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Abstract—Deep neural networks have achieved exceptional
performance across a wide range of applications but remain
susceptible to adversarial attacks. While most prior research
has focused on single-task scenarios, increasing attention is
being directed toward adversarial attacks targeting multiple
tasks simultaneously. However, existing methods often fail to
balance attack performance across tasks in a multi-task model.
These approaches typically aim to maximize the model’s overall
loss, neglecting task-specific attack difficulties, which results in
imbalanced attack performance among tasks. To address this
challenge, we propose a novel multi-task adversarial attack
method that ensures robust and balanced attack performance
across multiple tasks. Our approach dynamically updates task-
specific weighting factors through a min-max optimization during
the attack, optimizing the worst-case attack performance across
all tasks. Experimental results demonstrate that our method
significantly enhances the worst-case attack performance across
diverse datasets and attack strategies compared to existing
approaches. By dynamically adjusting the attack intensity on
the least vulnerable tasks, the min-max optimization significantly
improves overall attack effectiveness as well as the worst-case
performance by balancing the task weights.

Index Terms—multi-task learning, adversarial attacks, deep
learning.

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable
performance across a wide range of applications, as demon-
strated in various studies [1]-[3]. Despite their successes,
DNNs remain vulnerable to adversarial attacks [4], [5]. These
attacks involve adding subtle perturbations to input data, which
can cause the network to produce incorrect outputs [4], [6].
Often, these perturbations are small and imperceptible to the
human eye, yet they can significantly disrupt the model’s
performance [7], [8]. While much of the existing research
on adversarial attacks focuses on single-task scenarios, there
is a growing interest in attacks that target multiple tasks
simultaneously.
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Multi-task learning (MTL) is a subfield of machine learning
where multiple related tasks are learned concurrently [9]-
[11]. In MTL, a single model with shared parameters is
trained instead of training separate models for each task. This
approach improves model efficiency and generalization while
reducing computational and storage costs [12]-[14].

However, the shared parameters in MTL also create a unique
opportunity for adversarial attacks. An attacker could target
multiple tasks simultaneously within the shared model, which
could be particularly effective in systems that rely on several
interdependent tasks, such as autonomous driving. These sys-
tems perform various tasks, including object detection, depth
estimation, and normal detection. An attack on multiple com-
ponents of such systems could lead to significant disruption.
Multi-task adversarial attacks aim to generate subtle, often
imperceptible perturbations that degrade the performance of
all tasks effectively [8], [15].

A key challenge in existing multi-task adversarial attack
methods is balancing the attack effectiveness across different
tasks. In MTL frameworks, some tasks may be easier to attack
than others, leading to uneven performance degradation. This
imbalance results in an unsatisfactory overall attack effec-
tiveness, where some tasks are significantly impacted while
others are only marginally affected. Therefore, developing an
advanced attack method that balances the effectiveness across
tasks is crucial for ensuring a uniformly effective attack.

In this paper, we propose a novel multi-task adversarial
attack method to achieve robust attack performance across
different tasks. The min-max optimization is applied in our
proposed method, it can dynamically adjust the weighting
factors of each task to optimize the worst-case attack per-
formance across all tasks. Experimental results demonstrate
that our proposed method consistently improves the worst-case
attack performance on different datasets with different attack
strategies compared with prior methods.

Our main contributions in this paper are as follows:
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o We propose a novel multi-task adversarial attack method
to achieve robust attack performance across different
tasks. In our proposed method, the weighting factors
corresponding to different tasks are updated dynamically
during the adversarial attack, this can effectively optimize
the worst-case attack performance.

« We evaluate our proposed method on NYUv2 [16] and
Cityscapes [17] datasets with Ly and L., attack strate-
gies, based on the projected gradient descent (PGD)
algorithm [18]. Experimental results demonstrate that our
proposed method consistently improves the worst-case
attack performance compared with prior methods.

II. RELATED WORK
A. Multi-task Learning

Multi-task learning (MTL) is a machine learning paradigm
that trains multiple related tasks simultaneously, offering ben-
efits like improved data efficiency, reducing overfitting, and
enhancing generalization effectiveness [9]-[11]. It has gained
traction in specific fields such as natural language processing
and computer vision [19], [20]. MTL techniques are often cate-
gorized into areas like regularization, pre-training, relationship
learning, feature propagation, and optimization [2], [21]-[23].
Approaches to MTL can be divided into joint training and
multi-step training methods based on task relationships [8],
[19]. The field has progressed from traditional methods to
deep learning and pre-trained models, with recent innovations
focusing on task-promotable, task-agnostic training, and zero-
shot learning [20], [24]. Additionally, MTL’s application in
distributed and streaming contexts underscores their growing
versatilities [25].

B. Adversarial Attacks

Adversarial attacks pose a significant challenge for DNNs
by exploiting tiny perturbations that can drastically alter model
predictions [26], [27]. These perturbations, often imperceptible
to humans, expose critical weaknesses in DNN architectures
[4], [28], [29]. One influential method for generating adversar-
ial attacks is gradient optimization. [15] introduced universal
adversarial perturbations, which manipulate the gradient of
the loss function to fool classifiers. This work paved the way
for many gradient-based attack methods. In MTL, adversarial
attacks pose unique challenges due to the need to balance
multiple tasks. [30] addressed gradient imbalance in MTL with
GradNorm, a technique that normalizes gradients to ensure
balanced loss optimization across tasks, indirectly enhancing
robustness. [7] expanded adversarial attacks to MTL, showing
that multiple tasks could be attacked simultaneously. Recently,
a stealthy attack in MTL is proposed by [31] where the
targeted task is significantly attacked while non-targeted tasks
still preserve their original performance. [8], [32] further
explored the complexities of achieving robustness in MTL,
highlighting the intricate interactions between tasks. Different
from [8], [32] that applies equal weighting factors to attack
different tasks, we propose to update the weighting factors
dynamically in multi-task adversarial attacks.

III. METHODOLOGY
A. Problem Formulation

Assume we have a dataset with input data =, and the ground-
truth y = (y1,y2, ., Yi, ---» Y ), Where y; denotes the ground-
truth for the ¢-th task. Also, we have a pretrained multi-
task model for this dataset, with the loss function L;(z,y;)
corresponding to the i-th task. The multi-task adversarial
attack problem is given by

maximize
[16]|p<e,x+6€B

k
> wiLi(z + 6,y:), )
i=1
where § is the adversarial noise, € constrains the strength of the
adversarial noise, and B is the box constraint to ensure that the
adversarial example is valid, w; denotes the weighting factor
corresponding to the ¢-th task, and k£ denotes the total number
of tasks. In prior works [8], [32], equal weighting factors are
given to all tasks, in which w; = 1/k for all i. Another
approach that may mitigate the imbalanced attack performance
on each task is normalization, in which w; = 1/L;(x,y;).

Different from the above approaches, we propose to for-

mulate multi-task adversarial attacks as a robust optimization
problem, which is given by

k

maximize minimize w;Li(x 4+ 6,y;) + 1||w — /K3,
[16]|p<e,xz+8€B  wEP P 2
2)

where w denotes the collection of w;, P denotes the probabil-
ity simplex P = {w|lTw = 1,w; € [0,1],Vi}, [ denotes
an all-ones vector with the same size as w, and v is a
regularization parameter. Here, the weighting factors w; are
the optimization variables that target on balancing the loss of
different tasks. The reason to include a regularization term in
this problem is to avoid deriving a one-hot vector for w and
thus it improves the generalizability to different tasks.

B. Problem Solving Algorithm

We apply the alternating projected gradient descent-ascent
(APGDA) method [33] to solve problem (2). Specifically,
we solve the outer maximization problem using projected
gradient ascent to generate adversarial attacks and solve the
inner minimization program using projected gradient descent
to adjust the weighting factors corresponding to different
tasks. The details of the solving algorithm are summarized
in Algorithm 1.

In Algorithm 1, when w is fixed, the update of ¢ is given
by

k
6® = proj, (5(t_1) + a1V ( Z w; Li(z + 6"V, yJ)),
i=1
3)

where « is the learning rate to update J, proj (-) denotes the
Euclidean projection onto the set X = {J|||d||, < e, x4+ 0 €
B}. The update of § can be derived based on the prior PGD
adversarial attack [18].
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Algorithm 1 APGDA method to solve problem (2)

I: Input: input data =z, and the ground-truth y =
(Y1,Y2, -, Yi, ---, Yk )» pretrained multi-task model and at-
tack steps T, w9 = I/k.

2. fort=1,2,...,T do

3: outer maximization: fixing w = w*~1, update adver-
sarial noise 6(*) with projected gradient ascent.

4: inner minimization: fixing 6 = §¥), update w® with
projected gradient descent

5: end for

For the inner minimization problem, w is updated by
w® = projp (w) — a; ¥, fw)), &)

where f(w) = S wiLi(z 46, ;) + Ilw—1/k|3, oz is the
learning rate to update w, and projp(-) denotes the Euclidean
projection onto the simplex set P, the closed-form solution of
this kind of Euclidean projection is derived by [34].

IV. EXPERIMENTS
A. Experimental Settings

To evaluate the effectiveness of our proposed robust multi-
task adversarial attack method, we implement the experiments
on two multi-domain datasets: NYUv2 [16] and Cityscapes
[17].

By default, three tasks are trained on the NYUv2 dataset:
13-class semantic segmentation, depth estimation, and surface
normal prediction. In the Cityscapes dataset, we also train
three tasks respectively: 19-class semantic segmentation, dis-
parity estimation (i.e., inverse depth estimation), and a newly
proposed 10-class part segmentation following [35]. In the
multi-task adversarial attacks, we compare the performance
of the prior methods with the proposed min-max optimization
method. All the basic settings in the experiments follow the
multi-task attention network proposed by [36] which is based
on ResNet-50 [37].

B. Evaluation Metrics

In the NYUv2 dataset, three tasks are evaluated via mean
intersection over union (mloU), absolute error (aErr), and
mean angle distances (mDist). For the Cityscapes dataset, both
the semantic segmentation and part segmentation tasks are
evaluated by mean intersection over union (mloU), and the
disparity estimation task is evaluated by absolute error (aErr)
followed by [38]. We also report the overall multi-task attack
performance A following [39] by

k
1

Ayprr = T Zl JAVR &)
where ¢ denotes each task, and k£ denotes the total number
of tasks. The attack effect of each task (denoted by A;) is
calculated by

i bt i Mo > My

8i = Mo ©)
—Li_—mi o otherwise,

m,i

where M denotes the performance after attack, m de-
notes each task, and b is the baseline performance for each
task. If a higher value means better effectiveness in the
corresponding metric, we calculate the difference between
the attacked performance and baseline, then divided by the
baseline performance. Similarly, if a lower value means better
effectiveness in the corresponding metric, the difference is
calculated between baseline and attacked performance, then
divided by the attacked performance.

Furthermore, we extract the performance of the most dif-
ficult task to be attacked (i.e., the worst-case performance)
which is denoted by Ay ;.. The worst-case performance could
be formulated as (7).

Aweor = min A; 7

C. Experimental Results and Analysis

TABLE I
EXPERIMENTAL RESULTS USING PGD L2 ATTACK METHOD ON NYUV2
DATASET. FOR EACH TASK, “1” MEANS HIGHER BETTER AND “]” MEANS
LOWER BETTER.

Tasks Segment Depth Normal AvrL | Dwor
Metrics [mIoU(T)] | [aErr({)] | [mDist({)] (%) (%)
Baseline 46.56 40.57 23.41 0 0

=5

Equal 18.63 84.43 34.70 -48.15 -32.52

Normalize 18.23 118.31 38.22 -55.10 -38.75
Min-max 18.71 126.39 41.33 -57.02 -43.35
e=10

Equal 12.27 104.65 40.16 -58.86 -41.71

Normalize 11.23 156.25 45.09 -66.00 -48.08
Min-max 11.86 174.39 51.48 -68.60 -54.53
TABLE II

EXPERIMENTAL RESULTS USING PGD Lo ATTACK METHOD ON
CITYSCAPES DATASET. FOR EACH TASK, “1” MEANS HIGHER BETTER AND
“}” MEANS LOWER BETTER.

Tasks Segment Part Seg Disp Ayt | Dwor
Metrics [mIoU(T)] | [mIoU(M)] | [aErr(})] (%) (%)
Baseline 54.20 51.82 81.51 0 0

€=5

Equal 24.04 29.92 264.38 -55.69 -42.26

Normalize 26.45 27.81 156.78 -48.51 -46.33
Min-max 26.13 27.76 220.66 -53.76 -46.43
e=10

Equal 19.53 20.18 333.53 -66.86 -61.05

Normalize 20.82 20.89 195.62 -59.87 -58.33
Min-max 20.35 20.10 369.39 -67.19 -61.21

We evaluate the attack effects by varying the pixel levels of
input images in two scenarios: PGD L., and PGD L, attacks.
In the PGD L, attack scenario, the perturbation parameter € is
set to 2/255, 4/255, 8/255, and 16/255, representing changes
of 1, 2, 4, and 8 pixel levels, respectively. For PGD L, attack,
we set € to 5 and 10.

Tables I and II present the results of the PGD Lo attack
method on NYUv2 and Cityscapes datasets, respectively.
Note that the baseline model indicates that e=0 without any

Authorized licensed use limited to: Cleveland State University. Downloaded on April 28,2025 at 16:57:11 UTC from IEEE Xplore. Restrictions apply.



adversarial attack. In the “Equal” method, the total loss is
calculated as the sum of losses from three tasks which means
all those three tasks are given equal weighting factors. It shows
a noticeable imbalance in attack effects across the three tasks.

To address this problem, a normalization strategy is em-
ployed, which incorporates a task-specific weighting factor to
each task to balance the effects among the tasks. However,
the normalization method fails to achieve a consistent perfor-
mance on different datasets. Generally, it performs well on the
NYUv2 dataset but performs quite poorly on the Cityscapes
dataset especially when e=10. Comparatively, our proposed
min-max optimization method consistently achieves robust
attack performance across different tasks in two datasets with
different values of €. The min-max method highly improves the
worst-case attack performance and also maintains the overall
attack performance compared with other methods. Specifically,
the min-max optimization method is applied to further fine-
tune the weighting factors of each task automatically, aiming at
a more balanced and effective attack. Both the overall as well
as the worst-case attack effects could be further enhanced in
both NYUv2 and Cityscapes datasets, except e=5 in Cityscapes
compared with the “Equal” method.

TABLE III
EXPERIMENTAL RESULTS USING PGD Lo, ATTACK METHOD ON NYUV2
DATASET. FOR EACH TASK, “1” MEANS HIGHER BETTER AND “|” MEANS
LOWER BETTER.

Tasks Segment Depth Normal Ayt | Dwor
Metrics [mIoU(T)] | [aErr(})] | [mDist({)] (%) (%)
Baseline 46.56 40.57 23.41 0 0
€=2/255
Equal 25.28 67.28 29.82 -35.64 -21.50
Normalize 26.21 86.09 31.81 -40.99 -26.40
Min-max 26.69 87.99 33.00 -41.88 -29.06
€=4/255
Equal 15.72 89.7 35.96 -51.97 -34.89
Normalize 15.87 123.93 39.44 -57.94 -40.64
Min-max 17.05 132.41 43.59 -59.68 -46.29
€=8/255
Equal 8.85 113.42 42.31 -63.30 -44.67
Normalize 8.45 167.49 47.35 -69.40 -50.56
Min-max 9.97 189.52 56.12 -71.82 -58.29
e=16/255
Equal 4.90 130.65 47.04 -69.55 -50.23
Normalize 4.11 205.39 52.90 -75.72 -55.74
Min-max 5.41 234.53 66.91 -78.70 -65.01

The results of multi-task adversarial attacks using PGD
L., attack method on NYUv2 and Cityscapes datasets are
presented in Tables III and IV, respectively. Similar to the
case of PGD L, attack, the normalization method performs
well in maintaining the worst-case performance only for the
NYUv2 dataset. For the Cityscapes dataset, the normalization
method achieves relatively worse overall performance and
worst-case performance when € is 8/255 or 16/255. Different
from the normalization method, the min-max optimization
method consistently performs well on the overall performance
as well as worst-case performance for those two datasets
with different values of e. In the NYUv2 dataset, min-max
significantly improves the overall attack effect as well as

TABLE IV
EXPERIMENTAL RESULTS USING PGD Loo ATTACK METHOD ON
CITYSCAPES DATASET. FOR EACH TASK, ““”” MEANS HIGHER BETTER AND
“}” MEANS LOWER BETTER.

Tasks Segment Part Seg Disp Ayt | DAwor
Metrics [mIoU(T)] | [mIoU(M)] | [aErr(})] (%) (%)
Baseline 54.20 51.82 81.51 0 0

€=2/255

Equal 28.23 37.00 215.27 -46.21 -28.60

Normalize 29.36 32.63 142.78 -41.92 -37.03
Min-max 30.34 32.85 178.71 -45.00 -37.12
€=4/255

Equal 18.42 23.06 341.04 -65.87 -55.50

Normalize 21.03 22.96 195.13 -58.37 -55.65
Min-max 22.22 23.32 331.40 -63.14 -56.10
€=8/255

Equal 9.57 11.76 541.38 -81.53 -77.30

Normalize 12.45 13.96 283.27 -73.77 -71.23
Min-max 10.56 10.71 642.56 -82.38 -79.33
€=16/255

Equal 3.50 8.90 853.35 -88.93 -82.82

Normalize 4.79 9.33 436.21 -84.82 -81.31
Min-max 7.19 8.23 1154.19 -87.93 -84.12

worst-case attack effectiveness compared with prior methods.
In the Cityscapes dataset, a noticeable enhancement occurs
when using min-max optimization to improve the worst-case
attack. When compared with the equal weighting method,
the min-max optimization improves the worst-case attack
performance by 6% on average with similar or better overall
attack performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a robust multi-task adversarial
attack method leveraging min-max optimization. The pro-
posed min-max optimization dynamically adjusts task-specific
weighting factors, ensuring effective optimization of the task
with the worst performance. Unlike existing attack methods
that exhibit imbalanced attack effectiveness across tasks, our
approach achieves significantly more consistent and robust
performance across multiple tasks. We evaluate our method
on the NYUv2 and Cityscapes datasets using PGD L, and
PGD L, attack strategies. Experimental results demonstrate
that our method consistently improves the worst-case attack
performance for both datasets and across various attack strate-
gies. Our proposed method improves the worst-case attack
performance by 6% on average while maintaining similar or
better overall attack performance.

In addition to adversarial attacks, existing studies have
explored adversarial defense techniques to enhance the ro-
bustness of deep neural networks, with adversarial training
being a notable example [4]. In our future work, we aim
to investigate advanced defense strategies to further enhance
adversarial robustness and balance task performance in multi-
task deep neural networks.
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