i.e. single nodes that are not involved in any

switching link. Then, there exists a permutation matrix P, PPT = I to relabel the



nodes and represent the Laplacian matrix AL, in block diagonal form, (cf. [87, Ch.

6.12]), as follows

PALLP" = Ly = diag {ALy(Dy), - - , ALy(De), ALg(Ds)}, (A.1.3)
where AL4(D.) denotes the Laplacian matrix of the c-th connected component and
AlL4(Ds) = 0.

Lemma A.1.1. Consider system in (3.1.4) with topology switching from normal mode
o(t) =1 to a safe mode o(t) = q € Q and the measurements set M in (3.1.5), and
let ALy = Lq — Ly denote the difference of the Laplacian matrices in safe and normal

mode. Then under condition
Im(ALy) Nker ([C] C!T") =0, (A.1.4)

every connected graph component has at least one globally monitored node (agent),

that is
D-NM#£AD, Vee{l, -, c}. (A.1.5)

where Cy and C, are diagonal elements of C in (3.1.5) and D. denotes the set of

nodes in c-th connected component of ALy as given in (A.1.1).

Proof. We first show (A.1.4) is invariant under permutation of ALq which is

introduced in (A.1.3) and accordingly permutation of [C] C!]". To this end, from



the definition of nullspace, we have
Cx
ker Al | =z € RY | Alqr =0, (A.1.6)
C

from which we obtain either

Algx ¢ Im (AlLy) <= Alqz =0, (A.1.7)
or
Cx
04Y = ALy € Im (ALy) —> Y=o, (A.L8)
Cy

where the latter, (A.1.8), is in contradiction with condition (A.1.4). Now under the

Cx
permutation defined in (A.1.3), AlLgx = 0in (A.1.6) can be rewritten in block-

C,
partitioned diagonal form as
Cx = Cx T éx I
P'L,Px = P'lagx=1]_ |Lix=0, (A.1.9)
C, C, C,
in which y = Pz denotes the relabeled z such that
X = col (x1,---,Xe) = Pz, with
Xc = col (z;), VieD., VYce{l,---,c}. (A.1.10)

Also, Cr = CPT = {Ci ﬁ}, k € {x,v} is a block-partitioned binary matrix



that specifies monitored agents of each component *. To show the results in (A.1.7)
and (A.1.8) hold also for the transformed form in (A.1.9), one need to verify the

invariance of (A.1.4) under the permutation by P, that is
Im(ALy) Nker ([C] CITT) =0 «— Im(Ly) Nker ([C] CI]T) =0.  (A.1.11)

To show this, from the range and nullspace definition, for subspaces in (A.1.11) we

have
m(ALg) = {Y e RV | Y = ALqz(t)}, (A.1.12)
Cx
ker = ker(Cy) Nker(C,) = {X¥ e RY | C,X =0, C,.X =0}, (A.1.13)
C,
and

In(Lq) = {¥ € RY | Y = Lax(t) = LyPa(t)}

- {j’z e RV | PTY = PTL Pu(t) = y} — P Im (ALy), (A.1.14)

!Note that PT permutes the columns of binary matrix Cy whose row-vector elements are ¢, , Vi €

My, k € {X,’U}.



where we used (A.1.3) and x(¢) = Pz(t) as in (A.1.10) and (A.1.12). Similarly,

C, . .
ker y = ker(Cy) Nker(Cy,)
C,
:{ eRN | E.X =0, év;if:o}
— {x eRY|C,PTX =0, CP X= o}
:{XERN|C X =0,CAX=0PX= X}
Cx
= P ker . (A.1.15)
C,
Then
- Cx C;
Im(Lg) Nker | | =P Im (ALq) NP ker
C, C,
Cy
=P | Im (ALq) N ker =P(0)=0. (A.1.16)
C,

where we used fact 2.9.29 in [12] and condition 1.

Now one can prove (A.1.5) by contradiction. Assume (A.1.5) does not hold,
that is 3¢’ € {1,--- ,¢}, s.t. Do N M = (), under which we have the ¢’-th block in
(A.1.9) such that

ALy(Do)xe(t) =0, C=CY =0, (A.1.17)

which holds for all ye(t) with ALg(De)xe(t) € Im(ALy(Dy)) C Im(Lg) as in



Q¢
%A
c
QX
=
()¢
<5

(A.1.17) Im (ALy(Dy)) € ker = Im(Lq) N ker ([ ]T) # 0 that

9
C¢

v

contradicts (A.1.11).

A.2 Proof of Lemma 3.2.1

Note that the Laplacian matrix L, of every connected undirected (or strongly con-
nected and balanced directed) graph has only one zero eigenvalue, A = 0, with the
corresponding eigenvector 1y such that L,)1x = 0 [93]. Then, given the structure
of Ay in (3.1.4), (A = 0,w, = [(l/gN)lND is an eigenpair of system matrix A,
associated with that of Laplacian L,y with o(tp—1) = q € Q, t € [tp_1,1;). Also,
it can be verified that the eigenpair (A = 0,w,) lies in the unobservable subspace of
system (3.1.4) as it is a nontrivial solution to the PBH test for observability:
M —Aq

w, =0, A=0€C, (A.2.1)
C

C =diag{0,C,}. (A.2.2)

Therefore, one can conclude that the right eigenvector w, contained in ker(C) belongs
to ker(Oy) that is defined in (2.3.5) [51, Th. 15.8]. Furthermore, as (A = 0, w,.) is the
eigenpair associated with the equilibrium subspace (3.1.2) of every A, with Laplacian
L, it is straightforward from Lemma 2.3.1 that span {w,} = span{[§¥]} C N(° =

ker(O) over t € [tg, +00).



A.3 Proof of Proposition 3.2.3

Let o(t) =q € Q, t € [ty_1,tx) and consider the error dynamics of local observers in
(3.2.9). According to Definition 2.3.1, a ZDA for (3.2.9) should satisfy
NI —Fi —T'B| |&(0) 0

= |, (A.3.1)
Cii 0 Uy. 0

i

where €;(0) := €;(0) — €;(0) = Xo,. Also, by considering (3.2.7) and the fact that
C;.€i(0) = C;,%x;(0) = 0 in the second equation of (A.3.1), matrix pencil (A.3.1) can

be rewritten as

&l

Ml — Al —T'B!| |%(0 0
v Or_ 19 (A.3.2)
Cii 0 Up. 0

It follows immediately from Definition 2.3.1 that a stealthy attack u, in (3.2.9),
whether it is a ZDA or covert attack?, loses its stealthiness with respect to the local
residual r;, if, and only if, there is no non-trivial zeroing direction associated with
matrix pencil in (A.3.1) or equivalently P in (A.3.2), which in turn implies P has full
rank. Moreover, from Definition 2.3.1 and condition (3.2.4), it is straightforward that
matrix pencil P, defined in (3.2.10), is associated with the zeroing direction of the
local system (3.2.1). We now show how conditions (1)-(3) establish the equivalence

between the rank sufficiency of P in (3.2.10) and P in (A.3.2). Given P in (3.2.10),

ZNote that a covert attack is defined in (3.1.4) based on the network-level measurements (3.1.4b)



one can write

I—hiC;, \h!

0 I |P=
hiC;,  —Aoh'

XI—Al —(I-hC;)B" 0
G 0 01, (A.3.3)
—h'C; Al hiC; Bt E

where hl := E!(C;E) is a solution to (3.2.6) that exists under condition (ii) [24,

Lemma 1]. Then, postmultiplying (A.3.3) by

I 0 0
0 I 0l . (A.3.4)
(C,E)IC; AL (C,E)C,B I

and considering (3.2.7) yields

NI — Al —TB' 0
C;, 0o 0]- (A.3.5)
0 0 E

Since node i € P; is k-connected, we have |[N;| = k and k < rank (C;,) < 2k (cf.
(3.1.5)). Then, from condition (i), one can verify that rank (C;,) > rank (B') +
rank (E‘) guarantees (3.2.10) is a tall or square matrix pencil having only a finite

number?® of output-zeroing directions [69, Ch. 2]. Also, the pre- and post-multiplied

3This condition is not valid for degenerate systems which are out of scope of this work.



matrices in (A.3.3) and (A.3.4) are full column ranks. Therefore, we have

Xl — Al —T'B ,
rank (P) = rank +rank (E') . (A.3.6)

C;, 0

g
P

Recall E! is full column rank, and hence P in (3.2.10) is full rank if, and only if, P
in (A.3.6) is full rank. This guarantees that a locally undetectable stealthy attack is

impossible.

A.4 Proof of Theorem 3.2.4

Consider (3.2.14) over t € [ty, +00), and let the safe mode o(t)=q€ Q, t € [t1, +00)
the continuous system residual ro(¢) and its successive derivatives can be rewritten

as

R = Oe(t) — H(HC)E + H(B)U, + HH)U, — U, + H(AAX, (A.4.1)
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where

R= |0 50 - 0 (t))(dﬂ , (A42)
U, = _u;r(t) ﬁ;—(t) (u;r(t))(d)] , (A.4.3)
E= _eT(t) el (t) - (eT(t))(d)} , (A.4.4)
X = -xT(t) xT(t) .- (XT(t))(d)_ , (A.4.5)
0 0 0 0]
Cb 0 0O --- 0
HO)=|CAD Cb 0 --- 0, (A.4.6)
CA{b CA{™'b --- Cb 0

with j € {a,s}, be {B,HC,H,AA,}, AA, =(Aq—A;)and d € N\ {1, 2}.

From (3.1.7) in Proposition 3.1.4 and (3.2.12)-(3.2.13), it can be easily verified
that (A.4.1) is simplified to R = 0,&(t) — H(HC)E + H(AA,)X where E has the
same form as (A.4.4) while whose elements are € and its derivatives. Therefore, in
a stealthy attack case limy, .., R = 0 during normal mode over ¢ € [ty,t;). The
objective is to characterize the effect of switching communication, modeled as dis-
crepancy AAgq in (3.2.14) and (A.4.1), on the stealthiness of attacks in the residual
ro(t) of centralized observer (3.2.11) during safe mode over ¢ € [t;,4+00) (cf. Problem
3.1.6). Given the input-output matrix (A.4.6) for the switching perturbations AA
in (A.4.1), note that H(AA4)X = 0 over t € [t;,+00) in (A.4.1) is the necessary
condition under which the stealthy attacks, modeled in (3.1.6), remain undetectable

in the residual ro(t) of (3.2.14), regardless of the perturbation AA4x caused by topol-
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ogy switching. Therefore, H(AA4)X # 0 in (A.4.1) implying the system switching
AA, affects R(?), t € [t1,+00) in (A.4.1) guarantees attack detectability in ry(%).
Consider Markov parameters CA{AA, d € Ny in (A.4.6), the term H(AA,)X

in (A.4.1) can be rewritten as

d
) CA{AAX“I(t) =0, VdeN,. (A.4.7)
1=0

We show that under condition 1, the first two terms in (A.4.7) are non-zero (and so

is H(AAL)X # 0) unless AAx(t) =0, Vi€ [t1,+00).

By setting d = 0, 1, and expanding (A.4.7) we obtain

(A.4.7)

d=0 C,ALyz(t) =0, Vi€ [t1,+00), (A.4.8)

(A7)

d=1 C.ALqv(t) =0, and,

C ALga(t) =0, Vit € [ty +00), (A.4.9)

where Cy and C, are diagonal elements of C as given in (3.1.4)-(3.1.5), ALy =
Lq — Ly is the non-zero submatrix of AAq = (Asp — Ay) = [—aoALq 8], and x(t) =

col(z(t),v(t)) as in (3.1.4). Then, using (A.4.8) and (A.4.9), we have

X

AlLqz(t) =0, Vi€ [t;,+00). (A.4.10)

v

Under condition 1, one can verify that (A.4.10) implies

AlLgz(t) ¢ Im (ALy) <= Alqz(t) =0, Vit € [t1,+00). (A.4.11)
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otherwise, for any x(t) such that 0 # ALqz(t) = Y € Im (AL,), we obtain
[CLC'Y=0  Yeke(C G

for (A.4.10), which is in contradiction with condition 1.

Now considering the consensus protocol (3.1.3), it can be verified that AL (or
equivalently AA, in (A.4.7)), encodes connected graph component(s) corresponding
to added/removed communication link(s) in the communication network (cf. Defini-
tion 2.2.2 and A.1.1). Then, applying an elementary transformation using a permu-
tation matrix P defined in (A.1.3), transforms (A.4.11) into block-diagonal form as

follows:

9

ALgz(t) =0 <= Lox(t) =0, Yt € [t, +00), (A.4.12)

where the block-diagonal matrix Lq is given in (A.1.3) and x(t) = Pz(t) denotes the

relabeled system states such that

X(t) = col(x1(t), ..., xe(t)) = Px(t), with

Xc(t) = col(x;(t)), VieD., VYce{l,--- c}, (A.4.13)

with D, being the set of nodes (agents involved in switching links) in c-th connected
component? as in (A.1.1). Also, note that the permutation matrix P is a binary
nonsingular matrix by definition. Additionally, the Laplacian matrix is a zero row-
sum matrix, and if connected, its nullspace is spanned by 1, a vector of all ones [93].

Therefore, from (A.4.12) and considering nodes involved in (connected) switching

4Although the analysis here is at the global level, it is worth mentioning that ALq at cluster
levels i.e. P;, i€ {1,---,|P|} may have more than one connected component.
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links, i.e., for all Vi, j € D, ¢ # j, one can conclude that

:Ez(t) = xj(t)7 Vz,] € DC) Vee {17 : 7C}7

Yt € [ty, +00), (A.4.14)

which by considering the continuity of the system states can be extended for its
higher-order time derivatives and be rewritten as follows:

(e:—e;)aj(m)(t)zo, vi,jEDm VCE{l,"' ,C},

Vm e Ny, Vi€ [t,+00), (A.4.15)

with ¢;, ¢; being i-th and j-th standard-basis vectors in RY.
Also, from (A.4.7), (A.4.12), (A.4.15) and by considering the structure A,

and system state x(t) = col(x(t),v(t)) in (3.1.4), we obtain

AAX™ (1) =0 &

AlLgz™(t) =0, Vm € Ny, Vt € [t;, +00). (A.4.16)

Therefore, under condition 1, one can conclude that unless (A.4.11)/(A.4.15) holds
that is the system states (positions x;(t), z;(t) and their successive derivatives) of all
agents within each graph component, i.e. agents involved in connected intra-cluster
switching links, are respectively identical V¢ € [t1,4+00), the left side of (A.4.8) and
(A.4.9) is non-zero and so is (A.4.7), implying AA, affects R(¢) whereby the attacks
are detectable.

We now show under conditions 2-3 the domain of existence of (A.4.11) is shrunk
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into the only case that the entire system states, except for those affected by stealthy
attacks, are at an equilibrium.

Zero-dynamics attack (ZDA) case: it can be shown that under condition 1,
(A.4.11) holds (and so does (A.4.15)) only in the worst-case scenario, in the sense of
attack detection, that none of the agents involved in intra-cluster switching links are
affected by the ZDA in a safe mode. To this end, consider (A.4.12) under which ZDA

remains stealthy in residual ro(¢) in the safe modes and recall

x(t) = x(t) + %(t), %o, Vt € [ty, +00), (A.4.17)

in a stealthy ZDA case with Xpe*’t € ker(C) being the initial condition of ZDA (cf.
(2.3.1), and (3.1.14) in Proposition 3.1.4) at t = ¢; for a safe mode. Similar to (3.2.16),
by evaluating ZDA condition (2.3.1) for the tuple (A4, B, C) with Ay = (A1 +AA,)

and considering (A.4.16) we obtain

e(tl) 0
Aol — (A —HC) (Aq—A;) -B
x(t) | = |o] - (A418)
C 0 0
11A<t1) 0

where as in (3.2.16), €(t;) = x(¢;) with x(t;) = Xee™" and uy(t;) = uge. Then
(A.4.18) is simplified to
Ml — (Aq—HC) —B| |x0)| o

= |, (A.4.19)
C 0 Ug 0
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where further simplification, similar to that in (3.2.16), and expanding it out yields

Aodn —Iy 0
Z(to
a(li +ALg) (Ao+7)In —1I4
’ Bt (A.4.20)
Cx 0 0
Uo
0 C, 0
from which and also from (3.1.14) we have
. - (3.1.14)
Oél_l.]?(to) + ()\0 + ’Y)U(to) — IAuo = 0, <A422)
ALy (to) = 0, (A.4.23)
Then one can conclude from (3.1.5), (A.4.17), (A.4.21), and (A.4.24) that

and by applying the same permutation as defined in (A.1.3) and used in (A.4.12) to

equation (A.4.23) as well as by considering (A.4.17) and (A.4.21) that

Also, as shown in Lemma A.1.1, under condition 1 we have

DNM#D, Yee{l, - c} (A.4.28)
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with set D, given in (A.4.13).
Now under (A.4.28), it is concluded from (A.4.25), (A.4.26)-(A.4.27) that

Fa(t) = 3;(t) = 0, (t) =0;(t) =0, Vi,j €D, (A.4.29)

(¢] —eNZ™ (1) =0, Vi,jeD., Yee{l,--- c}

Vm e Ny, VteE[ty,+00), (A.4.30)

where 7; and z; are the elements of state vector X in (A.4.17) denoting the states of
an attack-free system that satisfies (3.1.7) (i.e. X = AyX obtained using x-dynamics
in (3.1.4) with Buy = 0 and unknown initial condition X, as defined in Proposition
3.1.4). Then using the attack-free dynamics X = Agx, the term (e —¢])z™(t) =0

in (A.4.30) can be rewritten as

(¢ —¢/ )Lz(t) =0, Vi,j €D, Vm e Ny, Vi € [t1,00), (A.4.31)
(¢ —¢/)Lio(t) =0, Vi,j€ D, Vme Ny, Vt € [t,00). (A.4.32)

Moreover, note that (A.4.31) and (A.4.32) have the same form as equations (109a)
and (109b) in [78]. Then under further conditions 2 and 3, it can be verified using

the same procedure as in [78, Th. 2| that (A.4.31) and (A.4.32) yield

T,(t) = x4(t), Vi,j €V, Vte[t),+00), (A.4.33)

v,(t) = v,(t), Vi,j€V, Vte[t,+00), (A.4.34)
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which means that the entire states of the attack-free system have achieved consensus.
Considering the equilibrium subspace (3.1.2) as a result of the consensus protocol
(3.1.3), one can conclude that (A.4.33)-(A.4.34) and (3.1.2) coincide. Therefore, from
(A.4.30) and (A.4.33)-(A.4.34), obtained under conditions 1-3, one can conclude that
stealthy ZDA is undetectable in ro(t) of (3.2.11) only in the worst-case scenario that
intra-cluster switching links are between agents whose trajectories are not affected
by ZDA as well as all of the system (3.1.4)’s attack-free trajectories, characterized in
(A.4.30), are at the consensus equilibrium (3.1.2).

Covert attack case: consider (A.4.12) under which a covert attack remains

stealthy in a safe mode and note that

bl

x(t) = x(t) + x(t), Vt € [t;,+00), with

t
x(t) = eM % (1) +/ AT Buy(1)dr (A.4.35)

t1

according to the attack model (3.1.6) and Proposition 3.1.4. Given (A.4.35), (A.4.15)

can be rewritten as

3 (2

[(e] —¢f) OJx™(t) =[(¢] —¢j) O]X"™(t), Vi,j € D,

Vee{l,---,c}, YmeNy, VteE [ty,+00), (A.4.36)

Notice that the attack-free system states, x(¢) in (A.4.35), converge to (3.1.2) as
t — +oo, then the left side of (A.4.36) converges to zero and one can conclude from
(A.4.35) and (A.4.36) that continuous states x(t) = col(Z(t),0(t)) exist in either of

the following cases

case 1 : Z;(t) = 7;(t) # 0, Vi,j € D, Vt € [t1, +00) (A.4.37)
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case 2: T;(t) = 7;(t) =0, Vi,j € D, Vt € [t1,+00) (A.4.38)

Note that here case 1 in (A.4.37) implies the attack input uy in (A.4.35) has driven
and kept the states of agents involved in switching into an unknown equilibrium over
the time interval [t;,+00). Also, case 2’s interpretation and analysis coincide with
that of ZDA in (A.4.29). Then following the same analysis as the ZDA’s, one can
conclude that under conditions 1-3, covert attack is undetectable in ry(t) of (3.2.11)
only in the worst-case scenarios that 1) intra-cluster switching links are between
agents whose trajectories are identical over time under the effect of covert attack;
and 2) intra-cluster switching links are between agents whose trajectories are not
affected by covert attack as well as all of the system (3.1.4)’s attack-free trajectories

are at the consensus equilibrium (3.1.2).
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Appendix B

Proofs of Chapter 4

B.1 Auxiliary Results

Lemma B.1.1. Let L € R¥*Y be the Laplacian matriz of a connected graph G and
let W e RgOXN be a diagonal matriz with at least one nonzero entry. Then, L+ W 1is

a positive definite matriz.

Proof. The proof follows [141, lemma 1] and is therefore omitted here.

B.2 Proof of Proposition 4.2.2

Let the estimation error be ¢; = x — X with ¢;(0) = x(0) as xX(0) = 0. Then, from
(4.1.12) and (4.2.10), the error dynamics is given by

& = (A, — H'C))é; + Byuy, o(t) € Q,
s (Ao ) A, o(t) (B2.1)

(@]
r; = Ciey, local residual.
Recall that before attack detection, the system operates in normal mode, o(t) =1 €
Q. Therefore, we investigate the attack detection in mode o(t) = 1.

As described in Section 4.2.1, a system is vulnerable to ZDA if it has unstable
zero dynamics (cf. Definition 2.3.1). Accordingly, system (A, — H'C;, Ba, Cy, 0(t) =
1) in (B.2.1) is vulnerable to ZDA if its matrix pencil P(),), given in (4.2.1), is rank
deficient for a A\, € Ry that is

)\O[N - (Al — HZCz) —B_A XS

=0, (B.2.2)
Ci 0 U.A(O)
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has a nontrivial solution for state-zero direction x§ = col (p§, v§) # 0 and input-zero

direction u4(0) # 0. By using (4.1.10d) and (4.2.9¢) in expanding (B.2.2) we obtain

(aly + Ao(Xo +7)IN) PG = Baua(0), AoD§ = Vi, (B.2.3a)

Cpiph =0, ¢ vy =0. (B.2.3b)

without loss of generality, one can reorder the nodes such that those in set M?, given

in (4.2.9a), come first and accordingly

Lt (PH)1 (vH)1

L, = ;1 ;2 , pi = v = : (B.2.4a)
_L17 Ly (P§)2 (v)2

Be— | M| o =

A — » Upi= | Ix+1 0] » (B24b)
0

where k = |J\/Z(t)|, o(t) =1 € Q. Given (B.2.3) and (B.2.4), one can verify that
if AC ./\/Z(t), o(t) =1€ Q@ = rank(By) < rank (C}), and a nontrivial solution
to (B.2.2) satisfies (p2); = 0 and (aL?® + A, (A, + 7)I)(p3)2 = 0. Noticing that
(al?? + X, (Ao +7)I) is positive definite for any A\, € R-q associated with an unstable
invariant zero (cf. Lemma B.1.1), it is concluded that a nontrivial solution, i.e.
(p3)2 # 0, only exists for A, < 0 and thus the system’s zero dynamics is stable.

In terms of the detectability of covert attacks, note that in the ZDA analy-
sis, we showed the output-nulling of non-vanishing intrusions is not feasible if A C
/\/:f(t)7 o(t) =1 € Q. Also, local measurements (4.2.9) are not subject to alter-

ations by the attacker. Therefore, any non-vanishing intrusion u, in (B.2.1) yields a

non-vanishing residual i.e. lim; ,, r; # 0.
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B.3 Proof of Proposition 4.2.3

Note that from Proposition 4.2.2, the i-th UAV with a local detector X, i € D
can detect stealthy attacks within its set of immediate neighbors in normal mode
ie. N;(t), o(t) = 1 € Q. Therefore, by induction, a set D of local detectors ¥}’s
holding (4.2.13) covers the entire network set V of UAVs and thus is sufficient to

detect stealthy attacks anywhere in the communication network of UAVs.
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Appendix C

Proofs of Chapter 5

C.1 Auxiliary Results

The following result quantifies the inaccessible state measurements for the system in
(5.1.1) with the collective measurements in (5.3.1) obtained under Assumptions 5.2.1
and 5.2.2. It shows that the only states that are inaccessible at any time for any

cooperative agent are the velocity states of the malicious agents.

Lemma C.1.1. Consider the system in (5.1.1)-(5.1.2) over a time interval [to, to+T)
under Assumptions 5.2.1 and 5.2.2. Let T, = V" in (5.1.2) and let (5.1.1) be subject
to an F-total (resp. F-local) adversary set with 0 < F < k(GE) —1 (resp. 0 < F <
r(Gh) —1). Then, the nullspace of the matriz CY* in (5.3.1), defined uniformly over

[to, to + 1), Vto € Rxq is given by
Xito, to+7) =Noeg ker C* = span { [?]fvv}, Vie .A}. (C.1.1)

Proof. Without loss of generality, let x in (5.1.1) be partitioned as x =

COl(Pyy 4> Pay Vras Va) € R2N . Also, from the definition of the nullspace, we have
X[tmto—‘rT) = mer’ ker Cz\A = {X S RQN | C;\AX = 0, Vo e Ql} y (012)
which by using (5.1.2) and (5.3.1) yields Vo € @',

p=v;=0, VieV\ A, (C.1.3a)

p; =0, Vjev!’, ieV\ A (C.1.3b)

(e
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where we used Z; = V!". Then, (C.1.3) can be rewritten as

Iyia O B
Dy a Vy\a
Voe @, |0 IA,)| | 7| =0, {IMA 0] =0, (C.1.4)
Dy Va
* 0

where % is a binary matrix, determining redundant position measurements of the
neighboring cooperative agents, and whose structure is immaterial to this particular
analysis. I(A,) is a binary matrix-valued function of the adjacency matrix, determin-
ing the availability of the position measurements of the malicious agents A for the

cooperative agents V \ A. I(A,) is defined as

L (A7) diag(row: (A )
I(A,) = 5
Ly (ADA) diag(row)y, 4. (A7)
. o(t o(t
dmg(ail(jl), ey ail(j|),4|>
N : , (C.1.5)
. o(t) o(t)
dwg(aiW\A\jl’ e Z'\v\A|J'|A|>
AV\A AV\A,A
where AV, taken from A,y = o(®) o(®) , indicates the mode-dependent

AV\A A
Aa(t) Aa(t)

communication links between the sets V\ A = {i1,... ¢4} and A= {j1,..., 7.4}

Recall that consistent with (3.1.3), each element, afj(t) in (5.1.1), is equal to 1 if
two distinct agents 4, j are in communication over a link (7, j) € &, and is 0 otherwise.
We next show that the N,co ker I(A,) = () obtained uniformely over a time interval

[to, to+T), Vty € Rsg. Under Assumptions 5.2.1 and 5.2.2, it follows from Proposition

5.2.4 that each agent has at least k(G%) neighbors over [t, to + 1), Vto € R>p, not
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necessarily connected to at all time instants and that r(G%) < k(G%). Therefore,
in the case of an F-local (resp. F-total) adversary set with F' < r(G%) — 1 (resp.
F < k(G!) — 1), each malicious agent j € A C V should have at least one neighbor

outside of its set, i.e. the set V \ A, over some period of time. Formally,

VieA JieV\A JoeQ st. jeNDH V! —

. Lemmas2s 1 [T o
(Z,])E 50' < T aij dr > (5, vto S RZO7
to

by which, one can readily show for I(A,) in (C.1.5) that

to+T
(1/T)/ I"(AI(A,) dr > 81, Vo € Rog, 36 € Rog —>

to

Nocor kerI(A,) = 0. (C.1.6)

Then, from (C.1.6) and (C.1.4) we can conclude for (C.1.2) that Vo € @', CY\x =
Oy Oy
Co\A | 4 =0, Vv, € RH which in turn implies Nycor ker CY™ = span { [Ov\m] }

g 01\ 4 1
» Al

This cof;cludes the proof.

C.2 Proof of Lemma 5.2.3

The proof of the equivalence of the statements is achieved by demonstrating that
each ensures positive algebraic connectivity in an integral sense for the graph G, =
(V, &), that is (L = L [T L,y d7) > g holds Vit € Rsg and 31, T € Rog as
defined in (5.2.1). Note that 1,15 /N and Q'Q = Iy — 1,1} /N are both orthogonal
projection matrices (i.e. (1y14/N)? = 1y15/N = (1514/N)") and thus their
corresponding spectrum belongs to {0,1} which in turn implies 1,1 /N and QT Q

are positive semi-definite. Then, from rank(1,515/N) = 1 and the construction of Q)
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in (5.2.2), one can conclude

N-1

spec(1y1y/N) ={0,---,0,1}, (C.2.1a)
spec(QTQ) ={0,1,--- ,1}, (C.2.1b)

spec(QLU(T)QT) = SpeC(LU(T)) \ {0} =
M(QLy»Q ") = Xa(Lo(n), (C.2.1c)

where (C.2.1c) is from [32], and (C.2.1b) follows from the fact that 1,1 /N and
Q'Q = Iy — 1,1};/N are orthogonal projections and that rank(1,1y/N) = 1.
Then, there exists a unitary matrix U, where UU" = Iy, such that 1y1,/N =

U diag(1,0,...,0)U". Now, one can write

Q'Q=1Iy—1y1/N =UU" — U diag(1,0,...,0)U"
= U(Iy — diag(1,0,...,0)U" = Udiag(0,1,...,1)U".

2 = 1: if 2 holds, then (1/7) tt+T(LU(T) + 1,1} /N)dr is positive definite. Then,

note that 0 = Ai(Lo) < Xa(Lo@) < -+ < An(Low) < N at any time instant (see

N-1

——
[48, Corrollary 13.1.4]) and that spec(1515/N) = {0,...,0,1} in (C.2.1a) has the
eigenpair (1,1y) which shares the eigenvector 1y with the eigenpair (0,1y) of Lyq).
This implies that [3, Thm. 1]

1 t+T
A (T [ o dr) > (€22)
t
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Also, note that (5.2.4) can be rewritten as

.
115 _ 1
N —T

1y1y
N )

t+T
,umIN - / LO’(T) dr < ,uM]N -
t

which by pre-multiplying and post-multiplying, respectively, by @ and QT, using

(5.2.2), and invoking Proposition 8.1.2 [12], yields

1 t+T
pmdn—1 < :7/ QLo Q" dr < piarlIn_1, Vt € Ry,
t

that is equivalent to (5.2.1) with p,,, = pu. The existence of the upper bound, ppIn_1,
for (5.2.1) is trivial because of the boundedness of afj(t)’s in the adjacency matrix and
the integration over a finite interval [t, t + T'), Vit € R, 3T € Ry,

1 = 2: Let (5.2.1) hold. It follows from (5.2.1) and (C.2.1c) that
Ao (% :+T Loy dr) > p (cf. (C.2.2)). Also by following the same argument as given
in the previous part of the proof, (5.2.1) admits an upper bound, denoted by py, In_1,
where 1y, € Ryg. Now, by pre-multiplying and post-multiplying (5.2.1), respectively,

by Q" and @, and invoking Proposition 8.1.2 [12], we obtain
1 t+T
Q< [ QAL <407, (C23)
t
which by considering (5.2.2) and the fact that Ly(-Q'Q = QT QLy(r) = Ly(r) yields
1 t+T
QTQ < / Lomy dr < 1,Q7Q, (C.2.4)
t

in which Q'@ is positive semi-definite (see (C.2.1)). By adding 1,15 /N to the sides

of the inequality (C.2.4) we obtain
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1 1T 1 t+T 1 1T
pQTQ+ I 7 [ L
1 [T 1,15
T / (Lvm - T) dr
1721l 1N1]—|\—7
<p@Q Q+ N (C.2.5)

where it follows from (C.2.1) that the left and right side matrices are bounded and

positive definite such that pQ'Q + % = Udiag(l,u,...,u)U" and p/'Q'Q +

Iyly Udiag(1,p, ..., ') UT, making the foregoing condition equivalent to (5.2.4)

N
with g, = min{1, u} and py = max{1, y'}.
2 <= 3: This has been proven in [3, Thm. 1]. We conclude the proof by

restating that

X % /t L dr ) =\ (% /t T Lo dr) > p.

S/

(5:2:6)

C.3 Proof of Proposition 5.2.4

It follows from Lemma 5.2.3 that a (p,T)-PE connected G, forms, uniformly in
time, the connected static graph G4 = (V, EY) with the edge set €% in (5.2.5) and
algebraic connectivity A\o(L) > p > 0. Then, from [120] and [116, Thm. 2] we
have [’\ZT(")-‘ < r(gh) for 0 < r(G%) < [|V|/2], and one can conclude from [120)]
and [67, Thm. 6] that r(G%) < k(G%). It also follows from [48, Ch. 13.5] for any
simple non-complete graph G#, that A (L) < k(G%) < |V| — 1. Finally, note that
0 =XA(L) < A(L) <--- < An(L) < |V| = N holds for G/ and that the equality
Aa(L) = N holds for complete graphs [48, Corr. 13.1.4]. Then (5.2.7) is concluded.
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C.4 Proof of theorem 5.2.5

Recall from Proposition 5.2.4 that a (u,T)-PE connected G,y forms, uniformly in
time, a static network G%. = (V, £X) whose robustness r(G) and vertex-connectivity
k(G4) are lower bounded by [p/2]. It then follows from [146, Thm. 1] for an 7-
robust network G4, where r < r(G*%), that, by definition, no F-local adversary subset
A CV, where F' <r — 1, make a vertex cutset for G~. Therefore, the removal of up
to F' < r — 1 malicious nodes (agents) and their incident edges from the neighbors
of the remaining nodes (cooperative agents) does not render the induced subgraph
G = (V\ A, &) disconnected (equiv., \y(L) > 0, where L is the Laplacian matrix of
g).

Likewise, given the vertex-connectivity «(G%), it follows, by definition, that
no F-total adversary subset A C V, with F' < k —1 < k(G%) — 1, make a vertex
cutset for G%. Therefore, the removal of up to F' < k — 1 (malicious) nodes, in
total, and their incident edges does not render the induced subgraph G = (V \ A4, &)
disconnected (equivalently, Ao(L) > 0).

Finally, note that the induced subgraph G,y = (V, &) associated with the
connected graph G with 0 < M\y(L) =: i meets the conditions in Lemma 5.2.3-3 for
some T' < T (where the inequality holds because |V| < |V] and |E| < |EX|). Moreover,
it follows from [48, Thm. 13.5.1] for the graph G* and its induced subgraph G, resp.,
with L and L that Ay(L) < Ao(L) + |A|. Then, from Xo(L) > u (see (5.2.7)) and

fi = Xao(L) > 0, one can conclude p < ji + |Al.
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C.5 Proof of Proposition 5.2.6

The first part of the proof has two steps similar to that in [32, Thm. 1]. First, we

consider a system of the form
. @ N-1
X = __La(t)X> X(tO) eR ) (C51)

in which L,y = QLs(» Q" satisfies the (u, T)-PE condition in (5.2.1). It follows from
40, lemma 1] that! (C.5.1) is globally uniformly exponentially stable (GUES) with

the convergence rate A\, € R such that
X1 < ki IX(O) | e™, Vit € R, (C.5.2)

in which k, = \/% and A, = e with n = —5-In(1 — %), where
N is obtained from ||L,(|| < N (see [48, Corrollary 13.1.4]). Given the GUES of
(C.5.1) under condition (5.2.1), it follows from [73, Lemma 1] and [56, Thm. 4.12]
that there exists a Lyapunov function v (¢, x(t)) = x(¢) " P(t)x(t) with P(t) = P(t)" €

RWV-1Dx(N=1) . ( such that ¥Vt € Rsg the following inequalities hold:

0 1
—— Iy 1 < P(t) < —1InN_ 0.
O<2aNN1_ (15)_2)\XN1, (C.5.3a)
: oY oY
P(t) - ;Lo(t)P(t) - ;P(t)LU(t)‘i‘IN—l = 0. (C.5.3b)

In the second step, we use the stability properties of (C.5.1) as given in (C.5.2)

and (C.5.3) in the stability analysis of (5.1.1). By defining an intermediary state

'We note [40, lemma 1] has defined the function of the form L, in (C.5.1) to be continuous.
Yet, a unique solution to (C.5.1) exists (see [56, Thm. 3.2]) in the case L, is piecewise continuous
and bounded with a finite set of point-wise discontinuities, and the results hold as stated herein.



transformation as given by

I,
] Q<] _pny

v ONX(N—l) Iy

e

the system X, in (5.1.1) with (5.2.8) can be rewritten as

. _ng-U(lt)Q—r +QQLU(7§) QIA
x=" ! X+ Uy,

—2LwQ"  —(vIn — 2Low) Ia

~

Yy =Cx,

Associated to (C.5.5), a Lyapunov function is defined as

T
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(C.5.4)

(C.5.5a)

(C.5.5b)

(C.5.6)

where P(t) is given in (C.5.3) and 8 € R.(. Taking the derivative of V (¢, x(t)) along

the trajectories of (C.5.5) yields

where
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By using (C.5.3),

Low|| < N, and [|Q| < 1, we obtain

M
Tr < Y
. 1 _a 1\N
Vb () < — €]l HCESwEANIIN
loll| |-20B+5x)%5 B —2N) | |lvll
T
1 €]l
+max{\_ ", 3} ol 1o |[uy]| - (C.5.7)
v

Note that by selecting Ax < A, and a sufficiently large v (e.g., v = aN, for a > 1),

one can verify that the following matrix is positive definite?,

Ax (o] 1\N
n O] (=50 —S(6+ )3

>0. (C.5.8)
0 3| [“2B+)F BO-2N-X)

Then from (C.5.3), (C.5.6), (C.5.7), and (C.5.8), we obtain
V(% (1) < =20V (8, x(1) +v2max{ A, B} [x(6) | wall -

Applying the comparison lemma [56, Lemma 3.4] and considering (C.5.3) and (C.5.6)

max {\!, 5} “Ax(t—to)
Ix (@[ < \/ m Ix(to)ll e +

max{)\;l,ﬁ}
: 77 sup [[wa(@)[], V¢ =to € Rxo. (C.5.9)
A, min {ﬁ, 5} to<t<T} -

yields

Now one can conclude from (C.5.9) that the origin x = 0, is GUES equilibrium of the

2The determinant of (C.5.8) yields a cubic function of v, to which applying the Routh’s stability
criterion indicates the existence of one positive root.
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unforced system (C.5.5) (i.e., uy = 0). Additionally, (C.5.5) is input-to-state stable
(ISS) in the case uy # 0, provided sup, ;<7 |[ua(t)|| < oo for every Ty € [0, 00). It

then follows from (C.5.9) that

1)zl < mxe™ 70 |x(t0) | + fu [l (wa) 7l ., (C.5.10)

where we used (5.2.8), (C.5.4), [|V(to)| < ||x(t0)]|, and rx and ky as given in (5.2.9).
One can conclude from (C.5.10) that for every [|x(fp)|| < oo and every uy € L,
with sup,, ;<7 [[wa(t)|| < oo, the system in (C.5.5) (equiv. X, in (5.1.1)) with the
output Y(t), associated with (5.1.8), is finite-gain £, stable (see [56, Thm. 5.1 and
Corollary 5.1]).

Finally, to calculate the bounds in (5.2.10), note that

(5:22) ~ 1

528 ~
D — 1Npavg? Pavg = (N]‘]T\fp)7 (C511)

Q¢ "2V Q" Qp

and let ) be partitioned as ) = [ql lga || qN}, where ¢; € RV~1. We also have
QTQ =1Iy— (1/N)1i 1y = | ¢l =1—1/N for every i € {1,...,N}. Then,

using (C.5.11), one can write for every 7,5 € V that

Di(t) = B;(1)] = ¢/ ¢(t) — ¢, CO)] < [|a" — g || 1C(t)

S V2P < V20 |Ix(t0)]

;= a]|| <2llall <2y/(1—1/N) < V2, and (C.5.10) with

uy = 0. Similarly, we can obtain (5.2.10b). This concludes the proof.

where we used (5.2.8),



33

C.6 Proof of Lemma 5.3.1

The proof follows directly from the definitions in (5.3.2)-(5.3.3) and the system
(5.1.1)’s solution for the state trajectories.

Under Assumptions 5.2.1 and 5.2.2, the system Y, in (5.1.1) subject to the
(vector-valued) attack signal uy € L, is an LTI system in each mode o € Q with
initial conditions x(to),x(t1),... during an interval [ty, ¢y + 7'). Then, the state

trajectories of Y, in each mode o, is recursively obtained as follows:

x(t;x(t), uq(t)) = eA"(tw(t_t’“)x(tk)vL

t
/ er(tm(t*T)BAluAl (T) dT, te [tk, tk+1), (C61)

tg

where tpy,+1 = to+ 7T, and the initial conditions x(t;)’s for k € {1,2,...} are given by

1
x(t) = (H et T (1)

i=k
koitl t;

n ZH@Ag(tjl)(tj—tj—l)/ eruFl)(tifr)BAluAl (1) dT)7 (C.6.2)
i=1 j=k tim

in which H;Eﬂ eAoti—n itz _ Ao tete-1) L o Aa (i) when k > 5+ 1 and
H;J;n eAot_pti—ti-) _ Irny when k < ¢+ 1.

Using the generic form of ¥,¢)’s state trajectories in (C.6.1)-(C.6.2), and
(5.3.1), one can expand (5.3.3) for any two initial conditions x(ty),x'(t;) € R?V

as follows
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Vit e [to, to +T),

y;\A<t; X<t0)7 Uy, (t)) - y;}\A<t; X/(t0)7 Wy, (t)) =0
x(tr)

A\

A () o (1) — x(t)) =

V\A
Cotir)

t
Criy [ A (B () ~ Bayua, (1)
tk

t e [tk, tk+1)7 VEk € {0, RN ,m}, (063)

where we used the linearity of ¥, and x(t) = x/(tx) —x(t)) for the initial conditions

with the generic form of (C.6.2). This concludes the proof.

C.7 proof of Lemma 5.3.2

The equivalence of 1 and 2 follows from the definition of state and input observability
(SIO) and the invariant zeros of the switched LTI systems: Recall that 3, ;) in (5.1.1)
is an LTI system in each mode ¢ € Q under Assumptions 5.2.1 and 5.2.2. Without
loss of generality, let o(ty) = q € Q', for some k € Zso. Then, it follows from [15]
that if an LTI system, here X, is SIO, then, any non-zero input uu(t) is observable
at the output y\* in (5.3.1). It also follows from [152, Ch. 3.11] and [15, Thm. 2]
that the necessary and sufficient condition for ¥4 to be SIO (here, attack detectable)
is that P(\,,0 = q) in (5.3.6) is full column rank. Thus, in a mode q € @', for a
uy(t) # 0 to be unobservable at y¥'* (stealthy in the sense of (5.3.2) as characterized
by (5.3.4) in Lemma 5.3.1), it is required that P(\,, o = q) is rank deficient, inducing
an output-zeroing subspace such that [lﬁé’;k))} € ker (P(X\o,0 = q)) holds for some
Ao € C and some nontrivial initial conditions x(¢;) # 0. By construction, it follows for

Yo in (5.1.1) with finitely many switches over any given interval [to, to +7'), that a

non-zero input uy(t) stealthy in the sense of (5.3.2), requires Nyegr ker (P(X,, o)) # 0



35

for some A\, € C.
The proof of statement 2 follows from a contradiction argument: Assume for a

nontrivial output-zeroing direction col(xg, up), where xg#0, up#0, I\, €C, s.t. Vq €

X
Q' P(M\,q) | | =0. Then, from (5.1.1), (5.3.1), (5.3.6), we have

Ug
I €C, s.t. Vqe @,
V\A V\A
p v,
NSl = | (C.7.1a)
Py \0)
N2+ Ay + al aly | pg 0
v a a LR u, (C.7.1b)
O_/LS’V\A )\gl + )\0’71 + Ofl—é p()A ]\A\
CZ\ACOI (pg\Aa péa V(‘)}\A7 V(J;‘) -9 <C71C)

where we used x¢ = col(po, Vo), and the Laplacian matrix L, partitioned such that
the set of cooperative agents V \ A comes first and the set of malicious agents .4
comes second. Under Assumptions 5.2.1 and 5.2.2 and for an F-total/F-total with
the given bounds, it follows from Lemma C.1.1 that (C.7.1c) results in Vq € @,
po = vy =0, [(A)pg = 0, where I(A,), is given in (C.1.5), with ker,eo I(A,) = 0
over [to, to + 1), Vty € Rsp, and v§ to be an arbitrary state vector. Therefore,
pg = v§ = 0 is the only solution to (C.7.1). Noting that for any Ay € C with
a positive real part ()\gl + Aoy + Ong) is positive definite. It then follows from
(C.7.1b) that 0 = I, ,ug = ug = 0. This contradicts the assumption made at the

beginning of this section, thereby concluding that statement 2 holds.
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C.8 proof of Proposition 5.3.3

First, note that similar to the last part of the proof of Proposition 5.2.6, from (C.5.10)

and (C.5.11), one can obtain

1P = 1nPay|| < fixe ) I () || + k. sup  [Jua(t)]|, V> tg € Rsg.  (C.8.1)

to<t<Ty

~ D
Now, consider p = a [LJ |_((f3)} Y7 in p(x4, Xz ) as given in (5.3.9). Also, note
Pr
that from the definition of Laplacian matrix and the matrix decomposition in (5.1.4),

we have [fa L((723)} 1 = 0 (i.e. the matrix is zero row-sum), where EG is positive

)

semi-definite, all the elements of L3 are either 0 or —1, and the all-ones vector 1

'3

is of the mode-dependent dimension R 1IR3

. Then, one can write for p in (5.3.9)

that

~ ]ND i(2) ~ 1~9 i(2)
E = — |:|_ L((j'23)] o = —« |:|_ L‘(j-23):| N - 1pavg . (C82)

Pr

Using (C.8.1) and (C.8.2), we have

Hp(X17XR>H < H/_)H <«

= ﬁ i(2)
|:La LgQS)] H Ne - 1pavg
DPr

<« |:f0 ng)] H ||1,5 - ]-Npang
(C.8.1)
< akge T Ix(t)|| + aky sup  [Jua(t)||, Vi >t € Rsg.

to<t<Ty

where we used H [fg |_((,23)1 H > 1 that holds when the matrix is not all zero (i.e. when
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p exists). Additionally, if uy(t) = 0, then we have ||p(xz, x5 )|| < arxe >0) [x(to), Vit >

to € R>o. This concludes the proof.

C.9 Proof of Proposition 5.3.4

Proof of 1: Given @;(t) in (5.1.6) and (5.3.7), the observability of ¥y, Vi € V directly
follows from a PBH test for each active mode of 0 € Q. W.lo.g., let o(t) = q €

Q denote an active mode. It then follows after some algebraic manipulation that

Aol—AZ

rank[ oI ] = 2|Vé”| = 2|Z;], VX, € C. In what follows we provide the details

that the full rank condition is met in each mode, albeit the rank number is mode-

dependent.
Y SR R 0
wd'|
0 Aol o I
° W@
AT — AZ oS alY? oty 0
o ql| (56.3.9) (21) _, (1\1)
rank ="rank | ®ta ~ alq 0 (Aotmi
I 0 0 0
Cz v
. I, 0 0
qa
0 o ' ,T 0
i Vq | J
) o I . 0o
wd'| ) o I 0
4 v
0 X 0 i, 0 0 0 I
(12) e
a (21) b 0 0 0 0
= rank | eta = 62(%) O 0 =rank|7r , o 0 0
T,o O 0 0 v
q o I , 0 0
0 I i O 0 AR
a 1 T
0 o LT 0 0 0 el 0
e‘vi" L Vq | .
L q .
_ i i(2)| )
_2|Vq | + 2|/\/'q | = 2|Z], (C.9.1)

where 01(A,) = A2 + Ay ] 4 aLli?, 03(X) = A2I + Aoyl + aLly", and we applied
block row operations in (a) as follows: row 3 = row 3+ (Ao +7) row 1, row 4 = row 4+
(Ao + ) row 2 and then row1 = row 1 — A\;row 5, row 2 = row 2 — A\, row 6. Finally,

in (b), noting that the fifth and sixth block row vectors are linearly independent with
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their respective dimensions equal to those of the third and fourth block row vectors,
and applying some row operations on them results in the final rank-equivalent matrix.

Proof of 2: Recall that the dynamics in (5.3.7)-(5.3.8) are a representation of
(5.1.1) from the i-th agent perspective, and the measurements y/’s in (5.3.7) and
(5.1.2) are the same set of measurements (see (5.3.9)). Therefore, this statement
directly follows from Lemma 5.3.2 under Assumptions 5.2.1 and 5.2.2 and for any
F-total (resp. F-local) set A of malicious agents with 0 < F' < k(G%) — 1 (resp.

0<F<r(Gh) —1).

C.10 Proof of Theorem 5.3.5

Note that each agents’ local attack detector Efi/,’s in (5.3.11), have decoupled dy-
namics that are reinitialized based on (5.3.10b). Therefore, without loss of generality,

we consider the stability of one Efi// and start off with the proof of its input-to-state

stability (ISS), in each mode ¢ € Q. From (5.3.7), (5.3.8), (5.3.9), and (5.3.11), we

have
XI Ag + Ag Ag’R Xz BAH 0 U-A”
Yo = + ,
}‘(R A.?’I A.? XR 0 BAr UAr
== Xz
p(Xz,Xr) = | AZ AZR ;
L XR

7
o

ES.// . éz = Aiez + P(ann) + B.A”u.A”'
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Let each mode o(t) = q € Q, Vt € [tx, tkt1), k € Z>g. Then, we have from (5.3.11),

which is also appeared in last equation above, that

t
ez(t) = eAq(t t) I(tk) +/ €Aq(t T)p<XI,XR> d7'+
tx

o
/ eAa=TB g (1) dr. (C.10.2)
12

Recall that AZ in (C.10.2) is Hurwitz stable, as defined in (5.3.10), ensuring the

eAczl(t_tk) _)‘g(

=tx) holds for some constants xZ, AZ € R in each

< Krle
mode q € Q. Moreover, in each mode, e; =0 is the exponentially stable equilibrium
point of the unforced system 2‘53,, (i.e. no attack or coupling term perturbation).
We also have from Propositions 5.2.6 and 5.3.3 that the unknown input p(xz,xz) in

(5.3.11) and (C.10.2) is L,.-bounded for any L,.-bounded ||x(t¢)|| and any bounded

Uy
input =uy € L, that are injected by an F-local/F-total set A with the given
Ugr

upper bounds. Then, from (C.10.2), we have

t
les(t)]] < rZe 21 log(t)l] + anta [x(to) | e <~ / e dr

t

i s )] [0 s )] [0

to<t<T, to<t<T}
I
A (t— — —
< 5 lex(t) 0 4 5 ) (1 — )
1+ Ky
() sup uae)] (1= e ¥0), Wi > 0> 10 € Rog, (C.103)

z
)‘e to<t<Ty

where we used ||p(xz, %Xz )| < arxe™ 70 |x(t0)]| + aky SUpy <pcr, [wa(t)|], VE >
ty > to € Rso, with T; € [0, 00) from Proposition 5.3.3, ||uar|| < ||u4l|, and
Ky = akxkg. Noting that the first two terms in the right-hand side of (C.10.3) are

exponentially decreasing and that ||e;(tx)|| < ||x(¢x)| when Vf;étk) # Vf;létk,l) or k=0
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(see (5.3.11)), it can be verified, along the same lines as in [56, Lemma 4.6], that each

2, 18 ISS, and that an arbitrarily large w; € R exist such that llez(tr)|| < wr < o0

o
11

holds? for all t’s with V"/Et ) = Vo, Also, note that |CZ|| = 1 with its j-th row be-
O(lk+1 ol g

ing (es];)7, where j € {1,...,|Z;|+1} (see (5.3.9b)). Then, along the same lines as in

[56, Cor. 5.1, Thm. 5.3], the finite-gain £, stability of (5.3.11) with r/(t) = CZe,(t)

can be concluded from (C.10.3) with the bound (5.3.12) for the j-th component of

r.(t). Finally, if us(t) = 0, Yt € R, we obtain from (5.3.12), the bound in (5.3.13).

SAny |lez(tr)] < I(l//@i) w, with 0 < w < w; — (KI/AZ)||x(to)]] e >tx—t0)  and
Sy, <<, [[0a(t)|| < T ensures [lex(ts1)|| < w + (KE/AZ) [x(to) | ™1 < w, for (C.10.3).
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