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Abstract—With the increasing demand for wireless services,
spectrum management agencies and service providers (SPs)
are seeking more flexible mechanisms for spectrum sharing to
accommodate this growth. Such mechanisms impact the market
dynamics of competitive SPs. Prior market models of spectrum
sharing largely focus on scenarios where competing SPs had
identical coverage areas. We depart from this and consider a
scenario in which two competing SPs have overlapping but
distinct coverage areas. We study the resulting competition
using a Cournot model. Our findings reveal that with limited
shared bandwidth, SPs might avoid overlapping areas to pre-
vent potential losses due to interference. Sometimes SPs can
strategically cooperate by agreeing not to provide service in the
overlapping areas and, surprisingly, customers might also benefit
from such cooperation under certain circumstances. Overall,
market outcomes exhibit complex behaviors that are influenced
by the sizes of coverage areas and the bandwidth of the shared
spectrum.

Index Terms—spectrum management, dynamic spectrum as-
signment, market modeling

I. INTRODUCTION

Spectrum sharing is receiving increased interest to meet
the ever growing demands for wireless services. Examples
include the recent U.S. National Spectrum Strategy [1] and
programs such as the Spectrum Innovation Initiative: National
Radio Dynamic Zones (SII-NRDZ) that seeks to further
advance dynamic spectrum sharing [2].

Spectrum sharing involves both technical and economic
dimensions in that it impacts how service providers (SPs)
compete with each other. Models of competition with various
forms of shared spectrum have been studied including [3]–
[11]. In these works, it was assumed that all competing SPs
had the same coverage area, so that any customer could be
served by any SP. In this paper we depart from this and
consider an example where two competing SPs are sharing
the same spectrum and have distinct, partially overlapping
coverage areas. For example, this could model two WiFi
providers sharing the same band of unlicensed spectrum,
but with different coverage due to the placement of their
access points (APs). We seek to understand the impact of the
geographic separation between the SPs on their competition.

We consider a scenario in which two competing SPs each
have an AP at a distinct location with overlapping coverage.
We assume that the same spectrum band is used by two SPs.
We categorize the coverage into two types: dedicated areas
served exclusively by one AP, and an overlapping area served
by both APs. The SPs compete for a pool of customers spread
across these areas. The users are congestion-sensitive in that
the price they are willing to pay depends on a congestion cost,

which in turn varies across these areas, modeling different
levels of interference that may occur. As in [7], we adopt
a Cournot competition model in which both SPs specify the
number of customers they want to serve in both the dedicated
and overlapping sub-markets. Our main results are as follows:

• We prove that a unique Nash equilibrium always exists in
the proposed model.

• With limited bandwidth, SPs typically avoid overlapping
areas to minimize the risk of significant congestion, which
could adversely affect their revenue. However, with suf-
ficient bandwidth, SPs will enter the overlapping sub-
market. If this happens, the SPs may incur revenue losses
due to the competition in the overlapping market, and
consumer surplus may be redcued.

• SPs might want to cooperate by agreeing not to serve users
in the overlapping areas to avoid competition. Surprisingly,
sometimes consumers can also benefit from such coopera-
tion in the sense of total consumer surplus, which in turn
leads to higher social welfare. However, this may also raise
concerns about fairness, as no customers are served in the
overlapping areas.

• Market outcomes, including consumer surplus and social
welfare, exhibit a complex dynamic and may not necessar-
ily increase with the bandwidth provided to the SPs. This
suggests that regulators need to carefully determine the
amount of shared spectrum to optimize these outcomes.

Regarding related work, we follow the stream of modeling
wireless spectrum as congestible resources. Early work with
a similar methodology can be traced back to the study of
network neutrality for last-mile wired networks [12], [13].
Subsequently, several works studied wireless spectrum mar-
kets with congestion modeled in various ways [3]–[5], [7]–
[11], [14], [15]. Our analysis builds on the framework in
[7] where a market with intermittent spectrum is considered.
Here, we instead consider a non-intermittent band of spectrum
and account for the geographical differences in the locations
of SPs. Most related works focus on the competition between
SPs within the same geographical area. A few related works
that consider the geographical separation of SPs are discussed
next. In [14], users incur a cost solely based on the distance to
the connected SP, but the degradation of service quality due
to user traffic is not considered. A more realistic model is
considered in [15] where a user’s utility is modeled as their
achievable rates which depends on both path loss and the
interference caused by other users. In our work, we assume
that users incur a disutility based on how many users are



sharing the same spectrum which can be interpreted as the
cost of congestion, interference, or rate reduction caused by
other users. In our work, we also discuss approaches that SPs
could use to co-ordinate their spectrum usage, such as the use
of Spectrum Consumption Models (SCM) [16]–[19].

II. MARKET MODEL

We consider a model in which there are 2 SPs (SP1 and
SP2), each deploying an AP in distinct locations but with
overlapping coverage. Both SPs compete for a common pool
of non-atomic customers, who are categorized into three
groups according to the coverage area they fall under. Let A
and B be the sets of users under the coverage of SP1 and SP2,
respectively. Then, we have three sub-markets with the corre-
sponding sets of customers denoted by A\B, AB = A ∩B,
and B\A, and with the market sizes mA\B , mAB , and mB\A,
respectively. For ease of analysis, we assume customers are
non-atomic and, without loss of generality, the total market
size mA\B +mAB +mB\A = 1.

In each sub-market, Cournot competition is considered in
which SPs announce the quantity of users they want to serve,
and this in turn leads to a market-clearing price [7]. Let xA\B

1 ,
xAB
1 , xAB

2 , and x
B\A
2 denote the quantities of users served

by the SPs indicated by their subscripts. Fig. 1 shows how
users served by different SPs fall into different sub-markets.
Since SPs can only serve users under their own coverage, we
have the following constraints

0 ≤x
A\B
1 ≤ mA\B , (1)

0 ≤xAB
1 + xAB

2 ≤ mAB , (2)

0 ≤x
B\A
2 ≤ mB\A. (3)

We define the market-clearing delivered prices1 of each
sub-market as follows

p
A\B
d = 1− x

A\B
1

mA\B , (4)

pAB
d = 1− xAB

1 + xAB
2

mAB
, (5)

p
B\A
d = 1− x

B\A
2

mB\A . (6)

We refer to these as delivered prices as they include the
service price charged for service and the congestion cost of
the service that will be defined in the following.

These definitions are based on the following assumptions:
1) We assume that the whole market has the following

linear (inverse) demand function

pd= 1− x, (7)

where x = x
A\B
1 + xAB

1 + xAB
2 + x

B\A
2 is the total

quantity of users served in the whole market.
2) Customers, differing in their valuation (i.e., utility) of the

wireless service, are assumed to be uniformly distributed
among sub-markets. In other words, within each sub-
market, there are all types of users ranging from high-
value users who are willing to pay for the service
with a higher price to low-value users who have a

1The market-clearing delivered prices are the inverse demand functions of
corresponding markets.
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Fig. 1: Venn diagram of three sub-markets and the sets of
users served by different SPs.

limited budget. The mass of different types of users is
proportional to the sub-market sizes.

One can verify that under definition (4)–(6), the only way to
get the same market-clearing price across three sub-markets
is to serve users in proportion to the sizes of sub-market, and
the resulting price is given by (7).

Next, we derive the consumer surplus in each sub-market.
Take market A\B as an example. Equation (4) specifies the
inverse demand in market A\B, i.e., it indicates the minimum
price at which a mass of x

A\B
1 customers would accept

service. It follows that the surplus of the xth user is given
by 1− x/mA\B − p

A\B
d . To derive the consumer surplus of

the entire sub-market, we need to integrate the surplus over
x from 0 to x

A\B
1 . This results in the consumer surplus of

each sub-market given by

CSA\B=
(x

A\B
1 )2

2mA\B , (8)

CSAB =
(xAB

1 + xAB
2 )2

2mAB
, (9)

CSB\A=
(x

B\A
2 )2

2mB\A . (10)

We model the wireless spectrum as congestible resources,
recognizing that each band has an inherent capacity limit
when the bandwidth is fixed. To model this, we assume users
experience disutility based on the amount of users accessing
the same finite resources. This can model external costs
incurred by users when rate reductions, increased latency,
or interference arise during surges in user traffic. We refer
to these costs as congestion costs. We assume users are
congestion-sensitive, so that the service price charged by an
SP to its users is given by the difference between the delivered
price and the congestion cost. This models users that may
avoid low-cost but poor-quality wireless services. A user will
use the service of a SP only if the sum of both costs is lower
than their valuation of this service.

We assume the congestion cost incurred by users on a band
in a given sub-market depends on the total number of users
impacting that sub-market divided by its bandwidth, where as
described below a user may impact (e.g. cause interference)
a sub-market even if it is not present in that sub-market. If
both SPs use the same band, the traffic from both should be



considered in this calculation. Assume a band with bandwidth
W is used by both SPs. Considering their different coverage,
we define the congestion costs for the three sub-markets as
follows

lA\B=
x
A\B
1 + xAB

1 + xAB
2

W
, (11)

lAB =
x
A\B
1 + xAB

1 + xAB
2 + x

B\A
2

W
, (12)

lB\A=
xAB
1 + xAB

2 + x
B\A
2

W
. (13)

We have a few comments on (11)–(13):
1) Users within the same sub-market incur the same con-

gestion cost regardless of which AP they are connected
to. To simplify the model, we assume the congestion
incurred by users is mainly caused by user traffic as
opposed to path loss or shadowing.2

2) The congestion model here is motivated by WiFi in
which carrier-sense multiple access with collision avoid-
ance (CSMA/CA) is used for multiple access. Namely,
we assume that at most one user within the range of a
given AP can transmit at a time (or be transmitted to by
the AP). For example, the latency of users in A\B will
then depend on xAB

1 , xAB
2 , and x

A\B
1 as all of these

users are within range of AP1. Likewise, the congestion
of users in AB will depend on the number of users
within range of either AP as these users are within range
of both APs.3

3) From (12) one can conclude that market AB is always
“more crowded” compared to market A\B and B\A as
users there always incur higher congestion costs. This
may give SPs a preference for market A\B and B\A. In
the next section, we will see how this preference would
change after factoring in market sizes.

The revenue of an SP is the product of its service price
and the quantity of users it serves. Thus, the revenue of each
SP is given by

R1= x
A\B
1

(
p
A\B
d − lA\B

)
+ xAB

1

(
pAB
d − lAB

)
, (14)

R2= x
B\A
2

(
p
B\A
d − lB\A

)
+ xAB

2

(
pAB
d − lAB

)
. (15)

Note here we are assuming that the SPs can differentiate
their prices across sub-markets, which requires them to know
which users are in which sub-market. This could be learned
through measurements or shared if the SPs coordinate with
each other, e.g. by using SCMs [16].

The SPs’ goal is to maximize their revenue (14) and (15)
by carefully choosing the quantities of users to serve for
each sub-market (i.e., x

A\B
1 , xAB

1 , xAB
2 , and x

B\A
2 ). The

revenues of SP1 and SP2 couple with each other’s decision
through both the delivered prices (4)–(6) and the congestion
costs (11)–(13). Such coupling makes it a game between

2Since we are trying to model the market in the long term. One can
consider that the effects of path loss or shadowing on users’ perceived quality
of service is averaged out due to their mobility. The congestion costs in (11)–
(13) can be interpreted as long-term averaged disutility incurred by a user
within the corresponding region.

3This is a simplification of an actual WiFi setting made to capture the key
feature that with different geographic coverage, congestion costs will depend
on users within and external to a sub-market.

SP1 and SP2. We will discuss the Nash equilibrium and the
corresponding market outcomes in the next section.

III. MAIN RESULTS

In this section, we first characterize the Nash equilibrium
of this two-player game, and based on that, we will exam-
ine welfare measures such as consumer surplus and social
welfare.

A. Equilibrium

Theorem 1 (Uniqueness of Nash equilibrium). There always
exists a unique Nash equilibrium for any bandwidth W , and
sub-market sizes mA\B , mAB , and mB\A.

For symmetric cases in which mA\B = mB\A, the quan-
tities of users served by SP1 and SP2 at the equilibrium are
given as follows:

x
A\B
1 =


WmA\B

2(W+mA\B)
, 0 ≤ W < mA\B

2

WmA\B

C , W ≥ mA\B

2

(16)

xAB
1 =

0, 0 ≤ W < mA\B

2

(2W−mA\B)mAB

3C , W ≥ mA\B

2

(17)

x
B\A
2 = x

A\B
1 , and xAB

2 = xAB
1 ,

where

C = 2(W +mA\B +mAB)− mA\BmAB

W
. (18)

Proof. Due to space considerations, we only provide the
proof for the symmetric case, i.e., mA\B = mB\A.

Before diving into the proof of uniqueness, we first provide
some intuition, which is important for understanding how the
proof is constructed.

One can solve the following first-order conditions to gain
insight into a potential equilibrium:[

∂R1

∂x
A\B
1

∂R1

∂xAB
1

∂R2

∂xAB
2

∂R2

∂x
B\A
2

]T
= 0. (19)

The solution is given by the W ≥ mA\B

2 cases in (16)
and (17), in which xAB

1 will be negative if W < mA\B

2 .
Then we can guess that both SPs may abandon market AB
(i.e., xAB

1 = xAB
2 = 0) when the bandwidth W is not

large enough. But when the bandwidth is larger than mA\B

2 ,
the solution to (19) might be an equilibrium. Thus we will
consider two cases, namely, W ≥ mA\B

2 and W < mA\B

2 ,
and prove the uniqueness of equilibrium for each case.

Case W ≥ mA\B

2 : We first show that the equilibrium is
unique by showing it is a potential game and the potential
function is strictly concave. Then we show that the solution
to (19) is feasible and thus is indeed the unique equilibrium.

Let x1 =
[
x
A\B
1 , xAB

1

]T
and x2 =

[
x
B\A
2 , xAB

2

]T
. Then

we can construct a potential function from revenue (14) and
(15) as follows:



Φ(x1,x2) =

−
[(

1

mA\B +
1

W

)
x
A\B
1

2
+

(
1

mAB
+

1

W

)
xAB
1

2

+

(
1

mAB
+

1

W

)
xAB
2

2
+

(
1

mB\A +
1

W

)
x
B\A
2

2

+

(
1

mAB
+

1

W

)
xAB
1 xAB

2 +
2

W
x
A\B
1 xAB

1

+
1

W
x
A\B
1 xAB

2 +
1

W
x
B\A
2 xAB

1 +
2

W
x
B\A
2 xAB

2

]
+x

A\B
1 + x

B\A
2 + xAB

1 + xAB
2 . (20)

One can verify that

Φ(x′
1,x2)− Φ(x1,x2) = R1(x

′
1,x2)−R1(x1,x2), (21)

Φ(x1,x
′
2)− Φ(x1,x2) = R2(x1,x

′
2)−R2(x1,x2). (22)

We can rewrite (20) in a quadratic form

Φ(x) = −xTAx+ 1Tx, (23)

where

A =
1

mA\B + 1
W

1
W

1
2W 0

1
W

1
mAB + 1

W
1

2mAB + 1
2W

1
2W

1
2W

1
2mAB + 1

2W
1

mAB + 1
W

1
W

0 1
2W

1
W

1
mB\A + 1

W

 ,

(24)

and

x =
[
x
A\B
1 xAB

1 xAB
2 x

B\A
2

]T
. (25)

Next, we prove the uniqueness by showing that A is positive
definite given mA\B = mB\A, i.e., yTAy > 0, ∀y ∈ R4.

From (24), we observe that yTAy is a decreasing function
of mA\B as 1/mA\B only appears in the diagonal. We can
also show that it is a decreasing function of mAB as[

y2 y3
] [ 1

mAB + 1
W

1
2mAB + 1

2W
1

2mAB + 1
2W

1
mAB + 1

W

] [
y2
y3

]
=

(
1

mAB
+

1

W

)
(y2 + y3)

2 + y22 + y23
2

. (26)

Thus we can bound yTAy from below by substituting in the
maximum values of mA\B and mAB :

yTAy≥ yTAy
∣∣
mA\B=2W, mAB=1

(27)

=
1

W

(
3

2
y21 + 2y1y2 + y1y3

+
3

2
y24 + 2y3y4 + y2y4

+(W + 1)(y22 + y23 + y2y3)

)
. (28)

The lower bound (28) is a quadratic function of y1 and y4,
whose minimizer is given by y⋆1 = −(2y2 + y3)/3 and y⋆4 =
−(2y3 + y2)/3. Thus by plugging in y⋆1 and y⋆4 , we have

yTAy≥ 1

6W
(y2 − y3)

2 +
1

2

(
(y2 + y3)

2 + y22 + y23
)
(29)

≥ 0, (30)

where the equality holds only when y2 = y3 = 0 leading to
y⋆1 = y⋆4 = 0. Thus we can conclude that yTAy > 0 for all
y ̸= 0, which by definition proves A is positive definite.
Therefore, the potential function (20) is strictly concave,
and thus the equilibrium is unique. The existence of an
equilibrium is obvious as the set of x is compact because
of (1)–(3).

To show (16) and (17) are indeed the solution, we only
need to prove that they are feasible, i.e., x

A\B
1 ≤ mA\B

and xAB
1 ≤ mAB/2. The first inequality is obvious since

W/C ≤ 1. For the second inequality, we substitute mAB

with 1− 2mA\B and then it can be reduced to

2W 2 + (6− 4mA\B)W + 6
(
mA\B

)2
− 3mA\B ≥ 0,

(31)

where the LHS is a quadratic function of W , with W =
mA\B−3/2 < 0 as the minimizer. Recall that W ≥ mA\B/2,
thus the actual minimizer is W ⋆ = mA\B/2. Setting W =
W ⋆ in (31), we have

9

2

(
mA\B

)2
≥ 0, (32)

which always holds. Therefore, the solution in (16) and (17)
is feasible and thus is the equilibrium.

Case W < mA\B

2 : The potential function (23) is not
necessarily concave with W < mA\B

2 so we will adopt a
different approach. The equilibrium(s) is always given by the
solution to the following problem

argmax
x≥0

Φ(x) (33)

s.t. (1)–(3).

And, as mentioned before, the first-order solution (i.e., the
solution to ∇Φ(x) = 0, which is equivalent to (19)) is not
feasible. Thus the equilibrium(s) must lie on a boundary4.
Next, we will show the uniqueness by excluding all bound-
aries except one.

First, it is easy to rule out the boundaries on market-size
constraints (i.e., xA\B

1 = mA\B , xAB
1 + xAB

2 = mAB , and
x
B\A
2 = mB\A). For example, with x

A\B
1 = mA\B , the

delivered price p
A\B
d is zero. This results in a non-positive

service price p
A\B
d − lA\B charged by SP1 in market A\B.

Thus, SP1 can be better off if it stops serving users in this
market (i.e., by letting x

A\B
1 = 0) as it is currently paying

these users for using its service.
Second, to rule out the boundaries on non-negative con-

straints (i.e., xA\B
1 = 0, xAB

1 = 0, xAB
2 = 0, and x

B\A
2 = 0),

we first prove the following lemmas which will help us check
all combinations of these boundary conditions.

Lemma 2. Any x such that x
A\B
1 = 0 but xAB

1 > 0 (or
x
B\A
2 = 0 but xAB

2 > 0) is not an equilibrium.

The intuition is that it is impossible to have an equilibrium
in which an SP is willing to serve users in a more crowded
market rather than a less crowded one.

4Again, the existence of an equilibrium follows from the compact set
formed by (1)–(3).



Proof. With x
A\B
1 = 0 and xAB

1 > 0, we have

p
A\B
d − lA\B

=1− xAB
1 + xAB

2

W

>1− xAB
1 + xAB

2

mAB
− xAB

1 + xAB
2 + x

B\A
2

W
=pAB

d − lAB , (34)

which shows that the service price in market A\B is higher
than that in market AB.

Consider a deviation x′
1 =

[
∆, xAB

1 −∆
]T

from x1 =[
0, xAB

1

]T
with ∆ > 0. The difference in SP1’s revenue for

any x2 is

R1(x
′
1,x2)−R1(x1,x2)

=∆

[(
p
A\B
d − lA\B − ∆

mA\B

)

−
(
pAB
d − lAB +

∆

mAB

)
+

xAB
1

mAB

]
. (35)

Given (34), we can find always find a small enough ∆
such that R1(x

′
1,x2) − R1(x1,x2) > 0, indicating x′

1 is a
profitable deviation from x1 and thus it is not an equilibrium.

Lemma 3. Any x such that x
A\B
1 = 0 and xAB

1 = 0 (or
x
B\A
2 = 0 but xAB

2 = 0) is not an equilibrium.

This lemma suggests that an SP cannot completely squeeze
another SP out of the entire market.

Proof. Consider a deviation x′
1 = [∆, 0]

T from x1 = [0, 0]
T

with ∆ > 0. For any x2, the revenue of SP1 is

R1(x
′
1,x2) (36)

=∆

(
1− ∆

mA\B − ∆+ xAB
2

W

)
(37)

=∆

(
1− xAB

2

W
−
(

1

mA\B +
1

W

)
∆

)
. (38)

Note that 1 − xAB
2

W > 0 always holds for any x2 at an
equilibrium, otherwise SP2 would incur a negative service
price in both market AB and B\A. Thus there always exists
a small enough ∆ such that R1(x

′
1,x2) > 0, indicating

x′
1 is a profitable deviation from x1 and thus it is not an

equilibrium.

Lemma 4. Any x such that xAB
1 = 0 but xAB

2 > 0 (or
xAB
2 = 0 but xAB

1 > 0) is not an equilibrium.

This lemma suggests that an SP cannot completely squeeze
another SP out of market AB.

Proof. Consider a strategy profile x =

[x
A\B
1 , 0, xAB

2 , x
B\A
2 ]T with xAB

2 > 0. If it is an equilibrium,
we must have x

A\B
1 > 0 by Lemma 3 and x

B\A
2 > 0 by

Lemma 2. Thus, to be an equilibrium, x needs to be the
solution to the following equations[

∂R1|xAB
1 =0

∂x
A\B
1

∂R2|xAB
1 =0

∂xAB
2

∂R2|xAB
1 =0

∂x
B\A
2

]T
= 0. (39)
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Fig. 2: User quantities at equilibrium versus bandwidth W
for two symmetric cases.
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Fig. 3: User quantities at equilibrium versus bandwidth W
for two asymmetric cases.

One can verify that the solution always has x
A\B
1 xAB

2 < 0,
indicating there is no feasible solution to (39).

With Lemma 2–4, we can check all 15 combinations
of boundary conditions.5 For example, x

A\B
1 = 0 and

xAB
1 , xAB

2 , x
B\A
2 > 0 can be ruled out by Lemma 2. The only

boundary condition not eliminated is where x
A\B
1 , x

B\A
2 > 0

and xAB
1 , xAB

2 = 0. xA\B
1 and x

B\A
2 are the solution to the

following equations[
∂R1|xAB

1 =xAB
2 =0

∂x
A\B
1

∂R2|xAB
1 =xAB

2 =0

∂x
B\A
2

]T
= 0. (40)

The solution is given by the 0 ≤ W < mA\B

2 case in (16)
which is unique.

IV. NUMERICAL RESULTS

A. Equilibrium Quantities

In Fig. 2 we illustrate the unique equilibrium user quan-
tities versus the bandwidth W for two symmetric settings
(i.e. when mA\B = mB\A) with different market size
values mAB . Note due to symmetry in these cases the user
quantities for each SP are the same (e.g., xA\B = xB\A).
As suggested in (17), both SPs do not enter market AB

until W is greater than mA\B

2 , which is 0.2 and 0.1 in

5There are 4 x’s with total
(4
1

)
+

(4
2

)
+

(4
3

)
+

(4
4

)
= 15 different

combinations of boundary conditions.
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Fig. 4: SP’s revenue versus bandwidth W for two symmetric
cases.

Fig. 2a and Fig. 2b, respectively. The intuition is that SPs
avoid overlapping areas to minimize congestion costs when
bandwidth is limited. However, even with this preference,
SPs will still begin serving users in the overlapping area if
bandwidth W further increases. Initially, as W increases the
SPs serve more users on the non-overlapping sub-markets.
This decreases the delivered price in these areas and thus the
marginal revenue gained by adding users, until at some point
it is more attractive to add users on the overlapping area (with
a higher delivered price). Note also that when AB is larger
as in Fig. 2b, this increase in users in the overlapping area
results in an initial decrease in users in the non-overlapping
area. This is because increasing traffic in the overlapping area
increases the congestion cost of SPs on both their overlapping
and non-overlapping bands. This in turn reduces the marginal
benefit of serving users on non-overlapping band.

Fig. 3 shows the equilibrium user quantities versus W for
two asymmetric cases (mA\B > mB\A) with different market
size values mAB . Note that SP2 has a smaller dedicated
market compared to SP1. As in the symmetric case, when
the bandwidth is limited, no SP joins the overlapping market.
Interestingly, as W keeps increasing, SP2 first enters the
overlapping market, and then SP1 enters later. From SP1’s
perspective, since it has a relatively larger dedicated market,
it does not benefit from competing with SP2 in market AB
if W is not large enough. However, as W keeps increasing,
SP1 will eventually enter the overlapping market to compete
with SP2 directly, but will always serve fewer customers in
that band than SP2 does. For large mAB , as shown in Fig. 3b,
the SPs once again may decrease the users served in the
non-overlapping market, when they increase those served in
the overlapping market. Note here that the decrease for each
SP begins at the value of W when that SP begins serving
customers in the overlapping market.

Fig. 2 and Fig. 3 also suggest that the smaller the over-
lapping market, the higher the bandwidth required for either
SP to join the overlapping market. This observation provides
insight for a regulator, showing that providing sufficient
bandwidth is the key to encouraging SPs to serve customers
in overlapping markets.

B. SP’s Revenue

Next, we show some examples of the SP’s revenue versus
W in Fig. 4 and Fig. 5 for the same settings as in Fig. 2

0.0 0.2 0.4

W

0.00

0.02

0.04

0.06

R
ev
en
u
e

mA\B=0.6, mAB=0.2, mB\A=0.2

R1

R2

R1 with cooperation

R2 with cooperation

(a) Small market AB

0.1 0.2

W

0.01

0.02

0.03

R
ev
en
u
e

mA\B=0.3, mAB=0.6, mB\A=0.1

R1

R2

R1 with cooperation

R2 with cooperation

(b) Large market AB

Fig. 5: SP’s revenue versus bandwidth W for two asymmetric
cases.

and Fig. 3, respectively. On these figures we also include the
revenue obtained when the SPs “cooperate” and do not serve
any customers in the overlapping band for any value of W .6

For a small overlapping market, the equilibrium revenue
is an increasing function of W , as shown in Fig. 4a and
Fig. 5a. For large enough mAB , however, revenue may
decrease shortly after either SP enters the overlapping market,
as shown in Fig. 4b and Fig. 5b. This is because when one SP
uses the overlapping market, it increases the congestion cost
for the other SP on its non-overlapping band and does not
account for this externality when determining its quantity.
This can be viewed as a type of Braess’s paradox where
adding more resources (i.e., increasing W ) leads to lower
revenue. Similar effects have been noted in model of markets
without geographic separation (e.g. [5]). The results here
show that such behavior depends on the amount of geographic
separation.

As mentioned earlier, SPs have a preference for their
dedicated markets when bandwidth is limited due to the
higher congestion cost in the overlapping area. When SPs
enter the overlapping market, by comparing their equilibrium
revenue to the revenue obtained in the cooperation case, we
can see that entering this market actually reduces both SPs
revenue in the symmetric case for a range of W (when W
is large enough both SPs would benefit from entering the
overlapping market).7 This suggests in the symmetric setting
the SPs may have an incentive to enter into an agreement to
not serve customers in the overlapping region for some rang
of W . For asymmetric markets as in Fig. 5, only the SP with
a larger dedicated market (SP1) benefits from cooperation,
while SP2’s revenue decreases. However, the total revenue
increases for a range of W under cooperation so that it would
be profitable for SP1 to compensate SP2 for cooperating.
Again, this only holds for a range of W and if W is large
enough (not shown), the total revenue would increase if both
SPs enter the overlapping market.

C. Consumer Surplus

Next we consider the consumer surplus versus W for
the same set of scenarios. Fig. 6 and Fig. 7 illustrate how

6This is one simple example of how SPs could cooperate. We leave the
consideration of other approaches for future work.

7This is shown in Fig. 4b; it also occurs for the scenario in Fig. 4a if W
is large enough, though the range of W needed is not shown.
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Fig. 6: Consumer surplus versus bandwidth W (symmetric
case with small mAB).
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Fig. 7: Consumer surplus versus bandwidth W (symmetric
case with large mAB).

consumer surplus varies with W for the two symmetric cases
with small and large value of mAB , respectively. Figures 6a
and 7a, show the consumer surplus for each sub-market, while
Fig. 6b and Fig. 7b show the surplus for the entire market
as well as the surplus obtained by the “cooperation” case
discussed previously.

Focusing first on the individual sub-markets, the consumer
surplus of market AB is zero until SPs enter this market when
the bandwidth W is large enough. Notice that after SPs start
serving users in the overlapping market, the rate of increase
of consumer surplus in their dedicated market slows down
when mAB is small (Fig. 6a) or even decreases when mAB

is large (Fig. 7a). Turning to the surplus for the entire market
it can be seen that when mAB is small, this is increasing in W
(Fig. 6b), while when mAB is large (Fig. 7b), the consumer
surplus can decrease when W increases past the point where
both SPs enter the overlapping market. Apparently, in this
case the decrease in surplus on the non-overlapping markets
is greater than the surplus gained on the overlapping markets.

When the SPs enter the overlapping market, they compete
for customers in that market. Surprisingly, as shown in Fig. 6b
and Fig. 7b, such competition does not always increase
overall consumer surplus compared to the case where the SPs
cooperate and stay out of this market. While this competition
can benefit users in the overlapping market, it reduces the
surplus of customers in the non-overlapping markets com-
pared to the cooperative case. Recall, as shown in Fig. 4,
the SPs can also improve their revenue by cooperating in
this way. Thus, cooperatively avoiding the overlapping market
can improve both the SPs’ revenue and the consumer surplus
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Fig. 8: Consumer surplus versus bandwidth W (asymmetric
case with small mAB).
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Fig. 9: Consumer surplus versus bandwidth W (asymmetric
case with large mAB).

for a range of W . However, it is important to note that this
increase in total consumer surplus comes at the expense of
consumer surplus in the overlapping area, where no one is
served. Consequently, regulators might consider subsidizing
users in the overlapping area, using the benefits derived from
such cooperation. Note also that, as shown in Fig. 6b and
Fig. 7b, with sufficiently large W cooperation results in lower
surplus compared to the case where both SPs compete in the
overlapping region.

In Fig. 8 and Fig. 9 we show similar plots of consumer
surplus for asymmetric scenarios with small and large values
of mAB , respectively. In both cases, for small values of
W , there is no surplus generated in the overlapping market
as the SPs do not compete in that market. Also, note that
for small values of W , the smaller SP (SP2) creates more
surplus even though it is serving fewer customers. This is
due to the different demand curves in the two markets. SP2’s
demand curve in mB\A has a steeper slope compared to SP1’s
demand curve in mA\B , meaning that it has to charge a lower
delivered price to serve a similar number of customers, which
in turn leads to larger welfare.

In these asymmetric models, When mAB is small, con-
sumer surplus increases as a function of bandwidth W .
However, with a large mAB (Fig. 9), consumer surplus is
decreasing in W around the values where the SPs enter the
overlapping market. Once again, if the SPs cooperate and do
not enter the overlapping market, this can increase the overall
surplus for a range of W .
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Fig. 10: Social welfare versus bandwidth W .

D. Social Welfare

Social welfare is defined as the sum of consumer surplus
and the revenue of SPs. Recall that, when mAB is small,
both consumer surplus and revenue increase as a function
of bandwidth W , leading to a corresponding increase in
social welfare. However, for large values of mAB , increasing
bandwidth in the market may not necessarily lead to higher
social welfare. We illustrate this in Fig. 10 for the two large
mAB scenerios. These show that social welfare is not a
monotonically increasing function of W . This is expected as
we have already shown that both total revenue and consumer
surplus may decrease in W when the SPs first enter the
overlapping market. We also show the welfare obtained when
the SPs cooperate and do not enter this market, which yields
a welfare improvement for a range of W .

V. CONCLUSIONS

We presented a model of a spectrum sharing market
with two geographically separated SPs that have partially
overlapping coverage areas. In this model, we proved that
a unique Nash equilibrium always exists, where SPs avoid
entering the overlapping market when bandwidth is limited.
With sufficient bandwidth, SPs will enter the overlapping
market. However, the resulting revenue and consumer surplus
may decrease as a function of the amount of bandwidth once
the SPs enter the overlapping market. We also showed that
the revenue and consumer surplus can both be improved for a
range of bandwidth values by allowing the SPs to cooperate
and not enter this overlapping market. This suggests that
such cooperation may be desirable, but would need to be
balanced by considering the fairness to the users within this
overlapping market.
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