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Abstract—Deep neural networks have achieved exceptional
performance across a wide range of applications but remain
susceptible to adversarial attacks. While most prior research
has focused on single-task scenarios, increasing attention is
being directed toward adversarial attacks targeting multiple
tasks simultaneously. However, existing methods often fail to
balance attack performance across tasks in a multi-task model.
These approaches typically aim to maximize the model’s overall
loss, neglecting task-specific attack difficulties, which results in
imbalanced attack performance among tasks. To address this
challenge, we propose a novel multi-task adversarial attack
method that ensures robust and balanced attack performance
across multiple tasks. Our approach dynamically updates task-
specific weighting factors through a min-max optimization during
the attack, optimizing the worst-case attack performance across
all tasks. Experimental results demonstrate that our method
significantly enhances the worst-case attack performance across
diverse datasets and attack strategies compared to existing
approaches. By dynamically adjusting the attack intensity on
the least vulnerable tasks, the min-max optimization significantly
improves overall attack effectiveness as well as the worst-case
performance by balancing the task weights.

Index Terms—multi-task learning, adversarial attacks, deep
learning.

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable

performance across a wide range of applications, as demon-

strated in various studies [1]–[3]. Despite their successes,

DNNs remain vulnerable to adversarial attacks [4], [5]. These

attacks involve adding subtle perturbations to input data, which

can cause the network to produce incorrect outputs [4], [6].

Often, these perturbations are small and imperceptible to the

human eye, yet they can significantly disrupt the model’s

performance [7], [8]. While much of the existing research

on adversarial attacks focuses on single-task scenarios, there

is a growing interest in attacks that target multiple tasks

simultaneously.

Corresponding author: Tianyun Zhang (t.zhang85@csuohio.edu).

Multi-task learning (MTL) is a subfield of machine learning

where multiple related tasks are learned concurrently [9]–

[11]. In MTL, a single model with shared parameters is

trained instead of training separate models for each task. This

approach improves model efficiency and generalization while

reducing computational and storage costs [12]–[14].

However, the shared parameters in MTL also create a unique

opportunity for adversarial attacks. An attacker could target

multiple tasks simultaneously within the shared model, which

could be particularly effective in systems that rely on several

interdependent tasks, such as autonomous driving. These sys-

tems perform various tasks, including object detection, depth

estimation, and normal detection. An attack on multiple com-

ponents of such systems could lead to significant disruption.

Multi-task adversarial attacks aim to generate subtle, often

imperceptible perturbations that degrade the performance of

all tasks effectively [8], [15].

A key challenge in existing multi-task adversarial attack

methods is balancing the attack effectiveness across different

tasks. In MTL frameworks, some tasks may be easier to attack

than others, leading to uneven performance degradation. This

imbalance results in an unsatisfactory overall attack effec-

tiveness, where some tasks are significantly impacted while

others are only marginally affected. Therefore, developing an

advanced attack method that balances the effectiveness across

tasks is crucial for ensuring a uniformly effective attack.

In this paper, we propose a novel multi-task adversarial

attack method to achieve robust attack performance across

different tasks. The min-max optimization is applied in our

proposed method, it can dynamically adjust the weighting

factors of each task to optimize the worst-case attack per-

formance across all tasks. Experimental results demonstrate

that our proposed method consistently improves the worst-case

attack performance on different datasets with different attack

strategies compared with prior methods.

Our main contributions in this paper are as follows:
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• We propose a novel multi-task adversarial attack method

to achieve robust attack performance across different

tasks. In our proposed method, the weighting factors

corresponding to different tasks are updated dynamically

during the adversarial attack, this can effectively optimize

the worst-case attack performance.

• We evaluate our proposed method on NYUv2 [16] and

Cityscapes [17] datasets with L2 and L∞ attack strate-

gies, based on the projected gradient descent (PGD)

algorithm [18]. Experimental results demonstrate that our

proposed method consistently improves the worst-case

attack performance compared with prior methods.

II. RELATED WORK

A. Multi-task Learning

Multi-task learning (MTL) is a machine learning paradigm

that trains multiple related tasks simultaneously, offering ben-

efits like improved data efficiency, reducing overfitting, and

enhancing generalization effectiveness [9]–[11]. It has gained

traction in specific fields such as natural language processing

and computer vision [19], [20]. MTL techniques are often cate-

gorized into areas like regularization, pre-training, relationship

learning, feature propagation, and optimization [2], [21]–[23].

Approaches to MTL can be divided into joint training and

multi-step training methods based on task relationships [8],

[19]. The field has progressed from traditional methods to

deep learning and pre-trained models, with recent innovations

focusing on task-promotable, task-agnostic training, and zero-

shot learning [20], [24]. Additionally, MTL’s application in

distributed and streaming contexts underscores their growing

versatilities [25].

B. Adversarial Attacks

Adversarial attacks pose a significant challenge for DNNs

by exploiting tiny perturbations that can drastically alter model

predictions [26], [27]. These perturbations, often imperceptible

to humans, expose critical weaknesses in DNN architectures

[4], [28], [29]. One influential method for generating adversar-

ial attacks is gradient optimization. [15] introduced universal

adversarial perturbations, which manipulate the gradient of

the loss function to fool classifiers. This work paved the way

for many gradient-based attack methods. In MTL, adversarial

attacks pose unique challenges due to the need to balance

multiple tasks. [30] addressed gradient imbalance in MTL with

GradNorm, a technique that normalizes gradients to ensure

balanced loss optimization across tasks, indirectly enhancing

robustness. [7] expanded adversarial attacks to MTL, showing

that multiple tasks could be attacked simultaneously. Recently,

a stealthy attack in MTL is proposed by [31] where the

targeted task is significantly attacked while non-targeted tasks

still preserve their original performance. [8], [32] further

explored the complexities of achieving robustness in MTL,

highlighting the intricate interactions between tasks. Different

from [8], [32] that applies equal weighting factors to attack

different tasks, we propose to update the weighting factors

dynamically in multi-task adversarial attacks.

III. METHODOLOGY

A. Problem Formulation

Assume we have a dataset with input data x, and the ground-

truth y = (y1, y2, ..., yi, ..., yk), where yi denotes the ground-

truth for the i-th task. Also, we have a pretrained multi-

task model for this dataset, with the loss function Li(x, yi)
corresponding to the i-th task. The multi-task adversarial

attack problem is given by

maximize
||δ||p≤ε,x+δ∈B

k
∑

i=1

wiLi(x+ δ, yi), (1)

where δ is the adversarial noise, ε constrains the strength of the

adversarial noise, and B is the box constraint to ensure that the

adversarial example is valid, wi denotes the weighting factor

corresponding to the i-th task, and k denotes the total number

of tasks. In prior works [8], [32], equal weighting factors are

given to all tasks, in which wi = 1/k for all i. Another

approach that may mitigate the imbalanced attack performance

on each task is normalization, in which wi = 1/Li(x, yi).
Different from the above approaches, we propose to for-

mulate multi-task adversarial attacks as a robust optimization

problem, which is given by

maximize
||δ||p≤ε,x+δ∈B

minimize
w∈P

k
∑

i=1

wiLi(x+ δ, yi) +
γ

2
‖w − l/k‖22,

(2)

where w denotes the collection of wi, P denotes the probabil-

ity simplex P = {w | lTw = 1, wi ∈ [0, 1], ∀i}, l denotes

an all-ones vector with the same size as w, and γ is a

regularization parameter. Here, the weighting factors wi are

the optimization variables that target on balancing the loss of

different tasks. The reason to include a regularization term in

this problem is to avoid deriving a one-hot vector for w and

thus it improves the generalizability to different tasks.

B. Problem Solving Algorithm

We apply the alternating projected gradient descent-ascent

(APGDA) method [33] to solve problem (2). Specifically,

we solve the outer maximization problem using projected

gradient ascent to generate adversarial attacks and solve the

inner minimization program using projected gradient descent

to adjust the weighting factors corresponding to different

tasks. The details of the solving algorithm are summarized

in Algorithm 1.

In Algorithm 1, when w is fixed, the update of δ is given

by

δ(t) = projX

(

δ(t−1) + α1∇δ

(

k
∑

i=1

wiLi(x+ δ(t−1), yi)
))

,

(3)

where α1 is the learning rate to update δ, projX (·) denotes the

Euclidean projection onto the set X = {δ | ||δ||p ≤ ε, x+ δ ∈
B}. The update of δ can be derived based on the prior PGD

adversarial attack [18].
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Algorithm 1 APGDA method to solve problem (2)

1: Input: input data x, and the ground-truth y =
(y1, y2, ..., yi, ..., yk), pretrained multi-task model and at-

tack steps T , w(0) = l/k.

2: for t = 1, 2, . . . , T do

3: outer maximization: fixing w = w(t−1), update adver-

sarial noise δ(t) with projected gradient ascent.

4: inner minimization: fixing δ = δ(t), update w(t) with

projected gradient descent

5: end for

For the inner minimization problem, w is updated by

w(t) = projP

(

w(t−1) − α2∇wf(w
(t−1))

)

, (4)

where f(w) =
∑k

i=1 wiLi(x+δ, yi)+
γ
2 ‖w− l/k‖22, α2 is the

learning rate to update w, and projP (·) denotes the Euclidean

projection onto the simplex set P , the closed-form solution of

this kind of Euclidean projection is derived by [34].

IV. EXPERIMENTS

A. Experimental Settings

To evaluate the effectiveness of our proposed robust multi-

task adversarial attack method, we implement the experiments

on two multi-domain datasets: NYUv2 [16] and Cityscapes

[17].

By default, three tasks are trained on the NYUv2 dataset:

13-class semantic segmentation, depth estimation, and surface

normal prediction. In the Cityscapes dataset, we also train

three tasks respectively: 19-class semantic segmentation, dis-

parity estimation (i.e., inverse depth estimation), and a newly

proposed 10-class part segmentation following [35]. In the

multi-task adversarial attacks, we compare the performance

of the prior methods with the proposed min-max optimization

method. All the basic settings in the experiments follow the

multi-task attention network proposed by [36] which is based

on ResNet-50 [37].

B. Evaluation Metrics

In the NYUv2 dataset, three tasks are evaluated via mean

intersection over union (mIoU), absolute error (aErr), and

mean angle distances (mDist). For the Cityscapes dataset, both

the semantic segmentation and part segmentation tasks are

evaluated by mean intersection over union (mIoU), and the

disparity estimation task is evaluated by absolute error (aErr)

followed by [38]. We also report the overall multi-task attack

performance 4MTL following [39] by

4MTL =
1

k

k
∑

i=1

4i, (5)

where i denotes each task, and k denotes the total number

of tasks. The attack effect of each task (denoted by 4i) is

calculated by

4i =

{

Mm,i−Mb,i

Mb,i
, if Mm,i ≥ Mb,i

Mb,i−Mm,i

Mm,i
, otherwise,

(6)

where M denotes the performance after attack, m de-

notes each task, and b is the baseline performance for each

task. If a higher value means better effectiveness in the

corresponding metric, we calculate the difference between

the attacked performance and baseline, then divided by the

baseline performance. Similarly, if a lower value means better

effectiveness in the corresponding metric, the difference is

calculated between baseline and attacked performance, then

divided by the attacked performance.

Furthermore, we extract the performance of the most dif-

ficult task to be attacked (i.e., the worst-case performance)

which is denoted by 4Wor. The worst-case performance could

be formulated as (7).

4Wor = min
i

4i (7)

C. Experimental Results and Analysis

TABLE I
EXPERIMENTAL RESULTS USING PGD L2 ATTACK METHOD ON NYUV2

DATASET. FOR EACH TASK, “↑” MEANS HIGHER BETTER AND “↓” MEANS

LOWER BETTER.

Tasks Segment Depth Normal 4MTL 4Wor

Metrics [mIoU(↑)] [aErr(↓)] [mDist(↓)] (%) (%)

Baseline 46.56 40.57 23.41 0 0

ε=5

Equal 18.63 84.43 34.70 -48.15 -32.52

Normalize 18.23 118.31 38.22 -55.10 -38.75

Min-max 18.71 126.39 41.33 -57.02 -43.35

ε=10

Equal 12.27 104.65 40.16 -58.86 -41.71

Normalize 11.23 156.25 45.09 -66.00 -48.08

Min-max 11.86 174.39 51.48 -68.60 -54.53

TABLE II
EXPERIMENTAL RESULTS USING PGD L2 ATTACK METHOD ON

CITYSCAPES DATASET. FOR EACH TASK, “↑” MEANS HIGHER BETTER AND

“↓” MEANS LOWER BETTER.

Tasks Segment Part Seg Disp 4MTL 4Wor

Metrics [mIoU(↑)] [mIoU(↑)] [aErr(↓)] (%) (%)

Baseline 54.20 51.82 81.51 0 0

ε=5

Equal 24.04 29.92 264.38 -55.69 -42.26

Normalize 26.45 27.81 156.78 -48.51 -46.33

Min-max 26.13 27.76 220.66 -53.76 -46.43

ε=10

Equal 19.53 20.18 333.53 -66.86 -61.05

Normalize 20.82 20.89 195.62 -59.87 -58.33

Min-max 20.35 20.10 369.39 -67.19 -61.21

We evaluate the attack effects by varying the pixel levels of

input images in two scenarios: PGD L∞ and PGD L2 attacks.

In the PGD L∞ attack scenario, the perturbation parameter ε is

set to 2/255, 4/255, 8/255, and 16/255, representing changes

of 1, 2, 4, and 8 pixel levels, respectively. For PGD L2 attack,

we set ε to 5 and 10.

Tables I and II present the results of the PGD L2 attack

method on NYUv2 and Cityscapes datasets, respectively.

Note that the baseline model indicates that ε=0 without any
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adversarial attack. In the “Equal” method, the total loss is

calculated as the sum of losses from three tasks which means

all those three tasks are given equal weighting factors. It shows

a noticeable imbalance in attack effects across the three tasks.

To address this problem, a normalization strategy is em-

ployed, which incorporates a task-specific weighting factor to

each task to balance the effects among the tasks. However,

the normalization method fails to achieve a consistent perfor-

mance on different datasets. Generally, it performs well on the

NYUv2 dataset but performs quite poorly on the Cityscapes

dataset especially when ε=10. Comparatively, our proposed

min-max optimization method consistently achieves robust

attack performance across different tasks in two datasets with

different values of ε. The min-max method highly improves the

worst-case attack performance and also maintains the overall

attack performance compared with other methods. Specifically,

the min-max optimization method is applied to further fine-

tune the weighting factors of each task automatically, aiming at

a more balanced and effective attack. Both the overall as well

as the worst-case attack effects could be further enhanced in

both NYUv2 and Cityscapes datasets, except ε=5 in Cityscapes

compared with the “Equal” method.

TABLE III
EXPERIMENTAL RESULTS USING PGD L∞ ATTACK METHOD ON NYUV2
DATASET. FOR EACH TASK, “↑” MEANS HIGHER BETTER AND “↓” MEANS

LOWER BETTER.

Tasks Segment Depth Normal 4MTL 4Wor

Metrics [mIoU(↑)] [aErr(↓)] [mDist(↓)] (%) (%)

Baseline 46.56 40.57 23.41 0 0

ε=2/255

Equal 25.28 67.28 29.82 -35.64 -21.50

Normalize 26.21 86.09 31.81 -40.99 -26.40

Min-max 26.69 87.99 33.00 -41.88 -29.06

ε=4/255

Equal 15.72 89.7 35.96 -51.97 -34.89

Normalize 15.87 123.93 39.44 -57.94 -40.64

Min-max 17.05 132.41 43.59 -59.68 -46.29

ε=8/255

Equal 8.85 113.42 42.31 -63.30 -44.67

Normalize 8.45 167.49 47.35 -69.40 -50.56

Min-max 9.97 189.52 56.12 -71.82 -58.29

ε=16/255

Equal 4.90 130.65 47.04 -69.55 -50.23

Normalize 4.11 205.39 52.90 -75.72 -55.74

Min-max 5.41 234.53 66.91 -78.70 -65.01

The results of multi-task adversarial attacks using PGD

L∞ attack method on NYUv2 and Cityscapes datasets are

presented in Tables III and IV, respectively. Similar to the

case of PGD L2 attack, the normalization method performs

well in maintaining the worst-case performance only for the

NYUv2 dataset. For the Cityscapes dataset, the normalization

method achieves relatively worse overall performance and

worst-case performance when ε is 8/255 or 16/255. Different

from the normalization method, the min-max optimization

method consistently performs well on the overall performance

as well as worst-case performance for those two datasets

with different values of ε. In the NYUv2 dataset, min-max

significantly improves the overall attack effect as well as

TABLE IV
EXPERIMENTAL RESULTS USING PGD L∞ ATTACK METHOD ON

CITYSCAPES DATASET. FOR EACH TASK, “↑” MEANS HIGHER BETTER AND

“↓” MEANS LOWER BETTER.

Tasks Segment Part Seg Disp 4MTL 4Wor

Metrics [mIoU(↑)] [mIoU(↑)] [aErr(↓)] (%) (%)

Baseline 54.20 51.82 81.51 0 0

ε=2/255

Equal 28.23 37.00 215.27 -46.21 -28.60

Normalize 29.36 32.63 142.78 -41.92 -37.03

Min-max 30.34 32.85 178.71 -45.00 -37.12

ε=4/255

Equal 18.42 23.06 341.04 -65.87 -55.50

Normalize 21.03 22.96 195.13 -58.37 -55.65

Min-max 22.22 23.32 331.40 -63.14 -56.10

ε=8/255

Equal 9.57 11.76 541.38 -81.53 -77.30

Normalize 12.45 13.96 283.27 -73.77 -71.23

Min-max 10.56 10.71 642.56 -82.38 -79.33

ε=16/255

Equal 3.50 8.90 853.35 -88.93 -82.82

Normalize 4.79 9.33 436.21 -84.82 -81.31

Min-max 7.19 8.23 1154.19 -87.93 -84.12

worst-case attack effectiveness compared with prior methods.

In the Cityscapes dataset, a noticeable enhancement occurs

when using min-max optimization to improve the worst-case

attack. When compared with the equal weighting method,

the min-max optimization improves the worst-case attack

performance by 6% on average with similar or better overall

attack performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a robust multi-task adversarial

attack method leveraging min-max optimization. The pro-

posed min-max optimization dynamically adjusts task-specific

weighting factors, ensuring effective optimization of the task

with the worst performance. Unlike existing attack methods

that exhibit imbalanced attack effectiveness across tasks, our

approach achieves significantly more consistent and robust

performance across multiple tasks. We evaluate our method

on the NYUv2 and Cityscapes datasets using PGD L2 and

PGD L∞ attack strategies. Experimental results demonstrate

that our method consistently improves the worst-case attack

performance for both datasets and across various attack strate-

gies. Our proposed method improves the worst-case attack

performance by 6% on average while maintaining similar or

better overall attack performance.

In addition to adversarial attacks, existing studies have

explored adversarial defense techniques to enhance the ro-

bustness of deep neural networks, with adversarial training

being a notable example [4]. In our future work, we aim

to investigate advanced defense strategies to further enhance

adversarial robustness and balance task performance in multi-

task deep neural networks.
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