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Abstract—Android User Interface (UI) testing has emerged as
an important and prevalent research topic due to the ubiquity
of apps and the unique challenges faced by developers in this
software domain. One popular topic of research that aims to
facilitate both manual and automated UI testing and debugging
processes is record and replay (R&R) tools. These tools allow
for the recording of UI actions to facilitate the execution of test
scenarios and the replay of various types of bugs. R&R tools
typically support three main settings: (i) UI regression testing
via R&R of feature-based execution scenarios, (ii) R&R of non-
crashing functional bugs (e.g., in crowdsourced settings), and (iii)
R&R of crashing bugs. Despite the progress made in research
related to R&R tools, prior work examined only the effectiveness
of these tools in disparate or fragmented settings. As such, the
research community currently lacks a comprehensive examination
of the effectiveness of existing tools across their common use cases
and the potential key limitations that emerge.

We address this current gap in knowledge by conducting a
thorough empirical study on using R&R tools to manually record
and replay feature-based user scenarios, non-crashing failures,
and crashing bugs. Additionally, we explore the possibility of
using R&R tools in conjunction with automated input genera-
tion (AIG) tools to automatically record and replay crashing bugs.
Our study context includes one industrial and three academic
R&R tools, 34 user scenarios from 17 apps, 90 non-crashing
failures from 42 Android apps, and 31 crashing bugs from 17
Android apps. Our results illustrate that 17% of user scenarios,
38% of non-crashing failures, and 44% of crashing bugs are not
able to be reliably recorded and replayed, with the most prevalent
reasons for non-replayability being action interval resolution,
incompatibility related to APIs, and limitations in Android
tooling. Our findings reveal important research directions for
R&R tools to facilitate their practical application and adoption.

Index Terms—UI testing, mobile testing, trace analysis, An-
droid, debugging

I. INTRODUCTION

In recent years, record-and-replay (R&R) tools have become
one of the most popular types of automated testing tools for
mobile and web applications, facilitating the precise capture
of UI actions in detailed traces. With continued development
by both researchers and developers, R&R tools have evolved
from the record and replay of low-level event sequences [1] to

capturing system-level events [2], and most recently, operating
upon screen recordings of mobile apps to replay depicted
actions and gestures [3]. However, beyond traditional test
automation, these tools also hold substantial potential for
debugging, particularly in reproducing bugs that are difficult
to diagnose using conventional debugging techniques.

Bug reproduction plays a crucial role in software debug-
ging, as it allows developers to verify issues, understand the
conditions under which they occur, and analyze how different
components interact to cause failures. While stack traces and
logs provide snapshots of system states at the time of failure,
they often fail to capture the full sequence of actions leading
to the bug. This limitation is especially problematic for issues
arising from race conditions, timing-dependent behaviors, or
non-deterministic executions, where a precise reproduction of
the user’s actions is necessary for effective debugging. R&R
tools, by enabling faithful re-execution of UI interactions,
have the potential to fill this gap and support developers in
both debugging and regression testing, ensuring that bug fixes
resolve the issue without introducing new problems.

Despite this potential, prior research has primarily focused
on evaluating R&R tools in terms of their effectiveness in
replaying general UI interactions rather than their ability to
reproduce bugs. Existing studies typically assess these tools
using controlled scenarios that reflect common user behaviors
rather than complex failure cases. For example, SARA [8]
was evaluated only on common user scenarios across popular
applications. Our prior study [4] of R&R tools also focused
solely on common user scenarios. This focus has likely con-
tributed to recent reported findings [9] that automated tools
are largely passed over in favor of manual testing techniques
by professional and open-source Android app developers.
Compared to general UI interaction replay, bug reproduction
presents unique challenges: it often involves unusual action
sequences, interactions with sensors, and conditions that may
destabilize the application itself, potentially leading to failures
during recording or replay. Without targeted enhancements
for debugging, existing R&R tools may struggle to meet the



TABLE I: This table highlights the key differences between our study and prior relevant studies. Our study evaluates the
reproducibility of R&R tools in four different use cases: (1) common user scenarios, (2) failures from bug reports, (3) crashes
from bug reports, and (4) crashes from AIG tools. We also evaluate the reproducibility of crashes from AIG tools using just
the AIG tools themselves. ✓ and ✗ denote that the study does and does not, respectively, evaluate a particular use case.

Tool User Bug Report Crashes From
Study Venue Basis Scenarios Failures Bug Reports AIG Tools AIG w/o R&R Tools

Lam et al. [4] ESEC/FSE’17 Industry R&R ✓ ✗ ✗ ✗ ✗
Su et al. [5] ESEC/FSE’21 AIG ✗ ✗ ✗ ✓ ✗
Liu et al. [6] SETTA’23 AIG ✗ ✗ ✗ ✓ ✗
Xiong et al. [7] ISSTA’23 AIG & R&R ✗ ✓ ✗ ✗ ✗
Our study - AIG & R&R ✓ ✓ ✓ ✓ ✓

practical needs of developers when dealing with real-world
software failures.

In this paper, we conduct the first comprehensive study on
the ability of R&R tools to record and reliably replay non-
crashing bugs and crashing bugs (referred to as failures, and
crashes, respectively). In particular, we focus on buggy sce-
narios but also include common user scenarios (referred to as
just scenarios) for comparison. To enhance the generalizability
of our findings, we make use of two popular datasets and four
state-of-the-art R&R tools. We find that the four R&R tools
exhibit substantially higher failure rates in buggy scenarios,
with 38% for failures and 44% for crashes, compared to a
much lower failure rate of 17% for user scenarios.

In addition to reproducing bugs from manually produced
traces, R&R tools could also play a substantial role in re-
producing bugs detected by automated input generation (AIG)
techniques. After a crash is detected using AIG tools, develop-
ers and testers often rely on the stack trace to locate the root
cause of the crash, rather than depending on the generated
input traces. One reason is the difficulty in reproducing a bug
after the bug was detected by AIG tools (e.g., reproducing
a crash after the AIG tool ran for 1 hour). Although, some
AIG tools offer built-in functionality to assist with bug repro-
duction, this functionality is often inadequate. For instance,
Monkey [10], a popular AIG tool, accepts the −s⟨seed⟩ in
its command options to help reproduce bugs. By using the
same seed, the sequence generated by Monkey should be
consistent. However, the effectiveness of setting such seeds
is often disappointing, e.g., in our experiments, we find that
up to 74% of cases cannot be reproduced when the same seed
is used. Two potential ways to improve reproduction are to
(1) improve AIG tools to reproduce crashes, and (2) use AIG
tools with R&R tools.

To examine the potential for reproducing crashes from AIG
tools, our study involves the following investigations. For (1),
we aim to perform simple changes to AIG tools to understand
whether such changes can help AIG tools reproduce crashes.
Considering that AIG tools normally apply short action inter-
vals (e.g., Monkey and APE default use 200 ms), we conducted
comparative experiments to measure the impact of different
action intervals. The results indicate that even with increased
action intervals, there is no substantial improvement in the
outcomes (e.g., up to 70% of cases for Monkey still failed).
Although the original intent of R&R tools are not meant to
be combined with AIG tools, realizing the inadequacies of

AIG tools themselves, we also explore (2), the use of R&R
tools with AIG tools to understand what changes are needed
for R&R tools to help reproduce crashes from AIG tools. Our
findings show that even though (1) and (2) had similar results
in reproducing AIG tool bugs, the limitations between them are
different. By exploring the limitations in these two approaches,
we aim to inspire and guide future work to improve and
develop AIG tools and R&R tools with better performance.
Based on our observations, the direct improvements for (1)
that future work can consider involve logging all actions on
the fly by AIG tools and applying trace-reduction techniques to
remove actions that are affecting the reproducibility of crashes.
For (2), the primary obstacle to integrating AIG tools with
R&R tools is the compatibility issue with Android SDK tools.
The contributions of this paper are as follows:

• We present the first comprehensive study on manual
recording and automated replaying of many common user
scenarios, non-crashing failures, and crashing bugs for
four popular R&R tools. Table I provides an overview of
the use cases we study, compares our study with prior
work, and highlights the key knowledge gaps that our
study aims to fill.

• We conduct a study investigating the extent to which AIG
tools reliably replay discovered crashes.

• We highlight the limitations in current R&R techniques
and motivate future work to improve their reliability and
consistency in different kinds of real-world use cases.

• We open-source our dataset [11] to aid future research.

II. STUDY SETUP

We study the potential for developers to use R&R tools to
manually record and automatically replay traces under three
types of use cases: scenarios, failures, and crashes of popular
Android apps. Specifically, our study investigates the following
research questions (RQs):
RQ1: What is the performance of existing trace-based R&R
tools in reproducing bugs from bug reports?
RQ2: What are the root causes of unsuccessful cases in
reproducing bugs from bug reports?
RQ3: What is the performance of existing trace-based R&R
tools in reproducing bugs detected by AIG tools?
RQ4: What are the root causes of the unsuccessful cases in
reproducing bugs detected by AIG tools?

Our RQs aim to assess R&R tools in two aspects. The first
aspect (RQ1 and RQ2) is the ability to record and replay



a given scenario, failure, or crash from bug reports. In this
section, we describe this first aspect’s experimental setup
in detail. Figure 1 provides an overview of our analysis of
all issues in reproduction from bug reports, illustrating the
relationship between issue symptoms and their root causes.
The second aspect (RQ3 and RQ4) is the ability of R&R tools
to record and replay crashes detected by AIG tools during their
exploration. The experimental setup of this second aspect is
described in Section V.

A. Methodology

For our study, we aim to record and replay scenarios,
failures, and crashes. Our general methodology is as follows:

• Step 1: Encounter scenario, failure, or crash without
any R&R tool. For scenarios, we follow the designed
steps to manually reproduce. For failures and crashes,
we manually detect them following the steps outlined in
bug reports.

• Step 2: Record the scenario, failure, or crash with R&R
tools, i.e., we attempt to record the scenarios, failures,
and crashes encountered in Step 1.

• Step 3: Replay recorded scenarios, failures, and crashes
from Step 2.

The goal of Step 1 is to ensure that all scenarios, failures,
and crashes used in our dataset are reproducible without R&R
tools. The goal of Step 2 is to then evaluate how many use
cases can each R&R tool record. Lastly, the goal of Step 3
is to evaluate the replayability of the use cases recorded by
the R&R tools. The use cases that are not always successfully
recorded and replayed in Steps 2 and 3 are then investigated
to determine how the R&R tools can be improved. For Steps
1 and 2 of our study, we attempt to detect and record each
scenario, failure, or crash three times (e.g., we follow the
steps in a given bug report up to three times to record a trace
demonstrating the corresponding failure or crash). For Step 3,
we attempt to replay each use case five times. We increased
the replay times due to the observation of flakiness, i.e., the
same trace exhibited inconsistent results across replays. To
reduce the impact of flakiness on our replayability results, we
increased the number of replays to five.

B. Context

For our study, we use a set of scenarios and a set of
detectable bugs for Android mobile testing. Our study aims
to understand how effective and reliable these tools are in
successfully recording and replaying various bugs that a de-
veloper might get from testers or end-users. The goal is to
understand to what extent a developer can rely on R&R tools.

1) Tools: For this study, we surveyed prior papers on
the topic of R&R for Android and attempted to include
recent state-of-the-art tools. We found 11 R&R tools: Ap-
pium [12], Culebra [13], GIFDroid [14], Monkeyrunner [15],
Mosaic [16], Robotium recorder [17], RERAN [1], Re-
playKit [18], SARA [8], VALERA [2], and V2S [3].

Most of the tools we found are mentioned in a prior
study [4] on R&R tools, which found that the tools were often

inadequate for developers to use. Taking into account time
and labor costs, as well as the diversity and advancement of
tools, we selected the following four tools. Four participants,
including three doctoral students and one master’s student,
each used one of these tools to conduct all related experiments.
(a) ReplayKit is a command-line tool of Appetizer. It can
record, replay, and mirror touchscreen events for Android.
Similar to RERAN, ReplayKit also relies on Android SDK
tools to record and replay events. (b) RERAN is a lightweight
desktop tool that records UI traces based on coordinates and
states. It is one of the very first R&R tools for research
purposes. It works in the kernel layer, capturing and replay-
ing events via Android SDK tools getevent and sendevent.
(c) SARA is a recent state-of-the-art R&R tool that specifically
aims to mitigate some of the limitations found in other tools.
As the SARA tool is published after the most recent study [4]
on R&R tools, it is particularly unclear how SARA compares
to other R&R tools in terms of recordability and replayability.
SARA uses dynamic instrumentation to record and replay
diverse kinds of inputs in mobile devices, and the self-replay
mechanism can address the problem of recording motion
events based on widgets. (d) V2S is the first Android tool that
automates the analysis of video-based mobile development.
V2S processes the screen recordings of Android app usages
by applying constraints on frame size, each video should
be recorded with at least 30 FPS, and users should enable
the “Show Touches” option in developer mode. Then, V2S
detects and classifies actions using deep learning techniques
and translates the actions into a replayable trace for a given
target device.

2) Dataset: Our dataset includes 34 scenarios, 90 failures
and 31 crashes in total.
Scenarios. To obtain scenarios, we use apps in the Themis
dataset [5]. The Themis dataset consists of 52 crashes from
20 popular apps. For each app, we follow the method in
prior work [8] to design two scenarios according to the
description and images of its GitHub and Google Play home-
page. The selected scenarios include common user activities
like adding/editing/searching/selecting contents (e.g., notes &
forms), navigating menu items, file operations (e.g., explore
directories & copy-paste files), and multimedia operations
(e.g., capture & save pictures). For example, for the Frost
app [19], a third-party Facebook app for Android, one of the
scenarios we designed is to create a post. For the FirefoxLite
app [20], one of the scenarios we designed is to do a keyword
search on the homepage and jump to one of the searched
web pages. Three apps were removed from our list because
the main functionalities were no longer worked to keep the
reported crash existing.
Failures. We use the AndroR2 dataset [21], which is a
collection of Android bug reports mined from popular Android
apps that are hosted on GitHub and cross-listed on Google
Play. Each bug report includes reproduction steps with the app
version, Android OS version, screenshots, videos, an APK file,
and the GitHub link to the bug report. We select all failures
from the dataset and remove the ones that are detected on
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Fig. 1: An overview of the relationship of issue symptoms and root causes

only Android versions 10 and 11 since one of the R&R tools
(RERAN) cannot replay on such versions.

After this filtering process, we are left with 116 of 180 bugs
to analyze for our study. For Step 1, for each bug report present
in AndroR2, four authors (one for each R&R tool) discuss and
agree on guidelines to be followed in recording each of the
bugs, then each author attempts to follow the reproduction
steps given in the bug report and evaluate whether they could
reproduce the described bug manually. Each author creates a
virtual Android device (emulator) that matches the specified
Android OS version stated in each bug report and makes three
attempts to reproduce the bug. In the end, we can manually
reproduce 90 of 116 failures. 26 bugs are removed from our
dataset due to the following three reasons: (1) the reproduction
steps were unclear in the bug report, (2) the bug is no longer
present in the app (e.g., the server of the app has disabled
certain functionality), and (3) the bug is blocked by another
bug in the app.
Crashes. We use 52 verified crashes from the Themis dataset.
We repeat the Step 1 process of the failure dataset for crashes
and obtain 31 usable crashes in the end. 21 crashes are re-
moved from our study due to (1) the crash is not reproducible,
(2) the app cannot be installed properly on our devices, and
(3) the reproduction steps were unclear in the bug report.

III. RQ1: REPRODUCTION FROM BUG REPORTS

Table II shows the number of cases each R&R tool failed
to record or replay. We use four R&R tools to record all use
cases in our dataset, which includes 34 scenarios, 90 failures,
and 31 crashes, and then replay the successfully recorded use
cases with each of the R&R tools five times.

Unsuccessful cases in recording phase. Among the four
tools, only RERAN and ReplayKit could finish recording
all cases. V2S did not generate recordings from videos for
nine cases. Most unsuccessful recording cases come from
SARA. Six scenarios and 21 failures cannot be recorded
by SARA due to Frida error. Frida [22] is a dynamic code

instrumentation toolkit, which is used by SARA to instrument
apps and monitor events. Beyond Frida errors, SARA cannot
finish recording eight failures and four crashes because the
app crashes as soon as recording starts.

Unsuccessful cases in replaying phase. The symptoms
revealed in the replay process can be divided into two main
categories, action issues and script issues. Action issues refer
to the situation in which a certain key action in the sequence is
not successfully executed during the replay process, resulting
in the deviation of all subsequent actions and replay failure.
The key action could be a single click, long press and screen
rotation, etc. Script issues are related to the quality of the
generated replaying scripts. If the script is incomplete, e.g.,
missing a few actions at the end of the sequence, then the
replay will end early before reproducing the targeted scenario.
In other cases, the incorrect script could freeze the process
or raise exceptions during execution. Besides the two main
categories, other symptoms include unexpected app crashes,
failed to open the camera, etc.

Performance for different types of use cases. As illus-
trated in Table II, we observe a substantial drop in performance
for R&R tools when they are used to record and replay failures
and crashes compared to scenarios. For example, RERAN has
a substantially higher percentage of unsuccessful cases for
failures (28%) and crashes (36%) than for scenarios (6%).
We observe the same trend for ReplayKit, SARA, and V2S.
To better understand this substantial performance drop in
replaying failures and crashes, we further investigate V2S’s
replay cases. Specifically, when we calculate the duration of
videos recorded for V2S replay, we find that the average
duration of scenarios is around 20 seconds, while the average
duration of failures and crashes is around 40 seconds. Our
observations suggest that scenarios are more trivial use cases
that tend to represent the happy path of an app whereas failures
and crashes tend to exhibit more complex corner cases.



TABLE II: Breakdown of unsuccessful recording & replaying cases. The percentages of unsuccessful cases for user scenarios,
failures, and crashes are also shown.

Steps Categories Subcategories RERAN ReplayKit SARA V2S Count

USER SCENARIOS
SARA Frida error - - 6 - 6Record Count - - 6 - 6
Action issues Click failed 2 - 2 8 12

Script stuck/error - - 4 - 4Script issues Script ending early - - - 1 1Replay

Count 2 - 6 9 17
Total (unsuccessful cases / # of user scenarios (34)) 2 (6%) 0 (0%) 12 (35%) 9 (27%) 23 (17%)

FAILURES
SARA Frida error - - 21 - 21
Generate script failed - - - 9 9
App crash - - 8 - 8Record

Count - - 29 9 38
Click failed 14 - 15 24 53
Screen rotation failed 1 5 2 2 10Action issues
Long tap failed - 7 - 2 9
Script ending early 9 0 2 0 11Script issues Script stuck/error - - - 7 7
App crash - - 5 1 6
Camera open failed - 1 - - 1Other
Flaky bug 1 - 1 - 2

Replay

Count 25 13 25 36 99
Total (unsuccessful cases / # of failures (90)) 25 (28%) 13 (14%) 54 (60%) 45 (50%) 137 (38%)

CRASHES
App crash - - 4 - 4
Track action failed - - 2 - 2Record
Count - - 6 - 6

Click failed 6 1 6 14 27
Long tap failed - 6 - 1 7Action issues
Screen rotation failed - 1 - 1 2
Script ending early - 1 - - 1Script issues Script stuck/error - - 1 - 1
App crash 5 - 4 - 9Other Flaky bug - - 1 - 1

Replay

Count 11 9 12 16 48
Total (unsuccessful cases / # of crashes (31)) 11 (36%) 9 (29%) 18 (58%) 16 (52%) 54 (44%)

IV. RQ2: ROOT CAUSES OF ISSUES IN REPRODUCTION
FROM BUG REPORTS

After analyzing the symptoms of replay issues, we further
investigate the root causes, which can be divided into four
main categories (Figure 1). Different symptoms may lead to
the same root cause, and different root causes may also have
the same symptoms. More details are in our appendix [11].

A. Short action interval

Click failed is the most frequent issue that appears in our
study. This category includes two situations: (1) missed action
during the recording process, i.e., the relevant click action was
not successfully recorded; (2) the click action did not apply to
the correct component. Short action interval is an important
root cause of click failed issues. If actions are entered at a fast
frequency, R&R tools are more likely to miss some actions and
result in an unsuccessful replay. Furthermore, if the sequence
involves page switching or network loading, a short action
interval can easily cause actions to be executed on a screen
that has not finished loading, causing subsequent actions to be
invalid and the replay to be unsuccessful.

Note that in our study results RERAN and SARA have many
more click failed cases than ReplayKit. As mentioned before,

in our study, we have four participants, each handling one
R&R tool and implementing all experiments of a particular
tool. We conducted action interval surveys among the four
participants, and it was found that the action interval used
by RERAN and SARA participants was about 0.5 seconds
per action (s/a), while the participants using ReplayKit and
V2S had an action interval of 2 s/a. To confirm the impact of
the action interval on our experimental results, we randomly
selected three cases from the Click failed cases of RERAN
and SARA, and re-tested them using an action interval of 2
s/a. The results found that RERAN could successfully replay
all three cases. SARA successfully replayed two cases. For
the last use case, SARA failed to replay due to a screen
rotation issue. However, the action that caused the click to
fail was correctly recorded and replayed this time. In addition,
we also conducted similar experiments on ReplayKit, where
we randomly selected 3 successful cases and re-tested the
tool with a short action interval of 0.5 s/a. We successfully
reproduced one case that has a short action sequence and were
unsuccessful in reproducing two other cases that have longer
action sequences.

Suggestions: (1) Longer action intervals that more closely
resemble real-world user interactions and the avoidance of



rapid-fire action sequences are more likely to result in success-
fully recorded traces and a higher likelihood to successfully
replay the recorded traces; (2) Introducing mechanisms to retry
failed actions or ensuring that async actions and background
processes are properly synchronized in the recording and re-
playing phases can help deal with load time related problems.

B. Incompatible APIs

Many unsuccessful replay cases are caused by incompatible
API calls, such as screen rotation failed, long tap failed,
camera open failed, and click failed cases. For instance,
ReplayKit cannot correctly record and replay long tap actions
or open the camera interface. SARA and ReplayKit often fail
to perform screen rotation actions. SARA is also not yet able
to record and replay actions involving the android.text.Editable
interface, which provides APIs to process input strings.

Suggestions: (1) Better API support offers richer function-
ality, which can help resolve issues related to complex actions,
such as long taps and screen rotations, and lead to more
effective recording and replaying; (2) Android’s accessibility
services can be leveraged to simulate touch interactions and
screen rotations programmatically. Creating custom accessi-
bility service modules can help R&R tools support more
functionalities, such as long tap and screen rotation.

C. Lazy trace logging

When using the Android SDK getevent tool to record
actions, the actions are logged on the device storage. However,
this process employs a lazy logging mechanism, meaning that
the trace log will be updated only after a certain number of
events have been accumulated. As a result, the final portion
of actions may be missed if the number of events recorded
is insufficient to trigger the logging process, which leads to
issues where the scripts end early in the replaying phase.

Suggestions: (1) Introducing an event buffering mechanism
to temporarily store actions before updating the trace log; (2)
Modifying the threshold for triggering the logging process to a
lower value; (3) Adding additional actions after the recording
to ensure that all targeted actions are recorded.

D. Tool limitations

1) Trade-off between resource and information: Frida error
frequently happens during the recording phase. Such issues
arise mainly due to SARA using the instrumentation tool
Frida [22] to instrument the device and monitor events. To
support the cross-device replay feature, SARA records all
relevant widgets and state information through the Frida tool
during the recording process to facilitate subsequent filtering
of relevant widgets for cross-device replay. This results in
a substantial amount of I/O operations during the recording
process, and introduces additional overhead which leads to
delays in recording actions, causing the process to stall and
eventually triggering a timeout error. Moreover, SARA also
has many unsuccessful cases related to script stuck/error or
click failures that are also related to I/O operations. The large
influx of I/O operations from SARA recording many low-level

events and logging them into a trace log can lead to issues,
such as events being logged out of order or some events being
incorrectly logged, and errors during script execution.

Suggestions: The key issue here is how to balance the
resource of I/O operations with the comprehensiveness of
semantic information acquisition. For the resource aspect,
optimizing the efficiency and performance of the instrumenting
tool and logging tool, and continuously monitoring resource
usage on the testing device, can help alleviate the occurrence
of such issues. For instance, optimizing the logging mech-
anism by using buffers or more efficient logging libraries
to ensure that events are logged efficiently and correctly.
For the information aspect, removing redundant information
and retaining relevant semantic information can alleviate the
problem of resource consumption. For example, by modifying
the configuration to reduce the frequency of logging low-level
events, the tool can alleviate the strain on I/O operations and
reduce the likelihood of related issues. Prioritizing the logging
of critical events or filtering out less important ones to reduce
the overall volume of events being logged may also help.

2) Screen understanding: To generate replay scripts,
vision-based R&R tools need to calculate the coordination of
actions by pixels. It is easy to raise issues that fail to generate
scripts due to the required resolution or the first frame of
the recording videos does not meet the default requirements.
Furthermore, vision-based tools rely on the touch indicator to
identify the type and location of the action. When the identified
action is a long tap or a click, misjudgment is prone to occur.
At the same time, as the Android touch indicator is white, it
is difficult for V2S to identify the touch indicator in a white
background, resulting in the generation of inaccurate scripts
and click failed issues.

Suggestions: For resolution issues, adding dynamic mech-
anisms to adjust the coordination of generated actions based
on the video resolution instead of using fixed settings can
help solve this issue. To better locate the touch indicator
and identify the action type, the following changes can be
considered: (1) modifying the touch indicator color to increase
contrast against the background; (2) introducing patterns or
textures to the touch indicator, thereby making it distinct from
the surrounding background and easy to recognize by the tool;
(3) implementing a dynamic touch indicator that changes when
applying different actions, especially for long taps.

3) Flakiness in recording phase: SARA involves the can-
didate recognizer module, which can recognize the widgets
under interactions and generate a unique identifier for each
of the widgets so that they can be uniquely recognized in
the replaying phase. However, this module cannot recognize
widgets if the UI hierarchy is dynamically loaded, and will
instead just wait for some time before choosing one of
the candidate widgets. Therefore if the UI hierarchy is not
statically loaded, then the chosen widget can be wrong, leading
to click failed issues in the replaying phase.

Suggestions: A dynamic waiting and loading check mech-
anism to detect if the UI hierarchy is fully loaded can help.



V. RQ3: BUG REPRODUCTION FROM AIG TOOLS

In this section, we explore the reproducibility of crashes
detected by AIG tools. To reproduce such AIG detected bugs,
developers can (1) rely on the seed functionality built-in to
AIG tools, (2) improve AIG tools to reproduce crashes, and
(3) use AIG tools with R&R tools. We conduct experiments
for each of these three methods and analyze their performance.

AIG Tools. We consider all AIG tools from the Themis
dataset and use three state-of-the-art tools: Monkey, APE,
and Humanoid. Monkey [10] is an Android UI testing tool
developed by Google and is one of the earliest AIG tools.
The tool produces purely randomized UI event sequences
and injects them into the target Android system without
considering the design details of the app under test. APE is a
model-based approach that dynamically optimizes a model of
the GUI of a given app by leveraging the runtime information
during exploration. APE then uses the model to systematically
generate events to explore the app. Humanoid uses deep
learning (DL)-based techniques to learn experiences from app
usage traces generated by humans. It will continually use a
model-based policy to discover the app with several potential
inputs according to the current state.

We exclude the other tools from the Themis dataset for
various reasons. Specifically, we exclude ComboDroid [23]
because when we use it in conjunction with R&R tools, it is
unable to run for long due to incompatibilities. For example,
when we combine SARA with ComboDroid, we find that
ComboDroid will frequently cause the process ID of an app
to change. However, SARA relies on attaching itself to the
process ID of an app to record and replay actions, therefore
SARA will stop recording a few minutes into a given testing
session. We omit TimeMachine [24] because it requires app
instrumentation, which can conflict with R&R tools.

A. Built-in functionality of AIG tools

To reproduce bugs detected by AIG tools themselves, we try
to remove the randomness in the action sequence generation
process from AIG tools by fixing the random seeds. As
Humanoid is a DL-based technique, we cannot fully remove
the randomness in exploration. We run the AIG tools on each
app two times and compare the detected crashes. To better
compare the results of the two runs, we use the following
four metrics in our study:
Overlap: Are the exceptions in the runs overlapping?
Unique: Are the exception sets consistent across the runs?
Order: Is the order in which each exception is detected
consistent between the two runs?
Time: Is the timing of each exception consistent in the runs?

The results are shown in Table III. Even if we use the
same action sequences to run AIG tools repeatedly, it is still
impossible to get completely consistent traces. If we relax
the requirement to reproduce the same list of unique bugs
in multiple runs, the success rate increases. Monkey, APE and
Humanoid can reproduce all detected bugs in seven, six, and
two of the 27 apps, respectively.

TABLE III: Comparison of exception consistency across two
runs of AIG tools on 27 apps

Tools Runs Overlap Unique Order Time

APE
Same 21 6 2 0
Not Same 3 18 22 24
NA 3 3 3 3

Monkey
Same 18 7 2 2
Not Same 3 14 19 19
NA 6 6 6 6

Humanoid
Same 9 2 0 0
Not Same 7 14 16 16
NA 11 11 11 11
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Fig. 2: Number of unique crashes detected by the Themis
dataset and Steps 1 and 2 of our AIG Tool experiments.

B. Improved version of AIG tools

In this experiment, we perform simple changes to AIG
tools to understand whether such changes can help AIG tools
reproduce crashes. Considering that AIG tools normally apply
short action intervals (e.g., Monkey and APE use 200ms by
default), we conducted comparative experiments to measure
the impact of different action intervals. We used action inter-
vals of 500, 1000, and 2000 ms to repeat the experiments of
Table III with the same random seed. The results indicate that
even with increased action intervals, there is no substantial
improvement in the outcomes (e.g., up to 70% of cases could
not be reproduced for Monkey when the same seed is used).
The detailed experiment results is in our artifact [11].

C. Combination of AIG and R&R tools

We explore how the state-of-the-art R&R tools work in
conjunction with AIG tools to reproduce AIG detected bugs.

1) Compatibility problems between R&R and AIG tools:
We find that RERAN, ReplayKit, and V2S are not compatible
with AIG tools due to the following reasons.

Android SDK conflicts. RERAN and ReplayKit rely on
the Android SDK getevent tool to monitor and record all
registered UI actions, while all AIG tools utilize the Android
SDK sendevent tool to operate actions. Due to limitations
within the Android SDK mechanism, sendevent and getevent
tools cannot function simultaneously. As a result, the studied
R&R tools cannot record the actions applied by AIG tools.

Missing touch indicator. V2S requires the recording videos
to have the touch indicator of each performed action displayed
on the screen, but AIG tools do not trigger touch indicator
animations. Moreover, generating scripts from videos in V2S
incurs a high time cost, which is impractical as most AIG tools
are expected to run for a long time.

2) Unsuccessful cases in the combination of SARA and AIG
tools: Our experiments find that Monkey, APE and Humanoid



TABLE IV: Breakdown of the types of crashes recorded when
we combine SARA with AIG tools.

Crash Type APE Monkey Humanoid
Themis crash 2 4 1
New crash 3 6 2
Total 5 10 3

TABLE V: Breakdown of the crashes we are unable to replay
when we combine SARA with AIG tools.

Results Reason Ape Monkey Humanoid

Fail

Inaccurate action 2 4 -
Parsing Log Failed - 3 3
Script Error - 2 -
Total 2 9 3

Succeed 2 1 0
Flaky 1 0 0
Total 5 10 3

detects 38, 61, and 26 crashes, respectively in Step 1 (de-
scribed in Section II-A). To evaluate SARA’s recordability
of the crashes that Monkey, APE, and Humanoid detects, we
combine the AIG tools with SARA in Step 2. Fig. 2 shows the
breakdown of how the crashes we find from Step 2 compare
to the crashes we find from Step 1 and the crashes in the
Themis dataset. Overall, the majority of the recorded crashes
from Monkey, APE, and Humanoid are detected in Step 1
or from the Themis dataset. To ensure that the crashes found
in Step 2 are not introduced by SARA, we only keep the
intersection of Step 2 with the Themis crashes and new crashes
detected in Step 1. As shown in Table IV, we successfully
recorded 10, 5, and 3 crashes detected by Monkey, APE, and
Humanoid, respectively in Step 2. Then we replayed these
recorded crashes five times each. The replaying results are
shown in Table V and described in Section VI-B. Overall, the
current performance of record and replay tools in reproducing
the crashes detected by AIG tools is far from satisfactory.

Suggestion. SDK conflict is the main problem of combining
AIG and R&R tools. To help, we suggest (1) developing R&R
tools that can record events through other mechanisms and
(2) modifying Android SDK logic to remove existing conflicts.

VI. RQ4: ROOT CAUSES OF ISSUES IN COMBINING AIG
AND R&R TOOLS

A. Limitations in recording phase

As mentioned before, when using SARA to record crashes
detected by AIG tools, the number of recorded crashes is
limited. The main reason is that SARA has the limitation of
relying on process IDs (PIDs) to record actions. During both
the recording and replaying phases, PIDs must be provided
as input to the program. However, when a crash is triggered,
the app will restart and will be assigned a new PID. Once
the PID is changed, SARA will lose the connection to the
app and be unable to record any new actions. Therefore, in
our experiment, we are able to record only the first crash for
each run, because (1) SARA must start later than the app and
earlier than AIG tools to get the app PID as input to not miss
actions, and (2) we cannot interrupt the AIG tool’s exploration

1 # Original events generated by Monkey
2 ACTION_DOWN: (796.0,826.0)
3 ACTION_UP: (703.7517,694.93243)
4

5 # Events recorded by SARA
6 ACTION_DOWN: (796.0,826.0)
7 ACTION_MOVE: (712.4744262695312,

714.1114501953125)
8 ACTION_UP: (703.7517,694.93243)

Listing 1: Divergence action between recorded action sequence
and the replayed action sequence.

in the middle and restart it as AIG tools need to maintain their
exploration history to guide future exploration. A restart will
lose the exploration history and potentially cause the tools to
waste time exploring UI space that has already been explored.

B. Limitations in replaying phase

As shown in Table V, SARA cannot replay most of the
recorded crashes detected by the three AIG tools. The root
causes can be categorized into the following three types.

1) Inaccurate action: The actions performed by Monkey
are not correctly recorded by SARA, therefore SARA ended
up triggering a different crash than the expected crash. List-
ing 1 shows an example. During the recording of the crash,
SARA incorrectly records an extra swipe, which eventually
triggers a different crash than the crash that was recorded.
When we analyze the log files, we find that SARA will record
all actions between ACTION DOWN and ACTION UP and
consider them as one action, then split tap and swipe events
by checking if the sub-sequence contains ACTION MOVE.
During the recording process, this action appears as an un-
successful swipe, it swipes slightly from the bottom right
to the top left but fails to change the current page. In the
trace recorded by SARA, this action is decomposed into
three events, i.e., an extra ACTION_MOVE is inserted between
ACTION_DOWN and ACTION_UP. We believe that the root
cause of this type of issue is consistent with the reasons
described in Section IV-D1, which is due to logging issues
caused by I/O process overload.

Suggestion. As mentioned in Section IV-D1, balancing
the resource of I/O operations and the comprehensiveness of
semantic information acquisition can help improve this issue.

2) Parsing log failure: Monkey and Humanoid each have
three cases that fall into this category. The error can come from
two steps. Some cases happen before the normal replaying
phase due to anomalous log writing. The output of the SARA
recording process is the trace logs including all recorded
actions. Before replaying the traces, SARA needs to transform
the trace log into automated replay scripts. This error occurs
when the transformation fails. When SARA tries to obtain the
app activity hierarchy information, it will access the related
XML files, which store the activity hierarchy data. If these
XML files are empty, then SARA will raise a TypeError
exception. We also find one case that has flaky results when
we replay the crash detected by APE with SARA. Specifically,



WordPress#10302 [25] cannot pass in all five runs due to two
different reasons: (1) SARA fails to replay the crash due to
the parsing log failing three times, (2) in the other two runs,
the replay is unsuccessful due to missing actions.

Suggestion. (1) Introducing log validation steps during the
recording process to monitor in real-time whether there are
any anomalies in the logs and correcting such anomalies or
(2) implementing more robust logging mechanisms to ensure
that all necessary information is captured accurately during
recording can help.

3) Script error: In rare cases, the replay scripts generated
by SARA raise errors. One use case is due to incomplete action
records caused by the Frida tool blocking during the recording
process. The other unsuccessful case is that SARA failed to
get the activity information from Android’s activity hierarchy
tree. The tested app Openlauncher [26] is a launcher app for
Android, which is located on a different layer of the activity
hierarchy tree compared with general apps. When SARA
tries to parse the launcher app from the activity hierarchy
tree, the different layer prevents SARA from getting the app
information, and an indentation exception is raised. However,
after fixing this indentation issue from SARA, the replaying
is still unsuccessful due to missing actions in the record trace.

Suggestion. (1) Involving dynamic layer detection func-
tionality to automatically adjust the parsing logic based on
the layer the app is located on or (2) as mentioned in
Section IV-D1, enlarging the action interval and improving the
logging mechanisms can help alleviate missing action issues.

VII. THREATS TO VALIDITY

Construct Validity. Threats to construct validity concern
the operationalization of experimental artifacts. In this study,
we make use of past tools, datasets, and benchmarks. To
mitigate potential threats to construct validity, we followed
the instructions to instantiate and use both the R&R tools and
the AIG tools as described in the original papers and their
corresponding online repositories/appendices. As mentioned
earlier in the paper, we ran into issues in integrating R&R
and AIG tools due to technical limitations regarding how
events are recorded. It is possible that such issues could
be mitigated through additional engineering and integration
efforts, however, this observed difficulty in tool use would also
be faced by developers aiming to combine AIG and R&R tools
in a scenario similar to the one in our study.
Internal Validity.Threats to internal validity concern unex-
pected factors in the experiments that may contribute to
observed findings. One of the main threats to the internal
validity of our study stems from the filtering of our studied
bugs, as the dataset utilized could ultimately lead to different
results if filtered in different ways. We used two well-known
artifacts, AndroR2 and the Themis benchmark, as our source
of bugs. For the manual study, we employed four authors to
reproduce each bug to confirm that the bugs were indeed
reproducible and excluded non-reproducible bugs from our
analysis (Step 1). Before reproducing each use case, all four
authors discuss and agree on guidelines to be followed in

recording each of the bugs (e.g., the steps in the corresponding
videos for each Themis bug or the “steps to reproduce” and
scripts in each AndroR2 bug report). Each tool was then used
by a specific author to record and replay reproducible bugs.
Differences in how authors may have attempted to record
bugs could influence our results. We mitigate this threat by
discussing among authors what methodology should be used
to record and replay each bug. All unsuccessful cases for each
tool are then cross-checked by the other authors to ensure that
all unsuccessful cases were not due to user bias.

For the AIG tool study, we used only those bugs that were
detectable by Monkey, APE, or Humanoid and filtered bugs we
could not detect without R&R tools. Another potential threat
to internal validity is the analysis performed to root-cause the
reasons for the lack of recordability or replayability. However,
we again had multiple authors inspect these cases of interest
to derive a mutually agreed-upon set of root causes. As a
result of this methodology, we believe that we have sufficiently
mitigated any threats to internal validity.
External Validity. Threats to external validity concern the
generalizability of our results. While we cannot claim that
our results generalize outside of our studied tools, apps, and
bugs, we took several steps to ensure these experimental
constructs were as generalizable as possible. AndroR2 is
currently the largest dataset of non-crashing Android bugs in
the research literature. Themis is a recent work that represents
the largest set of reproducible crashing bugs and experimental
infrastructure to run AIG tools. Given the diversity among
the apps and bugs contained within these datasets, we believe
that the results of this study are generalizable to the point
where reasonably broad conclusions can be drawn. Another
threat to external validity is the set of R&R and AIG tools
used. However, our selected tools represent state-of-the-art
techniques across both academia and industry and provide a
reasonably representative set of the current state of AIG and
R&R tools.

VIII. RELATED WORK

A. Record & Replay Testing Tools for Android

In the early stage of Android development, record and
replay tools [1], [27], [2] made reasonable assumptions based
on the characteristics of the era (e.g., simpler apps, fewer app
updates, and fewer Android device models). At this stage,
tools are built based on coordinate representation without any
search strategy. RERAN [1] was a representative work at that
time. When recording, RERAN captures user-input events and
the coordinate information of the event by reading the screen
device driver file at the kernel layer. Given the simplicity of
the apps at that time, RERAN assumes that the apps are the
same during playback as it was recorded, so the recorded
coordinate information is directly written to the screen driver
file to complete the replay.

As Android apps became more complex, the app updates
became more frequent and device models became more frag-
mented, the techniques based on coordinate representation
could handle cross-device record and replay. For this reason,



techniques (such as SARA [8] and RANDR [28]) based on
UI widgets and hierarchy attributes (with a certain extent of
abstraction) were proposed. For recording, SARA uses self-
replay to record the motion events based on widgets, while
RANDR uses only instrumentation. For replaying, both SARA
and RANDR assume that the UI will not be changed, so
they will just simply aim to perform the same events on the
UI. Much empirical evidence suggests such techniques are
effective for cross-device record and replay given that the
versions of the apps during recording and replaying are exactly
the same [8], [28], [29], [30], [31], [32], [33], [34].

It is worth noting that although coordinate-based techniques
do not work for cross-device record and replay, RERAN
is still the most effective approach for same-device record
and replay [4]. That being said, RERAN can be intrusive to
the system (needs to be operated at the kernel layer to use
the screen driver), but V2S [3] and RoScript [35] need to
record and parse video to get the coordinates, still limits the
practicality of these two tools.

B. Automated Input Generation (AIG) Tools for Android

1) Random-based Techniques: Random testing is a soft-
ware testing technique where programs are tested by gen-
erating random, independent inputs. The most representative
random-based technique is the Monkey [10] tool included in
Android SDK. Monkey can send pseudo-random user events
(e.g., key presses, screen taps) to the device. Traditional work
such as Monkey either focuses on event-based input such
as UI events and system events, or relies on manual effort
to generate valid text input. Dynodroid [36] and Mulliner
et al. [37] expand the UI events with system events, such
as SMS receiving. However, when encountering a text input
field like password, they must pause the testing and wait for
manual input. More recent work generates testing input based
on domain knowledge about the input structures. For example,
prior works [38], [39], [40], [41] focus on fuzzing critical
data structures in Android such as Intent and Binder, which
are well-documented. In addition, another thread of work like
Caiipa [42] uses synthesized context observed in the wild to
guide its fuzzer so that it can cover different context variations.

2) Model-based Techniques: Model-based testing is one of
the most common methodologies used in Android testing [43],
[44], [45], [46], [47], [48], [49]. Before any model-based test-
ing tool was developed specifically for testing Android apps,
Takala et al. [50] performed experiments using TeMA [51]
which was originally developed for testing Series 60 (running
on top of Symbian OS) GUI apps. ORBIT [52] is the first
model-based Android testing technique based on a combina-
tion of dynamic GUI crawling and static code analysis, using
analysis to avoid the generation of irrelevant UI events.

3) Learning-based Techniques: Some modern works [53],
[54], [55], [56], [57] generate inputs by leveraging machine
learning techniques (such as neural nets) or search-based
techniques (such as genetic algorithms).

Another thread of work by Liu et al. [58] utilizes RNN to
train a learning model and use it to generate text input based

on the app context. Unfortunately, it requires a large amount
of manual effort to write the training input.

4) Widget-based Techniques: UI widget identification is
often combined and used together with app testing because
an exerciser needs to interact with different UI widgets.
Super [59] and UIPicker [60] extract UI widget information
from the layout’s XML file and then identify sensitive inputs.
UiRef [61] improves prior works by adopting a hybrid ap-
proach that combines both static and dynamic identifications:
the static method identifies widgets from layouts, just like prior
work and the dynamic method extracts each rendered layout
during on-device execution. Similarly, CuriousDroid [62] in-
struments the Dalvik virtual machine to obtain the UI widgets
and generate UI-related events during execution.

5) Flaky Tests: One common use case for record-and-
replay tools is to record a user scenario of an app and
every time the app changes, these common user scenarios
are replayed to ensure that recent changes did not break
existing functionality. This use case of R&R tools is similar
to regression testing. In the topic of regression testing, one
common problem is known as flaky tests [63], [64], [65],
which are tests that can non-deterministically pass or fail
even on the same version of code. Flaky tests can arise if
tests depend on specific thread interleaving (concurrency) [66],
test execution orders [67], [68], [69], [70], [71], unspecified
implementation details [72], time of the day, network call
result, etc. Similar to flaky tests, R&R tools may sometimes
succeed in replaying a user scenario and fail some other times
even when the version of the app remains the same. In this
paper, we present a detailed analysis of the flakiness in replay
scenarios for both manually recorded traces from bug reports
and automatically recorded traces from AIG tools.

IX. CONCLUSION

In this paper, we have presented the first comprehensive
study examining the recordability and replayability of An-
droid bug reproduction by four state-of-the-art R&R tools. In
particular, we conducted two studies aimed at recording and
replaying manually reproduced common user scenarios, non-
crashing bugs and crashes, and automatically discovered crash-
ing bugs (via AIG tools). Our results illustrate that 38% of
non-crashing bugs, 44% of crashing bugs, and 17% of common
user scenarios were not able to be reliably replayed, with the
most prevalent underlying reasons for non-replayability being
small action intervals and tool limitations in recording and
inability to capture certain types of UI interactions. Moreover,
existing methods are still far away from satisfactory to reliably
reproduce crashes detected by AIG tools. Our findings high-
light important current limitations with both R&R and AIG
tools that serve as impediments to the practical adoption of
our studied tools and important directions for future research.
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