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Figure 1. John Mather, William Thurston, and André Haefliger.

1. Introduction
Thurston, at his ICM address in 1974, asked “Given a large
supply of some sort of fabrics, what kind of manifolds can
be made from it, in a way that the patterns match up along
the seams?” And he added that “For open manifolds, Gro-
mov’s theorem gives a good answer for a wide variety of
fabrics. The techniques needed to analyze such a question
on a closed manifold are usually different, at least to a ca-
sual eye.” In this article, we shall focus on one aspect of
this difference between closed and open manifolds that is
inspired by a property of diffeomorphism groups called
the fragmentation property.

But let us first define the basic objects that we would
like to study. Recall that manifolds are modeled locally on
Euclidean spaces ℝ𝑛 along with a subgroup of the homeo-
morphism groupHomeo(ℝ𝑛) as the permissible transition
functions for a given structure on the manifold. Now a 𝐶𝑟-
foliation of codimension 𝑘 on an 𝑛-dimensional manifold
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𝑀 is determined by a foliated atlas {(𝑈 𝑖, 𝜙𝑖)}where {𝑈 𝑖} is an
open cover of 𝑀 and each 𝜙𝑖 ∶ 𝑈 𝑖 → ℝ𝑛 is a homeomor-
phism onto an open set in ℝ𝑛 such that for overlapping
pairs 𝑈 𝑖 and 𝑈𝑗, the transition function 𝜙𝑗 ∘ 𝜙−1𝑖 is a 𝐶𝑟

diffeomorphism from 𝜙𝑖(𝑈 𝑖 ∩ 𝑈𝑗) to 𝜙𝑗(𝑈 𝑖 ∩ 𝑈𝑗) of the
form

𝜙𝑗 ∘ 𝜙−1𝑖 (𝑥, 𝑦) = (𝑓(𝑥, 𝑦), 𝑔(𝑦)),

where 𝑥 denotes the first 𝑛 − 𝑘 coordinates and 𝑦 denotes
the last 𝑘 coordinates. If 𝑦 is fixed, then so is 𝑔(𝑦), hence
the property of having the last 𝑘 coordinates being fixed
is preserved by the change of coordinates. Therefore the
sheets that are given by fixing the last 𝑘 coordinates glue
together globally to form leaves of the foliation. In partic-
ular, this structure gives a decomposition of𝑀 into (𝑛−𝑘)-
submanifolds (the leaves).

Figure 2. Foliation charts.

Let us give two examples that will show up later in this
article. Consider a foliation of ℝ2 by straight parallel lines.
Since such foliations are invariant under translations in the
𝑥-axis and 𝑦-axis, they induce smooth codimension-one
foliations on the 2-torus 𝑇2 = ℝ2/ℤ2 (see Figure 3) linear
foliations on the torus. Note that if the angle of the lines
with the 𝑥-axis is irrational, the induced linear foliation
has no compact leaf. Another classical example is the Reeb
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foliation which is a smooth codimension-one foliation on
the solid torus. The boundary torus is the only compact
leaf and the other leaves are diffeomorphic to 2-planes as
in the figure below. One can glue two of these foliated
solid tori along the torus boundary to obtain a smooth
codimension-one foliation on 𝑆3.

Figure 3. Linear foliations on the 2-torus.

Figure 4. Schematic of 2-dimensional and 3-dimensional Reeb
foliations on an annulus and on a solid torus.

To admit a codimension 𝑘 foliation, the manifold 𝑀
must have a plane field of dimension 𝑛−𝑘 (the tangents to
the leaves). A plane field is called integrable if it is given by
the tangent-plane field to a foliation. A classical theorem
that is usually ascribed to Frobenius but in fact goes back
to the earlier work of Clebsch and Deahna ([7, Theorem
1]) gives a necessary and sufficient condition for a plane
field to be integrable. Sections of a plane field 𝜉 ⊂ 𝑇𝑀 are
vector fields. The integrability condition for a plane field
𝜉 is that the Lie bracket of 𝐶1 sections of 𝜉 should also be
a section of 𝜉.

We can think of foliations as plane fields satisfying the
integrability condition. To find a plane field of dimension
𝑛−𝑘 on𝑀 is essentially a homotopy theory question. But

the integrability condition is of a different type. In local co-
ordinates, it can be described as a systemof partial differen-
tial equations (hence, it is not an open condition). So after
finding a plane field, it is more natural to ask whether we
can deform this plane field to become integrable in which
case we say it is integrable up to homotopy. Bott found a
topological obstruction for plane fields 𝜉 ⊂ 𝑇𝑀 to be inte-
grable up to homotopy, which is now known as the Bott
vanishing theorem. He showed that the Pontryagin classes
of the quotient bundle 𝑇𝑀/𝜉must vanish in degrees larger
than 2 dim(𝑇𝑀/𝜉). Using this obstruction, for 𝑛 > 1 and
odd, he showed that each complex codimension-one holo-
morphic subbundle of 𝑇ℂ𝑃𝑛 is not integrable up to homo-
topy.

“Gromov’s theorem” in Thurston’s quote refers to the
powerful theory of the h-principle (the homotopy prin-
ciple) that Gromov developed to reduce the problem of
the existence of solutions of differential relations (differen-
tial equations and inequalities) in differential geometry to
essentially homotopy theory questions. Philosophically,
h-principle theorems relate the topology of a geometric
object which is more rigid to a homotopy theoretical ob-
ject that is more flexible to work with. The first famous
example is Smale’s sphere eversion which says intuitively
that one can turn the sphere 𝑆2 in ℝ3 inside out smoothly
without cutting or tearing it or creating any crease. More
precisely, the space of immersions of 𝑆2 into ℝ3 is a con-
nected space. Smale showed that this space of immersions
is homotopy equivalent to the space of bundle monomor-
phisms between 𝑇𝑆2 and 𝑇ℝ3, which can be seen to be
connected using algebraic topology.

Bott’s obstruction shows that the existence of foliations
cannot be reduced solely to the homotopy theory ques-
tion of the existence of plane fields. To encode more in-
formation than is contained in a plane field, Haefliger in-
troduced in [4] a notion now called a Haefliger structure.
This is more flexible than a foliation in that a Haefliger
structure on a manifold 𝑀 can be pulled back under any
map 𝑓∶ 𝑁 → 𝑀, whereas a foliation ℱ can only be pulled
back when 𝑓 is transverse to ℱ, i.e., 𝑑𝑓(𝑇𝑁) + 𝑇ℱ = 𝑇𝑀.
Because of this flexibility, one can study Haefliger struc-
tures as objects in algebraic topology.

Definition 1.1. A 𝐶𝑟 Haefliger structure ℋ of codimen-
sion 𝑘 on 𝑀 is given by a triple (𝜈ℋ,𝑈,ℱ) where 𝜈ℋ is
a 𝑘-dimensional 𝐶𝑟 vector bundle over 𝑀, called the nor-
mal bundle of the Haefliger structure ℋ, and ℱ is a 𝐶𝑟

foliation of codimension 𝑘 of the open neighborhood 𝑈
of the zero section of 𝜈ℋ that is transverse to the fibers of
𝜈ℋ but not necessarily to the zero section. So the intersec-
tion of this foliation with the zero section will be a “singu-
lar” foliation. If the Haefliger structure is also transverse to
the zero section, then it is called a regular Haefliger struc-
ture that comes from a genuine foliation. Two Haefliger
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structures are considered the same if they have the same
normal bundle and if they coincide in a neighborhood of
the zero section.

Figure 5. Haefliger structure.

So one can think of a Haefliger structure as a germ of
a foliated bundle near its zero section. We say two codi-
mension 𝑘 Haefliger structures ℋ1 and ℋ2 on 𝑀 are con-
cordant, if there is a codimension 𝑘 Haefliger structure ℋ
on 𝑀 × [0, 1] that restricts to ℋ𝑖 on 𝑀 × {𝑖} for 𝑖 = 0, 1. A
fundamental question is when a Haefliger structure is con-
cordant with a regular one. Using tools of homotopy the-
ory, Haefliger constructed ([5]) a classifying space BΓ𝑟𝑘 for
codimension 𝑘 𝐶𝑟-Haefliger structures such that the con-
cordance classes of codimension 𝑘 𝐶𝑟-Haefliger structures
on 𝑀 are in bijection with continuous maps 𝑀 → BΓ𝑟𝑘 up

to homotopy. There is also a classifying space BΓ
𝑟
𝑘 that clas-

sifies Haefliger structures ℋ with trivialized normal bun-
dle 𝜈ℋ (i.e., 𝜈ℋ is a product bundle).

Using Gromov’s h-principle and a result of A. Phillips,
Haefliger showed that for an open manifold 𝑀, the exis-
tence of a codimension 𝑘 𝐶𝑟 foliation on𝑀 can be reduced
to the homotopy theory question of the existence of a 𝐶𝑟

Haefliger structure ℋ on 𝑀 such that its normal bundle
𝜈ℋ can be embedded as a subbundle into the tangent bun-
dle 𝑇𝑀.

The existence and classification of foliations on closed
manifolds were much harder and there was a string of
constructions by Reeb, Lickorish, Novikov, Wood, Lawson,
Durfee, and Tamura in particular cases (see [7] and refer-
ences therein). Even the case of finding codimension-one
foliations on odd-dimensional spheres was stubborn for
many years until Durfee and Tamura found constructions
for all odd-dimensional spheres. Thurston proved ([19])
dramatic general results for the existence and classification
of foliations on closedmanifolds. In particular, he showed
that the concordance classes of foliations on a closed man-
ifold𝑀 are in bijection with homotopy classes of Haefliger
structures ℋ together with concordance classes of bundle
monomorphisms 𝜈ℋ → 𝑇𝑀.

These spectacular h-principle theorems reduced the sub-
tle question of classifying foliations to the homotopy the-

ory of Haefliger classifying spaces. But the homotopy type
of the Haefliger spaces remains mysterious. The main
theme of this article is the way Thurston studied the homo-
topy type of Haefliger classifying spaces in ([18]) by gen-
eralizing a result of Mather ([9]) to relate the homotopy
groups of BΓ𝑟𝑘 to the group homology of the compactly
supported 𝐶𝑟-diffeomorphism group Diff𝑟𝑐(ℝ𝑛).

The Mather-Thurston theorem is interesting in at least
two ways. From a technical point of view, the original
proof by Thurston which was written down by Mather,
used what was known about the homotopy type of BΓ𝑟𝑘
at the time and the idea of fragmentation to prove an in-
trinsically “compactly supported” statement. Unlike other
h-principle theorems, the case of open manifolds for the
Mather-Thurston theorem was very nontrivial and was
proved later by Segal and McDuff ([11, 17]) after they de-
veloped their group completion theorem and homology
fibration techniques. From a philosophical point of view,
the h-principle was used in the opposite way from how it
is normally used. Mather and Thurston applied their theo-
rem to study the homotopy type of amore “flexible” object
BΓ𝑟𝑘 using algebraic information (like the perfectness or the
simplicity) of a more “rigid” object, the discrete group of
diffeomorphisms.

There are already many excellent surveys on different
aspects of foliations and diffeomorphism groups includ-
ing dynamical systems, differential topology, differential
geometry, and noncommutative geometry. In particular,
commentary on foliations in Thurston’s collected works
([19]) and the survey article ([7]) beautifully summarize
his many contributions to the topic. In this article, we are
interested in different aspects of the relationship between
algebraic properties of diffeomorphism groups and homotopical
properties of foliations and their invariants and its new conse-
quences on invariants of flat bundles.

2. The Haefliger-Thurston Conjecture
Recall that the space BΓ𝑟𝑘 classifies codimension 𝑘 𝐶𝑟-

Haefliger structures ℋ and BΓ
𝑟
𝑘 classifies codimension 𝑘

𝐶𝑟-Haefliger structures whose normal bundles 𝜈ℋ are triv-
ialized. They sit in a fibration sequence

BΓ
𝑟
𝑘 → BΓ𝑟𝑘

𝜈−→ BGL𝑘(ℝ),
where 𝜈 is the map that classifies the normal bundle to
Haefliger structures. The space BGL𝑘(ℝ) is the classify-
ing space of the topological group GL𝑘(ℝ) that classifies
𝑘-dimensional vector bundles.

Conjecture 2.1 (Haefliger-Thurston). The space BΓ
𝑟
𝑘 is 2𝑘-

connected (i.e., 𝜋𝑖(BΓ
𝑟
𝑘) = 0 for 𝑖 ≤ 2𝑘).

Haefliger used a result of A. Phillips for open mani-

folds to prove that BΓ
𝑟
𝑘 is 𝑘-connected for all 𝑟. Thurston

DECEMBER 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1473



([18]) used his generalization of Mather’s homology iso-

morphism on compact manifolds to show that BΓ
∞
𝑘 is

(𝑘 + 1)-connected and shortly after, Mather ([10, Section

7]) proved the same statement for BΓ
𝑟
𝑘 for all regularities 𝑟

except 𝑟 = 𝑘 + 1 so, in particular, this conjecture is proved
for 𝑘 = 1 and 𝑟 ≠ 2. Up to 𝑘-connectedness, the proof

is using the “flexibility” of BΓ
𝑟
𝑘 but for higher homotopy

groups, as we shall explain, the only tool known is to use
theMather-Thurston theorem and homological properties
of diffeomorphism groups as discrete groups.

As a consequence of Mather’s acyclicity result ([8]), it is

known that BΓ
0
𝑘 is contractible. A remarkable theorem of

Tsuboi ([20]) shows that BΓ
1
𝑘 is also contractible. However,

for 𝑟 > 1, Roussarie in codimension one and Thurston in
all codimensions used Godbillon-Vey invariants to show

that BΓ
𝑟
𝑘 is not (2𝑘+1)-connected. This led to an extensive

study of secondary invariants of foliations which is not the
focus of this article. But let us just mention that the nonva-
nishing of the secondary invariants of foliations is the only

known way to detect nontrivial homotopy groups of BΓ
𝑟
𝑘.

As another evidence for this conjecture, Haefliger defined
certain cohomology theories for groupoids and calculated
the cohomology groups of a groupoid whose classifying

space is BΓ
𝑟
𝑘 and observed its vanishing up degree 2𝑘.

Given Thurston’s results on regularizing Haefliger struc-
tures, Conjecture 2.1 implies that 𝑛 − 𝑘 dimensional 𝐶𝑟

plane fields on an 𝑛-dimensional manifold 𝑀, where 𝑘 is
at least (𝑛 − 1)/2, are up to homotopy integrable to 𝐶𝑟-
foliations. The case of 𝑘 = 1, 𝑛 = 3 is known for all regu-
larities except 𝑟 = 2 and it goes back to Mather’s homology
isomorphism. Using Thurston’s results, it implies that all
2-plane fields on closed 3-manifolds are up to homotopy
integrable to a 𝐶𝑟 foliation for 𝑟 ≠ 2.

Let’s focus on the smooth case so we drop the regu-
larity 𝑟 from the superscripts. Haefliger already proved
that BΓ1 is simply connected. So, to show that it is 2-
connected, by the Hurewicz theorem it is enough to show
that 𝐻2(BΓ1; ℤ) = 0. This was first proved by Mather as a
consequence of amore general result for codimension-one
foliations. We shall sketch an argument using geometric
ideas that goes back to Roger ([16]) and Thurston. This
geometric perspective unlike the other proofs, is more use-
ful for the constructive statements in Section 6.
2.1. Finding a normal form for codimension-one Hae-
fliger structures. For a topological group 𝐺, we let 𝐺𝛿 de-
note the same groupwith the discrete topology. Recall that
the classifying space B𝐺 classifies the principal 𝐺-bundles
and the classifying space B𝐺𝛿 classifies flat principal 𝐺-
bundles. One way to think about flat bundles is that there
exists a foliation on the total space that is transverse to the

fibers and its codimension is the same as the dimension
of the fibers. The space B𝐺𝛿 has 𝐺𝛿 as the fundamental
group and has vanishing higher homotopy groups. So a
continuous map 𝑔∶ 𝑀 → B𝐺𝛿 induces a representation
𝜌∶ 𝜋1(𝑀) → 𝐺𝛿. Now let 𝑀̃ denote the universal cover of
𝑀 and consider the horizontal foliation on 𝑀̃ × 𝐺 whose
leaves are 𝑀̃×{𝑥} for 𝑥 ∈ 𝐺. Since this foliation is invariant
under the diagonal action of 𝜋1(𝑀) on 𝑀̃ ×𝐺, it induces a
foliation on the quotient 𝑀̃ ×𝜋1(𝑀) 𝐺. Hence we obtain a
principal 𝐺 bundle

𝐺 → 𝑀̃ ×𝜋1(𝑀) 𝐺 → 𝑀,
with a foliation on the total space which is transverse to the
fibers. So in this sense, B𝐺𝛿 classifies flat 𝐺-bundles, and
also the group (co)homology of the group 𝐺𝛿 is the same
as the (co)homology of the classifying space B𝐺𝛿. We can
think of the cohomology of the classifying space B𝐺𝛿 as
the ring of characteristic classes of flat 𝐺-bundles which
is another reason to study the cohomology of B𝐺𝛿. We
shall mention some nonvanishing results about character-
istic classes of flat 𝐺-bundles in Section 5 but here we are
mostly concerned about the relation between the group
homology of diffeomorphism groups and the homotopy
groups of Haefliger classifying spaces.

To prove that 𝜋2(BΓ1) ≅ 𝐻2(BΓ1; ℤ) = 0, first we con-
struct a map

𝐻1(BDiff𝑐(ℝ)𝛿 ; ℤ) −→ 𝐻2(BΓ1; ℤ). (1)

To define this so-called “suspension” map, first note
that the group Diff𝑐(ℝ)𝛿 is isomorphic to its subgroup
Diff𝑐((0, 1))𝛿 and it is easy to see that the inclusion induces
a group homology isomorphism. So it is enough to define
the map 𝐻1(BDiff𝑐((0, 1))𝛿 ; ℤ) → 𝐻2(BΓ1; ℤ). Let 𝐼 be the
closed unit interval and consider the horizontal foliation
on 𝐼 × 𝐼. Given 𝑓 ∈ Diff𝑐((0, 1))𝛿, the horizontal foliation
on 𝐼 × 𝐼 induces a foliation ℋ𝑓 on

𝑆1 × 𝐼 = 𝐼 × 𝐼
{0} × 𝑥 ∼ {1} × 𝑓(𝑥) ⋅

The foliation ℋ𝑓 is horizontal near the two boundary
components. So by contracting the two circle boundary
components, we obtain a singular foliation (aka Haefliger
structure) ℋ̂𝑓 on 𝑆2 (see Figure 6) with two center singular-
ities. So the surjection of the suspension map (1) is equiv-
alent to the following.

Theorem 2.2 (Mather). Each codimension-one Haefliger
structure on 𝑆2 is concordant with a Haefliger structure ℋ̂𝑓
given by the suspension of a diffeomorphism 𝑓 ∈ Diff𝑐 ((0, 1)).

Note that an oriented codimension-one Haefliger struc-
ture on 𝑆2 is induced by amap 𝑆2 → BΓ1 so it is an element
in 𝜋2(BΓ1) = 𝐻2(BΓ1; ℤ). This element can be represented
by a germ of a foliation ℱ on 𝑆2 × ℝ near the zero section
𝑆2×{0}. On each foliation chart 𝑈 𝑖, we have a submersion
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Figure 6. The Haefliger structure ℋ̂𝑓 obtained by the
suspension map.

𝑓𝑖 ∶ 𝑈 𝑖 → ℝ (i.e., 𝐷𝑓𝑖(𝑥) ≠ 0 for all 𝑥 ∈ 𝑈 𝑖) such that
ℱ|𝑈𝑖 is given by the pullback of point foliation on ℝ via
𝑓𝑖. Since ℱ is not necessarily transverse to the zero section
𝑆2 × {0}, the restrictions of functions 𝑓𝑖 to the zero section
have singularities. One can change ℱ in its concordance
class to make all the singularities Morse singularities. So
we end up having either center or saddle singularities.

Figure 7. Center and saddle singularities.

Let ℋ be a Haefliger structure on 𝑆2 with a trivialized
normal bundle that has only Morse singularities. Then
there is a standard strategy to remove singularities by pair-
ing each saddle singular point to a center. Roger observed
that one can choose a path between a saddle and a cen-
ter and change the Haefliger structure up to concordance
only in a neighborhood of the path to remove both sin-
gularities. To prove Theorem 2.2, we continue this pro-
cess until we are left with two center singularities on 𝑆2,
which is guaranteed by the Hopf index theorem. By find-
ing an arc between the two centers that is transverse to the
leaves, one can show that such a Haefliger structure as in
Figure 6 is induced by the suspension of a diffeomorphism
in Diff𝑐 ((0, 1)).
2.2. Bordism of Haefliger structures and the simplic-
ity trick. Given the normal form in Theorem 2.2 for
codimension-one Haefliger structures on 𝑆2, to prove

𝐻2(BΓ1; ℤ) = 0, it is enough to show that for each 𝑓 ∈
Diff𝑐 ((0, 1)) the Haefliger structure ℋ̂𝑓 on 𝑆2 can be ex-
tended to a 3-manifold bounding 𝑆2. Surprisingly the
only proof known for this geometric question is to use a
deep result of Herman that the group of orientation pre-
serving diffeomorphisms of the circle Diff0 (𝑆1) is a perfect
groupmeaning that it is equal to its commutator subgroup.
This is against the philosophy of h-principle though, since
one might expect that it ought to be easier to compute
𝐻2(BΓ1; ℤ) than to understand the more rigid object of dif-
feomorphism groups!

Given Herman’s theorem, if we show that ℋ̂𝑓 is cobor-
dant to zero (i.e., ℋ̂𝑓 on 𝑆2 can be extended to a 3-
manifold bounding 𝑆2) for all 𝑓 ∈ Diff𝑐 ((0, 1)), we con-
clude that BΓ1 is 2-connected. Roger used the perfectness
of Diff0 (𝑆1) to show that the null-bordism for ℋ̂𝑓 exists.
But let us mention a trick due to Thurston that builds a
specific null-bordism. Choosing a “controlled” bordism
between Haefliger structures will show up in the last sec-
tion again.

The perfectness of Diff0(𝑆1) implies that it is a simple
group by Epstein’s theorem ([1]), meaning it has no non-
trivial normal subgroup. Thurston’s trick uses the simplic-
ity of Diff0 (𝑆1) to show that ℋ̂𝑓 is cobordant to zero. The
first step is to show that ℋ̂𝑓 is cobordant to a foliation on
the torus 𝑆1 × 𝑆1 that is transverse to the circles {𝑥} × 𝑆1 as
follows.

Figure 8. Bordism of Haefliger structures.

Let𝑊 be a 3-manifold obtained by gluing𝐷2×𝐼 to 𝑆2×𝐼
as in Figure 8. Thus 𝜕𝑊 is diffeomorphic to 𝑆2∐𝑆1×𝑆1. A
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Haefliger structure on 𝑊 is given by the product Haefliger
structure ℋ̂𝑓 × 𝐼 on 𝑆2 × 𝐼 and the codimension one folia-
tion given by leaves𝐷2×{𝑥} on𝐷2×𝐼. This gives a bordism
between ℋ̂𝑓 on its sphere boundary component and a foli-
ation on the torus boundary component that is transverse
to {𝑥} × 𝑆1 for all 𝑥 ∈ 𝑆1. Hence, this foliation ℱ𝜙 on the
torus is induced by suspending the horizontal foliation on
the cylinder 𝑆1 × 𝐼 by a diffeomorphism 𝜙 ∈ Diff0 (𝑆1).

The idea of Thurston is to consider the subset of the cir-
cle diffeomorphisms 𝜙 for which the suspension ℱ𝜙 can
be extended to a foliation on a solid torus. Then it is not
hard to see that this subset is in fact a normal subrgroup
of Diff0 (𝑆1). Given that Diff0 (𝑆1) is a simple group, it is
enough to show that this contains at least one nontrivial
diffeomorphism. Suppose that 𝜙 is a nontrivial rotation
of the circle. Thurston extends ℱ𝜙 into a solid torus by
standard construction of spinning leaves around an embed-
ded torus inside the solid torus and filling in the torus leaf
by a Reeb foliation as in Figure 9. We conclude that ℋ̂𝑓 is
cobordant to a foliation on the torus that is nullcobordant;
therefore ℋ̂𝑓 is indeed nullcobordant for all 𝑓.

Figure 9. Part of a solid torus with spinning leaves and a Reeb
component.

As we shall see in the next section, it is a consequence
of a more general theorem of Mather that Diff𝑟0 (𝑆1) is sim-
ple for 𝑟 ≠ 2. So the above construction also for 𝑟 ≠ 2
shows that 𝐶𝑟 codimension-one Haefliger structures on 𝑆2
are cobordant to the trivial Haefliger structure.

Problem 2.3. Is Diff20 (𝑆1) a simple group?

By Mather’s theorem 2.4 below, If one could find a
geometric construction without using perfectness or sim-
plicity of diffeomorphism groups to show that suspension
Haefliger structures ℋ̂𝑓 for all 𝑓 ∈ Diff𝑟𝑐 ((0, 1)) are null-
cobordant, it would give a geometric proof of the simplic-
ity of Diff𝑟0 (𝑆1) in all regularities. But so far, no such con-
struction is known without using the algebraic properties
of these groups, which is against the h-principle philoso-
phy!

Mather proved a more general theorem for codimen-
sion-one foliations that also gives a more direct but non-
geometric proof of 𝐻2(BΓ1; ℤ) = 0 which implies that BΓ1

is 2-connected. Consider the classifying space BDiff𝑐(ℝ)𝛿
and the trivial bundle BDiff𝑐(ℝ)𝛿 × ℝ → BDiff𝑐(ℝ)𝛿. This
is a “universal compactly supported foliated ℝ-bundle” in
the sense that for each foliated ℝ-bundle𝑀×ℝ → 𝑀 over
a manifold 𝑀 where the foliation on 𝑀 × ℝ is horizontal
outside of a compact subset, is a pullback of this universal
bundle via a map𝑀 → BDiff𝑐(ℝ)𝛿. Hence, there is classify-
ing map BDiff𝑐(ℝ)𝛿×ℝ → BΓ1. The adjoint of this map1 is
a map BDiff𝑐(ℝ)𝛿 → ΩBΓ1 where ΩBΓ1 is the based loop
space of BΓ1.
Theorem 2.4 (Mather). The adjoint map

BDiff𝑟𝑐(ℝ)𝛿 → ΩBΓ
𝑟
1

induces a homology isomorphism.

In particular, Mather’s theorem implies that the suspen-
sion map (1)

𝐻1(BDiff𝑐(ℝ)𝛿 ; ℤ) → 𝐻1(ΩBΓ1; ℤ) ≅ 𝐻2(BΓ1; ℤ),
is in fact an isomorphism. Mather’s theorem also has a
version for Diff𝑟0(𝑆1)𝛿 which implies that there is an iso-
morphism

𝐻1(BDiff𝑟𝑐(ℝ)𝛿 ; ℤ)
≅−→ 𝐻1(BDiff𝑟0(𝑆1)𝛿 ; ℤ).

Since 𝐻1(B𝐺𝛿 ; ℤ) is isomorphic to the abelianization
𝐺/[𝐺, 𝐺], Herman’s perfectness theorem is equivalent to
the vanishing 𝐻1(BDiff0(𝑆1)𝛿 ; ℤ) = 0. Therefore, Mather
concludes that 𝐻1(BDiff𝑟𝑐(ℝ)𝛿 ; ℤ) = 0 and as a conse-
quence his theorem gives another proof that 𝐻2(BΓ1; ℤ) =
0.

3. The Mather-Thurston Theorem
Mather’s original proof of Theorem 2.4 is quite involved.
He showed that after the Quillen plus construction, the
delooping of BDiff𝑐(ℝ)𝛿 using Quillen’s techniques in Al-
gebraic K-theory is homotopy equivalent to BΓ1. This
step was not easy to generalize to higher dimensions. But
Thurston found a generalization using a method of frag-
mentation for compactly supported diffeomorphisms. We
shall explain this relation between fragmentation and the
desired delooping in Section 4.

To state Thurston’s generalization of Mather’s theorem,
let 𝑀 be an 𝑛-dimensional smooth manifold and let
BDiff𝑟𝑐(𝑀) be the homotopy fiber of the map

𝜂∶ BDiff𝑟𝑐(𝑀)𝛿 → BDiff𝑟𝑐(𝑀),
which classifies trivialized 𝑀-bundles equipped with fo-
liations on the total space transverse to the fibers such
that the foliation is compactly supported, i.e., it is horizon-
tal outside of some compact subset of the total space. Let
Diff𝑟𝑐,0(𝑀) be the identity component of Diff𝑟𝑐(𝑀) and let

1Recall that the adjoint of a continuous map 𝑋 × 𝑌 → 𝑍 is a continuous map
𝑋 → Map(𝑌, 𝑍).
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D̃iff
𝑟
𝑐,0(𝑀) be its universal cover. It turns out that the fun-

damental group of BDiff𝑟𝑐(𝑀) is isomorphic to D̃iff
𝑟
𝑐,0(𝑀)𝛿.

Now the natural map D̃iff
𝑟
𝑐,0(𝑀)𝛿 → Diff𝑟𝑐,0(𝑀) gives a rep-

resentation of 𝜋1(BDiff𝑟𝑐(𝑀)) into Diff𝑟𝑐,0(𝑀) that induces a

trivialized𝑀-bundle BDiff𝑟𝑐(𝑀)×𝑀 → BDiff𝑟𝑐(𝑀); we call it
the universal foliated trivialized 𝑀-bundle. This universal
foliation on the total space induces a diagram commuta-
tive up to homotopy

BDiff𝑟𝑐(𝑀) × 𝑀 BGL𝑛(ℝ),

BΓ𝑟𝑛

𝜃
𝜈𝑟

𝛼

where 𝛼 classifies the codimension 𝑛 foliation on the total
space. The map 𝜃 classifies the normal bundle to the folia-
tion and since the foliation is transverse to the fibers, this
map is induced by the map 𝜏𝑀 ∶ 𝑀 → BGL𝑛(ℝ) which
classifies the tangent bundle of 𝑀.

The adjoint of the map 𝛼 induces a map from

BDiff𝑟𝑐(𝑀) × 𝑀 to the space of lifts of 𝜏𝑀 to BΓ𝑟𝑛 . One can
think about this space of lifts as follows. Let 𝜏∗𝑀(𝜈𝑟) be the
bundle induced by pulling back the fibration 𝜈𝑟 via 𝜏𝑀 .
Fix a section 𝑠0 of this bundle. For any other section 𝑠, we
can define the support of 𝑠 to be the closure of the set of
points 𝑥 ∈ 𝑀 where 𝑠(𝑥) ≠ 𝑠0(𝑥). Let Sect𝑐(𝜏∗𝑀(𝜈𝑟)) be the
subspace of compactly supported sections of the bundle
𝜏∗𝑀(𝜈𝑟) → 𝑀.

Therefore, the adjoint of 𝛼 gives a map

𝑓∶ BDiff𝑟𝑐(𝑀) → Sect𝑐(𝜏∗𝑀(𝜈𝑟)).
Theorem 3.1 (Mather-Thurston). The map 𝑓 is an acyclic
map; in particular, it induces a homology isomorphism with
integer coefficients.

A noncompactly supported version of this theorem also
holds. But surprisingly, even the case of an open ball was
only proved later, by McDuff and Segal. As we shall ex-
plain, Thurston’s fragmentation method only works for
the compactly supported version.

Thurston gave a few applications of this theorem. To
mention two of them, note that the target of the map 𝑓
above, which is a section space of a fiber bundle is more
amenable to homotopy theory. The fiber of this bundle

is BΓ
𝑟
𝑛, which was known by Haefliger to be 𝑛-connected.

Using obstruction theory, one can see that

𝐻1(Sect𝑐(𝜏∗𝑀(𝜈𝑟)); ℤ) = 𝜋𝑛+1(BΓ
𝑟
𝑛),

and in particular it does not depend on 𝑀. Therefore,

𝐻1(BDiff𝑟𝑐(𝑀); ℤ) does not depend on 𝑀 either. Recall

that 𝜋1(BDiff𝑟𝑐(𝑀)) is isomorphic to D̃iff
𝑟
𝑐,0(𝑀)𝛿 which was

known by a deep result of Herman and Mather to be per-
fect for the case of the torus 𝑀 = 𝑇𝑛 and 𝑟 ≠ 𝑛 + 1. There-
fore, the universal cover of Diff𝑟𝑐,0(𝑀) is perfect for all 𝑀
and 𝑟 ≠ 𝑛 + 1 which implies the same for Diff𝑟𝑐,0(𝑀) itself.
As a result of Epstein, the perfectness forDiff𝑟𝑐,0(𝑀) implies
that these groups are simple.

Another application related to the theme of this article

is that the perfectness result implies that 𝜋𝑛+1(BΓ
𝑟
𝑛) = 0,

so given Haefliger’s result that BΓ
𝑟
𝑛 is 𝑛-connected, the con-

nectivity of BΓ
𝑟
𝑛 is improved by one for 𝑟 ≠ 𝑛 + 1.

Using theMather-Thurston theorem, one can show that
the Haefliger-Thurston conjecture is equivalent to the fol-
lowing bundle theoretic statement.

Conjecture 3.2 (Haefliger-Thurston). The map

𝜂∶ BDiff𝑟𝑐(𝑀)𝛿 → BDiff𝑟𝑐(𝑀),
induces an isomorphism on homology in degrees less than 𝑛+1
and is a surjection on homology in degree 𝑛 + 1.
Remark 3.3. In low regularities when 𝑟 = 0 using the
acyclicity result of Mather and for 𝑟 = 1 using the acyclicity
result of Tsuboi, we know that 𝜂 in fact induces a homology
isomorphism in all degrees. But for 𝑟 > 1, the homological
degrees in the conjecture cannot be improved.

Geometrically, this conjecture is equivalent to the fol-
lowing. For every 𝐶𝑟 𝑀-bundle 𝑀 → 𝐸 → 𝐵 where 𝐵 is
a closed manifold and dim(𝐵) ≤ dim(𝑀), there exists a
bordism 𝑊 from 𝐵 to another manifold 𝐵′ and a 𝐶𝑟 𝑀-
bundle 𝑀 → 𝐾 → 𝑊 such that when it is restricted to 𝐵,
it is isomorphic to 𝐸 → 𝐵 and when it is restricted to 𝐵′,
it is a flat 𝑀-bundle, i.e., it is induced by a representation
𝜋1(𝐵′) → Diff𝑟𝑐(𝑀)𝛿.

For noncompactly supported diffeomorphisms of open
manifolds, the range of isomorphism in the conjecture is
expected to be better. For example, for 𝑀 = ℝ𝑛, Segal
proved that the natural map

BDiff𝑟(ℝ𝑛)𝛿 → BΓ𝑟𝑛 ,
induces a homology isomorphism. It is easy to see that
Segal’s theorem implies that the map

BDiff𝑟(ℝ𝑛)𝛿 → BDiff𝑟(ℝ𝑛),
induces a homology isomorphism already in degrees less
than 𝑛 + 1. Linearizing diffeomorphisms implies that
Diff𝑟(ℝ𝑛) ≃ GL𝑛(ℝ) for 𝑟 > 0, so as a consequence, we
know the homology of BDiff𝑟(ℝ𝑛)𝛿 up to degree 𝑛. In par-
ticular, Segal’s theorem has the following corollary.

Corollary 3.4. The group Diff𝑟0(ℝ𝑛)𝛿 is perfect for all 𝑟.
This proof is in line with the h-principle philosophy

and works for all regularities. McDuff and Schweitzer later
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found an algebraic proof for the perfectness of Diff𝑟0(𝑀)𝛿
using “Ling’s factorization” when 𝑀 is the interior of a
compact manifold with a boundary.

McDuff also proved the analog of the Mather-Thurston
theorem for volume-preserving diffeomorphisms and Se-
gal’s theorem for the volume-preserving case for 𝑛 > 2.
Curiously, the case of 𝑛 = 2 is still open.

Problem 3.5. LetDiff𝑟(ℝ2, 𝜔)𝛿 be the group of volume preserv-
ing diffeomorphisms of ℝ2 with the standard volume form 𝜔. Is
Diff𝑟(ℝ2, 𝜔)𝛿 perfect? Is the natural map from BDiff𝑟(ℝ2, 𝜔)𝛿
to the corresponding Haefliger space BΓ𝜔2 a homology isomor-
phism?

The case of volume-preserving homeomorphisms is
also very interesting. There has been a recent break-
through in proving the failure of the perfectness of volume-
preserving homeomorphisms of the 2-disk by Daniel
Cristofaro-Gardiner, Vincent Humilière, and Sobhan Sey-
faddini, which is beyond the scope of this article.
The curious case of piecewise linear homeomorphisms.
The subgroups of piecewise linear (PL for short) homeo-
morphisms of the line have been a rich source for interest-
ing finitely generated groups with surprising algebraic and
dynamical properties. However, not much is known about
the algebraic properties of the PL homeomorphisms of
higher-dimensional PL manifolds. Although these groups
are more combinatorial in nature, the analytical tools for
diffeomorphism groups and the Mather infinite repetition
trick for homeomorphisms ([8]) are not available for PL
homeomorphisms. So the following basic question due
to Epstein ([1]) is still open.

Problem 3.6 (Epstein). Let𝑀 be a PL manifold. Is PL0(𝑀),
the group of PL homeomorphisms of 𝑀 that are isotopic to the
identity, a simple group?

By Epstein’s result, perfectness and simplicity are equiv-
alent in this case and he proved that PL𝑐(ℝ) and PL0(𝑆1)
are perfect by observing that in dimension one, PL home-
omorphisms are generated by certain “typical elements”
and those typical elements can be easily written as commu-
tators. To generalize his argument to higher dimensions,
he suggested the following approach.

Let 𝐵 be a ball in ℝ𝑛. It is PL homeomorphic to 𝑆𝑛−2 ⋆
[0, 1], the join of 𝑆𝑛−2 with [0, 1]. Note that for PL mani-
folds 𝑀 and 𝑁, a PL homeomorphism of 𝑁 extends natu-
rally to a PL homeomorphism of the join 𝑀 ⋆ 𝑁. A glide
homeomorphism of the ball 𝐵 is a PL homeomorphism
that is induced by the extension of a compactly supported
PL homeomorphism of (0, 1) to a PL homeomorphism of
𝑆𝑛−2 ⋆ [0, 1]. For a PL 𝑛-manifold 𝑀, a glide homeomor-
phism ℎ∶ 𝑀 → 𝑀 is the extension by the identity of a
glide homeomorphism supported in a PL embedded ball

𝐵 ↪ 𝑀. However, it is not known if PL𝑐,0(𝑀) is generated
by glide homeomorphisms in all dimensions.

On the other hand, Greenberg started the program to
study the Haefliger classifying space for PL foliations and
he described them inductively in terms of the codimension
of the foliation and observed interesting connections to al-
gebraic 𝐾-theory of the ring of real numbers. Greenberg’s
works (see [3] and references therein) describe an induc-

tive method to build BΓ
PL
𝑛 from classifying spaces of ma-

trix groups made discrete. In codimension one, he shows

that BΓ
PL
1 is homotopy equivalent to 𝐾(ℝ+, 1) ∗ 𝐾(ℝ+, 1)

the join of two Eilenberg-MacLane spaces whereℝ+ is mul-
tiplicative group of the positive reals. In higher codimen-
sions, he describes a complicated diagram whose homo-

topy colimit is homotopy equivalent to BΓ
PL
𝑛 . Each space

in Greenberg’s diagram is related to classifying spaces of
PL foliations of lower codimensions or classifying spaces
of certain matrix groups made discrete. Already in codi-
mension 2, his model is difficult to do calculations with;
in particular one cannot read off from it the lower homo-

topy groups of BΓ
PL
2 . I used Suslin’s work on the algebraic

𝐾-theory of ℝ in [15] to prove the analog of Haefliger-
Thurston’s conjecture for codimension 2 PL foliations.

Theorem 3.7 (Nariman). The classifying space BΓ
PL
2 is 4-

connected.

Greenberg ([3]) and Gelfand-Fuks independently con-
jectured that the analog of the Mather-Thurston theorem
holds for PL foliations. I used Thurston’s fragmentation
method in [14] to prove the analog of theMather-Thurston
theorem in the PL case. Using this version of Mather-
Thurston for PL foliations of codimension 2 and the fact

that 𝜋3(BΓ
PL
2 ) = 0 solves Epstein’s question about PL

homeomorphisms in dimension 2.
Theorem 3.8 (Nariman). Let Σ be an oriented compact
surface, possibly with a boundary. The identity component
PL0(Σ, rel 𝜕) is a simple group.

This is a homotopy theoretical proof of the simplicity
of PL0(Σ, rel 𝜕) which is more in line with the h-principle
philosophy and it is unlike the smooth case. Still, it would
be interesting to prove the perfectness and simplicity of
PL0(Σ, rel 𝜕) group-theoretically.

4. Immersion Theoretic Method vs.
Fragmentation Method

Thurston apparently had three different proofs for Theo-
rem 3.1. He gave lectures at Harvard on one of his proofs
and Mather worked out the details and wrote it down (see
[14] and references therein). Mather said in an email to the
author “The lectures were sketchy and it was really hard to
write up the proof. I spent 14 months on it.” McDuff and
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Segal used their group completion theorem and homology
fibration techniques to give another proof in the spirit of
immersion theory. Their approach has the advantage that
it also works for open manifolds.

Recently ([12]) found a geometric proof similar to
the proof of the isomorphism (1) by Roger in which he
changes Haefliger structure up to concordance to obtain a
“normal” formwith specifiedmodels for their singularities
and he then does surgery on singularities to make the Hae-
fliger structure cobordant to a foliated bundle (see Figure
8). This geometric approach is more useful for construc-
tive statements like the ones in Section 6.

We shall sketch the main idea of how Thurston proved
that the natural map

BDiff𝑟𝑐(ℝ𝑛) → Ω𝑛BΓ
𝑟
𝑛, (2)

where Ω𝑛BΓ
𝑟
𝑛 is the 𝑛-fold loop space, is a homology iso-

morphism. This is in fact the main step in proving a com-
pactly supported version of the Mather-Thurston theorem
for all manifolds.

Let us first recall the immersion theoretic method
that is used in the Smale-Hirsch theorem. Suppose
𝐹1, 𝐹2 ∶ (𝖬𝖿𝗅𝖽𝜕𝑛)𝑜𝑝 → 𝖲 are functors from the opposite
of 𝖬𝖿𝗅𝖽𝜕𝑛, the category of smooth 𝑛-manifolds (possibly
with nonempty boundary) with smooth embeddings as
morphisms, to a convenient category of spaces 𝖲. Let
𝑇 ∶ 𝐹1 → 𝐹2 be a natural transformation. For example,
in the Smale-Hirsch theorem there is an ambient man-
ifold 𝐿 whose dimension is larger than 𝑛, the functor
𝐹1(𝑁) ≔ Imm(𝑁, 𝐿) is the space of immersions from 𝑁 to
𝐿, 𝐹2(𝑁) ≔ Mon(𝑇𝑁, 𝑇𝐿) is the space of bundle monomor-
phisms between tangent bundles, and the natural transfor-
mation 𝑇 is induced by the differential of immersions. To
prove a natural transformation 𝑇 ∶ 𝐹1 → 𝐹2 induces a weak
homotopy equivalence (i.e., it induces isomorphisms on
all homotopy groups) 𝐹1(𝑁) ≃ 𝐹2(𝑁) for all 𝑁 ∈ 𝖬𝖿𝗅𝖽𝜕𝑛, we
fix a handle decomposition of 𝑁 and induct on the num-
ber of handles as follows.

First, we show that 𝐹1(ℝ𝑛) → 𝐹2(ℝ𝑛) is a weak equiva-
lence. This is normally an easy step by “zooming in” ar-
guments. Now suppose we know that 𝐹1(𝑀) → 𝐹2(𝑀) is
a weak equivalence and 𝑁 is a manifold obtained from 𝑀
by attaching a 𝑘-handle 𝐷𝑘 × 𝐷𝑛−𝑘. So 𝑀 ∩ (𝐷𝑘 × 𝐷𝑛−𝑘)
is 𝐴𝑘 × 𝐷𝑛−𝑘 where 𝐴𝑘 is a neighborhood of 𝑆𝑘−1 in 𝐷𝑘.
In the case of Smale-Hirsch’s theorem for 𝑖 = 1, 2, we have
pull-back squares

𝐹𝑖(𝑁) 𝐹𝑖(𝑀)

𝐹𝑖(𝐷𝑘 × 𝐷𝑛−𝑘) 𝐹𝑖(𝐴𝑘 × 𝐷𝑛−𝑘),
(3)

where the maps are given by restrictions. If the horizontal

maps are Serre fibrations then the squares become homo-
topy pull-back squares. Therefore, by induction knowing
the weak equivalence for 𝑀, 𝐷𝑘 × 𝐷𝑛−𝑘 and 𝐴𝑘 × 𝐷𝑛−𝑘,
we can compare the two homotopy pull-back squares and
conclude that 𝐹1(𝑁) → 𝐹2(𝑁) is a weak-equivalence.

Normally in h-principle theorems, the functor 𝐹2 has
nice homotopical properties, for example it is a mapping
space or a section space of a bundle over the manifold. In
these cases, it is easy to see that the restrictionmaps similar
to the diagram (3) are Serre fibrations. And the hard step
is to prove the same for a more geometric functor 𝐹1. In
the case ofMather-Thurston, the base case was already very
nontrivial and it was proved by Segal that 𝐹1(ℝ𝑛) → 𝐹2(ℝ𝑛)
is a homology isomorphism. McDuff showed that the re-
striction maps for 𝐹1 in the Mather-Thurston theorem are
homology fibrations.

Thurston proved the compactly supported version with-
out knowing Segal’s theorem for the base case. His proof
is inspired by the following property of diffeomorphism
groups which is called fragmentation.

Proposition 4.1. Let 𝑀 be a compact manifold and let {𝑈 𝑖}
be a finite open cover of 𝑀. Then any element 𝑓 ∈ Diff𝑟0(𝑀)
can be written as a composition of diffeomorphisms 𝑓𝑗 such that
𝑓𝑗 is compactly supported in some element of the cover {𝑈 𝑖}.

To illustrate the idea, let us focus on section spaces of
fiber bundles and how Thurston fragmented them. Let
𝜋∶ 𝐸 → 𝑀 be a Serre fibration over an 𝑛-dimensional
Riemannian manifold𝑀 with a nonzero injectivity radius.
Let 𝑠0 be the fixed section of this bundle as a base section.
So with respect to this base section, we define Sect𝑐(𝜋) to
be the space of compactly supported sections of 𝜋with the
compact open topology.

We want to give a filtration on Sect𝑐(𝜋) that has a nice
filtration quotients. Fix a positive 𝜖 smaller than the injec-
tivity radius. Let Sect𝜖(𝜋) denote the subspace of sections 𝑠
such that the support of 𝑠 can be covered by 𝑘 geodesically
convex balls of radius 2−𝑘𝜖 for some positive integer 𝑘; we
call this subset 𝜖-supported sections.

There is a filtration on Sect𝜖(𝜋) whose 𝑘-th level is the
subset of sections whose supports can be covered by at
most 𝑘 balls. And the reason for the choice of 2−𝑘𝜖 is that
the filtration quotients behave nicely. For example, if two
balls of radius 𝜖/4 intersect, then they can be contained in
a ball of radius 𝜖/2. So a section in the second filtration
quotient has support in two disjoint balls. This is homo-
topically useful for studying filtration quotients.

Thurston proved the following which can be improved
(see [14]) to prove what is now called nonabelian Poincaré
duality.
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Theorem 4.2 (Thurston’s fragmentation). If the fiber of 𝜋
is at least 𝑛-connected, the inclusion

Sect𝜖(𝜋) ↪ Sect𝑐(𝜋)
is a weak homotopy equivalence.

Since the fiber of 𝜋 is 𝑛-connected, the space Sect𝑐(𝜋)
is connected so each section can be deformed to the base
section, which lies in Sect𝜖(𝜋). To prove the theorem, one
has to deform a family of compactly supported sections to
a family of 𝜖-supported sections. To see the main idea, let
us see how we can obtain such a deformation for a one-
parameter family of sections in Sect𝑐(𝜋).

Let 𝑓∶ [0, 1] → Sect𝑐(𝜋) be a one-parameter family.
Consider the adjoint of this map 𝐹 ∶ [0, 1] × 𝑀 → 𝐸. We
homotope 𝐹 in two steps so that at each time coordinate
we get an 𝜖-supported section.

Let {𝜇𝑖}𝑁𝑖=1 be a partition of unity with respect to an open
cover of 𝑀. We define a fragmentation homotopy with re-
spect to this partition of unity. Let 𝜈𝑗 be the function

𝜈𝑗(𝑥) =
𝑗
∑
𝑖=1

𝜇𝑖(𝑥).

𝐻1 ∶ [0, 1] × 𝑀 → [0, 1] × 𝑀,
𝐻1(𝑡, 𝑥) = (𝑢, 𝑥),

𝑢(𝑡, 𝑥) = 𝜈⌊𝑁𝑡⌋(𝑥) + 𝜇⌊𝑁𝑡⌋+1(𝑥)(𝑁𝑡 − ⌊𝑁𝑡⌋).
Since 𝐻1(𝑥, 𝑡) preserves the 𝑥 coordinate, we can define a
straight line homotopy 𝐻𝑡 ∶ [0, 1] × 𝑀 → [0, 1] × 𝑀 from
the identity to𝐻1. As in Figure 10, themap𝐻1 is defined so
that the gray area is mapped to a subcomplex 𝐿 of [0, 1] ×
𝑀 (the bold lines in Figure 10) in the target which is of
dimension 𝑛 = dim(𝑀).

Δ1 Δ1

𝑀
supp(𝜇1)

supp(𝜇2)
supp(𝜇3)

𝐻1

Figure 10. Fragmentation map for 𝑁 = 3 and 𝑞 = 1. The thick
lines are the images of {0} × 𝑀, {1/3} × 𝑀, {2/3} × 𝑀 and {1} × 𝑀
under the map 𝐻1.

Using the fact that BΓ
𝑟
𝑛 is at least 𝑛-connected and 𝐿 is 𝑛-

dimensional subcomplex, it is standard by the obstruction
theory, to change 𝐹 ∶ [0, 1] × 𝑀 → 𝐸 up to homotopy to a
map 𝐺∶ [0, 1]×𝑀 → 𝐸 such that the restriction of 𝐺 to the
subcomplex 𝐿 is the same as id ×𝑠0. Then 𝐹 is homotopic
to 𝐺∘𝐻1 and one can see that 𝐺∘𝐻1 ∶ [0, 1]×𝑀 → 𝐸 gives
a one-parameter family that at each time is an 𝜖-supported
section. This idea also works for higher-dimensional pa-
rameter spaces to prove fragmentation for section spaces.

Note that in Mather-Thurston’s theorem the fiber of the
bundle 𝜏∗𝑀(𝜈𝑟) is BΓ

𝑟
𝑛 which is at least 𝑛-connected so the

above theorem applies and we obtain a filtration on the
section space.

On the other hand, recall that the support for a foliated
trivialized bundle 𝐵×𝑀 → 𝐵 is the maximal closed subset
𝐾 of the fiber𝑀 such that the foliation on 𝐵 × (𝑀\𝐾) → 𝐵
is a horizontal foliation. And one can similarly prove a
fragmentation property for the classifying spaces that clas-
sify foliated trivialized bundles to obtain a filtration. One

can also fragment the Haefliger space BΓ
𝑟
𝑛 which classifies

germs foliations by “thickening” its model as follows. The
set of 𝑘-simplices of the semi-simplicial set that realizes to

BΓ
𝑟
𝑛 is the set of germs of the foliated bundle Δ𝑘×ℝ𝑛 → Δ𝑘

near the zero section Δ𝑘 × {0}. We can thicken this model
to define the set of 𝑘-simplices to be the set of germs of the
foliated bundle Δ𝑘×ℝ𝑛 → Δ𝑘 near the disk bundle Δ𝑘×𝐷𝑛.
This model is also homotopy equivalent to BΓ

𝑟
𝑛 and now

one considers the support as a subset of the disk 𝐷𝑛 and
the fragmentation idea applies. Thurston considered the
map

𝑓∶ BΓ
𝑟
𝑛

≃−→ Map(𝐷𝑛, BΓ
𝑟
𝑛), (4)

that is induced by constant maps. So now both BΓ
𝑟
𝑛 and

Map(𝐷𝑛, BΓ
𝑟
𝑛) satisfy fragmentation property and the map

between them is filtration preserving.

𝑋1 𝑋2 ⋯ BΓ
𝑟
𝑛

𝑌1 𝑌2 ⋯ Map(𝐷𝑛, BΓ
𝑟
𝑛).

𝑓1 𝑓2 ≃

It turns out that 𝑋1 and 𝑌1 are homology isomorphic to

the 𝑛-fold suspensions Σ𝑛(BDiff𝑟𝑐(ℝ𝑛)) and Σ𝑛(Ω𝑛BΓ
𝑟
𝑛) re-

spectively and proving that 𝑓1 induces a homology isomor-
phism implies that

Σ𝑛(BDiff𝑟𝑐(ℝ𝑛)) → Σ𝑛(Ω𝑛BΓ
𝑟
𝑛),

also induces a homology isomorphism which implies the
same for the map (2). Because suspension only shifts the
homological degree.

The key is to observe that the map between filtration
quotients

𝑓𝑘 ∶ 𝑋𝑘/𝑋𝑘−1 → 𝑌 𝑘/𝑌 𝑘−1,

induces a homology isomorphism in a range that increases
linearly in 𝑘 and the fact that in the limit we have the weak
equivalence (4), a standard argument of comparison of
spectral sequences implies that 𝑓1 induces a homology iso-
morphism.
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5. The Equivariant Mather-Thurston Theorem
Recall that for a topological group 𝐺, the universal prin-
cipal 𝐺-bundle is E𝐺 → B𝐺, where E𝐺 is a contractible
space on which 𝐺 acts freely. Given a map 𝑓∶ 𝑋 → B𝐺,
one can choose a model for 𝐹, the homotopy fiber of the
map 𝑓, on which 𝐺 acts. For example, the pullback 𝑓∗(E𝐺)
is a model for the homotopy fiber of 𝑓 onwhich𝐺 acts nat-
urally. It is standard to see that the homotopy quotient of
this action

𝑓∗(E𝐺) ⫽ 𝐺 ≔ 𝑓∗(E𝐺) × E𝐺
𝐺 ,

is homotopy equivalent to 𝑋 . Therefore, we can choose a

model for BDiff𝑟𝑐(𝑀), which is the homotopy fiber of

𝜂∶ BDiff𝑟𝑐(𝑀)𝛿 → BDiff𝑟𝑐(𝑀),
on which Diff𝑟𝑐(𝑀) acts and the homotopy quotient

BDiff𝑟𝑐(𝑀) ⫽ Diff𝑟𝑐(𝑀) is weakly equivalent to BDiff𝑟𝑐(𝑀)𝛿.
There is also a natural model for Sect𝑐(𝜏∗𝑀(𝜈𝑟)) in the

Mather-Thurston theorem 3.1 on which Diff𝑟𝑐(𝑀) acts as
follows. Let 𝛾𝑛 be the tautological 𝑛-dimensional vector
bundle over BGL𝑛(ℝ). Let Bun(T𝑀, (𝜈𝑟) ∗ 𝛾𝑛) be the space
of bundle maps T𝑀 → (𝜈𝑟)∗𝛾𝑛, i.e., continuous maps that
are linear isomorphisms on each fiber, equipped with the
compact open topology. It is easy to define a map

Sect𝑐(𝜏∗𝑀(𝜈𝑟)) → Bun(T𝑀, (𝜈𝑟)∗𝛾𝑛),
which is a weak homotopy equivalence. The group
Diff𝑟𝑐(𝑀) acts on Bun(T𝑀, (𝜈𝑟)∗𝛾𝑛) by precomposition with
the differential of diffeomorphisms. In my thesis, I ob-
served that

Theorem 5.1. The map in the Mather-Thurston theorem 3.1
can be made Diff𝑟𝑐(𝑀)-equivariant.

Hence, the classifying space BDiff𝑟𝑐(𝑀)𝛿 is homology
isomorphic to Bun(T𝑀, (𝜈𝑟)∗𝛾𝑛) ⫽ Diff𝑟𝑐(𝑀) which I used
to study the stable homology of surface diffeomorphism
groups. Let me mention one consequence of this equivari-
ance about invariants of flat bundles.

Recall that oriented circle bundles are classified by their
Euler class. And we have BDiff𝑟0(𝑆1) ≃ B𝑆1, whose inte-
gral cohomology is a polynomial ring on the Euler class.
Hence, we have a map

ℚ[𝑒] ≅ 𝐻∗(B𝑆1; ℚ) → 𝐻∗(BDiff𝑟0(𝑆1)𝛿 ; ℚ).

Theorem 5.2 (Morita). The powers of the Euler class 𝑒𝑘 are
nontrivial in 𝐻∗(BDiff𝑟0(𝑆1)𝛿 ; ℚ) for all 𝑘.

If we restrict the holonomy of the bundle to PSL2(ℝ),
this is no longer true and it turns out that 𝑒2 vanishes in
𝐻4(B PSL2(ℝ)𝛿 ; ℚ). Morita used rational homotopy theory
to prove this theorem but one can give a simpler proof us-
ing the equivariant Mather-Thurston’s theorem. The space

BDiff𝑟0(𝑆1)𝛿 is homology isomorphic toBun(T𝑆1, (𝜈𝑟)∗𝛾1)⫽
Diff𝑟0(𝑆1). Since Diff𝑟0(𝑆1) acts nontrivially on the tangent
vectors of 𝑆1, the action on Bun(T𝑆1, (𝜈𝑟)∗𝛾1) does not have
a fixed point. But Diff𝑟0(𝑆1) is homotopy equivalent to the
subgroup of rotations 𝑆1 ⊂ Diff𝑟0(𝑆1). And it turns out that
the action of 𝑆1 on Bun(T𝑆1, (𝜈𝑟)∗𝛾1) has fixed points. This
implies that

Bun(T𝑆1, (𝜈𝑟)∗𝛾1) ⫽ 𝑆1 → B𝑆1,
has a section that gives a simpler proof of Morita’s theo-
rem.

Problem 5.3. Let Diff𝜔0 (𝑆1) denote the orientation preserving
analytic diffeomorphisms of 𝑆1. Are the powers of the Euler class
𝑒𝑘 nontrivial in 𝐻∗(BDiff𝜔0 (𝑆1)𝛿 ; ℚ)?

Thurston claimed that 𝑒3 vanishes for analytic flat cir-
cle bundles but the proof was not written down and Ghys
called this claim the lost theorem of Thurston!

In the above fixed-point argument, it is important that
𝑆1 is a Lie group. For higher-dimensional sphere bun-
dles one can use torus actions to prove a generalization
of Morita’s theorem.

Theorem 5.4 (Nariman). The classes 𝑒𝑘 for all 𝑘 are all non-
trivial in 𝐻∗(BDiff𝑟0(𝑆2𝑛−1)𝛿 ; ℚ).

6. Controlled Mather-Thurston Theorems and
Milnor-Wood Inequalities

Recall that the Mather-Thurston theorem for 𝐶0-foliations
and Mather’s acyclicity result ([8]) imply that

BHomeo𝛿0(𝑀) → BHomeo0(𝑀),
induces a homology isomorphism. Geometrically, this

means for each𝑀-bundle𝑀 → 𝐸 𝜋−→ 𝐵 whose group struc-
ture is Homeo0(𝑀), there exists a bordism 𝑉 from 𝐵 to 𝐵′
and an 𝑀 bundle 𝑊 → 𝑉 that extends the bundle 𝜋 and
its restriction to 𝐵′ is a flat 𝑀-bundle. Intuitively, one ex-
pects that the bordism 𝑉 from 𝐵 to 𝐵′ ought to make the
fundamental group of 𝐵more andmore complicated until
𝐵′ could accommodate a flat bundle with the same charac-
teristic numbers as the bundle 𝜋.

For example for 𝑀 = 𝑆1, a topological oriented 𝑆1-
bundle 𝐸 𝑝−→ Σ𝑔 over Σ𝑔, a closed oriented surface of genus
𝑔, is classified by its Euler class 𝑒(𝑝). The Milnor-Wood
inequality in this case gives the necessary and sufficient
condition under which the circle bundle 𝑝 admits a flat
structure, namely

|⟨𝑒(𝑝), [Σ𝑔]⟩| ≤ 2𝑔 − 2,
where the left-hand side is the evaluation of the class 𝑒(𝑝)
on the fundamental cycle [Σ𝑔] and it is called the Euler
number of the circle bundle 𝑝. In more modern language,
the Euler class for flat 𝑆1-bundles is bounded in the sense
of Gromov. So fixing the Euler number of a circle bundle,
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in order to make the bundle flat up to bordism, we have to
increase the genus of the base so that it satisfies theMilnor-
Wood inequality.

Inspired by physics, Freedman in [2] took a constructive
point of view and demanded two types of control on the
bordism 𝑉 whose existence is guaranteed by the Mather-
Thurston theorem. One of them is to formalize the idea
that the bordism 𝑉 is directed from 𝐵 to 𝐵′ to increase “the
complexity” of 𝜋1(𝐵) and the other is to control the holo-
nomy of the bundle on 𝐵′.

Definition 6.1. A semi-s-cobordism is a manifold triple
(𝑉, 𝐵, 𝐵′) with 𝜕𝑉 = 𝐵∐−𝐵′, where −𝐵′ means 𝐵′ with
the reverse orientation, so that the inclusion 𝜄∶ 𝐵 ↪ 𝑉 is a
“simple” homotopy equivalence.

The directionality of 𝑉 in the definition is that we do
not assume that 𝜄′ ∶ 𝐵′ ↪ 𝑉 is a homotopy equivalence.
However, the definition implies that there is a (simple) de-
formation retraction 𝑟∶ 𝑉 → 𝐵 and the map 𝑟 ∘ 𝜄′ ∶ 𝐵′ → 𝐵
is a degree one map which implies that the map 𝜋1(𝐵′) →
𝜋1(𝐵) is surjective.

Freedman uses low-dimensional techniques to con-
struct certain “homological” solid tori and the Bing dou-
ble construction to do surgeries to construct the bordism
𝑉 in dimension 4.

Theorem 6.2 (Freedman [2]). Suppose 𝐵 is a closed 3-
manifold and𝑀 → 𝐸 𝜋−→ 𝐵 is an𝑀-bundle. Then there exists a
semi-s-cobordism 𝑉 from 𝐵 to 𝐵′ and an𝑀 bundle𝑊 → 𝑉 that
extends the bundle 𝑝 and its restriction to 𝐵′ is a flat𝑀-bundle.

Freedman conjectured that not only this statement
holds in all dimensions but also even more strongly when
𝑀 is a Riemannian manifold, for every positive 𝜖, one can
choose the semi-s-cobordism 𝑉 so that the holonomy of
the flat 𝑀 bundle on 𝐵′ on a generating set of 𝜋1(𝐵′) is at
most 𝜖 away from the isometry group of𝑀 in the sup norm
on the group Homeo0(𝑀).

In fact in higher dimensions, we later learned that the
existence of such semi-s-cobordism was known using ho-
mological surgery techniques.

Theorem 6.3 (Hausmann and Vogel [6]). Let 𝑀 and 𝐵 be
two closed topological manifolds where dim(𝐵) ≥ 5 and let 𝜉
be an 𝑀-bundle over 𝐵. Then this 𝜉 extends as an 𝑀 bundle
over 𝐵 to a semi-s-cobordism such that at the other end, it is a
𝐶0-foliated 𝑀 bundle.

Demanding the bordism to be semi-s-cobordism is
a qualitative control and the control on the holonomy
which is related to the Milnor-Wood inequality is more
quantitative. Given the existence of semi-s-cobordism re-
duction to 𝐶0-foliated bundles is known in all dimensions
except 4, one interesting unknown case is the following.

Problem 6.4. Suppose 𝑆3 → 𝑆7 → 𝑆4 is a “generalized” Hopf
fibration. Does there exist a homology 4-sphere 𝐻 and a degree
one map 𝐻 → 𝑆4 such that the pull-back of the generalized
Hopf fibration is a flat 𝑆3-bundle?

In fact in the 80s, Ghys asked if the Milnor-Wood in-
equality holds for oriented flat 𝑆3-bundles.

Question 6.5 (Ghys). Let 𝑀4 be a compact orientable 4-
manifold and 𝜋1(𝑀) 𝜌−→ Homeo∘(𝕊3) be a representation. Is it
true that the Euler number of the flat 𝑆3-bundle associated with
𝜌 over 𝑀 is bounded by a number depending only on 𝑀?

Monod and I answered Ghys’ question negatively ([13,
Theorem 1.8]) by proving the following result.

Theorem 6.6 (Monod-Nariman). The fourth bounded coho-
mology of the group Homeo𝛿0(𝑆3) vanishes.

This, in particular, implies that all nontrivial classes in
𝐻4(BHomeo𝛿0(𝑆3); ℝ) are unbounded so the Euler class for
oriented flat 𝑆3 bundle is not bounded. Hence, in Freed-
man’s conjecture, we might have the semi-s-cobordism to
flat bundles in higher dimensions, but we may not be able
to quantitatively control the topology of 𝐵′. However, the
unboundedness of the Euler class seems to suggest that
one might be able to flatten 𝑆3-bundles over 4-manifolds
up to bordism without changing the simplicial volume of
the base much.

Our proof of the failure of the Milnor-Wood inequal-
ity for 𝑆3-bundles is not constructive and it leads to both
conceptual and computational questions ([13, Section 7])
but most importantly we lack geometric intuition to con-
struct examples to exhibit the failure of Milnor-Wood in
this case.
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