
Improving Graph Representation Learning with Augmentations, Uncertainty
Quantification and Large Language Model Guidance

by

Puja Trivedi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2024

Doctoral Committee:
Associate Professor Danai Koutra, Chair
Assistant Professor Maggie Makar
Dr. Jayaraman J. Thiagarajan, Apple
Professor Angela Violi

Puja Trivedi
pujat@umich.edu

ORCID iD: 0000-0003-1874-8992

© Puja Trivedi 2024

DEDICATION

To my family.

ii

ACKNOWLEDGEMENTS

The PhD journey is often long and challenging, and I feel incredibly lucky to have been
supported by many people who have made this path brighter. While I may not name
everyone here, please know that I am forever grateful!

First, I want to extend my deepest gratitude to my wonderful advisor, Prof. Danai
Koutra, who taught me how to conduct research and become an independent scholar. Her
patience and kindness were invaluable as she guided me through research setbacks and helped
me explore new areas. I am further indebted for her technical guidance as we conducted
projects, and professional advice as I navigated the job market; both were invaluable. I feel
extremely lucky to have worked with such a dedicated and caring advisor, and hope that I
can follow in her example. I am also grateful to my “co-advisor,” Dr. Jay Thiagarajan. Prior
to working with Jay in 2021, I had been facing some project setbacks, and found myself losing
motivation. Jay’s sheer enthusiasm, optimism and kindness helped me rediscover the fun
of doing research again, for which I am incredibly thankful. Under his guidance, I learned
how to pursue questions that matter, believe in my ideas and challenge myself with new
areas. I am also grateful for his advice throughout projects, as well as his support during
last-minute paper rushes. I would also like to thank my committee members, Prof. Maggie
Makar and Prof. Angela Violi, for their valuable feedback and insightful questions. Thank
you for taking the time for the detailed comments, which have strengthened the quality of
this work.

Throughout my studies, I was fortunate to gain further practical experience through
internships at Lawrence Livermore National Laboratory, Adobe Research, and Amazon,
where I was mentored by many outstanding professionals. In particular, I want to thank
Mark Heimann, Rushil Anirudh, Ryan A. Rossi, Nurendra Choudhary, Vassilis Ioannidis,
and Eddie Huang for their mentorship.

I’d also like to give a big thank you to my lab mates, Caleb Belth, Alican Buyukcakir,
Marlena Duda, Mark Heimann, Di Jin, Donald Loveland, Fatemeh Vahedian, Yujun Yan,
Jing Zhu, Tara Safavi, and Jiong Zhu, who helped me refine ideas, improve talks, and
navigate the job market. I learned so much from each of you and appreciated the camaraderie
we shared.

iii

I am also extremely grateful to my talented collaborators, Nurendra Choudhary, David
Arbour, Nesreen K. Ahmed, Rushil Anirudh, Jayaraman J. Thiagarajan, Alican Büyükçakır,
Ekdeep Singh Lubana, Danai Koutra, Franck Dernoncourt, Robert P. Dick, Edward W.
Huang, Mark Heimann, Vassilis Ioannidis, Di Jin, Sungchul Kim, Yin Lin, Ruiyu Li, Nedim
Lipka, Vivek Narayanaswamy, Namyong Park, Yinlong Qian, Ryan A. Rossi, Karthik Sub-
bian, Fatemeh Vahedian, Yu Wang, Yujun Yan, and Yaoqing Yang. None of this work would
have been possible without your invaluable support. I hope that we may continue to work
together in the future!

My interest in a PhD began as an undergraduate due to the support of the Meyer-
ho! Scholars Program. I am appreciative of the programs support and guidance. I would
also like to acknowledge mentors from my undergraduate research experiences, including
Talmo Pereira, John Winder, John Boaz Lee, Marie desJardins Park, Robert Goldman, and
Jonathan Pillow, whose early mentorship helped encourage me to pursue this path. Men-
toring undergraduates can be a thankless task, and I appreciate their generosity. Notably,
this dissertation marks my 21st year as a professional student, and I am deeply appreciative
of all my teachers, professors for the quality education I received through the public school
system.

To my excellent friends, Jiong Zhu, Yin Lin, Megha Ghosh, Karan Desai, Dandan Shan,
Sangeeta Rao, Preeti Ramaraj, Karthick Krishnan, Swati Adipudi and many more, thank
you for your friendship and support along this journey. I appreciated hanging out, laughing
and chilling with all of you.

Finally, I extend my deepest gratitude to my family. To my father, Bhagirath Trivedi,
for teaching me the value of hard work and encouraging me to pursue my interests. To my
mother, Tejal Trivedi, for taking care of us and for making sure I was taking care of myself,
eating, and happy while pursuing my studies. To my brother, Arjun Trivedi, thank you for
being my best friend, listening to my work-related frustrations, and for always laughing at
my jokes. Lastly, a very special thank you to my partner, Ekdeep Singh Lubana. I cannot
overstate how important his love, patience, and unwavering support were in helping me
complete this PhD. Each time I felt discouraged, he was there, cheering me on and giving
me confidence. For every success, he celebrated alongside me and made them more special.
Ekdeep is truly the most kind and generous person I know, and I am grateful for all the
happiness and fun we share.

Financial support for this work was provided by National Science Foundation under CA-
REER Grant No. IIS 1845491, Grant No. IIS 2212143, Army Research Awards, and LLNL
Subcontract B651167.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xiii

LIST OF APPENDICES . xx

ABSTRACT . xxii

CHAPTER

1 Introduction . 1
1.1 Contributions . 2

2 Preliminaries . 5
2.1 Graphs . 5
2.2 Graph Machine Learning Tasks . 5

2.2.1 Node Classification . 6
2.2.2 Graph Classification . 6
2.2.3 Graph Clustering . 6

2.3 Graph Neural Networks (GNNs) . 7

Part I: Improving Augmentations in Graph Contrastive Learn-
ing 7
3 Better Practices for Graph CL Augmentations 9

3.1 Introduction . 9
3.2 Background & Related Work . 11

3.2.1 Contrastive Learning (CL) . 11
3.2.2 Graph Contrastive Learning (GCL) 12

3.3 Revisiting Augmentations & Evaluation in GCL 13
3.3.1 (O1) Domain-agnostic graph augmentations alter task-relevant in-

formation . 14
3.3.2 (O2) Domain-agnostic augmentations induce weak discriminability . 16

v

3.3.3 (O3) Strong inductive bias of random models reduces GCL ine”ciencies 18
3.3.4 Summary of Proposed Evaluation Practices 19

3.4 Benefits & Design of Task-Aware Augmentations 19
3.4.1 Case Study 1: Document Classification 21
3.4.2 Case Study 2: Super-pixel Classification 22

3.5 Conclusion . 24
4 Analyzing Data Centric Properties for Graph Contrastive Learning . . . 26

4.1 Introduction . 26
4.2 Background & Related Work . 28
4.3 Generalization Bounds for CL with GGA 29
4.4 Experiments . 35

4.4.1 A Closer Look at the E!ectiveness of Invariance to GGA 35
4.4.2 Evaluating Graph SSL Methods in a Controlled Setting 37

4.5 Conclusion . 41

Part II: Uncertainty Estimation with Graph Neural Networks 41
5 Accurate Estimation of Epistemic Uncertainty for GNNs 43

5.1 Introduction . 43
5.2 Background & Related Work . 45
5.3 Graph-#UQ: Uncertainty-Aware Predictions 46

5.3.1 Hidden Layer Anchoring for Graph Classification 49
5.4 Node Classification Experiments: G-#UQ Improves Calibration 50
5.5 Graph Classification Uncertainty Experiments with G-#UQ 51

5.5.1 Is Full Stochasticity Necessary for G-#UQ? 51
5.5.2 Calibration under Concept and Covariate Shifts 52
5.5.3 Using Confidence Estimates in Safety-Critical Tasks 54

5.6 Fine Grained Analysis of G-#UQ . 55
5.6.1 Calibration under Controlled Shifts 55
5.6.2 How does G-#UQ perform with pretrained models? 57

5.7 Conclusion . 57
6 On Link Prediction Calibration with Stochastic Centering 58

6.1 Introduction . 58
6.2 Background & Related Work . 60
6.3 Proposed Approach . 62
6.4 Experiments . 64
6.5 Conclusion . 65

Part III: Large Language Models and Graph Representation
Learning 65
7 Large Language Model Guided Graph Clustering 67

vi

7.1 Introduction . 67
7.2 Background & Related Work . 69
7.3 Problem Formulation . 70
7.4 GCLR: Graph Clustering with LLM Refinement 71

7.4.1 Eliciting Feedback from LLM for Graph Clustering 71
7.4.2 Refining GNN-Based Clustering with Feedback 75

7.5 Experiments . 77
7.6 Conclusion . 81

8 Exploring the Robustness of LLM+GNN models on text-attributed graphs 82
8.1 Introduction . 82
8.2 Background & Related Work . 82

8.2.1 LLM+GNN Models . 83
8.2.2 Graph Adversarial Attacks . 83

8.3 Perturbations . 84
8.3.1 Natural Language Perturbations . 84
8.3.2 Semantics Preserving Text Perturbations 85
8.3.3 Adversarial Text Perturbations . 86
8.3.4 Structural Perturbations . 88

8.4 Experiments . 88
8.5 Conclusion & Discussion . 93

9 Conclusions and Future Work . 95
9.1 Summary . 95
9.2 Future Work . 97

APPENDICES . 99

BIBLIOGRAPHY . 150

vii

LIST OF FIGURES

FIGURE

3.1 Domain-Agnostic Graph Augmentations (DAGAs). [Left] introduced
in [1]. Deletion/addition in red/green. False Positive Samples. [Right] Acidic
molecule Phenol and basic molecule Aniline are structurally similar but have
di!erent properties. DAGAs can inadvertently generate this pair as a positive
view, resulting in similar representations for semantically dissimilar entities. . . 10

3.2 Representational Similarity. The normalized cosine similarity between all-
pairs of representations is shown above for the MUTAG dataset. The on-diagonal
blocks (indicated by green lines) show intra-class similarity, while o!-diagonal
blocks show inter-class similarity. MVGRL, which uses di!usion-based views,
learns representations that have high intra-class similarity and low inter-class
similarity, as desired. InfoGraph, which directly maximizes mutual information
between local/global views, preserves high intra-class similarity, and has moder-
ate inter-class similarity. GraphCL, which uses domain-agnostic graph augmen-
tations, has low intra-class similarity in the upper left block. This indicates that
training on false positive/invalid samples can negatively impact representational
power. 14

3.3 Augmentations for Document Classification. Documents are represented
as co-occurrence graphs [2, 3], where words are treated as nodes with word2vec
embeddings, and edges indicate co-occurrence in a sliding windows [4]. As shown
in (b), we perform synonym replacement (purple) and random word insertion
(green) to augment sentences without losing task-relevant information [5]. In
(c), we show random node (word) deletion (red). Our results show that natural
language space augmentations improve classification accuracy substantially over
baseline augmentations. 20

3.4 Augmentations for Super-pixel Classification. Node dropping alters graph
topology and it is unclear if task-relevant information is preserved. Colorizing
preserves task-relevant information by only perturbing node features. 23

viii

4.1 Illustrating data-centric properties forming the core of our assump-
tions. Our generalization analysis (Sec. 4.3) relies upon several data-centric
properties, namely recoverability, separability, and frequency of inconsistent sam-
ples. Here, we illustrate these properties via a figure. (i) Separability: Samples
from di!erent classes should be separable, as illustrated by the existence of sep-
arate manifolds for di!erent classes. This property helps assume the existence
of a classifier h that can classify natural samples with low error. (ii) Recover-
ability: Labels of augmented samples should be recoverable from the original
samples from which they were generated. This entails that augmentations gen-
erated from the same original samples are expected to be closer in latent space
than two arbitrary samples, which will likely correspond to di!erent classes. This
property helps assume a constraint on the classifier h that it must also classify
the augmentations of a sample to the same class as that of the sample. (iii)
Inconsistent Samples: While the likelihood of generating augmentations that
alter class semantics is low for image data, this if often note the case in graphs,
especially when using generic graph augmentations. We refer to augmentations
that can be generated from original samples belonging to di!erent classes as
inconsistent, and demonstrate that graph edit distance can be used to identify
such samples. Overall, our theory shows inconsistent samples decrease separa-
bility and recoverability, harming generalization. (Figure inspired from Chung
et al. [6] and HaoChen et al. [7].) . 30

4.2 Synthetic Dataset Generation. A class-specific motif completely determines
the label, and is therefore considered “content”. To vary the amount of style,
the size of the background tree graph is a ratio of the number of “content”
nodes. Our dataset goes beyond binary benchmarks and allows for content-aware
augmentations, a critical component to understanding graph SSL. 37

4.3 Invariance vs. KNN Acc. The change in invariance (Inv.) and accuracy
w.r.t. to an untrained model is plotted, where Inv. is measured according to
[8]. We see: Inv. has not significantly increased for many datasets/methods,
improved Inv. does not necessarily entail better performance (see Reddit), and
AAGAE/GAE often sees decreased Inv., likely due to use of a decoder. 38

4.4 Style Invariance over Paradigms. We evaluate several SSL algorithms with
di!erent augmentation paradigms and changing style vs. content ratios. We find
several notable results: (i) CAAs induce style invariance in contrastive methods,
but GGAs do not; (ii) reconstruction methods do not recover task-relevant in-
variances, even when using CAAs; and (iii) advanced augmentations methods
(AD-GCL, JOAO, SimGRACE) lose performance as style increases, indicating
they do not induce style-invariance. 39

4.5 Invariance vs. Separability. On our synthetic data with style-to-content
ratio ω = 6 and 20% augmentation strength, GraphCL trained with random
augmentations produces representations with high invariance but low separabil-
ity. In contrast, using content preserving augmentations leads to almost as high
invariance, but much greater separability. 40

ix

5.1 Overview of G-#UQ models. Here, we present a conceptual overview of
how G-#UQ induces partially stochastic models. This figure is complementary
to C.1. 46

5.2 Training and Inference with Anchoring. 47
5.3 Node Feature Anchoring Pseudocode. 48
5.4 E!ect of Anchoring Layer. Anchoring at di!erent layers (L1, L2, L3) in-

duces di!erent hypotheses spaces. Variations of stochastic anchoring outperform
models without it, and the lightweight READOUT anchoring in particular generally
performs well across datasets and architectures. 51

5.5 Out-of-distribution Calibration Error. G-#UQ is applied in end-to-end
training vs. to a pretrained model, which is a simple yet e!ective way to use
stochastic anchoring. 56

6.1 Overview of E-#UQ. We propose three di!erent stochastic centering variants
that induce varying levels of stochasticity in the underlying GNN. Variant (E-
#UQ (v1)) directly models the epistemic uncertainties arising from the sampling
of edges in di!erent parts of the (node) feature space. Variant (E-#UQ (v2))
performs stochastic centering in the encoder network itself and implicitly leverage
those uncertainties to produce calibrated edge probabilities. E-#UQ (v3)) uses
the auxiliary attribute masking task to first calibrate the node-level uncertainties
and subsequently estimate the edge-level uncertainties similar to E-#UQ (v2).
We show the attribute masking task above and use shu$ed node features as the
anchoring distribution. 59

7.1 Overview of GCLR. Given an initial GNN-based graph clustering solution,
F, GCLR identifies uncertain nodes, obtains LLM guidance through prompt-
ing and then fine-tunes the GNN accordingly. Thus, incorporating both graph,
world, and semantic (through sentence transformer node attributes) knowledge
in clustering assignments. 68

7.2 Example of LLM Feedback. Using the example graph in Fig. 7.3, we prompt
chat-gpt-3.5-turbo with di!erent strategies to demonstrate the importance
of aligning the LLM’s and GNN’s implicit similarity functions to obtain valid
feedback. Indeed, we see that triplet-based prompting can be unreliable as it
does not allow the LLM to infer the underlying similarity. For example, with the
query, “Baboon” with triplets containing the land animals from from Cluster 1
(starts with B) and aquatic animals from Cluster 2, the LLM assigns Baboon to
cluster 1 (Baboon, Bobcat, Archer Fish), which is consistent with the graph solu-
tion. However, when we prompt chat-gpt-3.5 with a triplet containing aquatic
animals from Cluster 1 and land animals from Cluster 2 (Baboon, Bluegill, An-
telope), the LLM assigns the query to Cluster 2 as it is also a land animal. In
contrast, we find that both concept-based and incontext-based prompting are
able to correctly infer the GNN’s similarity function and provide valid feedback. 72

x

7.3 Unaligned Notions of Similarity. The following stochastic block model
graph has clusters that correspond to whether a particular animal’s name be-
gins with “A” or “B.” However, an alternative clustering according to “land”
vs. “aquatic” animals is also valid and more semantically interesting. Indeed,
when GPT-3.5 is asked whether a “Baboon” is more similar to a “Bluegill” or
“Antelope,” it replies with “Antelope” as it is also a land mammal. This em-
phasizes that (i) simple pairwise comparisons may not be su”cient for providing
feedback and (ii) LLMs and GNN clustering algorithms may utilize disparate
notions of similarity. 73

8.1 LLM+GNN Methods O!er New Avenues of Vulnerability. While com-
bining LLMs and GNNs for tasks on text-attributed graphs has led to the
improved performance, we note that both LLM-As-Enhancers and LLM-As-
Predictors contain new avenues for adversarial attacks. Here, we show tradi-
tional GNN-only or LLM-only avenues in orange, and highlight new avenues in
red. (Figured adapted from [9]). 84

8.2 Aggregated Performance on Text Perturbations. 89

A.1 Representational Similarity. In addition to MUTAG (Figure 3.2), we provide
results on PROTEINS, NCI1 and DD. Random inductive bias is most noticeable
on MUTAG and PROTEINS. Note that the intra-class similarity can be low for
GraphCL and InfoGraph. 104

B.1 Invariance vs. Separability. On BACE [10], a molecule-protein interac-
tion dataset, we compare the content-aware biochemistry-inspired augmentations
from MoCL [11] against the GGAs. In this real-world setting, we see that CAAs
induce better invariance and separability (Contours are not filled to improve
legibility). 107

B.2 Motifs used to determine class labels. 116

C.1 PseudoCode for G-#UQ. We provide simplified pseudo-code to demonstrate
how anchoring can be performed. We assume PyTorchGeometric style mini-
batching. Changes with respect to the vanilla GNN are shown in bold. Un-
changed lines are grayed out. 120

C.2 Rotated Super-pixel MNIST. Rotating images prior to creating super-pixels
to leads to some structural distortion [12]. However, we can see that the class-
discriminative information is preserved, despite rotation. This allows for simu-
lating di!erent levels of graph structure distribution shifts, while still ensuring
that samples are valid. 121

C.3 Stochastic Centering with the empirical GNN NTK. We find that per-
forming constant shifts at intermediate layers introduces changes to a GNN’s
NTK. We include a vanilla GNN NTK in black for reference. Further, note the
shape of the spectrum should not be compared across subplots as each subplot
was created with a di!erent random initialization. 125

xi

C.4 Evaluating Pretrained G-#UQ. Here, we report the performance of pre-
trained G-#UQ models vs. end-to-end and vanilla models with respect to
in-distribution and out-of-distribution accuracy as well as expected calibration
error. With the exception of the GOODMotif (basis) dataset, pretrained G-
#UQ improves the OOD ECE over both the vanilla model and end-to-end G-
#UQ at comparable or improved OOD accuracy on 7/8 datasets. Furthermore,
pretrained G-#UQ also improves the ID ECE on all but the GOODMotif (size)
datasets (6/8), where it performs comparably to the vanilla model, and maintains
the ID accuracy. (We note that all methods are comparably better calibrated on
the GOODMotif ID data than GOODCMIST/GOODSST2 ID data; we suspect
this is because there may exist simple shortcuts available in the GOODMotif
dataset that can be used on the ID test set e!ectively.) Overall, these results
clearly demonstrate that pretrained G-#UQ does o!er some performance advan-
tages over end-to-end G-#UQ and does so at reduced training times (see Table.
C.13). For example, on GOODCMNIST (covariate shift), pretrained G-#UQ is
not only 50% faster than end-to-end G-#UQ , it also improves OOD accuracy
and OOD ECE over both the vanilla and end-to-end G-#UQmodels. 137

C.5 GOODCMNIST, Concept, Anchoring Distribution. We plot the mean
and variance of the fitted anchoring distribution vs. the true feature distribution
for each input dimension. We observe there is a mismatch between the empircal
distribution and the fitted Gaussian. However, we did not find this mismatch to
harm the e!ectiveness of G-#UQ. 139

C.6 GOODCMNIST, Covariate, Anchoring Distribution. We plot the mean
and variance of the fitted anchoring distribution vs. the true feature distribution
for each input dimension. We observe there is a mismatch between the empircal
distribution and the fitted Gaussian. However, we did not find this mismatch to
harm the e!ectiveness of G-#UQ. 140

xii

LIST OF TABLES

TABLE

1.1 Overview of contributions. This thesis consists of three parts, broadly inter-
ested in improving the performance of GNNs beyond accuracy. 3

3.1 Dataset Description . 15
3.2 Augmentation A”nity. A”nity [13], measured by the di!erence between

original and augmented accuracy of a supervised model, captures how much the
data distribution has changed as a result of augmentation. We see that DAGAs
lead to low a”nity. This is expected for molecular datasets, where it is easy to
create invalid molecules, and is also true for some social network datasets. . . . 16

3.3 Inductive Bias on Benchmark Datasets. Following the same evaluation
protocol as [14], we generate embeddings from an untrained N-Layer GIN encoder
and perform classification using an SVM classifier. Results for GraphCL and
InfoGraph are reported from [1]. Best accuracy is in bold; other models whose
accuracy with standard deviation falls within the standard deviation of the best
accuracy are underlined. We see across all datasets that untrained models have
a strong inductive bias. On PROTEINS, DD, MUTAG DEEZER and GITHUB-
SGZR, untrained models perform competitively against trained models. 17

3.4 Document Classification. We use domain-agnostic subgraph dropping (S) and
node-dropping (N) at 10% and 5% of sentence length, respectively, for baseline
augmentations. For task-aware augmentations, we stochastically apply synonym
replacement (5%), random insertion (5%), random swapping (5 %) and random
deletion (10 %). Random Accuracy with window-size = 2 is 58.46±1.97. Random
Accuracy with window-size = 4 is 63.93 ± 0.045. 19

3.5 Super-pixel Classification. KNN Accuracy after unsupervised training with
Node Dropping or context aware graph augmentations (Colorize) is reported.
Context aware augmentations improve performance. Accuracy of randomly ini-
tialized model is 37.79 ± 0.03. 23

4.1 Generic Graph Augmentations vs. Graph Edit Operators. GGAs can
be straightforwardly expressed using graph edit operators. Please see section B.4
for a detailed discussion. 31

xiii

5.1 Calibration under Covariate and Concept shifts. G-#UQ leads to better
calibrated models for node-(GOODCora) and graph-level prediction tasks under
di!erent kinds of distribution shifts. Notably, G-#UQ can be combined with
post-hoc calibration techniques to further improve calibration. The expected
calibration error (ECE) is reported. Best, Second. 53

5.2 GOOD-Datasets, OOD Detection Performance. The AUROC of the bi-
nary classification task of classifying OOD samples is reported. G-#UQ variants
outperform the vanilla models on 6/8 datasets. We further note that end-to-end
G-#UQ does in fact lose performance relative to the vanilla model on 4 datasets.
Investigating why pretrained G-#UQ is able to increase performance on those
datasets is an interesting direction of future work. It does not appear that a
particular shift is more di”cult for this task: concept shift is easier for GOOD-
CMNIST and GOODMotif(Basis) while covariate shift is easier for GOODMo-
tif(Size) and GOODSST2. Combining G-#UQ with more sophisticated, uncer-
tainty or confidence based OOD scores may further improve performance. . . . 54

5.3 RotMNIST-Calibration. Here, we report expanded results (calibration) on
the Rotated MNIST dataset, including a variant that combines G-#UQ with
Deep Ens. Notably, we see that anchored ensembles outperform basic ensembles
in both accuracy and calibration. 54

6.1 Dataset Statistics. 64
6.2 Link Prediction Calibration. 65

7.1 Reliability of LLM as an Annotator. The accuracy of the GNN-based clus-
tering solution and three prompting strategies are reported at the 10\50\100-th
most di”cult percentile of the dataset. The best performance overall is bolded,
while any prompting-based method is colored if it exceeds the accuracy of the
GNN, and the 2nd best prompting based method is underlined. 75

7.2 LLM Labels Provide Complementary Information For Active Learn-
ing. To understand how GCLR improves clustering, we compare the performance
of di!erent feedback mechanisms (None, GNN pseudo labels, LLM feedback) and
finetuning losses (triplet vs. cross entropy). We observe that (i) while both LLM
(9/12 Acc.) and GNN (10/12 Acc) feedback generally improves performance
over the initial starting solution, that LLM feedback with the cross entropy loss
achieves the best accuracy overall (8/12), though performance on intrinsic met-
rics is more mixed; (ii) on Cora, where GNN feedback was more reliable than
LLM feedback, we see understandably, that using the GNN pseudo labels is more
e!ective; (iii) in contrast, on WikiCS, where LLM feedback is much more reliable,
we see dominant performance by LLM feedback with cross entropy loss; and (iv)
we see see that the cross entropy loss (9/12 Acc., 7/12 Modularity, 7/12 NMI)
is more e!ective than the triplet for finetuning with LLM feedback. Overall, our
results demonstrate there is value to refining with LLM feedback. We note that
GCLR’s performance can further be improved with confidence filtering (Table
7.4) and ensembling (Table 7.3). 77

xiv

7.3 Ensembling Improves Performance with Unreliable Feedback. Even
when the LLM feedback’s is unreliable relative to the GNN’s, it can still be valu-
able as there may be samples where the LLM corrects the GNN’s misclustered
samples. However, as we do not know beforehand how reliable either feedback
source is, we create a deep ensemble by sampling di!erent ε and ϑ to simu-
late di!erent levels of confidence in each ensemble source. On Cora, where the
LLM’s feedback is known to be unreliable, we find that ensembling improves
the performance of over a single model where ε = 0.5 and ϑ = 0.5, and sur-
passes the performance of the starting solution as desired. Overall, this indicates
that GCLR can help improve the initial clustering solution even with unreliable
feedback. 79

7.4 E!ect of Confidence Filtering. While we do not know the reliability of
either the LLM or GNN’s feedback apriori, we can use their confidence to select
samples where the feedback is more likely to be reliable to avoid finetuning on
misleading samples. Here, we filter samples based on the ascending confidence
percentile, so the 80th percentile corresponds to samples whose confidence is
greater than or equal to 80% of total samples. We observe that filtering improves
performance without filtering (11/24 Acc.) and over the starting (no finetuning)
solution (17/24 Acc.). In particular, 80% LLM and 20% GNN filtering improves
performance over no filtering (8/12 NMI, 10/12 Mod.) On WikiCS, no filtering
performs the best, suggestive of the LLM’s better reliability. Best performance
is bolded and accuracy of the starting solution is in parentheses. 80

8.1 Prompts for Generating Natural Perturbations. Motivated by how users
may seek to rephrase their queries, here, we consider five natural perturbations
and provide the prompts we used to generate the perturbed text. For readability,
the instructions are shown only once but included in all perturbations, while the
example is adapted accordingly. 86

8.2 Natural Perturbation Example on OGBN-Products. 87
8.3 Overview of Adversarial Attack Methods. Reproduced from [15]. 88
8.4 Predictor Performance on Textual Perturbations. The change in perfor-

mance of the Predictor (llama-3.1-8b-instruct) with respect to the clean data is
shown, where improvements over 1% are shown in green and decreases over 1%
are shown in red. We observe that adversarial text-attacks are relatively e!ective
on Cora and Products, but have limited, even positive e!ect, on Arxiv 2023 and
Arxiv. Natural perturbations do not significantly harm performance, with the
exception of Cora. 90

8.5 Enhancer Performance on Text Perturbations. Results show that all per-
turbations except reordering reduce performance, with truncation causing the
most significant average loss. Adversarial attacks e!ectively degrade model per-
formance across most settings, though shallow embeddings on Cora and Arxiv
2023 are less a!ected, possibly due to the limited impact of new characters or
words introduced by the attacks using. Further investigation is suggested. . . . 91

xv

8.6 Enhancer Performance on Structural Perturbations. A targeted PRBCD
attack at 5% global budget is performed for Enhancer with a GCN backbone
and di!erent node featurizations. The unperturbed clean performance and post-
attack perturbation performance are reported. As expected there is a significant
decrease in performance, however, we do not necessarily see a clear benefit of the
semantically aware embeddings (bert/e5) used by Enhancers. 92

8.7 Predictor Performance on Structural Perturbations. To determine if
structural attacks from GNN-based models transfer to Predictors, we evaluate
the Predictor on the attacked graph structured obtained after attacking a GCN
trained with di!erent node embeddings. The post-attack and clean accuracy
are reported for the one-hop and two-hop prompting styles, while the structure-
free prompt’s performance on the clean graph is indicated in parenthesis, where
improvements over 1% are shown in green and decreases over 1% are shown in red. 93

A.1 Inductive Bias: Additional results. 100
A.2 Document Classification: We use the same augmentations as in Table 3.4.

Text-to-Graph augmentations perform synonym replacement as modifying node
features. 101

A.3 Comparison to [16]. Results only reported for SimCLR, as it performs better
than SimSiam and BYOL in preceding experiments. 101

A.4 Super-pixel, Rep. Similarity. Avg. intraclass and interclass cosine similar-
ity is reported. Colorizing produces representations with the largest di!erence
between intra- vs. inter- class similarity, indicating that representations are well-
separated. 102

A.5 Super-pixel A”nity. Supervised, clean train accuracy is 90.01% and clean
test accuracy is 88.69%. 102

A.6 Selected GCL Frameworks . 105

B.1 Notations . 109
B.2 Generic Graph Augmentations vs. Graph Edit Operators. (Repro-

duced. Table 1.) GGA can be straightforwardly expressed using graph edit
operators. 110

B.3 Dataset Description . 117
B.4 Selected Graph Contrastive Learning Frameworks. We provide a brief

description of augmentations used by selected frameworks. Most frameworks use
random corruptive, sampling, or di!usion-based approaches to generate augmen-
tations. 117

C.1 RotMNIST-Accuracy. Here, we report expanded results (accuracy) on the
Rotated MNIST dataset, including a variant that combines G-#UQ with Deep
Ens. Notably, we see that anchored ensembles outperform basic ensembles in
both accuracy and calibration. (Best results for models using Deep Ens. and
those not using it marked separately.) . 122

xvi

C.2 RotMNIST-Calibration. Here, we report expanded results (calibration) on
the Rotated MNIST dataset, including a variant that combines G-#UQ with
Deep Ens. Notably, we see that anchored ensembles outperform basic ensembles
in both accuracy and calibration. (Best results for models using Deep Ens. and
those not using it marked separately.) . 123

C.3 Accuracy of GPS Variants on RotatedMNIST. We focus on the accuracy
results for GPS variants on rotated MNIST dataset. Using G-#UQ (with or
without pretraining) remains close in accuracy to foregoing it, generally within
the range of the standard deviation of the results. 123

C.4 Calibration of GPS Variants on RotatedMNIST. We focus on the cali-
bration results for GPS variants on rotated MNIST dataset. Across the board,
we see improvements from using G-#UQ , with our strategy of applying it to a
pretrained model doing best. 123

C.5 MNIST Feature Shifts. G-#UQ improves calibration and maintains com-
petitive or even improved accuracy across varying levels of feature distribution
shift. 124

C.6 Size Generalization Dataset Statistics: This table is directly reproduced
from [17], who in turn used statistics from [18, 19]. 126

C.7 Number of Graphs/Nodes per dataset. 127
C.8 Model and hyperparameters for GOOD datasets. 127
C.9 Additional Node Classification Benchmarks. Here, we compare accuracy

and calibration error of G-#UQ and ”no G-#UQ ” (vanilla) models on 4 node
classification benchmarks across concept and covariate shifts. First, we note that
across all our evaluations, without any posthoc calibration, G-#UQ is superior
to the vanilla model on nearly every benchmark for better or same accuracy
(8/8 benchmarks) and better calibration error (7/8), often with a significant
gain in calibration performance. However, due to the challenging nature of these
shifts, achieving state-of-the-art calibration performance often requires the use
of post-hoc calibration methods – so we also evaluate how these posthoc meth-
ods can be elevated when combined with G-#UQ (versus the vanilla variant).
When combined with popular posthoc methods, we highlight that performance
improves across the board, when combined with G-#UQ (including in WebKB
and CBAS-Concept). For example, on WebKB – across the 9 calibration methods
considered, “G-#UQ + calibration method” improves or maintains the calibra-
tion performance of the analogous “no G-#UQ + calibration method” in 7/9
(concept) and 6/9 (covariate). In CBAS, calibration is improved or maintained
as the no-G-#UQ version on 5/9 (concept) and 9/9 (covariate). In all cases,
this is achieved with little or no compromise on classification accuracy (often
improving over “no G-#UQ” variant). We also emphasize that, across all the 8
evaluation sets (4 datasets x 2 shift types) in Table 10, the best performance is
almost always obtained with a GDUQ variant: (accuracy: 8/8) as well as best
calibration (6/8) or second best (2/8). 129

xvii

C.10 Layerwise Anchoring for Node Classification Datasets with Interme-
diate Representation Distributions. Here, we provide preliminary results
for performing layerwise anchoring when performing node classification. We fit a
gaussian distribution over the representations (similar to node feature anchoring)
and then sample anchors from this distribution. We fit a gaussian distribution
over the representations (similar to node feature anchoring) and then sample an-
chors from this distribution. We see that these alternative strategies do provide
benefits in some cases, but overall, our original input node feature anchoring
strategy is more performant. 130

C.11 Layerwise Anchoring for Node Classification Datasets with Random
Shu#ing. Here, we provide preliminary results for performing layerwise an-
choring when performing node classification. We use random shu$ing (similar
to the proposed hidden layer strategy) to create the interemediate representa-
tions. We see that these alternative strategies do provide benefits. 131

C.12 Alternative Anchoring Strategies. Here, we consider an alternative anchor-
ing formulation for graph classification. Namely, instead of shu$ing features
across the batch (denoted Batch in the table), we perform READOUT anchor-
ing by fitting a normal distribution over the hidden representations. We then
randomly sample from this distribution to create anchors. Conceptually, this is
similar to the node feature anchoring strategy. One potential direction of future
work that is permitted by this formulation is to optimize the parameters of this
distribution given a signal from an appropriate auxiliary task or loss. For ex-
ample, we could perform an alternating optimization where the GNN is trained
to minimize the loss, and the mean and variance of the anchoring distribution
are optimized to minimize the expected calibration error on a separate calibra-
tion dataset. While a rigorous formulation is left to future work, we emphasize
that the potential for improving the anchoring distribution, and thus controlling
corresponding hypothesis diversity, is in fact a unique benefit of G-#UQ. . . . 132

C.13 GOOD-Datasets, Generalization Error Prediction Performance. The
MAE between the predicted and true test error on the OOD test split is re-
ported. G-#UQ variants outperform vanilla models on 7/8 datasets (GOOD-
Motif(Basis,Covariate) being the exception). Pretrained G-#UQ is particularly
e!ective at this task as it achieves the best performance overall on 6/8 datasets.
Promisingly, we see that regular G-#UQ improves performance over the vanilla
model on 6/8 datasets (even if it is not the best overall). We further observe
that performing generalization error prediction is more challenging under co-
variate shift than concept shift on the GOODCMNIST, GOODMotif(Basis) and
GOODMotif(Size) datasets. On these datasets, the MAE is almost twice as large
than their respective concept shift counterparts, across methods. GOODSST2
is the exception, where concept shift is in fact more challenging. To the best
our knowledge, we are the first to investigate generalization error prediction on
GNN-based tasks under distribution shift. Understanding this behavior further
is an interesting direction of future work. 136

xviii

C.14 Runtimes. We include the runtimes of both training per epoch (in seconds) and
performing calibration. Reducing stochasticity can help reduce computation (L1
→ L3). Cost can also be reduced by using a pretrained model. 138

C.15 Mean and Variance of Node Feature Anchoring Gaussians. We report
the mean and variance of the Gaussian distributions fitted to the input node
features. Because the input node features vary in size, we report aggregate
statistics over the mean and variance corresponding to each dimension. For
example, Min(Mu) indicates that we are reports the minimum mean over the
d-dim set of means. 139

C.16 Number of Parmeters per Model.We provide the number of parameters in
the vanilla and modified parameter as follows. Note, that the change in param-
eters is architecture and input dimension dependent. For example, GOODCM-
NIST, and GOODSST2 use GIN MPNN layers. Therefore, when changing the
layer dimension, we are changing the dimension of its internal MLP. It is not an
error that intermediate layer G-#UQhave the same number of parameters, this
is due to the architecture: these layers are the same size in the vanilla model.
Likewise, GOODCora’s input features have dimension is 8701, so doubling the
input layer’s dimension appears to add a signficant number of parameters. We
do not believe this . 141

D.1 Query Function Ablation.We report performance on the following query
strategies: random sampling \ entropy sampling \ least confidence \ margin
sampling. We observe that while there is a slight decrease in performance when
using random sampling as the query function, overall margin sampling perform
similarly to entropy sampling. Least confidence sampling, in fact, improves per-
formance on a few cases. 144

D.2 Ablation on the Labeling Budget. We report performance when the LLM
labeling budget is 20% \ 40% \ 60% \ 80% \ 100%. We find that increasing
the budget does not substantially increase performance, unlike traditional active
learning. We hypothesize this is partially due to regularizing training using GNN
pseudo-labels and the imperfect LLM oracle. 144

D.3 Prompt Example: Concepts, CORA . 146
D.4 Prompt Example: Incontext, CORA . 147
D.5 Prompt Example: Triplets, CORA . 147
D.6 Dataset Statistics. 149
D.7 Generated Concepts. Below, are examples of concepts generated by

chatgpt-3.5-turbo on Cora with MinCut as the GNN clustering algorithm.
While some concepts are imperfect, e.g., rule learning or theory, other topics are
well captured. Applying self-refinement strategies could improve these generated
concepts, at additional budget expenditure. 149

xix

LIST OF APPENDICES

A Better Practices in Graph Contrastive Learning 99
Experimental Details of Section 3 . 99
Document Classification . 100
Super-pixel Classification . 101
Additional Related Work . 102

B Data-Centric Analysis of Graph Contrastive Learning 106
Extending our Analysis to other Loss Functions 106
Evaluation on a Non-Synthetic Dataset . 107
On Using Mutual Information for Analyzing Task-Relevance in Augmentations . . 108
Generic Graph Augmentations and Graph Edit Distance 108
Details for Generalization Analysis . 111
Dataset Generation and Experimental Details . 116
Related Work . 117

C Uncertainty Quantification with GNNs . 119
Ethics Statement . 119
PseudoCode . 120
Reproducibility . 120
Details on Super-pixel Experiments . 121
Stochastic Centering on the Empirical NTK of GNNs 125
Size-Generalization Dataset Statistics . 126
GOOD Benchmark Experimental Details . 126
GOOD Dataset Additional Results . 128
Post-hoc Calibration Strategies . 133
Details on Generalization Gap Prediction . 135
Results on Generalization Error Prediction . 135
Additional Study on Pretrained Variant . 137
Runtime Table . 138
Mean and Variance of Node Feature Gaussians 139
Expanded Discussion on Anchoring Design Choices 142

D Graph Clustering with LLM Guidance . 143
Additional Results . 144
Prompt Examples . 145

xx

Metrics . 145
Reproducibility Statement . 148
Example of Generated Titles . 148

xxi

ABSTRACT

Expressive graph representation learning is important to many high-impact applications as
structured data across many domains can be naturally represented using graphs. While the
advent of graph neural networks has led to considerable success on a variety of graph-based
tasks, there remains room for improvement when the quality of GNN representations is
determined with respect to not only in-distribution task performance but also other desider-
ata, such as generalization under distribution shift, trust-worthiness, or robustness. To this
end, this thesis is broadly interested in understanding and improving the quality of graph
representations beyond accuracy and makes contributions to several of the aforementioned
desiderata.

The first part of this thesis considers the generalization and expressiveness of graph rep-
resentations learnt using contrastive learning, as expressivity is often a prerequisite for other
model desiderata. In particular, we study the role of augmentations, identifying several
weaknesses of popular, generic graph augmentations strategies and derive a corresponding
generalization bound. In the second part, we focus on improving the reliability of uncer-
tainty estimates when performing predictive tasks, as expressivity alone is not su”cient for
safe model deployment. To this end, we propose a lightweight training protocol that im-
proves estimate quality, even under challenging distribution shift settings. The final part of
this thesis considers strategies for leveraging large language models to further enhance GNN
performance and robustness, particularly by supporting capabilities that are not realizable
from only the GNN or structured data alone. Specifically, we propose a framework for LLM
guided text-attributed graph clustering that uses the LLM to disambiguate uncertain nodes,
and improves zero-shot clustering capabilities for disconnected nodes. Finally, we study the
robustness of joint LLM and GNN models to structural and text-based adversarial attacks.

xxii

CHAPTER 1

Introduction

Relational data, which model interactions or relations amongst entities, are prevalent across
many domains, and can be naturally represented using networks or graphs. Indeed, high
impact applications such as drug-discovery [20], algorithmic reasoning [21] and making
recommendations [22, 23], have been successfully formulated as machine learning tasks on
graph data. Success in such tasks has primarily been buoyed by the representation learning
capabilities of graph neural networks (GNNs) [24, 25, 26, 27], a class of neural architectures
expressively designed to capture graph-specific inductive biases on discrete, variable-sized
inputs.

While GNNs have rapidly become the defacto standard on a variety of graph-based
tasks, e.g., node classification [28], graph classification [29], link prediction [22], graph
clustering [30] and graph alignment [31], there remains considerable room for improvement
as we evaluate the quality of learnt representations beyond task performance (“accuracy”).
Indeed, much like their vision counterparts [32, 33, 34], GNNs are weak generalizers under
distribution shift [18, 35], susceptible to adversarial attacks [36, 37], biased during decision
making [38, 39, 40] and often poorly calibrated [41, 42]. Notably, practical deployment in high-
risk scenarios requires strong performance on these desiderata, in addition to merely achieving
strong task performance. Thus, there has been growing interest in the graph machine learning
community to pursue algorithmic [43, 44] and architecture based [45] strategies to pursue
these aims, where challenges can arise from limitations in model expressivity [27, 46], training
paradigms [47, 48], limited data [49], class imbalance [50] and amongst other sources.

In Parts 1 and 2 of this thesis, we focus on two of these desiderata, namely: understand-
ing representation expressivity, which is arguably a prerequisite to others, and improving
calibration. Specifically, in Part I, we rigorously study the limitations of graph contrastive
learning (GCL) [1, 51, 52, 53], as a training protocol. We choose to focus on GCL as CL
in vision and other modalities has not only lead to state-of-the-art downstream task perfor-
mance [54, 55, 56], it has been shown to have improved the robustness [57, 58], semantic
consistency [59] and transferability [60] relative to supervised counterparts. By identifying

1

and rectifying limitations in GCL, we can better support these properties in the finetuned
or downstream GNN-based tasks. In Part II, we focus on the complementary objective of
obtaining reliable uncertainty estimates on three foundational GNN-based tasks. Reliable
estimates can aid model trust-worthiness by improving calibration [34], generalization gap
prediction [61], out-of-distribution detection [62] and other tasks dependent [63] on accurate
uncertainty quantification, improving overall model quality.

While Parts Iand IIfocus on algorithmic, GNN-based strategies for holistically improving
GNN performance, the recent, unprecedented success of large language models (LLMs) [64, 65]
has enabled an alternative paradigm for GNN-based tasks where LLM world knowledge and
reasoning capabilities complement GNN capabilities. Indeed, recent work demonstrates that
various strategies e.g., co-training, pretraining, finetuning, prompting [66, 67, 68, 69, 70,
71, 72, 73, 74], for utilizing LLMs in conjunction with GNNs can improve supervised task
performance on text-attributed graphs [75, 76] i.e., graphs with natural language text as
node information. However, it remains, to the best of our knowledge, under-explored how
these joint LLM+GNN methods perform on other important factors of task performance
(calibration, robustness, fairness, etc).

To this end, Part IIIof this thesis focuses on introducing new capabilities that were
previously inaccessible when relying upon only structural data and GNNs by using both
LLMs and GNNs in the prediction pipeline. In particular, we first consider how LLM world
knowledge can be leveraged to reduce uncertainty, improve performance, and support better
zero-shot performance when performing graph clustering [77, 78, 30].

1.1 Contributions
Here, we discuss our contributions in more detail and summarize them in Table 1.1. While this
thesis is broadly focused on the improving the performance on graph based tasks beyond only
accuracy or naive task performance, we focus on three particular sub-areas in the following
parts. In Part I, we focus on better understanding representation expressivity by studying
the role of augmentations in graph contrastive learning. Part IIfocuses on obtaining reliable
uncertainty estimates on various supervised graph-based tasks, leading to better model
trust-worthiness. Lastly, in Part III, we combine our insights from the preceding sections,
to propose a novel framework for LLM guided graph clustering. We further study how to
jointly combine LLMs and GNNs for graph based tasks in order to improve performance
on user-specified objectives, such as reducing reliance upon sensitive features when making
predictions.

2

Table 1.1: Overview of contributions. This thesis consists of three parts, broadly interested
in improving the performance of GNNs beyond accuracy.

Aim Task(s) tl;dr Venue Ch.

Augmentations in Graph CL Graph Classification Better Practices for Graph CL WWW21 [79] 3
Graph Classification Generalization Analysis of Graph CL NeurIPS22 [80] 4

Improved Uncertainty Estimations with GNNs Graph/Node Classification Flexible Uncertainty Estimation for GNN Classifiers ICLR 24 [81] 5
Link Prediction Better Calibration for Link Predictors ICASSP24[82] 6

Combining World and Structural Knowledge Graph Clustering LLM Guided Graph Clustering In Submission 7
Node Classification Exploring Robustness of LLM + GNN Models In Preparation 8

Qualities of Representations from Graph Self Supervised Learning. In the first
part of this thesis, we rigorously study the role of augmentations when seeking to obtain
expressive representations using graph contrastive learning. We contribute the following:

• Better Practices for Graph CL Augmentations: We probe the quality of repre-
sentations learnt by popular graph CL frameworks using generic graph augmentations
and find that such augmentations can destroy task-relevant information as well as harm
the model’s ability to learn discriminative representations. Based on our findings, we
propose several sanity checks that enable practitioners to quickly assess the quality of
their model’s learned representations. This work was published in WWW 2021.

• Analysis of Data-Centric Properties for Graph Contrastive Learning: We
perform a generalization analysis for CL when using generic graph augmentations, with
a focus on data-centric properties, specifically invariance to task-irrelevant semantics,
separability of classes in some latent space, and recoverability of labels from augmented
samples. Our theory motivates a synthetic data generation process that enables control
over task-relevant information with pre-defined optimal augmentations, enabling further
insights into automated methods. This work was published in NeurIPS 2022.

Uncertainty in GNN Based Tasks In the second part of this thesis, we focus on improving
the reliability of uncertainty estimates obtained from GNNs on supervised, predictive tasks.
Our contributions include:

• Accurate Estimation of Epistemic Uncertainty for Graph Classification and
Node Classification: We propose G-#UQ, a novel training framework designed to
improve intrinsic GNN uncertainty estimates. Through extensive evaluation under
covariate, concept and graph size shifts, we show that G-#UQ leads to better calibrated
GNNs for node and graph classification. It also improves performance on the uncertainty-
based tasks of out-of-distribution detection and generalization gap estimation. This
work was published in ICLR 2024.

3

• Improving Link Prediction Calibration: We propose E-#UQ, an architecture-
agnostic framework designed for improving link prediction calibration with minimal
overhead. We further demonstrate the importance of considering node-level uncertainties
when estimating link uncertainty, which despite its importance, had been overlooked.
This work was published in ICASSP 2024.

Combining World and Structural Knowledge in Graph Representation Learning.
In the final part of this thesis, we consider how LLMs can be used to augment the performance
of GNNs. We contribute the following:

• LLM Guided Graph Clustering: We propose an active learning framework that
performs graph clustering using LLM refinment (GCLR) by selectively prompting
an imperfect LLM oracle for feedback and, subsequently, finetuning the GNN-based
clustering solution to incorporate the feedback. GCLR uses di!erent prompting
strategies to improve the LLM’s reliability as an oracle and uses noise-controlling fine-
tuning to handle this imperfect, but useful feedback. Extensive experiments demonstrate
that GCLR can significantly improve clustering performance over state-of-the-art GNN
methods.

• Understanding Robustness of LLM+GNN Models on Text Attributed
Graphs In this chapter, we seek to understand the robustness of joint LLM+GNN
models when performing node classification. Namely, we evaluate the sensitivity of two
popular classes of joint models on structural, text-adversarial attacks, and semantic
preserving natural text perturbations. Our analysis helps understand the potential for
attack transferability across modalities and vulnerabilities present in this new class of
models.

4

CHAPTER 2

Preliminaries

In this chapter, we quickly review some preliminaries on graph machine learning and some
shared notations. We will introduce specific background and notations in the corresponding
chapter as needed.

2.1 Graphs
A graph G = (V , E) is a mathematical structure used to capture relationships between
entities. Here, V represents the set of nodes (or vertices), and E ↑ V ↓ V is the set of edges
connecting pairs of nodes. For example, in social networks, nodes may correspond to users
and edges may correspond to interactions between users, or, in molecular graphs, nodes may
correspond to di!erent atoms, and edges to bonds. Graphs may be directed, where edges
have orientations (i.e., (u, v) ↔ E ↗= (v, u) ↔ E), or undirected, where edges are bidirectional
(i.e., (u, v) = (v, u)). Graphs may optionally include nodes and/or edges attributes that can
be represented as feature vectors and/or natural language text. Formally, let X ↔ R|V |→d

denote the node feature matrix, where each row xv ↔ Rd represents the d-dimensional features
of node v. Similarly, edge features can be represented by a matrix E where each entry e(u,v)

contains the features for edge (u, v). Modern graph learning techniques seek to e!ectively
leverage both attributes and structure to succeed on various machine learning tasks, which
we introduce below.

2.2 Graph Machine Learning Tasks
Graphs can be naturally used to represent structured information in a variety of domains,
including social networks analysis [83, 84, 85], bioinformatics [21], computer vision [86],
and recommendation systems [87]. Representing such information as a graph makes it
amenable to performing a number of useful machine learning tasks. Here, we assume without

5

loss of generality that we are working with an unweighted, undirected, attributed graph,
G = (V , E , X), and are provided optional labels Y , corresponding to the underlying task. We
further assume that the objective is to learn a function f : G → Y that maps from graphs (or
nodes within graphs) to the label space Y appropriate for the given task.

2.2.1 Node Classification

In node classification, the goal is to predict a label yv ↔ Y for each node v ↔ V, given a
partially labeled graph. For a labeled node subset VL ↘ V with labels {yv}v↑VL , the task
involves learning a function f : G → Y that assigns labels to the remaining nodes V \ VL,
where the model is trained to minimize the loss on the labeled subset with the expectation f

will non-trivially generalize to the unlabeled portion. Here, f is designed to utilize both the
node features X and the graph structure E for inference. Node classification has widespread
applications, such as predicting user attributes in social networks or classifying academic
papers in citation networks.

2.2.2 Graph Classification

In graph classification, the objective is learn a function, f from a training set of graphs,
G = {G1, G2, . . . , Gn} and graph-level labels, y1, y2 . . . yn, such that f can be used to predict
the label of unseen graphs at inference time. Formally, we train f : (G) → y on the labeled
training data to minimize a classification loss with the expectation f will generalize to other
graphs in the distribution at inference time. Graph classification is commonly applied in
areas like chemistry and biology, where each molecule (represented as a graph) is classified
according to properties like toxicity or activity.

2.2.3 Graph Clustering

Graph clustering aims to identify communities or groups of similar nodes within a graph,
generally without label supervision. Namely, given G, the objective is to partition V into k

clusters {C1, C2, . . . , Ck}, such that nodes within each cluster are more similar or semantically
related than nodes in di!erent clusters. Formally, clustering can be considered as learning a
mapping f : G → {1, . . . , k} where f is trained in an unsupervised fashion. Notably, graph
clustering has applications in community detection in social networks, functional grouping in
biological networks, and anomaly detection.

6

2.3 Graph Neural Networks (GNNs)
To perform the aforementioned tasks, graph neural networks (GNNs) have emerged as the
state-of-the-art architectures as they are able to utilize both graph structure and attributes
to learn expressive representations. Moreover, unlike traditional neural networks, which often
cannot handle discrete, non-euclidean, variable sized data, GNNs utilize message-passing or
neighborhood aggregation to capture the dependency structure of graphs and scale to large
networks.

At a high level, GNNs learn node representations by iteratively updating aggregated
information from its neighbors. This process can be described by a function h : V → Rd that
computes node embeddings as follows:

h(k)
v = AGGREGATE(k)

({
h(k↓1)

u : u ↔ N (v)
})

where N (v) represents the neighbors of v, and AGGREGATE(k) is a task-specific function
that combines information from node v’s neighbors at layer k. After stacking multiple
message passing layers, an optional READOUT layer can be used to obtain a graph level
representation, and an MLP layer or light-weight classifier can be added to perform the
tasks mentioned above. Various GNN architectures have been proposed to refine the original
graph convolutional network [24] that provide improved aggregation, sampling, positional
and distance awareness, amongst other improvements [26, 28, 25, 88]. Indeed, developing
better architectures remains an active and exciting research area, and we use several modern
architectures througout this dissertation.

7

Part I: Improving Augmentations in
Graph Contrastive Learning

8

CHAPTER 3

Better Practices for Graph CL Augmentations

3.1 Introduction
Graph neural networks (GNNs) have been successfully used to learn representations for various
supervised or semi-supervised graph-based tasks, including graph-based similarity search for
web documents [89], fake news detection through propagation pattern classification [90, 84,
83, 85], activity analysis in web and social networks (e.g., discussion threads on Reddit, code
repository networks on Github) [91], and scientific graph classification [92, 93, 94]. However,
in many practical scenarios, labels are scarce or di”cult to obtain. For example, web pages
are seldom assigned with labels which summarize their contents, labeling fake news can
be time-consuming, and labeling drugs according to their toxicity requires expensive wet
lab experiments or analysis [29, 95, 96, 20]. Contrastive learning (CL) is an increasingly
popular unsupervised graph representation learning paradigm for such label scarce settings [1,
97, 51, 14, 98] and is currently the state-of-the-art in unsupervised visual representation
learning [54, 55, 56, 59].

Broadly, CL frameworks learn representations by maximizing similarity between augmen-
tations of a sample (positive views) while simultaneously minimizing similarity to other
samples in the batch (negative views). Recent theoretical and empirical works attribute
the impressive success of visual CL (VCL) to two key principles: (i) leveraging strong,
task-relevant data augmentation [99, 100, 101, 102, 103] and (ii) training on large, diverse
datasets [54, 55, 104, 105, 106]. By using appropriate data augmentations, VCL frameworks
learn high quality representations that are invariant to properties irrelevant to downstream
task performance; thereby preserving task-relevant properties and preventing the model

The material in this chapter is derived from the paper “Augmentations in Graph Contrastive Learning:
Current Methodological Flaws & Towards Better Practices” [79], which appeared in the proceedings of the
ACM Web Conference 2022. Code can be accessed here.

9

https://github.com/pujacomputes/22-WebConf-AugPractices

from learning brittle shortcuts [99, 102, 54, 107]. Large, diverse datasets are necessary as
VCL frameworks routinely use 1K–8K samples in a batch to ensure that enough negative
views are available to train stably [54, 55, 56, 108]. Representations learnt using VCL and
self-supervised learning in general have been found to be more robust [57], transferable [109]
and semantically aligned [110] than their supervised counterparts.

Figure 3.1: Domain-Agnostic Graph
Augmentations (DAGAs). [Left] intro-
duced in [1]. Deletion/addition in red/-
green. False Positive Samples. [Right]
Acidic molecule Phenol and basic molecule
Aniline are structurally similar but have
di!erent properties. DAGAs can inadver-
tently generate this pair as a positive view,
resulting in similar representations for se-
mantically dissimilar entities.

Interestingly, graph CL (GCL) frameworks of-
ten deviate from these key principles and yet
report seemingly strong task performance. Small,
binary graph classification datasets [111] are rou-
tinely used to benchmark GCL frameworks. More-
over, due to the non-euclidean, discrete nature of
graphs, it can be di”cult to design task-relevant
graph data augmentations [112, 113] or know
what invariances are useful for the downstream
task. Therefore, frameworks often rely upon
domain-agnostic graph augmentations (DAGAs)
[1]. However, DAGAs can destroy task relevant
information and yield invalid/false positive sam-
ples (see Fig. 3.1). It is also unclear if DAGAs
induce invariances that are useful or semantically
meaningful with respect to the downstream task.

In this work, we investigate the implications of
the aforementioned discrepancies by probing the quality of representations learnt by popular
GCL frameworks using DAGAs. We show that DAGAs can destroy task-relevant information
and lead to weakly discriminative representations. Moreover, on popular, small benchmark
datasets, we find that flawed evaluation protocols and the strong inductive bias of GNNs
mitigate limitations of DAGAs. Our analysis o!ers several actionable sanity checks and better
practices for practitioners when evaluating GCL representation quality. Further, through two
case studies on larger, more complex datasets, we demonstrate that task-aware augmentations
(TAAs) are necessary for strong performance and discuss how to identify such augmentations
amenable to GCL. Our main contributions are summarized as follows:

• Analysis of limitations in domain-agnostic augmentations: We demonstrate
that commonly-used DAGAs lead models to learn weakly discriminative representations
by inducing invariances to invalid views or false-positives. Across several architectures
and datasets, we find these shortcomings are mitigated by the strong inductive bias
of GNNs, which allow existing methods to achieve competitive results on benchmark

10

datasets.

• Identification of methodological flaws & better practices: We contextualize
recent theoretical work in visual self-supervised learning to identify problematic practices
in GCL: (i) the use of small datasets and (ii) training with negative-sample frameworks
on binary classification datasets. Furthermore, we provide carefully-designed sanity
checks for practitioners to assess the benefits of proposed augmentations and frameworks.

• Case studies with strong augmentations: In two case studies on di!erent data
modalities, we demonstrate how to leverage simple domain knowledge to develop strong,
task-aware graph augmentations. Our systematic process results in up to 20% accuracy
improvements.

3.2 Background & Related Work
We begin by introducing CL. We then discuss how strong, task-relevant augmentations
and large, diverse datasets underpin the success of VCL. Finally, GCL and graph data
augmentation are discussed. Please see section A.4 for additional related work.

3.2.1 Contrastive Learning (CL)

Frameworks & Losses. Several CL frameworks [54, 55, 7] have been proposed to enforce
similarity between positive samples and dissimilarity between negative samples, where positive
samples are generated through data augmentation. Normalized temperature-scaled cross
entropy (NT-XENT) is a popular objective used by several state-of-the-art CL frameworks [54,
114, 115, 116, 97, 1, 117] and is defined as follows. Let X be a data domain, D = {x[1...n]|xi ↔
X } be a dataset, T : X → X̃ be a stochastic data transformation that returns a positive
view, and f : {X , X̃ } → Rd be an encoder. Further, assume we are given a batch of size N ,
similarity function sim: (Rd

, Rd) → [0, 1], temperature parameter ϖ , and encoded positive
pair {zi, zj}. Then, NT-XENT can be defined as:

ϱi,j = ≃ log exp (sim (zi, zj) /ϖ)
∑2N

k=1 1[k ↔=i] exp (sim (zi, zk) /ϖ)
. (3.1)

Here, the numerator encourages the positive pair to be similar, while the denominator
encourages negative pairs (k ↗= i) to be dissimilar. Alternative CL objectives may enforce
such (dis)similarity di!erently (e.g., through margin maximization [118] or cosine similarity

11

[7]), but the principles discussed below uniformly explain the success of contrastive learning
frameworks [119].

The role of augmentations. Recent work [99, 120, 102] has demonstrated that data
augmentation is critical for training CL frameworks. Theoretically, Tian et. al [99] show that
positive views should preserve task-relevant information, while simultaneously minimizing
task-irrelevant information [120]. Training on such views introduces invariances to irrelevant
information, leading to more generalizable representations. Indeed, state-of-the-art VCL
frameworks [54, 55, 56, 121, 122] rely upon strong, task relevant data augmentation to
generate such views. For example, Purushwalkam et al. [102] show that augmentations
used by SimCLR introduce “occlusion invariance”, which is useful in classification tasks
where objects may be occluded. Overall, we highlight that augmentation strategies are not
universal [1, 97] and must align with the task; e.g., semantic segmentation tasks would benefit
more from augmentations that induce view-point invariances [102].

The role of large, high-quality datasets. Empirically, CL frameworks [54, 55, 108] often
require many negative samples in each batch to avoid class collisions (i.e., false positives) [119].
Further, recent theoretical work has shown that optimizing Eq. (3.1) is equivalent to learning
an estimator for the mutual information shared between positive views, where the quality
of this estimate is upper-bounded by batch-size [114, 104]. These properties combine to
necessitate the use of large, diverse datasets in contrastive learning.

3.2.2 Graph Contrastive Learning (GCL)

Frameworks. In this paper, we focus on three state-of-the-art unsupervised representa-
tion learning frameworks for graph classification that represent di!erent methodological
perspectives: GraphCL [1], InfoGraph [14] and MVGRL [51]. Similar to SimCLR, GraphCL
uses NT-XENT to contrast representations of augmented samples using a shared encoder.
Much like DeepInfoMax [123], InfoGraph maximizes the mutual information between local
and global views, where corresponding views are obtained through subgraph sampling and
graph-pooling. Meanwhile, MVGRL mirrors CMC [124] and uses dual encoders to contrast
multiple views of a graph, where views are generated by first running a di!usion process
(e.g. Personalized Page Rank [125], Heat Kernel [126]) over the graph and then sampling
subgraphs.

Graph data augmentation. Existing GCL frameworks leverage three main strategies
to generate views: feature or topological perturbation (GraphCL), sampling (InfoGraph),
and/or di!usion processes (MVGRL). We focus on the domain-agnostic graph augmentations
(DAGAs) introduced by GraphCL, shown in Fig. 3.1, as these are more popular in recent

12

frameworks [97, 52, 1], composable [54, 122], fast, and do not require dual view encoders.
An empirical study on the benefits of DAGAs in GCL [1] demonstrates that (i) composing
augmentations and adjusting augmentation strength to create a more di”cult instance
discrimination task improves downstream performance and (ii) augmentation utility is dataset
dependent. However, a critical assumption underlying DAGA is that by limiting augmentation
strength such that only a fraction of the original graph is modified, task-relevant information
is not significantly altered. In Sec. 3.3, we revisit this assumption to show that it does
not hold for many datasets and discuss the implications of training with poorly augmented
graphs. Clearly, it is expected that models trained with task-aware augmentations (TAAs)
that induce useful invariances will learn better features than those trained with DAGAs.
However, graphs are often used as abstracted representations of structured data, such as
molecules [20] or point clouds [127], and it is often unclear how to represent task-relevant
invariances after abstracting to the graph space. In Sec. 3.4, we discuss a broad strategy for
identifying augmentations that induce task-relevant invariances in the abstracted, graph space
and demonstrate the significant performance boosts achieved by using such augmentations.

Automated Graph Data Augmentation. Concurrent works [117, 97, 128, 129, 130,
131, 132, 133] have begun investigating automated graph data augmentation as a means
of both avoiding costly trial and error when selecting augmentations and generating more
informative, task relevant views. These methods often use bi-level optimization objectives
and/or viewmakers [134] to jointly learn representations and augmentations (cf. Appendix A.4
for more details). Our analysis (Sec. 3.3) remains pertinent for GCL with automated
augmentations. Namely, the proposed sanity checks are not augmentation specific, the
identified evaluation flaws must still be considered, and untrained models should still be
included as baselines. Also, our discussion on the benefits and properties of TAAs (Sec. 3.4)
remains relevant as it is di”cult to identify post-hoc if an automated augmentation strategy
is inducing semantically meaningful invariances or exploiting shortcuts.

3.3 Revisiting Augmentations & Evaluation in GCL
In this section, we investigate how existing GCL frameworks deviate from the principles
underlying the success of VCL methods and the e!ects of such deviations. We discuss and
establish three key observations:

(O1) Standard graph data augmentation is susceptible to altering graphs semantics and
task-relevant information.

(O2) Training on such augmentations can lead to weakly discriminative representations.

13

í���� í���� í���� í���� ���� ���� ���� ���� ����

(a) Random Init.
(85.76 ± 7.38)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(b) GraphCL
(86.80 ± 1.34)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(c) InfoGraph
(89.01 ± 1.13)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(d) MVGRL
(89.70 ± 1.1)

Figure 3.2: Representational Similarity. The normalized cosine similarity between all-pairs
of representations is shown above for the MUTAG dataset. The on-diagonal blocks (indicated
by green lines) show intra-class similarity, while o!-diagonal blocks show inter-class similarity.
MVGRL, which uses di!usion-based views, learns representations that have high intra-class
similarity and low inter-class similarity, as desired. InfoGraph, which directly maximizes
mutual information between local/global views, preserves high intra-class similarity, and has
moderate inter-class similarity. GraphCL, which uses domain-agnostic graph augmentations,
has low intra-class similarity in the upper left block. This indicates that training on false
positive/invalid samples can negatively impact representational power.

(O3) The strong inductive bias of randomly-initialized GNNs obfuscates the performance of
weak representations and misaligned evaluation practices.

Empirical Setup. In our analysis, we focus on commonly used graph classification datasets
(Table 3.1) [111]. O”cial implementations for GraphCL∗, InfoGraph†, and MVGRL‡ are used.
We consider the encoder architecture used by [1] and report results with graph convolutional
layers from GIN [27] (original implementation), PNA [26], SAGE [28], GAT [25], and GCN [24].
See section A.1 for details on the training setup.

3.3.1 (O1) Domain-agnostic graph augmentations alter task-
relevant information

Given the importance of data augmentation in representation learning, several works [135, 99,
102, 100, 101] have investigated its properties. Recently, Gontijo-Lopes et al. [13] identified
an empirical trade-o! when selecting amongst augmentations to improve model generalization.
Intuitively, augmentations should generate samples that are close enough to the original data
to share task-relevant semantics and di!erent enough to prevent trivially similar samples.

∗https://github.com/Shen-Lab/GraphCL
†https://github.com/fanyun-sun/InfoGraph
‡https://github.com/kavehhassani/mvgrl

14

Table 3.1: Dataset Description

Name Graphs Classes Avg. Nodes Avg. Edges Domain
IMDB-BINARY [136] 1000 2 19.77 96.53 Social
REDDIT-BINARY [136] 2000 2 429.63 497.75 Social
GOSSIPCOP [137] 5464 2 55.48 54.51 News
DEEZER [91] 9629 2 23.49 65.25 Social
GITHUB SGZR [91] 12725 2 113.79 234.64 Social
MUTAG [138] 188 2 17.93 19.79 Molecule
PROTEINS [139] 1113 2 39.06 72.82 Bioinf.
DD [140] 1178 2 284.32 715.66 Bioinf.
NCI1 [93] 4110 2 29.87 32.30 Molecule

This trade-o! can be quantified through two metrics, a!nity and diversity. A”nity measures
the distribution shift between the augmented and original sample distributions. Diversity
quantifies how di”cult it is to learn from augmented samples instead of only training samples
[13]. While augmentations that best improve generalization optimize for both metrics [13], it
is not clear that DAGAs also optimize for both. For example, molecular graph classification
tasks are commonly used to evaluate GCL frameworks. However, as noted in Fig. 3.1, limited
perturbations are needed to invalidate a molecule or significantly alter its function. Here,
augmented data is su”ciently diverse, but it is not clear if creating invalid molecule samples
also leads to low a”nity, indicating that task-relevant information have been destroyed.
We conduct the following experiment to understand the a”nity of DAGAs on benchmark
datasets.
Experimental setup. We measure a”nity as follows: (i) train a supervised PNA encoder on
the original training data, (ii) generate an augmented dataset by using random node/subgraph
dropping at 20% of the graph size, as suggested by [1] and (iii) evaluate on clean and augmented
training data separately. The di!erence between clean and augmented accuracy quantifies
the distribution shift induced by augmentations [13].
Hypothesis. We argue that while it is not expected that accuracy on augmented data will
match that of clean data, augmented accuracy should be nontrivial if augmentations are
indeed information-preserving [100, 103].

Results. In Table 3.2, we see a considerable di!erence between clean and augmented accuracy
across datasets. This implies low a”nity, i.e., a large shift between augmented and training
distributions, and confirms that DAGAs can destroy task-relevant information. Consequently,
training on such samples will harm downstream task performance, as shown by prior works
on VCL [103] and elucidated below for GCL.

15

Table 3.2: Augmentation A”nity. A”nity [13], measured by the di!erence between original
and augmented accuracy of a supervised model, captures how much the data distribution
has changed as a result of augmentation. We see that DAGAs lead to low a”nity. This is
expected for molecular datasets, where it is easy to create invalid molecules, and is also true
for some social network datasets.

Dataset Clean Train Acc. Aug. Train Acc.
MUTAG 90.14 ± 1.36 37.67 ± 1.48
PROTEINS 70.70 ± 4.30 56.54 ± 8.11
NCI1 75.55 ± 4.60 60.15 ± 0.069
DD 84.06 ± 8.81 65.41 ± 14.87
REDDIT-BINARY 85.56 ± 3.21 50.56 ± 0.09
IMDB-BINARY 70.93 ± 0.046 50.11 ± 0.384
GOSSIPCOP 98.047 ± 0.37 96.03 ± 1.57

3.3.2 (O2) Domain-agnostic augmentations induce weak discrim-
inability

Recall that contrastive losses maximize the similarity between representations of positive
pairs while simultaneously minimizing the similarity amongst representations of negative
samples. However, Obs. (O1) identifies that DAGAs have low a”nity, which suggests that
task-relevant information has been significantly altered. This implies that representation
similarity will be maximized for samples that are not semantically similar, e.g., false positive
samples. Consequently, the resulting representations may not be discriminative with respect
to downstream classes—i.e., intra-class samples may have lower similarity than inter-class
samples, counter to what is expected. This claim is investigated in the following experiment.

Experimental setup. We measure the discriminative power of representations learned
using GCL as follows: given models trained using GraphCL, InfoGraph and MVGRL, we
extract representations for the entire dataset. Then, we calculate cosine similarity between
all representation pairs. Representational similarity from an untrained model is also included.

Hypothesis. If a model has learned discriminative representations, intra-class similarity
should be high while inter-class similarity should be low.

Results. In Fig. 3.2, we plot the normalized cosine similarity between representations
(sorted by class label), such that the upper left and lower right quadrants correspond to
the similarity between same-class representations. Results on additional datasets can be
found in Appendix A.1. We see that MVGRL (Fig. 3.2d) and InfoGraph (Fig. 3.2c) are less
likely to encounter false positive pairs as they, respectively, use di!usion-based views and
maximize mutual information over sampled subgraphs. GraphCL, which uses DAGAs, is more

16

Table 3.3: Inductive Bias on Benchmark Datasets. Following the same evaluation
protocol as [14], we generate embeddings from an untrained N-Layer GIN encoder and perform
classification using an SVM classifier. Results for GraphCL and InfoGraph are reported from
[1]. Best accuracy is in bold; other models whose accuracy with standard deviation falls
within the standard deviation of the best accuracy are underlined. We see across all datasets
that untrained models have a strong inductive bias. On PROTEINS, DD, MUTAG DEEZER
and GITHUB-SGZR, untrained models perform competitively against trained models.

Dataset Random Init Random Init Random Init GraphCL InfoGraph
(# Samples) (3 layers) (4 layers) (5 layers) [1] [14]
IMDB-BINARY (1000) 67.22 ± 7.77 61.26 ± 7.01 60.43 ± 5.92 71.14 ± 0.44 73.03 ± 0.87
REDDIT-BINARY (2000) 72.34 ± 6.64 64.57 ± 8.03 67.32 ± 7.41 89.53 ± 0.84 82.50 ± 1.42
DEEZER (9629) 56.59 ± 0.01 54.99 ± 1.74 54.87 ± 2.60 56.19 ± 0.015 55.89 ± 0.88
GITHUB SGZR (12725) 64.51 ± 0.05 64.93 ± 0.04 64.93 ± 0.89 65.81 ± 0.413 Out of Time
MUTAG (188) 85.76 ± 7.38 86.36 ± 6.51 86.73 ± 10.33 86.80 ± 1.34 89.01 ± 1.13
PROTEINS (1113) 73.64 ± 5.464 74.46 ± 4.09 74.22 ± 2.85 74.39 ± 0.45 74.44 ± 0.31
DD (1178) 73.23 ± 8.25 72.15 ± 7.25 77.08 ± 4.18 78.62 ± 0.40 72.85 ± 1.78
NCI1 (4110) 70.65 ± 1.99 70.36 ± 3.11 70.49 ± 2.42 77.81 ± 0.41 76.20 ± 1.06

likely to encounter false positive samples that can harm discriminative power (Obs. (O1)).
Correspondingly, MVGRL and InfoGraph both learn representations with higher intra-class
similarity than inter-class similarity. In contrast, GraphCL has low intra-class similarity as
can be seen in the upper-left quadrant (Fig. 3.2b). This implies that the model has not learned
features that capture the semantic similarity between the samples belonging to this class.
However, we note that while MVGRL has learned discriminative representations, it requires
dual encoders and it is unclear what invariances are learnt by training with di!usion-based
views. Finally, we find that even though the randomly initialized, untrained model (Fig. 3.2a)
has higher absolute values for average intra- and inter-class similarities than trained methods,
it achieves inter-class similarity relatively lower than intra-class similarity, as required for
discriminative applications. We further elaborate on this point in the next section.

Proposed evaluation practice. Given that CL frameworks directly optimize the similarity
between representations, we argue that plotting representational similarity can serve as a sim-
ple sanity check for practitioners to assess the quality of their model’s learned representations.
Indeed, models are often only assessed through linear evaluation or task accuracy, which may
hide di!erences in the discriminative power of representations. For example, as shown in
Fig. 3.2, InfoGraph and MVGRL have similar task accuracy, but MVGRL has learnt more
discriminative representations.

Having established that DAGAs can lead to invalid or false positive augmented samples
and that training on such samples can lead to poorly-discriminative representations, we next
investigate whether other factors are bolstering GCL performance. Specifically, we discuss

17

the role of randomly initialized, untrained GNN inductive bias and identify flaws in current
GCL evaluation practices.

3.3.3 (O3) Strong inductive bias of random models reduces GCL
ine”ciencies

As noted in Obs. (O2), randomly-initialized, untrained GNNs can produce representations
that are already discriminative without any training (Fig. 3.2a). While the strength of
inductive bias of GNNs in (semi-) supervised settings has been noted before [24, 141, 142, 117],
we aim to better contextualize the performance of GCL frameworks by conducting a systematic
analysis of the inductive bias of GNNs, using several datasets and architectures. Understanding
the performance of untrained models helps contextualize the cost of training.

Empirical setup. For DEEZER and GITHUB-SGZR, a PNA encoder is used to stabilize
training. All other datasets are trained with a GIN encoder. MVGRL ran out-of-memory so
we did not include it in this evaluation. See Appendix A.1 for more details.

Results. As shown in Table 3.3, randomly-initialized, untrained models perform competitively
against trained models on several benchmark datasets. It is likely that some of the negative
e!ects of training with DAGAs (Obs. (O1)–(O2)) were mitigated by this strong inductive
bias. However, note that it becomes di”cult to justify the additional cost of GCL on
datasets where task performance and representation quality are not noticeably better than
untrained models. Below, we discuss how to fairly evaluate GCL frameworks and how popular
benchmark datasets are, in fact, inappropriate for GCL.

Proposed evaluation practices. Given that randomly-initialized, untrained models are
a non-trivial baseline for GCL frameworks, we argue that they should be included when
evaluating novel frameworks to contextualize the benefits of unsupervised training. While
some recent works [143, 117] include untrained models in their evaluation, this practice
remains far from standardized.

Furthermore, CL frameworks often define negative samples through the other samples
in the batch. Given the limited size of popular benchmark datasets (Table 3.3), it can be
di”cult to ensure that each batch is large enough to train stably. Further, given that these
benchmarks are often binary classification tasks, half the samples, in a balanced setting,
are expected to share the positive pair’s label but be treated as negative samples. This
implies that representations learned with GCL may not be discriminative because models
have minimized similarity for semantically related examples. We thus argue that evaluating
GCL frameworks on these datasets is flawed and this practice should be discontinued.

We highlight that Dwivedi et al. [86] also find popular graph classification datasets are

18

Table 3.4: Document Classification. We use domain-agnostic subgraph dropping (S) and
node-dropping (N) at 10% and 5% of sentence length, respectively, for baseline augmentations.
For task-aware augmentations, we stochastically apply synonym replacement (5%), random
insertion (5%), random swapping (5 %) and random deletion (10 %). Random Accuracy with
window-size = 2 is 58.46 ± 1.97. Random Accuracy with window-size = 4 is 63.93 ± 0.045.

GCN SAGE GIN
Augmentation SimSiam Acc. BYOL Acc. SimSiam Acc. BYOL Acc. SimSiam Acc. BYOL Acc.
S. vs. S (ws =2) 69.41 ± 7.28 62.98 ± 3.12 59.17 ± 8.36 67.17 ± 2.70 55.67 ± 4.61 65.02 ± 2.00
S vs. N (ws =2) 57.84 ± 4.31 65.78 ± 8.22 56.74 ± 1.70 63.77 ± 2.90 58.2 ± 8.24 74.26 ± 3.80
Context-Aware (ws = 2) 83.65 ± 2.31 78.12 ± 2.73 81.28 ± 2.54 78.23 ± 4.53 80.37 ± 4.07 77.79 ± 0.09
S vs. S (ws = 4) 61.76 ± 5.12 66.38 ± 2.29 54.68 ± 1.53 67.37 ± 1.11 54.71 ± 3.00 66.18 ± 2.34
S vs. N (ws = 4) 55.38 ± 1.99 68.311.88 59.23 ± 8.03 70.6 ± 4.85 53.31 ± 1.36 66.59 ± 1.57
Context-Aware (ws = 4) 81.12 ± 3.97 74.05 ± 5.465 80.67 ± 10.36 75.65 ± 5.54 75.30 ± 15.61 76.55 ± 7.43

problematic in general, but for the specific case of GraphCL, this point is of some urgency as
such small-scale datasets are part of standard GCL evaluation [97, 117]. However, we note
that self-supervised frameworks that do not rely on negative samples, such as BYOL[122] and
SimSiam[121], can be used as an appropriate alternative for binary datasets. Such frameworks
maximize similarity between sample augmentations and avoid degenerate solutions via stop-
gradient operations and exponentially moving average target networks.

3.3.4 Summary of Proposed Evaluation Practices

We summarize the practices that we hope will be adopted in future graph CL research:

• Given that DAGA can destroy task-relevant information and harm the model’s ability
to learn discriminative representations, there is need for designing context-aware graph
augmentations (Sec. 3.4).

• Randomly initialized, untrained GNNs have strong inductive bias and should be reported
during evaluation.

• Small, binary graph datasets are inappropriate for evaluating GCL frameworks.

• GCL frameworks should be comprehensively evaluated using metrics beyond accuracy
to assess representation quality.

3.4 Benefits & Design of Task-Aware Augmentations
In this section, we exemplify the benefits of adhering to key VCL principles by defining a broad
strategy for finding task-aware augmentations in scenarios where prior domain knowledge is

19

(a) Original (b) Natural Language Space (c) Graph Space

Figure 3.3: Augmentations for Document Classification. Documents are represented as
co-occurrence graphs [2, 3], where words are treated as nodes with word2vec embeddings, and
edges indicate co-occurrence in a sliding windows [4]. As shown in (b), we perform synonym
replacement (purple) and random word insertion (green) to augment sentences without losing
task-relevant information [5]. In (c), we show random node (word) deletion (red). Our results
show that natural language space augmentations improve classification accuracy substantially
over baseline augmentations.

available. We note the goal of this strategy is not to resolve problematic data augmentations
in GCL. Instead, we use the proposed strategy to help elucidate the benefits of abiding by
VCL principles in two careful case studies.

Augmentation strategy: For many graph-based representation learning tasks, structured
data, such as documents [2], propagation patterns [83], molecules [95], maps [144], and point-
clouds [127], are first abstracted as graphs via a deterministic process before task-specific
learning can begin. In this practical setting, our idea is to leverage knowledge pertaining
to the original, structured data to find augmentations that will, in the abstracted graph
space, (i) preserve task-relevant information, (ii) break view symmetry, and (iii) introduce
semantically meaningful invariance. In our first case study, which focuses on a graph-based
document classification task, we achieve this goal by exploiting existing natural language
augmentations [5] and directly perturbing the raw input before its graph is constructed.
However, when given a su”ciently complex graph construction process, it can be unclear
if augmentations in the original space will induce useful invariances or retain task-relevant
information in the abstracted graph space. In our second case study, which focuses on image
classification using super-pixel nearest-neighbor graphs, we encounter this setting and propose
to avoid destruction of task-relevant information by deliberately introducing task-irrelevant
information. We then use augmentations designed to induce invariance to such irrelevant
information.

20

3.4.1 Case Study 1: Document Classification

We first focus on a binary graph-based document classification task. As shown by prior
work [89], graph-based representations are e!ective at capturing not only the content but also
the structure of a document, leading to improved classification performance in this setting.
Here, our goal is to demonstrate adhering to VCL principles by using TAAs is needed to
improve task performance.

Dataset & Task. The task is to classify movie reviews and plot summaries according to
their subjectivity. Following [2], we convert the Subjectivity document dataset [145] (10k
samples) into co-occurrence graphs, where nodes represent words, edges indicate that two
words have co-occurred within the same window (e.g. window size 2 and 4), and node features
are word2vec [4] embeddings. An example of this conversion is shown in Fig. 3.3a. Note that
we only use positive-view-based self-supervised learning frameworks (e.g., SimSiam, BYOL)
because this is a binary classification task (see Sec 3.3.3). Accuracy is computed using a kNN
classifier.

Setup of GNN models. We use a Message Passing Attention Network [2] as the encoder,
and a 2-layer MLP as the predictor. The representation dimension is 64, and models are
trained using Adam [146] with LR=5e-4. Additional training details are given in Appendix A.2.
We report results with the original GCN layer used by [2], as well as with GraphSAGE [28]
and GIN [27] layers replacing it.

Domain-Agnostic Graph Augmentations. We conduct an informal grid search to select
which DAGAs and augmentation strengths to use. Among node, edge, and subgraph dropping
at {5%, 10%, 20%} of text length, we find generating both views using subgraph dropping
(10%) performs the best. Generating one view with subgraph dropping (10%) and the other
with node-dropping (10%) performs second best. We evaluate both strategies.

Task-Aware Augmentations. Recently, Wei et al. [5] proposed several intuitive augmenta-
tions for use in natural language processing, namely: synonym replacement, random word
insertion, random word swapping and random word deletion, where the augmentation strength
is determined by the sentence length. (See Fig. 3.3b for an example.) By design, these
augmentations introduce invariances that are useful to downstream tasks (e.g., invariance to
the occasional dropped word), preserve task-relevant information, and break view symmetry
in the natural language modality. Due to a co-occurrence based construction process, changes
in the underlying document will manifest in the corresponding graph, so it is likely that
augmentations remain e!ective for the abstracted space.

Results. As shown in Table 3.4, task-relevant, natural language augmentations perform
considerably better (up to +20%) than domain agnostic graph augmentations for both window

21

sizes. Notably, TAAs are necessary to significantly improve performance over an untrained
baseline, indicating that adhering to key principles of VCL is indeed beneficial.

Potential Graph Space Augmentations. While natural language augmentations modify
samples prior to the graph construction process, it is easy to see that they can be converted
into graph augmentations, e!ectively infusing DAGAs with domain knowledge on how to
perturb co-occurence graphs. Specifically, synonym replacement is equivalent to replacing
node features of the selected word (node) with the closest word2vec embedding. Random
insertion can be approximated in the co-occurence graph by (i) creating a new node with a
randomly selected word2vec embedding and (ii) duplicating the connections of an existing
node. Random deletion can be represented by (i) randomly removing a node and (ii) rewiring
the modified graph to connect neighbors of the removed node. Random swap is equivalent to
swapping the features of two nodes. We highlight that domain-agnostic subgraph and node
dropping do not rewire the co-occurence graph. Thus, it is unclear what invariance to these
augmentations represents in the original data modality. In Appendix A.2, we show that
graph-space and document-space synonym replacement perform comparably, but leave the
evaluation of other converted graph space augmentations to future work.

In this case study, we were able directly leverage augmentations in the original modality,
which are known to preserve task-relevant information and induce useful invariances, to
significantly outperform DAGAs. The next case study focuses on a more challenging setting
where augmentations in the original modality are not immediately amenable to GCL due to
a complex graph construction process and GNN architectural invariances.

3.4.2 Case Study 2: Super-pixel Classification

Our second case study is based on super-pixel MNIST classification, a standard benchmark
for evaluating GNN performance [86, 147]. Here, we pursue an alternative strategy for task-
aware augmentation where augmentations must induce invariance to deliberately irrelevant
information (e.g., color for digit classification).

Dataset & Task. We follow the established protocols in [147, 86] to create super-pixel
representations of MNIST, where each image is represented as a k-nearest neighbors graph
between super-pixels (homogeneous patches of intensity). Nodes map to super-pixels, node
features are super-pixel intensity and position, and edges are connections to k neighbors. An
example is shown in Fig. 3.4.

Setup of GNN models. The following architecture is used for experiments. The encoder
is 5-layer GIN architecture similar to [1] and [86]. The projector is a 2-layer MLP and there
is no predictor. Models are trained for 80 epochs, using Adam [146] with LR of 1e-3, and

22

(a) Original (b) Node Dropping (c) Colorizing

Figure 3.4: Augmentations for Super-pixel Classification. Node dropping alters graph
topology and it is unclear if task-relevant information is preserved. Colorizing preserves
task-relevant information by only perturbing node features.

Table 3.5: Super-pixel Classification. KNN Accuracy after unsupervised training with
Node Dropping or context aware graph augmentations (Colorize) is reported. Context aware
augmentations improve performance. Accuracy of randomly initialized model is 37.79 ± 0.03.

Aug. SimSiam Acc. SimCLR Acc. BYOL Acc.

Node Dropping (20%) 66.30 ± 0.33 68.56 ± 0.16 65.32 ± 0.95

Node Dropping (30%) 61.30 ± 0.48 68.07 ± 0.37 61.87 ± 1.03
Colorize 68.95 ± 1.20 73.67 ± 0.10 64.42 ± 2.385

the representation dimension is set to 110. The models are trained using SimSiam [121],
BYOL [122], and SimCLR [54]. We give more training details in section A.3. While composing
augmentations is known to improve performance on vision tasks, we avoid it here in order to
fairly compare to graph baselines, which only consider a single augmentation.

Domain-Agnostic Graph Augmentations. Following [1], we apply random node dropping
at 20% of the graph size to obtain both samples in the positive pair.

Task-Aware Augmentations. While geometric image augmentations [54], such as horizontal
flipping and rotating, generally preserve task-relevant information and introduce semantically
meaningful invariance, they cannot break view symmetry in GCL frameworks as GNNs are
permutation invariant. Therefore, the representations of a pair of flipped images will be similar
as their corresponding super-pixel graph representations are equivalent up to node reordering.
On the other hand, augmentations such as cropping may result in qualitatively di!erent
super-pixel graphs. Here, it is unclear if the super-pixel graph obtained after augmentation
preserves task-relevant information, even if cropping is information preserving with respect
to the original image. Therefore, it is not trivial to identify successful augmentations in the
abstracted domain that will also be successful in graph space.

Given the di”culty of identifying augmentations that perturb super-pixel graph topology
but also preserve task-relevant information, we focus on image space augmentations that

23

lead to modified node features in the super-pixel graph. Specifically, we select random
colorization as the TAA as it (i) preserves task-relevant information as color is not relevant
property when classifying digits, (ii) breaks view symmetry because the node features of
augmented samples are di!erent and (iii) introduces a harmless invariance to colorization.
We briefly note that augmentations are generally selected to introduce invariances that are
useful to the downstream task. For example, cropping results in occlusion invariance, which
is useful for classification tasks where objects are often partially covered [102]. Here, we take
a complementary approach where augmentations introduce harmless information (color) and
the model learns to ignore it. This can be a useful strategy when it is di”cult to clearly
identify potentially useful invariances for a given task.

Results. In Table 3.5, we observe that training with an information-preserving, TAA
(colorizing) improves accuracy for both SimSiam and SimCLR. While BYOL generally
performs worse than SimSiam and SimCLR, colorizing is still within standard deviation of
DAGAs. Composing augmentations with colorizing would likely further improve performance,
but this investigation is left to future work. This confirms that learning invariance to irrelevant
information, as determined by knowledge of the original data modality, is indeed a viable
strategy for creating TAAs. Moreover, we note that randomly-initialized models have 37.79%
accuracy, indicating that super-pixel data can serve as a su”ciently complex benchmark for
future GCL evaluation [86] (see Appendix A.3 for a”nity and representational similarity
analysis).

3.5 Conclusion
In this work, we discuss limitations in the evaluation and design of existing instance-
discrimination GCL frameworks, and introduce new improved practices. In two case studies,
we show the benefits of adhering to these practices, particularly the benefits using task-
aware augmentations. First, through our analysis, we show that domain-agnostic graph
augmentations do not preserve task-relevant information and lead to weakly discriminative
representations. We then demonstrate that benchmark graph classification datasets are not
appropriate for evaluating GCL frameworks by contextualizing recent theoretical work in
VCL. Indeed, we show that the strong inductive bias of randomly initialized, untrained GNNs
obfuscates GCL framework ine”ciencies. While we acknowledge the community is moving
toward larger and more extensive benchmarks [86], we emphasize that it is fundamentally
incorrect to continue evaluating GCL on legacy graph classification benchmarks. Furthermore,
on two case studies with practically complex tasks, we show how to use domain knowledge to
perform information-preserving, task-aware augmentation and achieve significant improve-

24

ments over training with domain-agnostic graph augmentations. In summary, GCL is an
exciting new direction in unsupervised graph representation learning and our work can inform
the evaluation of new methods as well as help practitioners design task-aware augmentations.

25

CHAPTER 4

Analyzing Data Centric Properties for Graph
Contrastive Learning

4.1 Introduction
In the preceding chapter, we empirically identified several limitations in popular augmentation
strategies and proposed better practices. In this chapter, we take a complementary lens that
allows us to formally analyze properties of augmentations through a rigorous generalization
analysis and flexible synthetic data generating process. Together, these chapters allow Part I to
provide considerable insights into learning more powerful graph representations and accessing
the benefits beyond accuracy, e.g., robustness [57, 58], transferability [60, 95], and semantic
consistency [59], that self-supervised learning (SSL) [54, 121, 148, 55, 56, 59, 124, 114, 123]
has driven in visual representation learning

Ineed, this impressive empirical success has motivated a surge of e!orts that seek to
gain insights into SSL’s behavior [119, 7, 99, 100, 101, 8, 102, 122] or adapt successful
frameworks to di!erent modalities, including graph data [1, 51, 52, 149, 14]. Notably, many
analyses of SSL have converged upon the following data-centric properties as critical to its
success: (i) augmentations should induce invariance to task-irrelevant attributes, as to better
reflect the underlying data generation process and improve generalizability; (ii) samples
(and corresponding augmentations) from di!erent underlying classes should be separable in
some latent space, as to ensure a high-performing classifier is realizable; and (iii) labels of
augmented samples should be recoverable from the natural sample using which they were
generated [99, 102, 120] so that representations are semantically consistent for downstream

The material in this chapter is derived from the paper “Analyzing Data-Centric Properties for Graph
Contrastive Learning” [80], which appeared in the proceedings of NeurIPS 2022. Code can be found here.

26

https://github.com/pujacomputes/datapropsgraphSSL

tasks. Due to the continuous representation of natural images and well-designed augmentation
strategies, these properties are indeed aligned with standard visual SSL practices [150].

However, despite the growing popularity of SSL for graph representation learning, it
appears unlikely that the above properties are supported for non-Euclidean, discrete data.
Indeed, the design of recoverable graph data augmentation [97, 112, 117] remains an open
research area because is it di”cult to determine prima facie what changes to a graph’s
topology or node features will preserve semantics. Moreover, as graphs are often abstract
representations of structured data, it is also unclear what invariances are relevant to the
downstream task. The assumption of a separable latent space may also be violated as
intermediate points in this latent space may be meaningless in the discrete, structured input
space. In contrast to natural image data, the systematic evaluation of these properties for
graph SSL is di”cult as it must accommodate both discrete and structured data.

Our Work. Better understanding the relationship between graph SSL practices and the
aforementioned properties can help explain the behavior of existing frameworks and inform
the design of new ones. Therefore, in this work, we take the first step by analyzing commonly
used generic graph augmentations (GGAs) and designing useful tools that enable probing of
these properties, including a theoretical framework and a synthetic data generation process
that helps disentangle the e!ects of unrecoverable augmentations from performance. Our
contributions can be summarized as follows:
Sec. 4.3: Analysis of Generalization and Separability. We provide the first generaliza-
tion error bound for graph CL when using GGAs, demonstrating that GGAs can induce a
performance-separability trade-o! that is determined by underlying dataset properties (see
Figure 4.1).
Sec. 4.4.1: Missing Invariance on Benchmark Datasets. On standard benchmarks, we
show that models trained with GGAs have marginal improvements in accuracy and induce
limited task-relevant invariance, at best, when compared to untrained encoders. We thus
reveal a fundamental misalignment between the objectives and practical behavior of graph
CL (see Figure 4.3).
Sec. 4.4.2: Synthetic Data Generation Process. We propose a synthetic data generation
process that allows for control over augmentation recoverability and dataset separability (see
Figure 4.2). Using this process, we validate our theoretical observations and demonstrate
that recently proposed automated and implicit augmentation methods struggle to induce
task-relevant invariances (see Figure 4.4).

27

4.2 Background & Related Work
In this section, we briefly discuss existing graph SSL paradigms. (Please see App. B.7
for additional discussion.) We then discuss the motivation behind data-centric properties
(task-relevant invariance, separability and recoverabilty) central to this work.

Self-Supervised Graph Representation Learning. Recent advancements in rep-
resentation learning have been driven by the SSL paradigm, where the goal is to ensure
representations have high similarity between positive views of a sample and high dissimilarity
between negative views. Existing SSL frameworks can be broadly categorized based on the
mechanism adopted for enforcing this consistency: contrastive learning (CL) frameworks
[54, 114, 124, 1, 97, 117, 53], such as GraphCL[1], use the InfoNCE loss; approaches that
rely only on positive pairs, such as SimSiam [121] and BGRL [52] use Siamese architectures
with stop gradient [121] and asymmetric branches [122] respectively; SpecCL [7] uses a
spectral clustering loss (SpecLoss) to enforce consistency; others attempt to directly reduce
redundancy between views [148, 151]. Despite these di!erences, all methods rely upon data
augmentation to generate positive views, which are assumed to share semantics. Generic graph
augmentations (GGAs) [1] are a popular strategy and assume limited changes to a graph’s
node features or topology are unlikely to alter its label. GGAs include random node dropping,
edge perturbation, masking node attributes and sampling subgraphs. Other strategies include
using di!usion matrices [51], GGAs with a non-uniform prior, automated methods which
rely upon bi-level optimization [97] or adversarial optimization [117], and implicit methods,
such as SimGRACE [53], which use weight-space perturbations as augmentations. Here, we
primarily focus on GGAs due to their popularity, simplicity and e!ectiveness. Please see
App. B.7 for additional discussion about augmentation paradigms.

Theoretical Analsyis of SSL. Several di!erent perspectives have recently been used to
successfully analyze SSL’s behavior, including learning theory [7, 119, 152], causality [101, 100],
information theory [120], and loss landscapes [153, 154, 155, 156]. Many of these analyses
assume, either implicitly [101, 152] or explicitly [7, 150, 157, 158], the existence of a latent
space that is invariant to augmentation functions and supports the properties of recoverability
and separability (also see Figure 4.1).

Invariance to Augmentations: Producing similar representations for positive views, i.e.,
augmentations, induces invariance to the corresponding transformation function. Indeed,
if augmentations are related by properties that are not relevant to the downstream task,
representations will become invariant to this relationship over the course of SSL training and
generalization will improve [159, 99]. Conversely, however, if augmentations induce invariance
to relevant properties, then representations will fail to represent this information and are

28

likely to lose task performance (e.g, color invariance is harmful when classifying di!erent
Labradors) [102, 79]. This latter point is often ignored by the theoretical analyses mentioned
above. We note Tian et al.’s information theoretic framework [99] is a notable exception to
this critique; we discuss the limitations of their results in App. B.3.

Recoverability and Separability: These properties state that in the latent space which
instantiates the data generation process, two augmentations of a sample are close to each
other (e.g., a clear and blurry dog) and unrelated points (e.g., dogs and cats) are su”ciently
separated from each other. It is often implicitly assumed that only task-relevant augmentations
are allowed [7, 150]. While originally proposed for manifolds [157], both recoverability and
separability have been recently converted to graph connectivity properties [7] and verified
empirically on modern deep learning methods [150]. Specifically, recoverability and separability
can be used to bound generalization error on unseen data and we demonstrate how this can
be done for graph CL in Sec. 4.3.

Notations. Let X be a natural dataset with r di!erent classes. Our use of word
natural implies the samples in this dataset were collected via a natural sensing process
(e.g., molecules from wet-lab experiments or scene graphs from images). We use A(.|g) to
denote the distribution of augmentations for the sample g ↔ X . Here, A(g|g) represents
the probability of generating a particular augmentation g, and X := ⇐x↑PX

A(·|g) is the
set of all samples transformed via our set of augmentation functions. Let f : X → Rd be a
feature extractor, where f(x) can be used for downstream tasks. Unless otherwise noted,
let g be a natural (graph) sample from X , A(·|·) be some GGA, and g ⇒ A(·|g) be an
augmented graph generated using a given GGA. Vg and Eg correspond, respectively, to the
node and edge sets of g. We note our generalization analysis will specifically focus on the
recently proposed contrastive loss by HaoChen et al. [7], called SpecLoss (L(f)), which
we define as follows: let g ⇒ A(·|g), g+ ⇒ A(·|g), given g ↔ X , and g↓ ⇒ A(·|g↗), given
g↗ ⇒ PX ⇑ g↗ ↗= g. Then, for the positive/negative pairs (g, g+)/(g, g↓), SpecLoss is: L(f)
= ≃2 · Eg,g+

[
f(g)↘

f(g+)
]

+ Eg,g→

[(
f(g)↘

f(g↓)
)2]

. In a contemporary work, Saunshi et
al. [119, 159] developed a generalization analysis for general contrastive loss functionals,
including SpecLoss. Our analysis has a similar algorithmic flow as Saunshi et al.’s and hence
the takeaways from our work can be easily extended for other contrastive methods as well.
We provide additional discussion of this extension in App. B.1.

4.3 Generalization Bounds for CL with GGA
As discussed above, recent analyses have found that SSL generalization error can be bounded
under the assumptions of invariance to relevant augmentations, recoverability, and separability.

29

Figure 4.1: Illustrating data-centric properties forming the core of our assumptions.
Our generalization analysis (Sec. 4.3) relies upon several data-centric properties, namely
recoverability, separability, and frequency of inconsistent samples. Here, we illustrate these
properties via a figure. (i) Separability: Samples from di!erent classes should be separable,
as illustrated by the existence of separate manifolds for di!erent classes. This property
helps assume the existence of a classifier h that can classify natural samples with low error.
(ii) Recoverability: Labels of augmented samples should be recoverable from the original
samples from which they were generated. This entails that augmentations generated from the
same original samples are expected to be closer in latent space than two arbitrary samples,
which will likely correspond to di!erent classes. This property helps assume a constraint on
the classifier h that it must also classify the augmentations of a sample to the same class
as that of the sample. (iii) Inconsistent Samples: While the likelihood of generating
augmentations that alter class semantics is low for image data, this if often note the case
in graphs, especially when using generic graph augmentations. We refer to augmentations
that can be generated from original samples belonging to di!erent classes as inconsistent,
and demonstrate that graph edit distance can be used to identify such samples. Overall,
our theory shows inconsistent samples decrease separability and recoverability, harming
generalization. (Figure inspired from Chung et al. [6] and HaoChen et al. [7].)

30

In this section, we demonstrate how GGAs influence these properties by deriving a generaliza-
tion bound tailored for graph data. Notably, this bound allows us to demonstrate conditions
where using GGAs results in low separability and recoverability, motivating the need for
augmentations that induce task-relevant invariances that go beyond generic perturbative
graph transformations.

Key Insight: Our main idea for the following analysis is that GGAs can be instantiated in
a general manner as a composition of graph edit operations. This allows us to derive a unifying
assumption related to recoverability and separability in terms of the graph edit distance
(GED) between samples. Moreover, because GED amongst samples is a property intrinsic
to the dataset, we can now discuss how the tightness of a SSL generalization error bound
(SpecLoss’s, specifically) will change as a function of GED between samples of underlying
classes and augmentation strength.

We begin by defining GED and explaining how GGAs can be represented using graph edit
operators.

Definition 1 (Graph Edit Distance). Let the elementary graph operators comprise the
set of graph edits: these include node insertion, node deletion, edge deletion, edge addi-
tion, and an additional categorical feature replacement operator. Then, GED (g1, g2) =
min(e1,...,ek)↑P(g1,g2)

∑k
i=1 c (ei), where P (g1, g2) is the set of paths (series of edit operations)

that transforms graph g1 to be isomorphic to graph g2. Here, ei is i-th edit operation in the
path, and c(ei) is the cost for performing the edit.

As shown in Table 4.1, frequently used GGA transforms can be easily decomposed using
standard graph edit operators described in Def. 1. For example, assuming each operator has
a unit cost, the edge perturbation augmentation can be seen as applying the minimum cost
path consisting of edge deletion and edge addition operations to obtain g from g. Further,
augmentation strength and the set of possible augmentations for a given natural sample can
also be expressed in terms of GED:

Table 4.1: Generic Graph Augmentations vs. Graph Edit Operators. GGAs can be
straightforwardly expressed using graph edit operators. Please see section B.4 for a detailed
discussion.

Augmentations Graph Edit Operators
Node Dropping Node Deletion
Edge Perturbation Edge Deletion, Edge Addition
Categorical Attribute Masking Feature Masking Operator
Sub-graph Sampling Node Deletions

31

Lemma 1. Allowable augmentations can be expressed using GED. Let ς represent
augmentation strength or the fraction of the graph that GGAs may modify. Then, φ ↔
{⇓ς|Vg|⇔, ⇓ς|Eg|⇔} represents the number of discrete, allowable modifications for the specified
GGA, so GED(g, g) ↖ φ. Correspondingly, we have g ↔ A(g) ↙ GED(g, g) ↖ φ.

For example, consider a graph g ⇒ A(·|g), generated via node dropping. Then, g contains
1 ≃ φ nodes and the minimum cost path to transform g to g contains only φ “node deletion”
operations. Further, all augmentations generated from g will have 1 ≃ φ nodes and thus
have GED(g, g) ↖ φ. In section B.4, we prove the above statement and demonstrate how
to approximate |A(g)| (e.g., the set of allowable augmentations for a given natural sample)
using a combinatorial, counting procedure that is dependent on φ. Because GGAs are
applied randomly, note that the probability of a generating a particular augmentation is
A(g|g) ∝ 1

|A(g)| . Given these definitions, we now derive a unifying assumption in terms of
GED between samples. We begin by formally introducing the separability and recoverability
assumptions, focusing on the recently proposed, unified version [7]:

Assumption 1 (Separability plus Recoverability Assumption, (Assm. 3.5 in [7])). Let g ↔ X
and y(g) be its label, and g ⇒ A(·|g). Assume that there exists a classifier h, such that
h(g) = y(g) with probability at least 1 ≃ ε. We refer to ε as the error of h.

See Figure 4.1 a visualization explaining this assumption. Intuitively, Assm. 1 states that
there must exist a classifier h that is able to associate a sample’s label with its augmentations,
hence enabling recoverability, i.e., representations of augmentations are close to each other.
Meanwhile, by ensuring augmentations of samples from a class with label “A” are classified
as “A” and from a class with label “B” are classified as “B”, the assumption simultaneously
enables separability, i.e., representations of samples from di!erent classes should be dissimilar.
As we will see, the generalization bound will be a function of ε, the probability that a classifier
satisfying Assm. 1 associates augmentations of a class’s samples with another class. As ε

grows larger, the generalization error bound becomes less tight. Therefore, it is important to
understand how the choice of augmentation and augmentation strength (ς) can influence the
error of h. We show one can also understand ε as a trade-o! between inter-class GED of
samples and augmentation strength.

Intuitively, h will incur error on augmented samples that can be generated from a set of
natural samples that belong to di!erent underlying classes, as it is unclear how these samples
should be embedded in a latent space. We now formally define such samples. First, using
Lemma 1, we can determine if two augmentations could have been generated from the same
sample.

32

Corollary 2. (Co-occuring augmentations.) Let g ↔ X and g, g↗ ↔ X . Then, g ⇒ A(g)⇑g↗ ⇒
A(g) ↙ GED(g, g↗) ↖ 2φ, where φ = min{⇓ς|Vg|⇔, ⇓ς|Eg|⇔ ⇓ς|Vg|⇔, ⇓ς|Eg|⇔}.

Given the above result, we now define inconsistent samples as follows.

Definition 3 (Inconsistent Samples). Let g ↔ X , and y : X → r be a labeling function.
Further, let X in = {g|g ↔ X ⇑ GED(g, g) ↖ φ} be the set of natural samples that may have
generated g and Y

≃
in = {y(g)|g ↔ X in} be the set of unique labels. If g is an inconsistent

sample, |Y ≃
in| > 1.

Essentially, if two augmentations co-occur (see Corr. 2) from two or more di”erent natural
samples, such that the samples do not share the same underlying label, we refer to such
samples as inconsistent (also see Figure 4.1). Now, we assume the behavior of h on inconsistent
samples is fixed such that h(g) = y, for some fixed y ↔ Y

≃
in. This allows us to use h to

induce a r-way partition over X , such that each sample, g, belongs to a partition, Sh(g).
Further, because h incurs error on inconsistent samples, ε can be lower bounded by the ratio
of inconsistent to total samples. To this end, we use GED to identify inconsistent samples by
identifying disagreement amongst partitions as follows.

Lemma 2 (Using GED to identify inconsistent samples). Let g, g↗ ↔ X and GED(g, g↗) ↖ 2φ

such that g ↔ Si ⇑ g↗ ↔ Sj and i ↗= j, where partitions are induced by h. Then, at least one
g̃ ↔ {g, g↗} must be an inconsistent sample.

Note that the above lemma does not rely on ground-truth label information to identify
inconsistent samples, but only GED from natural samples. Given that the error on inconsistent
samples is irreducible, as it is unclear which y ↔ Yin is correct, we can lower bound the error
of h as follows:

Corollary 4 (Error bound due to Inconsistent Samples). The error of h can be lower-bounded
as

ε ′
∑r

i

∑
g↑Si,g↑ /↑Si

1(GED(g, g↗) ↖ 2φ)
|X | . (4.1)

Here, the number of inconsistent samples can be approximated via
∑r

i

∑
g↑Si,g↑ /↑Si

1(GED(g, g↗) ↖ 2φ) and |X | can be estimated using a combinatorial counting
procedure. Thus, the above corollary reflects the fact that error on inconsistent samples
cannot be reduced due to label un-identifiability.

As mentioned before, the generalization bound by HaoChen et al. [7] for SpecLoss is a
function of ε. Deriving a lower bound on ε will allow us to comment exactly when error is
likely to become vacuous. To this end, we need a final definition of partition dissimilarity
that induces a notion of clustering of similar datapoints in our analysis.

33

Definition 5 (Partition Dissimilarity). Let S1, . . . , Sr be an r-way partition of X . Then, we
define the partition dissimilarity for a given partition as

↼X (Si) =
∑

g↑S,g↑ /↑S 1(GED(g, g↗) ↖ 2φ)
∑

g↑S |{g↗|GED(g, g↗) ↖ 2φ}| . (4.2)

Intuitively, we use the partitions induced by h as a proxy for class labels and co-occurrence
as a notion of similarity (see Lemma 1). Then, the quality of the partition is determined by
the ratio of the samples that belong to a given partition, but are also similar to samples from
other partitions, to the total number of samples that are close to the partition. Note that
partition dissimilarity is an often studied term in clustering problem and a general version of
conductance, the property used for spectral clustering on a similarity graph which forms the
basis of SpecLoss [7].

We are now ready to state our main result that re-derives the generalization error of
SpecLoss in terms of GGAs, using the definitions of co-occurring pairs (Def. 2) and dissimilar
partitions (Def. 5). Notably, we will decompose bound in terms of the number of co-
occurring augmentation-pairs within the same partition and the number of pairs that cross
partitions, which are defined respectively as, ↽ = ∑

g↑S↓,g↑↑S↓ 1(GED(g, g↗) ↖ 2φ), and
µ = ∑

g↑S↓,g↑ /↑S↓ 1(GED(g, g↗) ↖ 2φ).

Theorem 6 (Generalization Bound for SpecLoss with GGA). Assume the representation
dimension k ′ 2r and Assm. 4 holds for ε ′ 0. Let F be a hypothesis class containing a
minimizer f

≃
pop of SpecLoss, L(f), which produces a ⇓k/2⇔-way partition of X denoted by {S≃}.

Let its most dissimilar partition have dissimilarity denoted by ⇀⇐k/2⇒ = mini ↼(Si ↔ {S≃}).
Then, f

≃
pop has a generalization error bounded as:

E(f ≃
pop) ↖ Õ

(
ε/⇀

2
⇐k/2⇒

)
= Õ

(
r

|X |

[

µ + 2↽ + ↽
2

µ

])

, (4.3)

Discussion. By deriving expressions for ε and ↼ as well as equivalently representing the
original bound in terms of the more intuitive expressions, µ and ↽, we can gain insights into
several empirical and intuitive observations in graph CL. We will study these points further
in Sec. 4.4.2 via a synthetic dataset that was motivated from the analysis above and allows
more fine-grained evaluation.

Invariance and Relevance of Augmentations. GGAs assume that limited changes to
a graph’s structure will not alter its semantics and aggressively increasing augmentation
strength will eventually harm generalization. However, through our analysis, we see that

34

the generalization error bound is non-decreasing with respect to φ when ω2

µ ↖ µ, i.e., the
number of cross partition pairs dominates the expression, as this ratio depends on φ. Indeed,
for some φ

↗ = φ + ⇁, where ⇁ > 0, µε↑ = ∑
g↑Si,g↑ /↑Si

1(GED(g, g↗) ↖ 2φ) + ∑
g↑Si,g↑ /↑Si

1(2φ ↖
GED(g, g↗) ↖ 2φ + ⇁) = µε + ∑

g↑Si,g↑ /↑Si
1(2φ ↖ GED(g, g↗)) ↖ 2φ + ⇁. Thus, the number

of cross partitions is always non-decreasing with respect to φ. Thus, we clearly see that
when augmentations are agnostic of the task, their corresponding invariances yield poor
representations with vacuous generalization.

Separability. Our analysis also demonstrates that the success of a particular augmentation
strength is dependent on the GED between samples belonging to di!erent classes. Given
that inter-class GED is an intrinsic dataset property that proxies dataset separability, this
implies that there are combinations of datasets and augmentation strengths for which GGAs
will necessarily incur vacuous bounds, even for low augmentation strengths. In such settings,
augmentations that improve recoverability and induce task-relevant invariances are necessary
to improve downstream task performance. While many works have conjectured that task-
relevant graph augmentations will improve performance, ours is the first to demonstrate
why they are needed. Indeed, in Sec. 4.4.1, we find that GGAs are unable to induce such
invariances on benchmark datasets.

Recoverability. As shown in Thm. 6, better recoverability will improve the tightness of
the generalization bound. However, we see that from Coll. 4, that recoverability will only
decrease as φ increases and as discussed above, there exist datasets where GGAs are not
amenable. This further motivates the need for task-relevant augmentations so that the e!ects
of poor augmentations are disentangled from method performance.

4.4 Experiments
In this section, we conduct experiments using both standard benchmarks (Sec. 4.4.1) and
our proposed synthetic dataset generation process (Sec. 4.4.2) to empirically validate our
theoretical conclusions.

4.4.1 A Closer Look at the E!ectiveness of Invariance to GGA

In Sec. 4.3, we demonstrated GGAs can harm generalization by influencing recoverability
and separability. Though computing these properties directly is intractable on benchmark
datasets, our analysis for graph datasets and prior works on vision [100, 101, 102] show
that if augmentations induce invariances that are task-relevant, downstream error should
reduce. This corresponds to meaningfully related samples having similar representations

35

(recoverable) and unrelated samples having dissimilar representations (separable). However,
by using augmentations that perturb topology or features constrained to a small fraction of
the original graph, existing graph SSL methods assume such perturbations are relevant to
the downstream task. If this is the case, our analysis suggests we should see improvement in
performance with increased invariance; else, we will witness no tangible correlation.
Experimental Setup: We evaluate seven graph SSL methods on seven, popular benchmark
datasets. Specifically, we use the following representative algorithms: (i) GraphCL [1], a
popular and e!ective graph CL method; (ii) GAE, Graph Autoencoder [160] that uses a
reconstruction cost to learn representations; (iii) Augmentation-Augmented Autoencoder
[161], which we adapt to graphs to create the Augmentation Augmented Graph Autoencoder
(AAGAE) that minimizes the reconstruction error between the reconstruction for an aug-
mented sample and the original; (iv) SpecCL, which uses the SpecLoss [7] for contrastive
training; (v) SimSiam [121], a positive-sample-only framework that uses stop gradient; (vi)
BYOL [122], which avoids negatives samples by using asymmetric branches alongside a stop
gradient operation; and (vii) Untrained representations, which have been observed to be
surprisingly competitive baselines for graph-based learning [160, 48, 117, 79]. To the best of
our knowledge, ours is the first work to evaluate AAGAE and SpecCL for graph SSL. We use
the same augmentations and encoder architecture as GraphCL. We add a straight-through
estimator [162] to GAE/AAGAE’s decoder for better training. See section B.6 for further
details.

GGAs fail to induce task-relevant invariance on standard benchmarks. To
measure whether augmentations have induced invariance, we measure recoverability using
the representational similarity measures introduced by Wang and Isola [8]. Called Alignment
and Uniformity, the two measures are a generalized version of the InfoNCE loss and also
encompass other contrastive losses, such as SpecLoss. Formally, alignment is defined as:
Lalign (f ; A) ↭ E(g,g↑)⇑A(·|g) [∞f(g) ≃ f(g↗)∞2

2] . To determine if the invariance is task-relevant,
we determine if improved alignment is indicative of improved performance with respect to an
untrained baseline model.

Results. Fig. 4.3 shows the di!erence in invariance and kNN with respect to an untrained
model’s accuracy, averaged over 10 seeds. As can be seen, there is not noticeable correlation
between invariance and accuracy, especially with respect to the untrained baseline. Notably,
on the Reddit dataset, all methods have improved invariance, but do not have significantly
better kNN accuracy. Overall, this experiment demonstrates that learning invariance to GGAs
is both di”cult and often unrelated to task performance, clearly indicating the GGAs struggle
to induce task-relevant invariances and do not support recoverable, separable latent spaces
needed for good generalization. Moreover, given that GGAs have unknown recoverability on

36

Figure 4.2: Synthetic Dataset Generation. A class-specific motif completely determines
the label, and is therefore considered “content”. To vary the amount of style, the size of
the background tree graph is a ratio of the number of “content” nodes. Our dataset goes
beyond binary benchmarks and allows for content-aware augmentations, a critical component
to understanding graph SSL.

standard datasets, and that trained models were not able to su”ciently outperform untrained
baselines, there is need for new datasets where it is possible to go beyond GGA and where
we can better understand the merits of di!erent graph SSL paradigms.

4.4.2 Evaluating Graph SSL Methods in a Controlled Setting

Our analysis indicates the role played by recoverability and separability under task-relevant
invariances dramatically influences generalization performance. However, given our results
that GGAs do not enable these properties and the fact that task-relevance is di”cult to
define on existing benchmark datasets, empirical verification of our claims requires a dataset
that directly enables control over the data generation process. We thus introduce a synthetic
dataset that allows us to illustrate how invariance and class separability must be jointly
considered when designing augmentations.

4.4.2.1 Synthetic Data Generation Process

Given that standard benchmark datasets and augmentation practices are uninformative when
evaluating the recoverability and invariance of augmentations, we propose a synthetic data
generation process that allows us to understand how the data-dependent assumptions of
SSL hold for graph datasets. This process not only enables oracle augmentations where
recoverability is known, but also allows us some control over dataset separability. Our
synthetic dataset generation process is designed in accordance to a latent variable model
which assumes that the underlying data generation latent representation space can be
partitioned into style and content. Here, style represents information that is irrelevant to the
downstream task and can be perturbed (i.e., augmented) without changing sample semantics,
while content represents task-relevant information and should be preserved. We note that

37

while von Kügelgen et al. [100] used the same latent variable model to demonstrate that
SSL with data augmentation is able to recover features which disentangle style vs. content,
our objective for using this perspective is to develop a grounded benchmark that provides
adjustable knobs over content (task-relevant) and style (task-irrelevant) information. These
knobs allow us to understand how data-centric properties a!ect the performance of di!erent
graph SSL algorithms (see Fig. 4.4). While designing content-aware augmentations for
arbitrary graph datasets is a hard problem [79], with oracle knowledge of the data generation
process, we can evaluate content-aware augmentations (CAAs) with high recoverability at
varying levels of separability, which we approximate through di!erent style levels.

Figure 4.3: Invariance vs. KNN Acc.
The change in invariance (Inv.) and ac-
curacy w.r.t. to an untrained model is
plotted, where Inv. is measured accord-
ing to [8]. We see: Inv. has not signifi-
cantly increased for many datasets/meth-
ods, improved Inv. does not necessarily en-
tail better performance (see Reddit), and
AAGAE/GAE often sees decreased Inv.,
likely due to use of a decoder.

Generation Process: The proposed data
generation process has three components: a set of
C motifs, M, that uniquely determine C classes;
a random graph generator, RBG(n), parameter-
ized by the number of nodes (we can equivalently
define this based on number of edges); and ω,
the style multiplier, which controls how much
irrelevant information a sample contains. To
generate a sample, we attach a randomly gen-
erated background graph (i.e., style component)
to a motif (i.e., content) according to the style
multiplier. This simple process addresses several
limitations often encountered in graph CL evalua-
tion. Specifically, it (i) allows for varying levels of
content-aware augmentation (i.e., edges that can
be perturbed in the background graph without
harming the motif); (ii) is easily extended beyond
binary classification; (iii) contains relatively large
number of samples; and (iv) o!ers a natural test bed for GNN size generalization or transfer
learning [18].

4.4.2.2 Di”culties in Recovering Style Invariant Representations

Several real graph datasets can be understood through a style vs. content perspective. For
example, in drug discovery tasks [20], molecules can be split into functional groups (content)
and carbon rings or sca!old structure (style). One may thus ask: how does varying levels
of style vs. content a!ect the performance of graph URL algorithms, and how do di!erent
algorithms benefit from the use of content-aware augmentations? To answer these questions,

38

Figure 4.4: Style Invariance over Paradigms. We evaluate several SSL algorithms with
di!erent augmentation paradigms and changing style vs. content ratios. We find several
notable results: (i) CAAs induce style invariance in contrastive methods, but GGAs do not;
(ii) reconstruction methods do not recover task-relevant invariances, even when using CAAs;
and (iii) advanced augmentations methods (AD-GCL, JOAO, SimGRACE) lose performance
as style increases, indicating they do not induce style-invariance.

we conduct the following experiment:
Experimental Setup. Let C = 6, ω = 4 and define RBG(n) through a random tree

generator, where n is number of the nodes belonging the motif, scaled by ω. Node features
are a constant 10-dimensional vector. To increase task di”culty, we randomly insert between
1-3 motif copies into each sample. Using the specified instaniation of the generation process,
we train GraphCL, AAGAE, GAE, and SpecLoss with content-preserving edge dropping
and random edge dropping at 20% and 60% augmentation strength. We also evaluate two
recently proposed automated augmentation methods, JOAO [97] and AD-GCL[117], as well
as SimGRACE [53], which uses implicit, weight space perturbations. JOAO is trained with
a GGA prior and an expanded GGA prior that includes content-preserving edge dropping.
AD-GCL is trained using a learnable edge-dropping augmentor. A 5-layer GIN encoder
is used and models are trained for 60 epochs using Adam (with a learning rate of 0.01).
After training, all models are evaluated using the linear probe protocol [54] at varying style
ratios. Given that style information is not relevant to the downstream task, we expect models
that have truly learned invariance to this information will retain strong performance across
di!erent ratios. See section B.6 for more model and training details.

Results. We make the following observations using Fig. 4.4, which clearly demonstrate the
value of the proposed benchmark in studying the behavior of di!erent SSL and augmentation
paradigms. (i) In accordance to Sec. 4.3, we empirically see that both GraphCL and SpecLoss
do not loss performance as the style ratio increases when using CAAs, indicating the model has
learned task-relevant invariances. (ii) Auto-encoding reconstruction methods are an alternative
SSL paradigm, but unfortunately also struggle to recover style-invariant solutions. Moreover,

39

the use of the CAAs with such methods does not improve performance as e!ectively as in con-
trastive paradigms. (iii) For the first time, we are able to evaluate whether automated methods,
which aim to recover strong augmentations without expensive hyper-parameter tuning or hand
designing, are able to recover an optimal augmentation that generalizes across style ratios.

Figure 4.5: Invariance vs. Separabil-
ity. On our synthetic data with style-to-
content ratio ω = 6 and 20% augmentation
strength, GraphCL trained with random
augmentations produces representations
with high invariance but low separabil-
ity. In contrast, using content preserving
augmentations leads to almost as high in-
variance, but much greater separability.

Unfortunately, we see both AD-GCL [117] and
JOAO [97] lose performance as the style ratio
increases, indicating such a solution has not been
found. Indeed, JOAO is unable to find such a
solution even when the augmentation prior in-
cludes the oracle CAAs. These results not only
highlight the brittleness of such automated meth-
ods, but indicate our benchmark is a necessary
testbed for such methods. (iv) To avoid corrupt-
ing graph semantics when using input-space aug-
mentations, SimGRACE [53] instead uses implicit,
weight-space augmentations. However, we find,
despite tuning the perturbation parameter, Sim-
GRACE cannot recover strong, style-invariant
performance. Overall, using our grounded syn-
thetic benchmark, we are not only able to able
to compare the performance of graph SSL algo-
rithms when data-centric properties are supported (e.g., recoverable augmentations), but are
also able to identify limitations of advanced augmentation methods that were not apparent
using standard benchmarks.

4.4.2.3 Invariance vs. Separability

We now use our synthetic benchmark to investigate how augmentation recoverability influences
the balance of invariance and separability in the learned latent space. Considered in isolation,
invariance can be trivially satisfied through representation collapse, i.e., all samples are
mapped to highly similar representations. However, such representations are not separable
as they cannot meaningfully distinguish classes. Therefore, in the following experiment, we
jointly consider these properties to understand the benefits of CAAs.

Experimental Setup. Using a synthetic dataset at ω = 6, we respectively train GraphCL
with content-preserving and random edge dropping at 20% augmentation strength. We
compute an invariance score for each natural sample by computing the average cosine similarity

40

of its representation with that 30 di!erent augmentations. We compute a separability score
by dividing the maximum cosine similarity to a sample of the same class by the maximum
cosine similarity to a sample of another class.

Results. Figure 4.5 shows kernel density estimates of the number of samples that have a
given invariance and separability, when training with GGA or CAA. GGA induces represen-
tations with somewhat higher invariance but much lower separability scores, suggesting some
representation collapse are occurred. Indeed, with a higher augmentation strength (60%),
we found that using GGA produced invariance and separability scores very close to 1 for all
samples, indicating strong collapse. On the other hand, CAA helps GraphCL achieve over an
order of magnitude higher separability and still preserves comparably high invariance. We
observed similar trends for SpecLoss.

Invariance vs. Separability in Realistic Settings. In App. B.2, we replicate this
experiment using BACE [10], a molecule-protein interaction dataset, and the biochemistry-
based augmentations proposed by Sun et al. [11] as CAAs. We find that our observations
continue to hold in this real-world use-case, demonstrating the generality of our theory and
practicality of our synthetic benchnmark.

4.5 Conclusion
In this work, we rigorously contextualize, theoretically and empirically, the role of data-
dependent properties for graph CL. We propose a novel generalization analysis which, for
the first time, formalizes the limitations of using GGAs in graph CL. As we note in Sec. 4.3,
our results can be extended to other contrastive frameworks by leveraging our insight on
representing graph augmentations as composable graph-edit operations and extending the
contemporary work of Saunshi et al. [159]. We suspect a similar extension can also be made
for predictive methods like BYOL by using the analysis of Wei et al. [150] (see App. B.1 for
further discussion). In line with our theory, we empirically demonstrate that GGAs fail to
induce useful task-relevant invariances on standard benchmarks. We note our empirical results
already demonstrate the generality of our results across di!erent methods. Moreover, our
insights motivate the design of a principled synthetic benchmark that provides a controlled
setting for studying the role of data-dependent properties in graph SSL. Our benchmark also
serves as a useful testbed for evaluating the abilities of automated or implicit augmentations
techniques. Given the shortcomings we illustrate for such methods on synthetic datasets, we
argue the development of domain specific strategies [11] may be a more fruitful direction for
future work.

41

Part II: Uncertainty Estimation with
Graph Neural Networks

42

CHAPTER 5

Accurate Estimation of Epistemic Uncertainty
for GNNs

5.1 Introduction
Having discussed how to improve representation expressivity in Part I, we turn to the equally
important problem of ensuring that these representations and models are trust-worthy and safe.
To this end, in Part II, we focus on improving the uncertainty estimation of the GNN-based
models, as this property underlies several key safety tasks. Indeed, as GNNs are increasingly
deployed in critical applications with test-time distribution shifts [22, 163, 164, 92, 165], it
becomes necessary to expand model evaluation to include safety-centric metrics, such as
calibration errors [34], out-of-distribution (OOD) rejection rates [62], and generalization
error predictions (GEP) [61], to holistically understand model performance in such shifted
regimes [166, 167]. Notably, improving on these additional metrics often requires reliable
uncertainty estimates, such as maximum softmax or predictive entropy, which can be derived
from prediction probabilities. Although there is a clear understanding in the computer
vision literature that the quality of uncertainty estimates can noticeably deteriorate under
distribution shifts [168, 169], the impact of such shifts on graph neural networks (GNNs)
remains relatively under-explored.

Post-hoc calibration methods [34, 170, 171, 172], which use validation datasets to rescale
logits to obtain better calibrated models, are an e!ective, accuracy-preserving strategy
for improving uncertainty estimates and model trust-worthiness. Indeed, several post-hoc

The material in this chapter is derived from the paper “Accurate and Scalable Estimation of Epistemic
Uncertainty for Graph Neural Networks” [81], which appeared in the proceedings of the International
Conference on Learning Representations 2024. Code can be accessed here.

43

https://github.com/pujacomputes/gduq

calibration strategies [42, 41] have been recently proposed to explicitly account for the non-
IID nature of node-classification datasets. However, while these methods are e!ective at
improving uncertainty estimate reliability on in-distribution (ID) data, they have not been
evaluated on OOD data, where they may become unreliable. To this end, training strategies
which produce models with better intrinsic uncertainty estimates are valuable as they will
provide better out-of-the-box ID and OOD estimates, which can then be further combined
with post-hoc calibration strategies if desired.

The #UQ training framework [173] was recently proposed as a scalable, single model
alternative for vision models ensembles and has achieved state-of-the-art performance on
calibration and OOD detection tasks. Central to #UQ’s success is the concept of anchored
training, where models are trained on stochastic, relative representations of input samples in
order to simulate sampling from di!erent functional modes at test time (Sec. 5.2.) While, on
the surface, #UQ also appears as a potentially attractive framework for obtaining reliable,
intrinsic uncertainty estimates on graph-based tasks, there are several challenges that arise
from the structured, discrete, and variable-sized nature of graph data that must be resolved
first. Namely, the anchoring procedure used by #UQ is not applicable for graph datasets,
and it is unclear how to design alternative anchoring strategies such that su”ciently diverse
functional modes are sampled at inference to provide reliable epistemic uncertainty estimates.

Proposed Work. Thus, our work proposes G-#UQ, a novel training paradigm which
provides better intrinsic uncertainty estimates for both graph and node classification tasks
through the use of newly introduced graph-specific, anchoring strategies. Our contributions
can be summarized as follows:
• (Partially) Stochastic Anchoring for GNNs. We propose G-#UQ, a novel training
paradigm that improves the reliability of uncertainty estimates on GNN-based tasks. Our
novel graph-anchoring strategies support partial stochasticity GNNs as well as training with
pretrained models. (Sec. 5.3).
• Evaluating Uncertainty-Modulated CIs under Distribution Shifts. Across covariate,
concept and graph-size shifts, we demonstrate that G-#UQ leads to better calibration.
Moreover, G-#UQ’s performance is further improved when combined with post-hoc calibration
strategies on several node and graph-level tasks, including new safety-critical tasks (Sec. 5.5).
• Fine-Grained Analysis of G-#UQ. We study the calibration of architectures of varying
expressivity and G-#UQ ’s ability to improve them under varying distribution shift. We
further demonstrate its utility as a lightweight strategy for improving the calibration of
pretrained GNNs (Sec. 5.6).

44

5.2 Background & Related Work
While uncertainty estimates are useful for a variety of safety-critical tasks [62, 61, 34],
DNNs are well-known to provide poor uncertainty estimates directly out of the box [34].
To this end, there has been considerable interest in building calibrated models, where
the confidence of a prediction matches the probability of the prediction being correct.
Notably, since GEP and OOD detection methods often rely upon transformations of a
model’s logits, improving calibration can in turn improve performance on these tasks as
well. Due to their accuracy-preserving properties, post-hoc calibration strategies, which
rescale confidences after training using a validation dataset, are particularly popular. Indeed,
several methods [34, 170, 171, 172] have been proposed for DNNs in general and, more
recently, dedicated node-classifier calibration methods [42, 41] have also been proposed to
accommodate the non-IID nature of graph data. (See App. C.9 for more details.) Notably,
however, such post-hoc methods do not lead to reliable estimates under distribution shifts,
as enforcing calibration on ID validation data does not directly lead to reliable estimates on
OOD data [169, 168, 174].

Alternatively, Bayesian methods have been proposed for DNNs [175, 176], and more
recently GNNs [177, 178], as inherently “uncertainty-aware” strategies. However, not only
do such methods often lead to performance loss, require complicated architectures and
additional training time, they often struggle to outperform the simple Deep Ensembles (DEns)
baseline [179]. By training a collection of independent models, DEns is able to sample
di!erent functional modes of the hypothesis space, and thus, capture epistemic variability
to perform uncertainty quantification [180]. Given that DEns requires training and storing
multiple models, the SoTA #UQ framework [173] was recently proposed to sample di!erent
functional modes using only a single model, based on the principle of anchoring.

Background on Anchoring. Conceptually, anchoring is the process of creating a relative
representation for an input sample in terms of a random “anchor.” By randomizing anchors
throughout training (e.g., stochastically centering samples with respect to di!erent anchors),
#-UQ emulates the process of sampling and learning di!erent solutions from the hypothesis
space.

In detail, let Dtrain be the training distribution, Dtest be the testing distribution, and
Danchor := Dtrain be the anchoring distribution. Existing research on stochastic centering has
focused on vision models (CNNs, ResNets, ViT) and used input space transformations to
construct anchored representations. Specifically, given an image sample with corresponding
label, (I, y), and anchor C ↔ Danchor, anchored samples were created by subtracting and

45

Figure 5.1: Overview of G-#UQ models. Here, we present a conceptual overview of how
G-#UQ induces partially stochastic models. This figure is complementary to C.1.

then channel-wise concatenating two images: [I ≃ C||C]∗. Given the anchored representation,
a corresponding stochastically centered model can be defined as fϑ : [I ≃ C||C] → ŷ, and
can be trained as shown in Fig. 5.2. At inference, similar to ensembles, predictions and
uncertainties are aggregated over di!erent hypotheses. Namely, given K random anchors, the
mean target class prediction, µ(y|I), and the corresponding variance, ω(y|I) are computed
as: µ(y|I) = 1

K

∑K
k=1 fϑ([I≃Ck, Ck]) and ω(y|I) =

√
1

K↓1
∑K

k=1(fϑ([I ≃ Ck, Ck]) ≃ µ)2. Since
the variance over K anchors captures epistemic uncertainty by sampling di!erent hypotheses,
these estimates can be used to modulate the predictions: µcalib. = µ(1 ≃ ω). Notably, the
rescaled logits and uncertainty estimates have led to state-of-the-art performance on image
outlier rejection, calibration, and extrapolation [181, 182].

5.3 Graph-!UQ: Uncertainty-Aware Predictions
Given #-UQ’s success in improving calibration and generalization [182] under distribution
shifts on computer vision tasks and the limitations of existing post-hoc strategies, stochastic
centering appears as a potentially attractive framework for obtaining reliable uncertainty
estimates when performing GNN-based classification tasks. However, there are several chal-
lenges that must be addressed before to applying it to graph data. Namely, while input
space transformations, which induce fully stochastic models, were su”cient for sampling
diverse functional hypotheses from vision models, it is (i) non-trivial to define such transfor-
mations when working with variable sized, discrete graph data and (ii) unclear whether full
stochasticity is in fact needed when working with message passing models. Below, we explore
these issues through novel graph anchoring strategies. However, we begin with a conceptual

∗For example, channel wise concatenating two RGB images creates a 6 channel sample.

46

discussion of the role of anchoring strategies in generating reliable uncertainty estimates.
What are the goals of anchoring?: As discussed in Sec. 5.2, epistemic uncertainty can

be estimated by aggregating the variability over di!erent functional hypotheses [183]. Indeed,
the prevalent wisdom behind the success of DeepEns is its ability to sample diverse functional
hypotheses. Since these hypotheses are more likely to di!er on OOD inputs, aggregating
them can lead to better generalization and uncertainity estimates. Insofar as stochastic
centering seeks to simulate an ensemble through a single model, a key goal of the anchoring
distribution/strategy is then to ensure that sampled hypotheses are also diverse. [173] obtained
su”cient diversity by using input space anchoring to sample a fully stochastic network.

Figure 5.2: Training and In-
ference with Anchoring.

However, in the context of Bayesian neural networks (BNNs),
it was recently shown that partial stochasticity can perform
equally well with respect to fully stochastic BNNs at signif-
icantly less cost [184]. This suggests that in addition to the
”amount” of diversity, the ”e!ective” or functional diversity
is also important for performance. However, in practice,
it is di”cult to control this balance, so existing methods
default to heuristics that only promote diverse hypotheses.
For example, DeepEns uses di!erent random seeds or shuf-
fles the batch order when creating ensemble members, and
#-UQ relies upon fully stochastic models. To this end, we
propose three di!erent anchoring strategies that only handle
the di”culties of working with graph data and GNNs, but
also induce di!erent scales of the aforementioned balance. At a high-level, our strategies
trade-o! the amount of stochasticity (i.e., amount of diversity) and the semantic expressivity
of the anchoring distribution to accomplish this.

Notations. Let G = (X0
, A, Y) be a graph with node features X0 ↔ RN→d, adjacency

matrix A ↔ [0, 1]N→N and labels Y , where N, d, q denote the number of nodes, feature
dimension and number of classes, respectively. When performing graph classification, Y ↔
{0, 1}q; for node classification, let Y ↔ {0, 1}N→q.

We define a graph classification GNN consisting of ϱ message passing layers (MPNN),
a graph-level readout function (READOUT), and classifier head (MLP) as follows: Xϖ+1 =
MPNN

ϖ+1
(
Xϖ

, A
)
, G = READOUT

(
Xϖ+1

)
, and Ŷ = MLP (G) where Xϖ+1 ↔ RN→dω is the

intermediate node representation at layer ϱ + 1, G ↔ R1→dω+1 is the graph representation, and
Ŷ ↔ {0, 1}q is the predicted label. When performing node classification, we do not include the
READOUT layer, and instead output node-level predictions: Ŷ = MLP

(
Xϖ+1

)
. We use subscript

i to indicate indexing and || to indicate concatenation.

47

We begin by introducing a graph anchoring strategy for inducing fully stochastic
GNNs. Due to size variability and discreteness, performing a structural residual op-
eration by subtracting two adjacency matrices would be ine!ective at inducing an an-
chored GNN. Indeed, such a transform would introduce artificial edge weights and
connectivity artifacts. Likewise, when performing graph classification, we cannot di-
rectly anchor over node features, since graphs are di!erent sizes. Taking arbitrary
subsets of node features is also inadvisable as node features cannot be considered
IID. Further, due to iterative message passing, the network may not be able to con-
verge after aggregating l hops of stochastic node representations (see C.15 for details).

Figure 5.3: Node Feature Anchoring
Pseudocode.

Furthermore, there is a risk of exploding stochas-
ticity when anchoring MPNNs. Namely, after l

rounds of message passing, a node’s representa-
tions will have aggregated information from its
l hop neighborhood. However, since anchors are
unique to individual nodes, these representations
are not only stochastic due to their own anchors
but also those of their neighbors.

To address both these challenges, we instead
fit a d-dimensional Gaussian distribution over the
training dataset’s input node features which is
then used as the anchoring distribution (see Fig.
5.3). While a simple solution, the fitted distribu-
tion allows us to easily sample anchors for arbi-
trarily sized graphs, and helps manage stochastic-
ity by reducing the complexity of the anchoring
distribution, ensuring that overall stochasticity
is manageable, even after aggregating the l-hop
neighborhood. (See C.15 for details.)

We emphasize that this distribution is only
used for anchoring and does not assume that the
dataset’s node features are normally distributed.
During training, we randomly sample a unique
anchor for each node. Mathematically, given anchors CN→d ⇒ N (µ, σ), we create the anchored
node features as: [X0 ≃ C||X0]. During inference, we sample a fixed set of K anchors and
compute residuals for all nodes with respect to the same anchor after performing appropriate
broadcasting, e.g., c1→d ⇒ N (µ, σ), where C := REPEAT(c, N) and [X0 ≃ Ck||X0] is the kth

48

anchored sample. For datasets with categorical node features, anchoring can be performed
after embedding the node features into a continuous space. If node features are not available,
anchoring can still be performed via positional encodings [185], which are known to improve
the expressivity and performance of GNNs [186]. Lastly, note that performing node feature
anchoring (NFA) is the most analogous extension of #-UQ to graphs as it results in fully
stochastic GNNs. This is particularly true on node classification tasks where each node can
be viewed as an individual sample, similar to a image sample original #UQ formulation.

5.3.1 Hidden Layer Anchoring for Graph Classification

While NFA can conceptually be used for graph classification tasks, there are several nuances
that may limit its e!ectiveness. Notably, since each sample (and label) is at a graph-level, NFA
not only e!ectively induces multiple anchors per sample, it also ignores structural information
that may be useful in sampling more functionally diverse hypotheses, e.g., hypotheses which
capture functional modes that rely upon di!erent high-level semantic, non-linear features.
To improve the quality of hypothesis sampling, we introduce hidden layer anchoring below,
which incorporates structural information into anchors at the expense of full stochasticity in
the network (See Fig. 5.2):
Hidden Layer and Readout Anchoring: Given a GNN containing ϱ MPNNlayers, let
2 ↖ r ↖ ϱ be the layer at which we perform anchoring. Then, given the intermediate
node representations Xr↓1 = MPNN

r↓1(Xr↓2
, A), we randomly shu$e the node fea-

tures over the entire batch, (C = SHUFFLE(Xr↓1
, dim = 0)), concatenate the residuals

([Xr↓1 ≃ C||C]), and proceed with the READOUT and MLP layers as usual. (See C.2 for
corresponding pseudocode.) Note the gradients of the query sample are not considered
when updating parameters, and MPNN

r is modified to accept inputs of dimension dr ↓ 2
(to take in anchored representations as inputs). At inference, we subtract a single an-
chor from all node representations using broadcasting. Hidden layer anchoring induces
the following GNN: Xr↓1 = MPNN

r↓1(Xr↓2
, A), Xr = MPNN

r ([Xr↓1 ≃ C||C], A), and
Xϖ+1 = MPNN

r+1...ϖ (Xr
, A), and Ŷ = MLP(READOUT

(
Xϖ+1

)
) .

Not only do hidden layer anchors aggregate structural information over r hops, they induce
a GNN that is now partially stochastic, as layers 1 . . . r are deterministic. Indeed, by reducing
network stochasticity, it is naturally expected that hidden layer anchoring will reduce the
diversity of the hypotheses, but by sampling more functionally diverse hypotheses through
deeper, semantically expressive anchors, it is possible that naively maximizing diversity is
in fact not required for reliable uncertainty estimation. To validate this hypothesis, we
thus propose the final variant, READOUT anchoring for graph classification tasks. While

49

conceptually similar to hidden layer anchoring, here, we simultaneously minimize GNN
stochasticity (only the classifier is stochastic) and maximize anchor expressivity (anchors are
graph representations pooled after ϱ rounds of message passing). Notably, READOUT anchoring
is also compatible with pretrained GNN backbones, as the final MLP layer of a pretrained
model is discarded (if necessary), and reinitialized to accommodate query/anchor pairs. Given
the frozen MPNNbackbone, only the anchored classifier head is trained.

In Sec. 5.5, we empirically verify the e!ectiveness of our proposed G-#UQ variants and
demonstrate that fully stochastic GNNs are, in fact, unnecessary to obtain highly generalizable
solutions, meaningful uncertainties and improved calibration on graph classification tasks.

5.4 Node Classification Experiments: G-!UQ Improves
Calibration

In this section, we demonstrate that G-#UQ improves uncertainty estimation in GNNs,
particularly when evaluating node classifiers under distribution shifts. To the best of our
knowledge, GNN calibration has not been extensively evaluated under this challenging setting,
where uncertainty estimates are known to be unreliable [169]. We demonstrate that G-
#UQ not only directly provides better estimates, but also that combining G-#UQ with
existing post-hoc calibration methods further improves performance.

Experimental Setup. We use the concept and covariate shifts for WebKB, Cora and
CBAS datasets provided by [35], and follow the recommended hyperparameters for training.
In our implementation of node feature anchoring, we use 10 random anchors to obtain
predictions with G-#UQ. All our results are averaged over 5 seeds and post-hoc calibration
methods (described further in App. C.9) are fitted on the in-distribution validation dataset.
The expected calibration error and accuracy on the unobserved “OOD test” split are reported.

Results. From Table 5.1 (and expanded in Table. C.9), we observe that across 4 datasets
and 2 shifts that G-#UQ, without any post-hoc calibration (✁), is superior to the vanilla
model on nearly every benchmark for better or same accuracy (8/8 benchmarks) and better
calibration error (7/8), often with a significant gain in calibration performance. Moreover,
we note that combining G-#UQ with a particular posthoc calibration method improves
performance relative to using the same posthoc method with a vanilla model. Indeed, on
WebKB, across 9 posthoc strategies, “G-#UQ +¡calibration method¿” improves or maintains
the calibration performance of the corresponding “no G-#UQ +¡calibration method¿” in
7/9 (concept) and 6/9 (covariate) cases. (See App. C.8 for more discussion.) Overall, across
post hoc methods and evaluation sets, G-#UQ variants are very performant achieving (best

50

Figure 5.4: E!ect of Anchoring Layer. Anchoring at di!erent layers (L1, L2, L3) induces
di!erent hypotheses spaces. Variations of stochastic anchoring outperform models without it,
and the lightweight READOUT anchoring in particular generally performs well across datasets
and architectures.

accuracy: 8/8), best calibration (6/8) or second best calibration (2/8).

5.5 Graph Classification Uncertainty Experiments with
G-!UQ

While applying G-#UQ to node classification tasks was relatively straightforward, performing
stochastic centering with graph classification tasks is more nuanced. As discussed in Sec.
5.3, di!erent anchoring strategies can introduce varying levels of stochasticity, and it is
unknown how these strategies a!ect uncertainty estimate reliability. Therefore, we begin by
demonstrating that fully stochastic GNNs are not necessary for producing reliable estimates
(Sec. 5.5.1). We then extensively evaluate the calibration of partially stochastic GNNs on
covariate and concept shifts with and without post-hoc calibration strategies (Sec. 5.5.2), as
well as for di!erent UQ tasks (Sec. 5.3). Lastly, we demonstrate that G-#UQ’s uncertainty
estimates remain reliable when used with di!erent architectures and pretrained backbones
(Sec. 5.6).

5.5.1 Is Full Stochasticity Necessary for G-#UQ?

By changing the anchoring strategy and intermediate anchoring layer, we can induce varying
levels of stochasticity in the resulting GNNs. As discussed in Sec. 5.3, we hypothesize that the
decreased stochasticity incurred by performing anchoring at deeper network layers will lead to
more functionally diverse hypotheses, and consequently more reliable uncertainty estimates.
We verify this hypothesis here, by studying the e!ect of anchoring layer on calibration under
graph-size distribution shift. Namely, we find that READOUT anchoring su”ciently balances
stochasticity and functional diversity.

51

Experimental Setup. We study the e!ect of di!erent anchoring strategies on graph
classification calibration under graph-size shift. Following the procedure of [17, 18], we create
a size distribution shift by taking the smallest 50%-quantile of graph size for the training set,
and evaluate on the largest 10% quantile. Following [17], we apply this splitting procedure
to NCI1, NCI09, and PROTEINS [111], consider 3 GNN backbones (GCN [24], GIN [27],
and PNA [26]) and use the same architectures/parameters. (See Appendix C.6 for dataset
statistics.) The accuracy and expected calibration error over 10 seeds on the largest-graph
test set are reported for models trained with and without stochastic anchoring.

Results. We compare the performance of anchoring at di!erent layers in Fig. 5.4.
While there is no clear winner across datasets and architectures for which layer to perform
anchoring, we find there is consistent trend across all datasets and architectures the best
accuracy and ECE is obtained by a G-#UQ variant. Overall, our results clearly indicate
that partial stochasticity can yield substantial benefits when estimating uncertainty (though
suboptimal layers selections are generally not too harmful). Insofar, as we are the first to
focus on partially stochastic anchored GNNs, automatically selecting the anchoring layer
is an interesting direction of future work. However, in subsequent experiments, we use
READOUT anchoring, unless otherwise noted, as it is faster to train (see App. C.13), and
allow our methods to support pretrained models. Indeed, READOUT anchoring (L3) yields top
performance for some datasets and architectures such as PNA on PROTEINS, compared
to earlier (L1, L2) and, as we discuss below, is very performative on a variety of tasks and
shifts.

5.5.2 Calibration under Concept and Covariate Shifts

Next, we assess the ability of G-#UQ to produce well-calibrated models under covariate and
concept shift in graph classification tasks. We find that G-#UQ not only provides better
calibration out of the box, its performance is further improved when combined with post-hoc
calibration techniques.

Experimental Setup. We use three di!erent datasets (GOODCMNIST, GOODMotif-
basis, GOODSST2) with their corresponding splits and shifts from the recently proposed
Graph Out-Of Distribution (GOOD) benchmark [35]. The architectures and hyperparameters
suggested by the benchmark are used for training. G-#UQ uses READOUT anchoring and 10
random anchors (see App. C.7 for more details). We report accuracy and expected calibration
error for the OOD test dataset, taken over three seeds.

Results. As shown in Table 5.1, we observe that G-#UQ leads to inherently better
calibrated models, as the ECE from G-#UQ without additional post-hoc calibration (✁)

52

Table 5.1: Calibration under Covariate and Concept shifts. G-#UQ leads to better
calibrated models for node-(GOODCora) and graph-level prediction tasks under di!erent
kinds of distribution shifts. Notably, G-#UQ can be combined with post-hoc calibration
techniques to further improve calibration. The expected calibration error (ECE) is reported.
Best, Second.

Shift: Concept Shift: Covariate

Accuracy (∈) ECE (∋) Accuracy (∈) ECE (∋)
Dataset Domain Calibration No G-# UQ G-# UQ No G-# UQ G-# UQ No G-# UQ G-# UQ No G-# UQ G-# UQ

✁ 0.581±0.003 0.595±0.003 0.307±0.009 0.13±0.011 0.47±0.002 0.518±0.014 0.348±0.032 0.141±0.008
CAGCN 0.581±0.003 0.597±0.002 0.135±0.009 0.128±0.025 0.47±0.002 0.522±0.025 0.256±0.08 0.231±0.025
Dirichlet 0.534±0.007 0.551±0.004 0.12±0.004 0.196±0.003 0.414±0.007 0.449±0.01 0.163±0.002 0.356±0.01

ETS 0.581±0.003 0.596±0.004 0.301±0.009 0.116±0.018 0.47±0.002 0.523±0.003 0.31±0.077 0.141±0.003
GATS 0.581±0.003 0.596±0.004 0.185±0.018 0.229±0.039 0.47±0.002 0.521±0.011 0.211±0.004 0.308±0.011
IRM 0.582±0.002 0.597±0.002 0.125±0.001 0.102±0.002 0.469±0.001 0.522±0.004 0.194±0.005 0.13±0.004

Orderinvariant 0.581±0.003 0.592±0.002 0.226±0.024 0.213±0.049 0.47±0.002 0.498±0.027 0.318±0.042 0.196±0.027
Spline 0.571±0.003 0.595±0.003 0.080±0.004 0.068±0.004 0.459±0.003 0.52±0.004 0.158±0.01 0.098±0.004

GOODCora Degree

VS 0.581±0.003 0.596±0.004 0.306±0.004 0.127±0.002 0.47±0.001 0.522±0.005 0.345±0.005 0.146±0.005

✁ 0.499±0.003 0.497±0.002 0.439±0.078 0.334±0.066 0.348±0.009 0.355±0.034 0.551±0.147 0.423±0.172
Dirichlet 0.495±0.009 0.510±0.008 0.303±0.012 0.304±0.007 0.350±0.053 0.335±0.059 0.542±0.091 0.406±0.076

ETS 0.499±0.011 0.500±0.013 0.433±0.014 0.359±0.013 0.348±0.037 0.336±0.067 0.538±0.077 0.467±0.088
IRM 0.499±0.006 0.500±0.010 0.285±0.004 0.283±0.008 0.348±0.049 0.336±0.071 0.416±0.084 0.425±0.093

Orderinvariant 0.499±0.030 0.500±0.028 0.379±0.050 0.386±0.042 0.348±0.036 0.337±0.059 0.475±0.077 0.542±0.104
Spline 0.495±0.008 0.497±0.010 0.29±0.007 0.291±0.008 0.346±0.051 0.335±0.071 0.414±0.085 0.425±0.093

VS 0.499±0.007 0.500±0.012 0.439±0.006 0.377±0.009 0.349±0.037 0.336±0.067 0.549±0.071 0.468±0.089

GOODCMNIST Color

Ensembling 0.505±0.001 0.509±0.004 0.437±0.082 0.343±0.004 0.397±0.005 0.408±0.006 0.423±0.017 0.327±0.013

✁ 0.925±0.001 0.925±0.003 0.095±0.014 0.078±0.007 0.691±0.001 0.689±0.002 0.329±0.274 0.342±0.266
Dirichlet 0.925±0.011 0.923±0.010 0.081±0.015 0.103±0.007 0.686±0.009 0.681±0.009 0.337±0.067 0.316±0.047

ETS 0.925±0.009 0.927±0.012 0.095±0.010 0.096±0.013 0.691±0.011 0.699±0.016 0.314±0.041 0.304±0.049
IRM 0.925±0.014 0.93±0.013 0.087±0.018 0.097±0.010 0.691±0.011 0.698±0.016 0.316±0.051 0.305±0.045

Orderinvariant 0.925±0.010 0.928±0.011 0.091±0.009 0.093±0.007 0.691±0.011 0.690±0.011 0.321±0.050 0.319±0.041
Spline 0.925±0.010 0.927±0.011 0.091±0.008 0.089±0.012 0.691±0.010 0.689±0.016 0.324±0.055 0.313±0.051

VS 0.925±0.009 0.927±0.012 0.095±0.010 0.095±0.013 0.683±0.013 0.680±0.018 0.326±0.057 0.311±0.059

GOODMotif Basis

Ensembling 0.932±0.002 0.943±0.006 0.086±0.016 0.047±0.003 0.714±0.012 0.699±0.009 0.298±0.383 0.321±0.196

✁ 0.694±0.002 0.693±0.001 0.288±0.017 0.277±0.011 0.826±0.002 0.828±0.004 0.159±0.027 0.154±0.039
Dirichlet 0.686±0.02 0.683±0.001 0.15±0.021 0.138±0.015 0.793±0.005 0.8±0.012 0.15±0.02 0.131±0.007

ETS 0.685±0.02 0.683±0.001 0.21±0.009 0.211±0.003 0.794±0.005 0.8±0.011 0.287±0.007 0.296±0.014
IRM 0.685±0.019 0.682±0.002 0.239±0.002 0.231±0.006 0.796±0.006 0.801±0.011 0.26±0.005 0.265±0.011

Orderinvariant 0.685±0.02 0.683±0.001 0.225±0.002 0.222±0.003 0.794±0.005 0.8±0.011 0.226±0.003 0.224±0.007
Spline 0.684±0.02 0.683±0.002 0.233±0.005 0.23±0.005 0.79±0.004 0.794±0.016 0.259±0.005 0.263±0.012

VS 0.685±0.019 0.683±0 0.334±0.044 0.374±0.002 0.787±0.008 0.8±0.013 0.307±0.116 0.32±0.011

GOODSST2 Length

Ensembling 0.705±0.002 0.709±0.004 0.276±0.038 0.248±0.022 0.838±0.001 0.842±0.006 0.154±0.032 0.132±0.019

is better than the vanilla (”No G-#UQ”) counterparts on 5/6 datasets. Moreover, we find
that combining G-#UQ with a particular post-hoc calibration methods further elevates
its performance relative to combining the same strategy with vanilla models. Indeed, for
a fixed post-hoc calibration strategy, G-#UQ improves the calibration, while maintaining
comparable if not better accuracy on the vast majority of the methods and datasets. There
are some settings where combining G-#UQ or the vanilla model with a post-hoc method
leads decreases performance (for example, GOODSST2, covariate, ETS, calibration) but
we emphasize that this is not a short-coming of G-#UQ. Posthoc strategies, which rely
upon ID calibration datasets, may not be e!ective on shifted data. This further emphasizes

53

the importance of our OOD evaluation and G-#UQ as an intrinsic method for improving
uncertainty estimation.

Table 5.2: GOOD-Datasets, OOD Detection Performance. The AUROC of the binary
classification task of classifying OOD samples is reported. G-#UQ variants outperform
the vanilla models on 6/8 datasets. We further note that end-to-end G-#UQ does in fact
lose performance relative to the vanilla model on 4 datasets. Investigating why pretrained
G-#UQ is able to increase performance on those datasets is an interesting direction of future
work. It does not appear that a particular shift is more di”cult for this task: concept
shift is easier for GOODCMNIST and GOODMotif(Basis) while covariate shift is easier for
GOODMotif(Size) and GOODSST2. Combining G-#UQ with more sophisticated, uncertainty
or confidence based OOD scores may further improve performance.

CMNIST (Color) MotifLPE (Basis) MotifLPE (Size) SST2

Method Concept(∈) Covariate(∈) Concept(∈) Covariate(∈) Concept(∈) Covariate(∈) Concept(∈) Covariate(∈)

Vanilla 0.759 ± 0.006 0.468 ± 0.092 0.736 ± 0.021 0.466 ± 0.001 0.680 ± 0.003 0.755 ± 0.074 0.350 ± 0.014 0.345 ± 0.066
G-!UQ 0.771 ± 0.002 0.470 ± 0.043 0.758 ± 0.006 0.328 ± 0.022 0.677 ± 0.005 0.691 ± 0.067 0.338 ± 0.023 0.351 ± 0.042
Pretr. G-!UQ 0.774 ± 0.016 0.543 ± 0.152 0.769 ± 0.029 0.272 ± 0.025 0.686 ± 0.004 0.829 ± 0.113 0.324 ± 0.055 0.446 ± 0.049

Table 5.3: RotMNIST-Calibration. Here, we report expanded results (calibration) on the
Rotated MNIST dataset, including a variant that combines G-#UQ with Deep Ens. Notably,
we see that anchored ensembles outperform basic ensembles in both accuracy and calibration.

Architecture LPE? G-#UQ Calibration Avg.ECE (∋) ECE (10) (∋) ECE (15) (∋) ECE (25) (∋) ECE (35) (∋) ECE (40) (∋)

✁ ✁ ✁ 0.038 ±0.001 0.059 ±0.001 0.068 ±0.340 0.126 ±0.008 0.195 ±0.012 0.245 ±0.011
✁ ! ✁ 0.018 ±0.008 0.029 ±0.013 0.033 ±0.164 0.069 ±0.033 0.117 ±0.048 0.162 ±0.067
✁ ✁ Ensembling 0.026 ±0.000 0.038 ±0.001 0.042 ±0.001 0.084 ±0.002 0.135 ±0.001 0.185 ±0.003

GatedGCN

✁ ! Ensembling 0.014 ±0.003 0.018 ±0.005 0.021 ±0.005 0.036 ±0.012 0.069 ±0.032 0.114 ±0.056

! ✁ ✁ 0.036 ±0.003 0.059 ±0.002 0.068 ±0.340 0.125 ±0.006 0.191 ±0.007 0.240 ±0.008
! ! ✁ 0.022 ±0.007 0.028 ±0.014 0.034 ±0.169 0.062 ±0.022 0.109 ±0.019 0.141 ±0.019
! ✁ Ensembling 0.024 ±0.001 0.038 ±0.001 0.043 ±0.002 0.083 ±0.001 0.139 ±0.004 0.181 ±0.002

GatedGCN

! ! Ensembling 0.017 ±0.002 0.024 ±0.005 0.027 ±0.008 0.030 ±0.004 0.036 ±0.012 0.059 ±0.033

! ✁ ✁ 0.026 ±0.001 0.044 ±0.001 0.052 ±0.156 0.108 ±0.006 0.197 ±0.012 0.273 ±0.008
! ! ✁ 0.022 ±0.001 0.037 ±0.005 0.044 ±0.133 0.091 ±0.008 0.165 ±0.018 0.239 ±0.018
! ✁ Ensembling 0.016 ±0.001 0.026 ±0.002 0.030 ±0.000 0.066 ±0.000 0.123 ±0.000 0.195 ±0.000

GPS

! ! Ensembling 0.014 ±0.000 0.023 ±0.002 0.027 ±0.003 0.055 ±0.004 0.103 ±0.006 0.164 ±0.006

5.5.3 Using Confidence Estimates in Safety-Critical Tasks

While post-hoc calibration strategies rely upon an additional calibration dataset to provide
meaningful uncertainty estimates, such calibration datasets are not always available and
may not necessarily improve OOD performance [169]. Thus, we also evaluate the quality
of the uncertainty estimates directly provided by G-#UQ on two additional UQ-based,
safety-critical tasks [166, 32, 167]: (i) OOD detection [174], which attempts to classify

54

samples as in- or out-of-distribution, and (ii) generalization error prediction (GEP) [61],
which attempts to predict the generalization on unlabeled test datasets (to the best of our
knowledge, we are the first to study GEP of graph classifiers). In the interest of space, we
present the results on GEP in the appendix.

OOD Detection Experimental Setup. By reliably detecting OOD samples and
abstaining from making predictions on them, models can avoid over-extrapolating to irrelevant
distributions. While many scores have been proposed for detection [174, 187, 188, 189, 190],
popular scores, such as maximum softmax probability and predictive entropy [62], are derived
from uncertainty estimates. Here, we report the AUROC for the binary classification task of
detecting OOD samples using the maximum softmax probability as the score [191].

OOD Detection Results. As shown in Table 5.2, we observe that G-#UQ variants im-
prove OOD detection performance over the vanilla baseline on 6/8 datasets, where pretrained
G-#UQ obtains the best overall performance on 6/8 datasets. G-#UQ performs comparably
on GOODSST2(concept shift), but does lose some performance on GOODMotif(Covariate).
We note that vanilla models provided by the original benchmark generalized poorly on this
particular dataset (increased training time/accuracy did not improve performance), and this
behavior was reflected in our experiments. We suspect that poor generalization coupled with
stochasticity may explain G-#UQ’s performance here.

5.6 Fine Grained Analysis of G-!UQ
Given that the previous sections extensively verified the e!ectiveness of G-#UQ on a variety
of covariate and concept shifts across several tasks, we seek a more fine-grained understanding
of G-#UQ’s behavior with respect to di!erent architectures and training strategies. In
particular, we demonstrate that G-#UQ continues to improve calibration with expressive
graph transformer architectures, and that using READOUT anchoring with pretrained GNNs is
an e!ective lightweight strategy for improving calibration of frozen GNN models.

5.6.1 Calibration under Controlled Shifts
Recently, it was shown that modern, non-convolutional architectures [192] are not only
more performant but also more calibrated than older, convolutional architectures [34] under
vision distribution shifts. Here, we study an analogous question: are more expressive GNN
architectures better calibrated under distribution shift, and how does G-#UQ impact their
calibration? Surprisingly, we find that more expressive architectures are not considerably
better calibrated than their MPNN counterparts, and ensembles of MPNNs outperform
ensembles of GTrans. Notably, G-#UQ continues to improve calibration with respect to

55

these architectures as well.
Experimental Setup. (1) Models. While improving the expressivity of GNNs is an active

area of research, positional encodings (PEs) and graph-transformer (GTran) architectures [193]
are popular strategies due to their e!ectiveness and flexibility. GTrans not only help mitigate
over-smoothing and over-squashing [194, 195] but they also better capture long-range
dependencies [196].

Meanwhile, graph PEs help improve expressivity by di!erentiating isomorphic nodes,
and capturing structural vs. proximity information [186]. Here, we ask if these enhance-
ments translate to improved calibration under distribution shift by comparing architectures
with/without PEs and transformer vs. MPNN models. We use equivariant and stable PEs
[185], the state-of-the-art, “general, powerful, scalable” (GPS) framework with a GatedGCN
backbone for the GTran, GatedGCN for the vanilla MPNN, and perform READOUT anchoring
with 10 random anchors. (2) Data. In order to understand calibration behavior as distribution
shifts become progressively more severe, we create structurally distorted but valid graphs by
rotating MNIST images by a fixed number of degrees [12] and then creating the corresponding
super-pixel graphs [86, 147, 25]. (See Appendix, Fig. C.2.) Since superpixel segmentation
on these rotated images will yield di!erent superpixel k-nn graphs but leave class information
unharmed, we can emulate di!erent severities of label-preserving structural distortion shifts.
We note that models are trained only using the original (0⇓ rotation) graphs. Accuracy (see
appendix) and ECE over 3 seeds are reported for the rotated graphs.

Figure 5.5: Out-of-
distribution Calibration
Error. G-#UQ is applied in
end-to-end training vs. to a
pretrained model, which is a
simple yet e!ective way to use
stochastic anchoring.

Results. In Table 5.3, we present the OOD calibration
results, with results of more variants and metrics in the
supplementary Table C.2 and C.5. First, we observe that
PEs have minimal e!ects on both calibration and accuracy
by comparing GatedGCN with and without LPEs. This
suggests that while PEs may enhance expressivity, they do
not directly induce better calibration. Next, we find that
while vanilla GPS is better calibrated when the distribution
shift is not severe (10, 15, 25 degrees), it is less calibrated
(but more performant) than GatedGCN at more severe
distribution shifts (35, 40 degrees). This is in contrast to
known findings about vision transformers. Lastly, we see
that G-#UQ continues to improve calibration across all
considered architectural variants, with minimal accuracy
loss. Surprisingly, however, we observe that ensembles of
G-#UQ models not only e”ectively resolve any performance

56

drops, they also cause MPNNs to be better calibrated than
their GTran counterparts.

5.6.2 How does G-#UQ perform with pretrained models?

As large-scale pretrained models become the norm, it is beneficial to be able to perform
lightweight training that leads to safer models. Thus, we investigate if READOUT anchoring is
such a viable strategy when working with pretrained GNN backbones, as it only requires
training a stochastically centered classifier on top of a frozen backbone. (Below, we discuss
results on GOODDataset, but please see C.4 for results on RotMNIST and C.12 for additional
discussion.)

Results. From Fig. 5.5 (and expanded in Fig. C.4), we observe that across datasets,
pretraining (PT) yields competitive (often superior) OOD calibration with respect to end-to-
end (E2E) G-#UQ. With the exception of GOODMotif (basis) dataset, PT G-#UQ improves
the OOD ECE over both vanilla and E2E G-#UQ models at comparable or improved OOD
accuracy (6/8 datasets). Furthermore, PT G-#UQ also improves the ID ECE on all but the
GOODMotif(size) (6/8), where it performs comparably to the vanilla model, and maintains
the ID accuracy. Notably, as only an anchored classifier is trained, PT G-#UQ substantially
reduces training time relative to E2E G-#UQ and vanilla models (see App. C.13), highlighting
its strengths as a light-weight, e!ective strategy for improving uncertainty estimation.

5.7 Conclusion
We propose G-#UQ, a novel training approach that adapts stochastic data centering for
GNNs through newly introduced graph-specific anchoring strategies. Our extensive experi-
ments demonstrate G-#UQ improves calibration and uncertainty estimates of GNNs under
distribution shifts.

57

CHAPTER 6

On Link Prediction Calibration with
Stochastic Centering

6.1 Introduction
Having discussed improving the uncertainty estimates of GNN-based node and graph classifiers
in the preceding chapter, here, we focus on link prediction (LP) [197, 22], which as high-impact
applications ranging from product recommendation [23] to biological network completion
(e.g., gene-gene interaction or drug-drug interactions) [20, 96]. Most often, the predicted
links are used to invoke expensive actions or time-consuming experiments. Consequently, in
addition to obtaining accurate predictions, it is important that practitioners are able to trust
a model’s confidence in its predictions [32]. This has led to the emergence of a large class
of calibration techniques [179, 34, 198, 176]. Calibration is the process of adjusting output
probabilities or confidence scores produced by a model to ensure that they accurately reflect
the true likelihood associated with a specific prediction [199, 34]. While most existing studies
on GNN calibration have extensively focused on node [42, 41, 200] or graph classification [81],
the calibration behavior of LP models remains considerably less studied.

At a high level, link prediction architectures contain an encoder, which produces node-
level features, and a light-weight decoder, which aggregates two node representations (vi, vj)
to predict whether a given edge (e(i,j)) is plausible. Indeed, it is challenging to directly
extend state-of-the-art approaches for improving calibration from node or graph classification
literature to LP settings. Though one can systematically estimate uncertainties from the
encoder module, the lack of any node-level task makes it challenging to ensure that those

The material in this chapter is derived from the paper “On Estimating Link Prediction Uncertainty
using Stochastic Centering” [79], which appeared in the proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing in 2024. Code can be accessed here.

58

https://github.com/pujacomputes/EDGEDUQ/

Figure 6.1: Overview of E-#UQ. We propose three di!erent stochastic centering variants
that induce varying levels of stochasticity in the underlying GNN. Variant (E-#UQ (v1))
directly models the epistemic uncertainties arising from the sampling of edges in di!erent
parts of the (node) feature space. Variant (E-#UQ (v2)) performs stochastic centering in
the encoder network itself and implicitly leverage those uncertainties to produce calibrated
edge probabilities. E-#UQ (v3)) uses the auxiliary attribute masking task to first calibrate
the node-level uncertainties and subsequently estimate the edge-level uncertainties similar to
E-#UQ (v2). We show the attribute masking task above and use shu$ed node features as
the anchoring distribution.

uncertainties are well calibrated. Furthermore, it is highly non-trivial to model the interaction
between node uncertainties for di!erent LP decoder choices (e.g., node feature concatenation,
scalar dot product). For example, it is unclear if an edge (vi, vj) between two nodes with high
(node-level) uncertainties in their features is always guaranteed to have higher (edge-level)
uncertainty compared to another edge (v↗

i, v
↗
j) with only one node with high uncertainty.

Recently, [201] proposed a Bayesian approach for link prediction, which places an explicit
prior over node features (in each layer) and uses a hierarchical Gaussian process (GP) to
combine node-level priors to obtain edge-level predictions. While such an approach allows
for closed-form aggregation of node-level uncertainties, it has a number of challenges. First,
it requires a specific link-predictor structure (hierarchical edge-GP), which may not be
compatible with the di!erent decoder choices used in practice. Second, given the high
computational costs associated with GP inferencing, this can be especially problematic when
scaling to larger, production-scale datasets. Third, it is not straightforward to integrate any
additional (or auxiliary) node-level tasks that can help better calibrate the node features [95].

To circumvent these challenges, we propose a non-parametric, architecture-agnostic,
LP uncertainty estimator based on the recently proposed stochastic centering framework
[173, 182]. We choose this framework for its flexibility to be adopted to any architecture, as
well as, its strong generalization behavior under challenging distribution shifts [81].

59

Extending stochastic centering to edge-level uncertainty (Sec. 3): We first extend
stochastic centering to link prediction networks by considering the node features to be
deterministic and enabling uncertainty estimation only in the decoder module. This variant
(E-#UQ (v1)) directly models the epistemic uncertainties arising from the sampling of
edges in di!erent parts of the (node) feature space.

Creating Meaningful Node-level uncertainties (Sec. 3): Despite the simplicity of the
previous variant and its performance in practice, incorporating the node-level uncertainties
can lead to richer LP models. Hence, we propose to invoke stochastic centering in the
encoder network itself (E-#UQ (v2)) and implicitly leverage those uncertainties to produce
calibrated edge probabilities. Finally, we consider a sophisticated variant (E-#UQ (v3))
where we leverage an auxiliary task to first calibrate the node-level uncertainties and
subsequently estimate the edge-level uncertainties similar to E-#UQ (v2).

Experimental Evaluation (Sec. 4): Using a suite of citation network datasets, we
systematically evaluate the three proposed uncertainty estimation techniques and demonstrate
their behavior in terms of both fidelity of the predicted links and calibration error metrics.
This work, for the first time, delves into the important problem of appropriately handling
node-level uncertainties in LP architectures.

6.2 Background & Related Work
In this section, we briefly discuss the notations and related work relevant to problem setting
and approach.
Notations. Let G = (X, A) be a graph with node features X ↔ RN→dω , and adjacency matrix
A ↔ RN→N , where N, m, dϖ, denotes the number of nodes, number of edges, and feature
dimension. We wish to predict unobserved edges that are missing from A given the observed,
training graph and nodes. Thus, we can define a LP GNN consisting of a node Encoder

with ϱ message passing layers (MPNN), and Decoder which predicts whether an edge e(i, j)
exists between two nodes, given their representations (Xi, Xj):

Xϖ+1 = Encoder

(
Xϖ

, A
)

, (6.1)

E(i,j) = Decoder

(
Xϖ+1

i Xϖ+1
j

)
(6.2)

where Xϖ+1 is the intermediate node representations. Popular decoder architectures include
taking the dot product or concatenating representations and then passing the resulting

60

representation through some linear layers. Models are trained by treating LP as a binary
classification task, where true edges in A are considered positive class samples and non-edges
in A are considered negative class samples.

Calibration and Stochastic Centering. While several strategies have been proposed to
improve calibration [179, 34, 198, 176] of vision models and GNN-based node classification
calibration [42, 41, 200, 81], these methods are not suited for link prediction calibration
because they cannot ensure reliable node-level calibration without node-level supervision
(see Sec. 6.1) and often struggle to outperform the simple, but prohibitively expensive deep
ensemble (DEns) [179] baseline. Unfortunately, DEns, which takes the mean prediction
over a set of independently trained models, requires training and storing multiple models.
Recently, however, [173] proposed a state-of-the-art, single model uncertainty estimation
method, #-UQ, based on the principle of anchoring, which is capable of simulating the
behavior of an ensemble through only a single model.

Conceptually, anchoring is the process of creating a relative representation for an input
sample x in terms of a random anchor c (which is used to perform the stochastic centering),
[x ≃ c, c]. By choosing di!erent anchors randomly in each training iteration, #-UQ emulates
the process of sampling di!erent solutions from the hypothesis space (akin to an ensemble).
During inference, #-UQ aggregates multiple predictions obtained via di!erent random anchors
and produces uncertainty estimates.

Formally, given a trained stochastically centered model, fϑ : [X ≃ C, C] → Ŷ, let
C := Xtrain be the anchor distribution, x ↔ Xtest be a test sample, and anchor c ↔ C be
anchor. Then, the mean target class prediction, µ(y|x), and corresponding variance, ω(y|x)
over K random anchors are computed as:

µ(y|x) = 1
K

K

k=1
fϑ([x ≃ ck, ck]) (6.3)

ω(y|x) =

 1
K ≃ 1

K

k=1
(fϑ([x ≃ ck, ck]) ≃ µ)2 (6.4)

Since the variance over K anchors captures epistemic uncertainty by sampling di!erent
hypotheses, these estimates can be used to modulate the predictions: µcalib. = µ(1 ≃ ω).
The resulting calibrated predictions and uncertainty estimates have led to state-of-the-art
performance on vision [173, 182] and graph classification tasks [81], while still only requiring
a single model. Given its impressive performance and flexibility, we focus on adapting
stochastic centering to our link prediction calibration setting. Namely, we discuss in detail
design considerations that arise from aggregating node-level uncertainties into edge-level

61

confidence estimates.

6.3 Proposed Approach
In this section, we introduce our proposed approach, and discuss the three variants, for
improving GNN-based link prediction calibration using stochastic centering (see Fig. 6.1).
Furthermore, we will demonstrate the importance of creating and aggregating meaningful
node-level uncertainties. Indeed, as discussed in Sec. 6.1, on the one hand, LP calibration
is di”cult since node-level uncertainties must be correctly aggregated in order to produce
consistent edge-level uncertainties. On the other hand, due to the lack of suitable node-level
tasks, the uncertainties associated with the node features can themselves be poorly calibrated.
Consequently, even a sophisticated aggregation strategy in LP decoders can lead to sub-par
calibration of edge probabilities. Below, we introduce three di!erent variants of our proposed
method, where each variant gradually seeks to improve the characterization of node-level
uncertainties, and subsequently leverages the stochastic centering framework to produce edge
uncertainties.
E-#UQ (v1) – Deterministic node features: While stochastic centering can be performed
at any layer of the GNN, in this variant, stochastic centering is only performed prior to
decoder. In other words, the node representations are assumed to be deterministic and that
the epistemic uncertainties arise from the non-uniform samples of edges in di!erent parts
of the feature space. While, this assumption indicates that we expect the least amount of
change on the reliability of node-level features, we perform stochastic feature aggregation
over pairs of nodes by utilizing the anchoring framework. Given that the LP decoder
paramterizes an edge based on a chosen aggregation function on the given pair of nodes,
through anchoring, we sample di!erent possible aggregation hypotheses before marginalizing
over anchors according to Eq. 6.6. In other words, given the features xi and xj for a node pair,
we perform stochastic centering using a randomly chosen anchor c (from a pre-specified anchor
distribution). Formally, we define this operation for dot-product and concatenation-style LP
decoder modules as follows:

Decoderdot : [(xi ≃ c) △ (xj ≃ c), c] (6.5)

Decoderconcat : [(xi ≃ c||xj ≃ c), c] (6.6)

Similar to standard anchored model training, this tuple is taken as input by the LP decoder
and trained using the standard cross entropy loss. Note, in each iteration of training, a
di!erent anchor c is randomly chosen.

62

E-#UQ (v2) – Partially stochastic encoder: As discussed earlier, it is reasonable to
expect the node-level uncertainties can be utilized to improve the calibration of the edge
probabilities obtained using LP. This is motivated by the fact that, the encoder architecture
(implemented using GNNs) can be susceptible to epistemic uncertainties arising from the
distribution of node attributes and hence, they can singificantly influence the subsequent
predictions on pairs of nodes. Hence, in this variant, we invoke anchoring in the intermediate
layers of the encoder architecture itself, and obtain stochastic node representations. Formally,

Xr+1 = Encoder
1...r(X, A)

Xϖ+1 = Encoder
r+1...ϖ

(
[Xr+1 ≃ C, C], A

)

Ê(i,j) = Decoder

(
Xϖ+1

i , Xϖ+1
j

)

However, it is important to note that this approach results in partially stochastic encoder
model (i.e., first few layers of the encoder are deterministic) and the anchoring process
leverages the structural information (through the message passing in GNN layers). By
introducing anchoring in the encoder and performing end-to-end training of the LP model,
we are able to e!ectively sample the hypothesis space for joint node feature learning and LP
decoding. We expect this increased diversity to help improve the quality of our link-level
predictions.
E-#UQ (v3) – Partially stochastic encoders + Node-level pretraining. While the
aforementioned variants use stochastic centering to implicitly improve the aggregation of
uncertainty over pairs of nodes, they do not explicitly improve the quality of node-level
uncertainties. Indeed, this is di”cult as node-level calibration supervision cannot be assumed
on LP tasks. Therefore, we combine E-#UQ (v2) with an unsupervised node-level pretraining
task to prime the encoder’s node-level uncertainties before LP training. In particular, we
pretrain the encoder with an auxillary node feature attribute masking task, and then train
both the encoder and decoder with the standard link-prediction loss. Formally, assuming
M ↔ [0, 1]N→d denotes a random binary mask, we use that to mask portions of the input
node feature matrix and define a self-supervised objective as follows:

Xr+1 = Encoder
1...r(X ▽ M, , A)

Xϖ+1 = Encoder
r+1...ϖ

(
[Xr+1 ≃ C, C], A

)

LAttr =


(i,j)↑M
||Xϖ+1 ≃ X||2 · M(i,j)

63

Here, ∞.∞2 denotes the ϱ2 norm and the reconstruction loss is measures only using the masked
parts of the feature matrix. After completing the attribute masking-based pretraining, the
encoder is equipped to produce node-level uncertainties. Subsequently, both the encoder and
decoder modules of the LP architecture are trained end-to-end, following E-#UQ (v2). While
other pretraining tasks can be considered, we use attribute masking for e!ectiveness and ease
of implementation.

6.4 Experiments

Table 6.1: Dataset Statistics.

Name #nodes #edges #features

Cora 2,708 10,556 1,433
CiteSeer 3,327 9,104 3,703
PubMed 19,717 88,648 500

In this section, we experimentally validate the e!ectiveness
of our three LP calibration variants. Experimental Set-up:
We consider three di!erent datasets (Cora, Citeseer,
Pubmed) and use the publicly available train-test splits
for evaluation. A 3-layer GraphSAGE [28] backbone is
used for the encoder, with either a dot-product decoder
(Cora) or a concatenation decoder (Citeseer, Pubmed)
(Table 6.4). Ten anchors are used for all E-#UQ variants.
Hyper-parameters are shared between vanilla and E-#UQ models. The AUPRC and expected
calibration error are reported over 10 seeds. We report results for the best intermediate
anchoring layer according to validation AUPRC. We make the following observations from
Table 6.4.

Observation 1: Stochastic centering variants improves the calibration on all datasets over
the vanilla model. Indeed, the improvement is particularly large on Cora, where ECE is
decreased by 50%, and Citeseer, where ECE is decreased by 16%. While we do not see as
large gains on Pubmed, we do note that no E-#UQ variants increases the calibration error.
This clearly suggests that our stochastic centering approach is e!ective.

Observation 2: Stochastic centering variants perform comparably on AUPR, with E-
#UQ variants performing the best on 2/3 datasets. Generally, we see that E-#UQ variants
improve AUPR 4/9, though we suspect that E-#UQ performance could be further improved
if we tuned method-specific hyper-parameters.

Observation 3: Amongst E-#UQ variants, E-#UQ (v3) obtains the best calibration on
2/3 datasets. This suggests there is value to our pretraining method, which seeks to
improve node-level calibration. We suspect that E-#UQ (v3)’s performance could be fur-

64

ther improved with better auxiliary tasks, but we leave the design of such tasks to future work.

Observation 4: E-#UQ (v2) induced better calibration than E-#UQ (v1) on 3/3 datasets, and
has better AUPR on 2/3 datasets. This supports our argument better node-level calibration
is critical for also improving LP calibration.

6.5 Conclusion

Table 6.2: Link Prediction Calibration.

Dataset Method AUPR (∈) ECE (∋)

E-#UQ (v3) 0.8409 ±0.0115 0.2591 ±0.0178

E-#UQ (v2) 0.8548 ±0.0076 0.2833 ±0.0075

E-#UQ (v1) 0.8070 ±0.0218 0.3056 ±0.0109
Citeseer

Vanilla 0.8236 ±0.0115 0.3002 ±0.0062

E-#UQ (v3) 0.8886 ±0.0042 0.1554 ±0.0060

E-#UQ (v2) 0.8888 ±0.0062 0.1731 ±0.0181

E-#UQ (v1) 0.8598 ±0.0207 0.2640 ±0.0125
Cora

Vanilla 0.8936 ±0.0066 0.3503 ±0.0146

E-#UQ (v3) 0.8775 ±0.0098 0.1818 ±0.0048

E-#UQ (v2) 0.8701 ±0.0016 0.1538 ±0.0059

E-#UQ (v1) 0.9069 ±0.0063 0.1801 ±0.0117
Pubmed

Vanilla 0.8897 ±0.0091 0.1980 ±0.0035

In this work, we proposed and evaluated
three variants of stochastic centering for im-
proving the calibration of graph neural net-
works for link prediction. Our key finding is
that properly accounting for node-level uncer-
tainty is critical for obtaining well-calibrated
edge-level confidence estimates. Our exper-
iments on three citation networks demon-
strated that our proposed E-#UQ methods
can substantially reduce the expected cal-
ibration error compared to vanilla models.
Overall, this work provides novel insights
into the importance of node-level uncertainty
modeling for link prediction calibration and
our proposed stochastic centering framework
o!ers a flexible way to incorporate epistemic uncertainty into existing GNN architectures in a
principled manner. An interesting direction for future work is exploring additional auxiliary
pretraining objectives to further improve the meaningfulness of node uncertainties.

65

Part III: Large Language Models and
Graph Representation Learning

66

CHAPTER 7

Large Language Model Guided Graph
Clustering

7.1 Introduction
While the preceding parts of this thesis focused on improving training protocols for accessing
better representation qualities, in Part III, we focus on how combining natural language and
structural data can help surpass limitations of the data when performing various graph machine
learning tasks. We begin, in this chapter, by studying graph clustering, an unsupervised
task which seeks to assign nodes to di!erent clusters such that the resulting assignments
capture salient topology and uncover useful concepts, under this setting. Notably, many
real-world problems can naturally be formulated as graph clustering, including recommending
groups of items in an e-commerce shopping graph or identifying groups of friends in social
networks [202, 203, 204]. Most modern, performative clustering methods utilize GNN encoders
due to their expressivity [27], scalability, and ability to e!ectively handle vector-valued node
attributes [24, 25].

Recently, however, there has been growing interest in text-attributed graphs (TAGs) [75, 76],
where natural language text is available as an additional node attribute. Unfortunately,
GNNs are not able to directly handle this information rich text and instead utilize semantic
embeddings, potentially limiting overall performance. To this end, a variety of (pre/co/joint)
training-based [66, 67, 68, 69] and graph specific prompting-based strategies [205, 71, 72,
73, 74] have been recently proposed for using large language models (LLMs) [65, 64] in
conjunction with GNNs on supervised tasks, e.g., link prediction, node classification, and
graph classification, to directly handle this text and take advantage of the LLM’s impressive
world-knowledge.

While clustering on TAGs could also benefit from joint LLM+GNN methods, it not only
remains unclear how to adapt existing supervised approaches for unsupervised graph clustering,
but also is prohibitively expensive in many real-world applications due to significant hardware

67

Figure 7.1: Overview of GCLR. Given an initial GNN-based graph clustering solution,
F, GCLR identifies uncertain nodes, obtains LLM guidance through prompting and then
fine-tunes the GNN accordingly. Thus, incorporating both graph, world, and semantic
(through sentence transformer node attributes) knowledge in clustering assignments.

requirements, incurred through training or hosting LLMs, or API expenditure, incurred by
prompting over large sets of nodes. Given that GNN clustering methods are scalable to large
graphs by design and have much lighter hardware requirements [206, 78, 77, 207, 208, 209],
it is more cost e!ective to selectively use the LLM to improve the GNN’s initial clustering
assignment; thereby limiting the overall expenditure. While a natural framework for such
a resource constrained setting is active learning (AL) [210, 63, 211, 212], which selectively
queries an expensive oracle for labels to maximize performance under a fixed budget, there
are several di!erences arising from an LLM oracle and the unsupervised nature of graph
clustering that must be addressed. Namely, that (i) it is unclear how to select, query, and
incorporate LLM feedback to improve GNN clustering solutions, and (ii) the LLM is an
imperfect oracle, complicating how the model should be updated.

Our Contributions. To this end, we propose GCLR (Graph Clustering with LLM
Refinement), a flexible active learning framework specifically designed for clustering on TAGS.
It uses carefully designed prompting strategies to elicit more reliable and useful feedback for
clustering from the LLM and uses simple strategies when fine-tuning to improve tolerance
to noisy labels, overall outperforming GNN-only clustering methods. Our contributions are
summarized as follows:
• Eliciting Graph Clustering Feedback from LLMs (Sec. 7.4.1.) We rigorously study
how to obtain feedback from LLMs that is both amenable to clustering and a useful signal
for fine-tuning.
• Incorporating Noisy Feedback from LLMs (Sec. 7.4.2.) Given the feedback provided
by the LLM, we propose training protocols that support fine-tuning deep graph clustering
algorithms with imperfect feedback.
• Extensive Experiments Refining Clustering with GCLR (Sec.7.5) Across three
text-attributed graphs with four di!erent graph clustering algorithms, we demonstrate that

68

GCLR can improve the graph clustering performance.

7.2 Background & Related Work
In this section, we briefly introduce deep attributed graph clustering and relevant works for
combining LLMs and GNNs when working with TAGs. Please see [30] and [213], respectively,
for comprehensive surveys.

Deep Attributed Graph Clustering. While unattributed graph clustering has a
rich history in network analysis through modularity maximization, spectral clustering, and
cuts-based approaches, the success of GNNs in graph representation learning has lead to
growing interest in deep clustering methods that e”ciently leverage both node-level attributes
and topology. Broadly, such methods either (i) learn node representations using a self-
supervised or unsupervised objective, and then perform clustering given these representations
or (ii) learn both the embeddings and clustering assignments end-to-end through specialized
clustering-based losses. While reconstructive [214, 215] and adversarial frameworks [216]
were initially popular, in this work, we focus on contrastive [77, 217, 52, 78] and pooling-
based methods [209, 207, 208]. Such methods, which, respectively, use contrastive losses
to learn discriminative node representations or propose novel pooling layers that optimize
for clustering-based losses (e.g., spectral relaxations of modularity or mincut), are more
performative, e”cient, and scalable than adversarial or reconstructive approaches. Moreover,
as we will discuss in Sec. 7.4.2, these methods are more amenable to fine-tuning. Indeed,
fine-tuning contrastively pre-trained representations is well-known to induce state-of-the-art
performance on a variety of supervised tasks in both vision and graph representation learning.

LLMs + Graphs. Recent approaches that seek to combine graphs/GNNs and natural-
language/LLMs can be categorized as being “predictors” (the LLM provides predictions),
“encoders” (sentence transformers or other LLMs are used to provide input node features), or
“aligners” (GNNs and LLMs jointly trained to perform the task) [213]. Various mechanisms,
including prompting [218], fine-tuning [219], variational expectation maximization [67], joint
optimization [9], and distillation [220], have been proposed to fulfill these roles, typically on
supervised tasks. Instead, GCLR uses the LLM as a refiner and enhancer, as the LLM is
only prompted to provide feedback for updating the underlying GNN-based graph clustering
solution and sentence transformers are used to provide input node embeddings. This allows
us to avoid the expensive fine-tuning of either LLMs or pre-trained language models, as well
as exploit the scalability of graph clustering algorithms.

69

7.3 Problem Formulation
In this section, we formally introduce our problem setting, as well as assumptions and
constraints.

Notations. Let G = (V , E , T , X , [Y]) represent a graph with its respective node set, edge
set, raw node-based text information, embedded node attribute information (e.g., some
embedding of a node’s text), and optional ground-truth cluster assignment. Further, let
N be the number of the nodes, M be the number of edges, K be the desired (or ground-
truth) number of clusters, d the dimension of the hidden representation, A ↔ RN→N be the
corresponding adjacency matrix, and X ↔ RN→d be a matrix representation of X .

Problem statement. Let F : (A, X) → ZN→d be a GNN-based encoder that outputs
d-dimensional node representations, and C : (Z, K) → [0, K]N be an embedding-based
clustering algorithm, e.g., k-means, pooling layer, where C may optionally be parameterized
and optimized end-to-end with the encoder. Then, the clustering assignments, KN→K can
be obtained as: K = C(F(A, X), K). K is assumed to be an imperfect assignment, i.e.,
there exist samples that are mis-assigned to clusters and/or cluster topics are noisy. We
seek to use the LLM’s world-knowledge and natural language understanding to improve K.
Given that K is already topology-aware due to the GNN encoder and semantic-aware since
pre-trained sentence transformers are used to encode the raw text, the LLM provides an
complementary source of information. Indeed, the performance of LLMs in zero-shot node
classification suggests that their world knowledge is well-suited for graph tasks. We assume
pre/co/joint-training is prohibitively expensive and only prompting is available to obtain
LLM feedback, and further make the reasonable assumption that there is a limited budget,
B, for API calls/prompting. Thus, our objective is to induce the best refined assignment,
Krefine, while remaining under budget. This problem setting is amenable to active learning,
which we introduce conceptually here but note that subsequent sections will discuss how
GCLR instantiates AL for clustering.

Active Learning. While much of deep learning is data-intensive and requires large labeled
datasets for strong performance, deep active learning seeks to maximize performance in a
setting where labels or feedback is expensive to obtain. AL consists of three key components:
a query function, Q, which determines which samples from the unlabeled data pool should be
selected for obtaining feedback, an oracle, which provides feedback to create a labeled dataset,
Dfeedback, and a training protocol, which defines a loss, Lfeedback, and update procedure for
how the model will incorporate said feedback.

Query functions [221, 222, 223] are broadly designed to identify the samples where labeling
will have the most impact. E!ective functions often use sample uncertainty, di”culty or

70

coverage to select points. The oracle serves as a proxy for an expensive but reliable labeling
procedure, for example human annotators or wet-lab experiments. The training protocol
is designed to ensure stability, and avoid over-fitting when operating over small batches of
data. While some graph AL strategies have been recently proposed, these methods focus on
semi-supervised node classification and are not directly applicable to our problem setting.

Moreover, we emphasize that while AL traditionally assumes that (i) the oracle is trust-
worthy, we do not know apriori the reliability of the LLM’s feedback and (ii) our problem
is unsupervised, so existing AL query functions, and training protocols may not be well-
suited [197, 224, 225]. Lastly, we note that while it is possible to receive dataset-level or
task-level feedback, we focus on node-level feedback as it is more scalable for larger graphs
(only a subset of nodes will receive feedback), and is more amenable with contrastive and
pooling-based graph clustering algorithms, as they already provide node-level embeddings
and assignments. In subsequent sections, the design of Q and Lfeedback for clustering on TAGs
is discussed in detail.

7.4 GCLR: Graph Clustering with LLM Refinement
In this section, we formally introduce GCLR, our framework for graph clustering with
LLM refinement (Fig. 7.1). We begin by discussing how to obtain useful feedback for
graph clustering from LLMs and then present how to identify and refine the initial solution
accordingly.

7.4.1 Eliciting Feedback from LLM for Graph Clustering

While feedback in traditional AL typically corresponds to an oracle selecting a label from a
predefined set of classes, it is less clear what form the feedback should take when performing
clustering. Intuitively, feedback should help improve the similarity of the queried node with
the cluster that it belongs to. However, the precise form of the feedback may vary, and its
unclear how to prompt the LLM to accurately ascertain this information.

To this end, we discuss the advantages and disadvantages of three di!erent strategies
for prompting the LLM to obtain clustering feedback. We begin by discussing a recently
proposed strategy for LLM guided text clustering.

Triplet-Based Prompting. ClusterLLM [226] is a recently proposed state-of-the-art
LLM guided text clustering method that first selects uncertain samples (e.g., queries), Qi, and
two random samples from each query’s two nearest clusters, and then prompts the LLM to
predict which of the two samples is “more similar” to Qi; the more similar sample is considered

71

(a) Triplet Based Feedback (b) Concept Based Prompt

(c) In-Context Based

Prompt

Figure 7.2: Example of LLM Feedback. Using the example graph in Fig. 7.3, we prompt
chat-gpt-3.5-turbo with di!erent strategies to demonstrate the importance of aligning
the LLM’s and GNN’s implicit similarity functions to obtain valid feedback. Indeed, we see
that triplet-based prompting can be unreliable as it does not allow the LLM to infer the
underlying similarity. For example, with the query, “Baboon” with triplets containing the
land animals from from Cluster 1 (starts with B) and aquatic animals from Cluster 2, the
LLM assigns Baboon to cluster 1 (Baboon, Bobcat, Archer Fish), which is consistent with the
graph solution. However, when we prompt chat-gpt-3.5 with a triplet containing aquatic
animals from Cluster 1 and land animals from Cluster 2 (Baboon, Bluegill, Antelope), the
LLM assigns the query to Cluster 2 as it is also a land animal. In contrast, we find that both
concept-based and incontext-based prompting are able to correctly infer the GNN’s similarity
function and provide valid feedback.

a “positive” sample and the other is a “negative” sample. Here, Dfeedback corresponds to the
set of triplets (query, positive, negative) determined by the LLM and Lfeedback is InfoNCE.
While such an approach can conceptually be applied to graph clustering, there are some
limitations.

Insofar as clustering requires learning a similarity function that can be used to partition
samples into meaningful groups, it is important that the oracle is aware of this function so
the resulting feedback is aligned to existing the partitioning. In text clustering, since both
the encoder (BERT, E5, etc) and the larger, oracle LLM (Chat-GPT, Llama) are text based
models, they share a similar prior for this similarity function. In contrast, when performing
graph clustering, the GNN incorporates topological information unavailable to the LLM and
may utilize a di!erent function that the LLM. Indeed, in Fig. 7.3, we construct a simple
synthetic example where the GNN and LLM utilize di!erent similarity functions to identify
concepts by design. We observe, in Fig. 7.2a, that the oracle (chat-gpt-3.5-turbo) provides

72

unreliable feedback when the triplet prompt contains random samples that do not overlap
with the GNN’s similarity function, but is reliable when the random samples are selected to
align with the LLM’s implicit similarity function.

Figure 7.3: Unaligned Notions of Simi-
larity. The following stochastic block model
graph has clusters that correspond to whether
a particular animal’s name begins with “A”
or “B.” However, an alternative clustering ac-
cording to “land” vs. “aquatic” animals is
also valid and more semantically interesting.
Indeed, when GPT-3.5 is asked whether a “Ba-
boon” is more similar to a “Bluegill” or “Ante-
lope,” it replies with “Antelope” as it is also a
land mammal. This emphasizes that (i) simple
pairwise comparisons may not be su”cient for
providing feedback and (ii) LLMs and GNN
clustering algorithms may utilize disparate no-
tions of similarity.

Finally, we note that the performance of
triplet-based feedback is closely tied to the
quality of the initial clustering solution, arti-
ficially handicapping the LLM’s performance.
Given that the initial clustering solution is
imperfect, randomly selecting samples from
the two closest clusters can create triplets
that do not actually represent the correspond-
ing clusters, leading the LLM to perform a
meaningless selection. Moreover, there is
a loose upper-bound of the triplet formula-
tion as the queries’ “correct” cluster must be
within the top-2 closest clusters. If this is not
the case, the LLM will necessarily have to
respond to an ill-formed triplet and will pro-
vide incorrect feedback. Due to the rapidly
increasing capabilities of LLMs, it is possible
that future LLMs will achieve perfect perfor-
mance on valid triplets, however, the error
incurred by ill-formed triplets is irreducible.

In-Context Similarity Learning. As
discussed above, it is critical that the LLM
can infer the similarity function implemented
by the GNN. Given the impressive in-context learning capabilities of LLMs [227, 228], we
consider a prompt that allows the LLM to directly infer it by providing several examples of
the node’s raw text and their corresponding cluster IDs, and the text of the unlabeled query
(See Fig. 7.2b for an example.) Here, the LLM can be seen as performing a prediction task
amongst pseudo-labels defined by the initial clustering, where Dfeedback = {([0, . . . K]|i ↔ Q}.
We note that the choice of Lfeedback is flexible and discuss it in detail later. Notably, by
ensuring that the prompt contains samples from all clusters, the LLM can (i) more holistically
infer what concepts underlie clusters and (ii) predict an assignment for a query that does
not belong to the top-2 clusters. This allows us to circumvent the previous issue where the
upper-bound on refined performance was restricted by the number of samples where the

73

preferred assignment was contained in the top-2 clusters.
However, directly inferring the similarity function from in-context examples becomes more

di”cult as the number of clusters grows as (i) the number of exemplars must correspondingly
reduce to remain within the context length and (ii) if the number of clusters is su”ciently
large, it is not possible to provide exemplars from all clusters. Furthermore, the selection
and ordering of exemplars can have a significant impact of the LLM’s ability to correctly
predict a query’s assignment, leading to potential loss of performance during fine-tuning.

Concept-based Prompting. To avoid the aforementioned issues with incontext-
prompting, we draw inspiration from topic modeling [229, 230] and design an additional
”concept-based” prompting strategy where we first prompt the LLM to infer the concepts that
were used to group samples and then create a prediction task where the LLM is prompted to
select amongst the generated concepts. (See Fig. 7.2b for an example.) To generate concepts,
we provide the LLM samples from each cluster and ask it to provide a ”title” and ”short
description” that explains how these samples are grouped together. These generated titles
and descriptions are then provided as options for the LLM to identify the most similar cluster
for a particular query. Notably, by providing the titles/descriptions of all clusters, we can
avoid the upper-bound encountered by triplets while simultaneously allowing the LLM to at
least partially infer the GNN’s similarity function.

Experimental Setup. We verify the e!ectiveness of the proposed feedback elicitation
strategies on several public graph datasets, where the provided node labels serve as ground-
truth cluster labels. mixtral-8x-7b is used as the oracle, and four di!erent graph clustering
backbones are used to obtain the initial clustering solutions. We sort the samples according
to the entropy of the distance to the two nearest clusters (a proxy for sample di”culty)
and prompt the LLM for each sample as per the discussed strategies. The accuracy of the
LLM’s solutions with respect to the ground-truth solution is reported, where the Hungarian
algorithm to align clusters to labels. Please see App. D.2 for example prompts, comprehensive
experimental details and dataset statistics.

Results. The following observations are made from Table 7.1. We observe that across
datasets and clustering methods, that the “concepts” strategy is the best or second best
performing prompting strategy most often. While In-Context prompting achieves comparable
performance on some datasets, we note that it is significantly more expensive. Indeed, every
InContext prompt contains multiple exemplars per cluster, while “concepts” only processes
these exemplars once to obtain the generated titles and descriptions, which are then directly
used in the prompt. “Triplets” is the cheapest strategy in terms of token length, but lags
behind on performance, failing to achieve the best performance on any dataset. Lastly, we
note that the GNN outperforms the LLM on full dataset (100th percentile) accuracy on 9/12

74

Table 7.1: Reliability of LLM as an Annotator. The accuracy of the GNN-based
clustering solution and three prompting strategies are reported at the 10\50\100-th most
di”cult percentile of the dataset. The best performance overall is bolded, while any
prompting-based method is colored if it exceeds the accuracy of the GNN, and the 2nd best
prompting based method is underlined.

Dataset Method GNN Concepts Incontext Triplets
Graph Only LLM Only

citeseer di!pool 32.1\36.2\49.7 36.2 \41.1 \49.1 34.6 \36.2 \46.7 29.2\34.1\44.0
dinknet 40.6\54.7\70.3 30.8\32.9\47 48.7\48.3\59.6 43.1\50.6\62.1
dmon 36.5\38.2\44.1 40.9\39.9\43.9 36.2\37.7\42.9 36.8\38\41.7
mincut 35.8\52.2\66.5 38.4\46.1\58.5 42.1\50.5\60.5 34.3\46.5\57.1

cora di!pool 32.6\40\54.7 35.6\36.0\37.7 34.4\36.6\50.2 33.7\36.9\48.8
dinknet 37.4\50.7\65.8 32.2\36.8\39 24.8\36.0\52.7 35.2\47\58.2
dmon 42.6\52.4\60.9 36.3\41.4\40.7 46.3\51.3\56.9 40\47.9\54
mincut 40\53.6\68.4 42.2\46.5\55.7 43.7\50.5\63.3 37.8\49.8\60.9

wikics di!pool 25.5\32.2\48.3 36.0\40.4\52.7 33.9\37.1\47.9 25.9\30.8\44.2
dinknet 37.7\51.2\66.5 51.2\56.5\64.8 35.8\36.9\51.1 35.0\44.5\54.8
dmon 28.1\31.2\36.9 55.2\55.2\57.2 39.9\41.3\41.3 28.7\31.2\35.8
mincut 36.5\24.4\26.9 31.9\29.6\29.8 37.5\27.9\31.0 32.4\24.1\25.2

settings, indicating that, in addition to being prohibitively expensive, prompting the LLM for
every node would not be as e!ective as the initial GNN solution. Indeed, there are several
situations where the LLM’s feedback is less e!ective than the GNN’s, highlighting that care
must be taken when updating the GNN.

7.4.2 Refining GNN-Based Clustering with Feedback

While the proposed prompting strategies help improve the LLM’s feedback, we must now
incorporate this imperfect feedback into the GNN to scalably improve the overall clustering
solution. Indeed, even with oracle feedback, it is not immediately guaranteed that the training
dynamics of di!erent graph clustering approaches will be readily refined and induce to better
solutions. We begin by discussing at a high-level how to fine-tune di!erent types of graph
clustering frameworks.

Finetuning Setup. While reconstructive [214, 215] and adversarial frameworks [216] were
initially popular for graph clustering, we focus on more recent contrastive [77, 217, 52, 78]
and pooling-based methods [209, 207, 208] as they are more scalable and performative.
Furthermore, there is extensive literature on fine-tuning contrastively pre-trained models
(typically for supervised tasks) that we can leverage when defining Lfeedback. Indeed, both
in-context and concept-based prompting induce a dataset, Dfeedback = {([0, . . . K]|i ↔ Q},
that consists of queried nodes and their predicted cluster assignments. Thus, we can consider

75

refinement as a supervised task with LLM-provided pseudo-labels.
When working with pooling-based methods (DMon, MinCut, and Di!Pool, etc), F directly

predicts the cluster assignment as the node features are pooled to the number of clusters. For
contrastive methods like DinkNet, we can initialize a classifier using parameterized cluster
centers or those obtained using KMeans. Then, given the classifier and Dfeedback, we can
naturally define Lfeedback(Dfeedback, F) using the cross-entropy loss. While other losses (triplet,
InfoNCE, SupCon) are certainly possible, we empirically find that cross-entropy is e!ective.
However, since Dfeedback is expected to contain incorrect labels, but the error-generating
process is unknown, naively training on the labels may diminish performance. Thus, we
consider the following simple but e!ective strategies for improving the finetuning performance.

Strategies for Handling Noisy Labels. Given that our prompting strategies induce a
classification task, we consider using the model’s predicted confidence in order to eliminate
potentially noisy labels. Namely, we compute the LLM’s confidence in its predictions by
obtaining log-probability of the top-2 tokens corresponding to cluster predictions. Alternative
prompting strategies and specialized losses have been proposed for better calibration [231,
232, 233] but we do not consider them due to their additional expense.

To further stabilize and improve training, we consider augmenting Dfeedback with samples
well-clustered by the GNN, where probits of the predicted clusters are used to identify
confident assignments. The loss is computed separately for the LLM-labeled and GNN-
labeled samples, and aggregated as εLfinetune,LLM + ϑLfinetune,GNN , where ε and ϑ are
constrained to be a convex combination. By varying ε and ϑ, we can express di!erent levels
of certainty in the feedback. Since the optimal weighting is not known apriori, creating a
simple deep ensemble [179] by varying ε, ϑ to train multiple independent models may further
improve performance. Though this incurs additional training expenditure, it is not substantial
with respect to training the initial model as clustering losses often approximate quadratic
operations, or obtaining feedback. We assess the e!ectiveness of each of these components
and GCLR as a whole in the following section. Additionally, we use a simple ensembling
strategy to further stabilize performance.

Namely, the loss is computed separately for the LLM-labeled and GNN-labeled samples,
and then computed as εLfinetune,LLM + ϑLfinetune,GNN , where ε and ϑ are constrained to
be a convex combination. By varying ε and ϑ, we can express di!erent levels of certainty
when updating the model. However, as we do not know a priori the optimal weighting,
we create a DeepEns that samples D di!erent ε, ϑ to train D independent models. To
reduce computational and memory costs, only the classifier or a limited portion of the GNN
encoder is updated and stored. We emphasize that our training expenditure is not substantial
with respect obtaining the initial model as clustering losses often approximate quadratic

76

Table 7.2: LLM Labels Provide Complementary Information For Active Learning.
To understand how GCLR improves clustering, we compare the performance of di!erent
feedback mechanisms (None, GNN pseudo labels, LLM feedback) and finetuning losses (triplet
vs. cross entropy). We observe that (i) while both LLM (9/12 Acc.) and GNN (10/12 Acc)
feedback generally improves performance over the initial starting solution, that LLM feedback
with the cross entropy loss achieves the best accuracy overall (8/12), though performance on
intrinsic metrics is more mixed; (ii) on Cora, where GNN feedback was more reliable than
LLM feedback, we see understandably, that using the GNN pseudo labels is more e!ective;
(iii) in contrast, on WikiCS, where LLM feedback is much more reliable, we see dominant
performance by LLM feedback with cross entropy loss; and (iv) we see see that the cross
entropy loss (9/12 Acc., 7/12 Modularity, 7/12 NMI) is more e!ective than the triplet for
finetuning with LLM feedback. Overall, our results demonstrate there is value to refining with
LLM feedback. We note that GCLR’s performance can further be improved with confidence
filtering (Table 7.4) and ensembling (Table 7.3).

(starting performance) \ GNN Feedback + Cross Ent. Loss \ LLM Feedback + Triplet Loss \ LLM Feedback + Cross Ent. Loss
Dataset Method Acc. (∈) NMI (∈) F1 (∈) ARI (∈) COND (∋) MOD (∈)

citeseer

di!pool (47.09) \54.69 \48.05 \58.96 (25.59) \25.94 \21.50 \26.84 (23.08) \23.57 \14.65 \19.70 (43.09) \43.33 \33.22 \41.41 (0.23) \0.23 \0.25 \0.24 (0.56) \0.56 \0.45 \0.50
dinknet (66.46) \66.43 \67.36 \67.40 (43.08) \43.30 \19.16 \36.97 (42.43) \41.30 \16.37 \27.16 (60.39) \60.58 \42.49 \47.91 (0.07) \0.07 \0.29 \0.09 (0.70) \0.70 \0.51 \0.62
dmon (47.89) \49.85 \48.75 \49.87 (28.49) \28.77 \27.11 \27.12 (24.29) \24.61 \18.86 \14.46 (43.65) \43.71 \34.14 \29.87 (0.19) \0.19 \0.25 \0.15 (0.60) \0.60 \0.45 \0.47
mincut (64.18) \66.70 \69.82 \67.51 (44.41) \46.21 \40.48 \39.60 (41.95) \43.25 \38.54 \35.81 (61.72) \62.11 \59.54 \59.81 (0.08) \0.09 \0.13 \0.17 (0.73) \0.73 \0.67 \0.64

cora

di!pool (59.97) \63.6 \43.38 \51.35 (43.46) \42.70 \20.97 \22.21 (36.58) \35.65 \7.83 \6.49 (56.76) \55.64 \29.3 \29.05 (0.24) \0.25 \0.38 \0.32 (0.60) \0.60 \0.33 \0.34
dinknet (68.26) \66.84 \67.32 \65.16 (51.98) \50.87 \25.01 \23.42 (44.21) \40.50 \15.16 \9.25 (62.09) \59.20 \41.86 \27.40 (0.12) \0.11 \0.30 \0.08 (0.70) \0.67 \0.49 \0.29
dmon (57.56) \60.27 \59.06 \56.70 (41.60) \42.24 \30.18 \30.06 (33.76) \34.64 \20.66 \13.67 (50.94) \51.40 \39.44 \29.40 (0.27) \0.26 \0.38 \0.12 (0.56) \0.58 \0.42 \0.33
mincut (64.17) \66.63 \59.91 \61.62 (48.92) \48.92 \39.74 \41.61 (40.35) \40.35 \29.43 \30.54 (58.33) \58.33 \47.28 \54.01 (0.14) \0.14 \0.21 \0.28 (0.70) \0.70 \0.56 \0.54

wikics

di!pool (43.15) \49.69 \55.44 \58.03 (26.27) \26.36 \37.20 \35.03 (18.87) \19.50 \31.10 \26.28 (39.88) \39.70 \41.12 \46.48 (0.34) \0.35 \0.30 \0.34 (0.48) \0.47 \0.36 \0.44
dinknet (66.80) \73.65 \67.48 \74.00 (49.00) \51.84 \47.49 \51.25 (47.80) \53.04 \46.18 \51.57 (56.23) \63.06 \56.97 \63.06 (0.23) \0.21 \0.28 \0.23 (0.55) \0.55 \0.52 \0.54
dmon (38.60) \39.68 \43.28 \51.87 (27.47) \27.49 \29.33 \32.51 (20.55) \20.65 \27.48 \31.04 (34.02) \34.18 \34.48 \36.49 (0.48) \0.47 \0.42 \0.26 (0.33) \0.33 \0.33 \0.31
mincut (24.70) \32.84 \38.52 \46.36 (6.14) \8.32 \17.99 \16.52 (-0.37) \-0.32 \18.02 \4.8 (7.91) \8.45 \24.71 \24.36 (0.04) \0.04 \0.45 \0.47 (0.03) \0.05 \0.30 \0.27

operations, for example modularity maximization. Lastly, we note that hyper-parameter
tuning or early-stopping on unsupervised problems can be di”cult as there is not necessarily
a validation set available. To this end, we use the conductance, an extrinsic, label free metric,
throughout our experiments to tune the learning rate and perform early stopping. We assess
the e!ectiveness of each of these components and GCLR as a whole in the following section.

7.5 Experiments
In this section, we verify the e!ectiveness of GCLR in refining graph clustering solutions
across several public datasets with di!erent graph clustering algorithms.

Experimental Setup. Our set-up is as follows. Baselines. We consider the following
graph clustering baselines: MinCutPool [207], DMoN [209], Di!Pool [208], and DinkNet [77].
Metrics. As we use public datasets with available ground-truth clustering, we report accu-
racy, Normalized Mutual Information, F1, and Adjusted Rand-Index between the predicted
and labeled clusters. We intrinsically assess the clustering quality using conductance and
modularity (see App D.3 for their precise definitions). Datasets. We provide the dataset
statistics in Table D.4. Training. Both the initial GNN and subsequently finetuned models

77

are trained with early-stopping and the learning rate is tuned amongst 1e-4 and 1e-3.
GCLR. Unless otherwise noted, we use mixtral-8x-7b as the oracle LLM and seek

feedback on at most 10% of the nodes in the dataset. The query function, Q, is defined
to select nodes according to prediction entropy [222]. Here, high entropy nodes are less
well-clustered, and labeling them would provide useful information. ε and ϑ are both set to
0.5, unless otherwise noted. Results are averaged over 10 seeds.

Results. We begin by confirming that the LLM provides valuable information through
its feedback by demonstrating, in Table. 7.2, that subsequent finetuning not only improves
performance over the starting clustering solution but also over finetuning on GNN pseudo
labels, when reliable. Additionally, we find that using the cross entropy loss is more e!ective
than the triplet loss when finetuning using the LLM feedback. This is in contrast to
ClusterLLM, which focused on triplets. Overall, this suggests that GCLR does provide a
viable strategy for improving performance clustering performance.

Observation 2. Next, we seek to understand how filtering samples according to confidence
can improve GCLR’s performance.

We do note that both the GNN and LLM feedback are not guaranteed to be calibrated,
but nonetheless empirically find their confidences useful. In particular, in Table. 7.4, we set
ε = 0.5 and ϑ = 0.5, and consider 2 di!erent filterings : one where the GNN’s confidence
interval is high and the other where the LLM’s confidence interval is high. We find that
updating the model usin only high confidence LLM feedback (80th percentile) and GNN
feedback at lower percentile improves the accuracy 8/12 times. We posit that the relatively
large set of low confidence GNN samples help stabilize training, while the high confidence
LLM feedback helps enhance the overall clustering solution.

Observation 3. In settings where the LLM’s feedback is less reliable than the GNN’s, it is
possible to harm the initial clustering solution when updating the intial clustering solution.
For example, in Table 7.1, on Cora, the LLM’s feedback is less reliable than the GNN’s,
and in Table 7.2, we see finetuning on GNN feedback leads to better performance than the
LLM’s. However, we note that even if the LLM’s feedback is unreliable it may still contain
valuable information. To this end, we create a simple deep ensemble that captures di!erent
levels of certainity in either source’s feedback by varying ε and ϑ when aggregating the
loss. In particular, we train 5 di!erent models, where we sample ε ↔ [0, 0.1, . . . 0.5] and
ϑ ↔ [0.5, 0.6 . . . 1] at evenly spaced intervals. In Table 7.3, we show that using this ensemble
can improve performance over a single model where ε = ϑ = 0.5, and see that GCLR
improves over the initial clustering solution as desired.

Observation 4. While the above experiments identify query samples according to their
entropy, other query functions are viable. In Table. D.1, we consider the following alternative

78

Table 7.3: Ensembling Improves Performance with Unreliable Feedback. Even when
the LLM feedback’s is unreliable relative to the GNN’s, it can still be valuable as there may
be samples where the LLM corrects the GNN’s misclustered samples. However, as we do
not know beforehand how reliable either feedback source is, we create a deep ensemble by
sampling di!erent ε and ϑ to simulate di!erent levels of confidence in each ensemble source.
On Cora, where the LLM’s feedback is known to be unreliable, we find that ensembling
improves the performance of over a single model where ε = 0.5 and ϑ = 0.5, and surpasses
the performance of the starting solution as desired. Overall, this indicates that GCLR can
help improve the initial clustering solution even with unreliable feedback.

Method Ens? Acc. NMI F1 ARI COND MOD

di!pool
starting 59.97 43.36 36.58 56.76 0.24 0.60

✂ 51.35 22.21 6.49 29.05 0.32 0.34
✃ 61.88 45.74 38.97 58.20 0.22 0.62

dinknet
starting 68.26 51.98 44.21 62.09 0.12 0.70

✂ 65.16 23.42 9.25 27.40 0.08 0.29
✃ 69.36 52.66 45.28 63.12 0.12 0.70

dmon
starting 57.56 41.60 33.76 50.94 0.27 0.56

✂ 56.70 30.06 13.67 29.40 0.12 0.33
✃ 60.60 43.25 37.60 52.41 0.24 0.58

mincut
starting 64.17 48.92 40.35 58.33 0.14 0.70

✂ 61.62 41.61 30.54 54.01 0.28 0.54
✃ 64.63 48.96 40.77 58.79 0.14 0.70

query functions: random sampling, sampling the least confidence queries, and sampling queries
with the smallest margin between the top-2 predicted clusters. While random sampling
incurs some loss in performance, we find that margin sampling performs similarly to entropy
sampling and sampling according to least confidence improves performance in some cases.

79

Table 7.4: E!ect of Confidence Filtering. While we do not know the reliability of either
the LLM or GNN’s feedback apriori, we can use their confidence to select samples where the
feedback is more likely to be reliable to avoid finetuning on misleading samples. Here, we
filter samples based on the ascending confidence percentile, so the 80th percentile corresponds
to samples whose confidence is greater than or equal to 80% of total samples. We observe
that filtering improves performance without filtering (11/24 Acc.) and over the starting (no
finetuning) solution (17/24 Acc.). In particular, 80% LLM and 20% GNN filtering improves
performance over no filtering (8/12 NMI, 10/12 Mod.) On WikiCS, no filtering performs the
best, suggestive of the LLM’s better reliability. Best performance is bolded and accuracy of
the starting solution is in parentheses.

Dataset Method LLM GNN Acc. NMI F1 ARI COND MOD

citeseer

di”pool
(47.09)

20 80 53.04 22.67 15.06 34.93 0.31 0.45
80 20 56.71 26.94 23.18 41.90 0.21 0.56

0 0 58.96 26.84 19.70 41.41 0.24 0.50

dinknet
(66.35)

20 80 67.61 38.14 32.03 50.99 0.08 0.64
80 20 67.43 40.23 37.88 56.47 0.10 0.67

0 0 67.40 36.97 27.16 47.91 0.09 0.62

dmon
(47.89)

20 80 51.21 26.85 18.27 31.64 0.15 0.50
80 20 51.14 30.06 25.30 41.72 0.17 0.59

0 0 49.87 27.12 14.46 29.87 0.15 0.47

mincut
(64.17)

20 80 61.42 31.79 26.94 47.84 0.26 0.56
80 20 65.40 41.32 38.01 59.37 0.13 0.69

0 0 67.51 39.60 35.81 59.81 0.17 0.64

cora

di”pool
(59.97)

20 80 55.28 29.53 16.07 39.33 0.39 0.39
80 20 61.94 41.64 36.77 55.67 0.27 0.57

0 0 51.35 22.21 6.49 29.05 0.32 0.34

dinknet
(66.20)

20 80 67.15 36.21 24.09 42.83 0.13 0.50
80 20 67.87 48.03 36.82 52.04 0.12 0.66

0 0 65.16 23.42 9.25 27.40 0.08 0.29

dmon
(57.55)

20 80 58.07 36.72 24.99 40.19 0.23 0.47
80 20 62.06 41.79 35.56 50.52 0.25 0.57

0 0 56.70 30.06 13.67 29.40 0.12 0.33

mincut
(64.17)

20 80 61.04 38.40 28.22 48.95 0.34 0.50
80 20 64.55 47.15 38.89 57.82 0.19 0.65

0 0 61.62 41.61 30.54 54.01 0.28 0.54

wikics

di”pool
(43.34)

20 80 51.53 27.52 17.87 37.83 0.41 0.39
80 20 50.60 24.03 16.68 34.87 0.40 0.42
0 0 58.03 35.03 26.28 46.48 0.34 0.44

dinknet
(71.25)

20 80 66.51 45.90 41.76 54.10 0.26 0.53
80 20 66.79 48.39 41.85 55.66 0.23 0.54

0 0 74.00 51.25 51.57 63.06 0.23 0.54

dmon
(37.515)

20 80 42.81 27.14 19.03 30.33 0.37 0.29
80 20 40.92 28.11 20.24 32.39 0.46 0.33

0 0 51.87 32.51 31.04 36.49 0.26 0.31

mincut
(24.70)

20 80 42.79 19.16 7.50 17.07 0.27 0.23
80 20 43.58 14.74 3.77 19.57 0.30 0.14
0 0 46.36 16.52 4.80 24.36 0.47 0.27

80

Observation 5. While the above experiments identify query samples according to their
entropy, other query functions are viable [222, 223]. In Table. D.1, we consider the following
alternative query functions: random sampling, sampling the least confidence queries, and
sampling queries with the smallest margin between the top-2 predicted clusters. While
random sampling incurs some loss in performance, we find that margin sampling performs
similarly to entropy sampling and sampling according to least confidence actually improves
performance in some cases.

Observation 6. Traditional active learning generally benefits from increasing the labeling
budget as the oracle provides additional reliable feedback. In contrast, we find in Table. D.2
that increasing the budget does not have a substantial impact on performance. We believe
this is partially due to an imperfect oracle and the bootstrapping that occurs from stabilizing
training with GNN provided pseudo-labels.

7.6 Conclusion
In this work, we proposed GCLR to improve graph clustering solutions on text attributed
graphs by eliciting feedback from LLMs. In order to avoid large prompting expenditure,
GCLR actively queries the LLM on only on uncertain nodes and uses various prompting
strategies to obtain clustering feedback. This feedback is then used to update the initial
GNN based clustering solution. Since LLM and GNN feedback can be unreliable, confidence
filtering and ensembling are used to further improve performance. Given that GCLR’s e”cacy
is constrained by the quality of the LLM provided feedback, future directions of work include
designing prompting/training strategies to improve the reliability of the LLM oracle.

81

CHAPTER 8

Exploring the Robustness of LLM+GNN
models on text-attributed graphs

8.1 Introduction
Having discussed graph clustering on text-attributed graphs in the preceding chapter, we
turn our attention to the equally important task of node classification on TAGs. Indeed,
LLMs [64, 65] are increasingly being combined with GNNs [66, 67, 68, 69, 70] to perform
to node classification in this setting [75, 76], due to their impressive world knowledge,
reasoning and natural language understanding capabilities [234, 235, 236, 237, 238, 239, 240,
241, 242]. While such joint approaches generally report improved performance, e.g., better
node classification accuracy, this is a coarse-grained analysis of a model’s generalization
ability and the mechanisms by which LLM+GNN models makes their predictions remain
relatively under explored. Indeed, GNNs, like vision models, are well-known to be susceptible
to adversarial attacks [33], i.e. imperceptible input perturbations designed to decrease
performance. However, to the best of our knowledge, the robustness of LLM+GNNs has
been relatively under studied with respect to (i) traditional structural or node attribute
attacks [36, 37] or (ii) natural language perturbations to text attributes [243], a new avenue
of attack for joint models. To this end, this chapter rigorously explores the robustness of
di!erent types of LLM+GNN to both attack avenues, and outlines several interesting avenues
for further research.

8.2 Background & Related Work
In this section, we briefly discuss relevant background on graph learning for text-attributed
graphs, graph adversarial attacks and textual attributes. For an in-depth discussion, please
see the following surveys respectively: [213], [244] and [245].

82

8.2.1 LLM+GNN Models

Recent works on LLM+GNN models can be broadly categorized into the following taxon-
omy [9]: (i) enhancers, which use both LLMs and smaller pretrained language models (PLMs)
to obtain better node attribute embeddings prior to training the GNN [70, 246, 247], (ii)
predictors, which provide the LLM with textual and structural information in order to directly
make predictions[71, 73, 72] and (iii) aligners, which aims to establish a jointly aligned
subspace that can be used for other tasks [67, 248, 69]. Insofar as aligners often require paired
data, most LLM+GNNs focused on node classifications are either enhancers or predictors.

For example, [205] recently proposed TAPE, an enhancer consists of prompting, embedding
and training phases. First, TAPE prompts an LLM (Llama-2, GPT) to obtain node label
prediction and corresponding explanation. Then, a PLM (DeBerta [249], RoBerta [250]) is
finetuned on a node classification loss to obtain embeddings for the explanation, prediction
and original text. Finally, the embeddings extracted from the PLM are used to train
a GNN to make predictions. Notably, the obtained node embeddings can substantially
improve performance over previously used “shallow” embeddings, such as bag-of-words [4] or
TF-ID [251], by infusing semantic awareness into the model.

In contrast, predictors must ensure that the input to the LLM contains structural informa-
tion as the LLM will directly make the final prediction. As an example, [73] recently proposed
GPT4GRAPH, which uses the graph markup language and summaries over neighborhood
node attributes to capture topological information when prompting the LLM for a prediction.
Finding an appropriate natural language graph representation is an open challenge and several
other strategies have been proposed including natural narration, alphabetizing node ids, and
creating graph syntax trees [72]. On datasets with strong textual attributes, predictors have
impressive zero-shot performance relative to traditional GNNs. However, due to limited
context length, it can be challenging to include multi-hop information or capture long-range
dependencies. This issue will become less problematic as LLMs which support larger windows
are developed.

8.2.2 Graph Adversarial Attacks

Like their image counterparts, graph adversarial attacks seek to create “imperceptible”
perturbations which negatively e!ect performance [36, 37]. Attacks are considered targeted
when the goal is to misclassify a particular node, and untargeted when the goal is to decrease
performance overall. Attacks are further categorized as poisoning or evasion , depending on if
the perturbed input is used during or after training, respectively. Typically, structural attacks
are constrained to modify only a portion of the overall edges, as a proxy to imperceptibility.

83

(a) LLM-As-Enhancer (b) LLM-As-Predictor

Figure 8.1: LLM+GNN Methods O!er New Avenues of Vulnerability. While
combining LLMs and GNNs for tasks on text-attributed graphs has led to the improved
performance, we note that both LLM-As-Enhancers and LLM-As-Predictors contain new
avenues for adversarial attacks. Here, we show traditional GNN-only or LLM-only avenues in
orange, and highlight new avenues in red. (Figured adapted from [9]).

It remains an open question if such a constraint is able to preserve the semantics of the
original class label [43]. Indeed, if semantics are altered and the classifier correctly predicts
the new semantically consistent label, then the perturbed sample can no longer be considered
adversarial. In addition to structural attacks, it is possible to attack the node attributes,
where perturbations are restricted to some normed ball. In the case of untargeted attacks,
the accuracy over the entire test set should be maximally harmed, while in targeted attacks,
the goal is to change the label of a particular node.

8.3 Perturbations
In this section, we introduce the text and structural perturbations used throughout our study.

8.3.1 Natural Language Perturbations

As discussed above, existing attacks are not directly designed for text-attributed graphs nor
LLM+GNNs. However, directly, perturbing natural language o!ers an interesting perspective
as it is possible to perform semantically consistent perturbations, as one can broadly gauge
if the semantics of the text have changed. In contrast, when changing graph structure, as
recent work has argued, most changes are in-fact not semantically consistent. In addition
to academic interest, perturbing text can be a more natural threat model, where attackers
may try to embed keywords or phrases to trigger certain responses; potentially exploiting

84

inherited vulnerabilities of LLMs to prompt injection, backdoor [252] or jailbreaking [253]
attacks.

Indeed, it was recently shown that LLMs used in search engine [254] or product recommen-
dation systems [255, 256] can be manipulated to return specific items that may be factually
inaccurate or not align with the users interests. For example, [257] recently demonstrated
that adding ”strategic text sequences” can lead to previously low-ranked products to be
highly listed. Given that text-attributed graphs are often found in recommendation settings,
such vulnerabilities are particularly concerning as such strategies may be combined with
structural perturbations to increased detriment.

Here, we consider both adversarial text attacks and semantics preserving text perturbations,
and compare the e!ects of both strategies on exemplar LLM-As-Predictor and LLM-As-
Enhancer methods. We begin by discussing semantic preserving text perturbations.

8.3.2 Semantics Preserving Text Perturbations

While adversarial attacks necessarily seek to generate inputs challenging for the model, often
by performing gradient descent against the loss, here, we consider a more benign setting that
seeks to understand the sensitivity of models to artifacts of the provided text attributes. Our
investigation is motivated by findings that PLMs can be sensitive to mis-spellings, l33t-speak,
and synonym substitution amongst other natural modifications. While LLMs display more
robustness to such modifications, they are nonetheless susceptible to seemingly unimportant
phrasing alterations such as changing the order of multiple choice options or few-shot examples.
Indeed, [258] recently argued for performing multi-prompt evaluation, as models exhibit
considerable variance when tasks are presented using di!erent prompts. Insofar as Enhancers
rely upon PLMs to obtain semantic embeddings and Predictors rely upon LLMs to output
decisions, it is important to understand how such perturbations a!ect performance and how
incorporating structural information, through neighborhood aggregation or tailored prompts,
may influence performance.

While the aforementioned strategies are designed to broadly preserve the intent of the
un-attacked text, [259] have argued that intent may in fact be harmed during synonym
substitution, leading to malformed adversarial examples. This issue may be exacerbated
under more challenging natural perturbations. Recognizing this limitation, here, we directly
prompt an LLM to create the altered text, taking care to instruct the LLM to avoid altering
the semantics or unique features. We consider five such perturbations whose prompts are
shown in Table. 8.1. We manually inspected the generated text on a subset of examples to
ensure that the semantics were indeed not altered and adjusted the prompt to get the desired

85

Table 8.1: Prompts for Generating Natural Perturbations. Motivated by how users
may seek to rephrase their queries, here, we consider five natural perturbations and provide
the prompts we used to generate the perturbed text. For readability, the instructions are
shown only once but included in all perturbations, while the example is adapted accordingly.

Perturbation Prompt Instruction
Synonym Sub-
stitution

Replace key terms with synonyms while preserving
meaning. Please avoid altering the primary intent or
unique features, and follow the format EXACTLY as
shown in the examples when answering, making sure to
not provide extra information. This is very important
for the response to be parsed correctly. Thanks!

[EXAMPLE]
Original Text: ”The quick brown fox jumps over the
lazy dog.”
[EXAMPLE ANSWER]
{”modified”: ”The speedy brown fox leaps over the lazy
dog.”}

Paraphrasing Paraphrase the text, preserving primary intent and
unique features.

Adding Noise Insert irrelevant sentences or phrases into the text. En-
sure additions are unrelated to main topic.

Truncation Shorten the text by removing non-essential details; keep
the key message clear.

Reordering Rearrange sentence order while maintaining coherence.
Key points should remain clear.

behavior. (See Table. 8.2 for an example.)

8.3.3 Adversarial Text Perturbations

As discussed in Sec 8.2, a variety of adversarial strategies have been proposed to decrease
the performance of the PLMs and LLMs. Here, we focus on PLM attacks that perturb
the natural language input and use the perturbed input to evaluate both Enhancers, after
embedding the perturbed input, and Predictors, by prompting the LLM with the perturbed
input. We leave the exploration of adversarial prompt engineering techniques for future work.

Adversarial PLM attacks can broadly be categorized by granularity of their perturbations,
namely, sentence-level, word-level or character-level. Here, we consider four representative
PLM attacks, using the OpenAttack library (see Table. 8.3.3), and introduce them briefly.
VIPER [260] is a black-box character-level attack that replaces individual characters with
those that appear visually similar, e.g., ”o → 0.” Though humans are fairly robust to such
visual substitutions, PLMs appear to struggle and LLMs have also demonstrated vulnerability
to prompt reformatting, including changes around adding spaces or changing cases [261, 258].

86

Table 8.2: Natural Perturbation Example on OGBN-Products.

Perturbation Description
None Historic Stage Routes of San Diego County is a product of the County

of San Diego Department of Parks and Recreation and their Parks
Society, many generous historical societies, historians, and people
who love the stage routes. Ellen L. Sweet is a local researcher with
extensive knowledge of San Diego history. Lynne Newell, PhD, is an
archaeologist...

Synonym Substitution Vintage Stage Routes of San Diego County is a product of the County
of San Diego Department of Parks and Recreation and their Parks
Association, many charitable historical organizations, scholars, and
people who love the stage routes.

Adding Noise The historic Route 66 is one of the most famous roads in the US.
Historic Stage Routes of San Diego County is a product of the County
of San Diego Department of Parks and Recreation and their Parks
Society, many generous historical societies, historians, and people who
love the stage routes...

Truncation Historic Stage Routes of San Diego County is a product of the County
of San Diego Department of Parks and Recreation and their Parks
Society, authored by Ellen L. Sweet and Lynne Newell, PhD.

Paraphrasing San Diego County’s Historic Stage Routes is a collaboration between
the County of San Diego Department of Parks and Recreation, their
Parks Society, various historical societies, historians, and stage route
enthusiasts. Local historian Ellen L. Sweet and archaeologist Lynne
Newell, PhD, and former county historian...

Reordering Lynne Newell, PhD, is an archaeologist and the former county historian,
and Ellen L. Sweet is a local researcher with extensive knowledge of
San Diego history. They are also the authors of Ranchos of San Diego
County. Historic Stage Routes of San Diego County is a product of
the County...

HotFlip [262] is a word and character-level white box attack that uses a combination of
adversarial gradient descent and beam search to perform ”flips”, i.e. character changes, that
harm classifier performance. TextFooler [263] is a black-box attack that uses an importance
score to identify words that are influential in the classifier’s decision and then uses synonym
substitution, part-of-speech verification to ensure that the perturbed sentence is semantically
consistent. Bert-Attack [264] is a black-box method that first computes the importance scores
of di!erent words to select a set of candidates for replacement and then uses BERT (without
any task finetuning) to help identify replacements that still respect the surrounding context.
In practice, BERT-Attack proven to be a strong baseline.

87

Table 8.3: Overview of Adversarial Attack Methods. Reproduced from [15].

Method Type Level Description
BERT-ATTACK Score Word Greedy contextualized word substitution
HotFlip Gradient Word, Char Gradient-based word or character substitution
TextFooler Score Word Greedy word substitution
VIPER Blind Char Visually similar character substitution

8.3.4 Structural Perturbations

While both feature and topology (structural) attacks have been studied to craft adversarial
examples for GNNs, structural attacks are better researched and typically more harmful.
This e!ectiveness has been attributed to several causes, including decreasing homophily, the
amplifying e!ects of message passing and the creation of inconsistent samples [265, 88]. As
discussed in Sec. 8.2, a variety of methods have been proposed, with various attack model
assumptions. Here, we consider a whitebox setting so that we may evaluate the robustness of
Enhancers and Predictors under the strongest attack setting.

To ensure e”ciency to large-scale graphs, we utilize the Projected Randomized Block Co-
ordinate Descent (PRBCD) adversarial attack [266], which uses randomized block coordinate
descent to avoid simultaneously computing the gradient of O(n2) potential edge perturba-
tions, and provides strong attacks across graph-size. We perform a targeted evasion attack
using PRBCD for Enhancers and use the perturbed graph when crafting structurally aware
prompts with Predictors. In this setting, we are primarily interested in the transferability
of GNN-based structural attacks to Predictors so we do not consider other attack models.
Alternative poisoning and black or gray box settings are left to future work.

8.4 Experiments
In this section, we evaluate the e!ects of the structural and text-based perturbations on
exemplar LLM-As-Enhancer and LLM-As-Predictor strategies. We note that while there
has been growing research in more sophisticated strategies for both these paradigms, we
leave them to future work due to the prohibitive computational burden incurred during our
comprehensive evaluation.
Experimental Set-up. Datasets. All experiments are conducted on four datasets for 5 seeds
unless, otherwise noted. The test-set is sub-sampled to 500 samples, such that all classes are
equally represented. Models. For the baseline GNN performance, we use two types of shallow
embeddings, Bag-of-Words (bow) and term frequency-inverse document frequency (tfidf). We
further consider 4 di!erent parameterized networks, RevGAT, SAGE, GCN and MLP, as

88

(a) Unperturbed Performance. Results for the MLP and RevGAT-based Enhancer and a
Llama-3.1-8b-instruct Predictor. The unperturbed accuracy is typically highest with Enhancer
(RevGAT), followed by Enhancer (MLP) and Predictor (Llama). Enhanced embeddings outperform
shallow embeddings (bow and tfidf). Although the predictor occasionally surpasses the performance
of Enhancer with shallow embeddings, it struggles to be a top performer overall.

(b) Perturbed Performance. Average performance over five natural and four adversarial text
perturbations. While Predictor struggled to achieve the best performance, it is generally less
sensitive to text perturbations, with some exceptions on Cora and Products. The MLP shows the
most sensitivity to perturbations, followed by RevGAT. In some cases, Predictor even improves
performance.

Figure 8.2: Aggregated Performance on Text Perturbations.

structure free option [205]. For the Enhancer, we utilize bert-base-uncased and e5-large-v2
as the underlying PLMs from which node attributes are obtained. For the Predictor, we
use simple structurally aware prompts introduced in [267], which incorporate one-hop or
two-hop neighbhors into the prompt. Note that using the entire neighborhood can exhaust
the context-length if large, so a fixed number of nodes are randomly sampled from k-hop
neighborhood. l lama-3.1-8b-instruct is used as the predictor. Textual Perturbations. We use
the OpenAttack library [15] with default settings. A bert-base-uncased model is finetuned
for 3 epochs for the surrogate trained PLM classifier. Perturbations are generated for seed
and corresponding split. Natural Perturbations. Using the prompts discussed in Sec. 8.3.2,
we prompt llama-3.1-8b-instruct to generate the perturbed text. Structural Perturbations.

89

Table 8.4: Predictor Performance on Textual Perturbations. The change in per-
formance of the Predictor (llama-3.1-8b-instruct) with respect to the clean data is shown,
where improvements over 1% are shown in green and decreases over 1% are shown in red.
We observe that adversarial text-attacks are relatively e!ective on Cora and Products, but
have limited, even positive e!ect, on Arxiv 2023 and Arxiv. Natural perturbations do not
significantly harm performance, with the exception of Cora.

Dataset Prompt BertAttack HotFlip TextFooler Viper Noise Paraphrase Reordering Syn. Sub. Trunc.
Arxiv 2023 onehop 0.38 0.28 -0.40 1.98 1.46 0.00 1.50 -0.58 3.08

twohop 0.36 -0.52 -0.54 -0.24 0.06 -0.04 0.08 -0.46 3.50
zeroshot 0.88 2.30 1.16 2.06 2.86 0.74 0.06 0.26 6.28

Cora onehop -5.96 -0.85 -3.53 -3.88 -2.76 -1.55 -2.03 -0.58 -0.44
twohop -1.18 -2.26 -2.28 -0.56 -1.54 1.00 -0.26 1.46 1.42
zeroshot -5.48 -4.56 -5.68 -6.26 -1.14 -1.94 -0.96 -1.78 -3.88

Arxiv onehop 0.02 -0.30 0.65 -0.28 -0.30 -0.85 0.33 1.45 1.40
twohop 0.06 0.68 -1.02 -0.35 0.86 -0.62 0.50 -1.06 -0.84
zeroshot -0.48 0.82 0.17 2.58 0.98 1.50 -0.13 0.35 4.00

Products onehop -1.40 -1.58 -2.28 -0.50 -1.43 -0.20 0.45 -0.70 0.50
twohop -1.98 -0.68 -2.78 0.38 -0.68 0.10 0.75 0.88 -0.60
zeroshot -0.92 -1.58 -1.35 -0.27 -0.35 -0.85 -0.80 0.05 -0.60

As discussed above, we use the PRBCD attack. The attack strength is set to 5% of the
total number of edges. We perform a targeted attack on the test nodes so as to model the
strongest attack setting.

Here, we are interested in the e!ectiveness and transferability of di!erent perturbations
with respect to Enhancers and Predictors. We make the following observations.

Observation 1. Predictors demonstrate less sensitivity to textual perturbations. As shown in
Fig. 8.4, Enhancers have better performance than the Predictor on the unperturbed data and
overall. However, when evaluating the average performance on the five natural perturbations
and four text perturbations discussed above, we observe that the Predictor experiences less
loss of performance on most datasets and prompts, even improving performance on the Arxiv
2023 dataset, relative to the unperturbed data. In contrast, we observe that Enhancer(MLP)
loses the most performance. We hypothesize that the MLP is most prone to overfitting to the
training data, and, unlike the RevGAT model, are unable to use neighborhood aggregation
to mitigate the e!ects of the perturbation.

Observation 2. E”ectiveness of Individual Text Perturbations on Predictors. While
Predictors were relatively una!ected by text perturbations, we observe that adversarial
attacks do seems to be relatively more detrimental than natural perturbations, especially
on the Cora and Products dataset. The advanced reasoning capabilities of LLMs bolsters
performance against such perturbations. Notably, there does not seem to be a consistent
e!ect of prompt style on performance, indicating that incorporating additional neighbor
information may not be particularly useful in this setting particular attack setting.

90

Table 8.5: Enhancer Performance on Text Perturbations. Results show that all
perturbations except reordering reduce performance, with truncation causing the most
significant average loss. Adversarial attacks e!ectively degrade model performance across
most settings, though shallow embeddings on Cora and Arxiv 2023 are less a!ected, possibly
due to the limited impact of new characters or words introduced by the attacks using. Further
investigation is suggested.

Adversarial Perturbation Natural Perturbation
Model Dataset Sentence Model BertAttack HotFlip TextFooler Viper Adding Noise Paraphrasing Reordering Synonym Substitution Truncation

M
LP

Arxiv 2023 bert-base-uncased -2.78 -2.92 -5.30 -1.72 -1.84 -0.66 -0.66 -1.44 -4.72
e5-large-v2 -3.86 -5.88 -5.98 -0.02 -2.64 -0.50 -0.12 -1.54 -4.12
bow -2.53 -0.95 -2.65 -0.95 -0.76 -1.85 -0.53 -2.63 -5.80
tfidf 0.00 0.00 0.00 0.00 -0.42 -1.74 -0.08 -2.76 -5.84

cora bert-base-uncased -9.80 -7.82 -15.92 -2.50 -4.46 -3.66 0.00 -2.76 -4.54
e5-large-v2 -12.32 -7.62 -10.06 -2.06 -4.62 -1.80 -0.14 -3.04 -5.32
bow 0.00 0.00 0.00 0.00 -1.14 -1.34 -0.16 -3.34 -4.70
tfidf 0.00 0.00 0.00 0.00 -1.64 -1.84 -0.74 -3.86 -4.02

ogbn-arxiv bert-base-uncased -3.51 -4.30 -6.24 -1.72 -1.84 -1.12 -0.25 -0.35 -5.16
e5-large-v2 -2.83 -4.63 -4.10 -0.23 -2.23 0.10 0.23 -0.10 -2.50
bow -5.34 -4.26 -5.96 -6.62 -0.34 -1.02 0.32 -1.44 -5.20
tfidf -4.56 -3.98 -5.62 -6.16 -0.78 -1.46 -0.08 -2.16 -5.14

ogbn-products bert-base-uncased -5.08 -4.55 -7.35 -1.25 -4.73 -0.92 -0.85 -0.57 -1.62
e5-large-v2 -4.98 -6.93 -5.68 -1.30 -4.58 -0.70 -0.30 -0.25 -1.65
bow -5.60 -3.13 -7.40 -2.90 -1.53 -1.00 -0.43 -1.33 -3.73
tfidf -4.53 -3.38 -7.30 -2.20 -2.08 0.32 -0.28 -1.03 -3.88

R
ev

G
A

T

Arxiv 2023 bert-base-uncased 1.72 -2.16 -3.20 1.04 -1.62 -0.32 -0.62 -1.32 -2.70
e5-large-v2 -2.12 -1.90 -2.65 0.80 -2.04 -0.42 -0.22 -1.52 -2.28
bow 1.14 0.00 1.92 1.24 0.00 -1.42 -0.44 -2.14 -3.92
tfidf 0.00 0.00 0.00 0.00 -1.84 -1.74 -0.04 -2.10 -3.90

cora bert-base-uncased -7.82 -5.62 -8.76 -1.74 -4.42 -0.82 -0.54 -2.54 -4.32
e5-large-v2 -5.12 -4.34 -6.08 -2.42 -3.68 -1.28 0.22 -2.36 -3.56
bow 0.00 0.00 0.00 0.00 -1.62 -0.52 -0.24 -2.52 -3.34
tfidf 0.00 0.00 0.00 0.00 -1.58 -1.22 -0.12 -2.86 -3.46

ogbn-arxiv bert-base-uncased -2.12 -3.14 -4.78 1.36 -2.12 -1.32 -0.18 -0.28 -2.94
e5-large-v2 -2.54 -3.62 -3.62 0.30 -1.62 0.40 -0.36 -0.08 -2.30
bow -4.10 -3.46 -5.02 -4.32 -0.52 -0.72 0.14 -1.22 -4.34
tfidf -3.76 -2.82 -4.16 -4.58 -0.62 -1.12 -0.02 -1.96 -3.86

ogbn-products bert-base-uncased -4.20 -3.72 -5.44 0.00 -3.92 -0.40 -0.62 -0.32 -1.26
e5-large-v2 -4.16 -5.02 -4.38 -0.32 -3.42 -0.28 -0.18 -0.16 -1.08
bow -4.90 -2.42 -5.64 -0.92 -0.83 -0.52 -0.48 -1.02 -2.98
tfidf -3.96 -2.68 -5.52 -0.62 -2.82 -0.08 -0.12 -1.18 -3.10

G
C

N

Arxiv 2023 bert-base-uncased -2.94 -3.20 -4.46 -0.96 -2.02 -0.18 0.08 -0.20 -4.52
e5-large-v2 -4.64 -4.94 -4.96 -0.38 -2.68 -1.44 -0.96 -2.10 -4.10
bow -2.34 -0.10 -2.20 -0.10 -0.12 -0.74 -0.46 0.64 -3.14
tfidf 0.00 0.00 0.00 0.00 -0.74 -2.38 -0.64 -2.64 -6.02

cora bert-base-uncased -2.15 -1.38 -2.63 -0.60 -0.73 -0.45 0.26 -0.98 -0.46
e5-large-v2 -1.50 -0.87 -1.43 -0.02 -0.59 -0.36 0.10 -0.39 -0.69
bow 0.00 0.00 0.00 0.00 -0.24 0.17 0.37 -0.23 -0.13
tfidf 0.00 0.00 0.00 0.00 -0.10 0.88 -0.02 -0.24 0.27

ogbn-arxiv bert-base-uncased -0.40 -0.87 -0.60 0.25 -0.68 -0.10 -0.15 -0.50 -0.55
e5-large-v2 -0.20 0.00 -0.40 0.00 0.20 0.00 0.70 0.70 -0.40
bow -0.58 -0.60 -0.92 -0.82 -0.25 0.17 -0.08 -0.25 -0.20
tfidf -0.35 -0.18 0.00 -0.98 -0.18 0.08 -0.05 -0.10 0.12

SA
G

E

Arxiv 2023 bert-base-uncased 1.54 -2.48 -1.90 1.20 -3.10 -1.34 -0.44 -2.40 -4.02
e5-large-v2 -2.34 -3.26 -4.00 0.70 -2.14 -0.24 -0.38 -2.70 -3.68
bow 1.02 0.00 1.70 1.22 0.00 -1.36 -0.32 -2.12 -3.80
tfidf 0.00 0.00 0.00 0.00 -1.62 -1.72 -0.04 -2.30 -4.20

cora bert-base-uncased -7.20 -5.50 -8.40 -2.00 -4.60 -0.90 -0.60 -2.80 -4.20
e5-large-v2 -5.00 -4.00 -6.20 -2.80 -3.80 -1.40 0.20 -2.50 -3.60
bow 0.00 0.00 0.00 0.00 -1.54 -0.50 -0.20 -2.40 -3.30
tfidf 0.00 0.00 0.00 0.00 -1.80 -1.30 -0.10 -2.70 -3.40

ogbn-arxiv bert-base-uncased -2.30 -3.00 -4.60 1.20 -2.20 -1.20 -0.10 -0.20 -3.00
e5-large-v2 -2.70 -3.50 -3.80 0.20 -1.70 0.20 -0.30 -0.05 -2.60
bow -4.40 -3.20 -5.00 -3.60 -0.50 -0.60 0.12 -1.10 -4.20
tfidf -3.80 -2.50 -4.00 -4.20 -0.70 -1.00 -0.05 -2.00 -3.80

ogbn-products bert-base-uncased -4.30 -3.90 -5.50 0.00 -4.10 -0.50 -0.70 -0.60 -1.40
e5-large-v2 -4.00 -5.30 -4.80 -0.40 -3.90 -0.30 -0.20 -0.25 -1.20
bow -5.00 -2.80 -6.00 -0.90 -0.90 -0.50 -0.55 -1.50 -3.20
tfidf -3.70 -3.00 -5.40 -0.60 -2.90 -0.10 -0.15 -1.70 -3.50

Observation 3. E”ectiveness of Individual Text Perturbations on Enhancers. From the
results in Table. 8.4, we observe that all but the re-ordering perturbation seem to e!ect
the performance of the Enhancers, across di!erent types of embeddings. In particular,

91

Table 8.6: Enhancer Performance on Structural Perturbations. A targeted PRBCD
attack at 5% global budget is performed for Enhancer with a GCN backbone and di!erent node
featurizations. The unperturbed clean performance and post-attack perturbation performance
are reported. As expected there is a significant decrease in performance, however, we do
not necessarily see a clear benefit of the semantically aware embeddings (bert/e5) used by
Enhancers.

Dataset Sentence Model Clean Performance Perturbed Performance Change
Arxiv 2023 bert-base-uncased 42.38 7.02 -35.36

e5-large-v2 50.03 11.53 -38.50
bow 35.74 5.94 -29.80
tfidf 37.00 5.74 -31.26

Cora bert-base-uncased 81.02 70.30 -10.72
e5-large-v2 79.83 69.68 -10.15

bow 82.65 70.75 -11.90
tfidf 81.44 70.66 -10.79

Arxiv bert-base-uncased 40.48 0.00 -40.48
e5-large-v2 41.70 0.00 -41.70

bow 30.70 0.58 -30.12
tfidf 31.38 0.40 -30.98

Products bert-base-uncased 38.23 9.00 -29.23
e5-large-v2 40.03 10.44 -29.59

bow 32.13 7.13 -25.00
tfidf 33.23 7.10 -26.13

truncation appears to be the most detrimental natural perturbation (based on the average
loss of performance). The adversarial attacks are e!ective against both Enhancer(MLP)
and Enhancer(RevGAT), but we note that there is an interesting exception where shallow
embeddings are not e!ected on Cora and Arxiv 2023. We hypothesize that this may be
because the attacks introduced a small number characters or words that were not considered
in the original corpus and could be e!ectively ignored, though future investigation is needed.

Observation 4. E”ectiveness of Structural Perturbations on Enhancers. As discussed in
Sec. 8.2.2, we perform a targeted PRBCD attack and therefore expect a significant decrease
in performance. Here, we are mainly interested if the semantically aware embeddings used
by Enhancers can help mitigate this decrease. While bert and e5 (the semantically aware
embeddings) outperform the shallow embeddings on Arxiv 2023 with respect to minimize the
decreased performance and maximizing the final accuracy, we see on Products that semantic
embeddings have a bigger decrease in performance but better overall accuracy. On Arxiv, all
models e!ectively collapse, though the starting accuracy of the semantic embeddings was
better.

Observation 5. E”ectiveness of Structural Perturbations on Predictors. As shown in Table.
8.7, we see that structural attacks are primarily e!ective on Cora and Products. Indeed,
on Arxiv 2023 and Arxiv, we observe that performance can increase relative to the clean
accuracy. Furthermore, we do not see that using a particular sentence model leads to more

92

Table 8.7: Predictor Performance on Structural Perturbations. To determine if
structural attacks from GNN-based models transfer to Predictors, we evaluate the Predictor
on the attacked graph structured obtained after attacking a GCN trained with di!erent
node embeddings. The post-attack and clean accuracy are reported for the one-hop and
two-hop prompting styles, while the structure-free prompt’s performance on the clean graph
is indicated in parenthesis, where improvements over 1% are shown in green and decreases
over 1% are shown in red.

Dataset Prompt Bert e5-large-v2 bow tfidf Clean
Arxiv 2023 (32.24) onehop 39.40 37.97 38.10 37.50 35.80

twohop 38.97 39.50 39.33 39.80 38.17
Cora (57.26) onehop 60.13 58.97 59.53 59.07 61.53

twohop 58.20 58.67 58.03 59.87 59.37
Arxiv (32.95) onehop 39.73 39.75 40.87 40.87 38.15

twohop 40.43 41.45 42.87 41.30 39.47
Products (33.375) onehop 31.07 29.87 30.03 29.53 31.87

twohop 31.87 30.53 30.80 31.80 32.13

transferability when attacking the Predictor nor that a particular prompting style is more
susceptible to the attack. We suspect that randomly sampling the number of nodes included
in the prompt from the neighborhood may help mitigate the e!ect of structural attacks. With
su”cient perturbation budget or low-degree nodes, we suspect that the attacks will transfer
more e!ectively.

Overall, our results indicate that there is considerable scope to better understand how
interaction of modalities may lead to transferable or previously unexplored attack avenues.
We discuss some broader implications of our analysis and future directions next.

8.5 Conclusion & Discussion
Our analysis highlights the importance of studying the vulnerability of GNN+LLM models
on text-attributed graphs as they do exhibit vulnerability to di!erent attack modalities.
There are several directions of future work that we believe are worth exploring, and will
likely prove even more detrimental than those studied here. First, while this analysis focuses
on existing text-only and structure-only attacks, designing attacks that jointly attack both
modalities natively are likely to lead to considerable more damage. For example, one may use
techniques from structural attacks to select vulnerable nodes, and use the LLM to generate
the corresponding adversarially perturbed node attributes. Indeed, we suspect that such
joint attacks would be better able to break both structural and feature homophily, which has
been shown to harm both GNN adversarial robustness and bolster GNN+LLM performance.

93

Another interesting line of work is to design backdoor and instruction tuning attacks, where
the “trigger” or sensitive words are captured through both the graph structure and text
attributes, making it harder to detect such malicious behavior. Indeed, we suspect that more
sophisticated LLM+GNN methods, which often perform some instruction or finetuning, may
be particular sensitive to such attacks. Overall, our analysis indicates the importance of
studying the robustness and sensitivity of these models and believe there are many directions
worth pursuing.

94

CHAPTER 9

Conclusions and Future Work

9.1 Summary
In this thesis, we considered three lenses for improving graph representation learning beyond
accuracy. Namely, we (1) rigorously analyzed limitations of popular constrastive learning
training protocols, (2) proposed novel methodologies for improving uncertainty estimation
of graph-neural network based classifiers, and (3) studied joint models, which combine
the world knowledge of large language models with GNNs, on two text-attributed graph tasks.

Augmentations in Graph Contrastive Learning. In Part I of the thesis, we focused on the
role augmentations play in graph constrastive learning (CL) through empirical and theoretical
analyses. In Chapter 3, we empirically identified several limitations of popular domain
agnostic graph augmentations (DAGAs). We reported that such augmentations often destroy
task-relevant information, which can lead to deteriorated downstream performance. Indeed,
we found that the invariances induced by DAGAs are often irrelevant to downstream tasks.
To reconcile the discrepancy between known desirable CL properties and performance, we
identified that the inductive bias of randomly initialized GNNs is a bolstering factor. Building
upon these insights, we conducted two case studies that demonstrated the benefits of two broad
domain aware augmentation strategies: generating augmentations in the abstracted modality
or designing augmentations that create invariance to purely task-irrelevant information (to
avoid destroying useful information).

Building upon these empirical insights, we analyzed graph constrastive learning
through a set of data-centric properties in Chapter 4. We conducted a generalization
analysis of graph contrastive learning that decomposed DAGAs as a series of graph
edit operations that allowed us to demonstrate there exists a performance-separability
trade-o! that is related to intrinsic dataset properties. We further introduced a synthesis
data generating process that support benchmarking against gold-standard domain-aware

95

augmentations. We found that automated augmentations continue to struggle, even
domain-aware augmentations are available for selection, indicating both the utility of
the benchmark and the importance of further studying this problem. Overall, this part
of the thesis provided novel insights and resources on improving an important training
paradigm. Building on the insights and correcting these limitations will enable practition-
ers to better access the benefits of CL, helping support better representations beyond accuracy.

Uncertainty Estimation with Graph Neural Networks. In Part II, we focused
on improving the uncertainty estimation of GNN-based classifiers. Insofar as reliable un-
certainty estimation underlies several safety critical tasks of model deployment, such as
out-of-distribution detection, and generalization gap prediction, it is a key aspect of im-
proving graph representation learning. In Chapter 5, we proposed novel training protocol,
G-#UQ, that leds to improved uncertainty estimations, on not only on in-distribution data,
but also on covariate or concept shifted data. We demonstrated G-#UQ’s performance on
node classification as well as graph classification tasks. To support pretrained models, we
further proposed partially stochastic variants of G-#UQ.

To improve the uncertainty estimation of GNNs used for link prediction, we further
proposed E-#UQ in Chapter 6. This training protocol is designed to incorporate node
level uncertainties on head and tail nodes to better represent the overall link uncertainty.
We designed three E-#UQ variants, with di!erent levels of stochasticity. We found that
incorporating a simple node-level pretraining task can help improve calibration performance.
In summary, this part of the thesis makes novel methodological contributions to towards
safer and more reliable GNNs.

Large Language Models and Graph Representation Learning. The final part of
this thesis focuses on graph learning tasks performed on text-attributed graphs, e.g., graphs
with natural language node attributes. Combining structural information, through the use
of GNNs, and world-knowledge, through the use of LLMs, allows single modality models to
overcome their limitations. To this end, in Chapter 7, we proposed GCLR (graph clustering
with LLM refinement), an active learning framework for improving the performance of graph
clustering on text-attributed graphs. GCLR is designed to avoid the training expenditure
incurred by the pre-training, co-training or finetuning of the LLM when infusing world
knowledge into the graph-based solution. Furthermore, GCLR is designed to avoid expensive
prompting expenditure that would arise when prompting for each node in graph. In particular,
we treated the LLM as a noisy oracle in an active learning setting that would only provide
feedback on the most challenging nodes to avoid prompting the LLM over all potential nodes.

96

We demonstrated that GCLR improves performance over LLM-only or GNN-only models
across datasets, and is flexible to the choice GNN-based clustering method.

In Chapter 8, we considered the robustness of joint LLM+GNN models. In particular, we
studied the susceptibility and transferability of LLM-As-Enhancer and LLM-As-Predictors to
natural text perturbations, adversarial attacks, and structural attacks. Our results indicated
that both paradigms are sensitive, in varying degrees, to the perturbations. Indeed, we
found that LLMs-As-Predictors generally displayed less sensitivity to textual and structural
perturbations, but did generally perform more poorly on the unperturbed dataset. We
further noted that Enhancers are susceptible to pretrained language model based attacks,
and that semantic embedding do not always lead to better performance under adversarial
text-perturbations. Overall, this part of the thesis demonstrated the benefits of combining
LLMs and GNNs to overcome limitations of either modality and raised several important
questions on the vulnerabilities that may be introduced by doing so.

9.2 Future Work
Each part of this thesis o!ers several exciting directions of future work, considered jointly as
well as separately. We discuss some them here.

Using LLMs to Augment Text-Attributed Graphs. As discussed in Part I, though
well-designed augmentations are critical for strong downstream performance, it can be
challenging to design them. To this end, another promising direction is to leverage the
generative capabilities of LLMs to augment text-attributed graphs. Specifically, LLMs could
be employed to synthesize realistic but varied node descriptions, or suggest complementary
graph structures that may denoise the original graph. Notably, LLMs’ world knowledge
could help ensure that generated samples preserve semantic content where necessary and
capture task relevant information. Such augmentations could further improve the robustness
of LLM+GNN models if augmented samples are specifically designed to counter-attack
known weaknesses or bolster underrepresented domains. While there has been work on
using LLMs to augment text-attributed graphs using explanations, class descriptions and
other strategies, there remains considerable and varied scope for other augmentation strategies.

Designing Methods for Uncertainty Quantification When Working with Joint
LLM/GNN Models. As discussed in Part II, reliable uncertainty quantification is
critical for deploying models in practice. Quantifying uncertainty of joint LLM+GNN
models can be challenging as the prediction uncertainty arises from both the LLM and

97

GNN. This problem is further complicated by the di!erent paradigms and strategies for
creating joint models, many of which may not be directly amenable to existing uncertainty
estimation methods. Developing novel methods for such models is an interesting area of
future work. A complementary line of work, here, includes understanding the explainability
and interpretability of the predictions and reasoning provided by joint LLM+GNN models.
Furthermore, studying the robustness of these uncertainty estimates and explanations under
data perturbations, such as adversarial attacks or distributional shifts, could yield deeper
insights into model behavior and help develop adaptive defense and augmentation strategies.

Novel Attacks and Defenses. Though we considered the transferability of existing
unimodal text and structural attacks in Chapter 7 and saw that models do display sensitivity
to such perturbations, there remains considerable scope for the design of natively multimodal
attacks that may lead to considerably more harm, and more challenging detection. For
example, backdoor attacks, a well-known vulnerability of LLMs that arises by poisoning
unfiltered training data to later activate a trigger, may also be exploited in LLM+GNN
models. Indeed, in vision-language multimodal models, it has been shown that images can
be used to inject backdoors at test-time [268]. Similarly, in LLM+GNN models, it may be
possible to embed the trigger through a combination of structure and text, making the attack
much harder to detect, while potentially spreading its influence across the graph.

LLMs have also demonstrated vulnerability to prompt injection attacks, where benign
instructions are used to lead to malicious outputs. Given the prevalence of GNNs in
recommendation systems and the growing use of LLM+GNN models in this setting, there is
impetus to develop prompt injection attacks designed to attack such models. For example, to
increase the visibility of their product or surpass filtering of inappropriate products, sellers
may be motivated to modify text-attributes of their products with injected prompts. The
e!ects of such prompts may be amplified if the modified products are strategically placed,
and act as decoys for the target product. Overall, incorporating GNNs and LLMs o!ers
avenues for new attacks that supercharge the vulnerability of LLMs by propogating their
harms throughout the graph, hide their malicious intent through structure.

98

APPENDIX A

Better Practices in Graph Contrastive
Learning

A.1 Experimental Details of Section 3
For Secs. 3.3.2, 3.3.3 experiments, we use a GIN-based encoder [27] similar to InfoGraph
[14] and GraphCL [1] for all datasets but (DEEZER, GOSSIPCOP, GITHUB-SGZR). PNA
is used for (DEEZER,GITHUB-SGZR) to stabilize Infograph’s loss and in Sec. 3.3.1. For
GOSSIPCOP, the encoder is based o! PyG’s implementation [269]: 1 GCN Layer, 1 Linear
Layer, embedding dimension = 128, Optimizer = Adam [146], LR = 0.001, # of Epochs =
25, batch size = 128.
Sec. 3.3.1 Experimental Setup: The following training configuration is used: # of Layers = 3,
LR = 0.01, # of Epochs = 30, Batch-Size = 32. Models are trained on a Nvidia Tesla K80
GPU with Adam. A batch-norm layer is included between the output of the backbone and
cross entropy layer. For augmentations, we follow [1] and stochastically apply node dropping
at 20% of graph size and subgraph dropping at 20% of graph size.
Sec. 3.3.2 Experimental Setup: 3-layer GIN model with hidden dimension, learning rate,
and epochs trained of (32, NA, NA) for RAND (Random Initialization), (512,0.001,20) for
InfoGraph, and (32,0.01,20) for GraphCL. Adam and Nvidia Tesla K80 GPUs (12-GB GPU)
were used to train all models. Results for MVGRL ([51]) are not included as we consistently
witnessed Out-Of-Memory errors. Results are reported over 3 seeds. Additional Results:
Fig. A.1a includes additional results for PROTEINS, NCI1 and DD datasets.
Sec. 3.3.3 Experimental Setup: For all datasets, excluding DEEZER and GITHUB-SGZR,
we report results from GraphCL and InfoGraph. We use the same GIN encoder as GraphCL
when reporting the performance of randomly initialized models for these datasets. On
GITHUB-SGZRS, InfoGraph training time on exceeds eights hours using a NVIDIA Tesla
P100. Additional Results: See Table A.1. We find that the inductive bias of GNNs is strong

99

across di!erent architectures (GraphSAGE, PNA, GCN, and GAT).

Table A.1: Inductive Bias: Additional results.

GraphSAGE 3 Layer 4 Layer 5 Layer GraphCL InfoGraph
MUTAG 0.85 ± 0.005 0.85 ± 0.006 0.85 ± 0.005 0.82 ± 0.040 0.85 ± 0.005
PROTEINS 0.73 ± 0.004 0.73 ± 0.003 0.74 ± 0.005 0.75 ± 0.002 0.74 ± 0.008
NCI1 0.74 ± 0.003 0.75 ± 0.006 0.73 ± 0.011 0.78 ± 0.000 0.79 ± 0.002
DD 0.77 ± 0.006 0.78 ± 0.002 0.78 ± 0.005 0.80 ± 0.008 0.77 ± 0.010
REDDIT-B 0.85 ± 0.014 0.83 ± 0.016 0.83 ± 0.005 – 0.66 ± 0.137
IMDB-B 0.66 ± 0.012 0.81 ± 0.008 0.81 ± 0.008 – –
PNA 3 Layer 4 Layer 5 Layer GraphCL InfoGraph
MUTAG 0.88 ± 0.011 0.88 ± 0.010 0.89 ± 0.009 0.86 ± 0.023 0.90 ± 0.014
PROTEINS 0.74 ± 0.003 0.74 ± 0.012 0.74 ± 0.005 0.74 ± 0.007 0.74 ± 0.003
NCI1 0.67 ± 0.008 0.68 ± 0.011 0.68 ± 0.010 0.78 ± 0.008 0.77 ± 0.019
DD 0.76 ± 0.014 0.76 ± 0.002 0.76 ± 0.008 0.80 ± 0.008 0.76 ± 0.006
REDDIT-B 0.90 ± 0.003 0.88 ± 0.014 0.89 ± 0.010 0.92 ± 0.006 0.92 ± 0.006
IMDB-B 0.72 ± 0.007 0.68 ± 0.011 0.68 ± 0.010 0.71 ± 0.009 0.71 ± 0.009
GCN 3 Layer 4 Layer 5 Layer GraphCL InfoGraph
MUTAG 0.85 ± 0.003 0.85 ± 0.004 0.85 ± 0.005 0.82 ± 0.013 0.85 ± 0.003
PROTEINS 0.74 ± 0.003 0.73 ± 0.007 0.74 ± 0.004 0.75 ± 0.004 0.75 ± 0.003
NCI1 0.76 ± 0.004 0.75 ± 0.001 0.75 ± 0.002 0.78 ± 0.008 0.79 ± 0.007
DD 0.78 ± 0.002 0.77 ± 0.012 0.78 ± 0.003 0.79 ± 0.007 0.76 ± 0.003
REDDIT-B 0.52 ± 0.005 0.51 ± 0.003 0.52 ± 0.005 0.92 ± 0.002 0.80 ± 0.062
IMDB-B 0.54 ± 0.001 0.57 ± 0.016 0.58 ± 0.008 0.71 ± 0.011 0.62 ± 0.070
GAT 3 Layer 4 Layer 5 Layer GraphCL InfoGraph
MUTAG 0.84 ± 0.003 0.85 ± 0.009 0.84 ± 0.003 0.81 ± 0.032 0.85 ± 0.013
PROTEINS 0.74 ± 0.002 0.74 ± 0.005 0.74 ± 0.006 0.74 ± 0.007 0.74 ± 0.005
NCI1 0.76 ± 0.009 0.75 ± 0.004 0.76 ± 0.002 0.78 ± 0.004 0.70 ± 0.040
DD 0.78 ± 0.005 0.77 ± 0.006 0.79 ± 0.001 0.79 ± 0.003 0.76 ± 0.005
REDDIT-B 0.52 ± 0.005 0.53 ± 0.004 0.52 ± 0.012 0.75 ± 0.004 –
IMDB-B 0.51 ± 0.004 0.51 ± 0.009 0.50 ± 0.005 0.51 ± 0.007 –

A.2 Document Classification
In Sec. 3.4.1, we demonstrate the benefits of using task-aware augmentations on a graph-based
document classification task.
Experimental Setup: We use the model, code base and default settings of [2]. Models are

100

Table A.2: Document Classification: We use the same augmentations as in Table 3.4.
Text-to-Graph augmentations perform synonym replacement as modifying node features.

Augmentation (SimSiam) KNN Acc. (BYOL) KNN Acc.
S. vs S. (ws = 2) 62.62 ± 3.21 66.25 ± 2.65
S. vs N. (ws = 2) 57.35 ± 2.47 62.83 ± 2.82
Text-Space (ws = 2) 83.69 ± 0.01 82.69 ± 1.98
Text-to-Graph (ws = 2) 83.33 ± 1.29 78.16 ± 2.11
S. vs S. (ws = 4) 63.70 ± 8.71 67.53 ± 5.00
S. vs N. (ws = 4) 54.77 ± 1.42 65.99 ± 2.78
Text-Space (ws = 4) 83.29 ± 0.9 72.91 ± 4.97
Text-to-Graph Space (ws = 4) 84.67 ± 1.57 77.96 ± 2.04

Table A.3: Comparison to [16]. Results only reported for SimCLR, as it performs better
than SimSiam and BYOL in preceding experiments.

Rand Init. ND (20%) ND (30%) Colorize DACL [16]
37.79 ± 0.03 68.56 ± 0.16 68.07 ± 0.37 73.67 ± 0.10 59.94 ± 0.01

trained using Adam: lr = 0.001, weight-decay = 1e-4 and cosine scheduler (T=8). We
use the code (https://github.com/ jasonwei20/eda-nlp) and augmentations by [5]. Syn-
onym replacement, random deletion, random insertion and random swapping are applied at
5%, 10%, 5%, 5% of sentence length respectively. We generate an augmented version of each
sentence for every training epoch. For domain agnostic augmentations, we apply random
node dropping (10%) to generate one view. The other view is generated by applying random
node or subgraph dropping (10%).

As noted in Sec. 3.4.1, natural language augmentations can be directly in graph space. We
provide proof of concept using the synonym replacement augmentation. In Table A.2, results
are reported for a model trained with synonym replacement and graph space equivalent, node
replacement at 5%. This model achieves comparable accuracy to the original task-aware
augmentations. We suspect that synonym replacement is crucial for this task.

A.3 Super-pixel Classification
In Sec. 3.4.2, we demonstrate the benefits of using task-aware augmentations via a case study
on MNIST superpixel classification.
Experimental Setup: 50K images are used for training, 10K for validation, and 10K for
testing. We follow the same procedure as [86] to convert images to superpixel graphs: SLIC

101

Table A.4: Super-pixel, Rep. Similarity. Avg. intraclass and interclass cosine similarity
is reported. Colorizing produces representations with the largest di!erence between intra- vs.
inter- class similarity, indicating that representations are well-separated.

Method Aug. Intra. Sim Inter Sim. Abs. Di! Rel. Di! Acc.
SimCLR ND (20%) 86.671 78.622 8.04 0.0928 68.56 ± 0.16
SimCLR ND (30%) 87.03 79.05 7.987 0.091 68.07 ± 0.37
SimCLR Colorizing 80.801 67.812 12.988 0.1607 73.67 ± 0.10

Table A.5: Super-pixel A”nity. Supervised, clean train accuracy is 90.01% and clean test
accuracy is 88.69%.

Aug. Aug. Train Acc. Aug. Test Acc.
ND (20%) 39.42 ± 0.011 40.29 ± 0.054
ND (30%) 29.19 ± 0.01 29.09 ± 0.036
Colorizing 47.86 ± 0.05 48.97 ± 0.03

([270]) is used to extract superpixels from the image. Then, a kNN graph is constructed
between the superpixels. Node features are RGB values and (x, y) coordinates of superpixels.
Classification is performed using three CL frameworks: SimSiam ([121]), SimCLR ([54]), and
BYOL ([122]). The same hyper-parameters and architecture are used for all frameworks.
Specifically, we use a 5-Layer GIN model closely following [86]. This model is converted
from DGL (https://www.dgl.ai) to PyG ([269]). The following hyper-parameters are used:
LR=5e-4, Hidden-Dim =110, Epochs=80, Batch-size = 128. The Adam ([146]) Optimizer is
used for training. The projector is a 2-layer MLP. The predictor is a 2-layer MLP. Predictor
hidden dimension is 1028. Bottleneck dimension is 128. Results are reported over 3 seeds.
DAGAs are random node dropping (at 20% and 30%). The task-aware augmentation is
random colorizing, performed using Scikit-Image ([271]). As discussed in the main text,
colorizing can be represented as transformation on node features as well.
Additional Results: [16] proposes to mix-up samples at either the input or hidden represen-
tation level as an alternative to domain-specific augmentations. However, we find that [16]
under-performs both node-dropping and colorizing, despite tuning the mixing parameter, ε

(see Table. A.3).This indicates that context-aware and topological augmentations are still
important to GCL. Table A.4 shows intra/inter similarity and Table A.5 shows the a”nity.

102

A.4 Additional Related Work
Graph Data Augmentation. [113] train a neural edge predictor to increase homophily by
adding edges between nodes expected to be of the same class and break edges between nodes
of expected dissimilar classes. However, this approach is expensive and not applicable to
graph classification. [112] focus on feature augmentations because it is easier than designing
information preserving topological transformations. They add adversarial perturbations
to node features as augmentations. In unsupervised settings, labels are not available and
cannot be used for the adversarial perturbation, so the proposed approach is not directly
applicable. Since the writing of this paper, several recent works have been proposed that
perform automatic data-augmentation, some of which we briefly describe in Table B.7.

Graph Self-Supervised Learning. Several paradigms for self-super-vised learning in graphs
have been recently explored, including the use of pre-text tasks, multi-tasks, and unsupervised
learning. See [273] for an up-to-date survey. Graph pre-text tasks are often reminiscent of
image in-painting tasks [274], and seek to complete masked graphs and/or node features
([275, 95]). Other successful approaches include predicting graph level or property level
properties during pre-training or part of regular training to prevent overfitting ([95]). These
tasks often must be carefully selected to avoid negative transfer between tasks. Many
unsupervised approaches have also been proposed. [14, 276] draw inspiration from [123] and
maximize the mutual information between global and local representations; MVGRL ([51])
contrasts di!erent views at multiple granularities similar to [114]; [1, 272, 149, 52, 131] use
augmentations to generate views for contrastive learning. See Table B.7 for a summary of
the augmentations used.

103

í���� í���� í���� í���� ���� ���� ���� ���� ����

(a) RAND: PROT.
(73.678 ± 6.91)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(b) RAND: NCI1
(70.65 ± 1.99)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(c) RAND: DD
(74.52 ± 9.12)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(d) GraphCL: PROT.
(73.49 ± 0.33)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(e) GraphCL: NCI1
(78.16 ± 0.51)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(f) GraphCL: DD
(79.54 ± 0.698)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(g) InfoGr: PROT.
(73.225 ± 0.36)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(h) InfoGraph: NCI1
(73.58 ± 0.16)

í���� í���� í���� í���� ���� ���� ���� ���� ����

(i) InfoGraph: DD
(69.41 ± 0.58)

Figure A.1: Representational Similarity. In addition to MUTAG (Figure 3.2), we provide
results on PROTEINS, NCI1 and DD. Random inductive bias is most noticeable on MUTAG
and PROTEINS. Note that the intra-class similarity can be low for GraphCL and InfoGraph.

104

Table A.6: Selected GCL Frameworks

Method Augmentations
BGRL [52] Edge Dropping, Attr. Masking
GCA [149] Edge Dropping, Attr. Masking (both weighted by cen-

trality)
GCC [272] RWR Subgraph Extraction of Ego Network
GraphCL [1] Node Dropping, Edge Adding/Dropping, Attr. Masking,

Subgraph Extraction
MVGRL [51] PPR Di!usion + Sampling
SelfGNN [131] Attr. Splitting, Attr. Standardization + Scaling, Local

Degree Profile, Paste + Local Degree Profile
JOAO [97] Min-Max Optimization to adaptively and dynamically

select from DAGA set
GraphSurgeon [130] Learnable Feature Augmentors that can be applied pre/-

post encoding
BYOV [128] Uses graph generation (regularized by InfoMin + In-

foBottleNeck) as viewmaker
AdvGCL [117] Adversarial/MinMax Optimization over learnable aug-

mentations
AF-GRL [132] Finds node-level positive samples sharing “local structure

and global semantics”
LG2AR [129] Learns a policy over augmentations and their respective

strengths without bi-level optimization

105

APPENDIX B

Data-Centric Analysis of Graph Contrastive
Learning

B.1 Extending our Analysis to other Loss Functions
While our analysis focuses on the spectral contrastive loss (SpecLoss) [7] for ease of exposition,
it can also be extended to other contrastive loss functions and predictive methods, such as
BYOL [122]. As we noted in Sec. 4.2, this can be easily accomplished by leveraging our
insights on representing graph augmentations through composable graph-edit operations and
extending the analyses of Saunshi et al. [159] or Wei et al. [150].

Specifically, the contemporary work of Saunshi et al. proposes a general analysis of
contrastive loss functionals and yields a generalization bound similar to Thm. 6, e.g., a
bound that is dependent on similar data-centric properties and assumptions. In Sec. 4.3,
we decompose GGAs using GED, and then derive expressions for data-centric properties,
such as partition dissimilarity, using this decomposition. Since the focus of our analysis is
on understanding these data-centric properties in terms of intrinsic dataset attributes (e.g.,
GED between samples), our theory is complementary to the strategy used by Saunshi et al.
Indeed, SpecLoss can be replaced with an alternative contrastive loss functional and adapting
the analysis conducted in Sec. 4.3, we can extend our results to other contrastive losses. For
predictive methods, we can leverage recent work by Wei et al. [150] which provides an analysis
for unsupervised learning methods for continuous data domains (such as images) by enforcing
representation consistency on augmented samples–i.e., BYOL-like methods. Critically, Wei et
al.’s generalization analysis relies on properties of the data-generating process’s latent space
and makes analogous assumptions to the unified recoverability plus separability assumption
used in our own work. Thus, our theoretical analysis can be extended to BYOL-like methods
by deriving equivalent analytical expressions for the latent-space properties used by Wei
et al. Moreover, by representing GGAs using graph edit operations, our derivation of such
properties relies upon minimal assumptions and is straight-forward. We do note, however,

106

that Wei et al. assume that the dimension of learned representations is equivalent to the
number of classes in the dataset. This can be an invalid assumption in unsupervised learning.
In contrast, our analysis is more flexible since we only assume the latent dimension is greater
than the number of classes.

B.2 Evaluation on a Non-Synthetic Dataset
Our analysis in Sec. 4.3 motivates the need for content-aware augmentations (CAAs) by
demonstrating that generic graph augmentations (GGAs) often lead to inconsistent samples,
harming representation separability and yielding task irrelevant invariances. In Sec. 4.4.2,
we empirically validated these claims in a controlled setting through our new synthetic
benchmark and the corresponding oracle CAAs (see Fig. 4.5). To demonstrate the generality
of our analysis in a practical setup, we repeat this experiment in a realistic setting where
domain knowledge is available to design content-aware augmentations.

Figure B.1: Invariance vs. Separability.
On BACE [10], a molecule-protein interac-
tion dataset, we compare the content-aware
biochemistry-inspired augmentations from
MoCL [11] against the GGAs. In this real-
world setting, we see that CAAs induce bet-
ter invariance and separability (Contours
are not filled to improve legibility).

Experimental Setup. We analyze BACE, a
molecule-protein interaction dataset. We train
our models by closely following the setup of Sun
et al. [11], who propose biochemistry-inspired
augmentations for learning domain-informed
representations. In our paper’s terminology,
these augmentations can be regarded as content-
aware augmentations. To ensure fair compari-
son, we use only “local” CAA, which does not
incorporate additional “global” domain knowl-
edge (see Sun et al. [11] for further details).
We compare against the strongest GGA base-
line reported by the authors, called “mask edge
features” augmentation.

For evaluation, we use the trained models
to compute the invariance and separability for
each sample. As in Sec. 4.4.2.3, an invariance
score is obtained by computing the mean cosine
similarity of a sample’s representation with 30 of its augmentations. A separability score
is computed by dividing the maximum cosine similarity of a given sample and same-class
samples by the maximum cosine similarity of a given sample and di!erent-class samples.

Results. As demonstrated in Fig. B.1, the biochemistry-inspired content-aware augmenta-

107

tions induce much better invariance and separability than the GGA. These results provide
further corroboration to our synthetic dataset experiments in 4.5) and theory in Sec. 4.3,
where we argued that preserving content improves recoverability and leads to task-relevant
invariances with better separability.

B.3 On Using Mutual Information for Analyzing Task-
Relevance in Augmentations

While several di!erent perspectives have been recently proposed for studying self-supervised
learning’s behavior, many of these frameworks assume that augmentations induce invariance to
information that is irrelevant to the downstream task, ignoring the potential for augmentations
to induce invariance to task-relevant information and harm generalization performance.
However, as we discussed in Sec. 4.2, a notable exception is the information-theoretic analysis
of Tian et al. [99]. Specifically, Tian et al. rely upon an information-theoretic framework that
interprets the InfoNCE loss as a lower bound of mutual information between two samples.
They demonstrate under this framework that optimal augmentations are ones that maximally
perturb information irrelevant to the downstream task. However, this viewpoint su!ers from
the fallacy that InfoNCE is rarely empirically correlated with mutual information. Indeed,
Poole et al.[104] demonstrate that this interpretation is only valid when mutual information
between two samples is very large. For high-dimensional inputs, this will hold true when an
augmentation does not alter the input at all, which does not align with the practical behavior
of graph (or even image) augmentations. This renders the analysis by Tian et al. relatively
inexact compared to our own analysis.

In contrast, we emphasize that our analysis, which has been designed from the ground-up
for graph data and augmentations, is more exact. By representing graph augmentations as
composable graph-edit distance (GED) operations, we are able to rigorously relate the gener-
alization abilities of a contrastive trained model to intrinsic dataset properties. Specifically,
by deriving definitions for partition dissimilarity (Defn 3.8) and inconsistent samples (Lemma
3.6) using GED, our generalization bound relies upon minimal additional assumptions (Thm
6). In Sec. 4.4.2.3 and Sec. B.2, we verify that our theoretical observations are well supported
by our experiments on both synthetic and real-world datasets, further demonstrating the
validity of our chosen analysis framework.

108

B.4 Generic Graph Augmentations and Graph Edit
Distance

The key insight for our analysis in Sec. 4.3 is that GGAs can be instantiated in a general
manner as a composition of graph edit operations. This allows us to derive a unifying
assumption related to recoverability and separability in terms of the graph edit distance
(GED) between samples. Here, we provide proofs and additional discussion for the statements
made in Sec. 4.3. We also discuss how our analysis can be interpreted with respect to the
population augmentation graph (PAG) proposed by HaoChen et al. [7].

Table B.1: Notations

Symbol Definition
X The original or natural dataset.
X Set of all augmented data.

g ↔ X Natural (attributed) graph sample.
g, g↗ ↔ X Augmented (attributed) graph samples

Eg Edge set of g.
Vg Node set of g.

ς ↔ [0, 1] Augmentation strength. Controls the % of edges or nodes that
may be perturbed by the selected augmentation.

A(g) The set of augmented samples that can be generated from
Augmentation, A, given natural sample g and ς.

A(·|g) Distribution of augmentations given a natural sample, g.
A(g|g) Probability of generating g from g given augmentation A.

f Representation Encoder, f : {X , X } → Rd

h Classifier, h : Rd → y

B.4.1 GGA and Graph Edit Distance

Graph edit distance (GED) is used to capture similarity between two graphs. Intuitively, it
captures the cost of making elementary edit operations on a graph, g1, to transform it to be
isomorphic to another graph, g2. Formally,

Definition 7 (Graph Edit Distance (Defn. 3.1)). Let the elementary graph operators (node
insertion, node deletion, edge deletion, edge addition), and the categorical feature replacement
operator comprise the set of graph edits. Then, GED (g1, g2) = min(e1,...,ek)↑P(g1,g2)

∑k
i=1 c (ei),

where P (g1, g2) is the set of paths (series of edit operations) that transforms g1 to be isomorphic
to g2. Here, ei is i-th edit operation in the path, and c(ei) is the cost for performing the edit.

109

Table B.2: Generic Graph Augmen-
tations vs. Graph Edit Operators.
(Reproduced. Table 1.) GGA can be
straightforwardly expressed using graph
edit operators.

Augmentations Graph Edit Operators

Node Dropping Node Deletion
Edge Perturbation Edge Deletion, Edge Addition
Categorical Attribute Masking Categorical Feature Replacement Operator
Sub-graph Sampling Node Deletions

As shown in Table. 4.1, elementary graph edit op-
erators can be used to straight-forwardly represent
the node dropping, edge perturbation and sub-graph
sampling generic graph augmentations [1]. By in-
troducing an additional graph operator, categorical
feature replacement, we are also able to consider
distance with respect to categorical node attributes.
This operator performs a “replacement” whenever
there is a disagreement between g1 and g2’s node
attributes. Then, the GED is the total cost of structural changes and attribute disagreements
between two graphs. Here, we assign a unit cost per operation so all operations are treated
equally. Assigning cost to reflect di!erent inductive biases over augmentations is an interesting
direction left for future work. Next, we briefly discuss some examples of using graph edit
operators to represent GGAs.

Let (g, g) represent the original and augmented graph respectively, where we perform
node dropping to obtain g. Recall that the node dropping augmentation may only drop up
to some fraction of nodes in g. Then, clearly the minimum cost path can then be found
using only node deletion operators, and the GED(g, g) is bounded by the number of allowed
node drops. Similarly, if g was obtained through the edge perturbation augmentation, which
randomly adds or removes a fraction of edges, then GED(g, g) is bounded by the number of
allowable edge modifications and can be obtained using only edge addition/deletion operators.
(Here, we allow nodes without edges to still exist, so performing node addition/deletion would
not result in a lesser GED.) The sub-graph sampling augmentation extracts a connected
sub-graph that contains at most a fraction of total nodes. The minimum cost path can then
be defined using only node deletions, e.g. where the operator is applied to all nodes not in
the sampled sub-graph. Therefore, GED(g, g) is bounded by |g| ≃ |g|. As discussed above,
the categorical attribute masking augmentation can be recovered by directly applying the
categorical feature replacement operator. Then, the minimum cost path is then the number
of di!erences between the augmented and original samples’ node attributes. We formalize
the relationships between augmentations and GED in the following Lemmas.

Lemma 3. Allowable augmentations can be expressed using GED. (Reproduction

of Lemma 3.2) Let g be a natural sample in X , A be some GGA, g ⇒ A(·|g) be an
augmented sample generated from g and ς be the augmentation strength or the fraction of the
graph that GGAs may modify. Then, φ ↔ {⇓ς|Vg|⇔, ⇓ς|Eg|⇔} represents the number of discrete,
allowable modifications for the specified GGA, so GED(g, g) ↖ φ. Correspondingly, we have
g ↔ A(g) ↙ GED(g, g) ↖ φ.

110

Proof. Let P be the shortest path comprised of the edit operators defined in Table. 4.1 for
the given GGA, A. Then, given that at most φ discrete modifications are permitted and each
operator has unit cost, len(P) ↖ φ and ∑

ei↑P c(ei) ↖ φ. Thus, GED(g, g) ↖ φ.

Lemma 4. Upper-bound on Size of Augmentation Set. The size of A(g) can be
upper-bounded through a combinatorial counting process. For example, to determine A(g)
when the considered augmentation is node dropping, we can delineate all sets of possible nodes
with size up-to ς|Vg|. Formally, the upper-bound on the number of samples generated using
node dropping are:

|A(g)| ↖
ϱ|Vg |

j=1

|Vg|!
(|Vg| ≃ j)!j!

We note that this value is an upper-bound because isomorphic pairs are treated as two separate
graphs. Furthermore, note the size of the augmentation set grows exponentially with graph
size. A similar counting process can be used to determine the number of possible augmented
samples obtained through edge perturbation, sub-graph sampling or feature masking. For
example, the edge-dropping augmentation could be counted as: |A(g)| ↖ ∑|ϱEg |

j=1
|Eg |!

(|Eg |↓j)!j! .

We further note that because generic graph augmentations (GGAs) perturb the graph
randomly, each augmented sample, g ↔ A(g), is equally likely, e.g., A(g|g) = 1

|A| .

B.5 Details for Generalization Analysis

B.5.1 Generalization Analysis

Recently, HaoChen et al. [7] demonstrated that spectral clustering over a graph that captures
similarity of augmented data can recover class partitions as augmentations belonging to
the same class are more similar, and thus well-connected. These well-aligned partitions
can be recovered through spectral decomposition of the similarity graph and the resulting
embeddings can be used as features for downstream tasks. The SpecLoss objective, which
performs this decomposition, is then defined as follows [7]: Let g ⇒ A(·|g), g+ ⇒ A(·|g),
given g ↔ X and g↓ ⇒ A(·|g↗), given x

↗ ⇒ PX ⇑ g↗ ↗= g. Then, for the positive/negative pairs
(g, g+)/(g, g↓), the loss L(f) is:

≃2 · Eg,g+

[
f(g)↘

f(g+)
]

+ Eg,g→

[(
f(g)↘

f(g↓)
)2]

By defining SpecLoss through spectral decomposition, its generalization error can be
bounded using the recoverability and separability assumptions, which can also be understood
in terms of the structure of the similarity graph.

111

Indeed, in Sec. 4.3, we demonstrated how GGAs and GED influence recoverability and
separability by deriving an analogous generalization bound for SpecLoss that is tailored for
graph data. At a high-level, to find this bound, we derived expressions for recoverability, ε,
and separability, ⇀, based on graph edit distance, and then used these expression to recover
the SpecLoss bound. We then performed some additional manipulation to derive the final
expression presented in Thm. 6. Here, we provide the details and proofs behind these steps.
We begin by restating the Separability plus Recoverability assumption.

Assumption 2 (Separability plus Recoverability Assumption, (Reproduction of Assm.
3.3)). Let g ↔ X and y(g) be its label, and g ⇒ A(·|g). Assume that there exists a classifier
h, such that h(g) = y(g) with probability at least 1 ≃ ε. We refer to ε as the error of h.

Now, recall from Sec. 4.3, that h will incur irreducible error on inconsistent samples, which
are defined as follows:

Corollary 8. (Co-occuring augmentations.,Reproduction of Coll. 3.4) Let g ↔ X
and g, g↗ ↔ X . Then, g ⇒ A(g) ⇑ g↗ ⇒ A(g) ↙ GED(g, g↗) ↖ 2φ, where φ =
min{⇓ς|Vg|⇔, ⇓ς|Eg|⇔ ⇓ς|Vg|⇔, ⇓ς|Eg|⇔}.

Proof. Recall, that g ⇒ A(g) ⇏ GED(g, g) ↖ φ and g↗ ⇒ A(g) ⇏ GED(g↗
, g) ↖ φ.

Then, GED(g, g↗) ↖ 2φ and are co-occurring augmentations as they both belong to A(g).

Definition 9 (Inconsistent Samples, Reproduction of Defn. 3.5). Let g ↔ X , and
y : X → r be a labeling function. Further, let X in = {g|g ↔ X ⇑ GED(g, g) ↖ φ} be the set
of natural samples that may have generated g and Y

≃
in = {y(g)|g ↔ X in} be the set of unique

labels. If g is an inconsistent sample, |Y ≃
in| > 1.

Now, we fix the behavior of h on inconsistent samples such that h(g) = y, for some fixed
y ↔ Y

≃
in. Then, h induces an r-way partition over X , such that each sample, g, belongs to a

partition, Sh(g). Further, because h will always incur error on inconsistent samples, ε can
be lower bounded by the ratio of inconsistent to total samples. To this end, we use GED to
identify inconsistent samples by identifying disagreement amongst partitions as follows.

Lemma 5 (Using GED to identify inconsistent samples, Reproduction of Lemma 3.6).
Let g, g↗ ↔ X and GED(g, g↗) ↖ 2φ such that g ↔ Si ⇑ g↗ ↔ Sj and i ↗= j, where partitions
are induced by h. Then, at least one g̃ ↔ {g, g↗} must be an inconsistent sample.

Proof. By definition, GED(g, g↗) ↖ 2φ implies that at least one of the following must be
true: (i) g1 ↔ X ∀ y(g1) = i ⇑ GED(g1, g) ↖ φ ⇑ GED(g1, g↗) ↖ φ or (ii) g2 ↔ X ∀ y(g2) =
j ⇑ GED(g2, g) ↖ φ ⇑ GED(g2, g↗) ↖ φ. WLOG, assume (i). Now, g↗ ↔ Sj ↙ h(g) = j,

112

so j ↔ |Y ≃
in|. However, GED(g1, g) ↖ φ, so by Lemma 1 and Defn. 3, y(g1) = i ↔ Y

≃
in.

Since, i ↗= j, |Y ≃
in| > 1, g must be an inconsistent sample. Note, if (ii) holds, then g↗ is an

inconsistent sample.

Note that the above lemma does not rely on ground-truth label information to identify
inconsistent samples, but only GED from natural samples. Given that the error on inconsistent
samples is irreducible, as it is unclear which y ↔ Yin is correct, we can lower bound the error
of h as follows:

Corollary 10 (Error bound due to Inconsistent Samples, Reproduction of Coll. 3.7).
The error of h can be lower-bounded as

ε ′
∑r

i

∑
g↑Si,g↑ /↑Si

1(GED(g, g↗) ↖ 2φ)
|X | .

Here, the number of inconsistent samples can be approximated via
∑r

i

∑
g↑Si,g↑ /↑Si

1(GED(g, g↗) ↖ 2φ) and |X | can be estimated using a combinatorial
counting procedure. Thus, the above corollary reflects the fact that error on inconsistent
samples cannot be reduced due to label un-identifiability.

Partition dissimilarity, which induces a notion of clustering of similar data-points in our
analysis, can be defined as the following:

Definition 11 (Partition Dissimilarity, Reproduction of Defn. 3.8). Let S1, . . . , Sr be an
r-way partition of X . Then, we define the partition dissimilarity for a given partition as

↼X (Si) =
∑

g↑S,g↑ /↑S 1(GED(g, g↗) ↖ 2φ)
∑

g↑S |{g↗|GED(g, g↗) ↖ 2φ}| .

We can now state the main result that re-derives the generalization error of SpecLoss in
terms of GGAs, using the definitions of co-occurring pairs (Def. 2) and dissimilar partitions
(Def. 5). Notably, we decompose bound in terms of the number of co-occurring augmentation-
pairs within the same partition and the number of pairs that cross partitions, which are defined
respectively as, ↽ = ∑

g↑S↓,g↑↑S↓ 1(GED(g, g↗) ↖ 2φ), and µ = ∑
g↑S↓,g↑ /↑S↓ 1(GED(g, g↗) ↖

2φ).

Theorem 12 (Generalization Bound for SpecLoss with GGA, Reproduction of Thm
3.9). Assume the representation dimension k ′ 2r and Assm. 4 holds for ε ′ 0. Let F be a
hypothesis class containing a minimizer f

≃
pop of SpecLoss, L(f), which produces a ⇓k/2⇔-way

partition of X denoted by {S≃}. Let its most dissimilar partition have dissimilarity denoted
by ⇀⇐k/2⇒ = mini ↼(Si ↔ {S≃}). Then, f

≃
pop has a generalization error bounded as, where the

113

middle term is from the original SpecLoss bound:

E(f ≃
pop) ↖ Õ

(
ε/⇀

2
⇐k/2⇒

)
= Õ

(
r

|X |

[

µ + 2↽ + ↽
2

µ

])

,

Proof. The conversion from recoverability (ε) and conductance (⇀) and within partition (µ)
and across partition pairs (↽), can be derived as follows. We assume that the data distribution
is I.I.D and the size of the class partitions are roughly equivalent.

E(f ≃
pop) ↖ Õ

(
ε/⇀

2
⇐k/2⇒

)

= Õ





∑r
i

∑
g↑Si,g↑ /↑Si

1(GED(g, g↗) ↖ 2φ)
|X |

1
[∑

g↔S↓,g↑ /↔S↓
1(GED(g,g↑)⇔2ε)∑

x↔S↓
wx

]2





E(f→
pop) ↖ Õ

(
ω/ε

2
↑k/2↓

)

= Õ




∑r

i

∑
g↔Si,g→ /↔Si

1(GED(g, g↗) ↖ 2ϑ)
|X |

∑
x↔S↑

wx

2

[∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)
]2





= Õ




r

∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)
|X |

∑
x↔S↑

wx

2

[∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)
]2





= Õ



 r
∑

x↔S↑
wx

2

|X |
[∑

g↔S↑,g→ /↔S↑
1(GED(g, g↗) ↖ 2ϑ)

]





= Õ




r

[∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ) +
∑

g↔S↑,g→↔S↑
1(GED(g, g↗) ↖ 2ϑ)

]2

|X |
[∑

g↔S↑,g→ /↔S↑
1(GED(g, g↗) ↖ 2ϑ)

]





= Õ

(
r

|X |

[[∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)
]2

[∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)
]

+
2

[∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)
∑

g↔S↑,g→↔S↑
1(GED(g, g↗) ↖ 2ϑ)

]

[∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)
]

+
∑

g↔S↑,g→↔S↑
1(GED(g, g↗) ↖ 2ϑ)

∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)

])

= Õ

(
r

|X |

[


g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)

+ 2


g↔S↑,g→↔S↑

1(GED(g, g↗) ↖ 2ϑ) +

[∑
g↔S↑,g→↔S↑

1(GED(g, g↗) ↖ 2ϑ)
]2

∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)

])

(B.1)

114

Now, notice that the above equation can be understood as the number of inconsistent
samples vs. the original samples. Let, ↽ = ∑

g↑S↓,g↑↑S↓ 1(GED(g, g↗) ↖ 2φ) and µ =
∑

g↑S↓,g↑ /↑S↓ 1(GED(g, g↗) ↖ 2φ). Then, we have recovered the bound presented in Theorem
6.

Õ

(
ω/ε

2
↑k/2↓

)
= Õ

(
r

|X |

[


g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)

+ 2


g↔S↑,g→↔S↑

1(GED(g, g↗) ↖ 2ϑ) +

[∑
g↔S↑,g→↔S↑

1(GED(g, g↗) ↖ 2ϑ)
]2

∑
g↔S↑,g→ /↔S↑

1(GED(g, g↗) ↖ 2ϑ)

])

∝ Õ




r

|X |




µ

inconsistent samples

+ 2ϖ
valid samples

+

valid samples
ϖ

2

µ
inconsistent samples








.

(B.2)

Recall, that inconsistent samples can be determined through graph edit distance (Defn. 3)
between augmented samples. Moreover, that the maximum allowable edit distance between
augmented samples is determined by augmentation strength.

B.5.2 Connections to the Population Augmentation Graph

The original bound for SpecLoss uses the population augmentation graph (PAG). While we
did not use the PAG in our analysis for ease of exposition, we note that our analysis can be
adapted for the PAG as follows:

Definition 13 (Population Augmentation Graph [?]). Let Gp be the PAG where the vertex
set is all augmented data X . For any two augmented data g, g↗ ↔ X , define the edge weight
wgg↑ as the marginal probability of generating g and g↗ from a random natural data g ⇒ PX :

wgg↑ := Eg↑PX
[A(g|g)A(g↗|g)]. (B.3)

To extend our analysis to the PAG, we show that connectivity in the PAG is also
determined by GED. Then, the definition of inconsistent samples, and partition dissimilarity
(conductance) straight-forwardly follow.

Lemma 6. Connectivity in the PAG is determined by GED. Let g, g↗ ↔ X , and
g ↔ X . Then, wgg↑ > 0 ↙ GED(g, g↗) ↖ 2φ.

Proof. By Lemma 2, wgg↑ > 0 ↙ A(g|g) > 0 ⇑ A(g↗|g) > 0. Moreover, if A(g|g) > 0 then,
g is the augmentation set of g. If g ↔ A(g) then, GED(g, g) ↖ φ. Then, wgg↑ > 0 ↙
GED(g, g) ↖ φ ⇑ GED(g↗

, g) ↖ φ, which in turn applies, wgg↑ > 0 ↙ GED(g, g↗) ↖ 2φ.

115

Corollary 14 (Conductance according to GGA). Recall, the conductance ↼G of a
partition Si in a graph G measures how many edges cross partitions relative to total number
of edges a node possesses and that A(g|g) ∝ 1

|A(g)| . Then,

↼G(Si) =
∑

x↑S,x↑ /↑S 1(wxx↑ > 0)
∑

x↑S wx
,

where wx represents the size of x’s edge-set.

Using this definition, we can substitute into the original SpecLoss generalization bound
and recover the result presented in Thm. 6.

B.6 Dataset Generation and Experimental Details

Figure B.2: Motifs used to determine class labels.

We use the motifs shown in Fig. B.6 to define a 6 class graph classification task. It is impor-
tant to ensure that the motifs are not isomorphic, as many GNNs are less expressive than the
1-Weisfeiler Lehman’s test for isomorphism ([27]). For each class, 1000 random samples are
generated as follows: (i) We randomly select between 1-3 motifs to be in each sample. At this
time, motifs all belong to the same class, though this condition could easily be changed for a
more di”cult task. (ii) We define the number of content nodes, Cn, as the size of the selected
motif, scaled by the number of motifs in the sample. (iii) For a given style ratio, we determine
the number of possible style nodes as Sn = ⇀Cn (iv). We define RBG(n) using networkx’s ∗

random tree generator: networkx.generators.trees.random_tree. We note that other ran-
dom graph generators would also be well suited for this task. (v) For additional randomness, we
create background graphs using Sn±2, and also randomly perturb up-to 10% of edges in sample.
We repeat this set-up with ⇀ ↔ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.5, 8.0}
to generate the datasets used in Sec 4.4.2.

∗https://networkx.org/documentation/stable/

116

Table B.3: Dataset Description

Name Graphs Classes Avg. Nodes Avg. Edges Domain

IMDB-BINARY [136] 1000 2 19.77 96.53 Social
REDDIT-BINARY [136] 2000 2 429.63 497.75 Social
MUTAG [138] 188 2 17.93 19.79 Molecule
PROTEINS [139] 1113 2 39.06 72.82 Bioinf.
DD [140] 1178 2 284.32 715.66 Bioinf.
NCI1 [93] 4110 2 29.87 32.30 Molecule

Experimental Set-up: We follow You et al. [1] for TUDataset experiments. When
reporting the kNN accuracy, we tune k ↔ {5, 10, 15, 20} separately on validation data for
each dataset and method to allow for the strongest baselines. For synthetic datasets we use
the following setup. Our encoder is a 5-layer GIN model with mean pooling. We set input
node features to be a constant 10-dimensional feature vector, and a hidden layer dimension
is 32; we concatenate hidden representations for a representation dimension of 160. Models
are pretrained for 60 epochs. Subsequently, we use a linear evaluation protocol and train a
linear head for 200 epochs. All models are trained with Adam, lr = 0.01.

B.7 Related Work

Table B.4: Selected Graph Contrastive Learning Frameworks. We provide a brief
description of augmentations used by selected frameworks. Most frameworks use random
corruptive, sampling, or di!usion-based approaches to generate augmentations.

Method Augmentations

GraphCL ([1]) Node Dropping, Edge Adding/Dropping,
Attribute Masking, Subgraph Extraction

GCC ([272]) RWR Subgraph Extraction of Ego Network
MVGRL ([51]) PPR Di”usion + Sampling
GCA ([149]) Edge Dropping, Attribute Masking (both

weighted by centrality)
BGRL ([52]) Edge Dropping, Attribute Masking
SelfGNN ([131]) Attribute Splitting, Attribute Standardiza-

tion + Scaling, Local Degree Profile, Paste
+ Local Degree Profile

Graph Data Augmentation: Unlike images, graphs are discrete objects that do not naturally
lie in Euclidiean space, making it di”cult to define meaningful augmentations. Furthermore,
while for images or natural language, there may be an intuitive understanding of what changes

117

will preserve task-relevant information, this is not the case for graphs. Indeed, a single edge
change can completely change the properties of a molecular graph. Therefore, only a few
works consider graph data augmentation. [113] note that a node classification task can be
perfectly solved if edges only exist between same class samples. They increase homophily
by adding edges between nodes that a neural network predicts belong to the same class
and breaking edges between nodes of predicted dissimilar classes. However, this approach is
expensive and not applicable to graph classification. [112] argue that information preserving
topological transformations are di”cult for the aforementioned reasons and instead focus
on feature augmentations. Throughout training, they add an adversarial perturbation to
node features to improve generalization, computing the gradient of the model weights while
computing the gradients of the adversarial perturbation to avoid more expensive adversarial
training [277]. This approach is not directly applicable to contrastive learning, where label
information cannot be used to generate the adversarial perturbation.

Graph Self-Supervised Learning: In graphs, recent works have explored several paradigms
for self-supervised learning: see [273] for an up-to-date survey. Graph pre-text tasks are
often reminiscent of image in-painting tasks [274], and seek to complete masked graphs
and/or node features ([275, 95]). Other successful approaches include predicting auxiliary
properties of nodes or entire graphs during pre-training or part of regular training to prevent
overfitting ([95]). These tasks often must be carefully selected to avoid negative transfer
between tasks. Many contrast-based unsupervised approaches have also been proposed, often
inspired by techniques designed for non-graph data. [14, 276] draw inspiration from [123] and
maximize the mutual information between global and local representations. MVGRL ([51])
contrasts di!erent views at multiple granularities similar to [114]. [1, 272, 149, 52, 131] use
augmentations (which we summarize in Table B.7) to generate views for contrastive learning.
We note that random corruption, sampling or di!usion based approaches used to create
generic graph augmentations often do not preserve task-relevant information or introduce
meaningful invariances.

118

APPENDIX C

Uncertainty Quantification with GNNs

C.1 Ethics Statement
This work proposes a method to improve uncertainty estimation in graph neural networks,
which has potential broader societal impacts. As graph learning models are increasingly
deployed in real-world applications like healthcare, finance, and transportation, it becomes
crucial to ensure these models make reliable predictions and know when they may be
wrong. Unreliable models can lead to harmful outcomes if deployed carelessly. By improving
uncertainty quantification, our work contributes towards trustworthy graph AI systems.

We also consider several additional safety-critical tasks, including generalization gap
prediction for graph classification (to the best of our knowledge, we are the first to report
results on this task) and OOD detection. We hope our work will encourage further study in
these important areas.

However, there are some limitations. Our method requires (modest) additional computation
during training and inference, which increases resource usage. Although G-#UQ, unlike
post-hoc methods, does not need to be fit on a validation dataset, evaluation of its benefits
also also relies on having some out-of-distribution or shifted data available, which may not
always be feasible. We have seen in Table 5.1 that there are tasks for which G-#UQfails
to improve accuracy and/or calibration of some post-hoc methods, further emphasizing the
need to perform appropriate model selection and the risks if shifted validation data is not
available. Finally, there are open questions around how much enhancement in uncertainty
calibration translates to real-world safety and performance gains.

Looking ahead, we believe improving uncertainty estimates is an important direction for
graph neural networks and deep learning more broadly. This will enable the development
safe, reliable AI that benefits society. We hope our work inspires more research in the graph
domain that focuses on uncertainty quantification and techniques that provide guarantees
about model behavior, especially for safety-critical applications. Continued progress will

119

require interdisciplinary collaboration between graph machine learning researchers and domain
experts in areas where models are deployed.

C.2 PseudoCode

(a) Vanilla GNN
(b) G-!UQ with Node Feature Anchor-
ing

(c) G-!UQ with Hidden Rep Anchoring (d) G-!UQ with READOUT Anchoring

Figure C.1: PseudoCode for G-#UQ. We provide simplified pseudo-code to demonstrate
how anchoring can be performed. We assume PyTorchGeometric style mini-batching. Changes
with respect to the vanilla GNN are shown in bold. Unchanged lines are grayed out.

C.3 Reproducibility
For reproducing our experiments, we have made our code available at this repository. In the
remainder of this appendix (specifically App. C.6, C.7), and C.10), we also provide additional

120

https://github.com/pujacomputes/gduq

details about the benchmarks and experimental setup.

C.4 Details on Super-pixel Experiments
We provide an example of the rotated images and corresponding super-pixel graphs in Fig.
C.2. (Note that classes “6” and “9” may be confused under severe distribution shift, i.e. 90
degrees rotation or more. Hence, to avoid harming class information, our experiments only
consider distribution shift from rotation up to 40 degrees.)

Figure C.2: Rotated Super-pixel MNIST. Rotating images prior to creating super-pixels
to leads to some structural distortion [12]. However, we can see that the class-discriminative
information is preserved, despite rotation. This allows for simulating di!erent levels of graph
structure distribution shifts, while still ensuring that samples are valid.

Tables C.1 and C.2 provided expanded results on the rotated image super-pixel graph
classification task, discussed in Sec. 5.6.1.

In Table C.4 we focus on the calibration results on this task for GPS variants alone. Across
all levels of distribution shift, the best method is our strategy for applying G-#UQ to a
pretrained model–demonstrating that this is not just a practical choice when it is infeasible
to retrain a model, but can lead to powerful performance by any measure. Second-best on all
datasets is applying G-#UQ during training, further highlighting the benefits of stochastic
anchoring.

In addition to the structural distribution shifts we get by rotating the images before
constructing super-pixel graphs, we also simulate feature distribution shifts by adding

121

Table C.1: RotMNIST-Accuracy. Here, we report expanded results (accuracy) on the
Rotated MNIST dataset, including a variant that combines G-#UQ with Deep Ens. Notably,
we see that anchored ensembles outperform basic ensembles in both accuracy and calibration.
(Best results for models using Deep Ens. and those not using it marked separately.)

MODEL G-#UQ? LPE? Avg. Test (∈) Acc. (10) (∈) Acc. (15) (∈) Acc. (25) (∈) Acc. (35) (∈) Acc. (40) (∈)

✁ ✁ 0.947 ±0.002 0.918 ±0.002 0.904 ±0.005 0.828 ±0.009 0.738 ±0.009 0.679 ±0.007
! ✁ 0.933 ±0.015 0.894 ±0.019 0.878 ±0.020 0.794 ±0.032 0.698 ±0.036 0.636 ±0.048
✁ ! 0.949 ±0.002 0.917 ±0.004 0.904 ±0.005 0.829 ±0.007 0.744 ±0.007 0.685 ±0.006

GatedGCN

! ! 0.915 ±0.032 0.872 ±0.038 0.852 ±0.0414 0.776 ±0.039 0.680 ±0.037 0.631 ±0.033
✁ ! 0.970 ±0.001 0.948 ±0.001 0.938 ±0.001 0.873 ±0.006 0.770 ±0.013 0.688 ±0.009

GPS
! ! 0.969 ±0.001 0.946 ±0.003 0.937 ±0.003 0.869 ±0.003 0.769 ±0.012 0.679 ±0.014

GPS (Pretrained) ! ! 0.967 ±0.002 0.945 ±0.004 0.934 ±0.005 0.864 ±0.009 0.759 ±0.010 0.674 ±0.002

✁ ✁ 0.963 ±0.0002 0.943 ±0.001 0.933 ±0.001 0.874 ±0.002 0.794 ±0.002 0.731 ±0.002
! ✁ 0.949 ±0.008 0.922 ±0.008 0.907 ±0.011 0.828 ±0.020 0.733 ±0.032 0.662 ±0.046
✁ ! 0.965 ±0.001 0.943 ±0.001 0.933 ±0.001 0.873 ±0.001 0.792 ±0.004 0.736 ±0.003

GatedGCN-DENS

! ! 0.954 ±0.005 0.930 ±0.010 0.917 ±0.011 0.850 ±0.023 0.759 ±0.025 0.696 ±0.032
✁ ! 0.980 ±0.000 0.969 ±0.000 0.961 ±0.000 0.913 ±0.000 0.834 ±0.000 0.750 ±0.000

GPS-DENS
! ! 0.978 ±0.001 0.963 ±0.000 0.953 ±0.001 0.905 ±0.000 0.822 ±0.002 0.736 ±0.003

Gaussian noise with di!erent standard deviations to the pixel value node features in the
super-pixel graphs. In Table C.5, we report accuracy and calibration results for varying
levels of distribution shift (represented by the size of the standard deviation of the Gaussian
noise). Across di!erent levels of feature distribution shift, we also see that G-#UQ results
in superior calibration, while maintaining competitive or in many cases superior accuracy.

122

Table C.2: RotMNIST-Calibration. Here, we report expanded results (calibration) on the
Rotated MNIST dataset, including a variant that combines G-#UQ with Deep Ens. Notably,
we see that anchored ensembles outperform basic ensembles in both accuracy and calibration.
(Best results for models using Deep Ens. and those not using it marked separately.)

MODEL G-#UQ LPE? Avg.ECE (∋) ECE (10) (∋) ECE (15) (∋) ECE (25) (∋) ECE (35) (∋) ECE (40) (∋)

✁ ✁ 0.035 ±0.001 0.054 ±0.002 0.062 ±0.003 0.118 ±0.007 0.185 ±0.006 0.233 ±0.008GatedGCN-TS
✁ ! 0.033 ±0.002 0.053 ±0.002 0.061 ±0.004 0.116 ±0.005 0.179 ±0.006 0.225 ±0.005
✁ ✁ 0.038 ±0.001 0.059 ±0.001 0.068 ±0.340 0.126 ±0.008 0.195 ±0.012 0.245 ±0.011
! ✁ 0.018 ±0.008 0.029 ±0.013 0.033 ±0.164 0.069 ±0.033 0.117 ±0.048 0.162 ±0.067
✁ ! 0.036 ±0.003 0.059 ±0.002 0.068 ±0.340 0.125 ±0.006 0.191 ±0.007 0.240 ±0.008

GatedGCN

! ! 0.022 ±0.007 0.028 ±0.014 0.034 ±0.169 0.062 ±0.022 0.109 ±0.019 0.141 ±0.019
GPS-TS ✁ ! 0.024 ±0.001 0.041 ±0.001 0.049 ±0.001 0.102 ±0.006 0.188 ±0.012 0.261 ±0.008

✁ ! 0.026 ±0.001 0.044 ±0.001 0.052 ±0.156 0.108 ±0.006 0.197 ±0.012 0.273 ±0.008GPS
! ! 0.022 ±0.001 0.037 ±0.005 0.044 ±0.133 0.091 ±0.008 0.165 ±0.018 0.239 ±0.018

GPS (Pretrained) ! ! 0.021 ±0.001 0.032 ±0.003 0.039 ±0.116 0.083 ±0.002 0.153 ±0.007 0.217 ±0.012

✁ ✁ 0.026 ±0.000 0.038 ±0.001 0.042 ±0.001 0.084 ±0.002 0.135 ±0.001 0.185 ±0.003
! ✁ 0.014 ±0.003 0.018 ±0.005 0.021 ±0.005 0.036 ±0.012 0.069 ±0.032 0.114 ±0.056
✁ ! 0.024 ±0.001 0.038 ±0.001 0.043 ±0.002 0.083 ±0.001 0.139 ±0.004 0.181 ±0.002

GatedGCN-DENS

! ! 0.017 ±0.002 0.024 ±0.005 0.027 ±0.008 0.030 ±0.004 0.036 ±0.012 0.059 ±0.033
✁ ! 0.016 ±0.001 0.026 ±0.002 0.030 ±0.000 0.066 ±0.000 0.123 ±0.000 0.195 ±0.000GPS-DENS
! ! 0.014 ±0.000 0.023 ±0.002 0.027 ±0.003 0.055 ±0.004 0.103 ±0.006 0.164 ±0.006

Table C.3: Accuracy of GPS Variants on RotatedMNIST. We focus on the accuracy
results for GPS variants on rotated MNIST dataset. Using G-#UQ (with or without
pretraining) remains close in accuracy to foregoing it, generally within the range of the
standard deviation of the results.

MODEL G-#UQ? Avg. Test (∈) Acc. (10) (∈) Acc. (15) (∈) Acc. (25) (∈) Acc. (35) (∈) Acc. (40) (∈)
✁ 0.970 ±0.001 0.948 ±0.001 0.938 ±0.001 0.873 ±0.006 0.770 ±0.013 0.688 ±0.009

GPS
! 0.969 ±0.001 0.946 ±0.003 0.937 ±0.003 0.869 ±0.003 0.769 ±0.012 0.679 ±0.014

GPS (Pretrained) ! 0.967 ±0.002 0.945 ±0.004 0.934 ±0.005 0.864 ±0.009 0.759 ±0.010 0.674 ±0.002

Table C.4: Calibration of GPS Variants on RotatedMNIST. We focus on the calibration
results for GPS variants on rotated MNIST dataset. Across the board, we see improvements
from using G-#UQ , with our strategy of applying it to a pretrained model doing best.

MODEL G-#UQ Avg.ECE (∋) ECE (10) (∋) ECE (15) (∋) ECE (25) (∋) ECE (35) (∋) ECE (40) (∋)

GPS-TS ✁ 0.024 ±0.001 0.041 ±0.001 0.049 ±0.001 0.102 ±0.006 0.188 ±0.012 0.261 ±0.008
✁ 0.026 ±0.001 0.044 ±0.001 0.052 ±0.156 0.108 ±0.006 0.197 ±0.012 0.273 ±0.008GPS
! 0.022 ±0.001 0.037 ±0.005 0.044 ±0.133 0.091 ±0.008 0.165 ±0.018 0.239 ±0.018

GPS (Pretrained) ! 0.021 ±0.001 0.032 ±0.003 0.039 ±0.116 0.083 ±0.002 0.153 ±0.007 0.217 ±0.012

123

Table C.5: MNIST Feature Shifts. G-#UQ improves calibration and maintains competi-
tive or even improved accuracy across varying levels of feature distribution shift.

STD = 0.1 STD = 0.2 STD = 0.3 STD = 0.4

MODEL LPE? G-#UQ? Calibration Accuracy (∈) ECE (∋) Accuracy (∈) ECE (∋) Accuracy (∈) ECE (∋) Accuracy (∈) ECE (∋)

✁ ✁ ✁ 0.742±0.005 0.186±0.018 0.481±0.015 0.414±0.092 0.293±0.074 0.606±0.147 0.197±0.092 0.71±0.178
✁ ! ✁ 0.773±0.053 0.075±0.032 0.536±0.010 0.160±0.087 0.356±0.101 0.422±0.083 0.249±0.074 0.529±0.047
! ✁ ✁ 0.751±0.02 0.176±0.014 0.519±0.004 0.348±0.03 0.345±0.032 0.485±0.096 0.233±0.043 0.581±0.142

GatedGCN

! ! ✁ 0.745±0.026 0.100±0.036 0.541±0.040 0.235±0.067 0.355±0.062 0.408±0.116 0.242±0.063 0.539±0.139

124

C.5 Stochastic Centering on the Empirical NTK of
GNNs

Using a simple grid-graph dataset and 4 layer GIN model, we compute the Fourier spectrum
of the NTK. As shown in Fig. C.3, we find that shifts to the node features can induce
systematic changes to the spectrum.

Figure C.3: Stochastic Centering with the empirical GNN NTK. We find that
performing constant shifts at intermediate layers introduces changes to a GNN’s NTK. We
include a vanilla GNN NTK in black for reference. Further, note the shape of the spectrum
should not be compared across subplots as each subplot was created with a di!erent random
initialization.

125

C.6 Size-Generalization Dataset Statistics
The statistics for the size generalization experiments (see Sec. 5.5.1) are provided below in
Table C.6.

Table C.6: Size Generalization Dataset Statistics: This table is directly reproduced
from [17], who in turn used statistics from [18, 19].

NCI1 NCI109
all Smallest 50% Largest 10% all Smallest 50% Largest 10%

Class A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37%
Class B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62%
of graphs 4110 2157 412 4127 2079 421
Avg graph size 29 20 61 29 20 61

PROTEINS DD
all Smallest 50% Largest 10% all Smallest 50% Largest 10%

Class A 59.56% 41.97% 90.17% 58.65% 35.47% 79.66%
Class B 40.43% 58.02% 9.82% 41.34% 64.52% 20.33%
of graphs 1113 567 112 1178 592 118
Avg graph size 39 15 138 284 144 746

C.7 GOOD Benchmark Experimental Details
For our experiments in Sec. 5.5.2, we utilize the in/out-of-distribution covariate and concept
splits provided by [35]. Furthermore, we use the suggested models and architectures provided
by their package. In brief, we use GIN models with virtual nodes (except for GOODMotif)
for training, and average scores over 3 seeds. When performing stochastic anchoring at a
particular layer, we double the hidden representation size for that layer. Subsequent layers
retain the original size of the vanilla model.

When performing stochastic anchoring, we use 10 fixed anchors randomly drawn from the
in-distribution validation dataset. We also train the G-#UQ for an additional 50 epochs to
ensure that models are able to converge. Please see our code repository for the full details.

We also include results on additional node classification benchmarks featuring distribution
shift in Table C.9. In Table C.10, we compare models without G-#UQ to the use of
G-#UQ with randomly sampled anchors at the first or second layer.

126

https://github.com/divelab/GOOD
https://anonymous.4open.science/r/GraphUQ-4D6E

Dataset Shift Train ID validation ID test OOD validation OOD test Train OOD validation ID validation ID test OOD test

Length

GOOD-SST2
covariate 24744 5301 5301 17206 17490
concept 27270 5843 5843 15142 15944

Color

GOOD-CMNIST
covariate 42000 7000 7000 7000 7000
concept 29400 6300 6300 14000 14000
no shift 42000 14000 14000 - -

Base Size

GOOD-Motif
covariate 18000 3000 3000 3000 3000 18000 3000 3000 3000 3000
concept 12600 2700 2700 6000 6000 12600 2700 2700 6000 6000

Word Degree

GOOD-Cora
covariate 9378 1979 1979 3003 3454 8213 1979 1979 3841 3781
concept 7273 1558 1558 3807 5597 7281 1560 1560 3706 5686

University

GOOD-WebKB
covariate 244 61 61 125 126
concept 282 60 60 106 109

Color

GOOD-CBAS
covariate 420 70 70 70 70
concept 140 140 140 140 140

Table C.7: Number of Graphs/Nodes per dataset.

Dataset Model # Model layers Batch Size # Max Epochs # Iterations per epoch Initial LR Node Feature Dim

GOOD-SST2 GIN-Virtual 3 32 200/100 – 1e-3 768
GOOD-CMNIST GIN-Virtual 5 128 500 – 1e-3 3
GOOD-Motif GIN 3 32 200 – 1e-3 4
GOOD-Cora GCN 3 4096 100 10 1e-3 8710
GOOD-WebKB GCN 3 4096 100 10 1e-3/5e-3 1703
GOOD-CBAS GCN 3 1000 200 10 3e-3 8

Table C.8: Model and hyperparameters for GOOD datasets.

127

C.8 GOOD Dataset Additional Results
We also include results on additional node classification benchmarks featuring distribution
shift in Table C.9. In Table C.10, we compare models without G-#UQ to the use of
G-#UQ with randomly sampled anchors at the first or second layer.

128

Table C.9: Additional Node Classification Benchmarks. Here, we compare accuracy
and calibration error of G-#UQ and ”no G-#UQ ” (vanilla) models on 4 node classification
benchmarks across concept and covariate shifts. First, we note that across all our evaluations,
without any posthoc calibration, G-#UQ is superior to the vanilla model on nearly every
benchmark for better or same accuracy (8/8 benchmarks) and better calibration error (7/8),
often with a significant gain in calibration performance. However, due to the challenging
nature of these shifts, achieving state-of-the-art calibration performance often requires the
use of post-hoc calibration methods – so we also evaluate how these posthoc methods can be
elevated when combined with G-#UQ (versus the vanilla variant). When combined with
popular posthoc methods, we highlight that performance improves across the board, when
combined with G-#UQ (including in WebKB and CBAS-Concept). For example, on WebKB
– across the 9 calibration methods considered, “G-#UQ + calibration method” improves or
maintains the calibration performance of the analogous “no G-#UQ + calibration method”
in 7/9 (concept) and 6/9 (covariate). In CBAS, calibration is improved or maintained as
the no-G-#UQ version on 5/9 (concept) and 9/9 (covariate). In all cases, this is achieved
with little or no compromise on classification accuracy (often improving over “no G-#UQ”
variant). We also emphasize that, across all the 8 evaluation sets (4 datasets x 2 shift types)
in Table 10, the best performance is almost always obtained with a GDUQ variant: (accuracy:
8/8) as well as best calibration (6/8) or second best (2/8).

Shift: Concept Shift: Covariate

Accuracy (∈) ECE (∋) Accuracy (∈) ECE (∋)
Dataset Domain Calibration No G-# UQ G-# UQ No G-# UQ G-# UQ No G-# UQ G-# UQ No G-# UQ G-# UQ

✁ 0.253±0.003 0.281±0.009 0.67±0.061 0.593±0.025 0.122±0.029 0.115±0.041 0.599±0.091 0.525±0.033
CAGCN 0.253±0.005 0.268±0.008 0.452±0.14 0.473±0.12 0.122±0.018 0.092±0.161 0.355±0.227 0.396±0.161
Dirichlet 0.229±0.018 0.22±0.022 0.472±0.06 0.472±0.03 0.244±0.105 0.295±0.044 0.299±0.092 0.328±0.044

ETS 0.253±0.005 0.273±0.012 0.64±0.06 0.575±0.019 0.121±0.021 0.084±0.027 0.539±0.112 0.499±0.027
GATS 0.253±0.005 0.273±0.01 0.608±0.008 0.485±0.02 0.122±0.018 0.079±0.029 0.455±0.057 0.376±0.029
IRM 0.251±0.005 0.266±0.011 0.342±0.017 0.349±0.006 0.097±0.04 0.046±0.013 0.352±0.037 0.422±0.013

Orderinvariant 0.253±0.005 0.27±0.01 0.628±0.026 0.564±0.024 0.122±0.018 0.106±0.065 0.545±0.079 0.47±0.065
Spline 0.237±0.012 0.257±0.023 0.436±0.029 0.386±0.034 0.122±0.013 0.171±0.056 0.472±0.031 0.39±0.056

WebKB University

VS 0.253±0.005 0.275±0.011 0.67±0.009 0.588±0.011 0.122±0.018 0.095±0.014 0.602±0.044 0.507±0.014

✁ 0.581±0.003 0.595±0.003 0.307±0.009 0.13±0.011 0.47±0.002 0.518±0.014 0.348±0.032 0.141±0.008
CAGCN 0.581±0.003 0.597±0.002 0.135±0.009 0.128±0.025 0.47±0.002 0.522±0.025 0.256±0.08 0.231±0.025
Dirichlet 0.534±0.007 0.551±0.004 0.12±0.004 0.196±0.003 0.414±0.007 0.449±0.01 0.163±0.002 0.356±0.01

ETS 0.581±0.003 0.596±0.004 0.301±0.009 0.116±0.018 0.47±0.002 0.523±0.003 0.31±0.077 0.141±0.003
GATS 0.581±0.003 0.596±0.004 0.185±0.018 0.229±0.039 0.47±0.002 0.521±0.011 0.211±0.004 0.308±0.011
IRM 0.582±0.002 0.597±0.002 0.125±0.001 0.102±0.002 0.469±0.001 0.522±0.004 0.194±0.005 0.13±0.004

Orderinvariant 0.581±0.003 0.592±0.002 0.226±0.024 0.213±0.049 0.47±0.002 0.498±0.027 0.318±0.042 0.196±0.027
Spline 0.571±0.003 0.595±0.003 0.080±0.004 0.068±0.004 0.459±0.003 0.52±0.004 0.158±0.01 0.098±0.004

Cora Degree

VS 0.581±0.003 0.596±0.004 0.306±0.004 0.127±0.002 0.47±0.001 0.522±0.005 0.345±0.005 0.146±0.005

✁ 0.607±0.003 0.628±0.001 0.284±0.009 0.111±0.013 0.603±0.004 0.633±0.031 0.263±0.004 0.118±0.019
CAGCN 0.607±0.002 0.628±0.002 0.138±0.011 0.236±0.019 0.603±0.004 0.634±0.035 0.129±0.009 0.253±0.035
Dirichlet 0.579±0.007 0.588±0.006 0.105±0.011 0.168±0.005 0.562±0.007 0.578±0.007 0.095±0.006 0.269±0.007

ETS 0.607±0.002 0.628±0.002 0.282±0.002 0.11±0.003 0.603±0.004 0.634±0.013 0.243±0.023 0.106±0.013
GATS 0.607±0.002 0.628±0.002 0.166±0.009 0.261±0.028 0.603±0.004 0.635±0.037 0.16±0.015 0.293±0.037
IRM 0.608±0.001 0.63±0.002 0.115±0.002 0.088±0.003 0.602±0.003 0.635±0.004 0.106±0.002 0.098±0.004

Orderinvariant 0.607±0.002 0.624±0.002 0.174±0.024 0.201±0.061 0.603±0.004 0.621±0.076 0.154±0.022 0.202±0.076
Spline 0.598±0.005 0.629±0.002 0.073±0.002 0.062±0.005 0.591±0.002 0.635±0.004 0.063±0.006 0.053±0.004

Cora Word

VS 0.607±0.001 0.63±0.002 0.283±0.003 0.111±0.003 0.603±0.004 0.636±0.003 0.261±0.005 0.119±0.003

✁ 0.83±0.014 0.829±0.011 0.169±0.013 0.151±0.014 0.703±0.015 0.746±0.027 0.266±0.02 0.169±0.018
CAGCN 0.83±0.013 0.83±0.013 0.137±0.011 0.143±0.022 0.703±0.019 0.749±0.033 0.25±0.021 0.186±0.017
Dirichlet 0.801±0.02 0.806±0.008 0.161±0.012 0.17±0.01 0.671±0.018 0.771±0.03 0.241±0.029 0.217±0.017

ETS 0.83±0.013 0.827±0.014 0.146±0.013 0.164±0.007 0.703±0.019 0.76±0.037 0.28±0.023 0.176±0.019
GATS 0.83±0.013 0.83±0.021 0.16±0.009 0.173±0.021 0.703±0.019 0.751±0.016 0.236±0.039 0.16±0.015
IRM 0.829±0.013 0.839±0.015 0.142±0.009 0.133±0.006 0.72±0.019 0.803±0.04 0.207±0.035 0.158±0.017

Orderinvariant 0.83±0.013 0.803±0.008 0.174±0.006 0.173±0.009 0.703±0.019 0.766±0.045 0.261±0.017 0.194±0.031
Spline 0.82±0.016 0.824±0.011 0.159±0.009 0.16±0.014 0.683±0.019 0.786±0.038 0.225±0.034 0.179±0.035

CBAS Color

VS 0.829±0.012 0.840±0.011 0.166±0.011 0.146±0.012 0.717±0.019 0.809±0.008 0.242±0.019 0.182±0.014

129

Table C.10: Layerwise Anchoring for Node Classification Datasets with Intermedi-
ate Representation Distributions. Here, we provide preliminary results for performing
layerwise anchoring when performing node classification. We fit a gaussian distribution over
the representations (similar to node feature anchoring) and then sample anchors from this
distribution. We fit a gaussian distribution over the representations (similar to node feature
anchoring) and then sample anchors from this distribution. We see that these alternative
strategies do provide benefits in some cases, but overall, our original input node feature
anchoring strategy is more performant.

Shift: Concept Shift: Covariate

Accuracy (∈) ECE (∋) Accuracy (∈) ECE (∋)
Dataset Domain Calibration No G-# UQ Random 1 Random 2 No G-# UQ Random 1 Random 2 No G-# UQ Random 1 Random 2 No G-# UQ Random 1 Random 2

Dirichlet 0.801±0.02 0.765±0.012 0.839±0.023 0.161±0.012 0.301±0.018 0.234±0.027 0.671±0.018 0.74±0.023 0.689±0.032 0.241±0.029 0.349±0.04 0.381±0.029
ETS 0.83±0.013 0.819±0.012 0.82±0.088 0.146±0.013 0.23±0.017 0.257±0.021 0.703±0.019 0.638±0.051 0.686±0.026 0.28±0.023 0.347±0.037 0.334±0.028
IRM 0.829±0.013 0.821±0.019 0.885±0.026 0.142±0.009 0.219±0.012 0.206±0.066 0.72±0.019 0.617±0.084 0.693±0.026 0.207±0.035 0.363±0.03 0.299±0.036

Orderinvariant 0.83±0.013 0.813±0.015 0.819±0.028 0.174±0.006 0.255±0.015 0.236±0.006 0.703±0.019 0.831±0.008 0.636±0.026 0.261±0.017 0.286±0.039 0.303±0.062
Spline 0.82±0.016 0.814±0.022 0.839±0.035 0.159±0.009 0.235±0.017 0.196±0.036 0.683±0.019 0.621±0.052 0.757±0.026 0.225±0.034 0.312±0.026 0.331±0.024

CBAS Color

VS 0.829±0.012 0.817±0.017 0.91±0.006 0.166±0.011 0.251±0.012 0.259±0.021 0.717±0.019 0.593±0.038 0.695±0.051 0.242±0.019 0.38±0.037 0.359±0.02

Dirichlet 0.534±0.007 0.483±0.014 0.423±0.007 0.12±0.004 0.355±0.004 0.347±0.004 0.414±0.007 0.466±0.073 0.425±0.005 0.163±0.002 0.315±0.042 0.345±0.007
ETS 0.581±0.003 0.562±0.01 0.496±0.002 0.301±0.009 0.297±0.009 0.289±0.006 0.47±0.002 0.498±0.119 0.34±0.076 0.31±0.077 0.511±0.005 0.329±0.008
IRM 0.582±0.002 0.567±0.011 0.492±0.003 0.125±0.001 0.072±0.003 0.116±0.006 0.469±0.001 0.499±0.117 0.508±0.005 0.194±0.005 0.094±0.009 0.105±0.006

Orderinvariant 0.581±0.003 0.566±0.004 0.495±0.002 0.226±0.024 0.151±0.015 0.14±0.008 0.47±0.002 0.499±0.107 0.108±0.034 0.318±0.042 0.506±0.005 0.093±0.009
Spline 0.571±0.003 0.561±0.011 0.493±0.005 0.080±0.004 0.11±0.01 0.119±0.005 0.459±0.003 0.499±0.12 0.508±0.006 0.158±0.01 0.105±0.03 0.127±0.012

Cora Degree

VS 0.581±0.003 0.571±0.002 0.279±0.009 0.306±0.004 0.493±0.008 0.272±0.009 0.47±0.001 0.511±0.091 0.51±0.002 0.345±0.005 0.347±0.051 0.323±0.007

Dirichlet 0.579±0.007 0.581±0.004 0.504±0.004 0.105±0.011 0.271±0.011 0.285±0.002 0.562±0.007 0.586±0.009 0.497±0.01 0.095±0.006 0.264±0.022 0.275±0.007
ETS 0.607±0.002 0.641±0.003 0.575±0.003 0.282±0.002 0.352±0.012 0.328±0.007 0.603±0.004 0.633±0.003 0.567±0.004 0.243±0.023 0.377±0.023 0.374±0.006
IRM 0.608±0.001 0.642±0.002 0.574±0.003 0.115±0.002 0.106±0.004 0.154±0.005 0.602±0.003 0.635±0.004 0.569±0.003 0.106±0.002 0.136±0.012 0.173±0.007

Orderinvariant 0.607±0.002 0.642±0.004 0.573±0.004 0.174±0.024 0.109±0.011 0.107±0.01 0.603±0.004 0.638±0.004 0.566±0.004 0.154±0.022 0.087±0.006 0.073±0.004
Spline 0.598±0.005 0.641±0.002 0.576±0.004 0.073±0.002 0.076±0.004 0.068±0.007 0.591±0.002 0.632±0.002 0.568±0.003 0.063±0.006 0.066±0.005 0.077±0.004

Cora Word

VS 0.607±0.001 0.639±0.003 0.583±0.005 0.283±0.003 0.345±0.007 0.335±0.012 0.603±0.004 0.637±0.004 0.579±0.004 0.261±0.005 0.396±0.028 0.384±0.005

Dirichlet 0.229±0.018 0.214±0.000 0.228±0.012 0.472±0.06 0.56±0.000 0.552±0.041 0.244±0.105 0.347±0.012 0.299±0.092 0.429±0.05
ETS 0.253±0.005 0.279±0.000 0.234±0.01 0.64±0.06 0.437±0.000 0.33±0.022 0.121±0.021 0.225±0.013 0.539±0.112 0.258±0.028
IRM 0.251±0.005 0.251±0.000 0.232±0.009 0.342±0.017 0.379±0.000 0.459±0.01 0.097±0.04 0.187±0.021 0.352±0.037 0.294±0.018

Orderinvariant 0.253±0.005 0.279±0.000 0.237±0.01 0.628±0.026 0.568±0.000 0.53±0.049 0.122±0.018 0.221±0.026 0.545±0.079 0.321±0.061
Spline 0.237±0.012 0.237±0.000 0.233±0.008 0.436±0.029 0.467±0.000 0.483±0.041 0.122±0.013 0.205±0.01 0.472±0.031 0.329±0.035

WebKB University

VS 0.253±0.005 0.279±0.000 0.234±0.01 0.67±0.009 0.49±0.000 0.344±0.02 0.122±0.018 0.201±0.011 0.602±0.044 0.256±0.014

130

Table C.11: Layerwise Anchoring for Node Classification Datasets with Random
Shu#ing. Here, we provide preliminary results for performing layerwise anchoring when
performing node classification. We use random shu$ing (similar to the proposed hidden layer
strategy) to create the interemediate representations. We see that these alternative strategies
do provide benefits.

Shift: Concept Shift: Covariate

Accuracy (∈) ECE (∋) Accuracy (∈) ECE (∋)
Dataset Domain Calibration No G-# UQ Batch 1 Batch 2 No G-# UQ Batch 1 Batch 2 No G-# UQ Batch 1 Batch 2 No G-# UQ Batch 1 Batch 2

Dirichlet 0.801±0.02 0.757±0.045 0.58±0.046 0.161±0.012 0.309±0.059 0.431±0.033 0.671±0.018 0.548±0.035 0.629±0.019 0.241±0.029 0.48±0.03 0.407±0.01
ETS 0.83±0.013 0.699±0.036 0.637±0.014 0.146±0.013 0.265±0.013 0.258±0.015 0.703±0.019 0.562±0.087 0.507±0 0.28±0.023 0.37±0.021 0.333±0.02
IRM 0.829±0.013 0.711±0.031 0.724±0.029 0.142±0.009 0.284±0.032 0.291±0.02 0.72±0.019 0.59±0.079 0.657±0.037 0.207±0.035 0.336±0.032 0.268±0.037

Orderinvariant 0.83±0.013 0.788±0.007 0.574±0.051 0.174±0.006 0.268±0.023 0.208±0.055 0.703±0.019 0.61±0.011 0.5±0.019 0.261±0.017 0.334±0.035 0.249±0.037
Spline 0.82±0.016 0.695±0.039 0.652±0.022 0.159±0.009 0.279±0.018 0.236±0.013 0.683±0.019 0.49±0.124 0.6±0.032 0.225±0.034 0.364±0.034 0.308±0.054

CBAS Color

VS 0.829±0.012 0.73±0.043 0.693±0.051 0.166±0.011 0.264±0.009 0.197±0.033 0.717±0.019 0.429±0.083 0.607±0.042 0.242±0.019 0.478±0.042 0.312±0.014

Dirichlet 0.534±0.007 0.515±0.003 0.442±0.012 0.12±0.004 0.304±0.01 0.315±0.004 0.414±0.007 0.507±0.004 0.419±0.006 0.163±0.002 0.28±0.006 0.338±0.004
ETS 0.581±0.003 0.576±0.011 0.516±0.013 0.301±0.009 0.317±0.018 0.285±0.007 0.47±0.002 0.563±0.003 0.496±0.005 0.31±0.077 0.373±0.009 0.311±0.006
IRM 0.582±0.002 0.579±0.009 0.523±0.008 0.125±0.001 0.076±0.004 0.129±0.004 0.469±0.001 0.562±0.004 0.494±0.004 0.194±0.005 0.088±0.011 0.098±0.003

Orderinvariant 0.581±0.003 0.582±0.003 0.518±0.005 0.226±0.024 0.134±0.023 0.126±0.012 0.47±0.002 0.561±0.004 0.496±0.004 0.318±0.042 0.091±0.014 0.096±0.007
Spline 0.571±0.003 0.58±0.006 0.518±0.011 0.080±0.004 0.093±0.007 0.092±0.007 0.459±0.003 0.565±0.004 0.496±0.005 0.158±0.01 0.091±0.009 0.128±0.012

Cora Degree

VS 0.581±0.003 0.581±0.005 0.529±0.005 0.306±0.004 0.313±0.006 0.294±0.004 0.47±0.001 0.562±0.005 0.498±0.008 0.345±0.005 0.368±0.016 0.308±0.003

Dirichlet 0.579±0.007 0.575±0.004 0.491±0.013 0.105±0.011 0.28±0.007 0.282±0.012 0.562±0.007 0.586±0.009 0.507±0.006 0.095±0.006 0.264±0.022 0.249±0.007
ETS 0.607±0.002 0.636±0.003 0.562±0.006 0.282±0.002 0.359±0.02 0.311±0.006 0.603±0.004 0.633±0.003 0.561±0.005 0.243±0.023 0.377±0.023 0.365±0.005
IRM 0.608±0.001 0.632±0.004 0.562±0.006 0.115±0.002 0.124±0.006 0.16±0.005 0.602±0.003 0.635±0.004 0.557±0.006 0.106±0.002 0.136±0.012 0.176±0.007

Orderinvariant 0.607±0.002 0.639±0.003 0.561±0.006 0.174±0.024 0.111±0.008 0.095±0.006 0.603±0.004 0.638±0.004 0.56±0.004 0.154±0.022 0.087±0.006 0.076±0.006
Spline 0.598±0.005 0.633±0.004 0.561±0.007 0.073±0.002 0.077±0.005 0.069±0.004 0.591±0.002 0.632±0.002 0.56±0.006 0.063±0.006 0.066±0.005 0.08±0.004

Cora Word

VS 0.607±0.001 0.633±0.006 0.574±0.007 0.283±0.003 0.368±0.009 0.32±0.005 0.603±0.004 0.637±0.004 0.573±0.008 0.261±0.005 0.396±0.028 0.373±0.006

Dirichlet 0.229±0.018 0.231±0.015 0.234±0.007 0.472±0.06 0.562±0.014 0.534±0.022 0.244±0.105 0.242±0.166 0.298±0.077 0.299±0.092 0.468±0.092 0.483±0.055
ETS 0.253±0.005 0.277±0.007 0.234±0.003 0.64±0.06 0.421±0.017 0.327±0.015 0.121±0.021 0.128±0.017 0.101±0.033 0.539±0.112 0.437±0.032 0.293±0.01
IRM 0.251±0.005 0.265±0.019 0.232±0.014 0.342±0.017 0.377±0.015 0.438±0.015 0.097±0.04 0.118±0.033 0.093±0.034 0.352±0.037 0.482±0.02 0.435±0.016

Orderinvariant 0.253±0.005 0.268±0.01 0.231±0.01 0.628±0.026 0.513±0.071 0.431±0.025 0.122±0.018 0.122±0.018 0.1±0.029 0.545±0.079 0.475±0.049 0.38±0.069
Spline 0.237±0.012 0.242±0.01 0.228±0.014 0.436±0.029 0.415±0.042 0.484±0.035 0.122±0.013 0.129±0.024 0.097±0.013 0.472±0.031 0.478±0.033 0.425±0.013

WebKB University

VS 0.253±0.005 0.279±0.007 0.232±0.005 0.67±0.009 0.441±0.021 0.323±0.015 0.122±0.018 0.132±0.01 0.101±0.033 0.602±0.044 0.455±0.041 0.297±0.008

131

Table C.12: Alternative Anchoring Strategies. Here, we consider an alternative anchoring
formulation for graph classification. Namely, instead of shu$ing features across the batch
(denoted Batch in the table), we perform READOUT anchoring by fitting a normal distribution
over the hidden representations. We then randomly sample from this distribution to create
anchors. Conceptually, this is similar to the node feature anchoring strategy. One potential
direction of future work that is permitted by this formulation is to optimize the parameters
of this distribution given a signal from an appropriate auxiliary task or loss. For example,
we could perform an alternating optimization where the GNN is trained to minimize the
loss, and the mean and variance of the anchoring distribution are optimized to minimize the
expected calibration error on a separate calibration dataset. While a rigorous formulation is
left to future work, we emphasize that the potential for improving the anchoring distribution,
and thus controlling corresponding hypothesis diversity, is in fact a unique benefit of G-#UQ.

Test Acc Test Cal OOD Acc OOD Cal

Shift Type Method MPNN Batch Random MPNN Batch Random MPNN Batch Random MPNN Batch Random

GoodMotif, basis, concept Dirichlet 0.995 ± 0.0007 0.994 ± 0.0002 0.996 ± 0.0009 0.040 ± 0.0037 0.036 ± 0.0016 0.035 ± 0.0058 0.924 ± 0.0069 0.923 ± 0.0117 0.942±0.0034 0.080 ± 0.0153 0.102 ± 0.0071 0.062 ± 0.0086
ETS 0.995 ± 0.0007 0.995 ± 0.0005 0.996 ± 0.0007 0.035 ± 0.0034 0.036 ± 0.0101 0.032 ± 0.0052 0.925 ± 0.0095 0.926 ± 0.009 0.935 ± 0.0068 0.095 ± 0.0098 0.096 ± 0.0128 0.087 ± 0.01451
IRM 0.9954 ± 0.0007 0.9957 ± 0.0009 0.9965 ± 0.0004 0.0198 ± 0.0089 0.0229 ± 0.0105 0.0225±0.0038 0.9251 ± 0.0096 0.9301 ± 0.0123 0.9462 ± 0.0024 0.0873 ± 0.0176 0.0966 ± 0.0103 0.0907 ± 0.0276
OrderInvariant 0.995 ± 0.0007 0.995 ± 0.0005 0.995 ± 0.0005 0.033 ± 0.0094 0.028 ± 0.0047 0.032 ± 0.0009 0.925 ± 0.0095 0.928 ± 0.0104 0.935 ± 0.0027 0.090 ± 0.0092 0.093 ± 0.0070 0.0754±0.0029
Spline 0.995 ± 0.0007 0.995 ± 0.0007 0.9962±0.0005 0.034 ± 0.0002 0.035 ± 0.0090 0.032 ± 0.0048 0.924 ± 0.0098 0.926 ± 0.0092 0.937 ± 0.0030 0.091 ± 0.0084 0.089 ± 0.0123 0.083 ± 0.0065
VS 0.995 ± 0.0007 0.995 ± 0.0005 0.996 ± 0.000 0.035 ± 0.0034 0.036 ± 0.0087 0.033 ± 0.0098 0.925 ± 0.0094 0.926 ± 0.0095 0.936 ± 0.0053 0.094 ± 0.0096 0.095 ± 0.0133 0.082 ± 0.009

GoodMotif,basis, covariate Dirichlet 0.999 ± 0.0003 0.999 ± 0.0004 0.999 ± 0.0002 0.017 ± 0.0054 0.017 ± 0.0019 0.014 ± 0.0004 0.685 ± 0.0504 0.650 ± 0.0450 0.698 ± 0.0139 0.336 ± 0.0667 0.371 ± 0.0474 0.320 ± 0.0140
ETS 0.9997±0.0004 0.999 ± 0.0005 0.999 ± 0.0002 0.0095±0.0091 0.017 ± 0.0064 0.017 ± 0.0056 0.690 ± 0.0434 0.649 ± 0.0476 0.686 ± 0.0226 0.313 ± 0.0413 0.3739 ± 0.0485 0.334 ± 0.0167
IRM 0.9997±0.0004 0.999 ± 0.0006 0.999 ± 0.0003 0.0085 ± 0.0032 0.010 ± 0.0032 0.014 ± 0.0042 0.690 ± 0.0434 0.647 ± 0.0472 0.692 ± 0.0226 0.315 ± 0.0505 0.354 ± 0.0450 0.328 ± 0.0211
OrderInvariant 0.9997±0.0004 0.999 ± 0.0005 0.999 ± 0.0003 0.014 ± 0.0028 0.020 ± 0.0090 0.013 ± 0.0081 0.690 ± 0.0434 0.649 ± 0.0450 0.689 ± 0.0170 0.320 ± 0.0501 0.358 ± 0.0410 0.328 ± 0.0218
Spline 0.9997±0.0004 0.999 ± 0.0005 0.999 ± 0.0003 0.016 ± 0.0049 0.017 ± 0.0053 0.017 ± 0.0052 0.690 ± 0.0434 0.649 ± 0.0476 0.6923±0.0199 0.324 ± 0.0548 0.3733±0.0507 0.327 ± 0.0105
VS 0.9998 ± 0.0001 0.999 ± 0.0003 0.999 ± 0.0002 0.011 ± 0.0053 0.014 ± 0.0034 0.012 ± 0.0016 0.682 ± 0.0561 0.650 ± 0.0546 0.682 ± 0.0251 0.325 ± 0.0568 0.371 ± 0.0591 0.337 ± 0.0264

GOODSST2,length,concept Dirichlet 0.938 ± 0.0019 0.939 ± 0.0056 0.942 ± 0.00180 0.189 ± 0.01989 0.165 ± 0.0179 0.187±0.0256 0.694 ± 0.0193 0.693 ± 0.0020 0.687 ± 0.0027 0.146±0.0196 0.133 ± 0.015 0.169 ± 0.0168
ETS 0.938 ± 0.0020 0.939 ± 0.0060 0.941 ± 0.0017 0.389 ± 0.0018 0.390 ± 0.0022 0.393 ± 0.0007 0.6940±0.0193 0.692 ± 0.0019 0.687 ± 0.0034 0.214 ± 0.0098 0.216 ± 0.0033 0.220 ± 0.0057
IRM 0.939 ± 0.0016 0.939 ± 0.0058 0.941 ± 0.0018 0.326 ± 0.0011 0.326 ± 0.0013 0.327 ± 0.0017 0.693 ± 0.0185 0.692 ± 0.0026 0.685 ± 0.0026 0.240 ± 0.0017 0.232 ± 0.0050 0.242 ± 0.0053
OrderInvariant 0.938 ± 0.0020 0.939 ± 0.0060 0.941 ± 0.0022 0.314 ± 0.0014 0.315 ± 0.0029 0.315 ± 0.0012 0.6940±0.0193 0.692 ± 0.0019 0.687 ± 0.0033 0.224 ± 0.0010 0.222 ± 0.0030 0.223 ± 0.0054
Spline 0.938 ± 0.0026 0.938 ± 0.0044 0.941 ± 0.0010 0.329 ± 0.0021 0.329 ± 0.0019 0.328 ± 0.0012 0.692 ± 0.0190 0.692 ± 0.0022 0.687 ± 0.0035 0.234 ± 0.0052 0.231 ± 0.0044 0.243 ± 0.0034
VS 0.938 ± 0.0027 0.939 ± 0.0057 0.941±0.0018 0.290 ± 0.2099 0.484 ± 0.0008 0.487 ± 0.0007 0.693 ± 0.0184 0.693 ± 0.0018 0.687 ± 0.0031 0.331 ± 0.0484 0.375 ± 0.0022 0.382 ± 0.0048

GOODSST2,length,covariate Dirichlet 0.896 ± 0.0029 0.893 ± 0.0009 0.895 ± 0.00095 0.196 ± 0.0155 0.172 ± 0.0091 0.1797±0.0109 0.825 ± 0.0037 0.827 ± 0.0066 0.805 ± 0.0150 0.163 ± 0.0198 0.141 ± 0.0087 0.142±0.0122
ETS 0.8966 ± 0.0023 0.894 ± 0.0011 0.894 ± 0.0006 0.357 ± 0.0013 0.359 ± 0.0004 0.362 ± 0.0019 0.826 ± 0.0036 0.828±0.0065 0.806 ± 0.0117 0.309 ± 0.0050 0.314 ± 0.0076 0.300 ± 0.0070
IRM 0.895 ± 0.0019 0.893 ± 0.0003 0.894 ± 0.0007 0.307 ± 0.0004 0.307 ± 0.0003 0.306 ± 0.0020 0.826 ± 0.0040 0.828 ± 0.0065 0.809 ± 0.0152 0.276 ± 0.0046 0.277 ± 0.0061 0.265 ± 0.0078
OrderInvariant 0.896 ± 0.0023 0.894 ± 0.0011 0.894 ± 0.0008 0.288 ± 0.0008 0.285 ± 0.0008 0.284 ± 0.0013 0.826 ± 0.0036 0.828±0.0065 0.806 ± 0.0106 0.244 ± 0.0022 0.241 ± 0.0037 0.225 ± 0.0054
Spline 0.894 ± 0.0016 0.890 ± 0.0009 0.892 ± 0.0040 0.309 ± 0.0024 0.307 ± 0.0009 0.307 ± 0.0022 0.822 ± 0.0026 0.822 ± 0.0092 0.801 ± 0.0110 0.275 ± 0.0043 0.276 ± 0.0063 0.264 ± 0.0063
VS 0.8963±0.0028 0.893 ± 0.0008 0.894 ± 0.0007 0.291 ± 0.1833 0.460 ± 0.0011 0.465 ± 0.0010 0.821 ± 0.0053 0.827 ± 0.0071 0.806 ± 0.0119 0.299 ± 0.1395 0.431 ± 0.0061 0.429 ± 0.0054

132

C.9 Post-hoc Calibration Strategies
Several post hoc strategies have been developed for calibrating the predictions of a model.
These have the advantage of flexibility, as they operate only on the outputs of a model and
do not require that any changes be made to the model itself. Some methods include:

• Temperature scaling (TS) [34] simply scales the logits by a temperature parameter
T > 1 to smooth the predictions. The scaling parameter T can be tuned on a validation
set.

• Ensemble temperature scaling (ETS) [172] learns an ensemble of temperature-
scaled predictions with uncalibrated predictions (T = 1) and uniform probabilistic
outputs (T = ∃).

• Vector scaling (VS) [34] scales the entire output vector of class probabilities, rather
than just the logits.

• Multi-class isotonic regression (IRM) [172] is a multiclass generalization of the
famous isotonic regression method [278]): it ensembles predictions and labels, then
learns a monotonically increasing function to map transformed predictions to labels.

• Order-invariant calibration [279] uses a neural network to learn an intra-order-
preserving calibration function that can preserve a model’s top-k predictions.

• Spline calibration instead uses splines to fit the calibration function [170].

• Dirichlet calibration [171] models the distribution of outputs using a Dirichlet
distribution, using simple log-transformation of the uncalibrated probabilities which
are then passed to a regularized fully connected neural network layer with softmax
activation.

For node classification, some graph-specific post-hoc calibration methods have been
proposed. CaGCN [41] uses the graph structure and an additional GCN to produce node-
wise temperatures. GATS [42] extends this idea by using graph attention to model the
influence of neighbors’ temperatures when learning node-wise temperatures. We use the post
hoc calibration baselines provided by (author?) in our experiments.

All of the above methods, and others, may be applied to the output of any model including
one using G-#UQ. As we have shown, applying such post hoc methods to the outputs of the
calibrated models may improve uncertainty estimates even more. Notably, calibrated models
are expected to produce confidence estimates that match the true probabilities of the classes

133

being predicted [280, 34, 169]. While poorly calibrated CIs are over/under confident in their
predictions, calibrated CIs are more trustworthy and can also improve performance on other
safety-critical tasks which implicitly require reliable prediction probabilities (see Sec. 5.5).
We report the top-1 label expected calibration error (ECE) [281, 282]. Formally, let pi be
the top-1 probability, ci be the predicted confidence, bi a uniformly sized bin in [0, 1]. Then,

ECE :=
N

i

bi∞(pi ≃ ci)∞

.

134

C.10 Details on Generalization Gap Prediction
Accurate estimation of the expected generalization error on unlabeled datasets allows models
with unacceptable performance to be pulled from production. To this end, generalization error
predictors (GEPs) [283, 284, 61, 285, 286] which assign sample-level scores, S(xi) which are
then aggregated into dataset-level error estimates, have become popular. We use maximum
softmax probability and a simple thresholding mechanism as the GEP (since we are interested
in understanding the behavior of confidence indicators), and report the error between the
predicted and true target dataset accuracy: GEPError := ||Acctarget≃ 1

|X|
∑

i I(S(x̄i; F) > ϖ)||
where ϖ is tuned by minimizing GEP error on the validation dataset. We use the confidences
obtained by the di!erent baselines as sample-level scores, S(xi) corresponding to the model’s
expectation that a sample is correct. The MAE between the estimated error and true error is
reported on both in- and out-of -distribution test splits provided by the GOOD benchmark.

C.11 Results on Generalization Error Prediction
GEP Experimental Setup. GEPs [283, 284, 61, 285, 286] aggregate sample-level scores
capturing a model’s uncertainty about the correctness of a prediction into dataset-level
error estimates. Here, we use maximum softmax probability for scores and a thresholding
mechanism as the GEP. (See Appendix C.10 for more details.) We consider READOUT anchoring
with both pretrained and end-to-end training, and report the mean absolute error between
the predicted and true target dataset accuracy on the OOD test split.

GEP Results. As shown in Table C.13, both pretrained and end-to-end G-#UQ out-
perform the vanilla model on 7/8 datasets. Notably, we see that pretrained G-#UQ is
particularly e!ective as it obtains the best performance across 6/8 datasets. This not only
highlights its utility as a flexible, light-weight strategy for improving uncertainty estimates
without sacrificing accuracy, but also emphasizes that importance of structure, in lieu of full
stochasticity, when estimating GNN uncertainties.

135

Table C.13: GOOD-Datasets, Generalization Error Prediction Performance. The
MAE between the predicted and true test error on the OOD test split is reported. G-
#UQ variants outperform vanilla models on 7/8 datasets (GOODMotif(Basis,Covariate)
being the exception). Pretrained G-#UQ is particularly e!ective at this task as it achieves the
best performance overall on 6/8 datasets. Promisingly, we see that regular G-#UQ improves
performance over the vanilla model on 6/8 datasets (even if it is not the best overall).
We further observe that performing generalization error prediction is more challenging
under covariate shift than concept shift on the GOODCMNIST, GOODMotif(Basis) and
GOODMotif(Size) datasets. On these datasets, the MAE is almost twice as large than
their respective concept shift counterparts, across methods. GOODSST2 is the exception,
where concept shift is in fact more challenging. To the best our knowledge, we are the first
to investigate generalization error prediction on GNN-based tasks under distribution shift.
Understanding this behavior further is an interesting direction of future work.

CMNIST (Color) MotifLPE (Basis) MotifLPE (Size) SST2

Method Concept(∋) Covariate (∋) Concept(∋) Covariate(∋) Concept(∋) Covariate(∋) Concept(∋) Covariate(∋)

Vanilla 0.200 ± 0.009 0.510 ± 0.089 0.045 ± 0.003 0.570 ± 0.012 0.324 ± 0.018 0.537 ± 0.146 0.117 ± 0.006 0.056 ± 0.044
G-!UQ 0.190 ± 0.010 0.493 ± 0.072 0.023 ± 0.003 0.572 ± 0.019 0.317 ± 0.007 0.528 ± 0.189 0.124 ± 0.016 0.054 ± 0.043
Pretr. G-!UQ 0.192 ± 0.005 0.387 ± 0.048 0.018 ± 0.012 0.573 ± 0.004 0.307 ± 0.016 0.356 ± 0.143 0.114 ± 0.004 0.030 ± 0.026

136

C.12 Additional Study on Pretrained Variant
For the datasets and data shifts on which we reported out-of-distribution calibration error of
pretrained vs. in-training G-#UQ earlier in Fig. 5.5, we now report additional results for
in-distribution and out-of distribution accuracy as well as calibration error. We also include
results for the additional GOODMotif-basis benchmark for completeness, noting that the
methods provided by the original benchmark [35] generalized poorly to this split (which may
be related to why G-#UQ methods o!er little improvement over the vanilla model.) Fig. C.4
shows these extended results. By these additional metrics, we again see the competitiveness
of applying G-#UQ to a pretrained model versus using it in end-to-end training.

Figure C.4: Evaluating Pretrained G-#UQ. Here, we report the performance of pretrained
G-#UQ models vs. end-to-end and vanilla models with respect to in-distribution and out-
of-distribution accuracy as well as expected calibration error. With the exception of the
GOODMotif (basis) dataset, pretrained G-#UQ improves the OOD ECE over both the vanilla
model and end-to-end G-#UQ at comparable or improved OOD accuracy on 7/8 datasets.
Furthermore, pretrained G-#UQ also improves the ID ECE on all but the GOODMotif (size)
datasets (6/8), where it performs comparably to the vanilla model, and maintains the ID
accuracy. (We note that all methods are comparably better calibrated on the GOODMotif
ID data than GOODCMIST/GOODSST2 ID data; we suspect this is because there may
exist simple shortcuts available in the GOODMotif dataset that can be used on the ID test
set e!ectively.) Overall, these results clearly demonstrate that pretrained G-#UQ does o!er
some performance advantages over end-to-end G-#UQ and does so at reduced training times
(see Table. C.13). For example, on GOODCMNIST (covariate shift), pretrained G-#UQ is
not only 50% faster than end-to-end G-#UQ , it also improves OOD accuracy and OOD
ECE over both the vanilla and end-to-end G-#UQmodels.

137

C.13 Runtime Table

Table C.14: Runtimes. We include the runtimes of both training per epoch (in seconds)
and performing calibration. Reducing stochasticity can help reduce computation (L1 → L3).
Cost can also be reduced by using a pretrained model.

GOODCMNIST GOODSST2 GOODMotifLPE
Dataset Training (S) Inference (S) Training (S) Inference (S) Training (S) Inference (S)
Vanilla 18.5 25.8 10.8 18.5 3.8 4.5
Temp. Scaling 18.5 23.5 10.8 13.4 3.8 5.3
DEns (Ens Size=3) 18.456 x Ens Size 59.4 10.795 x Ens Size 29.0 3.8 x Ens Size 11.8
G-#UQ (L1, 10 anchors) 22.1 181.5 15.9 17.1 5.8 15.5
G-#UQ (L2, 10) 22.4 148.6 12.7 15.5 5.8 11.8
G-#UQ (HiddenRep, 10) 18.5 28.0 13.8 19.6 3.9 6.5
G-#UQ (Pretr. HiddenRep, 10) 8.6 27.8 6.8 16.0 2.5 6.4

138

C.14 Mean and Variance of Node Feature Gaussians

Table C.15: Mean and Variance of Node Feature Anchoring Gaussians. We report
the mean and variance of the Gaussian distributions fitted to the input node features. Because
the input node features vary in size, we report aggregate statistics over the mean and variance
corresponding to each dimension. For example, Min(Mu) indicates that we are reports the
minimum mean over the d-dim set of means.

Dataset Domain Shift Min (Mu) Max (Mu) Mean (Mu) Std (Mu) Min (Std) Max (Std) Mean (Std) Std (Std)
GOODSST2 length concept -4.563 0.69 -0.011 0.278 0.163 0.803 0.242 0.049
GOODSST2 length covariate -4.902 0.684 -0.01 0.3 0.175 0.838 0.255 0.05
GOODCMNIST color concept 0.117 0.133 0.127 0.008 0.092 0.097 0.095 0.003
GOODCMNIST color covariate 0.087 0.131 0.102 0.025 0.108 0.109 0.108 0
GOODMotifLPE size covariate 0.003 0.021 0.011 0.008 0.835 1.728 1.248 0.377
GOODMotifLPE size concept -0.006 0 -0.002 0.003 0.542 1.114 0.783 0.242
GOODMotifLPE basis concept -0.011 0.015 0.001 0.011 0.721 1.464 1.09 0.304
GOODMotifLPE basis covariate -0.007 -0.002 -0.004 0.002 0.808 1.913 1.251 0.469
GOODWebKB university concept 0 0.95 0.049 0.099 0.001 0.5 0.168 0.095
GOODWebKB university covariate 0 0.934 0.05 0.104 0.001 0.5 0.164 0.098
GOODCora degree concept 0 0.507 0.007 0.017 0.001 0.5 0.061 0.051
GOODCora degree covariate 0 0.518 0.007 0.017 0.001 0.5 0.061 0.052
GOODCBAS color covariate 0.394 0.591 0.471 0.093 0.142 0.492 0.403 0.174
GOODCBAS color concept 0.23 0.569 0.4 0.144 0.168 0.495 0.39 0.152

Figure C.5: GOODCMNIST, Concept, Anchoring Distribution. We plot the mean
and variance of the fitted anchoring distribution vs. the true feature distribution for each
input dimension. We observe there is a mismatch between the empircal distribution and the
fitted Gaussian. However, we did not find this mismatch to harm the e!ectiveness of G-#UQ.

139

Figure C.6: GOODCMNIST, Covariate, Anchoring Distribution. We plot the mean
and variance of the fitted anchoring distribution vs. the true feature distribution for each
input dimension. We observe there is a mismatch between the empircal distribution and the
fitted Gaussian. However, we did not find this mismatch to harm the e!ectiveness of G-#UQ.

140

Table C.16: Number of Parmeters per Model.We provide the number of parameters
in the vanilla and modified parameter as follows. Note, that the change in parameters is
architecture and input dimension dependent. For example, GOODCMNIST, and GOODSST2
use GIN MPNN layers. Therefore, when changing the layer dimension, we are changing the
dimension of its internal MLP. It is not an error that intermediate layer G-#UQhave the
same number of parameters, this is due to the architecture: these layers are the same size in
the vanilla model. Likewise, GOODCora’s input features have dimension is 8701, so doubling
the input layer’s dimension appears to add a signficant number of parameters. We do not
believe this

Dataset GOODCMNIST GOODMotif GOODSST2 GOODCORA GOODWebKB GOODCBAS
Baseline 2001310 911403 1732201 2816770 695105 185104
G-#UQ(NFA) 2003110 913803 2193001 5429770 1206005 186304
G-#UQ(L1) 2360110 1633203 2091001
G-#UQ(L2) 2360110 1633203 2091001
G-#UQ(L3) 2360110
G-#UQ(L4) 2360110
G-#UQ(Readout) 2004310 912303 1732501

141

C.15 Expanded Discussion on Anchoring Design
Choices

Below, we expand upon some of the design choices for the proposed anchoring strategies.
When performing node featuring anchoring, how does fitting a Gaussian

distribution to the input node features help manage the combinatorial stochasticity
induced by message passing?

Without loss of generality, consider a node classification setting, where every sample
is assigned a unique anchor. Then, due to message passing, after l hops, a given node’s
representation will have aggregated information from its l hop neighborhood. However,
since each node in this neighborhood has a unique anchor, we see that any given node’s
representation is not only stochastic due to its own anchor but also that of its neighbors.
For example, if any of its neighbors are assigned a di!erent anchor, then the given node’s
representation will change, even if its own anchor did not. Since this behavior holds true for all
nodes and each of their respective neighborhoods, we loosely refer to this phenomenon having
combinatorial complexity, as e!ectively marginalizing out the anchoring distribution would
require handling any and all changes to all l-hop neighbors. In contrast, when performing
anchored image classification, the representation of a sample is only dependent on its unique,
corresponding anchor, and is not influenced by the anchors of other samples. To this end,
using the fitted Gaussian distribution helps manage this complexity, since changes to the
anchors of a node’s l-hop neighborhood are simpler to model as they require only learning
to marginalize out a Gaussian distribution (instead of the training distribution). Indeed,
for example, if we were to assume simplified model where message passing only summed
node neighbors, the anchoring distribution would remain Gaussian after l rounds of message
passing since the sum of Gaussian is still Gaussian (the exact parameters of the distribution
would depend on the normalization used however).

142

APPENDIX D

Graph Clustering with LLM Guidance

In this section, we briefly introduce deep attributed graph clustering and relevant works for
combining LLMs and GNNs when working with TAGs. Please see [30] and [213], respectively,
for comprehensive surveys.

Deep Attributed Graph Clustering. While unattributed graph clustering has a
rich history in network analysis through modularity maximization, spectral clustering, and
cuts-based approaches, the success of GNNs in graph representation learning has lead to
growing interest in deep clustering methods that e”ciently leverage both node-level attributes
and topology. Broadly, such methods either (i) learn node representations using a self-
supervised or unsupervised objective, and then perform clustering given these representations
or (ii) learn both the embeddings and clustering assignments end-to-end through specialized
clustering-based losses. While reconstructive [214, 215] and adversarial frameworks [216]
were initially popular, in this work, we focus on contrastive [77, 217, 52, 78] and pooling-
based methods [209, 207, 208]. Such methods, which, respectively, use contrastive losses
to learn discriminative node representations or propose novel pooling layers that optimize
for clustering-based losses (e.g., spectral relaxations of modularity or mincut), are more
performative, e”cient, and scalable than adversarial or reconstructive approaches. Moreover,
as we will discuss in Sec. 7.4.2, these methods are more amenable to fine-tuning. Indeed,
fine-tuning contrastively pre-trained representations is well-known to induce state-of-the-art
performance on a variety of supervised tasks in both vision and graph representation learning.

LLMs + Graphs. Recent approaches that seek to combine graphs/GNNs and natural-
language/LLMs can be categorized as being “predictors” (the LLM provides predictions),
“encoders” (sentence transformers or other LLMs are used to provide input node features), or
“aligners” (GNNs and LLMs jointly trained to perform the task) [213]. Various mechanisms,
including prompting [218], fine-tuning [219], variational expectation maximization [67], joint
optimization [9], and distillation [220], have been proposed to fulfill these roles, typically on
supervised tasks. Instead, GCLR uses the LLM as a refiner and enhancer, as the LLM is
only prompted to provide feedback for updating the underlying GNN-based graph clustering

143

solution and sentence transformers are used to provide input node embeddings. This allows
us to avoid the expensive fine-tuning of either LLMs or pre-trained language models, as well
as exploit the scalability of graph clustering algorithms.

D.1 Additional Results

Table D.1: Query Function Ablation.We report performance on the following query
strategies: random sampling \ entropy sampling \ least confidence \ margin sampling. We
observe that while there is a slight decrease in performance when using random sampling as
the query function, overall margin sampling perform similarly to entropy sampling. Least
confidence sampling, in fact, improves performance on a few cases.

Dataset Method Acc. NMI F1 ARI COND MOD
citeseer di!pool 49.45\59.56\60.19\59.38 26.47\27.75\28.38\23.21 8.47\13.16\12.88\8.74 33.87\31.93\31.16\29.23 0.16\0.11\0.09\0.1 0.39\0.34\0.33\0.29

dinknet 46.14\56.99\58.16\57.9 6.62\35.41\35.8\36.2 2.81\22.96\22.28\22.96 10.65\37.79\37.39\40.21 0.02\0.22\0.22\0.21 0.07\0.43\0.43\0.44
dmon 37.94\51.74\52.18\51.31 7.73\27.88\28.34\27.54 2.53\18.42\18.2\17.98 11.86\33.67\33.88\32.75 0.06\0.15\0.15\0.15 0.16\0.51\0.5\0.5
mincut 64.08\63.4\63.56\61.16 34.45\34.74\35.16\39.89 30.4\31.31\31.42\30.13 55.48\54.43\55.27\49.44 0.24\0.23\0.23\0.31 0.56\0.58\0.58\0.52

cora di!pool 68.7\66.53\66.55\66.52 43.99\45.88\45.32\45.52 36.35\42.32\42.02\41.83 55.24\54.14\53.08\53.96 0.32\0.26\0.26\0.26 0.5\0.53\0.53\0.53
dinknet 35.33\42.7\42.4\42.67 14.46\26.75\26.51\26.92 10.65\19.01\18.61\19 11.3\30.6\30.01\30.12 0.08\0.39\0.38\0.37 0.13\0.29\0.29\0.29
dmon 46.14\56.99\58.16\57.9 6.62\35.41\35.8\36.2 2.81\22.96\22.28\22.96 10.65\37.79\37.39\40.21 0.02\0.22\0.22\0.21 0.07\0.43\0.43\0.44
mincut 61.16\61.52\60.5\60.61 39.89\40.94\39.78\40.05 30.13\29.34\29\30.1 49.44\50.6\50.34\50.5 0.31\0.31\0.33\0.32 0.52\0.51\0.5\0.5

wikics di!pool 37.94\51.74\52.18\51.31 7.73\27.88\28.34\27.54 2.53\18.42\18.2\17.98 11.86\33.67\33.88\32.75 0.06\0.15\0.15\0.15 0.16\0.51\0.5\0.5
dinknet 64.08\63.4\63.56\61.78 34.45\34.74\35.16\33.38 30.4\31.31\31.42\29 55.48\54.43\55.27\54.02 0.24\0.23\0.23\0.25 0.56\0.58\0.58\0.57
dmon 35.33\42.7\42.4\42.67 14.46\26.75\26.51\26.92 10.65\19.01\18.61\19 11.3\30.6\30.01\30.12 0.08\0.39\0.38\0.37 0.13\0.29\0.29\0.29
mincut 46.4\46.92\44.46\45.76 22.06\18.61\20.11\18.19 11.57\5.6\6.79\9.08 28.09\22.16\22.67\22.37 0.27\0.24\0.28\0.21 0.22\0.16\0.2\0.16

Table D.2: Ablation on the Labeling Budget. We report performance when the LLM
labeling budget is 20% \ 40% \ 60% \ 80% \ 100%. We find that increasing the budget does
not substantially increase performance, unlike traditional active learning. We hypothesize
this is partially due to regularizing training using GNN pseudo-labels and the imperfect LLM
oracle.
Dataset Method Acc. NMI F1 ARI COND MOD

citeseer

di!pool 54.43\53.82\52.77\53.05\54.66 23.52\22.7\22.59\22.76\22.21 15.33\15.3\15.2\15.54\15.23 35.44\36.46\36.72\36.88\36.52 0.3\0.3\0.31\0.32\0.32 0.45\0.45\0.45\0.44\0.44
dinknet 69.81\69.84\69.81\69.81\69.81 34.15\36.98\36.61\36.38\36.19 26.36\29.83\29.23\28.97\28.82 45.51\48.06\47.35\47.13\46.93 0.07\0.07\0.07\0.07\0.07 0.6\0.62\0.61\0.61\0.61
dmon 51.81\51.63\51.62\51.3\51.25 28.17\29.15\28.99\29.19\29.1 18\18.82\18.37\18.65\18.56 31.84\32.72\32.66\32.53\32.45 0.13\0.14\0.15\0.15\0.15 0.5\0.5\0.5\0.5\0.5
mincut 63.57\61.68\63.12\63.98\64.14 34.44\32.88\33.4\32.94\32.7 29.95\27.77\28.04\27.41\27.23 55.75\54.3\54.29\53.44\52.27 0.26\0.31\0.3\0.31\0.3 0.55\0.51\0.51\0.51\0.51

cora

di!pool 55.55\55.44\55.61\56.67\56.53 24.17\24.81\24.9\24.97\25.18 9.91\10.06\10.35\10.9\11.02 31.91\32.92\33.57\34.3\34.25 0.41\0.43\0.44\0.44\0.44 0.34\0.33\0.32\0.33\0.34
dinknet 59.97\60.01\60.01\59.97\60.04 24.84\25.72\25.36\25.53\25.23 10.19\10.89\10.43\10.43\10 30.36\30.74\30.58\30.79\30.47 0.09\0.09\0.09\0.09\0.09 0.32\0.33\0.32\0.32\0.31
dmon 58.14\58.89\59\58.91\58.91 35.71\36.31\36.95\37.39\37.5 22.31\21.97\21.82\21.85\22.25 38.78\37.71\37.93\39.24\39.44 0.21\0.22\0.21\0.2\0.19 0.43\0.43\0.44\0.44\0.45
mincut 60.43\62.17\59.4\60.54\60.76 38.36\37.51\38.47\38.18\38.84 28.27\27.65\28.51\28.37\29.36 48.36\47.79\48.61\47.87\47.84 0.36\0.37\0.38\0.37\0.38 0.47\0.46\0.45\0.46\0.46

subtagwikics

di!pool 49.75\51.71\52.18\51.31\52.5 30.03\30.54\30.14\31.23\30.73 20.62\22.71\19.96\19.74\20.97 40.33\40.68\37.45\38.23\39.88 0.43\0.39\0.39\0.39\0.41 0.39\0.42\0.42\0.38\0.4
dinknet 66.56\66.54\66.54\66.51\66.52 46.13\45.77\45.73\45.68\45.62 42.49\42.43\42.31\42.14\42.05 54.59\54.27\54.16\54.14\54.21 0.26\0.25\0.26\0.26\0.26 0.53\0.53\0.53\0.53\0.53
dmon 42.99\42.83\42.9\43.05\43.13 27.31\27.7\27.83\28.09\28.32 19.24\19.35\19.57\19.73\19.97 30.42\30.68\30.76\31.06\31.12 0.37\0.37\0.37\0.36\0.36 0.29\0.29\0.3\0.3\0.3
mincut 44.91\44.01\44.53\43.05\44.98 18.36\17.12\20.1\19.83\18.77 5.11\5.97\9.44\9.48\6.2 21.5\18.35\25.49\18.43\19.59 0.28\0.22\0.3\0.3\0.26 0.16\0.14\0.15\0.17\0.19

144

D.2 Prompt Examples

D.3 Metrics
We consider the following extrinsic and graph topology-based metrics in our evaluation. Let
G = (V , E , T , X , [Y]) represent a graph with its respective node-set, edge-set, raw node based
text information, embedded node attribute information (e.g., some embedding of a node’s
text), and optional ground-truth cluster assignment. Further, let N be the number of the
nodes, M be the number of edges, C be the desired (or ground-truth) number of clusters,
d the dimension of the hidden representation, A ↔ Rn→n be the corresponding adjacency
matrix, X ↔ RN→d be a matrix representation of X , Y ↔ [0, 1]C , dv be the degree vector of a
particular node v, and cv be the predicted cluster of a given node v.

• Modularity [202]. Modularity measures the deviation with respect to nodes belonging
to the same cluster against the expectation of the nodes being connected given a null
model where nodes are connected randomly. Graphs with high modularity will have
clusters where the majority of the edges are contained with some cluster and few edges
that cross the clusters. Modularity falls within [≃1

2 , 1], where a positive score indicates
that the clustering structure that is above random, and is defined as follows:

Q = 1
2m



ij

[

A[ij] ≃ didj

2m

]

1[ci = cj].

• Conductance [204, 287]. Also known as the Cheeger coe”cient, this metric measures
how quickly a random walk on a graph will reach its stationary distribution. Given a
particular cluster, ĉ, the number of edges belonging to that cluster (intra-cluster edges)
can be computed as rĉ = ∑

u,v↑A 1[cu = ĉ, cv = ĉ], and the number of edges are not fully
contained in ĉ (inter-cluster edges) can be computed as sĉ = ∑

u,v↑A 1[cu = ĉ, cv ↗= ĉ].
Then, conductance is defined as the average ratio of intra- and inter- cluster edges,
where tight clusters are expected to have relatively fewer inter cluster edges.

↼ = 1
C

C

ĉ

sĉ

rĉ + sĉ

• Accuracy.

ACC =
n

i=1

↼(yi, map(ŷi))
n

(D.1)

ŷi represents the predicted cluster ID, while yi indicates the ground truth cluster ID

145

Table D.3: Prompt Example: Concepts, CORA

CONCEPTS GENERATION PROMPT: Task: I’m clustering papers in a
citation network according to research area and need help coming up with cluster
names. The following num-exemplars papers that have been clustered together and
I’m going to give you their abstract/titles. Can you propose a < 7 word research
topic and 2-3 sentence description for this cluster? Try not to make it too specific
or too broad, and explain your reasoning. Return your answer in a JSON format:
{topic: [your topic], description: [your description], reasoning: [your reasoning]}.

SAMPLES FROM CLUSTER:
Sample 1

Sample 2

...

Sample Num-Exemplars

Answer:
CONCEPT PREDICTION PROMPT:
[Task]
I’m currently working on clustering papers within a citation network based on their
abstracts/titles. I’m seeking assistance in determining the cluster association for a
specific uncertain sample. You’ll be provided with the abstract/title of this sample,
along with the titles and short descriptions of num-clusters potential clusters.
Your task involves carefully reading each cluster title and description, taking a
thoughtful approach, and selecting the cluster that best aligns with the confusing
sample. Please provide your answer in JSON format, including the predicted cluster
number, title of the predicted cluster, and your detailed reasoning. Your response
should look like this: {cluster: [your predicted cluster number], cluster title: [title
of predicted cluster], reasoning: [your reasoning for choosing this cluster]}. Take
your time and ensure clarity in your explanation.

[CLUSTER TITLES]
1. <GENERATED TITLE>

Description: <GENERATED TITLE DESCRIPTION>

...

NUM-CLUSTERS. <GENERATED TITLE>

Description: <GENERATED TITLE DESCRIPTION>

[UNCERTAIN SAMPLE]
QUERY

[ANSWER]

146

Table D.4: Prompt Example: Incontext, CORA

PROMPT:
[Example]
<Sample>

{Category: <GNN’s Predicted Cluster>}

...

[Example]
<Sample>

{Category: <GNN’s Predicted Cluster>}

[Task]
Given the above examples, please identify the correct category for the following
query sample. Please explain your reasoning and return your answer in a JSON
format: category: [your prediction], reasoning: [your reasoning]. If you’re unsure of
an answer, select category -1.

[QUERY]
<QUERY>

[ANSWER]

Table D.5: Prompt Example: Triplets, CORA

PROMPT: Task: I’m clustering papers in a citation network according to research
area and need help determining where a particular query sample belongs given its
abstract and title. I will give you the abstracts/titles of two samples belonging to
nearby clusters and you should select the abstract/title that is more similar to the
query in terms of research topic. Please explain your reasoning and return your
answer in a JSON format: {selection: [1,2,-1(neither or unsure)], reasoning: [your
reasoning]}.

[SAMPLE 1]
<Sample from 1st (2nd) Closest Cluster>]

[SAMPLE 2]
<Sample from 2nd (1st) Closest Cluster>]

[QUERY]
<Sample of Query Sample>]

[ANSWER]

147

label. map(.) denotes the Kuhn-Munkres algorithm [288] which aligns the predicted
cluster-ID with the class-ID, and indicator function ↼(.) is formulated as:

↼(yi, map(ŷi)) =






1 if yi = map(ŷi)

0 else
(D.2)

• Normalized Mutural Information.

NMI = ≃
2 ∑

ŷ
∑

y p(ŷ, y) log p(ŷ,y)
p(ŷ)p(y)∑

i p(ŷi) log (p(ŷi)) + ∑
j p(yj) log (p(yj))

(D.3)

where p(y), p(ŷ), and p(ŷ, y) represent the distribution of predicted results, distribution
of the ground truth, and joint distribution of them, respectively.

• Adjusted Random Index.

ARI = RI ≃ expectedRI

max(RI) ≃ expectedRI
(D.4)

where RI and expectedRI signifies the Rand Index and expected Rand Index [289],
respectively. An ARI of 0 suggests disagreement between real and modeled clustering
in pairing, whereas an ARI of 1 indicates concordance between real and modeled
clustering, representing identical clusters.

• F1-Score.
F1 = 2.P recision.Recall

Precision + Recall
(D.5)

Precision = TP

TP + FP
, Recall = TP

TP + FN
(D.6)

where TP , FP , and FN indicate the number of true positive, false positive, and false
negative samples, respectively.

D.4 Reproducibility Statement
All code will be released upon acceptance. We dropped the computation linguistic and
web-technology categories from WikiCS to create a more even and separate labeling for
evaluation. We use the mixtral-8x-7b model, and a G.5 (8 gpu) instance on AWS. We repeat
results over 3 seeds.

148

Table D.6: Dataset Statistics.

Dataset Num Nodes Num Edges Num Clusters
Cora [290] 2,708 5,429 7
Citeseer [291] 3,327 4,732 6
WikiCS∗ [292] 10,601 204120 8

D.5 Example of Generated Titles

Table D.7: Generated Concepts. Below, are examples of concepts generated by
chatgpt-3.5-turbo on Cora with MinCut as the GNN clustering algorithm. While some
concepts are imperfect, e.g., rule learning or theory, other topics are well captured. Apply-
ing self-refinement strategies could improve these generated concepts, at additional budget
expenditure.

True Generated

Reinforcement Learning Reinforcement Learning and Dynamic Pro-
gramming

Genetic Algorithms Evolutionary Algorithms in Problem Solv-
ing

Rule Learning Error Bounds in Learning Algorithms
Theory Feature Selection in Machine Learning’
Probabilistic Methods Bayesian Statistical Methods
Case Based Improving Case-Based Reasoning Adapta-

tion
Neural Networks Neural Network Self-Organization

149

BIBLIOGRAPHY

[1] Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Proc.Adv.in Neural Information Processing
Systems (NeurIPS), 2020.

[2] Giannis Nikolentzos, Antoine J.-P. Tixier, and Michalis Vazirgiannis. Message passing
attention networks for document understanding. In AAAI, 2020.

[3] Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen Wen, and Liang Wang. Every
document owns its structure: Inductive text classification via graph neural networks.
In Proc.Annual Meeting of the Assoc. for Computational Linguistics (ACL), July 2020.

[4] Tomás Mikolov, Kai Chen, Greg Corrado, and Je!rey Dean. E”cient estimation of
word representations in vector space. In Proc.Int.Conf.on Learning Representations
(ICLR), 2013.

[5] Jason W. Wei and Kai Zou. EDA: Easy data augmentation techniques for boosting
performance on text classification tasks. In Proc.Conf.on Empirical Methods in Natural
Language Processing and Int. Joint Conf.on Natural Language Processing (EMNLP-
IJCNLP), 2019.

[6] SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. Classification and geometry of
general perceptual manifolds. Physical Review X, 8(3), 2018.

[7] Je! Z. HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for
self-supervised deep learning with spectral contrastive loss. In Proc.Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[8] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning
through alignment and uniformity on the hypersphere. In Proc.Int.Conf.on Machine
Learning (ICML), 2020.

[9] Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Je!rey Xu
Yu. A survey of graph meets large language model: Progress and future directions.
arXiv preprint arXiv:2311.12399, 2023.

[10] Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny
Denny. Computational modeling of ϑ-secretase 1 (BACE-1) inhibitors using ligand
based approaches. Journal of Chemical Information and Modeling, 2016.

150

[11] Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. MoCL: Data-
driven molecular fingerprint via knowledge-aware contrastive learning from molecular
graph. In Proc.ACM Int.Conf.on Knowledge Discovery & Data Mining (SIGKDD),
2021.

[12] Mucong Ding, Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Micah Goldblum, David
Wipf, Furong Huang, and Tom Goldstein. A closer look at distribution shifts and
out-of-distribution generalization on graphs. In NeurIPS 2021 Workshop on Distribution
Shifts: Connecting Methods and Applications, 2021.

[13] Raphael Gontijo Lopes, Sylvia J. Smullin, Ekin D. Cubuk, and Ethan Dyer. Tradeo!s
in data augmentation: An empirical study. In Int.Conf.on Learning Representations
(ICLR), 2020.

[14] Fan-Yun Sun, Jordan Ho!mann, Vikas Verma, and Jian Tang. InfoGraph: Unsuper-
vised and semi-supervised graph-level representation learning via mutual information
maximization. In Proc.Int.Conf.on Learning Representations (ICLR), 2020.

[15] Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji Zhang, Bairu Hou, Yuan Zang,
Zhiyuan Liu, and Maosong Sun. Openattack: An open-source textual adversarial attack
toolkit. In Proc. Assoc. Comp. Linguistics and Int. Joint Conf. on Natural Language
Processing: System Demonstrations, 2021.

[16] Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, and Quoc V. Le. Towards
domain-agnostic contrastive learning. In Proc.Int.Conf.on Machine Learning (ICML),
2021.

[17] Davide Bu!elli, Pietro Liò, and Fabio Vandin. SizeShiftReg: A regularization method
for improving size-generalization in graph neural networks. In Proc.Adv.in Neural
Information Processing Systems (NeurIPS), 2022.

[18] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From
local structures to size generalization in graph neural networks. In Proc.Int.Conf.on
Machine Learning (ICML), 2021.

[19] Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph represen-
tations for graph classification extrapolations. In Proc.Int.Conf.on Machine Learning
(ICML), 2021.

[20] Marinka Zitnik, Rok Sosič, and Jure Leskovec. Prioritizing network communities.
Nature Communications, 2018.

[21] Andrew J Dudzik and Petar Veličković. Graph neural networks are dynamic program-
mers. In Proc. on Advances in Neural Information Processing Systems (NeurIPS),
2022.

[22] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In
Proc.Adv.in Neural Information Processing Systems (NeurIPS), 2018.

151

[23] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and
Jure Leskovec. Graph convolutional neural networks for web-scale recommender systems.
In Proc.ACM SIGKDD Int.Conf.on Knowledge Discovery & Data Mining (KDD), 2018.

[24] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. In Proc.Int.Conf.on Learning Representations (ICLR), 2017.

[25] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In Proc.Int.Conf.on Learning Representations
(ICLR), 2018.

[26] Gabriele Corso, Luca Cavalleri, Dominique Beaini, and Pietro Liò. Principal neigh-
bourhood aggregation for graph nets. In Proc.Adv.in Neural Information Processing
Systems (NeurIPS), 2020.

[27] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? In Proc.Int.Conf.on Learning Representations (ICLR), 2019.

[28] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Proc.Adv.in Neural Information Processing Systems (NeurIPS),
2017.

[29] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional
networks on graphs for learning molecular fingerprints. In Proc.Adv.in Neural Informa-
tion Processing Systems (NeurIPS), 2015.

[30] Yue Liu, Jun Xia, Sihang Zhou, Siwei Wang, Xifeng Guo, Xihong Yang, Ke Liang,
Wenxuan Tu, Stan Z. Li, and Xinwang Liu. A survey of deep graph clustering:
Taxonomy, challenge, and application. abs/2211.12875, 2022.

[31] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. REGAL: representation
learning-based graph alignment. In Proceedings of Int. Conf. on Information and
Knowledge Management, CIKM, 2018.

[32] Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved
problems in ML safety. CoRR, abs/2109.13916, 2021.

[33] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In Proc. Int. Conf. on Learning Representations (ICLR), 2015.

[34] Chuan Guo, Geo! Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern
neural networks. In Proc.of the Int.Conf.on Machine Learning, (ICML), 2017.

[35] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. GOOD: A graph out-of-distribution
benchmark. In Proc.Adv.in Neural Information Processing Systems (NeurIPS), Bench-
mark Track, 2022.

152

[36] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on
neural networks for graph data. In Proc. ACM Int. Conf. on Knowledge Discovery &
Data Mining, KDD, 2018.

[37] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
Adversarial attack on graph structured data. In Proc. Int. Conf. on Machine Learning
(ICML), 2018.

[38] Sirui Yao and Bert Huang. Beyond parity: Fairness objectives for collaborative filtering.
In Proc. Advances in Neural Information Processing Systems (NeurIPS), 2017.

[39] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Controlling popularity
bias in learning-to-rank recommendation. In Proc. of ACM Conference on Recommender
Systems (RecSys), 2017.

[40] Yibo Li, Xiao Wang, Yujie Xing, Shaohua Fan, Ruijia Wang, Yaoqi Liu, and Chuan
Shi. Graph fairness learning under distribution shifts. In Proc. of the ACM on Web
Conference (WWW), 2024.

[41] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be confident! Towards
trustworthy graph neural networks via confidence calibration. In Proc.Adv.in Neural
Information Processing Systems NeurIPS, 2021.

[42] Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, and Daniel Cremers. What
makes graph neural networks miscalibrated? In Proc.Adv.in Neural Information
Processing Systems NeurIPS, 2022.

[43] Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner,
and Stephan Günnemann. Adversarial training for graph neural networks: Pitfalls,
solutions, and new directions. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), 2023.

[44] Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, Kaili Ma, Binghui Xie,
Tongliang Liu, Bo Han, and James Cheng. Learning causally invariant representations
for out-of-distribution generalization on graphs. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[45] Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via
stochastic attention mechanism. In Proc. Int. Conf. on Machine Learning, ICML, 2022.

[46] Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics
and stability of graph neural networks. In Proc.Adv.in Neural Information Processing
Systems NeurIPS, 2022.

[47] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, and Liwei Wang. GraphNorm:
A principled approach to accelerating graph neural network training. In Proc.Int.Conf.on
Machine Learning (ICML), 2021.

153

[48] Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of
graph neural networks: Implicit acceleration by skip connections and more depth. In
Proc.Int.Conf.on Machine Learning (ICML), 2021.

[49] Wei Ju, Siyu Yi, Yifan Wang, Qingqing Long, Junyu Luo, Zhiping Xiao, and Ming
Zhang. A survey of data-e”cient graph learning. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence (IJCAI 2024), 2024.

[50] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node
classification on graphs with graph neural networks. In Proc. ACM Int. Conf. on Web
Search and Data Mining (WSDM), 2021.

[51] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation
learning on graphs. In Proc.Int.Conf.on Machine Learning (ICML), 2020.

[52] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Medhi Azabou, Eva
Dyer, Rémi Munos, Petar Velickovic, and Michal Valko. Large-scale representation
learning on graphs via bootstrapping. In Proc.Int.Conf.on Learning Representations
(ICLR), 2022.

[53] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. SimGRACE: A simple
framework for graph contrastive learning without data augmentation. In Proc.Acm
Conf.on World Wide Web (WWW), 2022.

[54] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geo!rey E. Hinton. A simple
framework for contrastive learning of visual representations. In Proc.Int.Conf.on
Machine Learning (ICML), 2020.

[55] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum
contrast for unsupervised visual representation learning. In Proc.Int.Conf.on Computer
Vision and Pattern Recognition (CVPR), 2020.

[56] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, and Piotr Bojanowski. Unsu-
pervised learning of visual features by contrasting cluster assignments. In Proc.Adv.in
Neural Information Processing Systems (NeurIPS), 2020.

[57] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-
supervised learning can improve model robustness and uncertainty. In Proc.Adv.in
Neural Information Processing Systems (NeurIPS), 2019.

[58] Hong Liu, Je! Z. HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning
is more robust to dataset imbalance. In Proc.Int.Conf.on Learning Representations
(ICLR), 2022.

[59] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision transformers.
In Proc.Int.Conf.on Computer Vision (ICCV), 2021.

154

[60] Linus Ericsson, Henry Gouk, and Timothy M. Hospedales. How well do self-supervised
models transfer? In Proc.Int.Conf.on Computer Vision and Pattern Recognition
(CVPR), 2021.

[61] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the
generalization gap in deep networks with margin distributions. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

[62] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In Proc.Int.Conf.on Learning Representations
(ICLR), 2017.

[63] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A
core-set approach. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

[64] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol
Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Je!rey
Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosiute, Liane Lovitt, Michael
Sellitto, Nelson Elhage, Nicholas Schiefer, Noemı́ Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk,
Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan,
Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional AI:
Harmlessness from AI feedback. CoRR, abs/2212.08073, 2022.

[65] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang,
Aurélien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2:
Open foundation and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

[66] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica
Milenkovic, and Inderjit S. Dhillon. Node feature extraction by self-supervised multi-

155

scale neighborhood prediction. In Proc.Int.Conf.on Learning Representations (ICLR),
2022.

[67] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and
Jian Tang. Learning on large-scale text-attributed graphs via variational inference. In
Proc.Int.Conf.on Learning Representations (ICLR), 2023.

[68] Vassilis N. Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma, Yi Xu, Belinda
Zeng, Trishul Chilimbi, and George Karypis. E”cient and e!ective training of language
and graph neural network models. CoRR, abs/2206.10781, 2022.

[69] Costas Mavromatis, Vassilis N. Ioannidis, Shen Wang, Da Zheng, Soji Adeshina, Jun
Ma, Han Zhao, Christos Faloutsos, and George Karypis. Train your own GNN teacher:
Graph-aware distillation on textual graphs. In Proc.European.Conf.on Machine Learning
and Knowledge Discovery in Databases (ECML KDD), 2023.

[70] Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N Ioannidis, Xiang Song, Qing
Ping, Sheng Wang, Carl Yang, Yi Xu, et al. Graph-aware language model pre-training
on a large graph corpus can help multiple graph applications. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 5270–5281,
2023.

[71] Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael M. Bronstein,
Zhaocheng Zhu, and Jian Tang. Graphtext: Graph reasoning in text space. CoRR,
abs/2310.01089, 2023.

[72] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding
graphs for large language models. CoRR, abs/2310.04560, 2023.

[73] Jiayan Guo, Lun Du, and Hengyu Liu. GPT4Graph: Can large language models
understand graph structured data ? An empirical evaluation and benchmarking. CoRR,
abs/2305.15066, 2023.

[74] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and
Chao Huang. GraphGPT: Graph instruction tuning for large language models. CoRR,
abs/2310.13023, 2023.

[75] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit
Singh, Guangzhong Sun, and Xing Xie. GraphFormers: GNN-nested transformers for
representation learning on textual graph. In Proc.Adv.in Neural Information Processing
Systems (NeurIPS), 2021.

[76] Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang,
Jun Yin, Peiyan Zhang, Weihao Han, Hao Sun, Weiwei Deng, Qi Zhang, Lichao Sun,
Xing Xie, and Senzhang Wang. A comprehensive study on text-attributed graphs:
Benchmarking and rethinking. In Proc.Adv.in Neural Information Processing Systems
(NeurIPS), Datasets and Benchmarks Track, 2023.

156

[77] Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, Xinwang Liu, and Stan Z. Li.
Dink-net: Neural clustering on large graphs. In Proc.Int.Conf.on Machine Learning
(ICML), 2023.

[78] Fnu Devvrit, Aditya Sinha, Inderjit S. Dhillon, and Prateek Jain. S3GC: Scalable
self-supervised graph clustering. In Proc.Adv.in Neural Information Processing Systems
(NeurIPS), 2022.

[79] Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra.
Augmentations in graph contrastive learning: Current methodological flaws & towards
better practices. In Proc.Acm Conf.on World Wide Web (WWW), 2022.

[80] Puja Trivedi, Ekdeep Singh Lubana, Mark Heimann, Danai Koutra, and Jayaraman J.
Thiagarajan. Analyzing data-centric properties for graph contrastive learning. In
Proc.Adv.in Neural Information Processing Systems (NeurIPS), 2022.

[81] Puja Trivedi, Mark Heimann, Rushil Anirudh, Danai Koutra, and Jayaraman J. Thia-
garajan. Estimating epistemic uncertainty of graph neural networks. In Data Centric
Machine Learning Workshop @ ICML, 2023.

[82] Puja Trivedi, Danai Koutra, and Jayaraman J Thiagarajan. On estimating link
prediction uncertainty using stochastic centering. In Proc. Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2024.

[83] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M.
Bronstein. Fake news detection on social media using geometric deep learning. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[84] Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, and Junzhou
Huang. Rumor detection on social media with bi-directional graph convolutional
networks. In Proc.Association for the Advancement of Artificial Intelligence Conf.on
Artificial Intelligence (AAAI), 2020.

[85] Yi Han, Shanika Karunasekera, and Christopher Leckie. Continual learning for fake
news detection from social media. In Int.Conf.on Artificial Neural Networks, 2021.

[86] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. arXiv, abs/2003.00982, 2020.

[87] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in
recommender systems: A survey. In Proc. ACM Comput. Surv., 2023.

[88] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
Koutra. Beyond homophily in graph neural networks: Current limitations and e!ective
designs. In Proc. Conf. Neural Information Processing Systems, NeurIPS, 2020.

[89] Tao Guo and Baojiang Cui. Web page classification based on graph neural network. In
Innovative Mobile and Internet Services in Ubiquitous Computing, 2022.

157

[90] Yingtong Dou, Kai Shu, Congying Xia, Philip S. Yu, and Lichao Sun. User preference-
aware fake news detection. In Proc.of the Int.Acm SIGIR Conf.on Research and
Development in Information Retrieval, 2021.

[91] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate club: An API oriented
open-source python framework for unsupervised learning on graphs. In Proc.of ACM
Int.Conf.on Information and Knowledge Management (CIKM), 2020.

[92] Yujun Yan, Jiong Zhu, Marlena Duda, Eric Solarz, Chandra Sekhar Sripada, and Danai
Koutra. GroupINN: Grouping-based interpretable neural network for classification of
limited, noisy brain data. In Proc.Int. Conf. on Knowledge Discovery & Data Mining,
KDD, 2019.

[93] Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. In Int.Conf.on Data Mining (ICDM), 2006.

[94] Mark Heimann, Tara Safavi, and Danai Koutra. Distribution of node embeddings as
multiresolution features for graphs. In 2019 IEEE International Conference on Data
Mining (ICDM), 2019.

[95] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S.
Pande, and Jure Leskovec. Strategies for pre-training graph neural networks. In
Proc.Int.Conf.on Learning Representations (ICLR), 2020.

[96] Doyeong Hwang, Soojung Yang, Yongchan Kwon, Kyung-Hoon Lee, Grace Lee, Hanseok
Jo, Seyeol Yoon, and Seongok Ryu. Comprehensive study on molecular supervised
learning with graph neural networks. Journal of Chemical Information and Modeling,
60(12):5936–5945, 2020.

[97] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive
learning automated. In Proc.Int.Conf.on Machine Learning (ICML), 2021.

[98] Yin Fang, Haihong Yang, Xiang Zhuang, Xin Shao, Xiaohui Fan, and Huajun Chen.
Knowledge-aware contrastive molecular graph learning. arXiv, 2021.

[99] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip
Isola. What makes for good views for contrastive learning? In Proc.Adv.in Neural
Information Processing Systems (NeurIPS), 2020.

[100] Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf,
Michel Besserve, and Francesco Locatello. Self-supervised learning with data augmenta-
tions provably isolates content from style. In Proc.Adv.in Neural Information Processing
Systems (NeurIPS), 2021.

[101] Roland Zimmerman, Yash Sharma, Ste!en Schneider, Matthias Bethge, and Wieland
Brendel. Contrastive learning inverts the data generating process. In Proc.Int.Conf.on
Machine Learning (ICML), 2021.

158

[102] Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-supervised
learning: Invariances, augmentations and dataset biases. In Proc.Adv.in Neural Infor-
mation Processing Systems (NeurIPS), 2020.

[103] Zixin Wen and Yuanzhi Li. Towards understanding the feature learning process of
self-supervised contrastive learning. In Proc.Int.Conf.on Machine Learning (ICML),
2021.

[104] Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and George Tucker.
On variational bounds of mutual information. In Proc.Int.Conf.on Machine Learning
(ICML), 2019.

[105] Kento Nozawa and Issei Sato. Understanding negative samples in instance discriminative
self-supervised representation learning. In Proc.Adv.in Neural Information Processing
Systems (NeurIPS), 2021.

[106] Jordan T.Ash, Surbhi Goel, Akshay Krishnamurthy, and Dipendra Misra. Investigating
the role of negatives in contrastive representation learning. In Int.Conf.on Artificial
Intelligence and Statistics (AISTATS), 2022.

[107] Joshua David Robinson, Li Sun, Ke Yu, kayhan Batmanghelich, Stefanie Jegelka, and
Suvrit Sra. Can contrastive learning avoid shortcut solutions? In Proc.Adv.in Neural
Information Processing Systems (NeurIPS), 2021.

[108] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. In Proc.Int.Conference on Computer Vision (ICCV), 2021.

[109] Ashraful Islam, Chun-Fu Chen, Rameswar Panda, Leonid Karlinsky, Richard J. Radke,
and Rogério Feris. A broad study on the transferability of visual representations with
contrastive learning. In Proc.Int.Conference on Computer Vision (ICCV), 2021.

[110] Ramprasaath R. Selvaraju, Karan Desai, Justin Johnson, and Nikhil Naik. CAST-
ing your model: Learning to localize improves self-supervised representations. In
Proc.Int.Conf.on Computer Vision and Pattern Recognition (CVPR), 2021.

[111] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. TUDataset: A collection of benchmark datasets for learning
with graphs. In ICML 2020 Workshop on Graph Representation Learning and beyond
(GRL+ 2020), 2020.

[112] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem,
Gavin Taylor, and Tom Goldstein. FLAG: Adversarial data augmentation for graph
neural networks. CoRR, 2020.

[113] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J. Woodford, Meng Jiang, and Neil
Shah. Data augmentation for graph neural networks. In Proc.Association for the
Advancement of Artificial Intelligence Conf.on Artificial Intelligence (AAAI), 2020.

159

[114] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. In Proc.Adv.in Neural Information Processing Systems
(NeurIPS), 2018.

[115] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In
Proc.Advances in Neural Information Processing Systems (NeurIPS), 2016.

[116] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning
via non-parametric instance-level discrimination. In Proc.Ieee Conf.on Computer Vision
and Pattern Recognition (CVPR), 2018.

[117] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation
to improve graph contrastive learning. In Adv.in Neural Information Processing Systems
(NeurIPS), 2021.

[118] Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic.
On mutual information maximization for representation learning. In Proc.Int.Conf.on
Learning Representations (ICLR), 2020.

[119] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and
Nikunj Saunshi. A theoretical analysis of contrastive unsupervised representation
learning. In Proc.Int.Conf.on Machine Learning (ICML), 2019.

[120] Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency.
Self-supervised learning from a multi-view perspective. In Proc.Int.Conf.on Learning
Representations (ICLR), 2021.

[121] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
Proc.Int.Conf.on Computer Vision and Pattern Recognition (CVPR), 2021.

[122] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent - A new approach to self-supervised learning. In Proc.Adv.in Neural Information
Processing Systems (NeurIPS), 2020.

[123] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip
Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual
information estimation and maximization. In Proc.Int.Conf.on Learning Representations
(ICLR), 2019.

[124] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In
Proc.Euro. Conf. on Computer Vision (ECCV), 2020.

[125] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: Bringing order to the web. Technical Report, Stanford InfoLab /
Stanford InfoLab, 1999.

160

[126] Risi Imre Kondor and John La!erty. Di!usion kernels on graphs and other discrete
structures. In In Proceedings of the ICML, 2002.

[127] Weijing Shi and Ragunathan (Raj) Rajkumar. Point-GNN: Graph neural network
for 3D object detection in a point cloud. In Proc.Ieee Conf.on Computer Vision and
Pattern Recognition (CVPR), 2020.

[128] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Bringing your own view:
Graph contrastive learning without prefabricated data augmentations. In Proc.Acm
Int.Conf.Web Search and Data Mining (WSDM), 2022.

[129] Kaveh Hassani and Amir Hosein Khas Ahmadi. Learning graph augmentations to learn
graph representations. arXiv, 2022.

[130] Zekarias T. Kefato, Sarunas Girdzijauskas, and Hannes Stärk. Jointly learnable data
augmentations for self-supervised gnns. arXiv, abs/2108.10420, 2021.

[131] Zekarias T. Kefato and Sarunas Girdzijauskas. Self-supervised graph neural networks
without explicit negative sampling. In Int.Workshop on Self-Supervised Learning for
the Web (WWW’21), 2021.

[132] Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised
learning on graphs. arXiv, abs/2112.02472, 2021.

[133] Hyeonjin Park, Seunghun Lee, Sihyeon Kim, Jinyoung Park, Jisu Jeong, Kyung-Min
Kim, Jung-Woo Ha, and Hyunwoo J. Kim. Metropolis-hastings data augmentation
for graph neural networks. In Proc.Adv.in Neural Information Processing Systems
(NeurIPS), 2021.

[134] Alex Tamkin, Mike Wu, and Noah D. Goodman. Viewmaker networks: Learning views
for unsupervised representation learning. In Proc.Int.Conf.on Learning Representations
(ICLR), 2021.

[135] Tete Xiao, Xiaolong Wang, Alexei A. Efros, and Trevor Darrell. What should not
be contrastive in contrastive learning. In Proc.Int.Conf.on Learning Representations
(ICLR), 2021.

[136] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proc.ACM
Int.Conf.on Knowledge Discovery & Data Mining (SIGKDD), 2015.

[137] Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dongwon Lee, and Huan Liu. Fak-
eNewsNet: A data repository with news content, social context, and spatiotemporal
information for studying fake news on social media. In Big Data, 2020.

[138] Nils M. Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In
Proc.Int.Conf.on Machine Learning (ICML), 2012.

[139] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan,
Alexander J. Smola, and Hans-Peter Kriegel. Protein function prediction via graph
kernels. In Proc.Int.Conf.on Intelligent Systems for Molecular Biology, 2005.

161

[140] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning
Research (JMLR), 2011.

[141] Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou.
Comparing stars: On approximating graph edit distance. In Proc.of the Very Large
Data Base (VLDB) Endowment, 2009.

[142] Vadeem Safronov. Almost free inductive embeddings out-perform trained graph neural
networks in graph classification in a range of benchmarks, 2021.

[143] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised
graph-level representation learning with local and global structure. In Proc.Int.Conf.on
Machine Learning (ICML), 2021.

[144] Weiwei Jiang and Jiayun Luo. Graph neural network for tra”c forecasting: A survey.
ArXiv, abs/2101.11174, 2021.

[145] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proc.Annual Meeting of the Assoc. for
Computational Linguistics (ACL), 2004.

[146] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Proc.Int.Conf.on Learning Representations (ICLR), 2015.

[147] Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding attention
and generalization in graph neural networks. In Proc.Adv.in Neural Information
Processing Systems (NeurIPS), 2019.

[148] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Proc.Int.Conf.on Machine Learning
(ICML), 2021.

[149] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph
contrastive learning with adaptive augmentation. In Proc.Acm Conf.on World Wide
Web (WWW), 2020.

[150] Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of
self-training with deep networks on unlabeled data. In Proc.Int.Conf.on Learning
Representations (ICLR), 2021.

[151] Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance
regularization for self-supervised learning. In Proc.Int.Conf.on Learning Representations
(ICLR), 2022.

[152] Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the generalization of con-
trastive self-supervised learning. arXiv, abs/2111.00743, 2021.

162

[153] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
dynamics without contrastive pairs. In Proc.Int.Conf.on Machine Learning (ICML),
2021.

[154] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional
collapse in contrastive self-supervised learning, 2021.

[155] Ashwini Pokle, Jinjin Tian, Yuchen Li, and Andrej Risteski. Contrasting the landscape
of contrastive and non-contrastive learning. arXiv preprint arXiv:2203.15702, 2022.

[156] Liu Ziyin, Ekdeep Singh Lubana, Masahito Ueda, and Hidenori Tanaka. What shapes
the loss landscape of self-supervised learning? arXiv preprint arXiv:2210.00638, 2022.

[157] Maria-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and expansion: Towards
bridging theory and practice. In Proc.Adv.in Neural Information Processing Systems
(NeurIPS), 2004.

[158] Ekdeep Singh Lubana, Chi Ian Tang, Fahim Kawsar, Robert P Dick, and Akhil Mathur.
Orchestra: Unsupervised federated learning via globally consistent clustering. arXiv
preprint arXiv:2205.11506, 2022.

[159] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora,
Sham Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires
incorporating inductive biases. In Proc.Int.Conf.on Machine Learning (ICML), 2022.

[160] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. In Bayesian Deep
Learning Workshop (NeurIPS), 2016.

[161] William Falcon, Ananya Harsh Jha, Teddy Koker, and Kyunghyun Cho. AAVAE:
Augmentation-augmented variational autoencoders. CoRR, 2021.

[162] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. In Proc.Int.Conf.on Learning Representations (ICLR), 2017.

[163] Thomas Gaudelet, Ben Day, Arian R. Jamasb, Jyothish Soman, Cristian Regep,
Gertrude Liu, Jeremy B. R. Hayter, Richard Vickers, Charles Roberts, Jian Tang,
David Roblin, Tom L. Blundell, Michael M. Bronstein, and Jake P. Taylor-King.
Utilising graph machine learning within drug discovery and development. CoRR,
abs/2012.05716, 2020.

[164] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph R-CNN
for scene graph generation. In Proc.Euro. Conf. on Computer Vision (ECCV), 2018.

[165] Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu
Wu. A survey on deep graph generation: Methods and applications. In Proc.Conf.on
Learning on Graphs (LOG), 2022.

[166] Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, and
Jacob Steinhardt. PixMix: Dreamlike pictures comprehensively improve safety measures.
In Proc.Int.Conf.on Computer Vision and Pattern Recognition (CVPR), 2022.

163

[167] Puja Trivedi, Danai Koutra, and Jayaraman J. Thiagarajan. A closer look at model
adaptation using feature distortion and simplicity bias. In Proc.Int.Conf.on Learning
Representations (ICLR), 2023.

[168] Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebu”, Ira Ktena,
Krishnamurthy Dj Dvijotham, and Ali Taylan Cemgil. A fine-grained analysis on
distribution shift. In Proc.Int.Conf.on Learning Representations (ICLR), 2022.

[169] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin,
Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? Evaluating predictive uncertainty under dataset shift. In Proc.Adv.in
Neural Information Processing Systems NeurIPS, 2019.

[170] Kartik Gupta, Amir Rahimi, Thalaiyasingam Ajanthan, Thomas Mensink, Cristian
Sminchisescu, and Richard Hartley. Calibration of neural networks using splines. In
Proc.Int.Conf.on Learning Representations (ICLR), 2021.

[171] Meelis Kull, Miquel Perelló-Nieto, Markus Kängsepp, Telmo de Menezes e Silva Filho,
Hao Song, and Peter A. Flach. Beyond temperature scaling: Obtaining well-calibrated
multi-class probabilities with Dirichlet calibration. In Proc.Adv.in Neural Information
Processing Systems NeurIPS, 2019.

[172] Jize Zhang, Bhavya Kailkhura, and Thomas Yong-Jin Han. Mix-n-match : Ensemble and
compositional methods for uncertainty calibration in deep learning. In Proc.Int.Conf.on
Machine Learning (ICML), 2020.

[173] Jayaraman J. Thiagarajan, Rushil Anirudh, Vivek Narayanaswamy, and Peer-Timo Bre-
mer. Single model uncertainty estimation via stochastic data centering. In Proc.Adv.in
Neural Information Processing Systems (NeurIPS), 2022.

[174] Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich. Deep anomaly detection
with outlier exposure. In Proc.Int.Conf.on Learning Representations (ICLR), 2019.

[175] José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic backpropagation for
scalable learning of bayesian neural networks. In Proc.Int.Conf.on Machine Learning
(ICML), 2015.

[176] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In Proc.Int.Conf.on Machine Learning (ICML), 2015.

[177] Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Üstebay. Bayesian graph
convolutional neural networks for semi-supervised classification. In AAAI, 2019.

[178] Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick
Du”eld, Krishna Narayanan, and Xiaoning Qian. Bayesian graph neural networks with
adaptive connection sampling. In ICML, 2020.

164

[179] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Proc.Adv.in Neural
Information Processing Systems (NeurIPS), 2017.

[180] Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic
perspective of generalization. In Proc.Adv.in Neural Information Processing Systems
NeurIPS, 2020.

[181] Rushil Anirudh and Jayaraman J. Thiagarajan. Out of distribution detection via neural
network anchoring. In Asian Conference on Machine Learning, ACML 2022, 12-14
December 2022, Hyderabad, India, 2022.

[182] Aviv Netanyahu, Abhishek Gupta, Max Simchowitz, Kaiqing Zhang, and Pulkit Agrawal.
Learning to extrapolate: A transductive approach. In Proc.Int.Conf.on Learning
Representations (ICLR), 2023.

[183] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in
machine learning: An introduction to concepts and methods. Machine Learning, 110(3),
2021.

[184] Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do bayesian
neural networks need to be fully stochastic? In AISTATS, 2023.

[185] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable
positional encoding for more powerful graph neural networks. In Proc.Int.Conf.on
Learning Representations (ICLR), 2022.

[186] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Graph neural networks with learnable structural and positional representations.
In Proc.Int.Conf.on Learning Representations (ICLR), 2022.

[187] Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Moham-
madreza Mostajabi, Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution
detection for real-world settings. In Proc.Int.Conf.on Machine Learning (ICML), 2022.

[188] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In Proc.Adv.in Neural
Information Processing Systems NeurIPS, 2018.

[189] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. ViM: Out-of-distribution
with virtual-logit matching. In Proc.Int.Conf.on Computer Vision and Pattern Recog-
nition (CVPR), 2022.

[190] Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-based out-of-
distribution detection. In Proc.Adv.in Neural Information Processing Systems NeurIPS,
2020.

165

[191] Konstantin Kirchheim, Marco Filax, and Frank Ortmeier. PyTorch-OOD: A library for
out-of-distribution detection based on PyTorch. In Workshop at the Proc.Int.Conf.on
Computer Vision and Pattern Recognition CVPR, 2022.

[192] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai,
Neil Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern
neural networks. In Proc.Adv.in Neural Information Processing Systems (NeurIPS),
2021.

[193] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampásek. Attending
to graph transformers. CoRR, abs/2302.04181, 2023.

[194] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In Proc.Int.Conf.on Learning Representations (ICLR), 2021.

[195] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong,
and Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs
via curvature. In Proc.Int.Conf.on Learning Representations ICLR, 2022.

[196] Vijay Prakash Dwivedi, Ladislav Rampásek, Michael Galkin, Ali Parviz, Guy Wolf,
Anh Tuan Luu, and Dominique Beaini. Long range graph benchmark. In Proc.Adv.in
Neural Information Processing Systems NeurIPS, Datasets and Benchmark Track, 2022.

[197] Yayong Li, Jie Yin, and Ling Chen. SEAL: Semisupervised adversarial active learning
on attributed graphs. IEEE Trans. Neural Networks Learn. Syst., 32(7):3136–3147,
2021.

[198] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In Proc.Int.Conf.on Machine Learning (ICML),
2016.

[199] Glenn W. Brier. Verification of forecasts expressed in terms of probability. In Monthly
Weather Review, 1950.

[200] Jian Kang, Qinghai Zhou, and Hanghang Tong. JuryGCN: Quantifying jackknife
uncertainty on graph convolutional networks. In Proc.Int. Conf. on Knowledge Discovery
& Data Mining, KDD, 2022.

[201] Felix L. Opolka and Pietro Liò. Bayesian link prediction with deep graph convolu-
tional gaussian processes. In International Conference on Artificial Intelligence and
Statistics,AISTATS, 2022.

[202] Mark EJ Newman. Modularity and community structure in networks. Proceedings of
the national academy of sciences, 103(23):8577–8582, 2006.

[203] M. E. J. Newman and Gesine Reinert. Estimating the number of communities in a
network. CoRR, abs/1605.02753, 2016.

166

[204] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based
on ground-truth. In 12th IEEE International Conference on Data Mining, ICDM 2012,
Brussels, Belgium, December 10-13, 2012, pages 745–754. IEEE Computer Society,
2012.

[205] Xiaoxin He, Xavier Bresson, Thomas Laurent, and Bryan Hooi. Explanations as
features: LLM-based features for text-attributed graphs. CoRR, abs/2305.19523, 2023.

[206] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. E”cient graph convolution for
joint node representation learning and clustering. In K. Selcuk Candan, Huan Liu,
Leman Akoglu, Xin Luna Dong, and Jiliang Tang, editors, WSDM ’22: The Fifteenth
ACM International Conference on Web Search and Data Mining, Virtual Event / Tempe,
AZ, USA, February 21 - 25, 2022, pages 289–297. ACM, 2022.

[207] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering
with graph neural networks for graph pooling. In Proc.Int.Conf.on Machine Learning
(ICML), 2020.

[208] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and
Jure Leskovec. Hierarchical graph representation learning with di!erentiable pooling.
In Proc.Adv.in Neural Information Processing Systems (NeurIPS), 2018.

[209] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph cluster-
ing with graph neural networks. Journal of Machine Learning Research, 2023.

[210] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. CoRR, abs/2009.00236, 2020.

[211] Jiaqi Ma, Ziqiao Ma, Joyce Chai, and Qiaozhu Mei. Partition-based active learning for
graph neural networks. 2023, 2023.

[212] Seyed Mehran Kazemi, Anton Tsitsulin, Hossein Esfandiari, MohammadHossein Bateni,
Deepak Ramachandran, Bryan Perozzi, and Vahab S. Mirrokni. Tackling provably hard
representative selection via graph neural networks. CoRR, abs/2205.10403, 2022.

[213] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language
models on graphs: A comprehensive survey. CoRR, abs/2312.02783, 2023.

[214] Hongyuan Zhang, Pei Li, Rui Zhang, and Xuelong Li. Embedding graph auto-encoder
for graph clustering. IEEE Trans. Neural Networks Learn. Syst., 2023.

[215] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural
deep clustering network. In Proc.Int.Web Conf.(WebConf), 2020.

[216] Lei Gong, Sihang Zhou, Wenxuan Tu, and Xinwang Liu. Attributed graph clustering
with dual redundancy reduction. In Proc. of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI, 2022.

167

[217] Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z. Li. ProGCL: Rethinking hard
negative mining in graph contrastive learning. In Proc.Int.Conf.on Machine Learning
(ICML), 2022.

[218] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin Zhao, and Ji-Rong Wen.
StructGPT: A general framework for large language model to reason over structured
data. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 9237–9251,
Singapore, December 2023. Association for Computational Linguistics.

[219] Hao Liu, Jiarui Fend, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and
Muhan Zhang. One for all: Towards training one graph model for all classification
tasks. In The Twelfth International Conference on Learning Representations, 2024.

[220] Peter West, Chandra Bhagavatula, Jack Hessel, Jena D Hwang, Liwei Jiang, Ronan Le
Bras, Ximing Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: From
general language models to commonsense models. arXiv preprint arXiv:2110.07178,
2021.

[221] Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh
Agarwal. Deep batch active learning by diverse, uncertain gradient lower bounds. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[222] Dan Wang and Yi Shang. A new active labeling method for deep learning. In 2014
International Joint Conference on Neural Networks, IJCNN 2014, Beijing, China, July
6-11, 2014, pages 112–119. IEEE, 2014.

[223] Melanie Duco!e and Frédéric Precioso. Adversarial active learning for deep networks:
A margin based approach. CoRR, abs/1802.09841, 2018.

[224] Juncheng Liu, Yiwei Wang, Bryan Hooi, Renchi Yang, and Xiaokui Xiao. Active
learning for node classification: The additional learning ability from unlabelled nodes.
CoRR, abs/2012.07065, 2020.

[225] Natalia Ostapuk, Jie Yang, and Philippe Cudré-Mauroux. ActiveLink: Deep active
learning for link prediction in knowledge graphs. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019, 2019.

[226] Yuwei Zhang, Zihan Wang, and Jingbo Shang. ClusterLLM: Large language models as
a guide for text clustering. In Proc.Int.Conf.on Empirical Methods in Natural Language
Processing, (EMNLP), 2023.

[227] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Je!rey Wu, and Dario Amodei. Scaling laws
for neural language models. CoRR, abs/2001.08361, 2020.

168

[228] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Je!rey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In Proc.Adv.in Neural Information Processing Systems
(NeurIPS), 2020.

[229] Vijay Viswanathan, Kiril Gashteovski, Carolin Lawrence, Tongshuang Wu, and Graham
Neubig. Large language models enable few-shot clustering. CoRR, abs/2307.00524,
2023.

[230] Chau Minh Pham, Alexander Miserlis Hoyle, Simeng Sun, and Mohit Iyyer. TopicGPT:
A prompt-based topic modeling framework. CoRR, abs/2311.01449, 2023.

[231] Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu
Yao, Chelsea Finn, and Christopher D. Manning. Just ask for calibration: Strategies
for eliciting calibrated confidence scores from language models fine-tuned with human
feedback. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, December 6-10, 2023. Association for
Computational Linguistics, 2023.

[232] Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Xuanjing Huang.
Do large language models know what they don’t know? In Findings of the Association
for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, 2023.

[233] Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu, Jilin Chen, Katherine A. Heller,
and Subhrajit Roy. Batch calibration: Rethinking calibration for in-context learning
and prompt engineering. 2023.

[234] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

[235] Alec Radford, Je!rey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[236] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[237] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712,
2023.

169

[238] Colin Ra!el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

[239] Victor Sanh, Albert Webson, Colin Ra!el, Stephen Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Cha”n, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari,
Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim,
Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian
Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel
Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli,
Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella Biderman, Leo
Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted training enables
zero-shot task generalization. In International Conference on Learning Representations,
2022.

[240] Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help o$ine
reinforcement learning? arXiv preprint arXiv:2201.12122, 2022.

[241] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian
Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An
embodied multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

[242] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron
David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al.
Do as i can, not as i say: Grounding language in robotic a!ordances. arXiv preprint
arXiv:2204.01691, 2022.

[243] Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and transferable
adversarial attacks on aligned language models, 2023.

[244] Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, Philip S. Yu, Lifang He,
and Bo Li. Adversarial attack and defense on graph data: A survey. IEEE Trans.
Knowl. Data Eng., 35(8):7693–7711, 2023.

[245] Arijit Ghosh Chowdhury, Md Mofijul Islam, Vaibhav Kumar, Faysal Hossain Shezan,
Vaibhav Kumar, Vinija Jain, and Aman Chadha. Breaking down the defenses: A
comparative survey of attacks on large language models. CoRR, abs/2403.04786, 2024.

[246] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica
Milenkovic, and Inderjit S. Dhillon. Node feature extraction by self-supervised multi-
scale neighborhood prediction. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

[247] Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, and
Junxian He. Simteg: A frustratingly simple approach improves textual graph learning.
2023.

170

[248] Yichuan Li, Kaize Ding, and Kyumin Lee. GRENADE: graph-centric language model
for self-supervised representation learning on text-attributed graphs. In Findings of the
Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10,
2023, 2023.

[249] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-
enhanced bert with disentangled attention. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

[250] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized BERT pretraining approach. 2019.

[251] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic text retrieval.
Inf. Process. Manag., 24(5):513–523, 1988.

[252] Yige Li, Hanxun Huang, Yunhan Zhao, Xingjun Ma, and Jun Sun. Backdoorllm: A
comprehensive benchmark for backdoor attacks on large language models. 2024.

[253] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does LLM
safety training fail? In Proc. Conf. Neural Information Processing Systems, NeurIPS,
2023.

[254] Fredrik Nestaas, Edoardo Debenedetti, and Florian Tramèr. Adversarial search engine
optimization for large language models. CoRR, abs/2406.18382, 2024.

[255] Harsh Chaudhari, Giorgio Severi, John Abascal, Matthew Jagielski, Christopher A.
Choquette-Choo, Milad Nasr, Cristina Nita-Rotaru, and Alina Oprea. Phantom: Gen-
eral trigger attacks on retrieval augmented language generation. CoRR, abs/2405.20485,
2024.

[256] Sahar Abdelnabi, Kai Greshake, Shailesh Mishra, Christoph Endres, Thorsten Holz, and
Mario Fritz. Not what you’ve signed up for: Compromising real-world llm-integrated
applications with indirect prompt injection. In Proceedings of the 16th ACM Workshop
on Artificial Intelligence and Security, AISec 2023, Copenhagen, Denmark, 30 November
2023, pages 79–90. ACM, 2023.

[257] Aounon Kumar and Himabindu Lakkaraju. Manipulating large language models to
increase product visibility. CoRR, abs/2404.07981, 2024.

[258] Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror, Dafna Shahaf, and Gabriel
Stanovsky. State of what art? A call for multi-prompt LLM evaluation. Trans. Assoc.
Comput. Linguistics, 2024.

[259] Jens Hauser, Zhao Meng, Damián Pascual, and Roger Wattenhofer. BERT is robust!
A case against synonym-based adversarial examples in text classification. CoRR,
abs/2109.07403, 2021.

171

[260] Ste!en Eger, Gözde Gül Sahin, Andreas Rücklé, Ji-Ung Lee, Claudia Schulz, Mohsen
Mesgar, Krishnkant Swarnkar, Edwin Simpson, and Iryna Gurevych. Text processing
like humans do: Visually attacking and shielding NLP systems. In Proc. Conf. of the
North American Chapter ofthe Assoc. for Computational Linguistics: Human Language
Technologies (NAACL-HLT). Association for Computational Linguistics, 2019.

[261] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language
models’ sensitivity to spurious features in prompt design or: How I learned to start
worrying about prompt formatting. In Proc. Int. Conf. on Learning Representations
(ICLR), 2024.

[262] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and k Dejing Dou. Hotflip: White-box
adversarial examples for text classification. In Proc. Assoc. for Computational Linguistics
(ACL-ShortPapers). Association for Computational Linguistics, 2018.

[263] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT really robust? A
strong baseline for natural language attack on text classification and entailment. In
Proc. Conf. on Artificial Intelligence (AAAI), 2020.

[264] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. BERT-
ATTACK: adversarial attack against BERT using BERT. In Proc. of the Conf. on
Empirical Methods in Natural Language Processing (EMNLP), 2020.

[265] Jiong Zhu, Junchen Jin, Donald Loveland, Michael T. Schaub, and Danai Koutra. How
does heterophily impact the robustness of graph neural networks?: Theoretical connec-
tions and practical implications. In KDD ’22: The 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022,
2022.

[266] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski,
and Stephan Günnemann. Robustness of graph neural networks at scale. In Neural
Information Processing Systems, NeurIPS, 2021.

[267] Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma. Can llms e!ectively leverage
graph structural information: When and why, 2023.

[268] Dong Lu, Tianyu Pang, Chao Du, Qian Liu, Xianjun Yang, and Min Lin. Test-time
backdoor attacks on multimodal large language models. 2024.

[269] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[270] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien Lucchi, Pascal Fua, and
Sabine Süsstrunk. SLIC superpixels compared to state-of-the-art superpixel methods.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11):2274–2282,
2012.

172

[271] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne,
Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and the scikit-image
contributors. Scikit-image: Image processing in Python, 2014.

[272] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. GCC: Graph contrastive coding for graph neural
network pre-training. In Proc.ACM Int.Conf.on Knowledge Discovery & Data Mining
(SIGKDD), 2020.

[273] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S. Yu. Graph
self-supervised learning: A survey. IEEE Trans.on Knowledge and Data Engineering,
2022.

[274] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. Genera-
tive image inpainting with contextual attention. In Proc.Int.Conf.on Computer Vision
and Pattern Recognition (CVPR), 2018.

[275] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-
supervision help graph convolutional networks? In Proc.Int.Conf.on Machine Learning
(ICML), 2020.

[276] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and
R. Devon Hjelm. Deep graph infomax. In Proc.Int.Conf.on Learning Representations
(ICLR), 2019.

[277] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph
Studer, Larry S. Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free!
In Proc.Adv.in Neural Information Processing Systems (NeurIPS), 2019.

[278] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multi-
class probability estimates. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 694–699, 2002.

[279] Amir Rahimi, Amirreza Shaban, Ching-An Cheng, Richard Hartley, and Byron Boots.
Intra order-preserving functions for calibration of multi-class neural networks. Advances
in Neural Information Processing Systems, 33:13456–13467, 2020.

[280] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well
calibrated probabilities using bayesian binning. In Proc.Conf.on Adv.of Artificial
Intelligence (AAAI), 2015.

[281] Ananya Kumar, Percy Liang, and Tengyu Ma. Verified uncertainty calibration. In
Proc.Adv.in Neural Information Processing Systems NeurIPS, 2019.

[282] Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock, Ananya Harsh, Teddy Koker,
Luca Di Liello, Daniel Stancl, Changsheng Quan, Maxim Grechkin, and William Falcon.
TorchMetrics - measuring reproducibility in PyTorch, 2022.

173

[283] Saurabh Garg, Sivaraman Balakrishnan, Zachary C. Lipton, Behnam Neyshabur, and
Hanie Sedghi. Leveraging unlabeled data to predict out-of-distribution performance.
In Proc.Int.Conf.on Learning Representations (ICLR), 2022.

[284] Nathan Ng, Neha Hulkund, Kyunghyun Cho, and Marzyeh Ghassemi. Predicting
out-of-domain generalization with local manifold smoothness. CoRR, abs/2207.02093,
2022.

[285] Puja Trivedi, Danai Koutra, and Jayaraman J Thiagarajan. A closer look at scoring
functions and generalization prediction. In Proc. Int. Conf. on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2023.

[286] Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor Darrell, and Ludwig Schmidt.
Predicting with confidence on unseen distributions. In ICCV, 2021.

[287] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. In
Proc.Int.Conf.on Computer Vision and Pattern Recognition (CVPR), 1997.

[288] Michael D Plummer and László Lovász. Matching Theory. Elsevier, 1986.

[289] Ka Yee Yeung and Walter L Ruzzo. Details of the adjusted rand index and clustering
algorithms, supplement to the paper an empirical study on principal component analysis
for clustering gene expression data. Bioinformatics (Oxford, England), 17(9):763–774,
2001.

[290] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of at-
tributed graphs: Unsupervised inductive learning via ranking. CoRR, abs/1707.03815,
2017.

[291] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. In Proc.Int.Conf.on Machine Learning (ICML), 2016.

[292] Péter Mernyei and Catalina Cangea. Wiki-CS: A wikipedia-based benchmark for graph
neural networks. CoRR, abs/2007.02901, 2020.

174

	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Contributions

	Preliminaries
	Graphs
	Graph Machine Learning Tasks
	Graph Neural Networks (GNNs)
	Part I: Improving Augmentations in Graph Contrastive Learning
	Better Practices for Graph CL Augmentations
	Introduction
	Background & Related Work
	Revisiting Augmentations & Evaluation in GCL
	Benefits & Design of Task-Aware Augmentations
	Conclusion

	Analyzing Data Centric Properties for Graph Contrastive Learning
	Introduction
	Background & Related Work
	Generalization Bounds for CL with GGA
	Experiments
	Conclusion
	Part II: Uncertainty Estimation with Graph Neural Networks
	Accurate Estimation of Epistemic Uncertainty for GNNs
	Introduction
	Background & Related Work
	Graph-UQ: Uncertainty-Aware Predictions
	Node Classification Experiments: G-UQ Improves Calibration
	Graph Classification Uncertainty Experiments with G-UQ
	Fine Grained Analysis of G-UQ
	Conclusion

	On Link Prediction Calibration with Stochastic Centering
	Introduction
	Background & Related Work
	Proposed Approach
	Experiments
	Conclusion
	Part III: Large Language Models and Graph Representation Learning
	Large Language Model Guided Graph Clustering
	Introduction
	Background & Related Work
	Problem Formulation
	GCLR: Graph Clustering with LLM Refinement
	Experiments
	Conclusion

	Exploring the Robustness of LLM+GNN models on text-attributed graphs
	Introduction
	Background & Related Work
	Perturbations
	Experiments
	Conclusion & Discussion

	Conclusions and Future Work
	Summary
	Future Work

	Appendices
	Better Practices in Graph Contrastive Learning
	Experimental Details of Section 3
	Experimental Details of Section 3
	Document Classification
	Document Classification
	Super-pixel Classification
	Super-pixel Classification
	Additional Related Work
	Additional Related Work

	Data-Centric Analysis of Graph Contrastive Learning
	Extending our Analysis to other Loss Functions
	Extending our Analysis to other Loss Functions
	Evaluation on a Non-Synthetic Dataset
	Evaluation on a Non-Synthetic Dataset
	On Using Mutual Information for Analyzing Task-Relevance in Augmentations
	On Using Mutual Information for Analyzing Task-Relevance in Augmentations
	Generic Graph Augmentations and Graph Edit Distance
	Generic Graph Augmentations and Graph Edit Distance
	Details for Generalization Analysis
	Details for Generalization Analysis
	Dataset Generation and Experimental Details
	Dataset Generation and Experimental Details
	Related Work
	Related Work

	Uncertainty Quantification with GNNs
	Ethics Statement
	Ethics Statement
	PseudoCode
	PseudoCode
	Reproducibility
	Reproducibility
	Details on Super-pixel Experiments
	Details on Super-pixel Experiments
	Stochastic Centering on the Empirical NTK of GNNs
	Stochastic Centering on the Empirical NTK of GNNs
	Size-Generalization Dataset Statistics
	Size-Generalization Dataset Statistics
	GOOD Benchmark Experimental Details
	GOOD Benchmark Experimental Details
	GOOD Dataset Additional Results
	GOOD Dataset Additional Results
	Post-hoc Calibration Strategies
	Post-hoc Calibration Strategies
	Details on Generalization Gap Prediction
	Details on Generalization Gap Prediction
	Results on Generalization Error Prediction
	Results on Generalization Error Prediction
	Additional Study on Pretrained Variant
	Additional Study on Pretrained Variant
	Runtime Table
	Runtime Table
	Mean and Variance of Node Feature Gaussians
	Mean and Variance of Node Feature Gaussians
	Expanded Discussion on Anchoring Design Choices
	Expanded Discussion on Anchoring Design Choices

	Graph Clustering with LLM Guidance
	Additional Results
	Additional Results
	Prompt Examples
	Prompt Examples
	Metrics
	Metrics
	Reproducibility Statement
	Reproducibility Statement
	Example of Generated Titles
	Example of Generated Titles

	Bibliography

