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Abstract
Collaborative Filtering (CF) methods dominate real-world recom-
mender systems given their ability to learn high-quality, sparse
ID-embedding tables that e!ectively capture user preferences. These
tables scale linearly with the number of users and items, and are
trained to ensure high similarity between embeddings of interacted
user-item pairs, while maintaining low similarity for non-interacted
pairs. Despite their high performance, encouraging dispersion for
non-interacted pairs necessitates expensive regularization (e.g., neg-
ative sampling), hurting runtime and scalability. Existing research
tends to address these challenges by simplifying the learning pro-
cess, either by reducing model complexity or sampling data, trading
performance for runtime. In this work, wemove beyondmodel-level
modi"cations and study the properties of the embedding tables un-
der di!erent learning strategies. Through theoretical analysis, we
"nd that the singular values of the embedding tables are intrinsically
linked to di!erent CF loss functions. These "ndings are empirically
validatedonreal-worlddatasets, demonstrating thepracticalbene"ts
of higher stable rank – a continuous version ofmatrix rankwhich en-
codes the distribution of singular values. Based on these insights, we
propose an e#cient warm-start strategy that regularizes the stable
rank of the user and item embeddings. We show that stable rank reg-
ularization during early training phases can promote higher-quality
embeddings, resulting in trainingspeed improvementsofup to65.9%.
Additionally, stable rank regularization can act as a proxy for nega-
tivesampling,allowingforperformancegainsofup to21.2%over loss
functions with small negative sampling ratios. Overall, our analysis
uni"es current CF methods under a new perspective – their opti-
mization of stable rank –motivating a $exible regularizationmethod
that is easy to implement, yet e!ective at enhancing CF systems.
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1 Introduction
Across the web, recommender systems play a pivotal role in de-
livering personalized user experiences [9, 13, 26, 32, 40]. From e-
commerce platforms o!ering tailored product suggestions to music
streaming services organizing personalized playlists, these systems
have become integral to navigating the vast amount of online infor-
mation [10, 19, 20, 24]. At the forefront of recommender systems is
collaborative "ltering (CF), a technique that predicts unknown user
preferences from the known preferences of a set of users [3, 30, 33].
One of the most prominent variants of CF is matrix factorization
(MF)which learns embeddings for each user and item fromhistorical
user-item interaction data [15, 16, 23, 35]. Once trained, MF-based
models are able to e#ciently "lter and rank content for each user,
o!ering a curated and personalized experience. [6, 44].

With advancements in CF, such as deep neural networks [4, 36],
message passing [15, 22, 37], and loss function design [25, 35, 39], the
computational demands to train CF models has risen considerably
[15, 35, 37]. These demands are further exacerbated as the number of
users and items increases, leading to a considerable rise in training
time [34]. The challenge of scaling to large user and item sets is
most apparent inmodern loss functions, where recent losses, such as
DirectAU [35] andMAWU [25], scale quadratically with the number
of users and items. However, it is also well known that computation-
ally heavy losses, such as DirectAU, MAWU, and Sampled Softmax
(SSM) [39] signi"cantly out-perform lighter losses, such as Bayesian
Personalized Ranking (BPR) [30]. Managing computational costs in
CF systems often involves compromises which can reduce personal-
ization and overall performance [7, 12, 17]. Consequently, achieving
high performance while minimizing computational burden remains
a signi"cant challenge.
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Focusing on loss function design, previous work has highlighted
that many CF losses, including BPR, SSM, and DirectAU, di!er pri-
marily by their regularization strength [25]. Moreover, this regular-
ization is largely related to the number of negative samples consid-
eredduring training.Thus, itwouldappear that the trade-o!between
performance and run-time is fundamental, givenmore negative sam-
ples incurs a higher computational overhead. However, we question
if it is possible to attain a cheaper proxy for negative sampling that
can be leveraged as an alternative regularization during training. To
answer this question, we focus on the one shared aspect among all
of the aforementioned designs: the user and item embeddingmatrices.
This then leads us to consider a more fundamental question:

Are there intrinsic properties of the embedding
matrices that contribute to high-performing CF systems?

By identifying such properties, we are able to examine why certain
learnedmatrices perform better than others, and elucidate candidate
matrix properties that can be leveraged as priors on the training
process to improve embedding quality.

Our analysis reveals that the stable rank1 [18, 31], a continuous
variant of matrix rank, of the user and item embedding matrices
tends to positively correlate with the negative sampling rate. We
empirically demonstrate the signi"cance of this result by analyzing
the optimization trajectory of stable rank across various datasets
and loss functions, establishing a connection between stable rank
and performance. Furthermore, we provide a theoretical explana-
tion for the emergence of di!erent stable rank levels from varying
losses, linking CF optimization to the singular values of the user and
item matrices. Based on these "ndings, we propose a stable rank
regularization, utilized as a warm-start mechanism for CF training,
acting as a cost-e!ective proxy for negative sampling.

Focusing on BPR, SSM, and DirectAU as a family of losses which
induce di!erent levels of negative sampling-based regularization,we
study how stable rank regularization can: (a) replace expensive full
negative sampling, such as in the regularization term of DirectAU,
as well as (b) provide the full negative sampling training signal for
lighter losses, e.g. BPR. Through empirical analysis, we demonstrate
thatwarm-starting systems trainedwithDirectAU can savemultiple
hours of training given the linear scaling with the number of users
during warm-start epochs. Additionally, for systems trained with
BPR, stable rank regularization achieves signi"cant performance
increases with a small increase in computational overhead, given
the warm-start epochs approximates more expensive negative sam-
pling strategies. Overall, our analysis uni"es common CF training
paradigms from the novel perspective of stable rank optimization of
the user and item embedding matrices. Given our proposed method
is model-agnostic and lightweight, it can be easily applied with min-
imal overhead, helping to promote scalability in real-world systems.
Our contributions are outlined below:
• Linking Negative Sampling, Matrix Rank, and CF Perfor-
mance: We o!er the "rst analysis which formally connects nega-
tive samplingwithmatrix rank.We also demonstrate a correlation
between matrix rank and higher performance.

• Theoretical Analysis onMatrix Rank: We theoretically relate
common CF training paradigms to matrix rank, demonstrating

1De"ned later in Equation (5), Section 2.3.

that alignment induces rank collapse in user and itemmatrices,
whereas uniformity promotes rank increase in low rank settings.

• Warm Start Strategy for Scalable Recommenders: Using
our newfound understanding, we propose a warm-start strategy
which acts as a cost-e!ective proxy for negative sampling, en-
abling faster learning of high quality embeddings2.

• Extensive Empirical Analysis: We show that stable rank reg-
ularization is able to provide (i) signi"cant speed bene"ts to more
expensive loss functions, e.g. DirectAU, attaining up to a 65.9%
decrease in training time, and (ii) signi"cant performance bene"ts
to light-weight loss functions, e.g. BPR, attaining up to a 21.7%
performance increase.

2 Preliminaries and RelatedWork
2.1 Collaborative Filtering
Given an interaction set E between a set of users 𝐿 and items 𝑀 ,
collaborative "ltering (CF) learns unique embeddings for each user
𝑁 ↑𝐿 and item 𝑂 ↑ 𝑀 such that the interactions between user and items
can be recovered [1]. The matrix which holds the interaction set is
denoted E↑Z |𝐿 |↓ |𝑀 | . The embeddings for the set of users and items
are represented through the user and itemsmatrices,U↑R |𝐿 |↓𝑁 and
I↑R |𝑀 |↓𝑁 , where 𝑃 is the embedding dimensionality. The most com-
mon learning paradigm for CF is matrix factorization (MF), where
U and I are learned such that E↔UI↗. Letting u and i be the user and
item embeddings associated with a user𝑁 and item 𝑂 , respectively,
the interaction signal under MF is recovered via the dot product
between u and i, i.e. E𝑂,𝑃 ↔u·i↗.

DespiteMF’s e!ectiveness, the dot product as an interaction func-
tion can limit expressivity [16]. Thus, variants of MF have proposed
using neural networks to introduce non-linearities into the calcu-
lation. For instance, one may transform the user and itemmatrices
using a deep neural network (DNN), e.g. with DNNs 𝑄 and𝑅 , E↔
𝑄 (U)𝑅 (I)↗, orparameterize the interactioncalculation, lettingE𝑂,𝑃 ↔
𝑆 (u,i) forDNN𝑆 [4, 36, 43]. Recent advancements in graphmachine
learning have also motivated the development of graph-based CF
methods that leverage message passing over the embeddings before
the interaction function [11, 15]. While both methods tend to im-
prove the performance of recommender systems over the traditional
MF baseline, each introduces a signi"cant computational cost.

2.2 Optimization for Collaborative Filtering
Given we cannot directly factor E, an approximate solution can be
obtained by formulating a linear least squares objective with respect
to the predicted matrix Ê=UI↗. This is formalized as 𝑇= | |E↘Ê| |𝑄 ,
where 𝑇 can be minimized by letting Ê be the Singular Value Decom-
position (SVD) of E. In practice, due to matrix size and over"tting
concerns, 𝑇 is solved through gradient descent. However, the proper-
ties of U and I learned through gradient descent are often neglected,
making it unclear how di!erent loss functions bene"t CF. The loss
functions considered in this work are outlined below.

2.2.1 Bayesian Personalized Rank (BPR). One of the traditional
losses to train MF models is BPR [8, 30]. Rather than predicting
the exact interaction value, BPR optimizes for ranking by maximiz-
ing the margin between preferred and non-preferred items for each
2Code is available at https://github.com/snap-research/StableRankReg
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user. This is achieved through a pair-wise loss which maximizes the
distance between interacted and non-interacted samples. Formally,
for a set of user-item triplets, where each triplet is comprised of a
user𝑁, interacted item 𝑂 , and non-interacted item 𝑂≃, the loss is:

𝑇𝑅𝑆𝑇 =
∑

(𝑂,𝑃,𝑃≃ )↑D

ln𝑈 (𝑉𝑂,𝑃↘𝑉𝑂,𝑃≃ ), (1)

where 𝑉𝑂,𝑃 is the similarity between𝑁 and 𝑂 . The dot product is typ-
ically used as the similarity metric between u and i↗. By focusing
on the relative order of items, rather than their absolute scores, BPR
enhances the ranking quality of recommenders.

2.2.2 Sampled So!max (SSM). Set-wise losses generalize pair-wise
losses, like BPR, by considering 𝑊 negative samples for each user-
item pair. A common variant of set-wise loss in recommendations is
SSM [28, 39]. SSM reduces the large set of negative samples (i.e., the
rest of the items not in the positive set for a user) to a subset of nega-
tive samples which need to be ranked lower than the positive items.
When one negative sample is used, SSM reduces to BPR, assuming
the same similarity metric is used. SSM is expressed as:

𝑇𝑈𝑈𝑉 =
∑

(𝑂,𝑃 )↑E

↘log
exp(𝑉𝑂,𝑃 )

exp(𝑉𝑂,𝑃 )+
∑
𝑃≃ ↑𝑈exp(𝑉𝑂,𝑃≃ )

, (2)

where 𝑋 is the set of negative samples. By using a subset of the pos-
sible negative samples, SSM is able to retain competitive e#ciency
while generally achieving higher performance than BPR [29].

2.2.3 DirectAU. DirectAU is a loss function for CF that directly
optimizes both similarity between interacted users and items (align-
ment) and dispersion between user-user or item-item pairs (unifor-
mity) [35]. DirectAU’s uniformity loss removes the need for explicit
negative sampling, as seen in BPR and SSM. The alignment compo-
nent of DirectAU is speci"ed as:

𝑇𝑊𝑋𝑃𝑌𝑍 =
∑

(𝑂,𝑃 )↑E

⇐u↘i⇐2, (3)

where (𝑁,𝑂) are observed user-item interactions. Alignment aims to
promote similarity between embeddings for users and items which
share an interaction. To ensure embeddings do not over"t to the
historic user-item pairs, the uniformity component of DirectAU
promotes that user and item representations be dispersed on the
𝑃-dimensional hypersphere. This term is formulated as:

𝑇𝑂𝑍𝑃 𝑎 𝑏𝑐𝑑 = log
∑

(𝑂,𝑂≃ )↑𝐿

𝑉↘2⇐u↘u
≃
⇐
2
+log

∑
(𝑃,𝑃≃ )↑𝑀

𝑉↘2⇐i↘i
≃
⇐
2
. (4)

Note that the embeddings are normalized for the alignment and
uniformity term. The DirectAU loss weights these two terms with
trade-o! parameter𝑌 . DirectAU o!ers several advantages by help-
ing to prevent embedding collapse; however, the uniformity term
introduces signi"cant computational overhead, scaling as𝑍 ( |𝐿 |

2𝑃).
While some works have o!ered improvements to DirectAU, this has
centered around mitigating popularity bias and increases computa-
tional complexity as compared to the original formulation [29].

2.2.4 Relationship Between the Losses. It is well established that
DirectAU tends to outperform SSM, and SSM tends to outperform
BPR [35].More recentwork has highlighted that uniformity inDirec-
tAU has a relationship with BPR and SSM, where uniformity can be

interpreted as considering all possible negative samples [29]. From
this perspective, BPR, SSM, and DirectAU can be seen as a family
of techniques which consider stronger level of regularization, in-
duced by the number of negative samples. However, the signi"cant
increase in complexity introduced by both SSM, when 𝑊 is large,
and DirectAU may be impractical for real-world applications. To
mitigate this trade-o!, we consider if there is an alternative method
to attain regularization conferred by negative sampling that scales
more favorably with the size of the user and item sets.

2.3 Matrix Rank
The rank of a matrix is used to characterize the dimension of the
vector space spanned by the matrix. A common de"nition for the
rankof amatrixA is given by rank(A)= |{𝑈𝑐 |𝑈𝑐 >0}|, where𝑈𝑐 is the
𝑎𝑒𝑓 singular value ofA. The singular values can be extracted through
the SVD of A, where A = !”#↗, ! is the matrix of left singular
vectors, ” is the matrix of singular values along the diagonal, and
# is the matrix of right singular vectors. In practice, it is common
to compute the rank for singular values greater than 𝑏 , rather than
0, due to numerical precision.

To provide a more comprehensive understanding of the singular
values of a matrix, while also alleviating the challenge of setting an
appropriate 𝑏 , the stable rank of a matrix is often utilized in matrix
analysis [18, 31]. The stable rank of a matrixA is de"ned as:

srank(A)=
⇐A⇐2𝑄
⇐A⇐22

=

∑
𝑐 ↑{1,...,rank(A) }𝑈

2
𝑐

𝑈21
, (5)

where 𝑈𝑐 is a non-zero singular value of A, sorted in descending
order or magnitude, and 𝑈1 is the largest singular value of A. In-
tuitively, srank(A) can be interpreted as a continuous variant of
traditional matrix rank where the relative contribution of a singular
value is directly encoded, rather than discretized to 0 or 1. From
the perspective of optimization during MF training, stable rank can
be used to characterize how e!ectively the model is utilizing the 𝑃
dimensions of the embeddings.

3 Motivation -Matrix Properties
of High-Quality User and ItemMatrices

In this section, we study the properties of the user and item embed-
ding matrices learned across di!erent CF methods. Through our
"ndings, we can decipher what constitutes higher-quality embed-
dings, as measured by performance, and leverage such knowledge
during training. To study the properties of the embedding matrices,
we begin by simply training an MFmodel with both BPR and Direc-
tAU across four di!erent benchmarks. We then study the training
trajectories for the di!erent models, focusing on how the stable
rank changes. The "nal stable rank of the learned embedding ma-
trices is compared to the performance of the respective model. Our
results demonstrate that stable rank tends to be highly correlated
with stronger performance between BPR and DirectAU, prompting
a deeper study on how stable rank is optimized in the di!erent meth-
ods and how it can be utilized to improve training. Exact details for
the empirical setup can be found in Appendix C.
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Figure 1: Stable Rank Trajectories of usermatrices. The blue
and orange lines denote BPR and DirectAU, respectively. The
dotted lines denote the !nal stable rank of the usermatrices
after training. DirectAU produces higher stable rank. Similar
trends are found for the itemmatrices, as seen inAppendixD.

3.1 Stable Rank Trajectories
In Figure 1, we plot the stable rank trajectories for di!erent bench-
mark datasets and the BPR and DirectAU loss functions. Initially,
both models start at a high stable rank due to random initialization.
However, both display signi"cantly di!erent trajectories. BPR tends
to decrease in stable rank across epochs, arriving at an overall low
stable rank at early stopping. DirectAU is signi"cantly di!erent,
where initially the matrices collapse to a lower stable rank, and then
later increase after a period of training. As DirectAU utilizes both
an alignment and uniformity loss, DirectAU is able to both collapse
and disperse the representations of the user and itemmatrices, as
opposed to BPR which tends to prioritize collapse. We hypothesize
that these loss behaviors are the direct cause of the di!erent stable
rank values, which we validate in subsequent sections.

3.2 Relationship between
Performance and Stable Rank

With establishing the di!erent stable rank trajectories between BPR
and DirectAU, we now consider the quality of the resulting learned
user and item embeddings for the di!erent settings. For each dataset
and loss, we compare their performance, computed as NDCG@20,
and stable rank. In Table 1, we see that in each instance, the higher
performing loss function additionally has a higher stable rank, es-
tablishing a correlation between the two.

To provide intuition on this behavior, we consider the interaction
matrix E for sets of users𝐿 and items 𝑀 , with rank(E) ⇒min( |𝐿 |,|𝑀 |).
As it is common to set the embedding dimension ofU and I, 𝑃 , to be

Table 1: NDCG@20 and stable rank for di"erent datasets and
losses. Both metrics are reported as an average over three
random seeds with standard deviations.

Dataset Loss Function NDCG@20 Stable Rank

MovieLens1M BPR 0.194 ± 0.0 12.921 ± 0.046
DirectAU 0.236 ± 0.0 21.082 ± 0.015

Yelp2018 BPR 0.047 ± 0.001 7.471 ± 0.13
DirectAU 0.071 ± 0.0 14.423 ± 0.019

Gowalla BPR 0.092 ± 0.001 9.386 ± 0.043
DirectAU 0.132 ± 0.001 40.681 ± 0.061

AmazonBook BPR 0.046 ± 0.0 6.5 ± 0.01
DirectAU 0.078 ± 0.0 31.852 ± 0.033

signi"cantly less than min( |𝐿 |,|𝑀 |), and given interactions matrices
tend to be extremely sparse minimizing duplicate interaction pat-
terns, we assume the goal is to learn a 𝑃-rank approximation of E.
The optimal solution then comes from the truncated SVD of Ewith
𝑃 retained singular values. Thus,

E𝑁 =!𝑁”𝑁#↗

𝑁 = (!𝑁”
1
2
𝑁
) (”

1
2
𝑁
#↗

𝑁 )=U𝑁V↗

𝑁 . (6)

Using the Eckart–Young–Mirsky theorem, the error in the rank-𝑃
approximation of E is then given by:

⇐E↘E𝑁 ⇐2𝑄 = ⇐E↘U𝑁V↗

𝑁 ⇐
2
𝑄 =

rank(E)∑
𝑐=𝑁+1

𝑈2𝑐 . (7)

In practice, the matrix E is often too large to directly compute
SVD, thus the true rank(E) is unknown. Moreover, even computing
a truncated SVD is only possible on small datasets. Thus, U𝑁 and V𝑁
are generally approximated via gradient descent. While truncated
SVD ensures U and I are rank 𝑃 , the chosen gradient descent loss
function can incorporate inductive biases which further reduce this
rank below 𝑃 , potentially hurting performance given the relation
in Equation (7). To thoroughly understand how certain rank values
arise, in the next sectionweo!er a rigorous analysis onhowdi!erent
losses impact the gradient descent process and induce di!erent rank
properties into the the user and itemmatrices.

4 Theoretical Analysis - Matrix
Properties Induced by Di"erent Losses

Despite BPR, SSM, and DirectAU sharing a common underlying
optimization paradigm, related to the number of negative samples
considered in the training process [29], the implications on the user
and item matrices (beyond negative sampling improving perfor-
mance) remains unclear. Due to thismissing connection, it is unclear
what properties negative sampling induces into the embedding ma-
trices, and how one might create a proxy for negative sampling via
priors on the training process. To address this gap, we build upon
our established empirical "ndings on stable rank and carefully study
how optimization through di!erent CF losses changes the user and
item embedding matrix properties. Speci"cally, we study the cases
of pure alignment optimization (zero negative samples), and pure
uniformity optimization (all negative samples), demonstrating that
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the adjustment of stable rank is intrinsically encoded in the matrix
updates. With our newfound theoretical relationship, we propose a
training strategy able to induce the bene"ts of full negative sampling
with a signi"cantly smaller computational cost.

4.1 Singular Values under
Alignment and Uniformity Optimization

Belowwe o!er two theoretical analyses where we study the prop-
erties of the user matrixU after training solely with alignment and
solely with uniformity, respectively. For each analysis, we provide
the assumptions, our theoretical analysis, and the implications.

4.1.1 Optimizing Alignment. We assume user and item embedding
matrices U ↑ R𝑍↓𝑁 and I ↑ R𝑑↓𝑁 , as well as an interaction set E,
where ( 𝑐,𝑑) ↑E denotes a user𝑁 𝑔 interacted with item 𝑂𝑋 . For brevity,
we focus on a mini-batch of interactions between a set of 𝑎 users,
{𝑁1, ...,𝑁𝑐 }, and a particular item 𝑂 . We then compute the ratio of
the "rst and second singular values for a gradient descent step 𝑒 ,
denoting the learning rate as 𝑓.

T!"#$"% 4.1. Given the initial user embedding matrix, U(0) , with
singular values 𝑈 (0)

1 and 𝑈 (0)
2 , and the user embedding matrix after

𝑒 iterations of gradient descent with 𝑇𝑊𝑋𝑃𝑌𝑍 ,U(𝑒 ) , with singular values

𝑈 (𝑒 )
1 and 𝑈 (𝑒 )

2 , ω(𝑒 )
ali =

𝑕 (0)
1

𝑕 (0)
2

/
𝑕 (𝐿 )
1

𝑕 (𝐿 )
2

is given by:

ω(𝑒 )
ali =

𝑈 (0)
1 (1↘2𝑓)𝑒

(1↘ (1↘2𝑓)𝑒 )
⇑
𝑎 ⇐i⇐2+𝑈

(0)
1 (1↘2𝑓)𝑒

. (8)

The full proof is given in Appendix A.1.When𝑓< 1
2 , the "rst term in

the denominator is strictly positive and ω(𝑒 )
𝑊𝑋𝑃

<1, indicating that the
"rst and second singular values diverge as 𝑒 increases. Thus, training
purelywith alignment, i.e. without negative sampling, induces lower
stable rank in the user matrix. Similar logic can be applied to the
item embedding matrix by $ipping the initial notation, indicating
a similar decline in stable rank.

4.1.2 Optimizing Uniformity. As uniformity operates solely on ei-
ther the user or item embeddingmatrix,WLOGwe focus only on the
user embedding matrixU↑R𝑍↓𝑁 . Similar to alignment, we compute
the ratio of the"rst and second singular values for a gradient descent
step 𝑒 .

T!"#$"% 4.2. Given the user embedding matrix optimized via
𝑇𝑂𝑍𝑃 𝑎 𝑏𝑐𝑑 at gradient step 𝑒 and 𝑒+1, with singular values 𝑈 (𝑒 )

1 , 𝑈 (𝑒 )
2

and 𝑈 (𝑒+1)
1 , 𝑈 (𝑒+1)

2 , respectively, ω(𝑒 )
uni =

𝑕 (𝐿 )
1

𝑕 (𝐿 )
2

/
𝑕 (𝐿+1)
1

𝑕 (𝐿+1)
2

is given by:

ω(𝑒 )
𝑂𝑍𝑃 =

𝑈 (𝑒 )
1 (𝑔𝑈2 (𝑕U(𝑒 )

)+𝑈 (𝑒 )
1 )

𝑈 (𝑒 )
2 (𝑔𝑈1 (𝑕U(𝑒 ) )+𝑈 (𝑒 )

1 )

, (9)

where 𝑔 = 𝑓4𝑉↘4
⇑
𝑖𝑃 , 𝑕U(𝑒 )

↑ R𝑍↓𝑍 is the matrix of L1 distances
between pairs of rows in U(𝑒 ) , and 𝑈 𝑔 (𝑕U(𝑒 )

) is the 𝑐-th singular
value of 𝑕U(𝑒 ) . The full proof is given in Appendix A.2. ω(𝑒 )

𝑂𝑍𝑃 > 1

when 𝑕 (𝐿 )
1

𝑕 (𝐿 )
2

> 𝑕1 (𝑖U(𝐿 )
)

𝑕2 (𝑖U(𝐿 ) )
. If we consider a rank-2 user embedding ma-

trix, where the individual user vectors deviate by angle 𝑏 , 𝑕
(𝐿 )
1

𝑕 (𝐿 )
2

↔
1
𝑗

and 𝑕1 (𝑖U(𝐿 )
)

𝑕2 (𝑖U(𝐿 ) )
↔

𝑐↘1
⇑
𝑐
. Thus, as 𝑏 tends towards 0, ω(𝑒 )

𝑂𝑍𝑃 is greater than
1, indicating that uniformity promotes higher stable rank as the
embeddings with the matrix become more aligned.

5 Expediting Collaborative Filtering
Training with Stable Rank Regularization

Given our analysis thus far, we have evidence that (a) the stable rank
of the user and item matrices in$uences model performance, and
(b) negative sampling-based regularization strategies intrinsically
induce higher stable rank. Thus, our goal is to directly induce the
stable rank property within the training process, rather than indi-
rectly optimize it through a more costly regularization term, like
uniformity. We begin by introducing our new loss term, stable rank
regularization, and then discuss howwe use it during training.

5.1 Stable Rank Regularization
We formulate the stable rank regularization as the stable rank cal-
culation scaled relative to the max possible rank of the matrix. The
scaling allows for the stable rank loss to be between0 and 1,making it
easier to balance with other loss terms. Speci"cally, givenA↑R𝑍↓𝑑 ,
the regularization is formulated as:

𝑇srank=
⇐A⇐2𝑄

⇐A⇐22max(𝑖,𝑗)
. (10)

Notably, 𝑇srank is model-agnostic, and can be amenable to any ID
embedding training strategy by co-optimizing it with a similarity-
inducing loss, e.g. 𝑇align. We optimize with respect to ↘𝑌𝑘𝑐𝑇srank
to retain higher stable rank, where𝑌𝑘𝑐 is the weighting parameter
between the chosen similarity loss and 𝑇srank. We can additionally
express ⇓A𝑇srank (A) as:

⇓A𝑇srank (A)=
2(A↘srank(A)𝑈1𝑘1𝑙↗

1 )

⇐A⇐22
, (11)

where 𝑈1 is the largest singular value of A,𝑘1 is the left singu-
lar vector corresponding to 𝑈1, and𝑙1 is the right singular vector
corresponding to 𝑈1. Similar to uniformity, we row-normalizeA.

5.1.1 Relation to Other Methods. The proposed stable rank regu-
larization has relation to some methods found in self-supervised
learning (SSL). For instance, the BarlowTwins loss aims tomaximize
the o!-diagonals of the the correlation matrix between perturbed
samples, mitigating dimensionality collapse [42]. However, this is
highly coupled to the SSL setting and not directly amenable to CF.
More general contrastive losses have also discussed the bene"t of
optimizing spectral properties of embeddings [21]. In the context of
CF, the newly proposed nCL loss has begun to explore these prin-
ciples, optimizing for compact and high-dimensional clusters for
users and items [2]. Yet, the loss is only motivated empirically by
performance and cannot be applied to pre-existing systems.

5.1.2 Computational and Memory Complexity: ⇐A⇐
2
𝑄 requires it-

erating over all elements within A, thus scaling as O(𝑖𝑗). ⇐A⇐
2
2
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Figure 2: Example of Vectors Optimized for Stable Rank and Uniformity.

Figure 3: Angle 𝑚 between ⇓u𝑇srank and
⇓u𝑇uniformity across gradient descent steps.
Fill represents std across three randomly
initialized usermatrices.

requires solving for the largest eigenvalue of (A↗A)
1
2 , which scales

as O(𝑖𝑗2
) given the number of embedding dimensions is small

(𝑖⇔𝑗). In comparison, uniformity scales as𝑍 (𝑖2𝑗) given the need
to compute all pairwise similarities. As the intermediary matrices
must be retained for gradient computation, as seen in Equations (12)
and (13), the memory requirements follow similar scaling as the
computation requirements. Thus, stable rank regularization also
allows for training with larger datasets given a "xed memory size.

5.2 Training with Stable Rank Regularization
Despite establishing that stable rank is optimizedwithin CF training,
it is still unclear to what extent stable rank can be used as a direct
proxy for negative sampling during training. Thus, we "rst study
the relationship between stable rank and uniformity optimization,
"nding that stable rank is a reasonable approximation when the
user (or item) embeddings are similar, i.e. strong alignment. We
then establish a warm-start training strategy which uses stable rank
regularization during early phases of training, and other negative
sampling-based regularization during the end of training.

5.2.1 Relationship Between Stable Rank and Uniformity Optimiza-
tion. To establish a connection between stable rank and uniformity,
we start with a motivating example where we optimize uniformity
and stable rank for three random user vectors in 2-D space. Then,
we expand the analysis and look at the angle formed by the unifor-
mity and stable rank gradients, using Equation (12) and (13), for a
set of 1000 users in 32-D space. In the higher-dimensional setting,
we instantiate the user embeddings such that the angle between
pairs of embeddings are within a small range, 𝑛 = 1↖, simulating
strong alignment. Together, the results highlight that stable rank
and uniformity approximate each other well when the vectors are
close, and only deviate once the vectors become more uniform.

⇓𝑂𝑇uniformity=
↘4

∑
𝑂≃𝑉↘2⇐u↘u

≃
⇐
2
2 (u↘u≃)∑

𝑂≃𝑉↘2⇐u↘u
≃ ⇐22

(12)

⇓𝑂𝑇srank=
𝑈212u↘⇐U⇐

2
𝑄 (2𝑈1𝑘1𝑙

↗
1 )𝑂

𝑈41
(13)

InFigure 2,weplot the threeuser vectorson theunit circle. In early
stages of optimization, the angles between the vectors are highly
similar across the two losses. However, as the optimizes continues,
the angles diverge between losses, where uniformity continues to
separate the vectors apart while the stable rank gradient goes to
zero. As stable rank aims to attain orthogonal vectors, it is unable
to increase the angle between the vectors beyond Step 500 given the
vectors would revert back to linear dependence.

To measure the angle between ⇓𝑂𝑇uniformity and ⇓𝑂𝑇srank, we
generate our larger user matrix and compute Equations (12) and (13)
for all users. Then, the angle between the gradients is,

𝑚 =arccos
(

⇓𝑂𝑇uniformity ·↘⇓𝑂𝑇srank
⇐⇓𝑂𝑇uniformity⇐⇐⇓𝑂𝑇srank⇐

)
(14)

across the gradient descent steps. A negative is applied to ⇓𝑂𝑇srank
as the objective is maximized. In Figure 3, the uniformity and stable
rank gradients are highly similar for a majority of the optimization
process, and only begin to deviate in the later stages of the opti-
mization. This demonstrates that the smaller example in Figure 3
translates to larger matrices. We use this insight to inform howwe
utilize stable rank during training, as described in our section.

5.2.2 Warm-Start Training Strategy. As stable rank regularization
cannot directly replace uniformity and fully approximate negative
sampling, we focus on identifying periods of training where stable
rank can be most impactful. Based on the DirectAU trajectories ob-
served in Figure 1, training typically involves three phases focused
on alignment, stable rank, and then uniformity. Early in training,
alignment dominates the DirectAU loss, leading to an initial collapse
in stable rank. Once alignment is achieved, training promotes sta-
ble rank, ensuring interacted pairs are closer than non-interacted
pairs. Near the end of training, the stable rank is high, however the
uniformity continues to push non-interacted pairs apart. Notably,
BPR generally only possesses an alignment phase given the weak
regularization induced by one negative sample.

To utilize these insights, we propose a warm-start strategy that
uses stable rank regularization, in place of negative sampling or
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Table 2: Comparison betweenMFmodels trained with DirectAU and DirectAU + Stable Rankwarm-start. Test Recall@20 and
NDCG@20 are reported, with the runtimemeasured over training process. We provide the di"erence between standard and
warm start training processes (Stable Rank - Standard) and the percent di"erences (change from Standard). Stable Rank shown
as e"ective given all datasets receive signi!cant training speedups with no performance loss.

DirectAU Recall@20 NDCG@20 Runtime (min) Recall@20 NDCG@20 Runtime (min)

MovieLens1M Gowalla

Standard 24.9 ± 0.0 23.3 ± 0.1 58.3 ± 0.7 18.4 ± 0.1 13.3 ± 0.1 244.4 ± 1.9
+ Stable Rank 25.0 ± 0.1 23.6 ± 0.0 40.1 ± 5.1 18.3 ± 0.1 13.2 ± 0.1 148.8 ± 10.7

Di"erence (% Di".) ↙0.1 (0.40%) ↙0.3 (1.29%) ∝18.2 (-31.22%) ∝0.1 (-0.54%) ∝0.1 (-0.75%) ∝95.6 (-39.12%)

Yelp2018 AmazonBook

Standard 10.6 ± 0.1 7.1 ± 0.0 310.9 ± 3.2 10.5 ± 0.1 7.8 ± 0.1 426.6 ± 9.3
+ Stable Rank 10.7 ± 0.1 7.1 ± 0.0 174.6 ± 20.2 10.6 ± 0.1 7.8 ± 0.1 145.0 ± 15.7

Di"erence (% Di".) ↙0.1 (0.94%) 0.0 (0.00%) ∝136.2 (-43.81%) ↙0.1 (0.95%) 0.0 (0.00%) ∝281.6 (-66.03%)

uniformity, during the alignment and stable rank phases. Stable rank
regularization is then replacedwith negative sampling or uniformity
regularization during the uniformity phase. To determine the transi-
tion point, we employ early stopping where a decrease in validation
performance signals to switch. This ismotivated by the fact that once
stable rankbecomes ine!ective, thealignment termwilldominate the
loss and reduce performance. This early stopping approach accounts
for noise by incorporating patience, ensuring the stable rank phase
is complete. Given the stable rank computation is signi"cantly faster
than more expensive losses, like uniformity, we expect speed-ups
in overall training to be roughly proportion to the number of epochs
regularized via stable rank. Additionally, since stable rank serves as
an inexpensive proxy for negative sampling, we expect lightweight
losses which focus on alignment, e.g. BPR, to bene"t in performance
from stable rank regularization with relatively small runtime costs.

6 Empirical Analysis
In this section, we perform a series of empirical analyses to validate
the bene"t of stable rank regularization and determine howwe can
improve CF training. This leads to three core research questions:
(RQ1) How e!ective is our stable rank warm-start strategy at expe-
diting training in computationally expensive settings?, (RQ2) How
well does stable rank approximate negative sampling, and can it
be used to bolster lightweight losses?, and (RQ3) What datasets
properties bene"t most from the stable rank warm-start strategy?

6.1 Experimental Setup
Datasets.Our experiments are performed on four common bench-
marks including MovieLens1M [14], Gowalla [5], Yelp2018 [41],
AmazonBook [27]. Statistics are provided in Table 5 of the Appendix.

Models and Loss Functions. We focus on applying the stable rank
warm-start strategy to MF, trained with BPR, SSM, and DirectAU.
We additionally include experiments training LightGCN with Di-
rectAU given together this combination has been shown to produce
state of the art results on many tasks. We provide details on hyper-
parameters and tuning in Appendix C.

Evaluation Methods/Metrics. To assess the quality of the ID embed-
ding tables learned under the di!erent model and loss combinations,

Table 3: Comparison between LightGCNmodels trained with
DirectAU and DirectAU + Stable Rankwarm-start. LightGCN
bene!ts similar to MF with signi!cant improvements in
runtimewhile retaining high performance.

Dataset NDCG@20 %Di". Runtime %Di".

MovieLens1M -0.47 ± 0.66% -35.02 ± 25.87%
Gowalla -0.51 ± 0.36% -37.75 ± 7.19%
Yelp2018 0.51 ± 0.71% -42.61 ± 12.99%
AmazonBook 4.69 ± 2.64% -10.27 ± 16.88%

we look at both performance and training time. For performance, we
utilize Recall@20 and NDCG@20, while for runtime we report the
time toperform forwardandbackwardpasses, given these are the fac-
tors which vary between architectures. Exact details on evaluation
and implementation are provided in Appendix C.

6.2 Results
(RQ1) Expediting Training with Stable Rank. In Table 2, we
compare the performance and runtime of MFmodels trained with
vanilla DirectAU and those employing DirectAUwith a stable rank
warm-start. Across all datasets, the stable rank warm-start signif-
icantly reduces runtime while maintaining comparable Recall@20
and NDCG@20metrics. On average, our approach allows MFmod-
els to train 45.93% faster, with speed-ups reaching up to 65.9% on
AmazonBook. This improvement stems from two core properties: (i)
the stable rank calculation is signi"cantly cheaper than uniformity,
accelerating epochs in the alignment or stable rank phases, and (ii)
stable rank regularization mitigates the initial stable rank collapse,
reducing the number of epochs needed for DirectAU to achieve
su#cient uniformity. An ablation study shown in Figure 6 of the
Appendix supports these "ndings where we compare an alignment-
only warm-start strategy, disabling all regularization in the initial
phases, with our stable rank approach. Across nearly all datasets,
the alignment warm-start, despite retaining similar performance,
takes signi"cantly longer than stable rank to converge.

In Table 3, we report performance and runtime metrics for Light-
GCN, revealing similar improvements without performance loss,
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Table 4: Comparison between MF models trained with BPR, and BPR + Stable Rank warm-start. Stable rank is shown to
signi!cantly increase performance of BPRwithminimal increases in runtime relative tomore expensive loss functions.

BPR Recall@20 NDCG@20 Runtime (min) Recall@20 NDCG@20 Runtime (min)

MovieLens1M Gowalla

Standard 22.0 ± 0.1 19.4 ± 0.0 1.2 ± 0.2 12.7 ± 0.0 9.2 ± 0.1 1.8 ± 0.2
+ Stable Rank 22.3 ± 0.0 19.8 ± 0.1 2.0 ± 0.5 13.6 ± 0.1 9.9 ± 0.1 3.2 ± 1.2

Di"erence (% Di") ↙0.3 (1.36%) ↙0.4 (2.06%) ↙0.8 (66.67%) ↙0.9 (7.09%) ↙0.7 (7.61%) ↙1.4 (77.78%)

Yelp2018 AmazonBook

Standard 7.1 ± 0.1 4.7 ± 0.1 2.2 ± 0.1 6.6 ± 0.1 4.6 ± 0.0 18.0 ± 0.7
+ Stable Rank 8.3 ± 0.0 5.5 ± 0.0 5.4 ± 1.3 8.0 ± 0.1 5.6 ± 0.1 30.7 ± 1.7

Di"erence (% Di") ↙1.2 (16.90%) ↙0.8 (17.02%) ↙3.2 (145.45%) ↙1.4 (21.21%) ↙1.0 (21.74%) ↙12.7 (70.56%)

averaging a 31.4% speed-up across datasets. This result suggests that
rank collapse observed in message passing for contrastive learn-
ing [38] is also relevant to CF. Notably, the standard deviations for
LightGCN are higher than for MF due to its faster convergence –
LightGCN typically converges within′25 epochs for MovieLens1M,
compared to ′100 epochs for MF. As a single LightGCN epoch has
a longer runtime than a single MF epoch, $uctuations in the number
of warm-start epochs can produce large swings in percent di!erence.
Nonetheless, the runtime reductions consistently point to signif-
icant improvements, underscoring the e#cacy of our stable rank
warm-start strategy in expediting training.

(RQ2) Approximating Negative Sampling with Stable Rank.
In Table 4 we compare MFmodels trained with vanilla BPR and BPR
with stable rankwarm-start.Across all datasets, BPRwith stable rank
warm-start exhibits a notable performance boost, with NDCG@20
increasing by an average of 12.1%, and up to 21.2% on AmazonBook.
Importantly, these gains come with only a small runtime increase,
usually just a few extra minutes. To understand the relationship
between these performance improvements and negative sampling,
we also conducted experiments on SSM, presented in Table 6 of the
Appendix.While stable rank regularization o!ers less bene"t to SSM,
since SSM is already a cost-e!ective approximation for full negative
sampling, BPR with stable rank regularly achieves similar or better
performance. For instance, on Yelp and Gowalla datasets, BPR with
stable rank improves over SSM by 22.2% and 3.1% in NDCG@20,
respectively. Additionally, on MovieLens1M and Gowalla, BPR with
stable rank decreases runtimes by 60.78% and 48.39% as compared
to SSM, demonstrating that our warm-start strategy encodes useful
negative sampling signal.

(RQ3) Stable RankWarm-start E"ectiveness with Di"erent
Dataset Properties While our previous analysis focused on dif-
ferent losses for a "xed dataset, we now examine trends between
datasets for a given loss. As shown in Table 4 and Table 2, our pro-
posedmethodbehavesdi!erentlyacrossdatasets. Speci"cally, forMF
models trained with DirectAU and BPR, the most substantial speed-
ups and performance gains occur with AmazonBook, as mentioned
in RQ1 and RQ2. According to Table 5, AmazonBook is the sparsest
dataset with a large item set. Conversely, MovieLens1M shows the
least bene"t and is extremely dense with a small item set, only dis-
playing speed-ups of 31.2% and performance improvements of 2.1%.
From a negative sampling perspective, sparser datasets with larger

item sets require signi"cantly more negative samples to achieve
similar levels of regularization as compared to denser datasets with
smaller item sets. This is evident in Figure 1, where MovieLens1M
trained with BPR shows recovery from the initial stable rank col-
lapsewith just one negative sample, while AmazonBook’s trajectory
strictly decreases. Thus, stable rank regularization tends to be more
bene"cial for large, sparse datasets, which are commonly seen in
real-world systems. For LightGCN, the trend di!ers due to the run-
time bottleneck in the message passing component, which scales
with the edge set. Consequently, reducing the number of epochs for
LightGCN on denser datasets yields larger runtime improvements,
as seen onMovieLens1M and Yelp.

7 Conclusion
In this work, we addressed scalability challenges within CF meth-
ods by investigating the properties and training trajectories of ID
embedding tables under various learning strategies. Through both
empirical and theoretical analyses, we revealed an intrinsic link
between the singular values of these tables and di!erent CF loss
functions. Moreover, leveraging the relationship between BPR, SSM,
and DirectAU, rooted in the level of regularization induced by neg-
ative sampling, we proposed a an e#cient stable rank regularization
which promotes similar training signals as full negative sampling. To
operationalize our proposedmethod, we also proposed awarm-start
strategy which optimizes for stable rank during the early train-
ing phases, signi"cantly improve embedding quality and e#ciency.
These "ndings both enhance our fundamental understanding of
CF-based recommender systems, while also broadening their appli-
cability to large-scale environments by mitigating computational
overhead. Furthermore, as the method is model and loss function
agnostic, it can be easily combined with more modern CF learning
paradigms, as well as more mature production pipelines.
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A Theoretical
Analysis for Alignment and Uniformity

Thegoal of this analysis is to understandhowalignment (nonegative
sampling) and uniformity (full negative sampling) induce di!erent
stable rank properties in the user and item embedding matrices. We
begin by studying the gradient descent process for the user embed-
dingmatrix as trained by the alignment loss function, represented as
the euclidean distance between user-item pairs. Then, we will con-
sider the uniformity loss term, and performa similar style of analysis.

A.1 Proof for Theorem
1 - Alignment Induces Rank Collapse

We begin by understanding how the alignment objective modi"es
the singular values of the user (or item) matrices. Without loss of
generality, we focus on the singular values of the user matrix, how-
ever the same logic can be applied to the itemmatrix by $ipping the
user and item notation.

Assume there is a user matrix U ↑ R𝑍↓𝑁 and an item matrix
I↑R𝑑↓𝑁 . Additionally, assume there are a set of historic interactions
E, where ( 𝑐,𝑑) ↑E denotes that a user 𝑐 interacts with item 𝑑 . Then,
the alignment objective over the user and item pairs is:

𝑇align=
∑

( 𝑔,𝑋 )↑𝑙

⇐u𝑔 ↘i𝑋 ⇐22 .

As we can group terms within 𝑇align according to particular items,
similar to batching within gradient-based optimization, we focus
on a single arbitrary item i with 𝑎 interacted users. Through this
notation, a user u𝑔 ↑ {u1,...,u𝑐 } is attached to item i. The alignment
loss for this subset is expressed as:

𝑇align=
𝑐∑
𝑔=1

⇐u𝑔 ⇐22↘2u
↗
𝑔 i+⇐i⇐

2
2 .

The partial derivative for the alignment loss with respect to a user
u𝑔 is give by,

𝑜L

𝑜u𝑔
=2(u𝑔 ↘i)

leading to a recursive gradient descent update rule of,

u(𝑒+1)𝑔 =u(𝑒 )𝑔 ↘2𝑓 (u(𝑒 )𝑔 ↘i) .

where 𝑓 is the learning rate and u(𝑒+1)𝑔 is the 𝑐-th user’s embedding
vector at time 𝑒 . To attain a closed-form solution of the embedding
for u𝑔 , the recurrence relation is expanded, leading to:

u(𝑒 )𝑔 = (1↘2𝑓)𝑒u(0)𝑔 +2𝑓
𝑒↘1∑
𝑚=0

(1↘2𝑓)𝑚 i.

This result canbe further simpli"edby summing thegeometric series,
leading to,

u(𝑒 )𝑔 = (1↘2𝑓)𝑒u(0)𝑔 +
(
1↘ (1↘2𝑓)𝑒

)
i.

Theupdate equation for eachuser canbe consolidated intomatrix-
form by recognizing the equation as a weighted sum of the original
user embeddings, and the item embeddings. Then, the update rule
becomes,

U(𝑒 ) = (1↘2𝑓)𝑒U(0)
+(1↘ (1↘2𝑓)𝑒 ) (1∞i↗)

where U(𝑒 ) denotes the user matrix at gradient descent step 𝑒 , 1
represents a ones vector of size 𝑎 and ∞ is the outer product.

The singular values of the matrix U(𝑒 ) can be directly inferred
based on the update rule. First, we assume thatU(0) , the original user
embeddings, hasa singularvaluedecomposition (SVD),whereU(0) =∑𝑑𝑃𝑍 (𝑐 ,𝑁 )

𝑔=1 𝑈 (0)
𝑔 𝑔 (0)

𝑔 𝑝 (0)𝑔 , and all 𝑈 (0)
𝑔 > 0. That is, U(0) is full rank.

Then,we can study the singular values of the two terms in the update
rule. The 𝑐-th singular values for the two terms of U(𝑒 ) are given by:

𝑈 𝑔 ((1↘2𝑓)𝑒U(0)
)= (1↘2𝑓)𝑒𝑈 (0)

𝑔

𝑈 𝑔 ((1↘ (1↘2𝑓)𝑒 ) (1∞i↗))=

{
(1↘ (1↘2𝑓)𝑒 )

⇑
𝑎 ⇐i⇐2, 𝑐 =1

0, 𝑐 ω1
.

Using Weyl’s inequality, we can then bound the 𝑐-th singular
value of𝐿 (𝑒 ) as:

𝑈 𝑔 (U(𝑒 )
) ⇒ 𝑈 𝑔 ((1↘ (1↘2𝑓)𝑒 ) (1∞i↗))+𝑈1 ((1↘2𝑓)𝑒U(0)

)

=
{

(1↘ (1↘2𝑓)𝑒 )
⇑
𝑎 ⇐i⇐2, if 𝑐 =1

0, if 𝑐 ω1

}
+(1↘2𝑓)𝑒𝑈 (0)

1

(15)

leveraging the relationship between the 2-norm of a matrix and the
dominant singular value. Additionally, 𝑈 (0)

1 is the largest singular
value of the original sampled user matrix. To understand how the

singularvaluesarechanging,wecancompare 𝑕 (0)
1

𝑕 (0)
2

with 𝑕 (𝐿 )
1

𝑕 (𝐿 )
2

, denoted

ω(𝑒 ) , by dividing the two quantities to attain a relative scaling.While
Weyl’s inequality provides an upper bound, the exact values are
dictated by exact properties of the user and itemmatrices. As these
cannot be directly expressed, we instead introduce 𝑞1 ⇒ 1 and 0<
𝑞2 ⇒1 as scalars on the "rst and second singular values to account
for instance where they are not at the upper bound. Then,

ω(𝑒 ) =
𝑈 (0)
1 𝑞2 (1↘2𝑓)𝑒

𝑞1 (1↘ (1↘2𝑓)𝑒 )
⇑
𝑎 ⇐i⇐2+(1↘2𝑓)𝑒𝑈

(0)
1

Assuming that0<𝑓<0.5, otherwise the representationseitherdonot
change, or immediately collapse to i, the term (1↘ (1↘2𝑓)𝑒 )

⇑
𝑎 ⇐i⇐ is

strictly positive. Letting 𝑞1↔𝑞2, we cancel these terms and conclude
that ω(𝑒 ) < 1, and the gap between the "rst and second largest
singular value exponentially increases as a function of 𝑒 . Thus, one
can expect that after su#cient iterations, alignment will induce rank
collapse on the subset of the user matrix. ⊋
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A.2 Proof for Theorem
2 - Uniformity Promotes Higher Rank

Using our previously established result and analysis techniques, we
are now going to study uniformity. The goal will be to be able to ex-
press a similar measure for the gap between the two largest singular
values. We will assume a batch of 𝑎 users with 𝑃 features, and study
how user matrix U is updated. Similar logic can be applied to the
itemmatrix, 𝑀 . We begin by specifying the uniformity loss as

𝑇uniformity= log(
𝑐∑
𝑔

𝑐∑
𝑔 ≃ω𝑔

𝑉↘2⇐u𝑀↘u𝑀 ≃ ⇐
2
2 ) .

To perform a similar analysis based on matrix computation, let
us "rst represent the uniformity term through matrix computation.
We will begin through a similar expansion used in the alignment
computation where:

⇐u𝑔 ↘u𝑔 ≃ ⇐22= ⇐u𝑔 ⇐22↘2u
↗
𝑔 u𝑔 ≃ +⇐u𝑔 ≃ ⇐

2
2 .

Given the log transform on the uniformity term is monotonic and
simply changes the scale of the gradient update, we remove it for
simplicity. Then, the uniformity loss is:

𝑇uniformity=
𝑐∑
𝑔

𝑐∑
𝑔 ≃ω𝑔

𝑉↘2( ⇐u𝑀 ⇐
2
2↘2u

↗

𝑀 u𝑀 ≃+⇐u𝑀 ≃ ⇐
2
2 ) .

We can the compute the gradient with respect to a user𝑁 𝑔 as:

⇓𝑂 𝑀 𝑇uniformity=
𝑐∑

𝑔 ≃ω𝑔
↘4𝑉↘2( ⇐u𝑀 ⇐

2
2↘2u

↗

𝑀 u𝑀 ≃+⇐u𝑀 ≃ ⇐
2
2 ) (u𝑔 ↘u𝑔 ≃ ). (16)

We can thenuse the fact that the rows ofU are normalized, leading
to

⇓𝑂 𝑀 𝑇uniformity=
𝑐∑

𝑔 ≃ω𝑔
↘4𝑉↘2(2↘2u

↗

𝑀 u𝑀 ≃ ) (u𝑔 ↘u𝑔 ≃ ) .

=↘4𝑉↘4
𝑐∑

𝑔 ≃ω𝑔
𝑉4u

↗

𝑀 u𝑀 ≃ (u𝑔 ↘u𝑔 ≃ )

(17)

The gradient descent update for a user u𝑔 is:

u(𝑒+1)𝑔 =u(𝑒 )𝑔 +𝑓4𝑉↘4
𝑐∑
𝑔 ≃
𝑉4u

↗

𝑀 u𝑀 ≃ (u𝑔 ↘u𝑔 ≃ )

Now, letUU↗ be theGrammatrixofU,G. Likewise, let𝑕U𝑚 ↑R𝑍↓𝑍

be the matrix of pairwise di!erences for the 𝑊-th element in the user
embeddings. Then, the update for the full matrixU is

U(𝑒+1) =U(𝑒 )
+𝑓4𝑉↘4 [(𝑉4𝑛 ∞𝑕U0)1𝑍↓1,...,(𝑉4𝑛 ∞𝑕U𝑎 )1𝑍↓1] (18)

The second term in the equation denotes the element-wise prod-
uct of the similarities from the exponential gram matrix and the
pairwise di!erences. 1𝑍↓1 is used to sum across all pairwise ele-
ments for a given user, weighted by the similarity. Finally, all of these
elements are stacked for each dimension of the embedding.

The singular values can be expressed usingWeyl’s inequality as

𝑈 𝑔 (U(𝑒+1)
) ⇒ 𝑈 𝑔 (𝑓4𝑉↘4 [(𝑉4𝑛 ∞𝑕U0)1,...,(𝑉4𝑛 ∞𝑕U𝑎 )1])+𝑈1 (U(𝑒 )

)

(19)

In order to attain a closed form solution, wemake the assumption
that each of the dimensions from 0 to 𝑟 have the same pairwise
distance matrix 𝑕U. Then, the expression can be simpli"ed as,

𝑈 𝑔 (U(𝑒+1)
) ⇒𝑈 𝑔 (𝑓4𝑉↘4 (𝑉4𝑛 ∞𝑕U0)1𝑍↓𝑁 )+𝑈1 (U(𝑒 )

)

=𝑓4𝑉↘4𝑈 𝑔 ((𝑉4𝑛 ∞𝑕U)1𝑍↓𝑁 )+𝑈 (𝑒 )
1

=𝑓4𝑉↘4𝑈 𝑔 (𝑉4𝑛 ∞𝑕U)𝑈1 (1𝑍↓𝑁 )+𝑈
(𝑒 )
1

=𝑓4𝑉↘4
⇑

𝑎𝑃𝑈 𝑔 (𝑉
4𝑛

∞𝑕U)+𝑈 (𝑒 )
1

(20)

We thus need to analyze 𝑈 𝑔 (𝑉4𝑛 ∞𝑕U). We will begin by approx-
imating 𝑉4𝑛 as a "rst order Taylor series of 𝑉X= I+X to linearize the
relationship. Then 𝑈 𝑔 (𝑉4𝑛 ∞𝑕U)↔𝑈 𝑔 ((I+4G)∞𝑕U). Using the prop-
erties of singular values of hadamard products, we can lower bound
the relationship as𝑈𝑃 (A∞B) ∈𝑈𝑍 (A)𝑈𝑃 (B). Then, the lowerbound is:

𝑈𝑃 ((I+4G)∞𝑕U) ∈𝑈𝑍 ((I+4G))𝑈𝑃 (𝑕U)
= (1+4𝑈𝑐 (G))𝑈𝑃 (𝑕U)
>𝑈𝑃 (𝑕U)

(21)

assuming that 𝑅 is full rank with smallest singular value greater
than 0. Applying the lower bound:

𝑈 𝑔 (U(𝑒+1)
) ⇒𝑓4𝑉↘4

⇑

𝑎𝑃𝑈 𝑔 (𝑕U)+𝑈
(𝑒 )
1 (22)

We can then compute the ratio between 𝑕1 (U(𝐿 )
)

𝑕2 (U(𝐿 ) )
and 𝑕1 (U(𝐿+1)

)

𝑕2 (U(𝐿+1) )
,

ω(𝑒 ) to measure how the singular values change with uniformity
optimization, again introducing 𝑞1,𝑞2 as we did in the proof on
alignment to account for the divergence from the upper bound. Then,

ω(𝑒 ) =
𝑈1 (U(𝑒 )

)𝑞2 (𝑔𝑈2 (𝑕U𝑒
)+𝑈 (𝑒 )

1 )

𝑈2 (U(𝑒 ) )𝑞1 (𝑔𝑈1 (𝑕U𝑒 )+𝑈 (𝑒 )
1 )

(23)

where𝑔 =𝑓4𝑉↘4
⇑
𝑎𝑃 . We can then solve for whenω(𝑒 ) >1 indicating

that the "rst and second singular values have a smaller relative gap.
This occurs when 𝑕1 (U(𝐿 )

)

𝑕2 (U(𝐿 ) )
> 𝑕1 (𝑖U(𝐿 )

)

𝑕2 (𝑖U(𝐿 ) )
, assuming 𝑞1↔𝑞2.

If we study rank-2 matrices, considering a particular rank-2 ma-
trixM, 𝑕1 (𝑉

𝐿
)

𝑕2 (𝑉𝐿 )
is the condition number𝑠 (M𝑒

), andwewant to assess
when 𝑠 (M𝑒

)>𝑠 (𝑕M𝑒
) where 𝑕M is the pairwise di!erence matrix

where all element-wise distances are a constant.Wewill also assume
that the vectors are close in proximity, modeled as

M=
*++++
,

𝑡𝑢𝑣 (𝑛 ) 𝑣𝑂𝑖(𝑛 )
𝑡𝑢𝑣 (𝑛+𝑏) 𝑣𝑂𝑖(𝑛+𝑏)

...
...

𝑡𝑢𝑣 (𝑛+(𝑎↘1)𝑏) 𝑣𝑂𝑖(𝑛+(𝑎↘1)𝑏)

-....
/

(24)

Then, we have that 𝑈1 (M) =
⇑
𝑎 from the Frobenius norm of 𝑤 ,

while 𝑈2 (M) scales as 𝑏
⇑
𝑎 given the second singular value is pro-

portional to the spread in angle between vectors. Thus, 𝑠 (M𝑒
)↔

1
𝑗 ,

indicating an increased gap in the two singular values as 𝑏 becomes
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smaller, approaching a collapse in the second singular value. Sim-
ilarly, 𝑈1 (𝑕M) will scale with the maximum distance between the
furthest vectors in𝐿 , which is equivalent to 2|𝑣𝑂𝑖((𝑎 ↘1)𝑏/2) |, i.e.
the angle spanned by the vectors with angles 𝑛 and 𝑛+(𝑎↘1)𝑏 , when
𝑏 is small. Similarly, we can expect 𝑈2 (𝑕M) to scale as 𝑏

⇑
𝑎 given the

dependence on the spread of angles and number of vectors. With 𝑏
small, the small angle approximation of 2|𝑣𝑂𝑖((𝑎↘1)𝑏/2) | is (𝑎↘1)𝑏 ,
and 𝑠 (𝑕M𝑒

) ↔
(𝑐↘1)𝑗
𝑗
⇑
𝑐

= (𝑐↘1)
⇑
𝑐

. For lim𝑗→0 with a "xed 𝑎 , it is clear
that 𝑠 (M𝑒

) > 𝑠 (𝑕M𝑒
), indicating a decrease in the gap in the "rst

and second singular valueswith uniformity optimization, increasing
stable rank.

⊋

B Dataset Statistics
For the datasets used throughout the paper, we provide their statis-
tics in Table 5. We provide the number of users and items, as well
as the number of interactions. Additionally, we compute the density
of each dataset as # Interactions/(# Users ↓ # Items).

Table 5: Dataset Statistics.

Dataset # Users # Items # Interactions Density

MovieLens1M 6,040 3,629 836,478 3.82%
Gowalla 29,858 40,981 1,027,370 0.08%
Yelp2018 31,668 38,048 1,561,406 0.13%
AmazonBook 52,643 91,599 2,984,108 0.06%

C Additional Setup Details on Experiments
In this section, we provide additional experiment setup details for
the analyses performed within the paper. Note that the details apply
to both the motivating experiment given on stable rank trajectories,
as well as the warm-start experiments. We start by giving additional
details on the hyper-parameter tuning process, then provide infor-
mation on the evaluation process and implementation details.

C.1 Hyperparameters and Tuning
We primarily focus on MF throughout the paper, with LightGCN
added in the warm-start experiments. The embedding tables in both
cases are initialized using PyTorch’s standard unit normal distribu-
tion.Weuse cross validation to choose the bestmodel, searchingover
learning rates {0.1,0.01,0.001} and weight decays {1𝑉↘4,1𝑉↘6,1𝑉↘8}.
The embedding dimensions are kept at 64. For LightGCN, we set a
depth of 3. The models are trained for up to 400 epochs, with early
stopping employed over validation NDCG@20. A patience value
of 20 epochs is used, based on our sensitivity study performed in
Appendix D.3. For experiments which utilize SSM, we set a negative
sampling ratio of 20. For DirectAU, we additionally cross-validate
𝑌 values from {1.0,2.0,5.0}, as recommender in the original paper
[35]. The batch size for BPR, SSM, and DirectAU training are set to
roughly maximize size that can "t within memory, which is 16384
for BPR and SSM, and 4096 for DirectAU.When using the stable rank
regularization, we hyper-parameter tune 𝑌𝑘𝑐 from {0.05,0.1,0.2},
however we "nd that 0.1 tends to work well for most datasets. The
train/val/test splits are random and use 80%/10%/10% of the data.

Figure 4: Stable Rank Trajectories of ItemMatrices. The blue
line denotes BPR, and the orange line denotes DirectAU. The
dotted line denotes the !nal stable rank of the itemmatrices
after training. DirectAU produces higher rank usermatrices.

C.2 Evaluation
Toevaluate ourmodels,we lookat recall@K,NDCG@K, and runtime
inminutes.We use standard de"nitions for recall@K andNDCG@K,
except that we let 𝑊 =min(𝑊,𝑥 (𝑁)), where 𝑥 (𝑁) is the number of
elements a user 𝑁 interacts with. This way, each user’s recall and
NDCG value can span the full range from 0 to 1. For runtime, we
speci"cally focus on timing the forward and backward passes of the
di!erentmethods. Thus, we do not include evaluation given it is con-
stant between methods. Moreover, evaluation can be approximated
with fewer samples, or performed on a subset of epochs, and thus
naturally sped up if signi"cant runtime costs are incurred.

C.3 Implementation
The loss functions, as well as the MF training process, and imple-
mented within vanilla PyTorch. LightGCN is implemented using
PyTorch Geometric. Data loading and batching is additionally imple-
mented with PyTorch Geometric’s dataloader. We use approximate
negative sampling for BPR and SSM, as seen in PyG’s documentation
for their LinkNeighborLoader, meaning there is a small chance some
negative samples may be false negatives. The models are trained on
single Tesla P100s with 32GB of RAM, via Google Cloud.

D Additional Experimental Results
In this section, we provide supplemental results to the experiments
performed in the main text.

D.1 Item Stable Rank Trajectories
We include the stable rank trajectories for the item set in Figure 4,
denoting similar trends to those seen in the user embedding table
for both BPR and DirectAU.
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Table 6: Comparison between SSM models trained with standard training, as well as with Stable Rank regularization as a
warm-start process. Reported are Recall@20, NDCG@20 on the held-out test set, with the runtimemeasured over the training
process. Stable rank shown as less e"ective for SSM given the loss function already utilizes a larger number of negative samples
(20 negative samples).

Loss Recall@20 NDCG@20 Runtime (min) Recall@20 NDCG@20 Runtime (min)

MovieLens1M Gowalla

Standard 23.4 ± 0.1 20.8 ± 0.2 5.1 ± 0.8 13.0 ± 0.3 9.6 ± 0.2 6.2 ± 0.0
+ Stable Rank 23.3 ± 0.0 20.9 ± 0.1 5.1 ± 0.5 13.1 ± 0.4 9.8 ± 0.3 6.3 ± 0.0

Di"erence ∝0.1 (-0.43%) ↙0.1 (0.48%) 0.0 (0.00%) ↙0.1 (0.77%) ↙0.2 (2.08%) ↙0.1 (1.61%)

Yelp2018 AmazonBook

Standard 6.7 ± 0.7 4.5 ± 0.3 3.8 ± 0.6 8.1 ± 0.5 6.1 ± 0.4 20.9 ± 2.1
+ Stable Rank 6.8 ± 0.7 4.7 ± 0.4 6.8 ± 1.3 8.1 ± 0.4 6.1 ± 0.4 22.4 ± 2.2

Di"erence ↙0.1 (1.49%) ↙0.2 (4.44%) ↙3.0 (78.95%) 0.0 (0.00%) 0.0 (0.00%) ↙1.5 (7.18%)

Figure 5: Performance and runtime as function of patience.
We see that performance does not signi!cantly change as
patience increases. However, runtime is optimized when
patience is set to 20.

D.2 Results on SSM
In this section, we provide results when training MF with the SSM
loss, using 20 negative samples. Given the relationship between
BPR, SSM, and DirectAU, rooted in the number of negative samples
acting as weaker or stronger regularization, SSM acts a intermediary
between the BPR and DirectAU. The results in Table 6 highlight
this fact, where the 20 negative samples already o!er a reasonable
trade-o! of performance versus runtime, and thus do not bene"t
strongly from stable rank. Discussion on these results are o!ered in
themain text, but at ahigh-level, BPRwith stable rank is able to attain
comparable performance to SSMwith and without stable rank with
signi"cant lower runtime. This result demonstrates the bene"t of
approximating negative sampling through stable rank, allowingBPR
signi"cant performance gains with less computational overhead.

D.3 Sensitivity to Patience
We perform a sensitivity analysis on our choice of patience, looking
at di!erent patience levels when training MF with DirectAU and
DirectAUwith stable rank warm-start. In Figure 5, we can see that
performance has no signi"cant chances, and stays constant across
settings. On the other hand, the runtime speed-ups do have some
sensitivity to patience, which tends to be best around 20. Before that,

Figure 6: Ablating the Stable Rank warm-start with Align-
ment Only warm-start. Each dot represents the NDCG@20
and runtime for the respective training strategy. While all
methods attain similar performance, both DirectAU and
Alignment OnlyWarm-start signi!cantly increase runtime.

we risk the model early stopping due to noise, and then requiring
more uniformity epochs to attain optimal performance. Moreover, if
the patience is set higher to 20, then the optimization risks residing
in the stable rank phase of training too long, again requiring more
overall uniformity epochs.

D.4 Ablating Stable RankWarm-Start
In Figure 6we provide ablation results for the stable rankwarm-start
strategy by using only alignment during the early stages of training.
Our results highlight that while this strategy is able to retain per-
formance, the models take signi"cantly longer to train. Given pure
alignment warm up possesses no regularization, we attribute this
longer training time to regularization needing to spend signi"cantly
more epochs counteracting the initial over"tting.
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Figure 7: BPR Stable Rank Trajectories of usermatrices. The
blue and orange lines denote BPR and BPRwith Stable Rank
Warm-up, respectively. The dotted lines denote the !nal
stable rank of the user matrices after training. Stable Rank
Warm-up is able to produce higher !nal stable ranks.

Figure 8: DirectAU Stable Rank Trajectories of usermatrices.
The blue and orange lines denote DirectAU and DirectAU
with Stable Rank Warm-up, respectively. The dotted lines
denote the!nal stable rank of the usermatrices after training.
Stable Rank Warm-up is able to approximate the behavior
of uniformity, acting as a cost-e"ective proxy.

E Stable Rank
Trajectories with Stable RankWarm-Start

To evaluate the impact of the stable rankwarm-start on the optimiza-
tion process, we plot the stable rank values throughout the training
phase using the warm-start strategy, similar to the results shown in
Figure 1. Our "ndings in Figure 7 show that for BPR, the stable rank
trajectories are signi"cantly higher, whichwe relate to the improved
performance. In the case of DirectAU in Figure 8, the stable rank tra-
jectories closely resemble those of the original training strategy, sug-
gesting that thewarm-start strategye!ectivelyapproximates theuni-
formity term at a reduced computational cost.We do note that in the
case of MovieLens1M, the warm-up is able to produce higher stable
rank,which can explain the performance boost seen in themain text.
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