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Abstract—Maulti-task learning is a subfield of machine learning
in which the data is trained with a shared model to solve different
tasks simultaneously. Instead of training multiple models corre-
sponding to different tasks, we only need to train a single model
with shared parameters by using multi-task learning. Multi-task
learning highly reduces the number of parameters in the machine
learning models and thus reduces the computational and storage
requirements. When we apply multi-task learning on deep neural
networks (DNNs), we need to further compress the model since
the model size of a single DNN is still a critical challenge to many
computation systems, especially for edge platforms. However,
when model compression is applied to multi-task learning, it is
challenging to maintain the performance of all the different tasks.
To deal with this challenge, we propose a min-max optimization
framework for the training of highly compressed multi-task DNN
models. Our proposed framework can automatically adjust the
learnable weighting factors corresponding to different tasks to
guarantee that the task with worst-case performance across all
the different tasks will be optimized.

Index Terms—multi-task learning, deep learning, weight prun-
ing, model compression

I. INTRODUCTION

Multi-task learning is a subfield of machine learning in
which the data is trained with a shared model to solve different
tasks simultaneously [1], [2]. There are various advantages for
the use of multi-task learning. Multi-task learning improves
the generalization of the model, reduces the training time
and it also reduces the computational requirement. The last
aspect becomes critical when machine learning models are
implemented in platforms with limited computational resource,
such as edge platforms. Instead of training multiple models
corresponding to different tasks, we only need to train a single
model with shared parameters by using multi-task learning.
Multi-task learning highly reduces the number of parameters
in the machine learning models and thus reduces the com-
putational and storage requirements. For example, there are
multiple tasks to be done in real-time in self-driving cars,
including object detection and depth estimation. If we train
multiple models to solve each task individually, it will include
a high computational burden on the platform. However if we
use multi-task learning to train a single model with shared
parameters for these tasks, we can highly reduce the model
size and speed up the inference for the tasks.

Currently, deep neural networks (DNNs) are known as
state-of-the-art machine learning models. DNNs have achieved
great performance in many different tasks such as image

Corresponding author: Tianyun Zhang (t.zhang85@csuohio.edu).

classification [3]-[5], object detection [6], [7] and speech
recognition [8], [9]. Meanwhile, the large model size of
DNNs becomes a significant burden to the current computing
systems. When we apply multi-task learning on DNNs, we
need to further compress the model since the model size of a
single DNN is still a critical challenge to many computation
systems, especially for edge platforms. Model compression
techniques such as weight pruning and weight quantization
have become an effective way to compress the model size
of DNNs. For single-task learning, model compression can
highly reduce the size of a DNN model with acceptable
performance degradation. However, when model compression
is applied on multi-task learning, it is challenging to maintain
the performance of all the different tasks. For some easy tasks,
they can still perform well when the compression rate of the
model is high. But things are different for some difficult tasks,
there will be a huge performance degradation on them when
we pursue a high model compression rate. It becomes a great
challenge on how to balance the performance of different tasks
in a highly compressed multi-task DNN model.

The most common method to train a multi-task DNN
model is to parameterize the aggregated loss function as a
weighted sum of the task-specific loss functions [2]. There
are several different approaches to determine the weighting
factor corresponding to the loss function of each task, such
as weighting by uncertainty [10], [11], weighting by learning
speed [12]-[15] and weighting by performance [16], [17].
These approaches perform well on an uncompressed multi-
task DNN model. However, there is no approach which can
guarantee to balance the performance of different tasks on
a highly compressed multi-task DNN model. To deal with
this challenge, we propose a min-max optimization framework
for the training of multi-task sparse DNN models. In our
proposed framework, multi-task learning is defined as a min-
max optimization problem in which the object function is the
weighted sum of the task-specific loss functions. Different
from prior multi-task learning approaches, in our proposed
framework the weighting factors associated with different
tasks are learnable parameters. The min-max optimization
framework can automatically adjust the learnable weighting
factors corresponding to different tasks to guarantee that the
task with worst-case performance across all the different tasks
will be optimized.

Our major contributions in this work can be summarized as
follows:

o We propose a min-max optimization framework to bal-
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ance the performance of all the tasks when the multi-
task DNN model is being highly compressed. The learn-
able weighting factors corresponding to different tasks
can guarantee that the task with worst-case performance
across all the different tasks will be optimized.

« In the experiments, we evaluate our proposed method on
the multi-task attention network (MTAN) [13] for NYUv2
dataset [18]. Experimental results demonstrate that our
proposed method achieves 40x pruning rate on MTAN
with negligible precision degradation compared with un-
pruned model. When the MTAN model is pruned by
60, our method performs much better on balancing the
precision of all the tasks compared with prior methods.

II. RELATED WORK
A. Multi-task Learning

Multi-task learning is a subfield of machine learning in
which the data is trained with a shared model to solve different
kind of tasks simultaneously. The major advantages of multi-
task learning include improving the generalization of the
model, reducing the training time and reducing the compu-
tational requirement. A general multi-task learning framework
is shown in Figure 1.
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Fig. 1. A general multi-task learning framework.

The most common method to train a multi-task DNN model
is to parameterize the aggregated loss function as a weighted
sum of the task-specific loss functions [2]. There are several
different approaches to determine the weighting factors corre-
sponding to the loss function of each task. The first approach
is weighting by uncertainty. For this approach, [10] proposes
to treat the multi-task network as a probabilistic model, and it
derives the weighting factors associated with different models
by maximizing the likelihood of the ground truth output. Based
on [10], [11] proposes a revised uncertainty-based method by
enforcing positive regularization values in the regularization
terms. The second approach is weighting by learning speed.
For this approach, [12], [13], [15] set the weighting factor of
a task using the ratio of the current loss to the previous loss
corresponding to the task. And [14] set the weighting factor
of a task by decreasing the weighting factor as learning speed
increases. The third approach is weighting by performance.

For this approach, [16] proposes to assign the weighting factor
to each task according to the defined performance metrics.
And [17] proposes to assign the weighting factors based on
connection between the training loss and task schedule.

B. Weight Pruning for DNNs

Weight pruning reduces the number of weight parameters
in DNNs. A pioneering method of weight pruning is proposed
in [19]. This work iteratively prunes the weights with small
magnitude and retrain the DNN. The limitation of this work is
that it cannot achieve high weight pruning rate with acceptable
precision degradation. To address this limitation, several works
[20]-[22] propose the optimization-based methods to improve
the precision of the DNNs in a high weight pruning rate.
And a recent work [23] proposes a weight regularization
method based on reweighted [; [24] to promote sparsity. This
method achieves the state-of-the-art performance on weight
pruning and it is applicable to different kind of DNN models,
including multi-task DNNs. In this work, we use reweighted
Iy as the weight pruning method to evaluate the performance
of different multi-task learning methods under a high weight
pruning rate.

III. PROBLEM FORMULATION AND PROPOSED
FRAMEWORK

A. Problem Formulation

Consider a multi-task DNN with K different tasks, in which
the shared parameters are denoted by 6, and the parameters
for the i-th specific task are denoted by 6;. The loss function
corresponding to the i-th task can be presented as F;(6,6;).
In this work, we propose a min-max optimization framework
for multi-task learning, in which we formulate the problem as

minimize maximize S K wiFi(0,6,) — Yw - 1/K]|3,
Ui we
(1

where w; denotes the learnable weighting factor associated
with the i-th task, the vector w denotes the collection of
w;, P denotes the probability simplex P = {w|1Tw =
1,w; € [0,1],Vi}, 1 denotes an all-ones vector and v > 0 is a
regularization parameter. The constraint set P makes sure that
every weighting factor is in the range of 0 to 1, and the sum
of all the weighting factors equals to 1. The reason to include
a regularization term in problem (1) is that it improves the
generalizability to different tasks. If the regularization term is
not included, the solution of w is always a one-hot vector.
This one-hot coding only focuses on one task and it reduces
the generalizability to other tasks and induces instability of
the learning procedure in practice.

In order to prune the shared parameters in a multi-task
DNN, we add a regularization term in the min-max problem
to promote sparsity, the problem becomes

minimize maximize Y, w; Fy(6,6;) — Ilw—-1/K]|3

,0; weP
FAR(9),
(2)
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where R(-) is the sparsity regularization term and A > 0 is
the regularization parameter corresponding to it. Our proposed
method is applicable to different kinds of sparsity regulariza-
tion terms. In this work, we choose reweighted [y [24], [25]
as the regularization term as it achieves the state-of-the-art
performance on weight pruning.

B. Problem Solving Algorithm

We apply the alternating projected gradient descent-ascent
(APGDA) method [26] to solve the problem (2). Specifically,
we use stochastic gradient descent to solve the outer minimiza-
tion problem, and we use projected gradient ascent to solve
the outer maximization problem. The application of APGDA
on solving the problem (2) is summarized in Algorithm 1.

Algorithm 1 APGDA to solve the min-max problem

1: Input: given w(®, 90 950) and epoch numbers T

2: fort =1,2,...,T do

3: outer minimization: fixing w = w(~1) update o®
and 6;Y with stochastic gradient descent

4 inner maximization:  fixing 6 = H(t), 0, = Oi(t),
update w*) with projected gradient ascent

5: end for

In algorithm 1, when w is fixed, the outer minimization
problem is similar to the regular training of a multi-task
DNN model with stochastic gradient descent. For the inner
maximization problem, w is updated by

w®) = projp (w(t_l) + ﬁVwL(w(t_l))),

where L(w) = 31 w; F(0,0;) — I|lw — 1/K|]3, 8 is the
learning rate, and projp(-) denotes the Euclidean projection
onto the simplex set P, the closed-form solution of this kind
of Euclidean projection is derived by [27].

After we use APGDA to solve problem (2), we remove
the weight parameters which are close to zero (set them to
zero), and then retrain the multi-task DNN model using the
remaining non-zero weights. In the retraining stage, we solve
problem (1) via APGDA.

C. Comparisons between Our Method and Prior Methods

Compared with the prior methods on multi-task learning,
the proposed min-max optimization framework is expected to
achieve a higher compression rate for an acceptable worst-case
performance because it always focuses on optimizing the task
with worst performance across all the tasks. The advantage
of the proposed min-max framework on improving the worst-
case performance will be notable when the DNN compression
rate is extremely high. The reason is that prior methods do
not include a strategy to maintain the worst-case performance
across all the tasks. As the compression rate increases, the
easy tasks can still perform well, but the difficult tasks will
suffer high performance degradation. For the proposed min-
max optimization framework, it always focuses on maintaining
the worst-case performance and automatically strikes a balance

between different tasks. As the compression rate increases, the
min-max framework will sacrifice the performance of some
easy tasks in order to maintain the performance of the worst-
case task. The model compression rate can be increased until
the performances of all the tasks are close to the acceptable
thresholds. This leads to a much higher potential in the
compression rate with acceptable performance for all the tasks
compared with prior approaches.

IV. EXPERIMENTS

We evaluate our proposed method on the multi-task at-
tention network (MTAN) [13] for NYUv2 dataset [18]. And
we compare our method with the prior multi-task learning
methods, such as Equal Weights, Weighting by Uncertainty
[10], and Dynamic Weighting Average (DWA) [13]. For both
our method and the prior methods, we first add a reweighted
ly regularization term and train the multi-task DNN for 180
epochs in order to promote weight sparsity, with the learning
rate set to 10~4. Then a specific ratio of weights is pruned
from the MTAN model, and then the model is retrained by
200 epochs for all the methods. At this stage, the learning rate
is 10~* at the beginning and it is reduced by half at the 100-th
epoch. For each method, we show the average precision of the
last 5 epochs in the retraining stage for the fair comparison.

A. Architecture of Multi-task Attention Network

The multi-task attention network (MTAN) is established
based on VGG-16 [28] which has two basic components: a
shared network which has shared features among all the tasks
containing a shared feature pool, and K task-specific attention
networks which train the specific features of each individual
task. A set of attention modules are settled in each task-specific
network which builds the connection between each task and
the shared network. Therefore, the features could be learned
jointly in the shared network and soft attention masks among
multiple tasks, improving the performance of specific tasks
simultaneously. Each layer of the shared network has a soft-
attention mask to learn task-specific features, which ensures
the designed network to be learned in an end-to-end manner.

B. Dataset

The NYUv2 dataset consists of video sequences of various
indoor scenes recorded by Microsoft Kinect’s RGB and depth
cameras. It contains 1449 densely labeled pairs of aligned
RGB and depth images, 464 new scenes taken from 3 cities
together with 407,024 new unlabeled frames. Each object is
labeled with a class and an instance number. In our experi-
ments, three learning tasks are evaluated on MTAN for the
NYUv2 dataset: 13-class semantic segmentation, true depth
data estimation, and surface normal prediction. The first task
is defined in [29] and the last two tasks are provided in [30].

Semantic segmentation is the task of assigning a class label
to every single pixel of an input image, such that pixels
belonging to the same object or category have the same label.
Semantic segmentation operates at the pixel level, providing
a fine-grained understanding of the objects and regions within
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TABLE I
THE RESULTS OF 3 TASKS (I.E. 13-CLASS SEMANTIC SEGMENTATION, DEPTH ESTIMATION, AND SURFACE NORMAL PREDICTION) ON THE NYUV2
VALIDATION DATASET, WITH 40X PRUNING RATE ON MTAN. THE BEST PERFORMANCE AMONG THE ARCHITECTURES IS HIGHLIGHTED IN BOLD. “(1)”
MEANS HIGHER BETTER AND “({)” MEANS LOWER BETTER.

Task Semantic Segmentation Depth Estimation Surface Normal Prediction
Metrics Angle Distance Within t°
mloU(T)  Pix Acc(?) Abs Err(J) Rel Err({) Mean(]) Median(]) 11.25(1) 25(1) 30(1)
Unpruned 0.2685 0.5572 0.6902 0.3004 29.9930 25.7138 0.2026 0.4439  0.5762
Equal Weights 0.2324 0.5306 0.6827 0.2833 32.2727 27.8334 0.1683 0.4074  0.5407
Uncertainty [10] 0.2474 0.5416 0.6628 0.2938 31.5592 27.2784 0.1808 0.4168  0.5490
DWA [13] 0.2440 0.5404 0.6484 0.2830 32.1461 28.0508 0.1672 0.4024  0.5361
Min-Max 0.2502 0.5495 0.6333 0.2681 30.1683 25.5968 0.2034  0.4453  0.5778
TABLE II

THE RESULTS OF 3 TASKS (I.E. 13-CLASS SEMANTIC SEGMENTATION, DEPTH ESTIMATION, AND SURFACE NORMAL PREDICTION) ON THE NYUV2
VALIDATION DATASET, WITH 60X PRUNING RATE ON MTAN. THE BEST PERFORMANCE AMONG THE ARCHITECTURES IS HIGHLIGHTED IN BOLD. “(1)”
MEANS HIGHER BETTER AND “({)” MEANS LOWER BETTER.

Task Semantic Segmentation Depth Estimation Surface Normal Prediction
Metrics Angle Distance Within t°
mloU(T)  Pix Acc(f) Abs Err({) Rel Err({) Mean(]) Median(]) 11.25(1) 25(1) 30(1)

Unpruned 0.2685 0.5572 0.6902 0.3004 29.9930 25.7138 0.2026 0.4439  0.5762
Equal Weights 0.1574 0.4122 0.8761 0.3123 36.8045 33.5375 0.1060  0.3109  0.4446
Uncertainty [10] 0.1518 0.3978 0.8973 0.3188 36.9686 33.4708 0.1334 0.3344  0.4548
DWA [13] 0.1902 0.4715 0.7443 0.3126 33.1194 28.6406 0.1747 0.3999  0.5248
Min-Max 0.2288 0.5319 0.7363 0.3372 31.7579 27.4788 0.1811 0.4147  0.5445

an image. Each pixel is assigned to one and only one class
label, typically representing object categories.

Depth estimation task aims to determine the distance (or
depth) of objects in a scene from a 2D image or a sequence
of images. The goal of depth estimation is to create a depth
map, which assigns a depth value to each pixel in the image,
indicating how far that pixel is from the camera. Darker pixels
typically represent objects closer to the camera, while lighter
pixels represent objects farther away.

Surface normal prediction is a computer vision task that
involves estimating the surface normals of objects and scenes
in images or 3D point clouds. Surface normals are vectors that
are perpendicular to the surface of an object at each point.
They describe the orientation of a surface or the direction it
faces at every location, which is essential for understanding
the geometry and shape of objects in a scene. Surface normal
vectors are typically 3D vectors that provide information about
the orientation of a surface. In the context of 2D images,
surface normals are often represented as vectors pointing out
of the image plane.

C. Experimental Results

Table 1 shows the performance of each task when the
weights of the MTAN model are pruned by 40x. We can
observe that all the methods perform well on the depth
estimation task. This task is not in high demand on the number
of parameters. A moderate pruning rate can even improve the
performance of this task because overfitting is mitigated. For
the semantic segmentation and surface normal prediction tasks,
our method performs better than other methods. Moreover,
we prune the weights for 40x with negligible precision
degradation compared with the unpruned MTAN model.

The experiment results with 60x weight pruning rate on the
MTAN model are shown in Table II. Unlike that every method
achieves acceptable performance with 40x pruning rate, Equal
Weights and Weighting by Uncertainty approaches lead to
huge performance degradation for semantic segmentation and
surface normal prediction tasks when the pruning rate is 60x.
Dynamic Weighting Average (DWA) performs better than the
above two approaches, but it still results in notable precision
degradation in the segmentation task. Our method performs
better than DWA on balancing the three tasks. We achieve
higher precision on the semantic segmentation and surface
normal prediction tasks by slightly sacrificing the precision
of the depth estimation task. Compared with the unpruned
MTAN model, our precision degradation is acceptable for all
the three tasks when the pruning rate is 60x.

V. CONCLUSION

In this paper, we propose a min-max optimization frame-
work for the training of highly compressed multi-task DNN
models. The learnable weighting factors corresponding to
different tasks can guarantee that the task with worst-case
performance across all the different tasks will be optimized.
As a result, we can balance the performance of all the tasks
when the multi-task DNN model is being highly compressed.
In the experiments, our proposed method achieves 40x weight
pruning rate on the MTAN model with negligible precision
degradation. When the weights of the MTAN model are pruned
by 60x, our method performs much better on balancing the
precision of all the tasks compared with prior methods.
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