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Abstract

Federated learning is a decentralized machine learning ap-
proach that consists of servers and clients. It protects data
privacy during model training by keeping the training data lo-
cally in each client. However, the requirement for the server
and clients to frequently synchronize the parameters of the
model brings a heavy burden to the communication links,
especially when the model size has grown drastically in re-
cent years. Several methods have been proposed to compress
the model size by sparsification to reduce the communica-
tion overhead, albeit with significant accuracy degradation.
In this work, we propose methods to better trade-off between
model accuracy and training efficiency in federated learn-
ing. Our first proposed method is a novel sparse mask read-
justment rule on the server and the second is a parameter-
freezing method during training on the clients. Experimental
results show that the model accuracy has significantly im-
proved when combining our proposed methods. For exam-
ple, compared with the previous state-of-the-art methods with
the same total amount of communication cost and computa-
tion FLOPs, the accuracy increases on average by 4% and
6% in our methods for CIFAR-10 and CIFAR-100 datasets
on ResNet-18, respectively. On the other hand, when target-
ing the same accuracy, the proposed method can reduce the
communication cost by 4-8 times for different datasets with
different sparsity levels.

Introduction

In the era of ubiquitous computing, training deep neural net-
works (DNNGs) often requires a substantial amount of data,
typically generated at the edge of widely used mobile and In-
ternet of Things (IoT) devices (Zhang, Patras, and Haddadi
2019; Mohammadi et al. 2018; Li, Ota, and Dong 2018).
This raises significant privacy concerns as centralizing such
data for training purposes poses risks to user confidential-
ity (Voigt and Von dem Bussche 2017; Khan et al. 2021;
Nguyen et al. 2021). To deal with these challenges, Fed-
erated Learning (FL) has emerged as a pivotal distributed
machine learning paradigm. Developed by (McMahan et al.
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2017) and further explored by (Kairouz et al. 2021), FL en-
ables multiple clients to collaboratively train a global model
without sharing local data. Instead, these clients contribute
by aggregating locally trained parameters, thereby preserv-
ing privacy and harnessing the collective power of data dis-
tributed across numerous devices.

In FL systems, substantial computational tasks are trans-
ferred from centralized cloud servers to edge devices with
constrained resources. To facilitate effective operation at the
edge, an FL system needs to enhance both the efficiency of
local training on the devices and the efficiency of data com-
munication across the network. Current DNNs have large
model sizes and computational requirements which pose
challenges for deployment and training on edge devices.
Some research has explored the use of sparse neural net-
works to create lightweight models for edge devices, aim-
ing to reduce inference latency(Gale, Elsen, and Hooker
2019; Chen et al. 2020, 2021c). On the other hand, im-
plementing FL frameworks on client devices such as mo-
bile phones often faces severe upload bandwidth limitations,
making it equally crucial to reduce the upload costs of FL.
algorithms. Prior work mitigates these constraints by con-
densing the models or messages into compact formats, such
as gradient compression (Lin et al. 2018; Vogels, Karim-
ireddy, and Jaggi 2019; Albasyoni et al. 2020). Similarly,
parameter-freezing offers another promising avenue for en-
hancing communication efficiency in FL. This technique,
which involves freezing specific model parameters during
training, has demonstrated the potential to significantly re-
duce data transfer without compromising accuracy (Chen
et al. 2021a, 2024; Wu et al. 2024).

To address both the computational challenge on edge de-
vices and the necessity for efficient communication in FL,
researchers have shifted their attention to methods that could
not only simplify the model but also ensure the efficiency
of data transmission. Recently, network pruning has been
proposed to alleviate the computation costs of deep mod-
els(Han, Mao, and Dally 2015; Zhang et al. 2018; Hoefler
et al. 2021), and the Lottery Ticket Hypothesis (Frankle and
Carbin 2018) suggests that this pruning has minimal, if any,
impact on model performance. This finding has spurred sig-
nificant interest in leveraging model pruning within FL to
reduce both computation and communication costs (Li et al.
2020a; Jiang et al. 2022; Bibikar et al. 2022). A notable ex-



ample of such a method is FedDST (Bibikar et al. 2022),
which has pioneered a highly influential workflow for FL
on extremely resource-constrained edge devices. By dynam-
ically extracting and training sparse sub-networks, FedDST
enables clients to work with smaller models, leading to sub-
stantial reductions in computation and communication costs.
FedDST has served as a foundation for numerous subse-
quent DST methods (Isik et al. 2022; Babakniya et al. 2023;
Huang et al. 2023; Li et al. 2024; Huang et al. 2024). How-
ever, these methods typically grant clients more “flexibility”
by allowing adjustments to the sparse mask locally. While
advantageous in non-independent and identically distributed
(non-IID) data settings, this personalized sparse mask train-
ing introduces a risk: mask mismatches (Babakniya et al.
2023), which can occur especially under high sparsity, po-
tentially undermining accuracy stability.

In this paper, we introduce Parameter Freezing-based
Federated Dynamic Sparse Training (PFFDST), a novel
method that inherits the advantages of FedDST while further
enhancing efficiency and accuracy in FL environments, par-
ticularly on resource-constrained edge devices. While other
methods (Isik et al. 2022; Babakniya et al. 2023; Huang
et al. 2023; Li et al. 2024; Huang et al. 2024) have built
upon FedDST to improve communication efficiency, this
work takes a different approach. Specifically, PFFDST lever-
ages parameter freezing, strategically freezing model pa-
rameters during sparse training to reduce the communica-
tion overhead associated with exchanging model updates,
which is particularly beneficial in large-scale deployments.
Moreover, PEFFDST introduces a novel server-side mask ad-
justment method to address inconsistencies between locally
trained masks and the global model, a prevalent challenge
in sparse training for FL. This method readjusts the mask
on the server with a differential sparsity, effectively balanc-
ing mask stability with the flexibility required for non-IID
data settings. Consequently, by synchronizing only the im-
mature parameters in sparse sub-networks instead of full
models, PFFDST, combined with server-side mask adjust-
ment, adapts more robustly to the challenges of non-1ID
data settings and achieves superior performance compared
to FedDST. The contributions of this paper are summarized
as follows:

1. We propose a novel mask readjustment method for fed-
erated dynamic sparse training to improve model accu-
racy. Different from FedDST which readjusts the mask
on clients, our method readjusts masks on the server with
a differential sparsity which allows a larger readjustment
rate and achieves higher accuracy based on the same
communication cost and computation FLOPs.

. We propose a parameter-freezing method for federated
dynamic sparse training to reduce communication costs
and computation FLOPs in each round. We approx-
imately reduce communication costs by one-half and
computation FLOPs by one-third on average in each
round beyond FedDST.

. Experimental results indicate that each of our proposed
methods improves the model accuracy compared with
FedDST under the same communication cost and com-
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putation FLOPs. When combining our proposed meth-
ods, we respectively improve the model accuracy on av-
erage by 4% and 6% on ResNet-18 (He et al. 2016) for
CIFAR-10 and CIFAR-100 datasets (Krizhevsky, Hinton
et al. 2009) compared with FedDST.

Related Work
Federated Learning

Federated Learning is a privacy-preserving approach to ma-
chine learning that enables model training across decentral-
ized devices without sharing raw data (Abdulrahman et al.
2021; Aledhari et al. 2020). In FL, a central server man-
ages the global model and periodically communicates with
clients. Clients download the latest model parameters, per-
form local training over multiple iterations, and then upload
their updates for global aggregation. FedAvg(McMahan
et al. 2017) is the most common global aggregation method,
which simply averages the model updates uploaded to the
server. System and statistical heterogeneity across clients
is a key challenge in FL. Methods like FedProx (Li et al.
2020b) and FedNova (Wang et al. 2020) achieve more sta-
ble and accurate convergence compared to FedAvg in highly
heterogeneous settings.

Besides the challenge of heterogeneity, communication
efficiency is another critical challenge in FL (Kone¢ny
et al. 2016; Chen et al. 2021b), particularly for resource-
constrained edge devices. To enhance communication ef-
ficiency in FL, one straightforward strategy involves com-
pressing model updates using methods like sparsification
(Ozfatura, Ozfatura, and Giindiiz 2021; Isik, Weissman, and
No 2022), quantization (Bernstein et al. 2018; Mitchell et al.
2022), and low-rank approximation (Mohtashami, Jaggi,
and Stich 2022; Wang et al. 2018). However, these meth-
ods still require training a dense network, which may not be
deployable on edge devices with limited memory and com-
putational resources.

Parameter-Freezing for FL

Parameter-freezing is a technique in machine learning that
can improve efficiency without significantly compromising
performance. It involves freezing specific model parameters
at their initial values during training, thereby reducing com-
putational and storage costs (Wimmer, Mehnert, and Con-
durache 2020). This technique has recently shown great po-
tential for enhancing communication efficiency in FL. For
instance, Chen et al. (Chen et al. 2021a, 2024) proposed
Adaptive parameter-freezing (APF), which identifies sta-
ble parameters and excludes them from synchronization, re-
ducing data transfer by over 60% without compromising
model accuracy. Similarly, Wu et al. (Wu et al. 2024) ex-
tended this concept to federated vehicular networks, com-
bining parameter-freezing with bandwidth allocation opti-
mization to minimize communication overhead and latency.
These methods effectively address the challenge of limited
network bandwidth in edge devices by selectively synchro-
nizing only necessary parameters.

However, these existing works primarily focus on ap-
plying parameter-freezing to dense networks. The potential
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Figure 1: Overview of the PFFDST framework.

of leveraging this technique within the context of dynamic
sparse training remains largely unexplored. This paper ad-
dresses this gap by proposing a novel approach that inte-
grates parameter-freezing into the dynamic sparse training
process. Unlike existing methods, our approach freezes both
the sparse mask and the corresponding weights, leading to
two key advantages: (1) direct control over the model’s spar-
sity structure, ensuring a consistently efficient representation
throughout training, and (2) a more synergistic optimization
process that can further reduce communication costs without
sacrificing accuracy.

Dynamic Sparse Training for FL

The introduction of the Lottery Ticket Hypothesis (LTH)
(Frankle and Carbin 2018), which posits that a sparse net-
work can be found at initialization, has proved the feasi-
bility of identifying effective sparse architectures from the
onset of training. The original paper proposed finding these
sparse networks by iteratively training the dense network us-
ing pruning techniques (Han, Mao, and Dally 2015; Zhang
et al. 2018; Hoefler et al. 2021). This process involves con-
tinuously removing unimportant weights and reassigning
the values of the remaining weights, ultimately yielding
lightweight neural networks with a low memory footprint
and reduced communication overhead. These characteristics
make them well-suited for deployment on edge devices, par-
ticularly in resource-constrained and bandwidth-restricted
FL scenarios.

Dynamic sparse training (DST) further advances this con-
cept as a dynamic process that extracts and trains sparse sub-
networks from the target full network (Mostafa and Wang
2019; Liu et al. 2020). Early works like LotteryFL (Li et al.
2020a) and PruneFL (Jiang et al. 2022) aimed to improve
communication efficiency in FL through DST. While both
LotteryFL and PruneFL suffer from the need to frequently
communicate large amounts of model information.
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FedDST (Bibikar et al. 2022), a widely adopted FL
method, addresses these limitations by dynamically extract-
ing and training sparse sub-networks and communicating
only these sub-networks to generate a globally optimal
sparse model, significantly reducing communication costs.
Building on this foundation, researchers have investigated
techniques for improved initialization, convergence, and ef-
ficiency. For instance, FLASH (Babakniya et al. 2023) and
FedTiny (Huang et al. 2023) focus on finding better initial
sparse masks before FL training, with FLASH also enabling
layer-wise sparsity for enhanced stability. DSFedCon (Li
et al. 2024) tackles performance by introducing a contrastive
loss, while FedMef (Huang et al. 2024) addresses memory
efficiency with DROPIT (Chen et al. 2022). Another work
(Isik et al. 2022) achieves a 32x reduction in communica-
tion by transmitting only binary mask updates. However, this
method demands significant client-side computation, which
is beyond the scope of this work.

Methodology

Figure 1 shows the overview of our proposed framework
which includes four stages. The first stage, Mask Readjust-
ment on Server, involves adjusting the optimal sparse mask
on the server every AR communication rounds through a
process of top-k pruning and random growth. The second
stage, Fixed Mask Training, involves training the global
model with the previously optimized sparse mask fixed,
which helps to achieve faster and more stable conver-
gence. The third and fourth stages are the parameter-freezing
stages, which start with freezing the previously learned opti-
mal parameters and mask, followed by randomly growing
the new mask and weights. Similar to the first stage, the
third stage (Figure 1(c)) readjusts the newly grown mask,
and the fourth stage (Figure 1(d)) fixes the final mask and
then continues training. This methodological approach aims



Algorithm 1: Mask readjustment on the server with differ-
ential sparsity

Algorithm 2: Parameter-freezing-based dynamic sparse
training

Input: Clients [IN] with local datasets, target sparsity si,
differential sparsity f1, AR, Renq, total rounds R, num-
ber of epochs E in each round.
Initialize server model (91, m?) at sparsity (s; — f1).
for r=1,2,...,Rdo
Sample clients C,. C [N].
for each client ¢ € C,. do
Transmit the server model (0", m") to client c.
Perform local training with mask m” for E epochs.
Transmit the updated model parameters 677! from
client c to the server.
end for
Aggregate the received parameters on the server to de-
rive 07T, mrtl = m",
if r mod AR=0and r < R.,q then
(0L m" 1) < TopkPrune(6™+!, s1).
(071 m"+) < RandomGrow(071, 51 — f1).
else if r = R.,,4 then
(071, m™1) < TopkPrune(6™+!, s1).
end if
end for

to refine and stabilize the learning process within federated
sparse training through strategic mask adjustments.

Proposed Framework

We first initialize a sparse network with parameters ' and
a sparse mask m! on the server, which follows FedDST
(Bibikar et al. 2022). Unlike (Bibikar et al. 2022), which
readjusts the masks on the clients, we readjust the masks on
the server. Assuming the target sparsity is s, we initialize a
network with sparsity (s; — f1), where f; denotes the dif-
ferential sparsity which is the difference between the spar-
sity of the grown model and target sparsity. In each round,
we first sample clients and transmit model parameters and
masks to them. After that, the model is trained in the sam-
pled clients with the masks for E' epochs. Thirdly, the model
parameters are transmitted from the sampled clients to the
server. Finally, we update (6", m") in different ways based
on the condition of the current round. We readjust the masks
on the server every AR rounds during the first R, rounds.
When readjusting masks, we first perform TopkPrune(-)
to prune the parameters to sparsity s; based on their magni-
tude. Then we perform RandomGrow(-) to randomly grow
the parameters, adjusting the network’s sparsity to (s; — f1).
At the R.,q round, we prune the parameters to sparsity sy,
with the mask remaining unchanged. The details of our pro-
posed DST method on FL are summarized in Algorithm 1.
We also propose a two-step parameter-freezing method to
reduce the communication costs in FL. The details of the
proposed method are summarized in Algorithm 2. Firstly,
we apply Algorithm 1 to train a model (6, m) with sparsity
s1. Secondly, we freeze all the non-zero parameters in € and
train a model with target sparsity so and differential sparsity
f2, and then randomly grow the model from sparsity s; to
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Input: Clients with local datasets, target sparsities s; and
s, differential sparsities f; and fo, AR, Renq, total
rounds 2R, number of epochs E in each round.
Input s1, f1, AR, Reng, total round R, and F to Algo-
rithm 1 to train a model (0, m).
Freeze the non-zero parameters in 6 and randomly grow
it to the sparsity (s2 — f2) on the server, which derives the
model (A1, mB+1).
for r=R+1,R+2,...,2R do
Sample clients C,. C [N].
for each client ¢ € C). do
Transmit (6" o (1 — 7i2), m") to client c. Set the local
model to 67 = 6. + 6" o (1 —1n).
Perform local training with mask m” o (1 — rn) for
FE epochs.
Transmit the updated model parameters 6771 o (1 —
m) from client c to the server.
end for
Aggregate the received parameters on the server to de-
rive 71 grtl = grtl 4 g mrtl = m7,
if r — R)mod AR=0and r < (R + Renq) then
(0T m™L) < Topk Prune(671, s).
(07T m"+1) < RandomGrow(071, 55 — fa).
elseif r = (R + R¢pq) then
(O m™HL) < Topk Prune(0+1, s5).
end if
end for

(s2 — f2). In each round, we first sample clients and transmit
the model parameters and masks to them. If a client has not
been sampled after the R-th round, we need to transmit both
the server model and the mask of the frozen parameters m
to the client. Then the frozen parameters will be saved in
this client. If this client is sampled again in a later round, we
only need to transmit the unfrozen parameters 6" o (1 — 1)
to the client, which significantly reduces the communication
costs. Specifically, the nonzero parameters in 8" are (1 — s2)
fraction of the total parameters, in which (1 — s;) of the total
parameters have been frozen. Thus only (s — s2) fraction of
the total parameters is necessary to be transmitted between
the server and the clients. From round (R + 1) to round (R +
Rena), we readjust the mask every A R rounds. At the round
(R + Rena), we prune the parameters to sparsity so with the
mask remaining unchanged finally.

Discussions on the Proposed Mask
Readjustment-on-Server Method

As discussed in FedDST (Bibikar et al. 2022), when mask
readjustment is performed on clients, each client submits a
“vote” to the server regarding the mask readjustment. The
server then determines how to adjust the mask based on the
collected “votes”. For this method, FedDST suggests setting
the mask readjustment ratio in the range of 0.001 to 0.05,
which is much smaller than that of regular DST. A larger
readjustment ratio will prevent the mask on the server from



converging to an optimal state, thereby reducing the accu-
racy of the sparse model. However, we find that setting the
mask readjustment ratio in the range of 0.001 to 0.05 can-
not significantly improve model accuracy compared with the
RandomMask method in which the mask readjustment ratio
is 0. Experimental results in (Bibikar et al. 2022) illustrate
that FedDST usually can only improve the accuracy by 1%
based on the RandomMask method.

To further improve the model accuracy achieved by Fed-
DST, we propose the framework to readjust the mask on the
server instead of clients. This approach has been explored in
several earlier works (Jiang et al. 2022; Huang et al. 2023).
However, these methods fail to address the challenges of
non-IID data, particularly the incomparability of gradients
across clients in non-1ID environments.

In this case, we set a higher mask readjustment ratio than
that of FedDST. When we set the target sparsity to s and the
differential sparsity to f, the readjustment ratio is given by
o= % As the server does not contain the gradient of the
aggregated model, we choose to randomly grow the model
from sparsity s to (s — f), transmitting the model with spar-
sity (s — f) to the clients for training and pruning the up-
dated aggregated model back to sparsity s after AR rounds.
In our method, since we include a differential sparsity f, we
increase the communication cost and computation FLOPs
by ax in the rounds that we readjust the masks (rounds 1
to Reng and rounds R + 1 to R + Renq). As we suggest
setting the readjustment ratio to 0.5, this increase will be
50% in each round when we readjust the masks. However,
we only need a quarter of the total rounds for mask read-
justment by setting Repq = %, thus the differential sparsity
will not highly affect the overall communication cost and
computation FLOPs. When we reduce the total number of
rounds while maintaining the same overall communication
cost and computation FLOPs as other methods, we achieve
significantly higher model accuracy.

Discussions on the Proposed Parameter-Freezing
Method

Communication Analysis. Assume the target sparsity is s;
and s, in our first and second steps, respectively, where
s1 > So and both s; and s, are between 0 and 1. The com-
munication cost in each round is approximately (1 — s;) and
(s1 — s2) fraction of the dense model in the first and sec-
ond steps, respectively (the exact cost can be affected by
the differential sparsity, mask, and biases). For the sparse
training methods without parameter-freezing, the communi-
cation cost in each round is approximately (1 — s2) of the
dense model when the target sparsity is so. In practice, we
set s = HT‘”, thusthat 1 — sy = 51 — §9 = 1‘% The
communication cost in each round is approximately one-half
of a sparse training method without the parameter-freezing
method.

Computation Analysis. The computation in training a
DNN is composed of three phases, namely, forward propa-
gation, backward propagation, and parameter gradient com-
putation. These three phases have equal FLOPs in theory.
In our first step, the FLOPs are (1 — s1) fraction of train-
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Commu. Cost (GB) | 4 g8 12 16
Tra. FLOPs (x10%%) | 023 046 0.69 0.92
FedAvgM (dense) 24.43 33.87 37.07 40.52
FedProx (dense) 2354 3401 39.08 42.56
FedDST 3541 4227 4672 50.67
FedDST+FedProx | 33.03 43.18 46.66 49.69
PFFDST (ours) 39.21 47.35 48.55 55.87

Table 1: Experiment results of PFFDST compared with other
dense and sparse methods given cumulative bandwidth lim-
its, on non-I1ID CIFAR-10 using LeNet. We set s = (.8.

ing the dense model for all these three phases. In our sec-
ond step, the FLOPs are (1 — s3) of the dense model for
forward propagation and backward propagation phase. Our
FLOPs are only (s; — s2) of the dense model for parame-
ter gradient computation phase since we freeze the parame-
ters obtained in the first step. In practice, we set s; = H%
and we use the same number of rounds in the first and
second steps. Therefore, the average FLOPs per round are
3(1—=s1) + 331 = s2) + 3(51 = 52)) = (1 — s2)
of the dense model. For sparse training without parameter-
freezing and target sparsity being s, the training FLOPs are
(1 — s9) fraction of the dense model. It can be observed that
parameter-freezing reduces the training FLOPs by one-third

with the same target sparsity ss.

Experiments
Experimental Setups

This paper evaluates the performance of a proposed frame-
work, PFFDST!, against established FL techniques on
CIFAR-10 (Krizhevsky, Hinton et al. 2009) and CIFAR-100
(Krizhevsky, Hinton et al. 2009) datasets using LeNet (Le-
Cun et al. 1998) and ResNet-18 (He et al. 2016) models.
The datasets are partitioned across multiple clients using a
Dirichlet distribution (o« = 0.1) to simulate non-IID data set-
tings. LeNet experiments are evaluated based on the highest
accuracy, aligning with established FedDST (Bibikar et al.
2022) benchmarks. In the experiments using ResNet-18,
we report the average accuracy with error bounds to pro-
vide a comprehensive performance assessment. These error
bounds, derived from multiple experimental runs, offer a ro-
bust measure of the variability in performance and enhance
the statistical significance of the reported average accuracy.

Specifically, PFFDST is compared against several dense
baselines (FedAvg (McMahan et al. 2017), FedProx (Li et al.
2020b)) and sparse baselines (FedDST (Bibikar et al. 2022),
FedDST+FedProx (Bibikar et al. 2022)). We conduct ex-
periments with varying target sparsities (s). For LeNet, we
fix s = 0.8, while for ResNet-18, we explore a range of
sparsities: s € 0.9,0.95,0.98,0.99. PFFDST configurations
utilize two sparsity levels: s; (s+1)/2 and s5 = s,

!Code and Appendix: https:/github.com/Dawns14/pffdst.git



Commu. Cost (GB)

34 68 102 136

17 34 51 68

Tra. FLOPs (x10'3)

16 32 48 64

8 16 24 32

FedAvgM (dense)
FedProx(dense)

29.76+£1.7 42.86+1.7 48.60+2.2 51.49+2.2
31.17+2.1 40.81+1.5 50.89+2.8 53.25+2.2

21.74+1.4 29.76+1.7 37.62+2.2 42.86+1.7
21.5242.9 31.1742.1 35.94+2.1 40.81+1.5

s=0.9

s=0.95

FedDST
FedDST+FedProx
PFFDST (ours)

53.41+1.8 58.92+1.4 58.96+1.5 60.51+1.4
51.70£1.9 56.05+0.6 58.64+0.8 60.70+1.7
57.81+£3.1 61.59+0.4 64.01+0.4 64.18+0.5

51.92+1.1 54.69+1.3 56.18+1.5 56.83+1.8
51.07+1.5 54.98+2.2 55.84+1.9 57.49+1.2
56.94+1.3 59.16+1.3 60.03+0.7 61.89+0.5

Table 2: Experiment results of PFFDST compared with other dense and sparse methods given cumulative bandwidth limits, on

non-IID CIFAR-10 using ResNet-18. We set s = 0.9, 0.95.

Commu. Cost (GB)

34 68 102 136

17 34 51 68

Train. FLOPs (x10'%) |

16 32 48 64

8 16 24 32

FedAvgM (dense)
FedProx(dense)

20.20+£0.4 26.76+0.8 29.46+0.4 32.56+0.7
20.42+0.8 25.834+0.2 29.17+0.5 31.44+0.6

13.94+0.4 20.20+0.4 24.58+0.7 26.76+0.8
14.47+0.9 20.424+0.8 23.68+0.5 25.83+0.2

s=0.9

s=0.95

FedDST
FedDST+FedProx
PFFDST (ours)

31.31+0.4 33.674+0.3 34.18+£0.5 34.90+0.4
31.4240.5 33.48+0.6 34.23+0.5 34.78+0.9
38.85+0.1 39.47+0.2 40.51+0.3 40.554+0.3

30.28+0.2 31.914+0.4 32.96+0.2 33.17+0.5
30.60+0.5 32.004+0.3 32.91+0.2 33.16+0.3
37.16+0.6 37.92+0.6 38.96+0.1 40.08+1.1

Table 3: Experiment results of PFFDST compared with other dense and sparse methods given cumulative bandwidth limits, on

non-IID CIFAR-100 using ResNet-18. We set s = 0.9,0.95.

with differential sparsities f; = fo = (1 — s)/4 to control
communication overhead. The number of training epochs is
set to 3 for FedDST and 2 for PFFDST to maintain com-
parable FLOPs. Additional parameters include AR = 10,
R.nq = total rounds/8, 400 clients for LeNet, 200 clients
for ResNet-18, and 20 randomly selected clients per com-
munication round. The implementation leverages PyTorch
(Paszke et al. 2019) on a server equipped with 8 A6000
GPUs, with detailed hyperparameter settings outlined in Ap-
pendix A.

Performance Evaluation

PFFDST achieves superior performance compared to base-
line methods on the CIFAR-10 dataset using the LeNet net-
work, as shown in Table 1. Following the methodology of
FedDST (Bibikar et al. 2022), we report the highest testing
accuracy achieved across 10 runs with a fixed sparsity level
of 0.8 (as in FedDST). Notably, PFFDST achieves an av-
erage accuracy improvement of 4% over the FedDST and
FedDST+FedProx method, even under low communication
cost and training FLOPs constraints.

To further evaluate the performance of PFFDST, we ex-
tend our analysis to larger and more complex networks, such
as ResNet-18. Considering the large number of parameters
and the complexity of the ResNet-18 network, multiple spar-
sity levels significantly affect the network’s trainable param-
eters. Therefore, we compare the performance of PFFDST
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under different sparsity levels based on the ResNet-18 net-
work. For model accuracy, we repeat each experiment 7
times, discard the highest and lowest values, and report the
mean and standard deviation based on the remaining 5 re-
sults on CIFAR-10 and CIFAR-100 datasets for both meth-
ods. Table 2 shows the results of applying sparsity ratios
s = 0.9,0.95 on the CIFAR-10 dataset based on the ResNet-
18 network. Our proposed PFFDST method shows signif-
icant performance improvement under multiple data trans-
mission constraints. The most notable improvement is ob-
served at a data transmission limit of 17GB and Training
FLOPs of 8 + 103, with an accuracy increase of 5%. On the
more challenging CIFAR-100 dataset, which has a greater
number of categories, the results in Table 3 further empha-
size the effectiveness of PFFDST, with an average accu-
racy increase of 6%. We perform additional experiments un-
der extreme sparsity settings (s = 0.98,0.99), with the re-
sults presented in Appendix B. Furthermore, we extend our
analysis by comparing PFFDST with other recent competi-
tive methods, such as FedTiny (Huang et al. 2023), FedMef
(Huang et al. 2024), and FLASH (Babakniya et al. 2023),
and evaluating its performance on advanced transformer-
based models. More detailed experimental results are pro-
vided in Appendix C.

Overall, our analysis indicates that PFFDST can adapt
to various sparsity levels, consistently showing performance
improvements. Additionally, when targeting the same accu-
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Figure 2: Comparison of the accuracy of PFFDST and its variants at three different sparsity levels s = {0.90, 0.95,0.98} with
varying communication costs on non-IID CIFAR-100 using ResNet-18.

racy, the proposed method can reduce communication costs
by 4-8 times for different datasets with varying sparsity lev-
els. This adaptability is crucial for real-world deployments,
where significant variations in computational resources and
data availability may occur.

Ablation Study

In previous experiments, the exceptional performance of
PFFDST was fully verified. However, PFFDST combines
two distinct techniques: mask readjustment on the server
with differential sparsity and parameter-freezing. This raises
the question of which method plays a decisive role. To
answer this, we conducted an ablation study on PFFDST.
We compared the baseline FedDST with its three variants:
(1) PFFDST without parameter-freezing (PFFDST w/o PF),
which incorporates only mask readjustment on the server
with differential sparsity; (2) PFFDST without server mask
readjustment (PFFDST w/o SMR), which incorporates only
parameter-freezing; and (3) the fully integrated version of
PFFDST. We conducted our ablation experiments on the
CIFAR-100 dataset using a ResNet-18 network to validate
the results. Furthermore, the impact of the readjustment ra-
tio is analyzed in Appendix D.

The impacts between PFFDST w/o PF and PFFDST
w/o SMR. Both PFFDST w/o PF and PFFDST w/o SMR
outperform FedDST in accuracy under all communication
cost constraints, showing the effectiveness of each strategy.
Under a 4GB communication limit (Figure 2(c)), PFFDST
w/o PF improves accuracy by 0.2%, whereas PFFDST w/o
SMR achieves a 2% gain, highlighting the dominant role
of parameter-freezing. At a 24GB communication limit,
PFFDST w/o PF improves accuracy by 2.8% over FedDST,
while PFFDST w/o SMR achieves a 1.6% gain. This rever-
sal suggests that mask readjustment with differential sparsity
becomes increasingly important as communication capacity
increases. Figure 2(a) and (b) present results for different
sparsity levels.

The impacts combining PFFDST w/o PF and PFFDST
w/o SMR. When PFFDST combines both strategies, it im-
proves on average by 6% compared to FedDST. This im-
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provement is significantly greater than that achieved by
methods that apply only one of the strategies. Overall, the
results highlight the effectiveness of combining these two
techniques within the PFFDST framework, especially in sce-
narios with constrained communication costs. These com-
plementary strategies work synergistically to enhance ac-
curacy, showcasing PFFDST’s adaptability across diverse
communication environments.

Conclusion

In this paper, we propose Parameter-Freezing-based Feder-
ated Dynamic Sparse Training (PFFDST), a framework that
can achieve higher model accuracy in federated learning
with lower communication cost and computation FLOPs.
The first method in our proposed framework is a novel
sparse mask readjustment rule and the second is a parameter-
freezing method during training. These two methods com-
plement each other, leading to a synergistic effect that fur-
ther enhances the performance of PFFDST. Experimental
results show that applying each method individually yields
better performance than FedDST. When we combine both
methods, PFFDST achieves significantly better performance
than FedDST. Specifically, we improve the model accu-
racy on average by 4% and 6% on ResNet-18 for CIFAR10
and CIFAR-100 respectively compared with FedDST un-
der the same communication cost and computation FLOPs.
Large language models represent a significant trend in artifi-
cial intelligence, showcasing superior capabilities in diverse
tasks, but their training in federated learning on resource-
limited devices faces significant computational and commu-
nication challenges. Future work can explore the potential
of PFFDST in federated large language models to facilitate
broader real-world applications.
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