
An Efficient and Accurate Dynamic Sparse Training Framework
Based on Parameter-Freezing

Lei Li1*, Haochen Yang1*, Jiacheng Guo1, Hongkai Yu1, Minghai Qin1,2†, Tianyun Zhang1†

1Cleveland State University, Cleveland, USA
2Western Digital Research, Milpitas, USA

Abstract

Federated learning is a decentralized machine learning ap-
proach that consists of servers and clients. It protects data
privacy during model training by keeping the training data lo-
cally in each client. However, the requirement for the server
and clients to frequently synchronize the parameters of the
model brings a heavy burden to the communication links,
especially when the model size has grown drastically in re-
cent years. Several methods have been proposed to compress
the model size by sparsification to reduce the communica-
tion overhead, albeit with significant accuracy degradation.
In this work, we propose methods to better trade-off between
model accuracy and training efficiency in federated learn-
ing. Our first proposed method is a novel sparse mask read-
justment rule on the server and the second is a parameter-
freezing method during training on the clients. Experimental
results show that the model accuracy has significantly im-
proved when combining our proposed methods. For exam-
ple, compared with the previous state-of-the-art methods with
the same total amount of communication cost and computa-
tion FLOPs, the accuracy increases on average by 4% and
6% in our methods for CIFAR-10 and CIFAR-100 datasets
on ResNet-18, respectively. On the other hand, when target-
ing the same accuracy, the proposed method can reduce the
communication cost by 4-8 times for different datasets with
different sparsity levels.

Introduction

In the era of ubiquitous computing, training deep neural net-
works (DNNs) often requires a substantial amount of data,
typically generated at the edge of widely used mobile and In-
ternet of Things (IoT) devices (Zhang, Patras, and Haddadi
2019; Mohammadi et al. 2018; Li, Ota, and Dong 2018).
This raises significant privacy concerns as centralizing such
data for training purposes poses risks to user confidential-
ity (Voigt and Von dem Bussche 2017; Khan et al. 2021;
Nguyen et al. 2021). To deal with these challenges, Fed-
erated Learning (FL) has emerged as a pivotal distributed
machine learning paradigm. Developed by (McMahan et al.

*These authors contributed equally.
†Corresponding authors: Tianyun Zhang and Minghai Qin

(t.zhang85@csuohio.edu and Minghai.Qin@wdc.com)
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2017) and further explored by (Kairouz et al. 2021), FL en-
ables multiple clients to collaboratively train a global model
without sharing local data. Instead, these clients contribute
by aggregating locally trained parameters, thereby preserv-
ing privacy and harnessing the collective power of data dis-
tributed across numerous devices.

In FL systems, substantial computational tasks are trans-
ferred from centralized cloud servers to edge devices with
constrained resources. To facilitate effective operation at the
edge, an FL system needs to enhance both the efficiency of
local training on the devices and the efficiency of data com-
munication across the network. Current DNNs have large
model sizes and computational requirements which pose
challenges for deployment and training on edge devices.
Some research has explored the use of sparse neural net-
works to create lightweight models for edge devices, aim-
ing to reduce inference latency(Gale, Elsen, and Hooker
2019; Chen et al. 2020, 2021c). On the other hand, im-
plementing FL frameworks on client devices such as mo-
bile phones often faces severe upload bandwidth limitations,
making it equally crucial to reduce the upload costs of FL
algorithms. Prior work mitigates these constraints by con-
densing the models or messages into compact formats, such
as gradient compression (Lin et al. 2018; Vogels, Karim-
ireddy, and Jaggi 2019; Albasyoni et al. 2020). Similarly,
parameter-freezing offers another promising avenue for en-
hancing communication efficiency in FL. This technique,
which involves freezing specific model parameters during
training, has demonstrated the potential to significantly re-
duce data transfer without compromising accuracy (Chen
et al. 2021a, 2024; Wu et al. 2024).

To address both the computational challenge on edge de-
vices and the necessity for efficient communication in FL,
researchers have shifted their attention to methods that could
not only simplify the model but also ensure the efficiency
of data transmission. Recently, network pruning has been
proposed to alleviate the computation costs of deep mod-
els(Han, Mao, and Dally 2015; Zhang et al. 2018; Hoefler
et al. 2021), and the Lottery Ticket Hypothesis (Frankle and
Carbin 2018) suggests that this pruning has minimal, if any,
impact on model performance. This finding has spurred sig-
nificant interest in leveraging model pruning within FL to
reduce both computation and communication costs (Li et al.
2020a; Jiang et al. 2022; Bibikar et al. 2022). A notable ex-

The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

18350

ample of such a method is FedDST (Bibikar et al. 2022),
which has pioneered a highly influential workflow for FL
on extremely resource-constrained edge devices. By dynam-
ically extracting and training sparse sub-networks, FedDST
enables clients to work with smaller models, leading to sub-
stantial reductions in computation and communication costs.
FedDST has served as a foundation for numerous subse-
quent DST methods (Isik et al. 2022; Babakniya et al. 2023;
Huang et al. 2023; Li et al. 2024; Huang et al. 2024). How-
ever, these methods typically grant clients more “flexibility”
by allowing adjustments to the sparse mask locally. While
advantageous in non-independent and identically distributed
(non-IID) data settings, this personalized sparse mask train-
ing introduces a risk: mask mismatches (Babakniya et al.
2023), which can occur especially under high sparsity, po-
tentially undermining accuracy stability.

In this paper, we introduce Parameter Freezing-based
Federated Dynamic Sparse Training (PFFDST), a novel
method that inherits the advantages of FedDST while further
enhancing efficiency and accuracy in FL environments, par-
ticularly on resource-constrained edge devices. While other
methods (Isik et al. 2022; Babakniya et al. 2023; Huang
et al. 2023; Li et al. 2024; Huang et al. 2024) have built
upon FedDST to improve communication efficiency, this
work takes a different approach. Specifically, PFFDST lever-
ages parameter freezing, strategically freezing model pa-
rameters during sparse training to reduce the communica-
tion overhead associated with exchanging model updates,
which is particularly beneficial in large-scale deployments.
Moreover, PFFDST introduces a novel server-side mask ad-
justment method to address inconsistencies between locally
trained masks and the global model, a prevalent challenge
in sparse training for FL. This method readjusts the mask
on the server with a differential sparsity, effectively balanc-
ing mask stability with the flexibility required for non-IID
data settings. Consequently, by synchronizing only the im-
mature parameters in sparse sub-networks instead of full
models, PFFDST, combined with server-side mask adjust-
ment, adapts more robustly to the challenges of non-IID
data settings and achieves superior performance compared
to FedDST. The contributions of this paper are summarized
as follows:

1. We propose a novel mask readjustment method for fed-
erated dynamic sparse training to improve model accu-
racy. Different from FedDST which readjusts the mask
on clients, our method readjusts masks on the server with
a differential sparsity which allows a larger readjustment
rate and achieves higher accuracy based on the same
communication cost and computation FLOPs.

2. We propose a parameter-freezing method for federated
dynamic sparse training to reduce communication costs
and computation FLOPs in each round. We approx-
imately reduce communication costs by one-half and
computation FLOPs by one-third on average in each
round beyond FedDST.

3. Experimental results indicate that each of our proposed
methods improves the model accuracy compared with
FedDST under the same communication cost and com-

putation FLOPs. When combining our proposed meth-
ods, we respectively improve the model accuracy on av-
erage by 4% and 6% on ResNet-18 (He et al. 2016) for
CIFAR-10 and CIFAR-100 datasets (Krizhevsky, Hinton
et al. 2009) compared with FedDST.

Related Work

Federated Learning

Federated Learning is a privacy-preserving approach to ma-
chine learning that enables model training across decentral-
ized devices without sharing raw data (Abdulrahman et al.
2021; Aledhari et al. 2020). In FL, a central server man-
ages the global model and periodically communicates with
clients. Clients download the latest model parameters, per-
form local training over multiple iterations, and then upload
their updates for global aggregation. FedAvg(McMahan
et al. 2017) is the most common global aggregation method,
which simply averages the model updates uploaded to the
server. System and statistical heterogeneity across clients
is a key challenge in FL. Methods like FedProx (Li et al.
2020b) and FedNova (Wang et al. 2020) achieve more sta-
ble and accurate convergence compared to FedAvg in highly
heterogeneous settings.

Besides the challenge of heterogeneity, communication
efficiency is another critical challenge in FL (Konečnỳ
et al. 2016; Chen et al. 2021b), particularly for resource-
constrained edge devices. To enhance communication ef-
ficiency in FL, one straightforward strategy involves com-
pressing model updates using methods like sparsification
(Ozfatura, Ozfatura, and Gündüz 2021; Isik, Weissman, and
No 2022), quantization (Bernstein et al. 2018; Mitchell et al.
2022), and low-rank approximation (Mohtashami, Jaggi,
and Stich 2022; Wang et al. 2018). However, these meth-
ods still require training a dense network, which may not be
deployable on edge devices with limited memory and com-
putational resources.

Parameter-Freezing for FL

Parameter-freezing is a technique in machine learning that
can improve efficiency without significantly compromising
performance. It involves freezing specific model parameters
at their initial values during training, thereby reducing com-
putational and storage costs (Wimmer, Mehnert, and Con-
durache 2020). This technique has recently shown great po-
tential for enhancing communication efficiency in FL. For
instance, Chen et al. (Chen et al. 2021a, 2024) proposed
Adaptive parameter-freezing (APF), which identifies sta-
ble parameters and excludes them from synchronization, re-
ducing data transfer by over 60% without compromising
model accuracy. Similarly, Wu et al. (Wu et al. 2024) ex-
tended this concept to federated vehicular networks, com-
bining parameter-freezing with bandwidth allocation opti-
mization to minimize communication overhead and latency.
These methods effectively address the challenge of limited
network bandwidth in edge devices by selectively synchro-
nizing only necessary parameters.

However, these existing works primarily focus on ap-
plying parameter-freezing to dense networks. The potential

18351

Algorithm 1: Mask readjustment on the server with differ-
ential sparsity

Input: Clients [N] with local datasets, target sparsity s1,
differential sparsity f1, ∆R, Rend, total rounds R, num-
ber of epochs E in each round.
Initialize server model (θ1,m1) at sparsity (s1 − f1).
for r = 1, 2, . . . , R do

Sample clients Cr ⊂ [N].
for each client c ∈ Cr do

Transmit the server model (θr,mr) to client c.
Perform local training with mask mr for E epochs.
Transmit the updated model parameters θr+1

c from
client c to the server.

end for
Aggregate the received parameters on the server to de-
rive θr+1, mr+1 = mr.
if r mod ∆R = 0 and r < Rend then
(θr+1,mr+1)← TopkPrune(θr+1, s1).
(θr+1,mr+1)← RandomGrow(θr+1, s1 − f1).

else if r = Rend then
(θr+1,mr+1)← TopkPrune(θr+1, s1).

end if
end for

to refine and stabilize the learning process within federated
sparse training through strategic mask adjustments.

Proposed Framework

We first initialize a sparse network with parameters θ1 and
a sparse mask m1 on the server, which follows FedDST
(Bibikar et al. 2022). Unlike (Bibikar et al. 2022), which
readjusts the masks on the clients, we readjust the masks on
the server. Assuming the target sparsity is s1, we initialize a
network with sparsity (s1 − f1), where f1 denotes the dif-
ferential sparsity which is the difference between the spar-
sity of the grown model and target sparsity. In each round,
we first sample clients and transmit model parameters and
masks to them. After that, the model is trained in the sam-
pled clients with the masks for E epochs. Thirdly, the model
parameters are transmitted from the sampled clients to the
server. Finally, we update (θr,mr) in different ways based
on the condition of the current round. We readjust the masks
on the server every ∆R rounds during the first Rend rounds.
When readjusting masks, we first perform TopkPrune(·)
to prune the parameters to sparsity s1 based on their magni-
tude. Then we perform RandomGrow(·) to randomly grow
the parameters, adjusting the network’s sparsity to (s1−f1).
At the Rend round, we prune the parameters to sparsity s1,
with the mask remaining unchanged. The details of our pro-
posed DST method on FL are summarized in Algorithm 1.

We also propose a two-step parameter-freezing method to
reduce the communication costs in FL. The details of the
proposed method are summarized in Algorithm 2. Firstly,
we apply Algorithm 1 to train a model (θ, m̂) with sparsity
s1. Secondly, we freeze all the non-zero parameters in θ and
train a model with target sparsity s2 and differential sparsity
f2, and then randomly grow the model from sparsity s1 to

Algorithm 2: Parameter-freezing-based dynamic sparse
training

Input: Clients with local datasets, target sparsities s1 and
s2, differential sparsities f1 and f2, ∆R, Rend, total
rounds 2R, number of epochs E in each round.
Input s1, f1, ∆R, Rend, total round R, and E to Algo-
rithm 1 to train a model (θ, m̂).
Freeze the non-zero parameters in θ and randomly grow
it to the sparsity (s2− f2) on the server, which derives the
model (θR+1,mR+1).
for r = R+ 1, R+ 2, . . . , 2R do

Sample clients Cr ⊂ [N].
for each client c ∈ Cr do

Transmit (θr ◦ (1− m̂),mr) to client c. Set the local

model to θrc = θ̂c + θr ◦ (1− m̂).
Perform local training with mask mr

◦ (1 − m̂) for
E epochs.
Transmit the updated model parameters θr+1

c ◦ (1−
m̂) from client c to the server.

end for
Aggregate the received parameters on the server to de-
rive θ̄r+1, θr+1 = θ̄r+1 + θ ,mr+1 = mr.
if (r −R) mod ∆R = 0 and r < (R+Rend) then

(θr+1,mr+1)← TopkPrune(θr+1, s2).
(θr+1,mr+1)← RandomGrow(θr+1, s2 − f2).

else if r = (R+Rend) then
(θr+1,mr+1)← TopkPrune(θr+1, s2).

end if
end for

(s2−f2). In each round, we first sample clients and transmit
the model parameters and masks to them. If a client has not
been sampled after the R-th round, we need to transmit both
the server model and the mask of the frozen parameters m̂
to the client. Then the frozen parameters will be saved in
this client. If this client is sampled again in a later round, we
only need to transmit the unfrozen parameters θr ◦ (1− m̂)
to the client, which significantly reduces the communication
costs. Specifically, the nonzero parameters in θr are (1− s2)
fraction of the total parameters, in which (1−s1) of the total
parameters have been frozen. Thus only (s1−s2) fraction of
the total parameters is necessary to be transmitted between
the server and the clients. From round (R+1) to round (R+
Rend), we readjust the mask every ∆R rounds. At the round
(R+Rend), we prune the parameters to sparsity s2 with the
mask remaining unchanged finally.

Discussions on the Proposed Mask
Readjustment-on-Server Method

As discussed in FedDST (Bibikar et al. 2022), when mask
readjustment is performed on clients, each client submits a
“vote” to the server regarding the mask readjustment. The
server then determines how to adjust the mask based on the
collected “votes”. For this method, FedDST suggests setting
the mask readjustment ratio in the range of 0.001 to 0.05,
which is much smaller than that of regular DST. A larger
readjustment ratio will prevent the mask on the server from

18353

converging to an optimal state, thereby reducing the accu-
racy of the sparse model. However, we find that setting the
mask readjustment ratio in the range of 0.001 to 0.05 can-
not significantly improve model accuracy compared with the
RandomMask method in which the mask readjustment ratio
is 0. Experimental results in (Bibikar et al. 2022) illustrate
that FedDST usually can only improve the accuracy by 1%
based on the RandomMask method.

To further improve the model accuracy achieved by Fed-
DST, we propose the framework to readjust the mask on the
server instead of clients. This approach has been explored in
several earlier works (Jiang et al. 2022; Huang et al. 2023).
However, these methods fail to address the challenges of
non-IID data, particularly the incomparability of gradients
across clients in non-IID environments.

In this case, we set a higher mask readjustment ratio than
that of FedDST. When we set the target sparsity to s and the
differential sparsity to f , the readjustment ratio is given by

α = f
1−s

. As the server does not contain the gradient of the

aggregated model, we choose to randomly grow the model
from sparsity s to (s− f), transmitting the model with spar-
sity (s − f) to the clients for training and pruning the up-
dated aggregated model back to sparsity s after ∆R rounds.
In our method, since we include a differential sparsity f , we
increase the communication cost and computation FLOPs
by α× in the rounds that we readjust the masks (rounds 1
to Rend and rounds R + 1 to R + Rend). As we suggest
setting the readjustment ratio to 0.5, this increase will be
50% in each round when we readjust the masks. However,
we only need a quarter of the total rounds for mask read-
justment by setting Rend = R

4
, thus the differential sparsity

will not highly affect the overall communication cost and
computation FLOPs. When we reduce the total number of
rounds while maintaining the same overall communication
cost and computation FLOPs as other methods, we achieve
significantly higher model accuracy.

Discussions on the Proposed Parameter-Freezing
Method

Communication Analysis. Assume the target sparsity is s1
and s2 in our first and second steps, respectively, where
s1 > s2 and both s1 and s2 are between 0 and 1. The com-
munication cost in each round is approximately (1−s1) and
(s1 − s2) fraction of the dense model in the first and sec-
ond steps, respectively (the exact cost can be affected by
the differential sparsity, mask, and biases). For the sparse
training methods without parameter-freezing, the communi-
cation cost in each round is approximately (1 − s2) of the
dense model when the target sparsity is s2. In practice, we
set s1 = 1+s2

2
, thus that 1 − s1 = s1 − s2 = 1−s2

2
. The

communication cost in each round is approximately one-half
of a sparse training method without the parameter-freezing
method.

Computation Analysis. The computation in training a
DNN is composed of three phases, namely, forward propa-
gation, backward propagation, and parameter gradient com-
putation. These three phases have equal FLOPs in theory.
In our first step, the FLOPs are (1 − s1) fraction of train-

Commu. Cost (GB) 4 8 12 16

Tra. FLOPs (×1013) 0.23 0.46 0.69 0.92

FedAvgM (dense) 24.43 33.87 37.07 40.52

FedProx (dense) 23.54 34.01 39.08 42.56

FedDST 35.41 42.27 46.72 50.67

FedDST+FedProx 33.03 43.18 46.66 49.69

PFFDST (ours) 39.21 47.35 48.55 55.87

Table 1: Experiment results of PFFDST compared with other
dense and sparse methods given cumulative bandwidth lim-
its, on non-IID CIFAR-10 using LeNet. We set s = 0.8.

ing the dense model for all these three phases. In our sec-
ond step, the FLOPs are (1 − s2) of the dense model for
forward propagation and backward propagation phase. Our
FLOPs are only (s1 − s2) of the dense model for parame-
ter gradient computation phase since we freeze the parame-
ters obtained in the first step. In practice, we set s1 = 1+s2

2

and we use the same number of rounds in the first and
second steps. Therefore, the average FLOPs per round are
1

2
(1 − s1) +

1

2
(2
3
(1 − s2) +

1

3
(s1 − s2)) = 2

3
(1 − s2)

of the dense model. For sparse training without parameter-
freezing and target sparsity being s2, the training FLOPs are
(1− s2) fraction of the dense model. It can be observed that
parameter-freezing reduces the training FLOPs by one-third
with the same target sparsity s2.

Experiments

Experimental Setups

This paper evaluates the performance of a proposed frame-
work, PFFDST1, against established FL techniques on
CIFAR-10 (Krizhevsky, Hinton et al. 2009) and CIFAR-100
(Krizhevsky, Hinton et al. 2009) datasets using LeNet (Le-
Cun et al. 1998) and ResNet-18 (He et al. 2016) models.
The datasets are partitioned across multiple clients using a
Dirichlet distribution (α = 0.1) to simulate non-IID data set-
tings. LeNet experiments are evaluated based on the highest
accuracy, aligning with established FedDST (Bibikar et al.
2022) benchmarks. In the experiments using ResNet-18,
we report the average accuracy with error bounds to pro-
vide a comprehensive performance assessment. These error
bounds, derived from multiple experimental runs, offer a ro-
bust measure of the variability in performance and enhance
the statistical significance of the reported average accuracy.

Specifically, PFFDST is compared against several dense
baselines (FedAvg (McMahan et al. 2017), FedProx (Li et al.
2020b)) and sparse baselines (FedDST (Bibikar et al. 2022),
FedDST+FedProx (Bibikar et al. 2022)). We conduct ex-
periments with varying target sparsities (s). For LeNet, we
fix s = 0.8, while for ResNet-18, we explore a range of
sparsities: s ∈ 0.9, 0.95, 0.98, 0.99. PFFDST configurations
utilize two sparsity levels: s1 = (s + 1)/2 and s2 = s,

1Code and Appendix: https://github.com/Dawns14/pffdst.git

18354

Commu. Cost (GB) 34 68 102 136 17 34 51 68

Tra. FLOPs (×1013) 16 32 48 64 8 16 24 32

FedAvgM (dense) 29.76±1.7 42.86±1.7 48.60±2.2 51.49±2.2 21.74±1.4 29.76±1.7 37.62±2.2 42.86±1.7

FedProx(dense) 31.17±2.1 40.81±1.5 50.89±2.8 53.25±2.2 21.52±2.9 31.17±2.1 35.94±2.1 40.81±1.5

s = 0.9 s = 0.95

FedDST 53.41±1.8 58.92±1.4 58.96±1.5 60.51±1.4 51.92±1.1 54.69±1.3 56.18±1.5 56.83±1.8

FedDST+FedProx 51.70±1.9 56.05±0.6 58.64±0.8 60.70±1.7 51.07±1.5 54.98±2.2 55.84±1.9 57.49±1.2

PFFDST (ours) 57.81±3.1 61.59±0.4 64.01±0.4 64.18±0.5 56.94±1.3 59.16±1.3 60.03±0.7 61.89±0.5

Table 2: Experiment results of PFFDST compared with other dense and sparse methods given cumulative bandwidth limits, on
non-IID CIFAR-10 using ResNet-18. We set s = 0.9, 0.95.

Commu. Cost (GB) 34 68 102 136 17 34 51 68

Train. FLOPs (×1013) 16 32 48 64 8 16 24 32

FedAvgM (dense) 20.20±0.4 26.76±0.8 29.46±0.4 32.56±0.7 13.94±0.4 20.20±0.4 24.58±0.7 26.76±0.8

FedProx(dense) 20.42±0.8 25.83±0.2 29.17±0.5 31.44±0.6 14.47±0.9 20.42±0.8 23.68±0.5 25.83±0.2

s = 0.9 s = 0.95

FedDST 31.31±0.4 33.67±0.3 34.18±0.5 34.90±0.4 30.28±0.2 31.91±0.4 32.96±0.2 33.17±0.5

FedDST+FedProx 31.42±0.5 33.48±0.6 34.23±0.5 34.78±0.9 30.60±0.5 32.00±0.3 32.91±0.2 33.16±0.3

PFFDST (ours) 38.85±0.1 39.47±0.2 40.51±0.3 40.55±0.3 37.16±0.6 37.92±0.6 38.96±0.1 40.08±1.1

Table 3: Experiment results of PFFDST compared with other dense and sparse methods given cumulative bandwidth limits, on
non-IID CIFAR-100 using ResNet-18. We set s = 0.9, 0.95.

with differential sparsities f1 = f2 = (1 − s)/4 to control
communication overhead. The number of training epochs is
set to 3 for FedDST and 2 for PFFDST to maintain com-
parable FLOPs. Additional parameters include ∆R = 10,
Rend = total rounds/8, 400 clients for LeNet, 200 clients
for ResNet-18, and 20 randomly selected clients per com-
munication round. The implementation leverages PyTorch
(Paszke et al. 2019) on a server equipped with 8 A6000
GPUs, with detailed hyperparameter settings outlined in Ap-
pendix A.

Performance Evaluation

PFFDST achieves superior performance compared to base-
line methods on the CIFAR-10 dataset using the LeNet net-
work, as shown in Table 1. Following the methodology of
FedDST (Bibikar et al. 2022), we report the highest testing
accuracy achieved across 10 runs with a fixed sparsity level
of 0.8 (as in FedDST). Notably, PFFDST achieves an av-
erage accuracy improvement of 4% over the FedDST and
FedDST+FedProx method, even under low communication
cost and training FLOPs constraints.

To further evaluate the performance of PFFDST, we ex-
tend our analysis to larger and more complex networks, such
as ResNet-18. Considering the large number of parameters
and the complexity of the ResNet-18 network, multiple spar-
sity levels significantly affect the network’s trainable param-
eters. Therefore, we compare the performance of PFFDST

under different sparsity levels based on the ResNet-18 net-
work. For model accuracy, we repeat each experiment 7
times, discard the highest and lowest values, and report the
mean and standard deviation based on the remaining 5 re-
sults on CIFAR-10 and CIFAR-100 datasets for both meth-
ods. Table 2 shows the results of applying sparsity ratios
s = 0.9, 0.95 on the CIFAR-10 dataset based on the ResNet-
18 network. Our proposed PFFDST method shows signif-
icant performance improvement under multiple data trans-
mission constraints. The most notable improvement is ob-
served at a data transmission limit of 17GB and Training
FLOPs of 8 ∗ 1013, with an accuracy increase of 5%. On the
more challenging CIFAR-100 dataset, which has a greater
number of categories, the results in Table 3 further empha-
size the effectiveness of PFFDST, with an average accu-
racy increase of 6%. We perform additional experiments un-
der extreme sparsity settings (s = 0.98, 0.99), with the re-
sults presented in Appendix B. Furthermore, we extend our
analysis by comparing PFFDST with other recent competi-
tive methods, such as FedTiny (Huang et al. 2023), FedMef
(Huang et al. 2024), and FLASH (Babakniya et al. 2023),
and evaluating its performance on advanced transformer-
based models. More detailed experimental results are pro-
vided in Appendix C.

Overall, our analysis indicates that PFFDST can adapt
to various sparsity levels, consistently showing performance
improvements. Additionally, when targeting the same accu-

18355

References
Abdulrahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.;
Talhi, C.; and Guizani, M. 2021. A Survey on Federated
Learning: The Journey From Centralized to Distributed On-
Site Learning and Beyond. IEEE Internet of Things Journal,
8(7): 5476–5497.

Albasyoni, A.; Safaryan, M.; Condat, L.; and Richtárik, P.
2020. Optimal gradient compression for distributed and fed-
erated learning. arXiv preprint arXiv:2010.03246.

Aledhari, M.; Razzak, R.; Parizi, R. M.; and Saeed, F. 2020.
Federated Learning: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Access, 8: 140699–
140725.

Babakniya, S.; Kundu, S.; Prakash, S.; Niu, Y.; and Aves-
timehr, S. 2023. Revisiting Sparsity Hunting in Federated
Learning: Why does Sparsity Consensus Matter? Transac-
tions on Machine Learning Research.

Bernstein, J.; Wang, Y.-X.; Azizzadenesheli, K.; and Anand-
kumar, A. 2018. signSGD: Compressed optimisation for
non-convex problems. In International Conference on Ma-
chine Learning, 560–569. PMLR.

Bibikar, S.; Vikalo, H.; Wang, Z.; and Chen, X. 2022. Feder-
ated dynamic sparse training: Computing less, communicat-
ing less, yet learning better. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, 6080–6088.

Chen, C.; Xu, H.; Wang, W.; Li, B.; Li, B.; Chen, L.;
and Zhang, G. 2021a. Communication-Efficient Federated
Learning with Adaptive Parameter Freezing. In 2021 IEEE
41st International Conference on Distributed Computing
Systems (ICDCS), 1–11.

Chen, C.; Xu, H.; Wang, W.; Li, B.; Li, B.; Chen, L.;
and Zhang, G. 2024. Synchronize Only the Immature Pa-
rameters: Communication-Efficient Federated Learning By
Freezing Parameters Adaptively. IEEE Transactions on Par-
allel and Distributed Systems, 35(7): 1155–1173.

Chen, J.; Xu, K.; Wang, Y.; Cheng, Y.; and Yao, A. 2022.
Dropit: Dropping intermediate tensors for memory-efficient
dnn training. arXiv preprint arXiv:2202.13808.

Chen, M.; Shlezinger, N.; Poor, H. V.; Eldar, Y. C.; and
Cui, S. 2021b. Communication-efficient federated learning.
Proceedings of the National Academy of Sciences, 118(17):
e2024789118.

Chen, T.; Frankle, J.; Chang, S.; Liu, S.; Zhang, Y.; Carbin,
M.; and Wang, Z. 2021c. The lottery tickets hypothesis for
supervised and self-supervised pre-training in computer vi-
sion models. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 16306–16316.

Chen, T.; Frankle, J.; Chang, S.; Liu, S.; Zhang, Y.; Wang,
Z.; and Carbin, M. 2020. The lottery ticket hypothesis for
pre-trained bert networks. Advances in neural information
processing systems, 33: 15834–15846.

Frankle, J.; and Carbin, M. 2018. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635.

Gale, T.; Elsen, E.; and Hooker, S. 2019. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574.

Han, S.; Mao, H.; and Dally, W. J. 2015. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

Hoefler, T.; Alistarh, D.; Ben-Nun, T.; Dryden, N.; and
Peste, A. 2021. Sparsity in deep learning: Pruning and
growth for efficient inference and training in neural net-
works. Journal of Machine Learning Research, 22(241):
1–124.

Huang, H.; Zhang, L.; Sun, C.; Fang, R.; Yuan, X.; and Wu,
D. 2023. Distributed pruning towards tiny neural networks
in federated learning. In 2023 IEEE 43rd International Con-
ference on Distributed Computing Systems (ICDCS), 190–
201. IEEE.

Huang, H.; Zhuang, W.; Chen, C.; and Lyu, L. 2024. Fed-
Mef: Towards Memory-efficient Federated Dynamic Prun-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 27548–27557.

Isik, B.; Pase, F.; Gunduz, D.; Weissman, T.; and Zorzi, M.
2022. Sparse random networks for communication-efficient
federated learning. arXiv preprint arXiv:2209.15328.

Isik, B.; Weissman, T.; and No, A. 2022. An information-
theoretic justification for model pruning. In International
Conference on Artificial Intelligence and Statistics, 3821–
3846. PMLR.

Jiang, Y.; Wang, S.; Valls, V.; Ko, B. J.; Lee, W.-H.; Leung,
K. K.; and Tassiulas, L. 2022. Model pruning enables effi-
cient federated learning on edge devices. IEEE Transactions
on Neural Networks and Learning Systems, 34(12): 10374–
10386.

Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2021. Advances and open problems
in federated learning. Foundations and trends® in machine
learning, 14(1–2): 1–210.

Khan, L.; et al. 2021. Privacy and Security Challenges in
the Internet of Things (IoT). In Proceedings of the 2021
Conference on Internet of Things.

Konečnỳ, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.;
Suresh, A. T.; and Bacon, D. 2016. Federated learning:
Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492.

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.

Li, A.; Sun, J.; Wang, B.; Duan, L.; Li, S.; Chen, Y.; and
Li, H. 2020a. Lotteryfl: Personalized and communication-
efficient federated learning with lottery ticket hypothesis on
non-iid datasets. arXiv preprint arXiv:2008.03371.

18357

Li, H.; Ota, K.; and Dong, M. 2018. Learning IoT in edge:
Deep learning for the Internet of Things with edge comput-
ing. IEEE network, 32(1): 96–101.

Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2020b. Federated optimization in heteroge-
neous networks. Proceedings of Machine learning and sys-
tems, 2: 429–450.

Li, Z.; Chen, J.; Zhang, P.; Huang, H.; and Li, G. 2024. DS-
FedCon: Dynamic Sparse Federated Contrastive Learning
for Data-Driven Intelligent Systems. IEEE Transactions on
Neural Networks and Learning Systems.

Lin, Y.; Han, S.; Mao, H.; Wang, Y.; and Dally, B. 2018.
Deep Gradient Compression: Reducing the Communication
Bandwidth for Distributed Training. In International Con-
ference on Learning Representations.

Liu, J.; Xu, Z.; Shi, R.; Cheung, R. C.; and So, H. K. 2020.
Dynamic sparse training: Find efficient sparse network from
scratch with trainable masked layers. In International Con-
ference on Learning Representations.

McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelli-
gence and statistics, 1273–1282. PMLR.

Mitchell, N.; Ballé, J.; Charles, Z.; and Konečnỳ, J. 2022.
Optimizing the communication-accuracy trade-off in fed-
erated learning with rate-distortion theory. arXiv preprint
arXiv:2201.02664.

Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; and Guizani,
M. 2018. Deep learning for IoT big data and streaming an-
alytics: A survey. IEEE Communications Surveys & Tutori-
als, 20(4): 2923–2960.

Mohtashami, A.; Jaggi, M.; and Stich, S. 2022. Masked
training of neural networks with partial gradients. In Inter-
national Conference on Artificial Intelligence and Statistics,
5876–5890. PMLR.

Mostafa, H.; and Wang, X. 2019. Parameter efficient
training of deep convolutional neural networks by dynamic
sparse reparameterization. In International Conference on
Machine Learning, 4646–4655. PMLR.

Nguyen, D.; et al. 2021. Data Privacy in IoT: Challenges
and Solutions. In Proceedings of the 2021 Workshop on IoT
Security.

Ozfatura, E.; Ozfatura, K.; and Gündüz, D. 2021. Time-
correlated sparsification for communication-efficient feder-
ated learning. In 2021 IEEE International Symposium on
Information Theory (ISIT), 461–466. IEEE.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32.

Vogels, T.; Karimireddy, S. P.; and Jaggi, M. 2019. Pow-
erSGD: Practical Low-Rank Gradient Compression for Dis-
tributed Optimization. In Wallach, H.; Larochelle, H.;
Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Voigt, P.; and Von dem Bussche, A. 2017. The eu general
data protection regulation (gdpr). A Practical Guide, 1st Ed.,
Cham: Springer International Publishing, 10(3152676):
10–5555.

Wang, H.; Sievert, S.; Liu, S.; Charles, Z.; Papailiopoulos,
D.; and Wright, S. 2018. Atomo: Communication-efficient
learning via atomic sparsification. Advances in neural infor-
mation processing systems, 31.

Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; and Poor, H. V. 2020.
Tackling the objective inconsistency problem in heteroge-
neous federated optimization. Advances in neural informa-
tion processing systems, 33: 7611–7623.

Wimmer, P.; Mehnert, J.; and Condurache, A. 2020.
FreezeNet: Full Performance by Reduced Storage Costs. In
Proceedings of the Asian Conference on Computer Vision
(ACCV).

Wu, J.; Dai, T.; Guan, P.; Liu, S.; Gou, F.; Taherkordi, A.;
Li, Y.; and Li, T. 2024. FedAPT: Joint Adaptive Parame-
ter Freezing and Resource Allocation for Communication-
Efficient Federated Vehicular Networks. IEEE Internet of
Things Journal, 11(11): 19520–19536.

Zhang, C.; Patras, P.; and Haddadi, H. 2019. Deep learning
in mobile and wireless networking: A survey. IEEE Com-
munications surveys & tutorials, 21(3): 2224–2287.

Zhang, T.; Ye, S.; Zhang, K.; Tang, J.; Wen, W.; Fardad, M.;
and Wang, Y. 2018. A systematic dnn weight pruning frame-
work using alternating direction method of multipliers. In
Proceedings of the European conference on computer vision
(ECCV), 184–199.

18358

