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Abstract—Multi-task learning is a subfield of machine learning
in which the data is trained with a shared model to solve different
tasks simultaneously. Instead of training multiple models corre-
sponding to different tasks, we only need to train a single model
with shared parameters by using multi-task learning. Multi-task
learning highly reduces the number of parameters in the machine
learning models and thus reduces the computational and storage
requirements. When we apply multi-task learning on deep neural
networks (DNNs), we need to further compress the model since
the model size of a single DNN is still a critical challenge to many
computation systems, especially for edge platforms. However,
when model compression is applied to multi-task learning, it is
challenging to maintain the performance of all the different tasks.
To deal with this challenge, we propose a min-max optimization
framework for the training of highly compressed multi-task DNN
models. Our proposed framework can automatically adjust the
learnable weighting factors corresponding to different tasks to
guarantee that the task with worst-case performance across all
the different tasks will be optimized.

Index Terms—multi-task learning, deep learning, weight prun-
ing, model compression

I. INTRODUCTION

Multi-task learning is a subfield of machine learning in

which the data is trained with a shared model to solve different

tasks simultaneously [1], [2]. There are various advantages for

the use of multi-task learning. Multi-task learning improves

the generalization of the model, reduces the training time

and it also reduces the computational requirement. The last

aspect becomes critical when machine learning models are

implemented in platforms with limited computational resource,

such as edge platforms. Instead of training multiple models

corresponding to different tasks, we only need to train a single

model with shared parameters by using multi-task learning.

Multi-task learning highly reduces the number of parameters

in the machine learning models and thus reduces the com-

putational and storage requirements. For example, there are

multiple tasks to be done in real-time in self-driving cars,

including object detection and depth estimation. If we train

multiple models to solve each task individually, it will include

a high computational burden on the platform. However if we

use multi-task learning to train a single model with shared

parameters for these tasks, we can highly reduce the model

size and speed up the inference for the tasks.

Currently, deep neural networks (DNNs) are known as

state-of-the-art machine learning models. DNNs have achieved

great performance in many different tasks such as image
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classification [3]–[5], object detection [6], [7] and speech

recognition [8], [9]. Meanwhile, the large model size of

DNNs becomes a significant burden to the current computing

systems. When we apply multi-task learning on DNNs, we

need to further compress the model since the model size of a

single DNN is still a critical challenge to many computation

systems, especially for edge platforms. Model compression

techniques such as weight pruning and weight quantization

have become an effective way to compress the model size

of DNNs. For single-task learning, model compression can

highly reduce the size of a DNN model with acceptable

performance degradation. However, when model compression

is applied on multi-task learning, it is challenging to maintain

the performance of all the different tasks. For some easy tasks,

they can still perform well when the compression rate of the

model is high. But things are different for some difficult tasks,

there will be a huge performance degradation on them when

we pursue a high model compression rate. It becomes a great

challenge on how to balance the performance of different tasks

in a highly compressed multi-task DNN model.

The most common method to train a multi-task DNN

model is to parameterize the aggregated loss function as a

weighted sum of the task-specific loss functions [2]. There

are several different approaches to determine the weighting

factor corresponding to the loss function of each task, such

as weighting by uncertainty [10], [11], weighting by learning

speed [12]–[15] and weighting by performance [16], [17].

These approaches perform well on an uncompressed multi-

task DNN model. However, there is no approach which can

guarantee to balance the performance of different tasks on

a highly compressed multi-task DNN model. To deal with

this challenge, we propose a min-max optimization framework

for the training of multi-task sparse DNN models. In our

proposed framework, multi-task learning is defined as a min-

max optimization problem in which the object function is the

weighted sum of the task-specific loss functions. Different

from prior multi-task learning approaches, in our proposed

framework the weighting factors associated with different

tasks are learnable parameters. The min-max optimization

framework can automatically adjust the learnable weighting

factors corresponding to different tasks to guarantee that the

task with worst-case performance across all the different tasks

will be optimized.

Our major contributions in this work can be summarized as

follows:

• We propose a min-max optimization framework to bal-
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ance the performance of all the tasks when the multi-

task DNN model is being highly compressed. The learn-

able weighting factors corresponding to different tasks

can guarantee that the task with worst-case performance

across all the different tasks will be optimized.

• In the experiments, we evaluate our proposed method on

the multi-task attention network (MTAN) [13] for NYUv2

dataset [18]. Experimental results demonstrate that our

proposed method achieves 40× pruning rate on MTAN

with negligible precision degradation compared with un-

pruned model. When the MTAN model is pruned by

60×, our method performs much better on balancing the

precision of all the tasks compared with prior methods.

II. RELATED WORK

A. Multi-task Learning

Multi-task learning is a subfield of machine learning in

which the data is trained with a shared model to solve different

kind of tasks simultaneously. The major advantages of multi-

task learning include improving the generalization of the

model, reducing the training time and reducing the compu-

tational requirement. A general multi-task learning framework

is shown in Figure 1.

Fig. 1. A general multi-task learning framework.

The most common method to train a multi-task DNN model

is to parameterize the aggregated loss function as a weighted

sum of the task-specific loss functions [2]. There are several

different approaches to determine the weighting factors corre-

sponding to the loss function of each task. The first approach

is weighting by uncertainty. For this approach, [10] proposes

to treat the multi-task network as a probabilistic model, and it

derives the weighting factors associated with different models

by maximizing the likelihood of the ground truth output. Based

on [10], [11] proposes a revised uncertainty-based method by

enforcing positive regularization values in the regularization

terms. The second approach is weighting by learning speed.

For this approach, [12], [13], [15] set the weighting factor of

a task using the ratio of the current loss to the previous loss

corresponding to the task. And [14] set the weighting factor

of a task by decreasing the weighting factor as learning speed

increases. The third approach is weighting by performance.

For this approach, [16] proposes to assign the weighting factor

to each task according to the defined performance metrics.

And [17] proposes to assign the weighting factors based on

connection between the training loss and task schedule.

B. Weight Pruning for DNNs

Weight pruning reduces the number of weight parameters

in DNNs. A pioneering method of weight pruning is proposed

in [19]. This work iteratively prunes the weights with small

magnitude and retrain the DNN. The limitation of this work is

that it cannot achieve high weight pruning rate with acceptable

precision degradation. To address this limitation, several works

[20]–[22] propose the optimization-based methods to improve

the precision of the DNNs in a high weight pruning rate.

And a recent work [23] proposes a weight regularization

method based on reweighted l1 [24] to promote sparsity. This

method achieves the state-of-the-art performance on weight

pruning and it is applicable to different kind of DNN models,

including multi-task DNNs. In this work, we use reweighted

l1 as the weight pruning method to evaluate the performance

of different multi-task learning methods under a high weight

pruning rate.

III. PROBLEM FORMULATION AND PROPOSED

FRAMEWORK

A. Problem Formulation

Consider a multi-task DNN with K different tasks, in which

the shared parameters are denoted by θ, and the parameters

for the i-th specific task are denoted by θi. The loss function

corresponding to the i-th task can be presented as Fi(θ, θi).
In this work, we propose a min-max optimization framework

for multi-task learning, in which we formulate the problem as

minimize
θ,θi

maximize
w∈P

∑K
i=1 wiFi(θ, θi)−

γ
2 ∥w − 1/K∥22,

(1)

where wi denotes the learnable weighting factor associated

with the i-th task, the vector w denotes the collection of

wi, P denotes the probability simplex P = {w |1T
w =

1, wi ∈ [0, 1], ∀i}, 1 denotes an all-ones vector and γ > 0 is a

regularization parameter. The constraint set P makes sure that

every weighting factor is in the range of 0 to 1, and the sum

of all the weighting factors equals to 1. The reason to include

a regularization term in problem (1) is that it improves the

generalizability to different tasks. If the regularization term is

not included, the solution of w is always a one-hot vector.

This one-hot coding only focuses on one task and it reduces

the generalizability to other tasks and induces instability of

the learning procedure in practice.

In order to prune the shared parameters in a multi-task

DNN, we add a regularization term in the min-max problem

to promote sparsity, the problem becomes

minimize
θ,θi

maximize
w∈P

∑K
i=1 wiFi(θ, θi)−

γ
2 ∥w − 1/K∥22

+λR(θ),
(2)
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where R(·) is the sparsity regularization term and λ > 0 is

the regularization parameter corresponding to it. Our proposed

method is applicable to different kinds of sparsity regulariza-

tion terms. In this work, we choose reweighted l1 [24], [25]

as the regularization term as it achieves the state-of-the-art

performance on weight pruning.

B. Problem Solving Algorithm

We apply the alternating projected gradient descent-ascent

(APGDA) method [26] to solve the problem (2). Specifically,

we use stochastic gradient descent to solve the outer minimiza-

tion problem, and we use projected gradient ascent to solve

the outer maximization problem. The application of APGDA

on solving the problem (2) is summarized in Algorithm 1.

Algorithm 1 APGDA to solve the min-max problem

1: Input: given w
(0), θ(0), θ

(0)
i and epoch numbers T .

2: for t = 1, 2, . . . , T do

3: outer minimization: fixing w = w
(t−1), update θ

(t)

and θi
(t) with stochastic gradient descent

4: inner maximization: fixing θ = θ
(t), θi = θi

(t),

update w
(t) with projected gradient ascent

5: end for

In algorithm 1, when w is fixed, the outer minimization

problem is similar to the regular training of a multi-task

DNN model with stochastic gradient descent. For the inner

maximization problem, w is updated by

w
(t) = projP

(

w
(t−1) + β∇wL(w(t−1))

)

,

where L(w) =
∑K

i=1 wiFi(θ, θi) −
γ
2 ∥w − 1/K∥22, β is the

learning rate, and projP(·) denotes the Euclidean projection

onto the simplex set P , the closed-form solution of this kind

of Euclidean projection is derived by [27].

After we use APGDA to solve problem (2), we remove

the weight parameters which are close to zero (set them to

zero), and then retrain the multi-task DNN model using the

remaining non-zero weights. In the retraining stage, we solve

problem (1) via APGDA.

C. Comparisons between Our Method and Prior Methods

Compared with the prior methods on multi-task learning,

the proposed min-max optimization framework is expected to

achieve a higher compression rate for an acceptable worst-case

performance because it always focuses on optimizing the task

with worst performance across all the tasks. The advantage

of the proposed min-max framework on improving the worst-

case performance will be notable when the DNN compression

rate is extremely high. The reason is that prior methods do

not include a strategy to maintain the worst-case performance

across all the tasks. As the compression rate increases, the

easy tasks can still perform well, but the difficult tasks will

suffer high performance degradation. For the proposed min-

max optimization framework, it always focuses on maintaining

the worst-case performance and automatically strikes a balance

between different tasks. As the compression rate increases, the

min-max framework will sacrifice the performance of some

easy tasks in order to maintain the performance of the worst-

case task. The model compression rate can be increased until

the performances of all the tasks are close to the acceptable

thresholds. This leads to a much higher potential in the

compression rate with acceptable performance for all the tasks

compared with prior approaches.

IV. EXPERIMENTS

We evaluate our proposed method on the multi-task at-

tention network (MTAN) [13] for NYUv2 dataset [18]. And

we compare our method with the prior multi-task learning

methods, such as Equal Weights, Weighting by Uncertainty

[10], and Dynamic Weighting Average (DWA) [13]. For both

our method and the prior methods, we first add a reweighted

l1 regularization term and train the multi-task DNN for 180

epochs in order to promote weight sparsity, with the learning

rate set to 10−4. Then a specific ratio of weights is pruned

from the MTAN model, and then the model is retrained by

200 epochs for all the methods. At this stage, the learning rate

is 10−4 at the beginning and it is reduced by half at the 100-th

epoch. For each method, we show the average precision of the

last 5 epochs in the retraining stage for the fair comparison.

A. Architecture of Multi-task Attention Network

The multi-task attention network (MTAN) is established

based on VGG-16 [28] which has two basic components: a

shared network which has shared features among all the tasks

containing a shared feature pool, and K task-specific attention

networks which train the specific features of each individual

task. A set of attention modules are settled in each task-specific

network which builds the connection between each task and

the shared network. Therefore, the features could be learned

jointly in the shared network and soft attention masks among

multiple tasks, improving the performance of specific tasks

simultaneously. Each layer of the shared network has a soft-

attention mask to learn task-specific features, which ensures

the designed network to be learned in an end-to-end manner.

B. Dataset

The NYUv2 dataset consists of video sequences of various

indoor scenes recorded by Microsoft Kinect’s RGB and depth

cameras. It contains 1449 densely labeled pairs of aligned

RGB and depth images, 464 new scenes taken from 3 cities

together with 407,024 new unlabeled frames. Each object is

labeled with a class and an instance number. In our experi-

ments, three learning tasks are evaluated on MTAN for the

NYUv2 dataset: 13-class semantic segmentation, true depth

data estimation, and surface normal prediction. The first task

is defined in [29] and the last two tasks are provided in [30].

Semantic segmentation is the task of assigning a class label

to every single pixel of an input image, such that pixels

belonging to the same object or category have the same label.

Semantic segmentation operates at the pixel level, providing

a fine-grained understanding of the objects and regions within
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TABLE I
THE RESULTS OF 3 TASKS (I.E. 13-CLASS SEMANTIC SEGMENTATION, DEPTH ESTIMATION, AND SURFACE NORMAL PREDICTION) ON THE NYUV2

VALIDATION DATASET, WITH 40× PRUNING RATE ON MTAN. THE BEST PERFORMANCE AMONG THE ARCHITECTURES IS HIGHLIGHTED IN BOLD. “(↑)”
MEANS HIGHER BETTER AND “(↓)” MEANS LOWER BETTER.

Task Semantic Segmentation Depth Estimation Surface Normal Prediction

Metrics
Angle Distance Within t°

mIoU(↑) Pix Acc(↑) Abs Err(↓) Rel Err(↓) Mean(↓) Median(↓) 11.25(↑) 25(↑) 30(↑)

Unpruned 0.2685 0.5572 0.6902 0.3004 29.9930 25.7138 0.2026 0.4439 0.5762

Equal Weights 0.2324 0.5306 0.6827 0.2833 32.2727 27.8334 0.1683 0.4074 0.5407
Uncertainty [10] 0.2474 0.5416 0.6628 0.2938 31.5592 27.2784 0.1808 0.4168 0.5490
DWA [13] 0.2440 0.5404 0.6484 0.2830 32.1461 28.0508 0.1672 0.4024 0.5361
Min-Max 0.2502 0.5495 0.6333 0.2681 30.1683 25.5968 0.2034 0.4453 0.5778

TABLE II
THE RESULTS OF 3 TASKS (I.E. 13-CLASS SEMANTIC SEGMENTATION, DEPTH ESTIMATION, AND SURFACE NORMAL PREDICTION) ON THE NYUV2

VALIDATION DATASET, WITH 60× PRUNING RATE ON MTAN. THE BEST PERFORMANCE AMONG THE ARCHITECTURES IS HIGHLIGHTED IN BOLD. “(↑)”
MEANS HIGHER BETTER AND “(↓)” MEANS LOWER BETTER.

Task Semantic Segmentation Depth Estimation Surface Normal Prediction

Metrics
Angle Distance Within t°

mIoU(↑) Pix Acc(↑) Abs Err(↓) Rel Err(↓) Mean(↓) Median(↓) 11.25(↑) 25(↑) 30(↑)

Unpruned 0.2685 0.5572 0.6902 0.3004 29.9930 25.7138 0.2026 0.4439 0.5762

Equal Weights 0.1574 0.4122 0.8761 0.3123 36.8045 33.5375 0.1060 0.3109 0.4446
Uncertainty [10] 0.1518 0.3978 0.8973 0.3188 36.9686 33.4708 0.1334 0.3344 0.4548
DWA [13] 0.1902 0.4715 0.7443 0.3126 33.1194 28.6406 0.1747 0.3999 0.5248
Min-Max 0.2288 0.5319 0.7363 0.3372 31.7579 27.4788 0.1811 0.4147 0.5445

an image. Each pixel is assigned to one and only one class

label, typically representing object categories.

Depth estimation task aims to determine the distance (or

depth) of objects in a scene from a 2D image or a sequence

of images. The goal of depth estimation is to create a depth

map, which assigns a depth value to each pixel in the image,

indicating how far that pixel is from the camera. Darker pixels

typically represent objects closer to the camera, while lighter

pixels represent objects farther away.

Surface normal prediction is a computer vision task that

involves estimating the surface normals of objects and scenes

in images or 3D point clouds. Surface normals are vectors that

are perpendicular to the surface of an object at each point.

They describe the orientation of a surface or the direction it

faces at every location, which is essential for understanding

the geometry and shape of objects in a scene. Surface normal

vectors are typically 3D vectors that provide information about

the orientation of a surface. In the context of 2D images,

surface normals are often represented as vectors pointing out

of the image plane.

C. Experimental Results

Table I shows the performance of each task when the

weights of the MTAN model are pruned by 40×. We can

observe that all the methods perform well on the depth

estimation task. This task is not in high demand on the number

of parameters. A moderate pruning rate can even improve the

performance of this task because overfitting is mitigated. For

the semantic segmentation and surface normal prediction tasks,

our method performs better than other methods. Moreover,

we prune the weights for 40× with negligible precision

degradation compared with the unpruned MTAN model.

The experiment results with 60× weight pruning rate on the

MTAN model are shown in Table II. Unlike that every method

achieves acceptable performance with 40× pruning rate, Equal

Weights and Weighting by Uncertainty approaches lead to

huge performance degradation for semantic segmentation and

surface normal prediction tasks when the pruning rate is 60×.

Dynamic Weighting Average (DWA) performs better than the

above two approaches, but it still results in notable precision

degradation in the segmentation task. Our method performs

better than DWA on balancing the three tasks. We achieve

higher precision on the semantic segmentation and surface

normal prediction tasks by slightly sacrificing the precision

of the depth estimation task. Compared with the unpruned

MTAN model, our precision degradation is acceptable for all

the three tasks when the pruning rate is 60×.

V. CONCLUSION

In this paper, we propose a min-max optimization frame-

work for the training of highly compressed multi-task DNN

models. The learnable weighting factors corresponding to

different tasks can guarantee that the task with worst-case

performance across all the different tasks will be optimized.

As a result, we can balance the performance of all the tasks

when the multi-task DNN model is being highly compressed.

In the experiments, our proposed method achieves 40× weight

pruning rate on the MTAN model with negligible precision

degradation. When the weights of the MTAN model are pruned

by 60×, our method performs much better on balancing the

precision of all the tasks compared with prior methods.
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