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Preface
FPSAC 2024 was held in Ruhr-Universität Bochum, Bochum (Germany) July 22-26, 2024.

It is our pleasure to have served as program committee co-chairs for FPSAC 2024. In this volume, you will find the extended
abstracts for the accepted talks and posters, and in addition a tribute to the life and works of Ian G. Macdonald whose memory
was honored by Arun Ram. Together these represent the rich program of the conference.

As co-chairs, we were deeply impressed by the exceptional quality and depth of the submissions, and the compelling talks and
presentations by the participants. Such an event only comes together with the work of a dedicated community, and we wish to
thank them now. We are grateful to the invited speakers and the participant contributors for bringing cutting edge research in
combinatorics to the forefront. The members of the program committee and their secondary reviewers were an essential part of a
careful review process, and considered a record number (225) of submissions. This work is difficult, and the high quality of the
conference is reliant upon the generous work of these colleagues.

It is a significant logistical task to bring together such a diverse international community. Christian Stump and the organizing
committee were meticulous in their organization, considering many small details. The quality of this volume would not have
been possible without the work of the proceedings editor, Christian Gaetz.

Such an event relies on significant external funding to remain accessible. We also gratefully acknowledge our sponsors
including:

Ruhr-Universität Bochum
Deutsche Forschungsgemeinschaft (DFG)
National Science Foundation
Combinatorial Synergies Network (SPP 2458)
The Combinatorics Consortium
CRC/TRR 191 (Symplectic Structures in Geometry, Algebra and Dynamics)
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Ian G. Macdonald: Works of Art

Arun Ram email: aram@unimelb.edu.au

Abstract

Ian Macdonald’s works changed our perspective on so many parts of algebraic combinatorics and
formal power series. This talk will display some selected works of the art of Ian Macdonald,
representative of different periods of his œuvre, and analyze how they resonate, both for the past
development of our subject and for its future.

Contents

1 Preamble 2

2 Tableaux and Macdonald polynomials 3

3 Can you do type B? 6

4 Circles and Lines 8

5 The symmetric product of a curve Σ 12
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7 I.G. Macdonald as translator 19

8 I.G. Macdonald for my students 20

9 I.G. Macdonald as an author of books 21

Acknowledgments. First and foremost my thanks go to Ian Macdonald for his teaching, compan-
ionship and for giving me bunches of handwritten notes and copies of his books over the years. I am so
grateful that circumstances were such that I was able to convey these thanks directly to him in person
in June 2023. I thank David Lumsden, Ziheng Zhou, Alex Shields and Dhruv Gupta for energy and
insight as we worked through Ian Macdonald’s unpublished manuscript on the n-line. I thank Chris
Macdonald for reaching out to provide scans and files of the n-line manuscript. I am very grateful
to Laura Colmenarejo, Persi Diaconis and Ole Warnaar for helpful suggestions and revisions on this
tribute article.

AMS Subject Classifications: Primary 01A70; Secondary 05E05.



A tribute to Ian Macdonald, Arun Ram

1 Preamble

This paper was prepared for the occasion of a lecture in tribute to Ian G. Macdonald, delivered at
FPSAC 2024 in Bochum, Germany on 22 July 2024. I want to express thanks to the Executive
Committee of FPSAC, the Organizing Committee of FPSAC 2024, and to the whole of our FPSAC
2024 community for making this lecture a possibility and for considering me for its delivery. Macdonald
is my hero, and to be asked to play such a role in his legacy touches me deeply.

For this paper I have chosen a few selected topics from Macdonald’s immense contributions to
highlight (Macdonald polynomials, classification of affine root systems, cohomology and proof of the
Weil conjectures for symmetric products of a curve, and the Clifford chain). I hope that you, as reader,
will have your own favorites from Macdonald’s œuvre and that your choices are equally stimulating,
but different from mine. The final sections of this article highlight some of Macdonald’s service
contributions: as an influencer, as a translator, and as an expositor.

Ian G. Macdonald The Symmetric Functions Bible

The image of Ian G. Macdonald is from https://sites.google.com/view/garsiafest/mementos
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A tribute to Ian Macdonald, Arun Ram

2 Tableaux and Macdonald polynomials

One of our favorite formulas is the formula for the Schur polynomial as a sum over semistandard
Young tableaux (SSYTs),

sλ =
∑

T∈B(λ)

xT , where

B(λ) = {SSYTs of shape λ}
and

xT = x
(#1s in T )
1 · · ·x(#ns in T )

n .

It is most amazing that if δ = (n− 1, . . . , 2, 1, 0) then

sλ =
aλ+δ

aδ
, where aµ =

∑
w∈Sn

(−1)ℓ(w)wxµ

with xµ = xµ1
1 · · ·xµn

n if µ = (µ1, . . . , µn). This second formula for the Schur polynomial is the “Weyl
character formula”, which (in this type A case) was one of the first definitions of the Schur function
(Jacobi 1841, according to Macdonald).

Macdonald pointed out something spectacular. The first formula for the Schur polynomial is the
special case q = t of the formula

Pλ(q, t) =
∑

T∈B(λ)

xTψT (q, t), where ψT (q, t) is given by (2.2) below,

and the second formula for the Schur polynomial is a special case of

Pλ(q, qt) =
Aλ+δ(q, t)

Aδ(q, t)
, where Aµ(q, t) =

∑
w∈Sn

(−t−
1
2 )ℓ(w)TwEµ(q, t)

with Tw and Eµ(q, t) as defined (2.3) and (2.4) below. Maybe we think Schur polynomials are cool,
but the Macdonald polynomials Pλ(q, t) are two parameters cooler.

T =

3 4

2 2 4 4

1 1 1 2 3

colegλ(b)

legλ(b)

coarmλ(b) armλ(b)
b

Pλ(q, t) =
∑

T∈B(λ)

xTψT (q, t).

3



A tribute to Ian Macdonald, Arun Ram

2.1 (q, t)-hooks and the bosonic Macdonald polynomials Pλ(q, t)

Let λ ∈ Zn
≥0 with λ1 ≥ · · · ≥ λn so that λ is a partition of length at most n.

A box in λ is a pair b = (r, c) with r ∈ {1, . . . , n} and c ∈ {1, . . . , λr}.

Identify λ with its set of boxes so that

λ = {(r, c) | (r, c) is a box in λ}.

For a box b = (r, c) in λ define

armλ(b) = armλ(r, c) = {(r, c′) ∈ λ | c′ > c} and

legλ(b) = legλ(r, c) = {(r′, c) ∈ λ | r′ > r}.

A SSYT (semistandard Young tableau) of shape λ filled from {1, . . . , n} is a function

T : λ→ {1, . . . , n} such that

(a) If (r, c), (r + 1, c) ∈ λ then T (r, c) < T (r + 1, c), >
(b) If (r, c), (r, c+ 1) ∈ λ then T (r, c) ≤ T (r, c+ 1). ≤

Let
B(λ) = {SSYTs of shape λ filled from {1, . . . , n}}.

Let T ∈ B(λ) and let b ∈ λ. Let T (b) denote the entry in box b of T . Let i ∈ {1, . . . , n} with i > T (b).
Define the i-restricted arm length, i-restricted leg length, and i-restricted (q, t)-hook length by

a(b,< i) = Card{b′ ∈ armλ(b) | T (b′) < i},

l(b,< i) = Card{b′ ∈ legλ(b) | T (b′) < i},
and hT (b,< i) =

1− t · qa(b,<i)tl(b,<i)

1− q · qa(b,<i)tl(b,<i)
. (2.1)

For a column strict tableau T ∈ B(λ) define

ψT (q, t) =
∏
b∈λ

ψT (b), where ψT (b) =
∏

i>T (b),i∈T (armλ(b))

i ̸∈T (legλ(b))

hT (b,< i)

hT (b,< i+ 1)
. (2.2)

The bosonic Macdonald polynomial is Pλ(q, t) ∈ C[x1, . . . , xn] given by

Pλ(q, t) =
∑

T∈B(λ)

xTψT (q, t), where xT = x
(#1s in T )
1 · · ·x(#ns in T )

n .

The Schur polynomial is

sλ = Pλ(t, t) = Pλ(0, 0) =
∑

T∈B(λ)

xT .

4
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2.2 Electronic and fermionic Macdonald polynomials

For i ∈ {1, . . . , n− 1} and f ∈ C[x1, . . . , xn] define

(sif)(x1, . . . , xn) = f(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn)

and

Tif = −t−
1
2 f + (1 + si)

t−
1
2 − t

1
2x−1

i xi+1

1− x−1
i xi+1

f.

If w ∈ Sn and w = si1 · · · siℓ is a reduced word for w as a product of sis then write

Tw = Ti1 · · ·Tiℓ and w = si1 · · · siℓ . (2.3)

For i ∈ {1 . . . , n− 1} let

∂i = (1 + si)
1

xi − xi+1
.

The electronic Macdonald polynomial Eµ = Eµ(q, t) is recursively determined by

(E0) E(0,...,0) = 1,

(E1) E(µn+1,µ1,...,µn−1) = qµnx1Eµ(x2, . . . , xn, q
−1x1),

(E2) If (µ1, . . . , µn) ∈ Zn
≥0 and µi > µi+1 then

Esiµ =
(
∂ixi − txi∂i +

(1− t)qµi−µi+1tvµ(i)−vµ(i+1)

1− qµi−µi+1tvµ(i)−vµ(i+1)

)
Eµ, (2.4)

where vµ ∈ Sn is the minimal length permutation such that vµµ is weakly increasing.

The monomial xµ is xµ = xµ1
1 · · ·xµn

n . The world of Macdonald polynomials replaces the monomials xµ

with electronic Macdonald polynomials Eµ and replaces the action of permutations w by the operators
Tw.

Let δ = (n− 1, n− 2, . . . , 2, 1, 0) and let λ = (λ1, . . . , λn) ∈ Zn with λ1 ≥ · · · ≥ λn.
Let w0 be the longest element of Sn so that ℓ(w0) =

(
n
2

)
. Then define

Aλ+δ(q, t) =
∑
w∈Sn

(−t−
1
2 )ℓ(w)−ℓ(w0)TwEλ+δ(q, t) and aλ+δ =

∑
w∈Sn

(−1)ℓ(w)−ℓ(w0)wxλ+δ.

The Aλ+δ(q, t) are the fermionic Macdonald polynomials (see [CR22, Intro] for motivation for the
‘electronic’, ‘bosonic’, ‘fermionic’ terminology which is in parallel analogy with the isomorphism be-
tween Heisenberg algebra representations on fermionic Fock space (an exterior algebra) and bosonic
Fock space (a symmetric algebra) which appears, for example, in [Kac, § 14.10]).

2.3 The Weyl character formula

The “Weyl character formula” in the next theorem gives a formula for the bosonic Macdonald poly-
nomial as a quotient of two fermionic Macdonald polynomials. When q = t = 0 this formula becomes
the formula for the Schur function as a quotient of two determinants.

Theorem 2.1. Let λ = (λ1, . . . , λn) ∈ Zn
≥0 with λ1 ≥ · · · ≥ λn.

(a)

Pλ(q, qt) =
Aλ+δ(q, t)

Aδ(q, t)
and sλ =

aλ+δ

aδ
.

(b)

Aδ(q, t) =
∏
i<j

(xi − txj) and aδ =
∏
i<j

(xi − xj).
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3 Can you do type B?

Having worked something out for type A, a natural next problem for our community is to work it out
for type B. Here Macdonald has something interesting to say.

Which type B?

Because, as Macdonald worked out in his 1972 paper on affine root systems,

there are 9 different type Bs.

A diagram showing these is given in Section 3.1.
But, there is something wonderful here. The type (C∨, C) root system is one of the type Bs and

all other type Bs are obtained by specializations from type (C∨, C).

This means that, if one wants to compute Macdonald polynomials for any one of the 9 different type
Bs, then all one has to do, is compute the Macdonald polynomials for type (C∨, C) and then specialize
parameters as appropriate.

Each of the affine root systems of classical type is a subset of the Z-vector space spanned by
symbols ε1, . . . , εn and 1

2δ,
VZ = Z-span{ε1, . . . , εn, 12δ}.

The affine Weyl group W is the group of Z-linear transformations of VZ generated by the transforma-
tions s0, s1, . . . , sn given by: for λ = λ1ε1 + · · ·+ λnεn + k

2δ,

s0λ = −λ1ε1 + λ2ε2 + · · ·+ λnεn +
(
k
2 + λ1)δ,

snλ = λ1ε1 + · · ·+ λn−1εn−1 − λnεn + k
2δ, and

siλ = λ1ε1 + · · ·+ λi−1εi−1 + λi+1εi + λiεi+1 + λi+2εi+2 + · · ·+ λnεn + k
2δ,

for i ∈ {1, . . . , n − 1}. Each of the affine root systems of classical type is defined by which orbits of
the affine Weyl group W that it contains. Let

O1 = W · αn = W · εn = {±εi + rδ | i ∈ {1, . . . , n}, r ∈ Z},
O2 = W · 2αn = W · 2εn = {±2εi + 2rδ | i ∈ {1, . . . , n}, r ∈ Z},
O3 = W · α0 = W · (−ε1 +

1
2δ) = {±(εi +

1
2(2r + 1)δ | i ∈ {1, . . . , n}, r ∈ Z},

O4 = W · 2α0 = W · (−2ε1 + δ) = {±2εi + (2r + 1)δ | i ∈ {1, . . . , n}, r ∈ Z},

O5 = W · α1 = W · (ε1 − ε2) =

{
±(εi + εj) + rδ
±(εi − εj) + rδ

∣∣∣ i, j ∈ {1, . . . , n}, i < j, r ∈ Z
}
,

where

2α0 = −2ε1 + δ

α0 = −ε1 +
1
2δ

2αn = 2εn

αn = εnαi = εi − εi+1
.

With these notations the irreducible affine root systems of classical type (and the appropriate spe-
cializations for obtaining the Macdonald polynomials of each type from the Macdonald polynomials
of type (C∨, C)) are given by the following diagram. The middle notation for each root system is the
notation in Macdonald [Mac03, § 1.3], the right notation is that of Bruhat and Tits [BT72] and the
left notation is that of Kac [Kac, Ch. 6].
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4 Circles and Lines

Though I don’t travel often to England, whenever a trip did bring me to England I liked to try to
stop in and visit Ian and his wife Greta if I could manage it. Greta passed away in 2019, and I saw
Ian at his place two times after that. The last time was in June of 2023. When I first arrived, Ian
emphatically told me he hadn’t thought about mathematics in 15 years. He pointed to the Sudoku
puzzles and the newspapers on his table as evidence. We chatted about mutual friends in mathematics
and other memories.

One evening during my visit, Ian and his sister and I went across the road for dinner – fish and
chips and beer. During that dinner it came out in conversation with Ian’s sister – Ian had indeed
recently been fiddling with some mathematics, and Ian told me about the Clifford circle for the n-line.
After dinner, when I was back at his place chatting; at some point, Ian lifted himself out of his chair,
walked over to the other side of the room, picked up a manuscript, and gifted it to me. He explained
that that was what he had been fiddling with and that it was a supplementary chapter to a book he
had written just after high school on circles and triangles. It seems that the manuscript to the book
was lost, but I was being given the supplementary chapter. I didn’t quite know what to make of that,
but I carefully packed it in my suitcase for my trip home.

After Ian passed away, his son kindly sent me scans of the original handwritten manuscript of the
supplementary chapter and the tex source of the printed copy that Ian gave to me. Since the topic was
lines and circles in the plane, I got a few undergraduates together to work through the manuscript.

The author of this manuscript was a talented math student right out of high school. He clearly
had not read our key reference for symmetric functions – his notations for symmetric functions are
certainly nonstandard for anyone that has read the Symmetric Functions Bible. This student shows a
penchant for thorough work and thinking. For the first main theorem appearing in the manuscript he
gives 6 or 7 different proofs, all from different points of view, before moving on to generalizations. This
high school student is incredibly deft with classical and projective geometry and complex numbers
(linear equations, determinants, lemniscates, cardiods, deltoids, Euler lines, coaxal systems, Newton
identities for symmetric functions, etc.). Some of the induction proofs are a little bit clumsy – it seems
that this student has not been formally taught ‘proof by induction’ like we might do in a first proof
course for undergraduates. The command and thoroughness that this student exhibits extends to his
referencing of the literature – in our modern times most of our community has no idea of the main
players of classical intersection geometry any more. But this high school student was on top of this
literature. If there were one piece of advice that I’d give to this student, it would be to read the books
of Ian Macdonald and improve his writing style by emulating the master (admittedly, these books
were not yet available).

After getting a feel for the contents of this high school student’s manuscript I began to understand
Macdonald’s early trajectory in mathematics. He did Tripos at Cambridge and had some exposure to
the professors there. Particularly from the vantage of Hodge, Pedoe and Todd, intersection theory and
its connection to cohomology was “in the air” but not fully developed. Indeed, in his first published
paper [Mac58], Macdonald thanks “Dr. J.A. Todd for his interest and helpful advice”. By the time of
his 1962 papers, Macdonald was clearly following the work of Grothendieck, and had understood that
cohomology was an efficient way to compute intersections of the type that he had been computing
in high school. In his paper [Mac62b] he already wields the tools of sheaves and cohomology like a
master. It is truly amazing to see how this high school student’s interest in intersections in classical
geometry led him to the very forefront of the technology of cohomology and algebraic geometry that
was being vigorously developed at the time.

By 1962, without a Ph.D., Ian Macdonald was no longer a high school student, but had followed
his nose to already become a mature mathematician of the highest caliber and a great expositor.
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A diagram from Ian Macdonald’s 1947 manuscript on the n-line
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4.1 Clifford’s n-line chain

Two generic lines ℓ1 and ℓ2 intersect in a point A12. The point A12 is the Clifford point of the 2-line.

ℓ1

ℓ2

A12

Each pair of lines in a generic 3-line {ℓ1, ℓ2, ℓ3} intersect in a point, and these three points determine
a circle c. The circle c is the Clifford circle of the 3-line.

ℓ1

ℓ2ℓ3

A12 A13

A23

c

Each triple of lines in a generic 4-line {ℓ1, ℓ2, ℓ3, , ℓ4} determines a Clifford circle, giving the circles
c1, c2, c3, c4. These four circles intersect in a point W . The point W is the Clifford point of the 4-line.

ℓ1

ℓ2ℓ3

ℓ4

A12
A13

A14

A23

A24

A34

c1

c2
c3

c4
W

Each 4-tuple of lines in a generic 5-line {ℓ1, ℓ2, ℓ3, , ℓ4, ℓ5} determines a Clifford point, giving the points
p1, p2, p3, p4, p5. These five points lie on a circle C. The circle C is the Clifford circle of the 5-line.
. . . and so on . . .
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4.2 Ian Macdonald’s general formulation

Let y1, . . . , yn ∈ C×. For i ∈ {1, . . . , n} let ℓi be the line consisting of the points in C that are
equidistant from 0 and yi. The set of n lines is the n-line L = {ℓ1, . . . , ℓn}, where

ℓi = {z ∈ C | z̄ = ti(z − yi)}, where ti =
−yi
yi

. •
0

•
yi

ℓi

For k ∈ {0, 1, . . . , n− 1}, define

ck(L) =
y1t

n−1−k
1

g1(L)
+

y2t
n−1−k
2

g2(L)
+ · · ·+ ynt

n−1−k
n

gn(L)
,

where
gj(L) = (tj − t1)(tj − t2) · · · (tj − tj−1)(tj − tj+1)(tj − tj+2) · · · (tj − tn),

for j ∈ {1, . . . , n}.

Theorem 4.1 (Clifford’s chain). Let L = {ℓ1, . . . , ℓn} be an n-line (satisfying an appropriate
genericity condition).

Case n even: Each (n−1)-subset of the n-line determines a Clifford circle, and these n Clifford circles
intersect in a unique point p(L). Let k ∈ Z>0 such that n = 2k and let a1, . . . , ak−1 ∈ C be given by

a1
a2
...

ak−1

 =

c2(L) · · · ck(L)
...

...
ck(L) · · · c2k−2(L)


−1


−c1(L)
−c2(L)

...
−ck−1(L)

 .

Then
p(L) = c0(L) + a1c1(L) + a2c2(L) + · · ·+ ak−1ck−1(L)

is the Clifford point of the n-line L = {ℓ1, . . . , ℓ2k}.
Case n odd: Each (n− 1)-subset of the n-line determines a Clifford point, and these n Clifford points
lie on a unique circle C(L). Let k ∈ Z>0 such that n = 2k + 1. The Clifford circle C(L) is given by

C(L) = {A(L)− θB(L) | θ ∈ U1(C)}, where U1(C) = {θ ∈ C | θθ̄ = 1},

A(L) =

det


c0(L) · · · ck−1(L)
c1(L) · · · ck(L)

...
...

ck−1(L) · · · c2k−2(L)


det

c2(L) · · · ck(L)
...

...
ck(L) · · · c2k−2(L)


and B(L) =

det

c1(L) · · · ck(L)
...

...
ck(L) · · · c2k−1(L)


det

c2(L) · · · ck(L)
...

...
ck(L) · · · c2k−2(L)


.
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The first page of the high school student’s manuscript

5 The symmetric product of a curve Σ

After high school Macdonald served in the military and then did the Mathematical Tripos at Trinity.
After finishing at Cambridge in 1952, at the insistence of his father, Macdonald took competitive
exams for a civil service job (i.e., a government job). He “stuck it out for five years” in a civil service
job before leaving his good secure job for a temporary (1957–1960) position at Manchester and then
another temporary position (1960–1963) at Exeter University. Then he became “Fellow and Tutor in
Mathematics” at Magdalen College at Oxford until 1972.

In 1958, Macdonald’s first paper appeared in Proceedings of the Cambridge Philosophical Society.
Very likely this study arose as a continuation of his study of intersections of lines and circles. The
paper is entitled “Some enumerative formulae for algebraic curves”. In Part I, Macdonald gives a
generalization of de Jonquières formula and Part II makes contact with Schur functions and Schubert
conditions in intersection theory. It shows a mastery of the methods of the classical Italian algebraic
geometry school. This paper is a significant development of his high school knowledge of intersection
theory. Even so, it hardly gives any hint of the amazing achievement that was to come next.

By 1962, Macdonald had understood that intersection numbers of families of curves could be
computed by using cohomology as a tool. In his paper on the cohomology of symmetric products
of an algebraic curve [Mac62b] he states “in particular we obtain natural proofs of the results of an
earlier paper [Mac58] which were there obtained laboriously by classical methods.”

12
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5.1 The cohomology of a symmetric product of a curve

Let Σ be a curve.

The nth symmetric power of Σ is

Σ(n) = Σn/Sn, where w · (p1, . . . , pn) = (pw−1(1), . . . , pw−1(n)),

for w ∈ Sn and (p1, . . . , pn) ∈ Σn.
Cohomology is a creature (more precisely, a functor) that eats spaces and outputs graded rings.

spaces

H∗

Σ(n) H∗(Σ(n),Z) graded rings

In spite of the frightening teeth, cohomologies are really quite friendly (it is the spaces that are
dangerous). How does one write down the cohomology H∗(X;Z) of a space X? Well, H∗(X,Z)
is a graded ring and a graded ring is written down in a presentation by generators and relations.
Macdonald’s 1962 paper [Mac62b] gives an elegant presentation of the graded ring H∗(Σ(n),Z), the
cohomology of the nth symmetric product of a curve Σ.

Theorem 5.1. Let Σ be a curve of genus g. The cohomology ring H∗(Σ(n),Z) is the Z-algebra
presented by generators

ξ1, . . . , ξg, ξ′1, . . . , ξ
′
g, η

and relations

(a) If i, j ∈ {1, . . . , g} then

ξiξj = −ξjξi, ξ′iξ
′
j = −ξ′jξ

′
i, ξiξ

′
j = −ξ′jξi,

ξiη = ηξi, ξ′iη = ηξ′i,

(b) If a, b, c, q ∈ Z≥0 and a+ b+2c+ q = n+1 and i1, . . . , ia, j1, . . . , jb, k1, . . . , kc are distinct elements
of {1, . . . , g} then

ξi1 · · · ξiaξ′j1 · · · ξ
′
jb
(ξk1ξ

′
k1 − η) · · · (ξkcξ′kc − η)ηq = 0.

13
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5.2 The Weil conjectures for the symmetric product Σ(n) of a curve

Weil’s famous conjectures about zeta functions of algebraic varieties are from his paper of 1949 [We49].
These conjectures stimulated a huge effort which included the development of étale cohomology and
ℓ-adic cohomology. The Weil conjectures were proved in the 1960s and 70s: the proof of the rationality
conjecture came in 1960 (Dwork), the proof of the functional equation and Betti numbers connection
in 1965 (Grothendieck school) and the analogue of the Riemann hypothesis in 1974 (Deligne). In
1962 [Mac62b], as an application of his description of the cohomology of Σ(n), Macdonald proved
Weil’s conjectures in an important special case: “... we calculate the zeta function of Σ(n) and verify
Weil’s conjectures in this case.”

The zeta function Z(t) of an algebraic variety X is an exponential generating function for the
number of points of X over the finite fields Fqn ,

d

dt
logZ(t) =

∑
n∈Z>0

Card(X(Fqn))t
n−1.

Let Σ be a curve of genus g and assume that ρ1, . . . , ρ2g ∈ C are such that

Z1(t) =
(1− ρ1t) · · · (1− ρ2gt)

(1− t)(1− qt)
is the zeta function of Σ.

Let ϕ0(t) = 1− t and, for k ∈ {1, . . . , 2g}, let

ϕk(t) =
∏

1≤i1<···<ik≤2g

(1− ρi1 · · · ρikt).

Then define

Fk(t) =

{
ϕk(t)ϕk−2(t)ϕk−4(t) · · · , if k ∈ {0, 1, . . . , n},
F2n−k(q

k−nt), if k ∈ {n+ 1, . . . , 2n}.

Corollary 5.2. The Weil conjectures hold for Σ(n). More specifically,

(a) The zeta function of Σ(n) is

Zn(t) =
F1(t)F3(t) · · ·F2n−1(t)

F0(t)F2(t) · · ·F2n(t)
.

(b) The Riemann hypothesis for Σ(n) holds:

All roots of Zn(t) have absolute value in {q−
1
2
·0, q−

1
2
·1, q−

1
2
·2, . . . , q−

1
2
·2n}.

(c) The functional equation for Σ(n) is

Zn

(
1

qnt

)
= (−q−

1
2
nt)(−1)n(2g−2

n )Zn(t).
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6 I.G. Macdonald as influencer

6.1 Deligne–Lusztig 1976

In Lecture Notes in Math. 131, T. Springer precisely states conjectures of Macdonald about complex
representations of finite groups of Lie type. Looking back at these references, one gathers that the
notes of Macdonald on Hall polynomials that were circulating in the late 1960’s eventuallly became
Chapter IV of his book on Symmetric functions and Hall polynomials. T. Springer’s expositions ap-
pearing in [Spr70] make it clear that, by 1968, Ian Macdonald had understood how the type GLn story
from J.A. Green’s 1955 paper could be reshaped for a statement for general Lie types. Macdonald’s
conjectures were proved by Deligne and Lusztig in 1976.
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6.2 Maulik–Yun 2013

It is still the case that most topologists and geometers view Macdonald’s computation of the coho-
mology of the symmetric product of a curve [Mac62b] as his most well known achievement. In recent
years the study of moduli spaces of curves and related cohomological Hall algebras has become an
important part of geometry and mathematical physics, and Macdonald’s study of symmetric products
of curves continues to be an important stimulus for research in this direction today.
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6.3 Casselman 2012

An announcement of Macdonald’s computation of the spherical function for p-adic groups appeared in
1968, and the full details appeared in his book published by the University of Madras in 1971. From
the point of view of symmetric function theory, Macdonald proved that the favorite formula [Mac,
Ch. III, (2.1)] for the Hall-Littlewood polynomial

Pλ(x; t) =
1

vλ(t)

∑
w∈Sn

w
(
xλ1
1 · · ·xλn

n

∏
i<j

xi − txj
xi − xj

)
generalizes to all Lie types and is a formula for the spherical function for G/K where G is the
corresponding p-adic group G = G(Qp) and K = G(Zp) is a maximal compact subgroup of G.

17



A tribute to Ian Macdonald, Arun Ram

6.4 V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, 1982

Macdonald’s work on p-adic groups drew him into the combinatorics of affine root systems and he
made a thorough classification and study of affine root systems and affine Weyl groups, resulting in
his 1972 paper entitled “Affine root systems and Dedekind’s η-function”. This study brought him into
contact with affine Kac–Moody Lie algebras and formulas for characters of their representations.
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7 I.G. Macdonald as translator

One of Ian Macdonald’s great silent contributions to the mathematical community was his work as a
translator.

7.1 I.G. Macdonald as translator: Bourbaki

I.G. Macdonald was the first translator of Bourbaki into English. It is not clear how much of Bourbaki
Macdonald translated as the publisher did not list the translator in the published English versions. A
best guess is that the volumes which appeared in English between 1966 and 1974 were translated by
Macdonald. These volumes comprise more than 2500 pages.

Bourbaki, General Topology Parts I and II 1966, vii+437 pp. and iv+363 pp.

Bourbaki, Theory of Sets 1968, viii+414 pp.

Bourbaki, Commutative Algebra 1972, xxiv+625 pp.

Bourbaki, Algebra 1974, xxiii+709 pp.

7.2 I.G. Macdonald as translator: Dieudonné

I.G. Macdonald’s work as a translator of Dieudonné’s Treatise on Analysis is documented in [Mar]
and he is explicitly listed as translator in the English version of Dieudonné’s Panorama of Pure
Mathematics, which appeared in 1982. Together, these volumes amount to more than 2300 pages.

Dieudonné, Foundations of Modern Analysis 1960 and 1969, xiv+361 pp.

Dieudonné, Treatise on Analysis Vol. II 1970 and 1976, xviii+387 pp.

Dieudonné, Treatise on Analysis Vol. III 1972, xvii+388 pp.

Dieudonné, Treatise on Analysis Vol. IV 1974, xiv+444 pp.

Dieudonné, Treatise on Analysis Vol. V 1977, xiv+243 pp.

Dieudonné, Treatise on Analysis Vol. VI 1978, xi+239 pp

Dieudonné, A panorama of pure mathematics 1982, x+289 pp.
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8 I.G. Macdonald for my students

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about
Lie groups, do you have a reference that you can recommend?” I usually find myself saying, “How
about the notes of Macdonald?”

Algebraic structure of Lie groups, Cambridge University Press, 1980.
https://doi.org/10.1017/CBO9780511662683.005

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about
algebraic groups, do you have a reference that you can recommend?” I usually find myself saying,
“How about the notes of Macdonald?”

Linear algebraic groups,
in Lectures on Lie Groups and Lie Algebras, Cambridge University Press 1995
https://doi.org/10.1017/CBO9781139172882

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about
reflection groups, do you have a reference that you can recommend?” I usually find myself saying,
“How about the notes of Macdonald?”

Reflection groups, unpublished notes 1991.
Available at http://math.soimeme.org/∼arunram/resources.html

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about
algebraic geometry, do you have a reference that you can recommend?” I usually find myself saying,
“How about the book of Macdonald?”

Algebraic Geometry - Introduction to schemes, published by W.A. Benjamin 1968.
Available at http://math.soimeme.org/∼arunram/resources.html

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about
Haar measure, spherical functions and harmonic analysis, do you have a reference that you
can recommend?” I usually find myself saying, “How about the book of Macdonald?”

Spherical functions on a group of p-adic type, University of Madras 1971.
Available at http://math.soimeme.org/∼arunram/resources.html

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about
Kac–Moody Lie algebras, do you have a reference that you can recommend?” I usually find myself
saying, “How about the notes of Macdonald?”

Kac–Moody Lie algebras, unpublished notes 1983.
Available at http://math.soimeme.org/∼arunram/resources.html

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about
flag varieties and Schubert varieties, do you have a reference that you can recommend?” I usually
find myself saying, “How about the notes of Macdonald?”

Notes on Schubert polynomials: Appendix: Schubert varieties.
Published by LACIM 1991.
Available at http://math.soimeme.org/∼arunram/resources.html
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9 I.G. Macdonald as an author of books

“If you see a gap in the literature, write a book to fill it.” – I.G. Macdonald

Atiyah-Macdonald, Introduction to commutative algebra 1969

Spherical functions on a group of p-adic type 1971

Symmetric functions and Hall polynomials First Edition 1979

Kac–Moody Lie algebras: unpublished notes 1983

Hypergeometric functions: unpublished notes 1987

Reflection groups: unpublished notes 1991

Schubert polynomials 1991

Symmetric functions and Hall polynomials Second Edition 1995

Linear algebraic groups: in Lectures on Lie groups and Lie algebras 1995

Affine Hecke algebras and orthogonal polynomials 2003

9.1 The first book: Algebraic Geometry - Introduction to Schemes 1968
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Hochschild polytopes

Vincent Pilaud*1 and Daria Poliakova§2

1 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain
2 University of Southern Denmark, Odense, Denmark

Abstract. The (m, n)-multiplihedron is a polytope whose faces correspond to m-pain-
ted n-trees. Deleting certain inequalities from its facet description, we obtain the (m, n)-
Hochschild polytope whose faces correspond to m-lighted n-shades. Moreover, there
is a natural shadow map from m-painted n-trees to m-lighted n-shades, which defines
a meet semilattice morphism of rotation lattices. In particular, when m = 1, our
Hochschild polytope is a deformed permutahedron realizing the Hochschild lattice.

Résumé. Le (m, n)-multiplièdre est un polytope dont les faces correspondent aux
n-arbres m-peints. En retirant certaines inégalités de sa description par facettes, nous
obtenons le (m, n)-polytope de Hochschild dont les faces correspondent aux n-ombres
m-illuminées. De plus, il existe une fonction d’ombre naturelle des n-arbres m-peints
vers les n-ombres m-illuminées, qui définit un morphisme de semi-treillis supérieur en-
tre les treillis de rotations correspondants. En particulier, quand m = 1, notre polytope
de Hochschild est un permutaèdre déformé qui réalise le treillis de Hochschild.

Keywords: Multiplihedron, Freehedron, Hochschild lattice, Quotient

Introduction

We present a remake of the famous combinatorial, geometric, and algebraic interplay
between permutations and binary trees. In the original story, the central character is
the surjective map from permutations to binary trees (given by successive binary search
tree insertions [19, 9]). This map enables us to construct the Tamari lattice [18] as a
lattice quotient of the weak order, the sylvester fan as a quotient fan of the braid fan,
Loday’s associahedron [10] as a removahedron of the permutahedron, and the Loday–
Ronco Hopf algebra as a Hopf subalgebra of the Malvenuto–Reutenauer Hopf algebra.
Many variations of this saga have been further investigated, notably for other lattice
quotients of the weak order and for generalized associahedra arizing from finite type
cluster algebras. See [13] for a recent survey on this topic, in particular for a bibliography.
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In the present remake, permutations are replaced by binary m-painted n-trees (binary
trees on n nodes with m horizontal labeled edge cuts), while binary trees are replaced
by unary m-lighted n-shades (compositions of n with m labels inside their gaps). The
precise definitions are delayed to Section 1, but the reader can already glance at Figure 8
for m = 1 and n = 3. The m-painted n-trees already appeared in [5, Sect. 3.1], inspired
from the case m = 1 studied in [17, 8, 2]. They are mixtures (in the sense of [5]) between
the permutations of [m] and the binary trees with n nodes. The m-lighted n-shades are
introduced in this paper, inspired from the case m = 1 studied in [1, 14, 4, 6, 11]. Here
again, the central character is a natural surjective map from the former to the latter.
Namely, the shadow map sends an m-painted n-tree to the m-lighted n-shade obtained
by collecting the arity sequence along the right branch. In other words, this map records
the shadow projected on the right of the tree when the sun sets on the left of the tree.

We first use this map for lattice purposes. It was proved in [5] that the right rotation
digraph on binary m-painted n-trees (a mixture of the simple transposition digraph
on permutations and the right rotation digraph on binary trees) defines a lattice. We
consider here the right rotation digraph on unary m-lighted n-shades. We prove that it
defines as well a lattice by showing that the shadow map is a meet semilattice morphism
(but not a lattice morphism). When m = 0, this gives an unusual meet semilattice
morphism from the Tamari lattice to the Boolean lattice (distinct from the usual lattice
morphism given by the canopy map). When m = 1, this gives a connection, reminiscent
of [14], between the painted tree rotation lattice and the Hochschild lattice [4, 6, 11].

We then use the shadow map for polytopal purposes. The refinement poset on all m-
painted n-trees is isomorphic to the face lattice of the (m, n)-multiplihedron Mul(m, n).
This polytope is a deformed permutahedron (a.k.a. polymatroid [7], or generalized per-
mutahedron [15]) obtained as the shuffle product [5] of an m-permutahedron with an
n-associahedron of [10]. Oriented in a suitable direction, the skeleton of the (m, n)-multi-
plihedron is isomorphic to the right rotation digraph on binary m-painted n-trees [5].
Similarly, we show that the refinement poset on all m-lighted n-shades is isomorphic to
the face lattice of the (m, n)-Hochschild polytope Hoch(m, n). We obtain this polytope
by deleting some inequalities in the facet description of the (m, n)-multiplihedron. We
also work out the vertex description of the (m, n)-Hochschild polytope. We obtain a
deformed permutahedron whose oriented skeleton is isomorphic to the right rotation
digraph on unary m-lighted n-shades. When m = 0, the (0, n)-multiplihedron is the
n-associahedron and the (0, n)-Hochschild polytope is a skew cube (which is not a par-
allelotope). When m = 1, the (1, n)-multiplihedron is the classical multiplihedron [17,
8, 2], and the (1, n)-Hochschild polytope is a deformed permutahedron realizing the
Hochschild lattice [4, 6, 11], answering an open question of F. Chapoton.

We refer to [12] for many details and all proofs omitted in this extended abstract due
to space limitations. The interested reader will in particular find enumerative formulas
and cubic coordinates for multiplihedra and Hochschild polytopes.



Hochschild polytopes 3

1 Painted trees, lighted shades, and the shadow map

1.1 m-painted n-trees

We start with the combinatorics of m-painted n-trees already studied in detail in [5,
Sect. 3.1]. It was inspired from the case m = 1 studied in [17, 8, 2].

An n-tree is a rooted plane tree with n + 1 leaves. As usual, we orient such a tree
towards its root and label its vertices in inorder. Namely, each node with ℓ children is
labeled by an (ℓ− 1)-subset {x1, . . . , xℓ−1} of [n] such that all labels in its ith subtree are
larger than xi−1 and smaller than xi (where by convention x0 = 0 and xℓ = n + 1). Note
in particular that unary nodes receive an empty label. A cut of an n-tree T is a subset c of
nodes of T containing precisely one node along the path from the root to any leaf of T.
A cut c is below a cut c′ if the unique node of c is after the unique node of c′ along any
path from the root to a leaf of T (note that we draw trees growing downward).

Definition 1 ([5, Def. 105]). An m-painted n-tree T := (T, C, µ) is an n-tree T together with
a sequence C := (c1, . . . , ck) of k cuts of T and an ordered partition µ of [m] into k parts for
some k ∈ [m], such that

• ci is below ci+1 for all i ∈ [k − 1],
•

⋃
C := c1 ∪ · · · ∪ ck contains all unary nodes of T.

We represent an m-painted n-tree T := (T, C, µ) as a downward growing tree T, where
the cuts of C are red horizontal lines, labeled by the corresponding parts of µ. As there
is no ambiguity, we write 12 for the set {1, 2}. See Figures 1 to 3 for illustrations.

We now associate to each m-painted n-tree a preposet (i.e. a reflexive and transitive
binary relation) on [m + n]. See Figure 1.

Definition 2. Consider an m-painted n-tree T := (T, C, µ). Orient T towards its root, label each
node x of T by the union of the part in µ corresponding to the cut of C passing through x (empty
set if x is in no cut of C) and the inorder label of x in T shifted by m, and merge all nodes contained
in each cut. Define ≼T as the preposet on [m + n] where i ≼T j if there is a (possibly empty)
oriented path from the node containing i to the node containing j in the resulting oriented graph.

We now use these preposets to define the refinement poset on m-painted n-trees.

Definition 3 ([5, Def. 108]). The m-painted n-tree refinement poset is the poset on m-painted
n-trees ordered by refinement of their corresponding preposets, that is, T ≤ T′ if ≼T ⊇ ≼T′ .

In the following statement, we denote by |T| the number of nodes of a tree T (includ-
ing unary nodes), and define |C| := k and |⋃ C| := |c1 ∪ · · · ∪ ck| for C = (c1, . . . , ck).

Proposition 4 ([5, Props. 107 & 116]). The m-painted n-tree refinement poset is a meet semi-
lattice ranked by m + n − |T| − |C|+ |⋃ C|.
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Figure 1: Some m-painted n-trees (top) and their preposets (bottom). Here m + n = 6.
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Figure 2: Refinements of some 2-painted 4-trees.
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Figure 3: Rotations of some binary 2-painted 4-trees.

We now define another lattice, but on rank 0 m-painted n-trees. See Figures 3 and 7.

Definition 5 ([5, Def. 112]). An m-painted n-tree T := (T, C, µ) is binary if it has rank 0, mean-
ing that all nodes in

⋃
C are unary, while all nodes not in

⋃
C are binary. The binary m-painted

n-tree right rotation digraph is the directed graph on binary m-painted n-tree with an edge (T, T′)
if and only if there exists 1 ≤ i < j ≤ m + n such that ≼T∖{(i, j)} = ≼T′∖{(j, i)}.

Proposition 6 ([5, Def. 119]). The binary m-painted n-tree right rotation digraph is the Hasse
diagram of a lattice.

Example 7. When m = 0, the 0-painted n-tree rotation lattice is the Tamari lattice [18].
When m = 1, the 1-painted n-tree rotation lattice is the multiplihedron lattice introduced in [5].

Remark 8. Note that the m-painted n-tree rotation lattice is meet semidistributive, but not join
semidistributive when m ≥ 1.

Let us finally mention that m-painted n-trees have interesting enumerative properties.
See [12, Sect. 1.1] for formulas for some m-painted n-trees generating functions.
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1.2 m-lighted n-shades

We now introduce the main new characters of this paper, which will later appear as
certain shadows of m-painted n-trees.

Definition 9. An n-shade is a sequence of (possibly empty) tuples of integers, whose total sum
is n. An m-lighted n-shade S := (S, C, µ) is an n-shade S together with a set C of k distinguished
positions in S, containing all positions of empty tuples of S, and an ordered partition µ of [m]
into k parts for some k ∈ [m].

We represent an m-lighted n-shade S := (S, C, µ) as a vertical line, with the tuples of
the sequence S in black on the left, and the cuts of C in red on the right, all from top to
bottom. As there is no ambiguity, we write 12 for the tuple (1, 2) or the set {1, 2}. See
Figures 4 to 6 for illustrations.

We now associate to each m-lighted n-shade a preposet on [m + n]. See Figure 4

Definition 10. Consider an m-lighted n-shade S := (S, C, µ). The preceeding sum ps(x) of an
entry x in a tuple of S is m plus the sum of all entries that appear weakly before x in S (meaning
either the entries in a strictly earlier tuple of S, or the weakly earlier entries in the same tuple
as x). Define ≼S as the preposet on [m + n] given by the relations

• i ≼S j if i, j ∈ [m] and i appears weakly after j in µ,
• k ≼S ps(y) if x and y are elements of tuples of S such that the tuple of x appears weakly

after the tuple of y, and ps(x)− x < k ≤ ps(x),
• i ≼S ps(x) if i ∈ [m] and x is an element of a tuple of S which appears weakly before the

cut containing i,
• k ≼S i if i ∈ [m] and ps(x)− x < k ≤ ps(x) for some element x of a tuple of S which

appears weakly after the cut containing i.

We now use these preposets to define the refinement poset on m-lighted n-shades.

Definition 11. The m-lighted n-shade refinement poset is the poset on m-lighted n-shades defined
by refinement of their corresponding preposets, that is, S ≤ S′ if ≼S ⊇ ≼S′ .

For a sequence S := (s1, . . . , sℓ) of tuples, we define |S| := ℓ and ∥S∥ := ∑i∈[ℓ] |si|,
where |si| is the length of the tuple si.

Proposition 12. The m-lighted n-shade refinement poset is a meet semilattice ranked
by m − |S|+ ∥S∥.

We now define another lattice, but on rank 0 m-lighted n-shades. See Figures 6 and 7.

Definition 13. An m-lighted n-shade S := (S, C, µ) is unary if it has rank 0, meaning that all
tuples in

⋃
C are empty tuples, while all tuples not in

⋃
C are singletons. The unary m-lighted

n-shade right rotation digraph is the directed graph on unary m-lighted n-shades with an
edge (S, S′) if and only if there exists 1 ≤ i < j ≤ m+ n such that ≼S∖{(i, j)} = ≼S′∖{(j, i)}.
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Figure 4: Some m-lighted n-shades (top) and their preposets (bottom). Here m+ n = 6.

<latexit sha1_base64="n9L9G8tDvGF4RFTVNCzVt4xfZQE="></latexit>

1111 12 �! 121 12 �! 12
1

1
2

�!
12
1

1

2

�!
3
1

1

2

�!
3

1

1

2

Figure 5: Refinements of some 2-lighted 4-shades.
<latexit sha1_base64="SkzZk1INZFHl+rZfglHsdYxMP38="></latexit>

1

3
1

2 �!
1

1
2

1

2 �!
1

1

2
1

2 �!
1

1
2

1
2 �!

1

1
2

2
1
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Remark 14. We observe that any unary m-lighted n-shade S with singleton tuples s1, . . . , sk
admits m + k − 1 + ∑i∈[k](si − 1) = m + n − 1 (left or right) rotations. In other words, the
(undirected) rotation graph is regular of degree m + n − 1.

Proposition 15. The unary m-lighted n-shade right rotation digraph is the Hasse diagram of a
lattice.

Example 16. When m = 0, the 0-lighted n-shade rotation lattice is boolean. When m = 1, the
1-lighted n-shade rotation lattice is the Hochschild lattice studied in [4, 6, 11].

Remark 17. Computational experiments indicate that the m-lighted n-shade rotation lattice is
constructible by interval doubling (hence semidistributive and congruence uniform). However,
in contrast to the case when m ≤ 1, it is not extremal (see [11] for context), and its Coxeter
polynomial is not a product of cyclotomic polynomials (see [3] and [6, Appendix] for context).
Nevertheless, its subposet induced by unary m-lighted n-shades where the labels of the lights are
ordered seems to enjoy all these nice properties.

Let us finally mention that m-lighted n-shades have interesting enumerative proper-
ties. See [12, Sect. 1.1] for formulas for some m-lighted n-shades generating functions.
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Figure 7: The 1-painted 3-tree (left) and 1-lighted 3-shade (right) rotation lattices.

1.3 Shadow map

We now describe the shadow map sending an m-painted n-tree to an m-lighted n-shade.
Intuitively, the shadow is what you see on the right of the tree when the sun sets on its
left. For instance, the m-painted n-trees of Figure 1 are sent to the m-lighted n-shade of
Figure 4. We call right branch of a tree T the path from the root to the rightmost leaf of T.

Definition 18. The shadow of an n-tree T is the n-shade Sh(T) obtained by
• contracting all edges joining a child to a parent which does not lie on the right branch of T,
• replacing each node on the right branch of T by the tuple of the arities of its children except

its rightmost.
The shadow of a cut c in T is the position Sh(c) in Sh(T) of the unique node of the right branch
of T contained in c. For a sequence C = (c1, . . . , ck), define Sh(C) := (Sh(c1), . . . , Sh(ck)). The
shadow of an m-painted n-tree T:=(T, C, µ) is the m-lighted n-shade Sh(T):=(Sh(S), Sh(C), µ).

Given two meet semilattices (M,∧) and (M′,∧′), a map f : M → M′ is a meet
semilattice morphism if f (x ∧ y) = f (x) ∧′ f (y) for all x, y ∈ M.

Theorem 19. The shadow map is a surjective meet semilattice morphism from the binary m-pain-
ted n-tree rotation lattice to the unary m-lighted n-shade rotation lattice. See Figure 7.

Remark 20. Note that the shadow map is not a join semilattice morphism. For instance,
<latexit sha1_base64="AWNkLrRa9X/6Lv3a0bO66Eb5kzg="> </latexit>
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2 Multiplihedra and Hochschild polytopes

2.1 Multiplihedra

We now consider the (m, n)-multiplihedron which realizes the m-painted n-tree refine-
ment lattice. It is illustrated for m = 1 and n = 3 in Figure 8. Although they were
previously constructed when m = 1 in [17, 8, 2], we use here the construction of [5,
Sect. 3]. This construction is just an example of the shuffle product on deformed per-
mutahedra, introduced in [5, Sect. 2]. However, we do not need the generality of this
operation and define the (m, n)-multiplihedron using its vertex and facet descriptions.

Definition 21. Consider a binary m-painted n-tree T:=(T, C, µ). We associate to T a point a(T)
whose pth coordinate is

• if p ≤ m, the number of binary nodes and cuts weakly below the cut labeled by p,
• if p ≥ m + 1, the number of cuts below plus the product of the numbers of leaves in the left

and right subtrees of the node of T labeled by p − m in inorder.
See Figure 9 for some examples.

Definition 22. Consider the hyperplane Hm+n of Rm+n defined by
〈

x
∣∣ 1[m+n]

〉
= (m+n+1

2 ).
Moreover, for each rank m + n − 2 m-painted n-tree T := (T, C, µ), consider the halfspace H(T)

of Rm+n defined by
〈

x
∣∣ 1A∪B

〉
≥ (|A|+1

2 ) + (|B1|+1
2 ) + · · ·+ (|Bk|+1

2 ) + |A| · |B|, where
• A denotes the set of elements of [m] which label the cut of C not containing the root of T

(hence, A = ∅ if C has only one cut, which contains the root of T),
• B := B1 ∪ · · · ∪ Bk where B1, . . . , Bk are the inorder labels shifted by m of the non-unary

nodes of T distinct from the root of T.
See Figure 9 for some examples.

Theorem 23 ([5, Props. 116, 122, 123]). The m-painted n-tree refinement lattice is anti-
isomorphic to the face lattice of the (m, n)-multiplihedron Mul(m, n), defined equivalently as

(i) the convex hull of the vertices a(T) for all binary m-painted n-trees T,
(ii) the intersection of the hyperplane Hm+n with the halfspaces H(T) for all rank m + n − 2

m-painted n-trees T.

Proposition 24 ([5, Prop. 118]). The normal fan of the (m, n)-multiplihedron Mul(m, n) is the
fan whose cones are the preposet cones of the preposets ≼T of all m-painted n-trees T.

Proposition 25 ([5, Prop. 119]). The skeleton of the (m, n)-multiplihedron Mul(m, n) oriented
in the direction ωm+n := (m + n, . . . , 1) − (1, . . . , m + n) is isomorphic to the right rotation
digraph on binary m-painted n-trees.

Example 26. When m=0, the (0, n)-multiplihedron is Loday’s associahedron [10]. When m=1,
the (1, n)-multiplihedron is the classical multiplihedron alternatively constructed in [8, 2].
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Figure 8: Multiplihedron Mul(1, 3) (left) and Hochschild polytope Hoch(1, 3) (right).
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2.2 Hochschild polytopes

We now construct the (m, n)-Hochschild polytope which realizes the m-lighted n-shade
refinement lattice. It is illustrated for m = 1 and n = 3 in Figure 8. Recall that we denote
by ps(x) the preceeding sum of an entry x in an m-lighted n-shade (see Definition 10).

Definition 27. Consider a unary m-lighted n-shade S := (S, C, µ) and denote by s1, s2, . . . , sk
the values of the singleton tuples of S. We associate to S a point a(S) whose pth coordinate is

• if p ≤ m, then the number of cuts plus the sum of the entries si which are weakly below the
cut labeled p,

• if there is j ∈ [k] such that p = ps(sj), then 1 + sj
(
m + n − p + cp

)
+ (

sj
2) where cp is the

number of cuts below sj,
• 1 otherwise.

See Figure 10 for some examples.

Definition 28. Consider the hyperplane Hm+n of Rm+n defined by
〈

x
∣∣ 1[m+n]

〉
= (m+n+1

2 ).
Moreover, for each rank m + n − 2 m-lighted n-shade S := (S, C, µ), consider the halfspace H(S)

of Rm+n defined by
〈

x
∣∣ 1A∪B

〉
≥ (|A|+|B|+1

2 ), where
• A denotes the set of elements of [m] which label the cut of C not containing the first tuple

of S (hence, A = ∅ if C has only one cut, which contains the first tuple of S),
• B = {m + q} if S is a single tuple with 2 in position q, and B = {m + q + 1, . . . , m + n}

if S = (s1, s2) is a pair of tuples with |s1| = q.
See Figure 10 for some examples.

Theorem 29. The m-lighted n-shade refinement lattice is anti-isomorphic to the face lattice of
the (m, n)-Hochschild polytope Hoch(m, n), defined equivalently as

(i) the convex hull of the vertices a(S) for all unary m-lighted n-shades S,
(ii) the intersection of the hyperplane Hm+n with the halfspaces H(S) for all rank m + n − 2

m-lighted n-shades S.

Proposition 30. The normal fan of the (m, n)-Hochschild polytope Hoch(m, n) is the fan whose
cones are the preposet cones of the preposets ≼S of all m-lighted n-shades S.

Proposition 31. The skeleton of the (m, n)-Hochschild polytope Hoch(m, n) oriented in the
direction ωm+n := (m + n, . . . , 1)− (1, . . . , m + n) is isomorphic to the right rotation digraph
on unary m-lighted n-shades.

Remark 32. It follows from Remark 14 that the (m, n)-Hochschild polytope is simple and the
m-lighted n-shade fan is simplicial.

Remark 33. As mentioned in the introduction, there are deep similarities between the behaviors of
• the permutahedron Perm(d) and the associahedron Asso(d),
• the multiplihedron Mul(m, n) and the Hochschild polytope Hoch(m, n).
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Some comments on the behavior of the latter for the reader familiar with the behavior of the former:
• The (m, n)-Hochschild polytope Hoch(m, n) can be obtained by deleting inequalities in the

facet description of the (m, n)-multiplihedron Mul(m, n).
• The common facet defining inequalities of Mul(m, n) and Hoch(m, n) are precisely those

that contain a common vertex of Mul(m, n) and Hoch(m, n).
• In contrast, the vertex barycenters of the (m, n)-multiplihedron Mul(m, n) and of the

(m, n)-Hochschild polytope Hoch(m, n) do not coincide.
• When m = 0, the (0, n)-Hochschild polytope Hoch(0, n) is a skew cube distinct from the

parallelepiped obtained by considering the canopy congruence on binary trees.

Example 34. When m = 0, the (0, n)-Hochschild polytope is a skew cube, distinct from the
parallelotope ∑i∈[n−1][ei, ei+1]. When m = 1, the (1, n)-Hochschild polytope gives a realization
of the Hochschild lattice [4, 6, 11]. Note that the unoriented rotation graph on 1-lighted n-shades
was already known to be isomorphic to the unoriented skeleton of a deformed permutahedron
called freehedron and obtained as a truncation of the standard simplex [16], or more precisely as
the Minkowski sum ∑i∈[n] △{1,...,i} + ∑i∈[n] △{i,...,n} of the faces of the standard simplex cor-
responding to initial and final intervals, see Figure 11. However, orienting the skeleton of the
freehedron in direction ωm+n, we obtain a poset different from the Hochschild lattice, and which
is not even a lattice. Indeed, in Figure 11 (left) the two blue vertices have no join while the two red
vertices have no meet. In fact, the Hasse diagram of the Hochschild lattice cannot be obtained as
a Morse orientation given by a linear functional on the freehedron. Finally, observe that the free-
hedron cannot be obtained by removing inequalities in the facet description of the permutahedron
or of the multiplihedron. See Figure 11 where the removahedra have the wrong combinatorics.

<latexit sha1_base64="2ITrKBGN4UZ/VKxe+KU2ONwwGLo="></latexit>

•

••

•

<latexit sha1_base64="T8CzXJwc0SiYuEeBgFluycYHpuA="></latexit> <latexit sha1_base64="fKKm3T3KpKeCusn3QIkutCsSNHM="></latexit>

Figure 11: The freehedron obtained as Minkowski sum of the faces of the standard
simplex corresponding to initial or final intervals (left), and failed attempts to obtain it
as a removahedron of the permutahedron (middle) or of the multiplihedron (right).
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Abstract. We introduce toric promotion as a cyclic analogue of Schützenberger’s promo-
tion operator. Toric promotion acts on the set of labelings of a graph G; it is defined as
the composition of certain toggle operators, listed in a natural cyclic order. We provide
a surprisingly simple description of the orbit structure of toric promotion when G is a
forest. We then consider more general permutoric promotion operators, which are de-
fined as compositions of the same toggle operators, but in permuted orders. When G
is a path graph, we provide a complete description of the orbit structures of all permu-
toric promotion operators, showing that they satisfy the cyclic sieving phenomenon.

Keywords: promotion, cyclic analogue, cyclic sieving, toggle operator

This is an extended abstract for the articles [2] and [4]. The first of these articles—
written by the first author—focuses on toric promotion, while the second article—written
by all three authors—concerns the more general permutoric promotion operators.

1 Introduction

In his study of the Robinson–Schensted–Knuth correspondence, Schützenberger [9, 10]
introduced a beautiful bijective operator called promotion, which acts on the set of lin-
ear extensions of a finite poset. Haiman [6] and Malvenuto–Reutenauer [7] found that
promotion could be defined as a composition of local toggle operators (also called Bender–
Knuth involutions). Promotion is now one of the most extensively studied operators in
the field of dynamical algebraic combinatorics.

Following the approach first considered by Malvenuto and Reutenauer [7], we define
promotion on labelings of graphs instead of linear extensions of posets. Let G = (V, E)
be a graph with n vertices. A labeling of G is a bijection V → Z/nZ. We denote the set
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of labelings of G by ΛG. Given distinct a, b ∈ Z/nZ, let (a b) be the transposition that
swaps a and b. For i ∈ Z/nZ, the toggle operator τi : ΛG → ΛG is defined by

τi(σ) =

{
(i i + 1) ◦ σ if {σ−1(i), σ−1(i + 1)} ̸∈ E;
σ if {σ−1(i), σ−1(i + 1)} ∈ E.

In other words, τi swaps the labels i and i + 1 if those labels are assigned to nonadja-
cent vertices of G, and it does nothing otherwise. Define promotion to be the operator
Pro : ΛG → ΛG given by

Pro = τn−1 · · · τ2τ1.

Here and in the sequel, concatenation of operators represents composition.
A recent trend in algebraic combinatorics aims to find cyclic analogues of more tra-

ditional “linear” objects (see [1, 5] and the references therein). In the same vein, we
introduce a cyclic analogue of promotion called toric promotion; this is the operator
TPro : ΛG → ΛG given by

TPro = τnτn−1 · · · τ2τ1 = τn Pro .

Our first main result reveals that toric promotion has remarkably nice dynamical
properties when G is a forest.

Theorem 1 ([2]). Let G be a forest with n ≥ 2 vertices, and let σ ∈ ΛG be a labeling. The orbit
of toric promotion containing σ has size (n − 1)t/ gcd(t, n), where t is the number of vertices in
the connected component of G containing σ−1(1). In particular, if G is a tree, then every orbit of
TPro : ΛG → ΛG has size n − 1.

Theorem 1 stands in stark contrast to the wild dynamics of promotion on most
forests. For example, even when G is a path graph with 7 vertices, the order of Pro : ΛG →
ΛG is 3224590642072800, whereas all orbits of TPro : ΛG → ΛG have size 6.

We now consider a generalization of toric promotion in which the toggle operators
τ1, . . . , τn can be composed in any order. Let [n] = {1, . . . , n}, and let π : [n] → Z/nZ be
a bijection. The permutoric promotion operator TProπ : ΛG → ΛG is defined by

TProπ = τπ(n) · · · τπ(2)τπ(1).

One would ideally hope to have an extension of Theorem 1 to arbitrary permutoric
promotion operators. Unfortunately, trying to completely describe the orbit structure of
TProπ : ΛG → ΛG for arbitrary forests G and arbitrary permutations π seems to be very
difficult. However, it turns out that we can do this when G is a path. To state our main
result, we need a bit more terminology.

Let [k]q = 1−qk

1−q = 1 + q + · · · + qk−1 and [k]q! = [k]q[k − 1]q · · · [1]q. The q-binomial

coefficient [kr]q is the polynomial
[k]q!

[r]q![k − r]q!
∈ C[q].
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Let X be a finite set, and let f : X → X be an invertible map of order ω (i.e., ω is
the smallest positive integer such that f ω(x) = x for all x ∈ X). Let F(q) ∈ C[q] be
a polynomial in the variable q. Following [8], we say the triple (X, f , F(q)) exhibits the
cyclic sieving phenomenon if for every integer k, the number of elements of X fixed by f k

is F(e2πik/ω).
Although we view the set Z/nZ as a “cyclic” object, it will often be convenient to

identify Z/nZ with the “linear” set [n] and consider the total ordering of its elements
given by 1 < 2 < · · · < n. If π : [n] → Z/nZ is a bijection, then a cyclic descent of π−1

is an element i ∈ Z/nZ such that π−1(i) > π−1(i + 1) (note that n is permitted to be a
cyclic descent).

Let Pathn and Cyclen be the n-vertex path graph and cycle graph, respectively. In
[2], the first author conjectured that for every bijection π : [n] → Z/nZ, the order of
TProπ : ΛPathn → ΛPathn is d(n − d), where d is the number of cyclic descents of π−1.
Our next main theorem not only proves this conjecture, but also determines the entire
orbit structure of TProπ in this case.

Theorem 2 ([4]). Let π : [n] → Z/nZ be a bijection, and let d be the number of cyclic descents
of π−1. The order of the permutoric promotion operator TProπ : ΛPathn → ΛPathn is d(n − d).
Moreover, the following triple exhibits the cyclic sieving phenomenon:(

ΛPathn , TProπ, n(d − 1)!(n − d − 1)![n − d]qd

[
n − 1
d − 1

]
q

)
.

Note that when d = 1, the sieving polynomial in Theorem 2 is n(n − 2)![n − 1]q,
which agrees with Theorem 1.

Remark 1. Theorem 1 determines the orbit structure of toric promotion when G is a
forest. It is still open to understand the dynamics of toric promotion for other graphs,
including cycles. Theorem 2 determines the orbit structure of any permutoric promotion
operator when G is a path. It would be interesting to gain a better understanding of
TProπ when G is another type of tree, even when π−1 has just 2 cyclic descents.

In Section 2, we summarize some of the main ideas that go into the proof of Theo-
rem 2, referring the reader to our full article [4] for the (quite involved) details that we
have omitted. We also briefly summarize a proof of Theorem 1 in Section 3, though we
refer the reader to [2] for a full proof.

2 Dynamics of Permutoric Promotion

As before, fix a bijection π : [n] → Z/nZ, and let d be the number of cyclic descents of
π−1. We assume from now on that G is the path graph Pathn so that TProπ is an operator
on ΛPathn . Given a finite set X and an invertible map f : X → X, we write Orb f for the
set of orbits of f .
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2.1 A Reduction

Let Compd(n) denote the set of compositions of n with d parts (i.e., d-tuples of positive in-
tegers that sum to n). There is a natural rotation operator Rotn,d : Compd(n) → Compd(n)
defined by Rotn,d(a1, a2, . . . , ad) = (a2, . . . , ad, a1). Reiner, Stanton, and White [8] proved

that the triple
(
Compd(n), Rotn,d, [n−1

d−1]q

)
exhibits the cyclic sieving phenomenon. As it

turns out, this result is responsible for the factor of [n−1
d−1]q in the sieving polynomial in

Theorem 2.
Let cyc : ΛPathn → ΛPathn be the cyclic shift operator given by (cyc(σ))(v) = σ(v) + 1.

Let Φn,d : ΛPathn → ΛPathn be the operator

cycd
1

∏
i=n−d

(τiτi+1 · · · τi+d−1) = cycd(τn−dτn−d+1 · · · τn−1) · · · (τ2τ3 · · · τd+1)(τ1τ2 · · · τd).

Using the identity cyc τi = τi+1 cyc together with the fact that τi and τj commute when-
ever j ̸∈ {i − 1, i + 1}, one can show (see [4] for details) that

Φn/ gcd(n,d)
n,d = TProlcm(d,n−d)

π . (2.1)

Using a result about friends-and-strangers graphs from [3], one can prove that every orbit
of Φn,d has size divisible by n/ gcd(n, d) (see [4, Lemma 6.3]). A substantial portion
of our full article is devoted to proving that every orbit of TProπ has size divisible by
lcm(d, n− d) (see [4, Proposition 5.1]). Together with (2.1), these divisibility results allow
us to transfer the problem of describing the orbit structure of TProπ to that of describing
the orbit structure of Φn,d. Thus, we deduce Theorem 2 from the following proposition

and the fact that
(
Compd(n), Rotn,d, [n−1

d−1]q

)
exhibits the cyclic sieving phenomenon.

Proposition 1. There is a map Ω : OrbΦn,d → OrbRotn,d such that |Ω(O)| = d
n |O| for every

O ∈ OrbΦn,d and |Ω−1(Ô)| = d!(n − d)! for every Ô ∈ OrbRotn,d .

2.2 Sliding Stones and Colliding Coins

We now discuss how to construct the map Ω from Proposition 1. Code implement-
ing several of the combinatorial constructions described in this section can be found at
https://cocalc.com/hrthomas/permutoric-promotion/implementation.

For each integer k, let θk = τq+d+1−r, where q and r are the unique integers satisfying
k = qd + r and 1 ≤ r ≤ d. Let

νℓ = θdℓθdℓ−1 · · · θd(ℓ−1)+2θd(ℓ−1)+1.

Observe that θk+dn = θk for all integers k. We have

Φn,d = cycd θd(n−d) · · · θ2θ1 = cycd νn−d · · · ν2ν1.

https://cocalc.com/hrthomas/permutoric-promotion/implementation
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By combining the identity cyc τi = τi+1 cyc with the fact that cycn is the identity map,
one can easily verify that Φm

n,d = θmd(n−d) · · · θ2θ1 = νm(n−d) · · · ν2ν1 whenever m is a
positive multiple of n/ gcd(n, d).

Define a state to be a pair (σ, t) ∈ ΛPathn × Z; we call σ the labeling of the state and
say that the state is at time t. A timeline is a bi-infinite sequence T = (σt, t)t∈Z of states
such that σt = νt(σt−1) for all t ∈ Z. Note that every state belongs to a unique timeline.
For σ ∈ ΛPathn , let Tσ be the unique timeline containing the state (σ, 0).

Let v1, . . . , vn be the vertices of Pathn, listed from left to right. For each ℓ ∈ [n], let
vℓ be a formal symbol associated to vℓ; we will call vℓ a replica. Let s1, . . . , sd be stones
of different colors. We define the stones diagram of a state (σ, t) as follows. Start with
a copy of Cyclen, whose vertices we identify with Z/nZ. Place s1, . . . , sd on the vertices
t + d, . . . , t + 1, respectively. Then place each replica vℓ on the vertex σ(vℓ) of Cyclen; if
this vertex already has a stone sitting on it, then we place the replica on top of the stone.

Suppose we have a timeline T = (σt, t)t∈Z. We want to describe how the stones dia-
grams of the states evolve as we move through the timeline. We will imagine transform-
ing the stones diagram of (σt−1, t − 1) into that of (σt, t) via a sequence of d small steps.
The i-th small step moves si one space clockwise. Now, (θd(t−1)+i · · · θd(t−1)+1)(σt−1)
is obtained from (θd(t−1)+i−1 · · · θd(t−1)+1)(σt−1) by applying the operator θd(t−1)+i =
τt+d−i. If this operator has no effect, then we do not move any of the replicas v1, . . . , vn
during the i-th small step (in this case, the stone si slides from underneath one replica
to underneath a different replica). Otherwise, θd(t−1)+i has the effect of swapping the
labels t + d − i and t + d − i + 1, so we swap the replicas that were sitting on the vertices
t + d − i and t + d − i + 1 (in this case, the stone si carries the replica sitting on it along
with it as it slides). Figure 1 illustrates these small steps for a particular example with
n = 8, d = 3, and t = 1.

Figure 1: The d = 3 small steps transforming the stones diagram of a state at time 0
into the stones diagram of the next state at time 1.

Now consider d coins of different colors such that the set of colors of the coins is the
same as the set of colors of the stones. We define the coins diagram of a state (σ, t) as
follows. Start with a copy of Pathn. For each i ∈ [d], there is a replica vℓ sitting on the
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stone si in the stones diagram of (σ, t); place the coin with the same color as the stone si
on the vertex vℓ (see Figures 2 and 3). Note that the set of vertices of Pathn occupied by
coins is {σ−1(t + 1), . . . , σ−1(t + d)}.

Consider how the coins diagrams evolve as we move through a timeline T = (σt, t)t∈Z.
Let us transform the stones diagram of (σt−1, t− 1) into that of (σt, t) via the d small steps
described above. Let vℓ be the replica sitting on si right before the i-th small step, and
let vℓ′ be the replica sitting on the vertex one step clockwise from si right before the i-th
small step. When si moves in the i-th small step, it will either carry its replica vℓ along
with it or slide from underneath vℓ to underneath vℓ′ ; the latter occurs if and only if
ℓ′ = ℓ± 1. In the former case, no coins move during the i-th small step; in the latter case,
a coin moves from vℓ to the adjacent vertex vℓ′ (which did not have a coin on it right
before this small step).

If we watch the coins diagrams evolve as we move through the timeline, then by
the previous paragraph, the coins will move around on Pathn, but they will never move
through each other. Therefore, it makes sense to name the coins c1, . . . , cd in the order
they appear along the path from left to right, and this naming only depends on the
timeline (not the specific state in the timeline). Define a traffic jam to be a maximal
nonempty collection of coins that occupy a contiguous block of vertices (so the vertices
occupied by the coins in a particular traffic jam induce a connected subgraph of Pathn).
Note that a traffic jam could have just a single coin. We say a traffic jam touches a wall if
it contains a coin that occupies v1 or vn.

At any time, a coin has an idea of the direction in which it expects to move next
(our coins are conscious now). Note that this is not necessarily the direction in which
it will move next because it may change its mind before it moves. The way that a
coin c decides which direction it expects to move is as follows. Suppose c currently
occupies vertex vj, and suppose the coins in the traffic jam containing c occupy the
vertices vr, vr+1, . . . , vs. The coin c looks at the stones diagram and reads ahead in the
clockwise direction, starting from the stone of its color, and it determines whether it first
sees vr−1 or vs+1. If it first sees vr−1, it expects to move left; if it first sees vs+1, it expects
to move right. If r − 1 is not the index of a replica (because r = 1), the first replica that c
sees will be vs+1; similarly, if s + 1 is not the index of a replica (because s = n), the first
replica c sees will be vr−1.

Figure 2 shows several stones diagrams and coins diagrams. In each coins diagram,
an arrow has been placed over each coin to indicate which direction it expects to move.

Lemma 1 ([4]). When a coin moves, it moves in the direction that it expects to move.

The importance of understanding the direction in which a coin expects to move is
that it will enable us to understand collisions. There are two-coins collisions, which involve
two coins that occupy adjacent vertices of Pathn; there are left-wall collisions, which can
occur when c1 occupies v1; and there are right-wall collisions, which can occur when cd
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occupies vn. The prototypical examples of collisions are when two non-adjacent coins
move to become adjacent or when a coin moves to become adjacent to a wall, but other
examples are possible when traffic jams of size greater than 1 are involved.

The precise definition of a two-coins collision that occurs in a traffic jam that does
not touch a wall is as follows. We say coins ci and ci+1 are butting heads if they occupy
adjacent vertices and ci expects to move right while ci+1 expects to move left. We say
ci and ci+1 are involved in a two-coins collision at a small step if they are not butting
heads immediately before the small step and they are butting heads immediately after
the small step. This can happen either because the two coins were not adjacent prior to
the small step, but it can also happen because the two coins were adjacent but one of
them changed its mind about the direction it expected to move.

The definition of a collision has to be slightly modified when considering a traffic
jam that touches a wall; the reader may refer to [4] for details.

We say a collision occurs at time t if it occurs during a small step between times t − 1
and t.

Example 1. Suppose n = 6 and d = 3. Figure 2 shows some stones diagrams and coins
diagrams evolving over time. At each stage, the arrow over a coin points in the direction
that the coin expects to move. Collisions are indicated in the coins diagrams by stars,
and each star is colored to indicate which stone moves in the small step during which
the collision occurs. ♢

Example 2. Suppose n = 6 and d = 3. Figure 3 shows the stones diagrams and coins
diagrams of a particular timeline at times 0, 1, . . . , 17. For brevity, we have not shown the
individual small steps. All of the collisions the occur at time t (i.e., during the small steps
between time t − 1 and time t) are indicated in the coins diagram at time t. The color of
the star can be used to determine the small step during which the collision occurs. One
can check that the states in this timeline are periodic with period 18. ♢

Let CollT be the set of all collisions that take place in the coins diagrams of the states
of the timeline T . We define a directed graph with vertex set CollT by drawing an arrow
from a collision κ to a collision κ′ whenever there is a coin involved in both κ and κ′ and
the collision κ occurs before κ′. Let (CollT ,≤T ) be the transitive closure of this directed
graph. Let HT be the Hasse diagram of (CollT ,≤T ). This Hasse diagram, which is
one of our primary tools, has the shape of a bi-infinite chain link fence (see Figure 4).
Suppose κ1 ⋖T κ2 is an edge in HT . Then κ1 and κ2 are collisions that both use some coin
c; we define the energy of this edge, denoted E(κ1 ⋖T κ2), to be the number of different
vertices that c occupies between these two collisions, including the vertices occupied by c

when the collisions occur. More generally, if κ1 ⋖T κ2 ⋖T · · ·⋖T κr is a saturated chain in
HT , then we write E(κ1 ⋖T κ2 ⋖T · · ·⋖T κr) for the tuple (E(κ1 ⋖T κ2), . . . , E(κr−1 ⋖T κr))
of energies of the edges in the chain.
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Figure 2: The evolution of stones diagrams and coins diagrams over time, with each
individual small step illustrated. At each moment, we have drawn an arrow over each
coin to indicate which direction it expects to move. Each collision is indicated by a star
whose color is the same as that of the stone that moved to cause the collision. Each
labeling is depicted in red numbers below the path.



Toric and Permutoric Promotion 9

Figure 3: The stones diagrams and coins diagrams of the states in a timeline at times
0, 1, . . . , 17. Here, n = 6 and d = 3. The collisions that occur during the small steps
between times t − 1 and t are represented by color-coded stars in the coins diagram at
time t. Each labeling is depicted by the red numbers below the path.
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Figure 4: The Hasse diagram HT , where T is the timeline containing the states whose
stones diagrams and coins diagrams are shown in Figure 3. We have drawn the Hasse
diagram sideways (to save vertical space), so each cover relation κ ⋖T κ′ is drawn with
κ to the left of κ′. Each collision is represented by a star whose color is the same as that
of the stone that moved to cause the collision. Blue numbers indicate the times when
the collisions occur. Edges are labeled by their energies.

A diamond in HT consists of collisions κ1, κ2, κ3, κ4 together with four edges given by
cover relations κ1 ⋖T κ2, κ1 ⋖T κ3, κ2 ⋖T κ4, κ3 ⋖T κ4. A half-diamond in HT consists of
collisions κ′1, κ′2, κ′3, where κ′1 and κ′3 are either both left-wall collisions or both right-wall
collisions, together with two edges given by cover relations κ′1 ⋖T κ′2 and κ′2 ⋖T κ′3. Our
arguments rely crucially on the following lemma.

Lemma 2 ([4]). In any half-diamond in the Hasse diagram HT , the two edges have the same
energy. In any diamond in the Hasse diagram HT , opposite edges have the same energy.

For each collision κ ∈ CollT , let φ(κ) be the collision involving the same set of
coins as κ that occurs next after κ. In other words, if κ is the bottom element of a dia-
mond (respectively, half-diamond), then φ(κ) is the top element of that same diamond
(respectively, half-diamond). We extend this notation to saturated chains in HT (in-
cluding edges) by letting φ(κ1 ⋖T κ2 ⋖T · · ·⋖T κm) = φ(κ1)⋖T φ(κ2)⋖T · · ·⋖T φ(κm).
We define the period of HT to be the smallest positive integer p such that e and φp(e)
have the same energy for every edge e of HT . A transversal of HT is a saturated chain
T = (κ0 ⋖T κ1 ⋖T · · ·⋖T κd) such that κ0 is a left-wall collision, κd is a right-wall col-
lision, and κi involves the stones ci and ci+1 for every i ∈ [d − 1]. In other words, a
transversal is a saturated chain that moves from left to right across HT . We define the
energy composition of T to be the tuple E(T ) = (ε1, . . . , εd), where εi is the energy of the
edge κi−1 ⋖T κi; note that E(T ) ∈ Compd(n).

Lemma 3 ([4]). Let T be a timeline, and let T be a transversal of HT . Then E(φ(T )) =
Rotn,d(E(T )). The period of HT is equal to the size of the orbit of Rotn,d containing E(T ).
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Proof. The second statement follows from the first because, by Lemma 2, the energies of
all edges in HT are determined by the energy composition of a single transversal of HT .
The first statement is also immediate from Lemma 2.

Example 3. Suppose n = 6 and d = 3. Let HT be the Hasse diagram from Figure 4, and
let T = (κ0 ⋖T κ1 ⋖T κ2 ⋖T κ3) be the transversal consisting of the collisions that occur
at times 2, 5, 6, 10. Then E(T ) = (2, 1, 3) ∈ Comp3(6). The period of HT is 3, which
is the size of the Rot6,3-orbit containing (2, 1, 3). The transversal φ(T ) consists of both
the collisions that occur at time 8 along with the collisions at times 13 and 16. We have
E(φ(T )) = (1, 3, 2) = Rot6,3(E(T )). Similarly, E(φ2(T )) = (3, 2, 1) = Rot2

6,3(E(T )). ♢

For k, t ∈ Z, let σ
(k)
t = cyc−k(σt+k). It follows immediately from the definition of a

timeline that the sequence T (k) = (σ
(k)
t , t)t∈Z is also a timeline; that is, νt(σ

(k)
t−1) = σ

(k)
t

for all t ∈ Z. Furthermore, the stones diagram of (σ
(k)
t , t) is obtained from that of

(σt+k, t + k) by moving all stones and replicas k positions counterclockwise. It follows
that the coins diagrams of (σ

(k)
t , t) and (σt+k, t + k) are identical. Therefore, if κ is a

collision in CollT (k) that occurs at time t, then there is a collision ψk(κ) ∈ CollT that
occurs at time t + k. The resulting map ψk : CollT (k) → CollT is an isomorphism from
(CollT (k) ,≤T (k)) to (CollT ,≤T ); furthermore, under this isomorphism, corresponding
edges of the Hasse diagrams HT (k) and HT have the same energy.

Recall that we write Tσ for the unique timeline containing the state (σ, 0). It follows
from Lemma 3 that the energy compositions of the transversals of HTσ

form a single
orbit Ω̃(σ) of Rotn,d. If Tσ = (σt, t)t∈Z (so σ0 = σ), then Φn,d(σ0) = σ

(n−d)
0 , so TΦn,d(σ0) =

T (n−d)
σ . Using the isomorphism ψn−d, we find that Ω̃(σ0) = Ω̃(Φn,d(σ0)). Thus, we

obtain a map
Ω : OrbΦn,d → OrbRotn,d

that sends the Φn,d-orbit containing a labeling µ to Ω̃(µ). In [4], we prove that this map
satisfies the conditions in Proposition 1; we omit the proof here.

3 Toric Promotion on a Forest

Let us briefly mention how the perspective of stones and coins diagrams can be used to
prove Theorem 1. Let G = (V, E) be a forest. Let v1, . . . , vn be the vertices of G, and let
v1, . . . , vn be their replicas. We can represent a labeling σ ∈ ΛG by placing each replica
vk on the vertex σ(vk) of Cyclen. We again place a stone on a vertex of Cyclen to indicate
which toggle we are about to apply, and we put a coin on the vertex of G whose replica
sits on the stone.

Let T be the connected component of G containing σ−1(1); this is the connected
component on which the coin always sits. Let t be the number of vertices of T. As we
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apply the sequence of toggles τ1, τ2, . . . (repeating cyclically), the coin will move around
to all of the vertices in T. One can show that for all vertices vj, vj′ ∈ V such that vj is
in T and j ̸= j′, there is a unique time in the interval [1, t(n − 1)] during which vj sits
on the stone and vj′ sits one space clockwise of the stone. This implies that if vk is a
vertex of degree δ in T, then there are n − δ − 1 times in the interval [1, t(n − 1)] when
vk rides clockwise one space on the stone, and there are t − δ − 1 times in the interval
[1, t(n− 1)] when vk moves counterclockwise one space because the stone slides through
it. On the other hand, if vk is a vertex that is not in T, then vk never rides on the stone,
and there are t times in the interval [1, t(n − 1)] when vk moves counterclockwise one
space because the stone slides through it. It follows that applying t(n − 1) toggles has
the effect of rotating the stone and all of the replicas counterclockwise by t. This implies
the desired result.
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Abstract. We provide a combinatorial interpretation for the symmetric function
Θek Θel∇en−k−l |t=0 in terms of Smirnov words, which are words where adjacent let-
ters are distinct. The motivation for this work is the study of a diagonal coinvariant
ring with one set of commuting and two sets of anti-commuting variables, whose
Frobenius characteristic is conjectured to be the symmetric function in question. It is
intimately related to the two Delta conjectures, as our work is a step towards a unified
formulation of these.

Résumé. Nous donnons une interprétation combinatoire à la fonction symétrique
Θek Θel∇en−k−l |t=0 en termes de mots de Smirnov, qui sont les mots dont les lettres
adjacentes sont distinctes. La motivation de ce travail est l’étude de l’anneau des coin-
variants diagonaux avec un jeu de variables commutatives et deux jeux de variables
anticommutatives, dont la caractéristique de Frobenius est, conjecturalement, la fonc-
tion symétrique en question. Elles est intimement liée aux conjectures Delta, ce travail
constituant un pas vers une formulation unifiée de ces dernières.

Keywords: Delta conjecture, coinvariant ring, Smirnov words

1 Introduction

This work is mainly concerned with a combinatorial expansion and its consequences. It
is motivated by a circle of problems in representation theory, which we briefly survey in
this introduction.

In the 1990s, Garsia and Haiman introduced the ring of diagonal coinvariants DRn. The
study of the structure of this Sn-module and its generalizations has been an important
research topic in algebra and combinatorics ever since. The ring is defined as follows:
consider the space C[xn, yn] := C[x1, . . . , xn, y1, . . . , yn] and define an Sn-action as

σ · f (x1, . . . , xn, y1, . . . , yn) := f (xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n))
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for all f ∈ C[xn, yn] and σ ∈ Sn. Let I(xn, yn) be the ideal generated by the Sn-invariants
with vanishing constant term. Then the ring of diagonal coinvariants is defined as

DRn := C[xn, yn]/I(xn, yn).

The space has a natural bi-grading: let DR(i,j)
n be the component of DRn with homo-

geneous x-degree i and homogeneous y-degree j. This grading is preserved by the
Sn-action. Garsia and Haiman conjectured, and Haiman later proved [9], a formula for
the graded Frobenius characteristic of the diagonal harmonics:

grFrob(DRn; q, t) := ∑
i,j∈N

qitj Frob(DR(i,j)
n ) = ∇en, (1.1)

where en is the n-th elementary symmetric function and ∇ is the operator introduced in
[1]. In [7], the authors gave a combinatorial formula for this graded Frobenius character
∇en, in terms of labelled Dyck paths, called the shuffle conjecture. It is now a theorem by
Carlsson and Mellit [2].

The Delta conjecture is a pair of combinatorial formulas for the symmetric function
∆′

en−k−1
en in terms of decorated labelled Dyck paths, stated in [8] –we detail the combina-

torics in Section 5. Here ∆′
en−k−1

is a certain symmetric function operator (depending on
q, t). These conjectures reduce to the shuffle theorem when k = 0.

This extension of the combinatorial setting led Zabrocki, D’Adderio, Iraci and Vanden
Wyngaerd to introduce extensions of DRn [15, 3]. Consider the ring C[xn, yn, θn, ξn]
where the xn, yn are the usual commuting (or bosonic) variables, while the θn, ξn are
anti-commuting (or fermionic): θiθj = −θjθi and ξiξ j = −ξ jξi for all 1 ≤ i, j ≤ n.

Again, consider the Sn-action that permutes all the variables simultaneously. If
I(xn, yn, θn, ξn) now denotes the ideal generated by the Sn-invariants without constant
term, define TDRn := C[xn, yn, θn, ξn]/I(xn, yn, θn, ξn). This ring is naturally quadruply
graded: let TDR(i,j,k,l)

n denote the component of TDRn of homogeneous (i, j, k, l)-degrees.
In [15] Zabrocki conjectured

∑
i,j∈N

qitj Frob(TDR(i,j,k,0)
n )

?
= ∆′

en−k−1
en. (1.2)

Note that the symmetric function of the Delta conjectures occurs on the right-hand side.
In [3], D’Adderio with the first and third named authors introduced operators Θ f (de-
pending on q, t), for any symmetric function f , and showed that ∆′

n−k−1en = Θek∇en−k.
This permitted them to extend Zabrocki’s conjecture as follows:

∑
i,j∈N

qitj Frob(TDR(i,j,k,l)
n )

?
= Θel Θek∇en−k−l. (1.3)
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Special cases of the conjecture have been studied over the years. Let us call the
“(a, b)-case” the structures linked to the diagonal coinvariant ring with a sets of bosonic
variables and b sets of fermionic variables. The (2, 1)- and the (2, 2)-cases thus occur
in (1.2) and (1.3) respectively, and the (2, 0)-case is the known case (1.1). The (1, 0) and
(0, 1) cases are classical rings and the conjecture is known to hold in this case. The
(1, 1)-case, or the superspace coinvariant ring, is still open, but Rhoades and Wilson in
[12] showed that its Hilbert series agrees with the expected formula. The (0, 2)-case, or
fermionic Theta case, was proved by Iraci, Rhoades, and Romero in [10].

In this abstract, we will turn our interest to the combinatorics that (conjecturally) oc-
cur in the (1, 2)-case. Following Conjecture (1.3), we thus are led to study the symmetric
function Θek Θel∇en−k−l|t=0.

Our combinatorial model is that of segmented Smirnov words. A Smirnov word is
a word in the alphabet of positive integers such that adjacent letters are distinct. A
segmented Smirnov word is the concatenation of Smirnov words with prescribed lengths
(see Definition 2.1). The main result of this paper (Theorem 2.5) is an expansion in terms
of segmented Smirnov words.

Theorem. For any n, k, l, we have the identity between symmetric functions in (xi)i≥1

Θek Θel∇en−k−l|t=0 = ∑
w∈SW(n,k,l)

qsminv(w)xw1 xw2 · · · xwn .

Here SW(n, k, l) is the set of segmented Smirnov words with k descents and l ascents,
while the power of q is given by a new sminversion statistic on these words (see Defi-
nition 2.3). This expansion can be expressed more compactly in terms of fundamental
quasisymmetric functions (Proposition 2.7).

The proof of the main theorem relies on an algebraic recursion (Proposition 2.4)
for the symmetric function under study. We show in Section 3 that the combinatorial
expansion satisfies indeed the same recursion.

In Section 4, we focus on the special case k + l = n − 1 which turns out to be linked
to various topics in the literature. In Section 5, we describe an explicit bijection between
segmented Smirnov words and “doubly decorated labelled Dyck paths” (Theorem 5.1),
motivated by a potential unified Delta conjecture.

2 Preliminaries and main result

Combinatorics. In this work Z+ is the set of positive integers, and we will fix n ∈ Z+.
We write µ ⊨0 n if µ is a weak composition of n, that is µ = (µ1, µ2, . . .) where the
µi are nonnegative integers that sum to n. A composition α ⊨ n is a finite sequence
α = (α1, . . . , αt) of positive integers that sums to n.
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Definition 2.1. A Smirnov word of length n is an element w ∈ Zn
+ such that wi ̸= wi+1 for

all 1 ≤ i < n. A segmented Smirnov word is a word w ∈ Zn
+ together with a composition

α = (α1, . . . , αt) ⊨ n such that if w is written as the concatenation w1 · · · wt where each
wi has length αi, then each wi is a Smirnov word.

Let SW(n) be the set of segmented Smirnov words of length n. We say that α is
the shape of w. We call w1, . . . , wt segments of w. We usually simply denote a segmented
Smirnov word by w, and omit the shape α. In examples, we separate segments by vertical
bars. Segmented Smirnov words of shape (n) are naturally identified with Smirnow
words of length n.

Given µ ⊨0 n, we denote by SW(µ) the set of segmented Smirnov words with content
µ, that is they contain µ1 occurrences of 1, µ2 occurrences of 2, and so on. We clearly
have SW(n) =

⋃
µ⊨0n SW(µ). We call segmented permutation a segmented Smirnov word

in SW(1n). Note that these can be identified with pairs (σ, α) with σ ∈ Sn and α ⊨ n.

Example 2.2. If µ = (2, 1), then SW(µ) has 8 elements: 1|1|2, 1|2|1, 2|1|1 with shape
(1, 1, 1); 1|12, 1|21 with shape (1, 2); 21|1, 12|1 with shape (2, 1) and 121 with shape (3).

Given a Smirnov word w, we say that i is an ascent of w if wi+1 > wi, and a descent
otherwise. If w ∈ SW(n), we say that i is an ascent (resp. descent) of w if it is an ascent
(resp. descent) of one of its segments. Let us denote by SW(n, k, l) the set of segmented
Smirnov words with k descents and l ascents; note that these words have n − k − l
segments. For µ ⊨0 n, we also define SW(µ, k, l) as the intersection SW(µ) ∩ SW(n, k, l).

We can now define the main new statistic of this work. An index i ∈ {1, . . . , n} is
called initial (resp. final) if it corresponds to the first (resp. last) position of a segment, i.e.
if it has the form i = α1 + · · ·+ αm−1 + 1 (resp. i = α1 + · · ·+ αm) for some t ∈ {1, . . . , t}.

Definition 2.3 (The sminv statistic). For a segmented Smirnov word w of shape α ⊨ n, we
say that (i, j) with 1 ≤ i < j ≤ n is a sminversion if wi > wj and one of the following
holds:

1. j is initial in w;
2. wj−1 > wi;
3. i ̸= j − 1, wj−1 = wi, and j − 1 is initial in w;
4. i ̸= j − 1 and wj−2 > wj−1 = wi.

We let sminv(w) be the number of sminversions of w. The segmented Smirnov word
w = 321|2131, has sminv equal to 4, since (1, 4), (2, 5), (2, 7) and (4, 7) are its sminver-
sions. Finally, define

SWq(µ, k, l) = ∑
w∈SW(µ,k,l)

qsminv(w).

In view of Example 2.2, we can compute that SWq((2, 1), 0, 0) = 1 + q + q2;
SWq((2, 1), 1, 0) = 1 + q; SWq((2, 1), 1, 1) = 1; and SWq((2, 1), 0, 1) = 1 + q.

Let us note two important cases where the statistic sminv simplifies:
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• When w is a segmented permutation σ, only cases (1) and (2) occur.
• When w has shape (n), i.e. w is a Smirnov word, only cases (2) and (4).

Symmetric functions. We refer to [14, Ch. 7] for undefined terminology. Consider the
ring Λ of symmetric functions in (xi)i∈Z+ with coefficients in Q(q). Let us define

SF(n, k, l) := Θek Θel∇en−k−l|t=0 ∈ Λ (2.1)

to simplify notations. Here h⊥j is the operator dual to multiplication by hj, with respect
to the standard duality on Λ given by ⟨hλ, mµ⟩ = δλ,µ.

The following proposition is the key to the combinatorial interpretation:

Proposition 2.4. For any n, k, l with k + l < n, SF(n, k, l) satisfies

h⊥j SF(n, k, l) =
j

∑
r=0

j

∑
a=0

j

∑
i=0

q(
r−i

2 )q(
a−i

2 )

[
n − k − l

j − r − a + i

]
q

[
n − k − l − (j − r − a)− 1

i

]
q

×
[

n − k − l − (j − r − a + i)
r − i

]
q

[
n − k − l − (j − r − a + i)

a − i

]
q
SF(n − j, k − r, l − a)

for any j ≥ 1. Moreover SF(0, k, l) = δk,0δl,0 and SF(n, k, l) = 0 if n < 0.

We omit the proof of this proposition in this abstract: it comes from the specialization
t = 0 of [6, Theorem 8.2], with some extra elementary computations.

Main result. Define

SWx;q(n, k, l) = ∑
µ⊨0n

SWq(µ, k, l)xµ = ∑
w∈SW(n,k,l)

qsminv(w)xw, (2.2)

where xw = ∏n
i=1 xwi .

Theorem 2.5. For any n, k, l with k + l < n, we have the identity

SF(n, k, l) = SWx;q(n, k, l). (2.3)

Expansion into fundamental quasisymmetric functions. Let w be a segmented Smirnov
word. For 1 ≤ i ≤ n, we say that i is thick if i is initial or wi−1 > wi, and thin otherwise.

Definition 2.6. Let σ be a segmented permutation of size n, and i ∈ {1, . . . , n}. Let j be
such that σj = σi+1. We say that i is splitting for σ if either of the following holds:

• i and j are in the same segment of σ, and |i − j| = 1;
• i is thick and j is thin;
• i and j are both thin and i < j;
• i and j are both thick and j < i.
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Let Split(σ) = {1 ≤ i ≤ n − 1 | i is splitting for σ}. For any subset S ⊆ [n − 1], let
QS,n be the fundamental quasisymmetric function associated to S (see [14, Sec. 7.19]).

Proposition 2.7.
SWx;q(n, k, l) = ∑

σ∈SW(1n,k,l)
qsminv(σ)QSplit(σ),n.

The proof relies on grouping terms in the right-hand side of (2.2) using a certain
“reading order”. We omit it in this abstract.

3 Proof of Theorem 2.5

The proof consists in showing that the series SWx;q(n, k, l) satisfies the relations encoded
in Proposition 2.4.

In detail, fix µ ⊨0 n nonzero, let Fµ be the coefficient of xµ in the power series
SF(n, k, l), and let the last nonzero part of µ be µm = j. Then by taking the inner product
of SF(n, k, l) with hµ in Proposition 2.4, we obtain a recurrence for Fµ. Theorem 2.5 then
claims that SWq(µ, k, l) obeys the same recurrence. Explicitly, let µ− be equal to µ except
that µ−

m = 0, and let s := n − k − l be the number of segments, then one has to show:

SWq(µ, k, l) =
j

∑
i=0

j

∑
r=i

j

∑
a=i

q(
r−i

2 )

[
s − (j − r − a + i)

r − i

]
q
q(

a−i
2 )

[
s − (j − r − a + i)

a − i

]
q

×
[

s
j − r − a + i

]
q

[
s − j + r + a − 1

i

]
q
SWq(µ

−, k − r, l − a). (3.1)

We will sketch a bijective proof below. Since it is quite technical, let us first give the
simpler proof in the case µ = 1n, which boils down to the following proposition:

Proposition 3.1. For any n, k, l with k + l < n, the polynomials SWq(1n, k, l) satisfy

SWq(1n, k, l) = [n − k − l]q
(
SWq(1n−1, k, l) + SWq(1n−1, k − 1, l)

+ SWq(1n−1, k, l − 1) + SWq(1n−1, k − 1, l − 1)
)

.

Proof. Given a segmented permutation on n − 1 elements, we want to insert n in all
possible ways. It can be done in four different manners:

1. as a new singleton segment. This keeps the number of ascents and descents the
same, and increases the number of segments by one;

2. at the beginning of a segment. This creates no ascent and one descent, and keeps
the number of segments the same;

3. at the end of a segment. This creates one ascent and no descents, and keeps the
number of segments the same;
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4. as an element merging two adjacent segments · · · w1|w2 · · · → · · · w1nw2 · · · . This
creates an ascent and a descent, and decreases the number of segments by one.

Each of these insertions can be done in s different ways, if s is the number of segments
in the final segmented permutation. Moreover, the construction is injective: if i is such
that σi = n for some σ ∈ SW(1n), then by looking whether i is initial and/or final, one
knows which of the four types of insertion was performed.

From this one sees that the proposition holds at q = 1. As for sminversions, one
checks that inserting n does not modify the number of those involving letters in {1, . . . , n−
1}. Moreover, the value n is part of a sminversion with all initial letters to its right. In
each case, this increases sminv by all possible amounts between 0 and s − 1 = n − k − l −
1. The recursion of Proposition 3.1 follows.

Sketch of the proof of (3.1). The idea is the same as in the standard case above. Starting
with a word in w ∈ SW(µ−), we want to insert j occurrences of the letter m (larger than
all letters of w) to create a word w′ in SW(µ, k, l). As in the standard case, we distinguish
if the occurrences of m are initial and/or final. The complication comes from inserting
several occurrences of m.

Pick i, a, r ≥ 0 such that i ≤ a ≤ j and i ≤ r ≤ j. Then we insert successively:
• i is occurrences of m that are neither initial nor final (this is done by merging

adjacent segments as in the standard case);
• r − i occurrences of m that initial but not final;
• a − i occurrences of m that are final but not initial;
• and finally j − r − a + i singletons equal to m.

Note that the total number of occurrences of m is indeed j. Since we want s = n − k − l
segments in the end, we must have s + i − (j − r − a + i) = s − j + r + a segments in w.
Also, w must have k − r descents and l − a ascents so that the final word has k descents
and l ascents.

The claim is that the number of ways to insert m is given by the coefficient of
SWq(µ−, k − r, l − a) in (3.1) at q = 1: each of the four binomial coefficients can be
whown to correspond naturally to one of the cases above. To complete the proof, one
needs to check that then number of sminversions behaves as wanted. We omit the details
in this abstract.

4 The maximal case k + l = n − 1

We focus in this section on various aspects of the case k + l = n − 1 of Theorem 2.5.
The combinatorial side now involves only Smirnov words. It is also conjecturally giving
the graded Frobenius characteristic of the subspace of the (1, 2)-coinvariant space of
maximum total degree in the fermionic variables ζn, ξn (cf. (1.3)).
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Chromatic symmetric function interpretation. Given a graph G = (V, E), a proper
coloring is a function c : V → Z+ such that {i, j} ∈ E =⇒ c(i) ̸= c(j). If V = [n], a
descent of a coloring is an edge {i, j} ∈ E such that i < j and c(i) > c(j). The chromatic
quasisymmetric function of G is defined as

XG(x; q) = ∑
c : V→Z+
c proper

qdes(c) ∏
v∈V

xc(v),

where des(c) is the number of descents of c.
For the path graph Gn = 1− 2− · · · − n, if c is a proper coloring then c(1)c(2) . . . c(n)

is a Smirnov word of length n, and vice versa, if w is a Smirnov word of length n, then
c(i) = wi is a proper coloring of Gn. It follows from Theorem 2.5

XGn(x; u) =
n−1

∑
k=0

ukΘek Θen−k−1e1

∣∣∣∣∣
q=1,t=0

.

This suggests also the existence of an extra q-grading on the cohomology of the permu-
tahedral toric variety Vn: indeed the graded Frobenius characteristic of that cohomology
is known to be given by ωXGn(x; u), see [13].

Parallelogram polyominoes. A parallelogram polyomino of size m × n is a pair of north-
east lattice paths on a m × n grid, such that first is always strictly above the second,
except on the endpoints (0, 0) and (m, n). A labelling of a parallelogram polyomino is an
assignment of positive integer labels to each cell that has a north step of the first path as
its left border, or an east step of the second path as its bottom border, such that columns
are strictly increasing bottom to top and rows are strictly decreasing left to right. In [5] it
is conjectured that Θem−1Θen−1e1 enumerates labelled parallelogram polyominoes of size
m × n with respect to two statistics, one of which is (a labelled version of) the area, and
the other is unknown.

It is immediate to see that parallelogram polyominoes of size (n − k)× (k + 1) and
area 0 are again in bijection with Smirnov words of length n with k descents, and proper
colorings of Gn with k descents. Indeed, reading the labels of such a polyomino bottom
to top, left to right, yields a Smirnov word of size n with k descents, and the correspon-
dence is bijective. In particular, sminversions on Smirnov words define a statistic on this
subfamily of parallelogram polyominoes, proving the conjectural identity and partially
answering Problem 7.13 from [5] in the case when the area is 0.

The case q = 0. Note that in this case, it is known [10] that the symmetric function
in Theorem 2.5 is the Frobenius characteristic of the (0, 2)-case. It was also shown that
the high-degree part of this module has a basis indexed by noncrossing partitions. In
particular, this means that there is a bijection between segmented permutations with one
segment (that is, permutations) with zero sminv, and noncrossing partitions.
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Lemma 4.1. Permutations with zero sminv are exactly 231-avoiding permutations, that is per-
mutations σ with no i < j < k such that σk < σi < σj.

Proof. Let σ be a permutation, and suppose that it has a 231 pattern, that is, that there
exist indices i < j < k such that σk < σi < σj. Let m = min j < a ≤ k | σm < σi; by
definition, i < j ≤ m − 1, and σm−1 > σi, so (i, m) is a sminversion of σ. It follows that
permutations with zero sminv are 231-avoiding permutations. Since a sminversion in a
permutation corresponds to a 231 pattern, this concludes the proof.

Let π be a noncrossing partition, and let ϕ(π) be the permutation that, in one line
notation, is written by listing the blocks of π sorted by their smallest element, with
the elements of each segment sorted in decreasing order. Let us call decreasing run of a
permutation σ a maximal subsequence of consecutive decreasing entries of σ (in one line
notation): then the blocks of π correspond to the decreasing runs of ϕ(π). For instance,
if π = {{1, 2, 5}, {3, 4}, {6, 8, 9}, {7}}, then ϕ(π) = 521439867.

The map ϕ defines a classical bijection between noncrossing partitions of size n with
k + 1 blocks and 231-avoiding permutations with k descents. This recovers known nu-
merology about the (0, 2)-case.

Remark 4.2. More generally, standard segmented permutations with zero sminv can be
characterized as 231-avoiding permutations where letters of a segment are smaller all
than letters of the segments to its right. These can be easily counted, and we recover the
total dimension of the (0, 2)-coinvariant ring given by (2n+1

n ).

5 Connection with the Delta conjectures

Let us first note that we recover known combinatorial interpretations when setting k = 0
(resp. l = 0) in Theorem 2.5. Indeed this gives an expansion over segmented Smirnov
words with no descents (resp. ascents), and these are easily identified with ordered
multiset partitions [11]. In each case, the sminv statistic can moreover be seen to be
distributed as the inv statistic on ordered set partitions.

The two different Delta conjectures are as follows:

∆′
en−k−1

en = Θek∇en−k = ∑
D∈LD(n)∗k

qdinv(D)tarea(D)xD (5.1)

?
= ∑

D∈LD(n)•k

qdinv(D)tarea(D)xD. (5.2)

The sets LD(n)∗k and LD(n)•k denote labelled Dyck paths of size n with k decorations on
rises or valleys, respectively; and the statistics dinv and area depend on the decorations. So
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(5.1) is referred to as the rise version and (5.2) as the valley version of the Delta conjecture.
The rise version was recently proved in [4].

Let us make some of the combinatorics explicit. A Dyck path of size n is a lattice
path starting at (0, 0), ending at (n, n), using only unit North (N) and East (E) steps, and
staying weakly above the line x = y. A labelled Dyck path is a Dyck path together with a
positive integer label on each of its vertical steps such that labels on consecutive vertical
steps must be strictly increasing (from bottom to top).

A rise of a labelled Dyck path is a North step that is preceded by another North step.
A (contractible) valley of a labelled Dyck path is a vertical step v that is preceded either
by two horizontal steps, or by a horizontal step that is preceded by a vertical step whose
label is strictly smaller than v’s label.

A decorated labelled Dyck path D is a labelled Dyck path, together with a choice of rises
and (contractible) valleys, which are decorated. Let DRise(D), resp. DValley(D), be the
set of i ∈ [n] such that the i-th vertical step of D is a decorated rise, resp. a decorated
valley. We decorate rises with a ∗ and valleys with a •. The set of decorated labelled
Dyck paths with k decorated rises and l decorated valleys, is denoted by LD(n)∗k,•l. The
sets LD(n)∗k, resp. and LD(n)•l, above correspond to setting l, resp. k, to 0.

∗

∗

∗

∗

∗

∗

2

3

4

1

2

4

3

2

1

2

4

3

2

4

1

4

Figure 1: Elements of LD(8)∗2,•2 (left) and LD0(8)∗4,•2 (right).

Given a decorated labelled Dyck path D of size n, its area word is the word of non-
negative integers whose i-th letter equals the number of whole squares between the i-th
vertical step of the path and the line x = y. If a is the area word of D, the area of D is

area(D) := ∑
i∈[n]\DRise(D)

ai. (5.3)

Take D to be the left path in Figure 1. We have DRise(D) = {2, 6}, DValley = {3, 7}. Its
area word of D is 01112320, and so its area equals 6.
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The statistic dinv(D) counts “diagonal inversions” minus the number of decorated
valleys; we omit its precise definition in this abstract.

In [3], the authors conjectured a partial formula for a possible unified Delta conjecture,
for which they have significant computational evidence:

Θek Θel∇en−k−l|q=1
?
= ∑

D∈LD(n)∗k,•l

tarea(D)xD, (5.4)

The goal would thus be to find a statistic qstat : LD(n)∗k,•l → N so that

Θek Θel∇en−k−l
?
= ∑

D∈LD(n)∗k,•l

qqstat(D)tarea(D)xD; (5.5)

and such that when k = 0 or l = 0, the formula reduces to (5.1) or (5.2), respectively.

Let us now come back to our setting. Comparing our main Theorem 2.5 at q = 1
with (5.4) at t = 0, we get the conjectural existence of a bijection between labelled Dyck
paths of area zero and segmented Smirnov words. This bijection exists indeed: Let
LD0(n)∗k,•l be the subset of area zero Dyck paths in LD(n)∗k,•l.

Theorem 5.1. For any n, k, l, there is a bijection ϕ between SW(n, k, l) and LD0(n)∗k,•l such
that xw = xϕ(w).

Sketch of the proof. Paths in LD0(n)∗k,•l have a very specific shape: they are the concate-
nation of paths of the form NiEi, where all rises are decorated; see Figure 1, right. This
precisely ensures that the area is zero, cf. Formula (5.3).

For µ ⊨0 n, and let LD0(µ)
∗k,•l be the subset of LD0(n)∗k,•l such that xD = xµ. Using

the special structure detailed above, one can then show bijectively that the cardinalities
of the sets of LD0(µ)

∗k,•l decompose as SWq=1(µ, k, l): namely, they satisfy (3.1) at q =
1. By matching with the bijective decomposition of SW(µ, k, l) in Section 3, we can
obtain a recursively defined bijection ϕ between the two sets. We omit the details in this
abstract.

What about q ? By transporting the sminv statistic through the bijection ϕ, we get a q-
statistic on LD0(n)∗k,•l. Now this statistic will not satisfy the unified Delta conjecture (5.5)
at t = 0, because it does not match the dinv-statistic coming from the rise Delta conjecture.

It is however possible to fix this –thus we do have a unified Delta conjecture at t = 0–
by recursively defining a different q-statistic on SW(n). Roughly put, this is done by
ordering segments in ad hoc ways when proving the recursion for SW(µ, k, l) (for sminv

we simply order segments right to left).
Added in revision: this is done explicitly in the long version of this work.
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Abstract. Motivated by a conjecture concerning Igusa local zeta functions for intersec-
tion posets of hyperplane arrangements, we introduce and study the Poincaré-extended
ab-index, which generalizes both the ab-index and the Poincaré polynomial. For posets
admitting R-labelings, we give a combinatorial description of the coefficients of the
extended ab-index, proving their nonnegativity. In the case of intersection posets of
hyperplane arrangements, we prove the above conjecture of the second author and Voll.

Keywords: poset, matroid, oriented matroid, ab-index, hyperplane arrangement, R-
labeling, quasisymmetric function

Grunewald, Segal, and Smith introduced the subgroup zeta function of finitely-generated
groups [14], and Du Sautoy and Grunewald gave a general method to compute such zeta
functions using p-adic integration and resolution of singularities [25]. This motivated
Voll and the second author to examine the setting where the multivariate polynomials
factor linearly. They found that the p-adic integrals are specializations of multivariate
rational functions depending only on the combinatorics of the corresponding hyperplane
arrangement [19]. After a natural specialization, its denominator greatly simplifies, and
they conjecture that the numerator polynomial has nonnegative coefficients.

In this work, we prove their conjecture, which is related to the poles of these zeta
functions; see Remark 1.19. Specifically, we reinterpret these numerator polynomials by
introducing and studying the (Poincaré-)extended ab-index, a polynomial generalizing both
the Poincaré polynomial and ab-index of the intersection poset of the arrangement. These
polynomials have been studied extensively in combinatorics, although from different
perspectives. The coefficients of the Poincaré polynomial have interpretations in terms
of the combinatorics and the topology of the arrangement [8, Section 2.5]. The ab-index,
on the other hand, carries information about the order complex of the poset and is
particularly well-understood in the case of face posets of oriented matroids—or, more
generally, Eulerian posets. In those settings, the ab-index encodes topological data via
the flag f -vector [2].

We study the extended ab-index in the generality of graded posets admitting R-
labelings. This class of posets includes intersection posets of hyperplane arrangements
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and, more generally, geometric lattices and geometric semilattices. We show that the
extended ab-index has nonnegative coefficients by interpreting them in terms of a combi-
natorial statistic. This generalizes statistics given for the ab-index by Billera, Ehrenborg,
and Readdy [6] and for the pullback ab-index (defined below) by Bergeron, Mykytiuk,
Sottile and van Willigenburg [5]. This interpretation proves the aforementioned conjec-
ture [19], as well as a related conjecture from Kühne and the second author [18].

Motivated by the proofs of these conjectures, we describe a close relationship between
the Poincaré polynomial and the ab-index by showing that the extended ab-index can
be obtained from the ab-index by a suitable substitution. This recovers, generalizes and
unifies several results in the literature. Concretely, special cases of this substitution were
observed by Billera, Ehrenborg and Readdy for lattices of flats of oriented matroids [6], by
Saliola and Thomas for lattices of flats of oriented interval greedoids [24], and by Ehrenborg
for distributive lattices [11].

1 The Poincaré-Extended ab-index

1.1 Main definitions

Unless otherwise specified, P is a finite graded poset of rank n, that is, P is a finite poset
with unique minimum element 0̂ of rank 0 and unique maximum element 1̂ of rank n
such that rank(X) is equal to the length of any maximal chain from 0̂ to X. The Möbius
function µ of P is given by µ(X, X) = 1 for all X ∈ P and µ(X, Y) = −∑X≤Z<Y µ(X, Z)
for all X < Y in P. The Poincaré polynomial of P is

Poin(P; y) = ∑
X∈P

|µ(0̂, X)| · yrank(X) ∈ Z[y].

The chain Poincaré polynomial of a chain C =
{
C1 < · · · < Ck

}
in P \ {1̂} is

PoinC(P; y) =
k

∏
i=1

Poin([Ci, Ci+1]; y) ∈ Z[y],

where we set Ck+1 = 1̂. By taking the singleton chain {0̂}, we recover the usual Poincaré
polynomial, Poin(P; y) = Poin{0̂}(P; y). The ranks of a given chain C is given by

Rank(C) = {rank(Ci) | 1 ≤ i ≤ k} .

We often consider polynomials in noncommuting variables a and b with coefficients being
polynomials in Z[y]. For a subset S ⊆ {i, i + 1, . . . , j}, we write mS = mi . . . mj for the
monomial with mk = b if k ∈ S and mk = a if k /∈ S and we similarly write wtS = wi . . . wj
for the polynomial with

wk =

{
b if k ∈ S,
a − b if k /∈ S .

(1.1)



The Poincaré-extended ab-index 3

The supersets {i, i + 1, . . . , j} are understood from the context as the set of all indices that
can possibly be contained in the set S. In case of ambiguity, we in addition identify the
considered superset. For a chain C in P, we also set mC = mRank(C) and wtC = wtRank(C).
The following is the main object of study of this paper.

Definition 1.1. The (Poincaré-)extended ab-index of P is

exΨ(P; y, a, b) = ∑
C chain in P\{1̂}

PoinC(P; y) · wtC ∈ Z[y]⟨a, b⟩ ,

where wtC = w0 · · · wn−1 is given in Equation (1.1).

Since P has a unique minimum, we always have Poin(P; 0) = 1, implying

exΨ(P; 0, a, b) = ∑
C chain in P\{1̂}

wtC .

This recovers the ab-index Ψ(P; a, b) = exΨ(P; 0, a, b).

Example 1.2. We compute the extended ab-index of the poset L drawn below on the left.

1̂

α1 α2 α3

0̂

C PoinC(L; y) Rank(C) wtC

{} 1 {} (a − b)2

{0̂} 1 + 3y + 2y2 {0} b(a − b)

{αi} 1 + y {1} (a − b)b

{0̂ < αi} (1 + y)2 {0, 1} b2

The extended ab-index and its specialization to the ab-index are thus

exΨ(L; y, a, b) = (a − b)2+(1 + 3y + 2y2)b(a − b)+3 · (1 + y)(a − b)b+3 · (1 + y)2b2

= a2 + (3y + 2y2)ba + (2 + 3y)ab + y2b2,

Ψ(L; a, b) = a2 + 2ab .

Remark 1.3. Taking chains C in P \ {1̂}, rather than in P, is a harmless reduction in the
definition of the extended ab-index since PoinC(P; y) = PoinC∪{1̂}(P; y). If we consider
both C and C ∪ {1̂} separately as summands of exΨ(P; y, a, b), we would need to consider
weights wt+C = w0 · · · wn taking also the n-th position into account. We would have the
two terms PoinC(P; y) · wt+C and PoinC∪{1̂}(P; y) · wt+C∪{1̂}, differing only in the last entry

of the weight, so their sum is PoinC(P; y) · wtC · a. This holds for all chains, proving

exΨ(P; y, a, b) · a = ∑
C chain in P

PoinC(P; y) · wt+C . (1.2)



4 Galen Dorpalen-Barry, Joshua Maglione, and Christian Stump

The fact that 1̂ is included in every chain in the computation of the chain Poincaré
polynomial is inspired by the setting of hyperplane arrangements; see [1, 22] for more
details. A (central, real) hyperplane arrangement A is a finite collection of hyperplanes
in Rd, all of which have a common intersection. The lattice of flats L of A is the poset of
subspaces of Rd obtained from intersections of subsets of the hyperplanes, ordered by
reverse inclusion. The open, connected components of the complement Rd \ A are called
(open) chambers. The set of (closed) faces Σ is the set of closures of chambers of A, together
with all possible intersections of closures of chambers (ignoring intersections which are
empty). This set comes equipped with a natural partial order by reverse inclusion, and
for this reason we refer to Σ as the face poset of A. There is an order-preserving, rank-
preserving surjection supp : Σ ↠ L sending a face to its affine span [8, Proposition 4.1.13].
This map extends to chains, and the fiber sizes are given, for C = {C1 < · · · < Ck} ⊆ L,
by

#supp−1(C) =
k

∏
i=1

Poin([Ci, Ci+1]; 1) = PoinC(P; 1), (1.3)

with Ck+1 = 1̂; see [8, Proposition 4.6.2]. This is the key motivation for the next definition.

Definition 1.4. The pullback ab-index of P is

Ψpull(P; a, b) = exΨ(P; 1, a, b).

Let Σ be the face poset and L the lattice of flats of a real central hyperplane arrange-
ment. Since Σ may not have a unique minimum element, we formally add a minimum
element 0̂ and let Σ ∪ {0̂} be the resulting poset. Now, Equation (1.3) relates the ab-index
of the face poset and the pullback ab-index of the lattice of flats by

Ψ(Σ ∪ {0̂}; a, b) = a · Ψpull(L; a, b) . (1.4)

Note that this relates the evaluation of exΨ(Σ ∪ {0̂}; y, a, b) at y = 0 to the evaluation of
exΨ(L; y, a, b) at y = 1. Equation (1.3) and thus also Equation (1.4) hold indeed in the
more general context of oriented matroids.

Example 1.5. The pullback ab-index of the poset from Example 1.2 is

Ψpull(L; a, b) = exΨ(L; 1, a, b) = a2 + 5ba + 5ab + b2 .

Consider the arrangement of three lines in the plane through a common intersection as
shown below on the left in a way that emphasizes its face structure. Its lattice of flats is
the poset L from Example 1.2. To the right, we draw its face poset Σ with 0̂ included.
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The ab-index of Σ ∪ {0̂} can be computed as

a3 + 5aba + 5a2b + ab2 = a(a2 + 5ba + 5ab + b2) = a · Ψpull(L; a, b) .

1.2 Main results

The main results of this paper concern R-labeled posets. These form a large family of
posets including distributive lattices, geometric lattices, and semimodular lattices. In order
to state Theorem 1.6, we introduce a combinatorial statistic on maximal chains of these
posets and use this to describe the extended ab-index. In Section 2, we briefly discuss
this combinatorial statistic for general edge labeled graded posets.

A function λ from the set of cover relations X ⋖ Y in P into the positive integers is
an R-labeling of P if, for every interval [X, Y] in P, there is a unique maximal chain
X = Mi ⋖Mi+1 ⋖ · · ·⋖Mj = Y such that

λ(Mi,Mi+1) ≤ λ(Mi+1,Mi+2) ≤ · · · ≤ λ(Mj−1,Mj).

We say a poset P is R-labeled if it is finite, graded, and admits an R-labeling. Throughout
this section, we consider R-labeled posets with a fixed R-labeling λ.

The first result is a combinatorial statistic describing the coefficients of the extended
ab-index which witnesses their nonnegativity. It generalizes [6, Corollary 7.2] and
also reproves it using purely combinatorial arguments. For a maximal chain M =
{M0 ⋖M1 ⋖ · · ·⋖Mn} in P, define the monomial u(M) = u1 · · · un in a, b given by
u1 = a and for i ∈ {2, . . . , n} by

ui =

{
a if λ(Mi−2,Mi−1) ≤ λ(Mi−1,Mi) ,
b if λ(Mi−2,Mi−1) > λ(Mi−1,Mi) .

(1.5)

Now, let E ⊆ {1, . . . , n}, viewed as a subset of the cover relations in the chain M. Define
the monomial u(M, E) = v1 . . . vn in a, b to be obtained from u(M) by

• replacing all variables a by b at positions i ∈ {1, . . . , n} if i ∈ E and
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• replacing all variables b by a at positions i ∈ {2, . . . , n} if i − 1 ∈ E.

In particular, we have u(M, ∅) = u(M), and v1 = b if and only if 1 ∈ E.

Theorem 1.6. Let P be an R-labeled poset of rank n. Then

exΨ(P; y, a, b) = ∑
(M,E)

y#E · u(M, E)

where the sum ranges over all maximal chains M in P and all subsets E ⊆ {1, . . . , n}.

When P is a geometric lattice, setting y = 0 in Theorem 1.6 recovers [6, Corollary 7.2].
Specifically Ψ(P; a, b) = ∑M u(M), where the sum ranges over all maximal chains M =
{M0 ⋖ · · ·⋖Mn}.

Example 1.7. The poset from the previous examples admits the R-labeling given below
on the left. On the right, we collect the relevant data to compute the combinatorial
description of the extended ab-index.

1̂

α1 α2 α3

0̂

1 2 3

2 1 1

E y#E 0̂ ⋖ α1 ⋖ 1̂ 0̂ ⋖ α2 ⋖ 1̂ 0̂ ⋖ α3 ⋖ 1̂

{} 1 aa ab ab
{1} y ba ba ba
{2} y ab ab ab
{1, 2} y2 bb ba ba

Then exΨ(L; y, a, b) = aa + (3y + 2y2)ba + (2 + 3y)ab + y2bb.

Corollary 1.8. For an R-labeled poset P, we have

exΨ(P; y, a, b) = ω
(
Ψ(P; a, b)

)
where the substitution ω replaces all occurrences of ab with ab + yba + yab + y2ba and then
simultaneously replaces all remaining occurrences of a with a + yb and b with b + ya.

Using Corollary 1.8, the monomials u(M, E) in Theorem 1.6 capture the same infor-
mation as the generalized descent sets on réseaux as defined by Bergeron, Mykytiuk, Sottile,
and van Willigenburg in [5, Section 7] in the context of quasisymmetric functions. The
next corollary can be seen as a refinement of [27, Proposition 2.2] and of [5, Theorem 7.2],
stated in terms of ab-indices rather than quasisymmetric functions. Both can be seen as
the special case for the pullback ab-index: the first for enriched P-partitions and the second
for general edge-labeled graded posets, compare with Section 2. We start by describing
their relevant combinatorics in the present notation. Let M be a maximal chain with
u(M) = u1 . . . un, and let

Peak(M) =
{

i ∈ {2, . . . , n} | ui−1 = a, ui = b
}
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denote its peak set. A set S ⊆ {1, . . . , n} is then M-peak-covering if

Peak(M) ⊆ S ∪ {i + 1 | i ∈ S} .

For u(M, S) = v1 · · · vn, let b-out(M, S) be the number of positions i ∈ {1, . . . , n} \ S
where vi = b.

Corollary 1.9. For an R-labeled poset P of rank n, we have

exΨ(P; y, a, b) = ∑
(M,S)

(1 + y)#S · yb-out(M,S) · wtS ,

where the sum ranges over all maximal chains M and all M-peak-covering subsets S ⊆ {1, . . . , n}
and where wtS = w1 . . . wn as given in Equation (1.1).

Another consequence of Corollary 1.8 is that the Poincaré polynomial of P is in fact
encoded in its ab-index. To see this, we define another substitution ι, which deletes the
first letter from every ab-monomial, so ι(a3ba+ (1+ y)ba) = a2ba+ (1+ y)a for example.
This gives us a way to obtain the Poincaré polynomial from the ab-index, a result which
is similar in spirit to [6, Proposition 5.3].

Corollary 1.10. For an R-labeled poset P of rank n, the Poincaré polynomial is the coeffcient of
an−1 in ι

(
ω
(
Ψ(P; a, b)

))
.

Corollary 1.8 generalizes [6, Theorem 3.1] relating the ab-index of the lattice of flats of
an oriented matroid with the ab-index of its face poset. As a consequence, we see that
exΨ(P; y, a, b) is akin to a refinement of a cd-index. We make this observation precise in
the following corollary.

Corollary 1.11. For an R-labeled poset P, there exists a polynomial Φ(P; c1, c2, d) in noncom-
muting variables c1, c2, d such that

exΨ(P; y, a, b) = Φ(P; a + yb, b + ya, ab + yba + yab + y2ba).

In particular, the pullback ab-index Ψpull(P; a, b) is a polynomial in noncommuting variables
c = a + b and 2d = 2(ab + ba).

Remark 1.12 (The synthetic cd-index). Recall that the cd-index of a poset exists if the
ab-index can be written as a polynomial in c = a + b and d = (ab + ba). Bayer and
Klapper proved a conjecture of Fine that a poset satisfies the generalized Dehn-Sommerville
relations if and only if its cd-index exists and has integer coefficients [4, Theorem 4]. The
cd-index of an Eulerian poset always exists (see [3, Theorem 2.1]) and has nonnegative
coefficients when it comes from the face poset of a shellable regular CW sphere like the
face poset of a convex polytope [26, Theorem 2.2] (or, more generally, from a Gorenstein*
poset [17, Theorem 1.3]).
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In [6], Billera, Ehrenborg, and Readdy give an elegant alternative proof of the non-
negativity of the cd-index of the face poset of an oriented matroid. They use the support
map from Equation (1.3) to relate the ab-index of the lattice of flats to the ab-index of
the face poset. In our language, they interpret (using posets and polytopes) the extended
ab-index of an oriented matroid at y = 0 and y = 1. Every matroid admits an extended
ab-index, and the evaluation at y = 0 is the ab-index of its lattice of flats. This raises
the natural question whether there is a geometric or poset-theoretic interpretation of the
y = 1 evaluation of the extended ab-index. For this reason, we call the y = 1 evaluation
of the extended ab-index rewritten in terms of c and d the synthetic cd-index.

Example 1.13 (The Fano matroid). Setting y = 1 and then c = a + b and d = ab + ba
in the extended ab-index of the Fano matroid [8, Example 6.6.2(1)] gives the synthetic
cd-index of the Fano matroid: 12cd + 28dc + c3. A convex 3-polytope with this cd-index
would have 30 vertices and 14 facets; see [21]. Thus its polar dual polytope would have
14 vertices and 30 facets, contradicting the the Upper Bound Theorem [20, p.180].

Example 1.14 (The Mac Lane matroid). We compute the synthetic cd-index of the Mac
Lane matroid; see [9, page 114] and [29, Section 2]. We get the synthetic cd-index 18cd +
32dc + c3, which is the cd-index of a polytope!

Remark 1.15 (Oriented interval greedoids). The argument used for oriented matroids
and their lattices of flats also applies to oriented interval greedoids, where the analogue
of Equation (1.3) is given in [24, Theorem 6.8]. Since the lattice of flats of an interval
greedoid is a semimodular lattice, it admits an R-labeling; see [7, Theorem 3.7]. Applying
Corollary 1.8 and setting y = 1 gives [24, Corollary 6.12].

Remark 1.16 (Distributive lattices & r-signed Birkhoff posets). Ehrenborg discussed an
ω-like substitution for arbitrary distributive lattices [11]. Remarkably, that substitution
is equivalent to the substitution in Corollary 1.8 for y = r − 1 ∈ N. In that case of
distributive lattices, the parameter r is a fixed integer (rather than a variable) carrying
information about the fiber sizes of a certain support map. For a (not necessarily graded)
finite poset P, the r-signed Birkhoff poset Jr(P) is the collection of pairs (F, f ) where F is an
order ideal in P and f is a map from the maximal elements in F to the set {1, . . . , r}, with
order relation given by

(F, f ) ≤ (G, g) ⇐⇒ G ⊆ F and f (x) = g(x) for all x ∈ max(F) ∩ max(G) .

These posets were defined in [15, 11] and studied in connection to the Birkhoff lattice
J(P) = J1(P). The map z : Jr(P) → J(P) with (F, f ) 7→ F is an order- and rank-preserving
poset surjection for which the fiber size of a chain C in J(P) can—in the notation from the
previous sections—be computed by #z−1(C) = PoinC(J(P); r − 1), see [11, Proposition
5.2]. Since distributive lattices are modular, they admit R-labelings; see [7, Theorem 3.7].
Thus, applying Corollary 1.8 for y = r − 1 gives the first part of [11, Theorem 4.2].
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We next turn toward the coarse flag Hilbert–Poincaré series introduced and studied
in [19]. The numerator of this rational function is defined in [19, Equation (1.13)], and we
extend this definition to graded posets via

Num(P; y, t) = ∑
C chain in P\{0̂,1̂}

Poin{0̂}∪C(P; y) · t#C(1 − t)n−1−#C ∈ Z[y, t] .

By removing the first letter of every ab monomial and then specializing via a 7→ 1 and
b 7→ t we obtain a proof of [19, Conjecture E] and its generalization to R-labeled posets:

Corollary 1.17. For an R-labeled poset P, the coefficients of Num(P; y, t) are nonnegative.

Together with Corollary 1.10, we obtain Poin(P; y) = [t0] Num(P; y, t). The substitu-
tions in the previous corollaries show that Theorem 1.6 also gives analogous combinatorial
interpretations for the coefficients of ι

(
exΨ(P; y, a, b)

)
and of Num(P; y, t).

Remark 1.18 (Geometric semilattices). Note that [19, Conjecture E] concerns all hy-
perplane arrangements (central and affine). While the intersection posets of central
hyperplane arrangements are geometric lattices and, thus, admit R-labelings [7, Example
3.8], the intersection posets of affine arrangements are part of a more general family called
geometric semilattices, first explicitly studied by Wachs and Walker in [28]. A theorem of
Ziegler shows that if L is a geometric semilattice, then L ∪ {1̂} admits an R-labeling [30,
Theorem 2.2]. Thus Theorem 1.6 holds for intersection posets of affine arrangements.

Remark 1.19 (Implications for other zeta functions). The coarse flag Hilbert–Poincaré
polynomial of a poset P comes from a natural specialization of its flag Hilbert–Poincaré
series. The flag Hilbert–Poincaré series is a rational function in Q[y](tx | x ∈ P) given by

fHPP(y, t) = ∑
C chain in P\0̂

PoinC(P; y) ∏
x∈C

tx

1 − tx
.

The coarse flag Hilbert–Poincaré polynomial Num(P; y, t) is obtained by setting all the tx
equal to t and considering (1 − t)rank(P)fHPP(y, t). Different specializations of fHPP(y, t)
yield other well-studied zeta functions like local Igusa zeta functions of hyperplane
arrangements [10], motivic zeta functions of matroids from [16], and the conjugacy class
counting zeta functions of certain group schemes defined in [23]. Moreover, each of
these is obtained from fHPP(y, t) by a monomial substitution of the form y = −p−1 and
tx = pλx tµx for some integers λx and µx, where p is a prime and t = p−s for a complex
variable s; see [19, Remark 1.3].

The specialization of Num(P; y, t) at y = 1 was studied further for matroids and
oriented matroids by the second author and Kühne in [18], who showed Num(P; 1, t) is
the sum of h-polynomials of simplicial complexes related to the chambers if P is the
lattice of flats of a real central hyperplane arrangement. The following corollary proves a
generalized version of the conjectured lower bound from [18, Conjecture 1.4].
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Corollary 1.20. Let P be an R-labeled poset of rank n. The coefficient of tk in Num(P; 1, t) is
bounded below by (n−1

k ) · Poin(P; 1).

2 Connection to quasisymmetric functions

Theorem 1.6 shows that the extended ab-index of an R-labeled poset has nonnegative
coefficients. Nonnegativity may fail, however, for posets that do not admit R-labelings.
For example, the weak order for the symmetric group S3 (the hexagon poset) does not
admit an R-labeling and has extended ab-index

aaa + (−1 + 2y)aab + (1 + 2y)aab + y(2 + y2)baa + (2y2 − 1)abb

+ (−y3 + 2y2)bab + y2(2 + y)bba + y(3y2 + 2y − 2)bbb .

Using the right-hand side in Theorem 1.6, we define the (combinatorial) extended ab-index
of a finite edge-labeled graded poset P, which is manifestly positive, via

cxΨ(P; y, a, b) = ∑
(M,E)

y#E · u(M, E) ∈ N[y]⟨a, b⟩ .

While cxΨ is in general not linked to the Poincaré polynomial, the proofs of Corollar-
ies 1.8 and 1.9 still hold. In particular, cxΨ(P; y, a, b) is a polynomial in c1 = a + yb, c2 =
b+ ya and d = ab+ yba+ yab+ y2ba. This means that 2 · cxΨ(P; 1, a, b) is an ab-analogue
of the peak enumerator from [5, Definition 7.1]. The remainder of this section is devoted to
presenting a conjecture inspired by this specialization.

Let S = {s1 < · · · < sk} be a subset of {1, . . . , n}. The monomial quasisymmetric
function MS is the power series

MS = ∑
i1<i2<···<ik<ik+1

xs1
i1

xs2−s1
i2

· · · xsk−sk−1
ik

xn+1−sk
ik+1

∈ Q[[x1, x2, x3, . . . ]] .

Note that MS is homogeneous of degree n + 1 and—although we surpress it in the
notation—implicitly depends on n. The ring of quasisymmetric functions QSym is the
(linear) span of M• = 1 and all MS for n ≥ 0. Following [12, Section 3], we define a
vector space isomorphism Ξ : Q⟨a, b⟩ −→ QSym defined by sending wtT to MT. Using
the isomorphism Ξ, we can view the map ω from Corollary 1.8 as a map from QSym
to QSym ⊗ Q[y] given by FS 7→ ω(FS) = Ξ

(
ω(mS)

)
, where FS is given in [13, Equation

2]. In [27, Equation (1.8)], Stembridge shows how to obtain (skew) Schur functions
as P-partition enumerators of certain posets given in [27, Section 1.3]. The following
conjecture1 concerning the Schur functions has been verified for all integer partitions of
size at most 11 using SageMath.

1This conjecture was exhibited at the 90th Séminaire Lotharingien de Combinatoire in Bad Boll, Germany in
September 2023 in collaboration with Darij Grinberg.
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Conjecture 2.1. For any partition λ ⊢ n, the quasisymmetric function ω(sλ) is symmetric and
Schur positive. Specifically, for each µ ⊢ n, there exist cµ

λ(y) ∈ N[y] such that

ω(sλ) = ∑
µ⊢n

cµ
λ(y) · sµ .

Acknowledgements

We thank Aram Dermenjian, Richard Ehrenborg, Darij Grinberg, Martina Juhnke, and
Vic Reiner for useful discussions.

References

[1] M. Aguiar and S. Mahajan. Topics in Hyperplane Arrangements. Vol. 226. Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, 2017, pp. xxiv+611.

[2] M. M. Bayer. “The cd-index: a survey”. Polytopes and discrete geometry. Vol. 764. Contemp.
Math. Amer. Math. Soc., 2021, pp. 1–19. doi.

[3] M. M. Bayer and L. J. Billera. “Generalized Dehn-Sommerville relations for polytopes,
spheres and Eulerian partially ordered sets”. Invent. Math. 79.1 (1985), pp. 143–157. doi.

[4] M. M. Bayer and A. Klapper. “A new index for polytopes”. Discrete Comput. Geom. 6.1
(1991), pp. 33–47. doi.

[5] N. Bergeron, S. Mykytiuk, F. Sottile, and S. van Willigenburg. “Noncommutative Pieri
operators on posets”. J. Combin. Theory Ser. A 91.1-2 (2000), pp. 84–110. doi.

[6] L. J. Billera, R. Ehrenborg, and M. Readdy. “The c-2d-index of oriented matroids”. J. Combin.
Theory Ser. A 80.1 (1997), pp. 79–105. doi.

[7] A. Björner. “Shellable and Cohen-Macaulay partially ordered sets”. Trans. Amer. Math. Soc.
260.1 (1980), pp. 159–183. doi.

[8] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented Matroids. Sec-
ond. Encyclopedia of Mathematics and its Applications, Volume 46. Cambridge University
Press, 1999, pp. xii+548. doi.

[9] R. G. Bland and M. Las Vergnas. “Orientability of Matroids”. J. Combinatorial Theory Ser. B
24.1 (1978), pp. 94–123. doi.
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Abstract. We consider the moments of statistics on conjugacy classes of colored per-
mutation groups Sn,r = Zr ≀Sn. We first show that any fixed moment of a statistic
coincides on all conjugacy classes when all cycle lengths are sufficiently long. For per-
mutation statistics that can be realized via a process called symmetric extension, we
show that for fixed r, this moment on these conjugacy classes is a polynomial in n.
Hamaker and Rhoades (arXiv, 2022) established analogous results for the symmetric
group as part of their far-reaching representation-theoretic framework. Independently,
Campion Loth, Levet, Liu, Stucky, Sundaram, and Yin (arXiv, 2023) arrived at indepen-
dence and polynomiality results for the symmetric group using instead an elementary
combinatorial framework. Our techniques in this paper build on this latter elementary
approach. Finally, we extend the work of Fulman (J. Comb. Theory Ser. A., 1998), to es-
tablish a central limit theorem for descents in conjugacy classes of the hyperoctahedral
group with sufficiently long cycles.

Keywords: colored permutation, Coxeter group, hyperoctahedral group, moment, per-
mutation constraint, permutation statistic

1 Introduction

For a finite group G, a statistic is a map X : G → R. The distribution of X is the
function (xk), where xk is the number of elements g ∈ G such that X(g) = k (i.e.,
xk := |X−1(k)|). When G is the symmetric group G = Sn, we refer to the statistics as
permutation statistics. The study of permutation statistics is a classical topic in algebraic
combinatorics; Stanley’s texts [16, 17] serve as a key reference in this area.
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In this paper, we build on the elementary methods in [4] to investigate the distribu-
tion of colored permutation statistics by conjugacy class. In contrast to the vast literature
on permutation statistics in Sn, there has been considerably less work on statistics for
arbitrary Coxeter groups or the colored permutation groups Sn,r, i.e., the wreath prod-
uct Zr ≀Sn. We are in particular not aware of work considering colored permutation
statistics on individual conjugacy classes.

When r = 2, the colored permutation group Sn,2 coincides with the hyperoctahedral
group Bn, which is the type B Coxeter group. A study of statistics over the entire Coxeter
group for types B and D was initiated by Reiner, see e.g. [15], and carried further by
Adin and Roichman, see e.g. [1], and Brenti and Carnevale [3]. There is also work on
colored permutation statistics and their distribution, again over the whole group, by
Steingrímsson [18], Fire [7], and Moustakas [13].

Recently, Hamaker and Rhoades [11] established a representation-theoretic frame-
work for permutation statistics on Sn by conjugacy class Cλ. They introduced so-called
local permutation statistics; using representation-theoretic methods, they established that
the moments of these statistics depend only on n and the number of short cycles in λ.
In particular, these moments are independent of the conjugacy class when the cycles in
λ are all sufficiently large.

Independently, and subsequent to the paper [11], Campion Loth, Levet, Liu, Stucky,
Sundaram, and Yin [4] established similar independence and polynomiality results for
conjugacy classes in Sn, using only elementary combinatorial techniques. The present
paper builds on the framework in [4]. The full version of this paper appears in [5].

Main Results. Fix r ≥ 1, and let λ be an r-partition of n. For a statistic X on Sn,r, denote
by Eλ[X] the expected value of X taken over the conjugacy class of Sn,r indexed by λ.
Our main results are as follows:

• Theorem 12 in Section 3.2 shows that for any statistic X, its kth moment coincides
on all conjugacy classes Cλ of Sn,r that do not have "short" cycles. For each statistic
X, making this notion of "short" precise is done through colored permutation con-
straints as given in Definition 4.

• Theorem 20 in Section 3.3 concerns sequences of statistics (Xn)n≥1 on (Sn,r)n≥1 that
can be constructed using symmetric extensions, as described in Definition 19. This
theorem shows that a single polynomial in n gives Eλn [X

k
n] on conjugacy classes

Cλn of Sn,r without "short" cycles. Note that this result applies to many statistics,
including the inversion statistic on Bn defined in (2.2).

• Finally, Theorem 28 in Section 4 establishes asymptotic normality of the descent
statistic on Bn for conjugacy classes with no "short" cycles. Our proof leverages a
generating function of Reiner [15, Theorem 4.1] for the joint distribution of descent
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and major index by cycle type, an analogue of the corresponding generating func-
tion for the symmetric group [10]. The arguments then follow Fulman’s analogous
result for descents on conjugacy classes of Sn [8, Theorem 1 and proof of Theorem
2], but the technical details are nontrivial and require care to execute.

Remark 1. One essential insight in our work was in developing the notion of colored
permutation constraints (see Definition 4). It took considerable effort to arrive at this
definition, and we discuss these technical difficulties in the full version [5, Remark 3.3].
The fact that Theorem 12 and Theorem 20 generalize analogous results on the symmetric
group [11, 4] so cleanly suggests that Definition 4 might in fact be the right notion of
colored permutation constraints.

2 Preliminaries

We recall preliminary notions of colored permutation groups. The colored permutation
group Sn,r is the wreath product [12, Chapter 4] Zr ≀Sn, where Sn is the symmetric
group on n elements and Zr is the cyclic group on r elements. A colored permutation
(ω, τ) ∈ Sn,r can be expressed as an ordered pair consisting of a permutation ω ∈ Sn
along with a function τ : [n] → Zr, where the representative elements of Zr are taken
in {0, . . . , r − 1}. The value τ(j) is called the color of the symbol j, and τ(j) + τ′(j) is
defined as a sum of elements in Zr.

The colored permutation group Sn,r has a canonical embedding as a subgroup of the
symmetric group Srn, which we describe explicitly as follows. Writing [n]r for the set
of rn elements {ij|i ∈ [n], j ∈ {0, 1, . . . , r − 1}} where the exponent indicates the color
of an element in [n], we can also think of the colored permutation (ω, τ) as a bijection
f : [n]r → [n]r defined by f (ij) = ω(i)τ(ω(i))+j for all i, j, where τ(ω(i)) + j is taken
modulo r. In this sense, the coloring of the symbols τ and the underlying permutation
ω are independently specified.

We now turn to discussing the conjugacy class structure of Sn,r. An r-partition of
n ∈ N is an r-tuple of partitions λ = (λj)r−1

j=0 where each λj is a partition of some nj such

that ∑r−1
j=0 nj = n. When r = 2, we also call this a bi-partition. For a cycle in a permutation

in Sn,r, the length of this cycle is the number of elements in it, and the color of this cycle
is the sum of the colors in the cycle, taken modulo r. The cycle type of (ω, τ) ∈ Sn,r is the
r-partition λ = (λj)0≤j≤r−1, where each λj consists of the cycles of color j. Then mi(λ

j)

denotes the number of cycles in λj of length i, and Cλ denotes the elements in Sn,r with
cycle type λ.

Example 2. Let ω ∈ S5 be the permutation specified by ω = [45132] = (143)(25) in one-
line and cycle notation. Let τ = (3, 0, 1, 1, 3). The colored permutation (ω, τ) ∈ S5,4 is
completely specified by the function f : [5]4 → [5]4 satisfying f (i0) = ω(i)τ(ω(i)). Hence



4 Campion Loth, Levet, Liu, Sundaram, and Yin

in two-line, one-line, and cycle notations we have:

(ω, τ) =

(
10 20 30 40 50

41 53 13 31 20

)
= [4153133120] = (134131)(2053).

It has a 3-cycle of color 1 and a 2-cycle of color 3. Its cycle type is thus (∅, (3), ∅, (2)).

The conjugacy classes of Sn,r are well understood in terms of cycle type.

Proposition 3. [12, Theorem 4.2.8, Lemmas 4.2.9-4.2.10] The conjugacy classes of Sn,r are
given by Cλ, where λ is an r-partition of n.

In the special case r = 2, the hyperoctahedral group Sn,2 = Bn can be viewed as the
group of signed permutations, i.e., bijections on [±n] = {±1,±2, . . . ,±n} where positive
and negative elements respectively correspond to colors 0 and 1. In this case, we will
denote bipartitions as (λ, µ) and the corresponding conjugacy class as Cλ,µ.

The type B descent statistic, whose distribution is the subject of Section 4, is then
given by the following definition, with the convention that ω(0) = 0. See [2, Proposition
8.1.2]:

desB(ω) = |{i ∈ {0} ∪ [n − 1] | ω(i) > ω(i + 1)}|. (2.1)

Two other Bn-statistics that will be useful for illustrative purposes are inv and negsum,
defined by (see [2, Equation 8.1 and page 308])

inv= |{(i, j) ∈ [n]× [n] | i < j and ω(i) > ω(j)}|, negsum(ω)= ∑
i∈[n],ω(i)<0

ω(i). (2.2)

Also, the Coxeter length statistic invB is given by the formula [2, Proposition 8.1.1]

invB(ω) = inv(ω)− negsum(ω) (2.3)

We will use the des, inv, and negsum statistics as running examples to illustrate our
work. Results on inv and negsum naturally lead to statements about invB, illustrating
the more general fact that our results behave nicely with statistics that are defined as
linear combinations of other statistics.

Throughout this paper, we will use PrSn,r and Prλ to denote the probabilities in Sn,r
and Cλ (with respect to the uniform measure). We similarly use ESn,r and Eλ for the
expected values on the corresponding probability spaces.

3 Moments of colored permutation statistics

In this section, we will discuss the techniques involved in establishing the independence
result, Theorem 12, and the polynomiality result, Theorem 20.
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3.1 Colored permutation constraints

In this section, we will extend the notion of a permutation constraint from the setting
of the symmetric group to the setting of colored permutations. We compare this to [4,
Definition 7.1] as well as to the work of Hamaker and Rhoades [11], where permutation
constraints are called partial permutations. A colored permutation constraint will have
two components (K, κ). The first, K, will constrain a permutation ω by specifying a
subset of its values. The second component, κ, will assign colors to these values.

Definition 4. Let K = {(i1, j1), . . . , (im, jm)} consist of distinct ordered pairs, where
ih, jh ∈ [n]. Let κ : {j1, . . . , jm} → Zr. We call the pair (K, κ) a colored permutation
constraint, and we call m the size of the constraint. For (ω, τ) ∈ Sn,r, we say that ω

satisfies K if ω(ih) = jh for all h ∈ [m], and we say τ satisfies κ if τ(x) = κ(x) for all
x ∈ {j1, . . . , jm}. Finally we say that (ω, τ) ∈ Sn,r satisfies (K, κ) if ω satisfies K and τ

satisfies κ. We will sometimes denote a constraint as a set of ordered pairs

(K, κ) =
{(

i0
h, jκ(jh)

h

)}m

h=1

recording these conditions, and we sometimes omit set braces for brevity.

Recall from Section 2 that we view the hyperoctahedral group Sn,2 = Bn as the group
of signed permutations. In this case, a constraint is of the form (K, κ) = {(ih, κ(jh)jh)}m

h=1,
where κ(jh) = ±1.

Definition 5. Let C be a set of colored permutation constraints. The size of C is defined
as the maximum size over all constraints contained in C, namely,

size(C) = max
(K,κ)∈C

|K|.

Recall that a colored permutation statistic is simply a map X : Sn,r → R. We now in-
troduce decompositions of colored permutation statistics as weighted sums of indicator
functions corresponding to colored permutation constraints.

Definition 6. A colored permutation statistic X is realizable over a constraint set of size
m if there exists a set of constraints C of size m and weights wt(K, κ) ∈ R such that X =

∑(K,κ)∈C wt(K, κ)I(K,κ), where I(K,κ) is the indicator function that a permutation satisfies
the constraint (K, κ). Note that in general, the decomposition ∑(K,κ)∈C wt(K, κ)I(K,κ) is
not unique.

Example 7. Many statistics have a natural decomposition in terms of constraints. For the
statistics defined on Bn given in Section 2, we have

desB = ∑
j∈[n]

I(1,−j) + ∑
i∈[n−1]

∑
j1,j2∈[±n]

j1<j2

I(i,j2),(i+1,j1),
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inv = ∑
i1,i2∈[n]

i1<i2

∑
j1,j2∈[±n]

j1<j2

I(i1,j2),(i2,j1),

negsum = ∑
i∈[n]

∑
j∈[n]

(−j)I(i,−j).

This shows that desB and inv are realizable over constraint sets of size 2, and negsum is
realizable over a constraint set of size 1. Since invB is the difference of inv and negsum,
we also see that invB is realizable over a constraint set of size 2.

Remark 8. We say that (K, κ) is well-defined if all of the ih ∈ [n] are distinct, and all of the
jh ∈ [n] are distinct. Observe that if (K, κ) is not well-defined, then I(K,κ) is identically 0
on Sn,r, and hence can be omitted from any set realizing a given statistic. Consequently,
we are only interested in well-defined constraints.

3.2 Independence of moments

In this section, we outline the steps leading to the proof of our independence result,
Theorem 12. Our methods follow the strategy of [4, Section 7]. Proofs appear in [5].

Definition 9. A colored permutation constraint (K, κ) is acyclic if K is well-defined and
the graph G(K, κ), with vertex set V = [n] and directed edge set K, does not contain any
cycles. Observe that in this case, G(K, κ) consists of a set of paths.

As a non-example, the size one constraint induced by I(i,−i) from Example 7 is not
acyclic.

Lemma 10. (Compare to Sn, cf. [4, Lemma 7.15]) Consider the group of all r-colored permuta-
tions Sn,r. Let Cλ be a conjugacy class of Sn,r. Let (K, κ) be a well-defined colored permutation
constraint of size m ≤ n, and suppose that each partition in λ has all parts of size at least m + 1.
If K is acyclic, then

Prλ[(ω, τ) satisfies (K, κ)] = 1
(n−1)(n−2)···(n−m)

· 1
rm .

If K is not acyclic, then Prλ[(ω, τ) satisfies (K, κ)] = 0.

One essential observation in proving Lemma 10 is that the permutation and the col-
oring can be treated independently.

Lemma 10 can be used to analyze the first moment of a statistic Eλ[X] by expressing
X in terms of constraints. We need one final lemma to accommodate arbitrary moments
Eλ[Xk] in the main result of this section, Theorem 12.

Lemma 11. Let X1, X2 : Sn,r → R be realizable over constraint sets of size m1, m2 respectively.
Then X1X2 is realizable over a constraint set of size m1 + m2. In particular, for any integer
k ≥ 1, we have that Xk

1 is realizable over a constraint set of size km1.
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This leads to the main theorem of this section.

Theorem 12. Suppose X : Sn,r → R is realizable over a constraint set of size m. For any
k ≥ 1, the kth moment Eλ[Xk] coincides on all conjugacy classes Cλ with no cycles of length
1, 2, . . . , mk.

Note that the above theorem makes precise the notion of “short" cycles. In particular,
if we are considering the kth moment of a statistic X realizable over a constraint set of
size m, then the “short" cycles are the ones of length at most mk.

Remark 13. Note that a colored permutation (ω, τ) is itself a colored permutation con-
straint of size n. Hence, we can express any statistic X using size n constraints. Addi-
tionally, one can show that if X is realizable over a constraint set of size m, then it is also
realizable over a constraint set of size m′ for m ≤ m′ ≤ n. For the full strength of our
results, we are primarily interested in minimizing m, and we call this minimum possible
value the size of X.

Remark 14. The arguments leading to the proof of Theorem 12 have practical appli-
cations for computing moments of statistics on those conjugacy classes. For example,
consider negsum on Bn, which can be expressed as negsum = ∑i∈[n] ∑j∈[n](−j)I(i,−j).
Note that here all constraints are acyclic except for (i,−i). One can then show that for
any bi-partition (λ, µ) of n where all the parts have size at least 2,

Eλ,µ[negsum] = − ∑
i∈[n]

i · Eλ,µ[I(i,−i)]− ∑
i∈[n]

∑
j∈[n]\i

j · Eλ,µ[I(i,−j)]

= − 1
(n − 1) · 2

· ∑
i∈[n]

∑
j∈[n]\i

j = −1
2

(
n + 1

2

)
.

More generally, one can use negsum = ∑i∈[n] ∑j∈[n](−j)I(i,−j) to express negsumk using
constraints of size at most k. On conjugacy classes where all parts have size at least k + 1,
a similar approach as the one above can be used to calculate Eλ,µ[negsumk].

3.3 Symmetric colored permutation statistics

We now turn to extending the notion of a symmetric permutation statistic from [4] to the
colored setting. We begin with some definitions.

Definition 15. The support of a colored permutation constraint (K, κ) = {(i0
r , jκ(jr)

r )}m
r=1

is supp(K, κ) = {i1, . . . , im, j1, . . . , jm}. We emphasize that supp(K, κ) is a set and not a
multiset.
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Definition 16. Consider any colored permutation constraint (K, κ) with support given
by a1 < · · · < as. For any order-preserving injection f : {a1, . . . , as} → [n], define f (K, κ)
to be the constraint

f (K, κ) = ( {( f (i1), f (j1)), . . . , ( f (im), f (jm))}, {κ( f (j1)) = k1, . . . , κ( f (jm)) = km} ).

Definition 17. A set of colored permutation constraints C is symmetric if for all (K, κ) ∈ C
and any order-preserving injection f : supp(K, κ) → [n], we have f (K, κ) ∈ C. A statistic
X is symmetric if it has the form X = ∑(K,κ)∈C I(K,κ) for some symmetric C.

Many statistics naturally satisfy this condition.

Example 18. Consider the statistic inv on Bn that can be realized as

inv = ∑
i,j∈[n]

i<j

∑
k,ℓ∈[±n]

k<ℓ

I{(i,ℓ),(j,k)}.

We denote the constraint set C. If k, ℓ > 0, then for any order preserving f : {i, j, k, ℓ} →
[n], we see that {( f (i), f (ℓ)), ( f (j), f (k))} ∈ C. Note that the set {i, j, k, ℓ} need not
consist of four distinct elements. If k < 0 and ℓ > 0, we see that for any order-preserving
f : {i, j, |k|, ℓ} → [n], we have {( f (i), f (ℓ)), ( f (j),− f (|k|))} ∈ C. The same argument
holds for the case when k, ℓ < 0.

Definition 19. Fix n0 ≥ 2. Let X = ∑(K,κ)∈C I(K,κ) be a symmetric statistic defined on
Sn0,r. Define the r-colored symmetric extensions of X to be the statistics Xn = ∑(K,κ)∈Cn I(K,κ)
on Sn,r with Cn defined as follows:

• If n ≤ n0, then Cn contains all (K, κ) ∈ C with support contained in [n].

• If n ≥ n0, then Cn is the set of all f (K, κ) where (K, κ) ∈ C and f : [n0] → [n] is
order-preserving.

Observe that by construction, each Xn is a symmetric statistic. We emphasize here that r
is kept constant throughout this construction.

Many statistics can be constructed in this manner. For example, if C is the set of
constraints for inv on B4, then this results in the inv statistics on all Bn. In general, the
moments of these statistics satisfy the following polynomial property.

Theorem 20. Fix r ≥ 1. Let (Xn) be the symmetric extensions of a symmetric statistic X = Xn0

on Sn,r induced by a constraint set C of size m. There exists a polynomial pX(n) of degree at
most mk depending only on X such that pX(n) = Eλn [X

k
n] for any r-partition λn of n where all

λ
(j)
n have parts of size at least mk + 1.

Note that one can show this polynomiality property for other statistics that are not
symmetric extensions. The key requirement is that the weights for the various IK be-
have in a way that allows us to divide by the denominators that result from applying
Lemma 10.
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4 Descents in conjugacy classes of hyperoctahedral groups

In this section we discuss the techniques involved in establishing our central limit the-
orem for descents in conjugacy classes of Bn that do not have short cycles. The descent
statistic on Bn was defined in Eqn. (2.1). Let (λ(ω), µ(ω)) denote the cycle type of
ω ∈ Bn, and let mi(λ) denote the number of parts of λ equal to i. While Reiner [15] uses
a different notion of descents, the generating function [9, Theorem 5.3]

∑
ω∈Bn

tdesB(ω) ∏
i

xmi(λ(ω))
i ymi(µ(ω))

i (4.1)

is unaffected.
Following Fulman [8], our approach involves examining the generating function

given in (4.1), which allows us to analyze the generating function for desB on a con-
jugacy class. We then relate this with the generating function for descents on all of Bn.
In the case where there are no short cycles in Cλ,µ, we will ultimately conclude that
certain moments of desB agree on Cλ,µ and Bn, and this in turn enables us to use the
method of moments with a known central limit theorem of Chow and Mansour for desB
on Bn given below.

Proposition 21. [6, Thm 3.4] Let Xn be desB defined on Bn. Then Xn has mean n/2 and vari-
ance (n + 1)/12, and as n → ∞, the standardized random variable (Xn − n/2)/

√
(n + 1)/12

converges to a standard normal distribution.

We will need the well-known generating function of desB over all of Bn.

Proposition 22. [14, Eqn. (13.3)] Let Bn(t) = ∑ω∈Bn tdesB(ω)+1. Then

Bn(t)
(1 − t)n+1 = ∑

k≥1
(2k − 1)ntk.

We now analyze (4.1), which will allow us to derive an expression for the generating
function of desB on a conjugacy class Cλ,µ. The following expression features promi-
nently in our analysis.

Definition 23. [15] Let µ(d) be the number-theoretic Möbius function. Define, for non-
negative integers r and m,

N(r, 2m) =
1

2m ∑
d|m

d odd

µ(d)
(

rm/d − 1
)

.

Reiner [15, Theorem 4.1, Theorem 4.2] shows that N(2k − 1, 2m) must be a nonnega-
tive integer for all k, m ≥ 1.

For a fixed bi-partition (λ, µ) of n, we use the special case of [15, Theorem 4.1] appear-
ing in [9, Theorem 5.3] to derive the following expressions for the generating function
Bλ,µ(t) = ∑ω∈Cλ,µ

tdesB(ω)+1 of descents over the conjugacy class Cλ,µ.



10 Campion Loth, Levet, Liu, Sundaram, and Yin

Proposition 24. Let λ = (1m1(λ), 2m2(λ), . . .) and µ = (1m1(µ), 2m2(µ), . . .). Then the following
are equal to Bλ,µ(t)/(1 − t)n+1:

tδ((1n),∅) + ∑k≥2 tk
(

∏i≥1 (
N(2k−1,2i)

mi(µ)
) ∏i≥2 (

N(2k−1,2i)+mi(λ)−1
mi(λ)

)
)
(N(2k−1,2)+m1(λ)

m1(λ)
)

= tδ((1n),∅) + ∑k≥2 tk m1(λ)+k−1
k−1 ∏i≥1 (

N(2k−1,2i)−1+mi(λ)
mi(λ)

)(N(2k−1,2i)
mi(µ)

).

Here δ((1n),∅) is the Kronecker delta which is 1 for the conjugacy class λ, µ = ((1n), ∅), and zero
otherwise.

By solving for Bλ,µ and extracting the coefficient of td, we also obtain the following
corollary.

Corollary 25. The number of permutations ω ∈ Bn that are of cycle type (λ, µ) and have d − 1
descents is

∑d
k=1(−1)d−k(n+1

d−k)(
m1(λ)+k−1

m1(λ)
)∏i≥2 (

N(2k−1,2i)+mi(λ)−1
mi(λ)

)∏i≥1 (
N(2k−1,2i)

mi(µ)
).

We now give an elegant analogue of a result of Fulman [8, Proof of Theorem 2], which
will relate Bλ,µ(t) and Bn(t).

Theorem 26. Let Cλ,µ be the conjugacy class of Bn indexed by the bi-partition (λ, µ) of n, let
Bn(t) = ∑ω∈Bn tdesB(ω)+1, and let Bλ,µ(t) = ∑ω∈Cλ,µ

tdesB(ω)+1. Then

Bλ,µ(t)
|Cλ,µ|

=
Bn(t)
2nn!

+
1 − t

2n
Bn−1(t)

2n−1(n − 1)!
[m1(λ)

2 − m1(µ)
2] + (1 − t)2g(t),

where g(t) is some polynomial in t. Furthermore, when all cycles in Cλ,µ have length larger than
2k,

Bλ,µ(t)
|Cλ,µ|

=
Bn(t)
2nn!

+ (1 − t)k+1h(t),

where h(t) is some polynomial in t.

The latter case allows us to obtain the following result involving moments of desB on
Bn and Cλ,µ.

Corollary 27. Let Cλ,µ be the conjugacy class of Bn indexed by the bi-partition (λ, µ) of n. The
kth moment of desB in Cλ,µ is equal to the kth moment of desB in Bn if all cycles in Cλ,µ have
length greater than 2k.

The main result of this section, Theorem 28, now follows by applying Corollary 27,
the method of moments, and the asymptotic normality theorem for descents in Bn given
in Proposition 21.
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Theorem 28. For every n ≥ 1, pick a conjugacy class Cλn,µn in Bn indexed by the bi-partition
(λn, µn) of n, where λn = (1m1(λn), 2m2(λn), . . .) and µn = (1m1(µn), 2m2(µn), . . .). Define Xn
to be desB on Cλn,µn . Suppose that for all i, mi(λn) → 0 and mi(µn) → 0 as n → ∞. For
sufficiently large n, Xn has mean n/2 and variance (n + 1)/12. Furthermore, as n → ∞, the
random variable (Xn − n/2)/

√
(n + 1)/12 converges to a standard normal distribution.

5 Conclusion

In this paper, we have introduced a notion of constraints and size for any colored per-
mutation statistic X : Sn,r → R, and we have used this framework to study the moments
of X on conjugacy classes Cλ. In particular, we have established that for a statistic of
size m, the kth moment on Cλ is independent of conjugacy class Cλ when all parts of the
partitions in λ have length at least mk + 1. For statistics on Sn,r that can be expressed as
symmetric extensions, these moments are polynomials in n. Our results directly gener-
alize those in [4] on Sn. Given the numerous connections to [11], one natural problem is
the following.

Problem 29. Use the representation theory of Bn and Sn,r to establish analogues of the
results in [11].

Finally, we note that Sn and Bn are respectively the type A and type B Coxeter
groups. The following is a natural problem to consider next.

Problem 30. Establish analogues of the results in this paper for the type D Coxeter
groups.

It would also be of interest to establish analogous results for (irreducible) complex
reflection groups.
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Upho lattices and their cores
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Abstract. A poset is called upper homogeneous, or “upho,” if every principal order
filter is isomorphic to the original poset. We study enumerative and structural prop-
erties of (finite type N-graded) upho posets. The first important observation we make
about upho posets is that their rank generating functions and characteristic generating
functions are multiplicative inverses of one another. This means that each upho lattice
has associated to it a finite graded lattice, called its core, which determines its rank
generating function. We investigate which finite graded lattices arise as cores of upho
lattices, providing both positive and negative results. On the one hand, we show that
many well-studied finite lattices do arise as cores, and we present combinatorial and
algebraic constructions of the upho lattices into which they embed. On the other hand,
we show there are obstructions which prevent many finite lattices from being cores.

1 Introduction

Symmetry is a fundamental theme in mathematics. A close cousin of symmetry is self-
similarity, where a part resembles the whole. Here we study certain partially ordered
sets that are self-similar in a precise sense. Namely, a poset is called upper homogeneous,
or “upho,” if every principal order filter of the poset is isomorphic to the whole poset. In
other words, a poset P is upho if, looking up from each element p ∈ P , we see another
copy of P . Upho posets were introduced recently by Stanley [13, 14]. We believe they
are a natural and rich class of posets which deserve further attention.

Upho posets are infinite. In order to be able to apply the tools of enumerative and
algebraic combinatorics, we need to impose some finiteness condition on the posets we
consider. Thus, we restrict our attention to finite type N-graded posets. These are the
infinite posets P that possess a rank function ρ : P → N for which we can form the rank
generating function

F(P ; x) := ∑
p∈P

xρ(p).

Henceforth, upho posets are assumed finite type N-graded unless otherwise specified.
The first important observation we make about (finite type N-graded) upho posets

is that their rank generating functions are related in a nice way to the values of their
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Möbius functions. Specifically, if we define the characteristic generating function of an
upho poset P to be

χ∗(P ; x) := ∑
p∈P

µ(0̂, p)xρ(p)

then
F(P ; x) = χ∗(P ; x)−1 (1.1)

i.e., F(P ; x) and χ∗(P ; x) are multiplicative inverses as formal power series.
Gao et al. [7, §5] have shown that there are uncountably many different rank gen-

erating functions F(P ; x) of upho posets P (see also [6]). This prevents us from being
able to say much more about the enumerative and structural properties of upho posets
in general. However, the situation is different for upho lattices.

Let L be an upho lattice, and let L := [0̂, s1 ∨ · · · ∨ sr] denote the interval in L from
its minimum to the join of its atoms s1, . . . , sr. We refer to the finite graded lattice L as
the core of the upho lattice L. Rota’s cross-cut theorem implies that χ∗(L; x) = χ∗(L; x),
where χ∗(L; x) := ∑p∈L µ(0̂, p)xρ(p) is the (reciprocal) characteristic polynomial of L.
Hence,

F(L; x) = χ∗(L; x)−1 (1.2)

Thus, the rank generating function of an upho lattice is the inverse of a polynomial with
integer coefficients. We review (1.1) and (1.2) in Section 2.

Because of (1.2), the core of an upho lattice determines its rank generating function.1

We caution that the core does not completely determine the upho lattice, i.e., there can
be multiple upho lattices with the same core. Nevertheless, any complete understanding
of upho lattices would have to start with an answer to the following question.

Question 1. Which finite graded lattices arise as cores of upho lattices?

Question 1 can be thought of as a kind of tiling problem: our goal is to tile an infinite,
fractal lattice L using copies of some fixed finite lattice L, or show that no such tiling is
possible. In addressing Question 1 here, we provide both positive and negative results.

We start with combinatorial constructions of upho lattices. In Section 3, we construct
upho lattices as limits of sequences of finite lattices. We show that any member of
a uniform sequence of supersolvable geometric lattices is the core of an upho lattice.
Examples of uniform sequences of supersolvable geometric lattices include the Boolean
lattices Bn, their q-analogues Bn(q), and the partition lattices Πn. Hence, these are all
cores of upho lattices. Figure 1 depicts an upho lattice produced via this construction.

In addition to combinatorial constructions, we also explore algebraic constructions
of upho lattices. In Section 4 we explain how monoids provide one algebraic source of
upho lattices. A homogeneously finitely generated monoid M that is left cancellative is

1In fact, since the flag f -vector of any upho poset is determined by its rank generating function (see [14,
§3]), the core of an upho lattice determines its entire flag f -vector.
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1|2

1|23 12|3 13|2

1|234 14|23 12|34 123|4 124|3 13|24 134|2

1|2345 15|234 14|235 145|23 12|345 125|34 123|45 1234|5 1235|4 124|35 1245|3 13|245 135|24 134|25 1345|2

Figure 1: Partitions of sets of the form {1, 2, . . . , n} into 2 blocks, ordered by refine-
ment. This is an upho lattice with core Π3.

ε

a b c

ac aa bb ab ba cc cb

acb acc aaa aab aac bbb bba aba bac baa ccc abb ccb cba cbb

Figure 2: The dual braid monoid ⟨a, b, c | ab = bc = ca⟩ associated to the symmetric
group S3. This is an upho lattice with core the noncrossing partition lattice of S3.

an upho poset under left division. Hence, if M is a lattice under left division, it is an
upho lattice. An important example of such monoids are the Garside monoids coming
from Coxeter theory. Thus, the weak order and noncrossing partition lattice of any finite
Coxeter group are cores of upho lattices. Figure 2 depicts an upho lattice of this form.

On the negative side, in Section 5, we show that there are various obstructions which
prevent arbitrary finite graded lattices from being realized as cores of upho lattices.
There are constraints on the characteristic polynomial of the lattice coming from (1.2).
There are also some structural obstructions, requiring the lattice to be partly self-similar.
These obstructions allow us to show that the following plausible candidates cannot be
realized as cores: the face lattices of the n-dimensional cross polytope and hypercube
(for n ≥ 3); the lattice of flats of the uniform matroid U(k, n) (for 2 < k < n).

The upshot is that Question 1 is quite subtle: it can be difficult to recognize when a
given finite graded lattice is the core of an upho lattice. Many well-behaved finite lattices
are cores of upho lattices, but many too are not. In Section 6 we briefly discuss future
directions in the study of upho lattices that we intend to pursue.

This is just an extended abstract where we survey our recent results on upho lattices.
The full articles containing these results, with proofs, are [8, 9].
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2 Upho poset basics

We use standard notation and terminology for posets, as laid out for instance in [12, §3].
Since we routinely work with both finite and infinite posets, we use the convention that
finite posets are denoted by normal script letters (like P and L) and infinite posets are
denoted by calligraphic letters (like P and L).

Recall that a finite poset P is graded (of rank n) if we can write P =
⊔n

i=0 Pi as a disjoint
union so that every maximal chain is of the form x0 ⋖ x1 ⋖ · · ·⋖ xn with xi ∈ Pi. In this
case, we define the rank function ρ : P → N by ρ(x) := i if x ∈ Pi. For such a P, we define
its rank generating polynomial to be F(P; x) := ∑p∈P xρ(p). If P has a minimum 0̂, we define
its (reciprocal) characteristic polynomial to be χ∗(P; x) := ∑p∈P µ(0̂, p)xρ(p), where µ(·, ·) is
the Möbius function of P.

We say an infinite poset P is N-graded if we can write P =
⊔∞

i=0 Pi as a disjoint union
so that every maximal chain is of the form x0 ⋖ x1 ⋖ · · · with xi ∈ Pi. In this case, we
define the rank function ρ : P → N by ρ(x) := i if x ∈ Pi. We say that P is finite type
N-graded if #Pi < ∞ for all i. For such a P , we define its rank generating function to
be F(P ; x) := ∑p∈P xρ(p). If P has a minimum 0̂, we define its characteristic generating
function to be χ∗(P ; x) := ∑p∈P µ(0̂, p)xρ(p).

We say that a poset P is upper homogeneous, or “upho,” if for every p ∈ P , we have
that Vp ≃ P , where Vp := {q ∈ P : q ≥ p} is the principal order filter generated by p. To
avoid trivialities, let us assume the upho posets we consider have at least two elements;
then they must be infinite. Examples of upho posets include:

• the natural numbers N = {0, 1, . . .}, the nonnegative rational numbers Q≥0, and
the nonnegative real numbers R≥0, all with their usual total orders;

• the poset of finite subsets of X ordered by inclusion, where X is any infinite set.

In order to be able to apply the tools of enumerative and algebraic combinatorics to
study upho posets, we need to impose some finiteness conditions. Hence, from now on,
all upho posets are assumed finite type N-graded. Of the above examples, only N is
finite type N-graded. Here are more examples of (finite type N-graded) upho posets:

Example 1. Fix r ≥ 1 and let P be the “infinite rooted r-ary tree” poset. The case r = 2 of this
poset is depicted on the left in Figure 3. Note that this P is the “freest” upho poset with r atoms.
It has F(P ; x) = 1

1−rx and χ∗(P ; x) = 1 − rx.
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Figure 3: Various upho posets with two atoms.

Example 2. Fix r ≥ 1 and let P =
⊔∞

i=0 Pi be the N-graded poset with #P0 = 1 and #Pi = r
for all i ≥ 1, and with all cover relations between Pi and Pi+1 for all i ≥ 0. The case r = 2 is
depicted in the middle in Figure 3. Note that this P is the “least free” upho poset with r atoms.
It has F(P ; x) = 1+(r−1)x

1−x and χ∗(P ; x) = 1−x
1+(r−1)x .

Example 3. Fix r ≥ 1 and let P = Nr, i.e., the (Cartesian) product of r copies of N. The case
r = 2 is depicted on the right in Figure 3. It has F(P ; x) = 1

(1−x)r and χ∗(P ; x) = (1 − x)r.

From the preceding examples, the reader might guess a relationship between the rank
and characteristic generating functions of an upho poset. And indeed, the following
result is proved by a straightforward application of Möbius inversion (see [12, §3.7]).

Theorem 1. For an upho poset P , we have F(P ; x) = χ∗(P ; x)−1.

Lattices have well-behaved Möbius functions, so we can say even more about upho
lattices. Let L be an upho lattice, and let L := [0̂, s1 ∨ · · · ∨ sr] denote the interval in L
from its minimum to the join of its atoms s1, . . . , sr. We call L the core of L. Rota’s cross-
cut theorem (see [12, Corollary 3.9.5]) and Theorem 1 together imply the following.

Corollary 1. For an upho lattice L with core L, we have F(L; x) = χ∗(L; x)−1.

Of the above examples of (finite type N-graded) upho posets, only Nn is a lattice. The
core of Nn is Bn, the rank n Boolean lattice, i.e., the lattice of subsets of [n] := {1, 2, . . . , n}
ordered by inclusion. And indeed, we have χ∗(Bn; x) = (1 − x)n = F(Nn; x)−1. In what
follows, we focus on Question 1, the question of which finite graded lattices are cores of
upho lattices. For example, we just saw that the Boolean lattice Bn is a core for all n ≥ 1.

3 Upho lattices from sequences of finite lattices

In this section we construct upho lattices as limits sequences of finite lattices that are
appropriately embedded in one another. In order to make “appropriately embedded
in one another” precise, we need two technical notions from the literature: the notion
of a supersolvable geometric lattice, as introduced by Stanley in [11]; and the notion of a
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uniform sequence of geometric lattices, as introduced by Dowling in [5]. These two notions
represent two different ways that a lattice can have a recursive structure.

Let L be a finite lattice. We say L is atomic if every element is the join of atoms. We
say L is (upper) semimodular if it is graded and satisfies ρ(x) + ρ(y) ≥ ρ(x ∨ y) + ρ(x ∧ y)
for all x, y ∈ L. We say L is geometric if it is both atomic and semimodular. Geometric
lattices are intensely studied because they are exactly the lattices of flats of matroids.

First we review supersolvability. So let L be a geometric lattice. We say x ∈ L is
modular if ρ(x) + ρ(y) = ρ(x ∨ y) + ρ(x ∧ y) for all y ∈ L. For instance, every element
of a modular lattice is modular. The lattice L is called supersolvable if it has a maximal
chain x0 ⋖ x1 ⋖ · · ·⋖ xn of modular elements. Stanley proved the following remarkable
factorization theorem for characteristic polynomials of supersolvable geometric lattices.

Theorem 2 (Stanley [11]). Let L be a supersolvable geometric lattice with maximal chain of
modular elements x0 ⋖ x1 ⋖ · · ·⋖ xn. Then χ∗(L; x) = (1− a1x)(1− a2x) · · · (1− anx) where
ai := #{atoms s ∈ L : s ≤ xi, s ̸≤ xi−1} for i = 1, . . . , n.

Next we review uniform sequences. A sequence L0, L1, . . . of geometric lattices is
called uniform if each Ln is graded of rank n, and [a, 1̂Ln ] ≃ Ln−1 for every atom a ∈ Ln.

Now fix a uniform sequence of geometric lattices L0, L1, . . .. We define their Whitney
numbers of the second and first kind, denoted V(i, j) and v(i, j), respectively, to be the
coefficients F(Li; x) = ∑i

j=0 V(i, j)xi−j and χ∗(Li, x) = ∑i
j=0 v(i, j)xi−j. By convention, we

set V(i, j) := 0 and v(i, j) := 0 for j > i. Dowling showed that uniform sequences of
geometric lattices have the following nice behavior for their Whitney numbers.

Theorem 3 (Dowling [5]). The matrices [V(i, j)]0≤i,j≤∞ and [v(i, j)]0≤i,j≤∞ are inverses.

In the case when the geometric lattices in our uniform sequence are supersolvable,
we can combine Theorems 2 and 3 to yield a stronger result.

Corollary 2. Suppose that the geometric lattices Ln in our uniform sequence are all supersolvable.
Then their Whitney numbers are

V(i, j) = hi−j(a1, . . . , aj+1) and v(i, j) = (−1)i−jei−j(a1, . . . , ai),

where hk and ek are the kth complete homogeneous and elementary symmetric polynomials, and
an := #{atoms s ∈ Ln} − #{atoms s ∈ Ln−1} for all n ≥ 1.

The key to proving Corollary 2 is to show that each Ln+1 has a modular coatom t for
which [0̂Ln+1 , t] ≃ Ln. In this way, we get rank-preserving embeddings ιn : Ln → Ln+1.
By abuse of terminology, we define a uniform sequence of supersolvable geometric lattices
to be a uniform sequence of geometric lattices L0, L1, . . . for which we have fixed such
embeddings ιn : Ln → Ln+1, and for which these ιn are compatible with the isomorphisms
[a, 1̂Ln ] ≃ Ln−1 in the uniformity condition. See [9, §3] for the precise definition.
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So now let L0, L1, . . . be a uniform sequence of supersolvable geometric lattices, and
then define L∞ :=

⋃∞
n=0 Ln, the direct limit of the Ln with respect to the ιn : Ln → Ln+1.

This L∞ will almost be an upho lattice, except that it will not be finite type N-graded:
it will have infinitely many atoms. We need to “trim” L∞ to produce an upho lattice.
Hence, for each k ≥ 1, define L(k)

∞ := {p ∈ L∞ : ν(p)− ρ(p) < k}, where for p ∈ L∞ we
let ν(p) := min{n : p ∈ Ln}. Then we can prove the following.

Theorem 4. For each k ≥ 1, L(k)
∞ is an upho lattice with core Lk.

Theorem 4 would not be interesting if there were no interesting examples of uniform
sequences of supersolvable geometric lattices. Fortunately, there are many interesting
examples, which we now review.

Example 4. Taking Ln = Bn, the rank n Boolean lattice, gives a uniform sequence of super-
solvable geometric lattices. For this sequence, L∞ is the lattice of all finite subsets of {1, 2, . . .}
ordered by inclusion, and L(k)

∞ = {finite S ⊆ {1, 2, . . .} : S ⊆ [#S + k − 1]}. Note that, L(k) is
not isomorphic to Nk (for k ≥ 2). This is the simplest example a finite graded lattice being the
core of two different upho lattices. Of course, we have F(L(k)

∞ ; x)−1 = χ∗(Bk; x) = (1 − x)k.

Example 5. Fix a prime power q. Recall that the subspace lattice Bn(q) is the lattice of sub-
spaces of Fn

q ordered by inclusion. Taking Ln = Bn(q) gives a uniform sequence of supersolvable
geometric lattices. For this sequence, L∞ is the lattice of all finite-dimensional subspaces of F∞

q ,

and L(k)
∞ = {finite-dimensional U ⊆ F∞

q : U ⊆ Span{e1, . . . , edim(U)+k−1}}, with e1, e2, . . . an

ordered basis of F∞
q . We have F(L(k)

∞ ; x)−1 = χ∗(Bk(q); x) = (1 − x)(1 − qx) · · · (1 − qk−1x).

Example 6. Recall that the partition lattice Πn is the lattice of set partitions of [n] ordered by
refinement. Taking Ln = Πn+1 gives a uniform sequence of supersolvable geometric lattices. For
this sequence, L∞ is the lattice of all set partitions of {1, 2, . . .} for which all but finitely many
blocks are singletons (ordered by refinement). And L(k)

∞ can be identified with the set partitions
of a set of the form [n] into k blocks, still ordered by refinement in the sense that π1 ≤ π2

if each block of π1 is a subset of a block of π2. Figure 1 depicts L(2)
∞ for this example. We

have F(L(k)
∞ ; x)−1 = χ∗(Πk+1; x) = (1 − x)(1 − 2x) · · · (1 − kx).

Example 7. Fix a finite group G, say with m elements. In [5], Dowling defined a lattice Qn(G),
now called a Dowling lattice, consisting of certain “G-decorated” (partial) set partitions of [n].
When G is the trivial group, Qn(G) = Πn+1. And when G = Z/2Z, Qn(G) is the lattice of
flats of the Type Bn Coxeter hyperplane arrangement. Dowling proved that Qn(G) is a uniform
sequence of supersolvable geometric lattices, with χ∗(Qn(G); x) = ∏n

i=1(1 − (1 + m(i − 1))x).
See [9, §3] for the description of the L∞ and L(k)

∞ for this example.
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4 Upho lattices from monoids

In this section, we explain how monoids give rise to upho lattices. The examples in
this section are quite different from those in Section 3. For example, the characteristic
polynomials in this section will not necessarily factor over the integers.

Recall that a monoid M = (M, ·) is a set M with an associative binary product ·
that has an identity element. The free monoid on a set S is the monoid of words over
the alphabet S with the product being concatenation and identity the empty word. A
presentation of a monoid M is a way of writing M = ⟨S | R⟩ as a quotient of the free
monoid over some generating set S by the relations R. A monoid M is finitely generated
if it has a presentation M = ⟨S | R⟩ with S finite. Let us say that M is homogeneously
finitely generated if it has a presentation M = ⟨S | R⟩ with S finite and R homogeneous.
That is, we require that all relations in R are of the form w1 = w2 with ℓ(w1) = ℓ(w2),
where for a word w use ℓ(w) to denote its length.

Let M be a monoid. For a, b ∈ M, we say that a is a left divisor of b, and b is a right
multiple of a, if ax = b for some x ∈ M. We use ≤L for the preorder of left divisibility
on M, which is actually a partial order if M is homogeneously finitely generated. The
monoid M is called left cancellative if whenever ab = ac then b = c, for all a, b, c ∈ M.

Lemma 1 (c.f. [7, Lemma 5.1] and [6]). Let M be a homogeneously finitely generated monoid.
If M is left cancellative, then L := (M,≤L) is an upho poset. If moreover every pair of elements
in M has a least common right multiple, then L is an upho lattice.

The significance of the Möbius function to enumeration in monoids, especially can-
cellative monoids, was already observed many years ago in the work of Cartier and Foata
on free partially commutative monoids [3]. In practice, the left cancellative property of
a monoid is not hard to check, but the lattice property is more difficult to establish.
Nevertheless, some examples can be produced by hand:

Example 8. Fix n, r ≥ 2 and define M := ⟨x1, . . . , xr | xixn−1
1 = xn

1 for all i = 2, . . . , r⟩.
Then M satisfies the conditions of Lemma 1, so that L := (M,≤L) is an upho lattice. Its core
is L := 0̂ ⊕ r · [n − 1]⊕ 1̂, i.e., the result of appending a minimum and maximum to the disjoint
union of r (n − 1)-element chains. We have F(L; x)−1 = χ∗(L; x) = 1 − rx + (r − 1)xn.

Note in particular that taking n = 2 in Example 8 shows how every rank two finite
graded lattice (with at least two atoms) can be realized as the core of an upho lattice. We
will see in Section 5 that not all rank three lattices can be realized as cores.

To obtain more sophisticated examples of upho lattices from Lemma 1, we need some
deeper theory. An important class of monoids satisfying the conditions of Lemma 1 are
the (homogeneous) Garside monoids. We refer to [4] for a complete account of the theory
of Garside monoids. Without giving the full definition, we note that a Garside monoid
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is not only left cancellative and a lattice under left divisibility, it is also right cancellative
and a lattice under right divisibility.

The most significant examples of Garside monoids come from finite Coxeter groups.
We give only a cursory account of the relevant Coxeter theory here; see [2, 1] for much
more detail. Recall that W is a finite Coxeter group if W is a finite group with generating
set S = {s1, . . . , sr} ⊆ W for which W = ⟨S | s2

i = 1 for all i, (sisj)
mi,j = 1 for i < j⟩

for certain integers mi,j ≥ 2. We also say (W, S) is a finite Coxeter system in this case,
and we say S are the simple reflections of W. For example, the symmetric group Sn of
permutations of [n] is a finite Coxeter group with simple reflections {s1, . . . , sn−1} the
adjacent transpositions si = (i, i + 1); here we have mi,j = 2 if j − i ≥ 2 and mi,i+1 = 3.

Now fix a finite Coxeter system (W, S = {s1, . . . , sr}). The length ℓ(w) of w ∈ W is the
minimum length of a way of writing w = si1 · · · sik as a word in the si. The weak order of W
is the partial order on W whose cover relations are w ⋖ ws whenever ℓ(ws) = ℓ(w) + 1,
for w ∈ W and s ∈ S. It is well-known that the weak order is a finite graded lattice, with
rank function ℓ. One Garside monoid associated to (W, S) is related to weak order:

Example 9. Let S = {s1, . . . , sr} be a collection of letters corresponding to the simple reflections
S = {s1, . . . , sr}. For si, sj ∈ S we write (si, sj)

[m] := sisjsisj · · · , a word with m letters. The
classical braid monoid associated to (W, S) is M := ⟨S | (si, sj)

[mi,j] = (sj, si)
[mi,j] for i < j⟩.

It is known that M is a Garside monoid (see [4, Chapter IX, §1]), which implies that M satisfies
the conditions of Lemma 1, so L := (M,≤L) is an upho lattice. Its core is the weak order of W.

Continue to fix the finite Coxeter system (W, S). There is another Garside monoid
associated to (W, S) that is also very interesting. Let T := {w−1sw : w ∈ W, s ∈ S} ⊆ W,
which is called the set of reflections of W. The absolute length ℓT(w) of w ∈ W is the
minimum length of a way of writing w = t1 · · · tk with all ti ∈ T. The absolute order of W
is the partial order on W whose cover relations are w⋖wt whenever ℓT(wt) = ℓT(w) + 1,
for w ∈ W and t ∈ T. Absolute order is a graded poset, with rank function ℓT, but it is not
a lattice since it has multiple maximal elements. However, if c ∈ W is a Coxeter element
(a product c = s1 · · · sr of the simple reflections in some order), then the interval [1, c]
in absolute order is a lattice, whose isomorphism type does not depend on the choice
of c. It is called the noncrossing partition lattice of W. When W = Sn, the noncrossing
partition lattice is the restriction of Πn to those partitions that are noncrossing when the
numbers 1, 2, . . . , n are arranged clockwise around a circle, and hence the name. The
second Garside monoid attached to (W, S) is related to the noncrossing partition lattice:

Example 10. Let T be a collection of letters corresponding to the reflections T. For s, t ∈ T,
we use the notation ts for the letter corresponding to the conjugate ts := s−1ts. The dual braid
monoid associated to (W, S) is M := ⟨T | ts = sts for all s ̸= t ∈ T⟩. It is known that M
is a Garside monoid (see [4, Chapter IX, §2]), which implies that M satisfies the conditions of
Lemma 1, so L := (M,≤L) is an upho lattice. Its core is the noncrossing partition lattice of W.
For example, Figure 2 depicts this upho lattice in the case when W = S3.
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We note that the noncrossing partition lattice of S3 happens to be isomorphic to Π3,
so Figures 1 and 2 are examples of non-isomorphic upho lattices with the same core.

5 Obstructions for cores of upho lattices

In this section we explore various methods for showing that a finite graded lattice cannot
be realized as the core of an upho lattice. We first observe that there are constraints on
the characteristic polynomial of a core coming from Corollary 1.

Lemma 2. Let L be a finite graded lattice which is the core of an upho lattice. Then the formal
power series χ∗(L; x)−1 has all positive coefficients.

Already Lemma 2 can rule out some plausible candidate lattices from actually being
realized as cores, as we now explain.

Let P be a convex polytope. The face lattice L(P) of P is the poset of faces of P
ordered by inclusion. It is always a finite graded lattice. For example, if P is an (n − 1)-
dimensional simplex, then L(P) = Bn, which we know is a core. It is reasonable to ask
which other face lattices of convex polytopes are cores.

Example 11. Let P be the octahedron. Then χ∗(L(P); x) = 1 − 6x + 12x2 − 8x3 + x4, and we
can compute that [x13]χ∗(L(P); x)−1 = −123704, where [xn]F(x) means the coefficient of xn

in the power series F(x). So by Lemma 2, L(P) is not the core of any upho lattice.

Let G be a connected, simple graph on vertex set [n]. The bond lattice L(G) of G is
the restriction of Πn to the those set partitions π for which the induced subgraph of G
on each block of π remains connected. It is always finite graded lattice; in fact, it is the
lattice of flats of the graphic matroid of G. We have that χ∗(L(G); x) = xn · χ(G; x−1)
where χ(G; x) is the chromatic polynomial of G. For example, if G = Kn is the complete
graph, then L(G) = Πn, which we know is a core. It is reasonable to ask which other
bond lattices of graphs are cores.

Example 12. Consider G = C4, the 4-cycle graph. Then χ∗(L(C4); x) = 1 − 4x + 6x2 − 3x3

and we can compute that [x7]χ∗(L(C4); x)−1 = −80. So by Lemma 2, L(C4) is not the core of
any upho lattice.

Beyond characteristic polynomial obstructions, there are also structural obstructions
for cores. The following proposition follows trivially from the definition of the core of
an upho lattice, but is still worth recording since it rules out many lattices as cores.

Proposition 1. Let L be a finite graded lattice which is the core of an upho lattice. Then its
maximum 1̂ is the join of its atoms.
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The previous propositions says something about the join of the elements covering 0̂.
Looking at the join of the elements covering an arbitrary element x is a good idea, and
leads to further, non-trivial obstructions for cores. The following lemma says that a core
must already be “partly self-similar” in order to fit into an upho lattice.

Lemma 3. Let L be a finite graded lattice which is the core of an upho lattice. Let x ∈ L \ {0̂, 1̂}
and let y1, . . . , yk ∈ L be the elements covering x. Then there is a rank-preserving embedding of
the interval [x, y1 ∨ · · · ∨ yk] into L.

Lemma 3 lets us rule out many further plausible candidate cores, as we now explain.

Example 13. Let n ≥ 1 and let P be the n-dimensional cross polytope, i.e., the convex hull
of all permutations of the vectors (±1, 0, . . . , 0) ∈ Rn. Consider its face lattice L := L(P).
Concretely, the elements of L can be represented as length n words in the alphabet {0,+,−},
where w ≤ w′ if w′ is obtained from w by changing some 0’s to ±’s, together with a maximum
element 1̂. Letting x be any atom of L, it can be seen that no embedding of the kind required by
Lemma 3 exists when n ≥ 3, so that L is not the core of any upho lattice.

The 3-dimensional cross polytope is the octahedron, so Example 13 generalizes Ex-
ample 11. We also remark that it can similarly be shown that the face lattice of the
n-dimensional hypercube (the dual of the cross polytope) is not a core for n ≥ 3.

Example 14. Let 2 ≤ k ≤ n and let L be the lattice of flats of the uniform matroid U(k, n).
Concretely, L is obtained from the Boolean lattice Bn by removing all elements at rank k or
higher, and then adding a maximum element 1̂. Letting x be any atom of L, it can be seen that no
embedding of the kind required by Lemma 3 exists when 2 < k < n, so that L is not the core of
any upho lattice.

The lattice of flats of the uniform matroid U(n − 1, n) is the same as the bond lat-
tice L(Cn) of the n-cycle graph Cn, so Example 14 generalizes Example 12.

6 Future directions

In this section we briefly discuss future directions in the study of upho lattices.
A question naturally suggested by our work here is the following:

Question 2. For a finite graded lattice L, let κ(L) denote the number of different upho lattices
with core L. How does κ(L) behave?

In work in progress joint with Joel Lewis [10], we are pursuing Question 2. On the
one hand, we can show that κ(L) is finite for any lattice L which has no nontrivial
automorphisms, suggesting that it may be finite for all L. On the other hand, we can
show that κ(L) is unbounded even when we restrict to lattices L of rank two.
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Finally, if classifying all upho lattices is too difficult, we might instead hope to classify
some subvarieties of upho lattices. Two of the most important subvarieties of lattices are
the distributive lattices and the modular lattices. In planned future work, we will explore
distributive and modular upho lattices. The only upho distributive lattices are Nn, but
upho modular lattices are much more interesting (c.f. [7, Conjecture 1.1]).
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Pattern heights and the minimal power of q in a
Kazhdan–Lusztig polynomial

Christian Gaetz*1 and Yibo Gao2

1Department of Mathematics, University of California, Berkeley, CA, USA
2Beijing International Center for Mathematical Research, Peking University, Beijing, CN

Abstract. For w in the symmetric group, we use permutation patterns to provide an
exact formula for the smallest positive power qh(w) appearing in the Kazhdan–Lusztig
polynomial Pe,w(q). We also use Weyl group patterns to provide a tight upper bound
on h(w) in simply-laced types, resolving a conjecture of Billey–Postnikov from 2002.

Keywords: Kazhdan–Lusztig polynomial, permutation pattern, Bruhat order

1 Introduction

Let G be a complex semisimple Lie group, with Borel subgroup B containing maximal
torus T and corresponding Weyl group W. The Bruhat decomposition G =

⊔
w∈W BwB

gives rise to the Schubert varieties Xw := BwB/B inside the flag variety G/B, whose
containments determine the Bruhat order on W: y ≤ w if Xy ⊂ Xw. The Kazhdan–
Lusztig polynomials Py,w(q) ∈ Z[q] have since their discovery [14] proven to underlie
deep connections between canonical bases of Hecke algebras, singularities of Schubert
varieties, and representations of Lie algebras.

Theorem 1 (Kazhdan and Lusztig [15]). For y ≤ w, let IH∗(Xw)y denote the local intersec-
tion cohomology of Xw at the T-fixed point yB, then

Py,w(q) = ∑
i

dim(IH2i(Xw)y)qi.

Theorem 1 implies that Py,w(q) has nonnegative coefficients, a property which is
completely obscured by their recursive definition (Definition 7). It is known that for all
y ≤ w one has Py,w(0) = 1.

Theorem 2 (Deodhar [11]; Peterson (see [9])). If G is simply-laced and y ≤ w, then Xw is
smooth at yB if and only if Py,w(q) = 1. In particular, Xw is smooth if and only if Pe,w(q) = 1.

*gaetz@berkeley.edu

mailto:gaetz@berkeley.edu
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In light of Theorem 1, one wants to understand Py,w(q) explicitly enough to determine
which coefficients vanish. Indeed, the view of the Py,w as a measure of the failure of local
Poincaré duality in Xw was among the original motivations in [14]. Unfortunately, Py,w
may be arbitrarily complicated [18] and the formulae [8] which exist involve cancellation,
and are thus not well-suited to this problem. If Xw is singular (as is typically true) one
can at least ask for the smallest nontrivial coefficient, the first degree in which Poincaré
duality fails. Writing [qi]Py,w for the coefficient of qi in Py,w(q), define:

h(w) := min{i > 0 | [qi]Pe,w ̸= 0} = min
y≤w

min{i > 0 | [qi]Py,w ̸= 0}.

The second equality follows from the monotonicity property of the Py,w [7]. We make
the convention that h(w) = +∞ when Xw is smooth.

Conjecture 3 (Billey and Postnikov [2]). Let G be simply-laced of rank r, and suppose Xw is
singular. Then h(w) ≤ r.

Billey and Postnikov’s conjecture is somewhat surprising, since deg(Py,w) may be as
large as 1

2(ℓ(w)− ℓ(y)− 1) which is of the order of r2, where ℓ denotes length. An upper
bound on h(w) in certain special infinite Coxeter groups was given in [19].

The decomposition Xw =
⊔

y≤w ByB/B is an affine paving, with the cell ByB/B hav-
ing complex dimension ℓ(y). We thus have

L(w) := ∑
y≤w

qℓ(y) = ∑
j≥0

dim(H j(Xw))qj/2,

the Poincaré polynomial of Xw. Björner–Ekedahl [6] gave a precise interpretation of h(w)
in terms of L(w), as the smallest homological degree in which Poincaré duality fails.

Theorem 4 (Björner and Ekedahl [6]). For 0 ≤ i ≤ ℓ(w)/2 we have [qi]L(w) ≤ [qℓ(w)−i]L(w),
and

h(w) = min{i > 0 | [qi]L(w) < [qℓ(w)−i]L(w)}.

Theorem 4 will be a useful tool in this work, but cannot be directly used to resolve
Conjecture 3 since it is difficult to compute [qi]L(w) in general.

Our first main theorem1 is a refinement and proof of Conjecture 3.

Theorem 5. Let G be simply-laced of rank r, and suppose Xw is singular. Then h(w) ≤ r − 2.

The bound of r − 2 is tight when G is a member of the infinite families SLr+1 or SO2r.
When G is one of the exceptional simply-laced groups of type E6, E7, or E8, Theorem 5
follows from the computations made by Billey–Postnikov [2]. In the case G = SLn+1,
the theorem can be derived from the classification of the singular locus of Xw [5, 17].
However, in this case we provide a new exact formula for h(w) for any permutation w.
This theorem is phrased in terms of pattern containment (see Section 2.5.2).

1A full version of this work is available at [13]
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Theorem 6. Let G = SLn+1, and suppose Xw is singular. Then

h(w) =

{
1 if w contains 4231,
mHeight(w) otherwise,

where mHeight(w) denotes the minimum height of a 3412 pattern in w.

In the case Pe,w(1) = 2, Theorem 6 follows from the work of Woo [21]. Our theorem
adds to the deep [22] and ubiquitous [1] links between singularities of Schubert varieties
and pattern containment.

2 Preliminaries

2.1 Bruhat order and Kazhdan–Lusztig polynomials

Let W be a Weyl group with simple reflections S = {s1, s2, . . .} and length function ℓ.
Write R for the set of reflections (conjugates of simple reflections), then Bruhat order ≤
on W is defined as the transitive closure of the relation y < yr if r ∈ R and ℓ(y) < ℓ(yr).

The left (respectively, right) descents DL(w) (resp. DR(w)) are those s ∈ S such that
sw < w (resp. ws < w).

Definition 7 (Kazhdan and Lusztig [14]). Define polynomials Ry,w(q) ∈ Z[q] by setting
Ry,w(q) = 0 if y ̸≤ w, Ry,w(q) = 1 if y = w, and requiring:

Ry,w(q) =

{
Rys,ws(q), if s ∈ DR(y) ∩ DR(w), and
qRys,ws(q) + (q − 1)Ry,ws, if s ∈ DR(w) \ DR(y).

Then there is a unique family of polynomials Py,w(q) ∈ Z[q], the Kazhdan–Lusztig poly-
nomials satisfying Py,w(q) = 0 if y ̸≤ w, Pw,w(q) = 1, and such that if y < w then Py,w has
degree at most 1

2(ℓ(w)− ℓ(y)− 1) and

qℓ(w)−ℓ(y)Py,w(q−1) = ∑
a∈[y,w]

Ry,a(q)Pa,w(q).

Although not apparent from Definition 7, the Py,w satisfy an inversion symmetry:

Proposition 8. Let y, w ∈ W, then Py,w(q) = Py−1,w−1(q). In particular, h(w) = h(w−1).

2.2 Fiber bundles of Schubert varieties

For J ⊂ S, we write WJ for the subgroup generated by J, PJ for the parabolic subgroup
of G generated by B and J, and W J for the set of minimal length representatives of
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the left cosets W/WJ . We have W J = {w ∈ W | DR(w) ∩ J = ∅}. Each w ∈ W
decomposes uniquely as wJwJ with wJ ∈ W J and wJ ∈ WJ . Using right cosets instead
gives decompositions w = Jw

Jw with Jw ∈ WJ and Jw ∈ JW = (W J)−1. Notice that
(w−1)J = (Jw)−1.

We write w0(J) for the unique element of WJ of maximum length and write [u, v]J

for the set [u, v] ∩ W J . Since parabolic decompositions are unique, we have an injection
[e, wJ ]J × [e, wJ ] ↪→ [e, w] given by multiplication.

Schubert varieties X J
wJ := BwJ PJ/PJ in the partial flag variety G/PJ have an affine

paving by ByPJ/PJ for y ∈ W J and y ≤ wJ , and so

LJ(wJ) := ∑
y∈W J

y≤wJ

qℓ(y) = ∑
j≥0

dim(H j(X J
wJ ))q

j/2.

Definition 9 (Richmond and Slofstra [20]). The parabolic decomposition w = wJwJ is
called a Billey–Postnikov decomposition or BP-decomposition of w if supp(wJ)∩ J ⊂ DL(wJ).

Theorem 10 (Richmond and Slofstra [20]). The map Xw ↠ X J
wJ induced by the map G/B →

G/PJ is a bundle projection if and only if J is a BP-decomposition of w, and in this case the fiber
is isomorphic to XwJ . Taking Poincaré polynomials, we have LJ(wJ)L(wJ) = L(w) in this case.

2.3 Patterns in Weyl groups

Let Φ denote the root system for G, with positive roots Φ+ and simple roots ∆. For
w ∈ W, the inversion set is Inv(w) := {α ∈ Φ+ | wα ∈ Φ−}.

A subgroup W ′ of W generated by reflections is called a reflection subgroup, and is
itself a Coxeter group with reflections R′ = R∩W ′. We write ≤′ for the intrinsic Bruhat
order on W ′, Φ′ for the root system, and Inv′ for inversion sets.

Proposition 11 (Billey and Braden [4]; Billey and Postnikov [2]). Let W ′ ⊂ W be a reflection
subgroup, there is a unique function fl : W → W ′, the flattening map satisfying:

(1) fl is W ′-equivariant, and

(2) if fl(x) ≤′ fl(wx) for some w ∈ W ′, then x ≤ wx.

Furthermore, fl has the following explicit description: fl(w) is the unique element w′ ∈ W ′ with
Inv′(w′) = Inv(w) ∩ Φ′. If W ′ = WJ is a parabolic subgroup, then fl(w) = wJ .

Definition 12. We say that w ∈ W contains the pattern w′′ ∈ W ′′, if W has some reflection
subgroup W ′, with an isomorphism W ′ φ−→ W ′′ as Coxeter systems, such that φ(fl(w)) =
w′′. Otherwise, w is said to avoid w′′.
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1 2 3 n−1
· · ·An−1 · · ·

0

1
2 3 n−1

Dn

Figure 1: The Dynkin diagrams for Types An−1 and Dn.

We will make use of the following result, which is proven using patterns.

Theorem 13 (Billey and Braden [4]). Let J ⊂ S, then h(w) ≤ h(wJ).

Billey and Postnikov gave the following characterization of smooth Schubert varieties,
generalizing the work of Lakshmibai–Sandhya [16]. We write W(Z) to denote the Weyl
group of Type Z, where Z is one of the types in the Cartan–Killing classification.

Theorem 14 (Billey and Postnikov [2]). Let G be simply-laced, then the Schubert variety
Xw ⊂ G/B is smooth if and only if w avoids the following patterns: s2s1s3s2 ∈ W(A3),
s1s2s3s2s1 ∈ W(A3), and s2s0s1s3s2 ∈ W(D4).

2.4 Conventions for simply-laced groups

2.4.1 G = SLn (Type An−1)

We let B be the set of lower triangular matrices in G, and T ⊂ B the diagonal matrices in
G. We have Φ(An−1) = {ej − ei | 1 ≤ i ̸= j ≤ n}, Φ+(An−1) = {ej − ei | 1 ≤ i < j ≤ n},
and ∆(An−1) = {ei+1 − ei | 1 ≤ i ≤ n − 1}.

Under these conventions, the Weyl group W(An−1) acts on LieR(T)∗ = Rn/(1, . . . , 1)
by permutation of the coordinates, yielding an isomorphism W(An−1) with the symmet-
ric group Sn. Letting αi := ei+1 − ei, the corresponding simple reflection si is identified
with the transposition (i i + 1). It will often be convenient for us to write permutations
w in one-line notation as w(1) . . . w(n). The Dynkin diagram is shown in Figure 1.

2.4.2 G = SO2n (Type Dn)

We let B be the set of lower triangular matrices in G, and T ⊂ B the diagonal matrices in
G. We have Φ(Dn) = {ej ± ei | 1 ≤ i ̸= j ≤ n}, Φ+(Dn) = {ej ± ei | 1 ≤ i < j ≤ n}, and
∆(Dn) = {e2 + e1} ∪ {ei+1 − ei | 1 ≤ i ≤ n − 1}.

Under these conventions, the Weyl group W(Dn) acts on LieR(T)∗ = Rn by permut-
ing coordinates and negating pairs of coordinates. This identifies W(Dn) with the per-
mutations w of {−n, . . . ,−1, 1, . . . , n} satisfying w(i) = −w(−i) for all i, and such that
|{w(1), . . . , w(n)} ∩ {−n, . . . ,−1}| is even. We write Dn for this realization of W(Dn).
Such a permutation can be uniquely specified by its window notation [w(1) . . . w(n)].
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Write δ0 = e2 + e1 and δi = ei+1 − ei, i = 1, 2, . . . , n − 1 for the simple roots. It
will often be convenient for us to write ī for −i, and we use these interchangeably. We
also make the convention that eī = e−i := −ei for i > 0. We have simple reflections
s0 = (1 2̄)(1̄ 2) and si = (i i + 1)(ī i+1) for i = 1, . . . , n − 1.

2.5 Reflection subgroups and diagram automorphisms

See Figure 1 for our labeling of the Dynkin diagrams. The following is clear:

Proposition 15. The diagram of the Type An−1 has an automorphism εA sending αi 7→ αn−i for
i = 1, . . . , n − 1, and the diagram of Type Dn has an automorphism εD interchanging δ0 ↔ δ1.
If ε ∈ {εA, εD}, then h(w) = h(εD(w)).

2.5.1 Reflection subgroups

In light of Theorem 14, we will be concerned with reflection subgroups isomorphic to
W(A3) and W(D4) inside W(An−1) and W(Dn).

Proposition 16. Reflection subgroups isomorphic to W(A3) and W(D4) inside W(An−1) and
W(Dn) are characterized as follows:

(a) No reflection subgroup W ′ ⊂ W(An−1) is isomorphic to W(D4).

(b) Reflection subgroups W ′ ∼= W(A3) inside W(An−1) are conjugate to the parabolic sub-
group W(An−1){1,2,3}.

(c) Reflection subgroups W ′ ∼= W(D4) inside W(Dn) are conjugate to the parabolic subgroup
W(Dn){0,1,2,3}.

(d) Reflection subgroups W ′ ∼= W(A3) inside W(Dn) come in two classes: those related to
W(Dn){1,2,3} by conjugacy and εD (Class I), and those conjugate to W(Dn){0,1,2} (Class
II).

2.5.2 One line notation and patterns

We will be interested in occurrences of the patterns from Theorem 14 in elements w ∈
W(An−1) or W(Dn). For w ∈ W(Dn), it will sometimes be useful for us to distinguish
between Class I and II patterns (see Proposition 16(d)). Realizing these Weyl groups
as Sn and Dn, respectively, allows for one-line interpretations of pattern containment
(summarized in Figure 2). This approach to pattern containment is in some sense a hy-
brid between the approaches of Billey [3] using signed patterns and of Billey, Braden,
and Postnikov [2, 4] using patterns in the sense of Definition 12. Our distinction be-
tween Class I and II patterns is seemingly novel and reflects the disparate effects that
occurrences of these patterns can have on h(w).
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Type Class Pattern One-line

A3 I s2s1s3s2 3412

A3 II s2s1s3s2 ±123̄

A3 I s1s2s3s2s1 4231

A3 II s1s2s3s2s1 ±13̄2̄

D4 s2s0s1s3s2 ±143̄2

Figure 2: The patterns from Theorem 14 with their one-line notations, divided accord-
ing to type and class.

Definition 17.

(i) For p a signed permutation of [k], we say w ∈ Dn contains p at positions 1 ≤ i1 <
· · · < ik ≤ n if sign(w(ij)) = sign(p(j)) for j = 1, . . . , k and |w(i1)|, . . . , |w(ik)| are
in the same relative order as |p(1)|, . . . , |p(k)|.

(ii) For p ∈ Sk, we say w ∈ Sn contains p at positions 1 ≤ i1 < · · · < ik ≤ n if
w(i1), . . . , w(ik) have the same relative order as p(1), . . . , p(k). We say u ∈ Dn
contains p at positions i1 < · · · < ik, where each ij ∈ ±[n] if u(i1), . . . , u(ik) have
the same relative order as p(1), . . . , p(k) and |i1|, . . . , |ik| are distinct.

In each case, we say that the values of the occurrence are w(i1), . . . , w(ik).

The following is a translation of Theorem 14 in light of our conventions for patterns.

Proposition 18. Let G be simply-laced; then Xw ⊂ G/B is smooth if and only if w avoids the
patterns 3412,±123̄, 4231,±13̄2̄, and ±143̄2 (see Figure 2).

The following statistic on occurrences of the pattern 3412 will be of special impor-
tance for us (see Theorem 6).

Definition 19 (See [10, 21]). We say an occurrence of 3412 in w ∈ Sn or Dn at positions
a < b < c < d has height equal to w(a)− w(d). We let mHeight(w) denote the minimum
height over all occurrences of 3412 in w.

3 Upper bounds on h(w)

3.1 Proof strategy

We will identify certain patterns p (among those from Proposition 18) such that if w
contains p, then h(w) can be computed using Theorem 4 and an analysis of the Bruhat
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covers of w. Then, for w avoiding these patterns and containing others, we will—by
a combination of parabolic reduction (Theorem 13), inversion (Proposition 8), and di-
agram automorphisms (Proposition 15)—obtain a bound h(w) ≤ h(u) for u in some
special family S . Finally, we will show that elements u ∈ S have distinguished BP-
decompositions such that the base and fiber in the bundle (Theorem 10) with total space
Xu can be understood, allowing for the computation of h(u). In the remainder, we refer
primarily to the elements w ∈ W rather than the Schubert varieties Xw that they index,
although each of these steps has a geometric basis. We say w is smooth (resp. singular) if
Xw is smooth (resp. singular).

We only have space to give a few representative proofs and proof ideas in this ex-
tended abstract.

Proposition 20. Let w ∈ Sn or Dn; we have h(w) = 1 if w contains:

(i) 4231 and w ∈ Sn,

(ii) ±123̄,

(iii) ±143̄2, or

(iv) 3412 of height one.

Proof idea. The strategies for all cases are similar: containment of any of these patterns
implies a relation τ1 + τ2 = τ3 + τ4 for τ1, τ2, τ3, τ4 ∈ Inv(w). We show that this implies
a relation between roots indexing lower Bruhat covers of w. By results of Dyer [12], this
implies that [qℓ(w)−1]L(w) > [q]L(w), so that h(w) = 1 by Theorem 4.

3.2 Proof of Theorem 5 in Type A

In this section we obtain an upper bound on h(w) for w ∈ Sn in terms of mHeight(w);
this establishes Theorem 5 for W = Sn as well as one direction of Theorem 6.

Lemma 21. For n ≥ 4, consider w ∈ Sn where w(1) = n − 1, w(2) = n, w(n − 1) = 1,
w(n) = 2 and w(i) = n − i + 1 for 3 ≤ i ≤ n − 2. Then h(w) = n − 3.

Proof. Let J = {2, 3, . . . , n − 2} so that wJ = w0(J). The parabolic decomposition w =
wJwJ is a Billey–Postnikov decomposition. Moreover, L(wJ) = L(w0(J)) is palindromic,
since Xw0(J) is a product of flag varieties and therefore smooth. Every u ∈ W J satisfies
u(2) < u(3) < · · · < u(n−1) so by counting inversions with u(1) and u(n), we see
ℓ(u) = (u(1)− 1) + (n − u(n))− 1u(1)>u(n). Elements u ∈ [e, wJ ]J are characterized by
u(1) ≤ n − 1 and u(n) ≥ 2 with u(2) < · · · < u(n−1). We are now able to count the
rank sizes of [e, wJ ]J to be 1, 2, 3, . . . , n − 4, n − 3, n − 2, n − 1, n − 3, n − 4, . . . , 2, 1. Thus,
h(LJ(wJ)) = n − 3 and h(w) = min(h(LJ(wJ)), h(L(wJ))) = min(n − 3, ∞) = n − 3.



Pattern heights and the minimal power of q in a Kazhdan–Lusztig polynomial 9

For an occurrence of a 3412 in w at indices a < b < c < d with w(c) < w(d) <
w(a) < w(b) its content is 1 + |{i | b < i < c, w(d) < w(i) < w(a)}|. Let mCont(w) be the
minimum content of a 3412 pattern in w.

Lemma 22. For w ∈ Sn that contains 3412, mHeight(w) = mCont(w).

One advantage of working with content instead of height is that we evidently have
mCont(w) = mCont(w−1).

Lemma 23. Suppose that w ∈ Sn avoids 4231 and contains 3412. Then h(w) ≤ mHeight(w).

Proof. We use induction on n. The statement is true when n = 4, where h(3412) =
mHeight(3412) = 1. For a general n and w ∈ Sn, let k = mHeight(w) = mCont(w).
For J = {2, 3, . . . , n − 1}, if wJ has mCont(wJ) = k, then we are done by the induction
hypothesis and Theorem 13 which says h(w) ≤ h(wJ) ≤ mCont(wJ) = k. We can thus
assume without loss of generality that the index 1 appears in all 3412’s of w with content
k. Similarly, by considering J = {1, 2, . . . , n − 2}, we can also assume that the index n
appears in all 3412’s of w with content k. As h(w) = h(w−1), with the same argument
on w−1, we can reduce to the case that w contains a unique 3412 of content k on indices
1 < w−1(n) < w−1(1) < n (see Figure 3). As we assume that wJ does not contain a

•

•

•

•
A

B

C

∅

∅

∅

∅

∅

∅

Figure 3: The permutation diagram for w with an occurrence of 3412 on the boundary.
We draw permutation diagrams by putting •’s at Cartesian coordinates (i, w(i)).

3412 of content k, there does not exist i such that 1 < i < w−1(n) with w(i) > w(n).
By symmetry, we know six of the regions in Figure 3 are empty as shown, and label the
other three regions as A, B, C. By definition, |B| = k − 1. If k = 1, then h(w) = 1 by
Proposition 20. If k > 1, B is not empty; since w avoids 4231, A and C must be empty.
Thus w is exactly the permutation in Lemma 21, which gives h(w) = n − 3 = k.

3.3 Extension to Type D

Proposition 24. If w ∈ Dn contains 4231, then h(w) ≤ 2.

Proof idea. We adapt the strategy for Proposition 20 to show that for most occurrences of
4231, we in fact have h(w) = 1. The few remaining cases are analyzed separately.
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Definition 25. Define the magnitude mag(w) as the smallest b > 0 such that w has an
occurrence of ±13̄2̄ with values ac̄b̄.

Proposition 26. Suppose w ∈ Dn contains ±13̄2̄ and avoids 4231, then h(w) ≤ mag(w)− 1.

Proposition 27. Let W = Dn for n ≥ 5, let J = S \ {1}, J′ = S \ {0}, K = S \ {n − 1}, and
suppose w ∈ Dn is singular, but satisfies:

(i) w avoids 4231,±13̄2̄,±123̄,±143̄2, and neither w nor εD(w) contains any occurrences of
3412 of height one,

(ii) wJ , wJ′ , wK, Jw, J′w, Kw are smooth.

Then w = u := [n, 2, 3̄, 4̄, . . . , n−1,±1] or w = εD(u).

We are now ready to complete the proof of Theorem 5, resolving Conjecture 3.

Proof of Theorem 5. First suppose G = SLr+1, and let w ∈ W(Ar) = Sr+1 such that Xw is
singular. By Theorem 14, w contains 4231 or 3412. If w contains 4231, then h(w) = 1 by
Proposition 20. Otherwise w avoids 4231 and contains 3412, so h(w) ≤ mHeight(w) by
Lemma 23. It is clear by definition that mHeight(w) ≤ r − 2 for any w, so we are done.

Now suppose G = SO2r for r ≥ 5, and let w ∈ W(Dr) = Dr. Suppose by induc-
tion that the claim is true for G = SO2r′ for r′ < r (the base case r′ = 4 is covered
by the computations in [2]). If w contains 4231, then h(w) ≤ 2 ≤ r − 2 by Proposi-
tion 24, so we may assume that w avoids 4231. Then by Proposition 26, if w contains
±13̄2̄ we have h(w) ≤ mag(w) ≤ r − 2. If w contains any of the patterns from Proposi-
tion 20, then h(w) = 1 ≤ r − 2. Let J = S \ {2}, J′ = S \ {0}, K = S \ {r − 1}; if any of
wJ , wJ′ , wK, Jw, J′w, Kw is singular, then by the type A result, or by the induction hypoth-
esis, we have h(w) ≤ r − 3. Finally, if w does not fall into any of the above cases, then w
satisfies the hypotheses (i) and (ii) of Proposition 27, so w = u := [r, 2, 3̄, 4̄, . . . , r−1,±1]
or w = εD(u).

We will now compute h(u) = h(εD(u)); suppose for convenience that r is even, the
other case being exactly analogous. Let I = {1, 2 . . . , r − 2}, then we have uI = w0(I) is
the longest element of Sr−1, so h(uI) = ∞. Thus we need to compute h(LI(uI)) with
uI = [r−1, . . . , 4̄, 3̄, 2, r, 1̄]. Notice ℓ(uI) = N := 1

2(r
2 − 3r + 4) with reduced word:

s0(s2s0)(s3s2s1) · · · (sr−4sr−5 · · · s3s2s0)(sr−3 · · · s3s2s1)(sr−2 · · · s3s2s0)sr−1.

We claim that LI(uI) = 1 + 2q + 3q2 + · · ·+ aqN−2 + 2qN−1 + qN, with a ≥ 4, so that
h(u) = h(LI(uI)) = 2 < r − 2. Indeed, the elements of length one in [e, uI ]I are {s0, sr−1},
the elements of length two are {s0sr−1, s2s0, sr−2sr−1}, and the elements of length N − 1
are {s0uI , s2uI}. Consider the four elements z1 = s0s2uI , z2 = s2s0uI , z3 = s0uIsr−1, z4 =
s3s2uI . It is easy to check for i = 1, 2, 3, 4 that ℓ(zi) = N − 2, that zi ≤ uI , and that
zi ∈ W I ; thus a ≥ 4 as desired.
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4 Exact formula when G = SLn

For w ∈ Sn, we have proved the upper bound in Theorem 6 in Section 3.2. The lower
bound follows from Lemma 28 below.

Lemma 28. Suppose that w ∈ Sn avoids 4231 and contains 3412. Then h(w) ≥ mHeight(w).

Proof idea. This is an inductive argument using a diagram analysis, analogous to but
more involved than the proof of Lemma 23. The relevant diagram is shown in Figure 4.

•

•

•(c, w(c))

•
(b, w(b))

•
•
•
•
•A B

C

• ∅

∅

•

•

••

(1, w(1))

(w−1(1), 1)

D

Figure 4: The permutation diagram of w used in the proof of Lemma 28.
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Abstract. Rowmotion is a certain well-studied bijective operator on the distributive
lattice J(P) of order ideals of a finite poset P. We introduce the rowmotion Markov chain
MJ(P) by assigning a probability px to each x ∈ P and using these probabilities to insert
randomness into the original definition of rowmotion. More generally, we introduce
a very broad family of toggle Markov chains inspired by Striker’s notion of generalized
toggling. We characterize when toggle Markov chains are irreducible, and we show
that each toggle Markov chain has a remarkably simple stationary distribution.

We also provide a second generalization of rowmotion Markov chains to the context of
semidistrim lattices. Given a semidistrim lattice L, we assign a probability pj to each
join-irreducible element j of L and use these probabilities to construct a rowmotion
Markov chain ML. Under the assumption that each probability pj is strictly between 0
and 1, we prove that ML is irreducible. We also compute the stationary distribution of
the rowmotion Markov chain of a lattice obtained by adding a minimal element and a
maximal element to a disjoint union of two chains.

We bound the mixing time of ML for an arbitrary semidistrim lattice L. In the special
case when L is a Boolean lattice, we use spectral methods to obtain much stronger
estimates on the mixing time, showing that rowmotion Markov chains of Boolean
lattices exhibit the cutoff phenomenon.

Keywords: Toggle, rowmotion, Markov chain, stationary distribution, mixing time,
lattice

1 Introduction

Let P be a finite poset, and let J(P) denote the set of order ideals of P. For S ⊆ P, let

∆(S) = {x ∈ P : x ≤ s for some s ∈ S} and ∇(S) = {x ∈ P : x ≥ s for some s ∈ S},
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and let min(S) and max(S) denote the set of minimal elements and the set of maximal
elements of S, respectively. Rowmotion, a well-studied operator in the growing field of
dynamical algebraic combinatorics, is the bijection Row: J(P) → J(P) defined by1

Row(I) = P \ ∇(max(I)). (1.1)

We refer the reader to [16, 17] for the history of rowmotion. The purpose of this extended
abstract of the article [4] is to introduce randomness into the ongoing saga of rowmotion
by defining certain Markov chains. We were inspired by the articles [1, 11, 14]; these
articles define Markov chains based on the promotion operator, which is closely related to
rowmotion in special cases [16] (though our Markov chains are fundamentally different
from these promotion-based Markov chains).

For each x ∈ P, fix a probability px ∈ [0, 1]. We define the rowmotion Markov chain
MJ(P) with state space J(P) as follows. Starting from a state I ∈ J(P), select a random
subset S of max(I) by adding each element x ∈ max(I) into S with probability px;
then transition to the new state P \ ∇(S) = Row(∆(S)). Thus, for any I, I′ ∈ J(P), the
transition probability from I to I′ is

P(I → I′) =


(

∏
x∈min(P\I′)

px

)(
∏

x′∈max(I)\min(P\I′)
(1 − px′)

)
if min(P \ I′) ⊆ max(I);

0 otherwise.

Observe that if px = 1 for all x ∈ P, then MJ(P) is deterministic and agrees with the row-
motion operator. On the other hand, if px = 0 for all x ∈ P, then MJ(P) is deterministic
and sends every order ideal of P to the order ideal P.

Example 1. Suppose P is the poset

,

whose elements x, y, z are as indicated. Then J(P) forms a distributive lattice with 5
elements. The transition diagram of MJ(P) is drawn over the Hasse diagram of J(P) in
Figure 1.

Suppose each probability px is strictly between 0 and 1. One of our main results will
imply that MJ(P) is irreducible and that the probability of the state I in the stationary
distribution of MJ(P) is

1
Z(J(P)) ∏

x∈I
p−1

x , (1.2)

1Many authors define rowmotion to be the inverse of the operator that we have defined. Our definition
agrees with the conventions used in [2, 6, 17].
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Figure 1: The transition diagram of MJ(P), where P is the 3-element poset from Exam-
ple 1. The elements of each order ideal in J(P) are circled and colored blue.
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where Z(J(P)) = ∑
I′∈J(P)

∏
x′∈I′

p−1
x′ .

It is surprising that there is such a clean formula for the stationary distribution in
this level of generality. We will deduce this result from a more general result about a
vastly broader family of Markov chains.

2 Toggle Markov Chains

Let P be a finite set of size n, and let K be a collection of subsets of P. For each x ∈ P,
define the toggle operator τx : K → K by

τx(A) =

{
A△{x} if A△{x} ∈ K
A otherwise,

where △ denotes symmetric difference. Note that τx is an involution. Fix a tuple x =
(x1, . . . , xn) that contains each element of P exactly once. In other words, x is an ordering
of the elements of P. Given a set Y ⊆ P, let τY = τyr ◦ · · · ◦ τy1 , where y1, . . . , yr is the list
of elements of Y in the order that they appear within the list x1, . . . , xn.

Striker [15] viewed the map τP : K → K as a generalization of rowmotion. Indeed,
if P is a poset, x = (x1, . . . , xn) is a linear extension of P (meaning i < j whenever
xi < xj in P), and K = J(P), then τP is equal to rowmotion. The recent article [7] studies
the dynamical aspects of τP when P is a poset, x is a linear extension of P, and K is
the collection of interval-closed (also called convex) subsets of P. The articles [3, 9, 10]
consider τP when P is the vertex set of a particular graph, x is a special ordering of the
vertices, and K is the collection of independent sets of the graph.

For each x ∈ P, fix a probability px. Define the toggle Markov chain T = T(K, x) as
follows. The state space of T is K. Suppose the Markov chain is in a state A ∈ K. Choose
a subset T ⊆ A randomly so that each element x ∈ A is included in T with probability
px, and then transition from A to the new state τT(A).

To phrase this differently, define the random toggle τ̃x to be the stochastic operator
that acts as follows on a set A ∈ K. Let X be a Bernoulli random variable that takes the
value 1 with probability px, and let

τ̃x(A) =

{
τx(A) if x ̸∈ A or X = 1;
A if x ∈ A and X = 0.

Then the Markov chain transitions to the state obtained from A by applying the random
toggles τ̃x1 , . . . , τ̃xn in this order. (Each time we apply a random toggle, we use a new
Bernoulli random variable that is independent of those used before.)
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Figure 2: As in Example 2, we consider random toggles, where K is the collection of
independent sets of a path graph with vertices x, y, z (from left to right). The elements
of each independent set are circled and colored blue. To apply the random toggle τ̃x

to an independent set A, we follow one of the red arrows starting at A; the probability
that a particular arrow is used is written next to the arrow. Similarly, we follow a green
arrow when we apply τ̃y, and we follow a purple arrow when we apply τ̃z.

Example 2. Suppose G is the graph , whose vertices x, y, z are as indicated.
Let K be the collection of independent sets of G. Figure 2 depicts the random toggles
τ̃x, τ̃y, τ̃z. If we let x = (x, y, z), then a transition of T(K, x) consists of applying these
random toggles in the order τ̃x, τ̃y, τ̃z.

Given a set P, let HP be the hypercube graph with vertex set 2P (the power set of P)
such that two sets A, A′ ⊆ P are adjacent if and only if |A△A′| = 1. For S ⊆ 2P, let HP|S
be the induced subgraph of HP with vertex set S.

Let us now state our main results about irreducibility and stationary distributions of
toggle Markov chains. As before, we fix a finite set P, a collection K of subsets of P, an
ordering x of the elements of P, and a probability px for each x ∈ P.

Theorem 1 ([4]). Suppose 0 < px < 1 for each x ∈ P. The toggle Markov chain T(K, x) is
irreducible if and only if the graph HP|K is connected.

If P is a finite poset and x is a linear extension of P, then one can show that T(J (P), x)
coincides with the rowmotion Markov chain MJ(P). In this case, every connected compo-
nent of HP|J(P) contains the empty set as a vertex. Thus, it is immediate from Theorem 1
that the rowmotion Markov chain MJ(P) is irreducible whenever 0 < px < 1 for every
x ∈ P.
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Theorem 2 ([4]). Suppose the toggle Markov chain T(K, x) is irreducible and px > 0 for every
x ∈ P. For A ∈ K, the probability of the state A in the stationary distribution of T(K, x) is

1
Z(K) ∏

x∈A
p−1

x ,

where Z(K) = ∑
A′∈K

∏
x′∈A′

p−1
x′ .

Note that the stationary distribution in Theorem 2 is independent of the ordering x
(though the Markov chain itself can certainly depend on x).

3 Mixing Times

Suppose M is an irreducible finite Markov chain with state space Ω, transition matrix
Q, and stationary distribution π. For x ∈ Ω, let Qi(x, ·) denote the distribution on Ω in
which the probability of a state x′ is the probability of reaching x′ by starting at x and
applying i transitions (this probability is the entry in Qi in the row indexed by x and the
column indexed by x′). The total variation distance dTV = dΩ

TV is the metric on the space
of distributions on Ω defined by

dTV(µ, ν) = max
A⊆Ω

|µ(A)− ν(A)| = 1
2 ∑

x∈Ω
|µ(x)− ν(x)|.

For ε > 0, the mixing time of M, denoted tmix
M (ε), is the smallest nonnegative integer i

such that dTV(Qi(x, ·), π) < ε for all x ∈ Ω.
The width of a finite poset P, denoted width(P), is the maximum size of an antichain

in P. In [4], we use the method of coupling to prove the following bound on the mixing
time of an arbitrary rowmotion Markov chain.

Theorem 3 ([4]). Let P be a finite poset, and fix a probability px ∈ (0, 1) for each x ∈ P. Let
p = max

x∈P
px. For each ε > 0, the mixing time of MJ(P) satisfies

tmix
MJ(P)

(ε) ≤

 log ε

log
(

1 − (1 − p)width(P)
)
 .

We can drastically improve the bound in Theorem 3 when P is an antichain (so J(P) is
a Boolean lattice). For simplicity, we assume that all probabilities px are equal to a single
value p. In this setting, the Markov chain is reversible with respect to π; this allows us
to give a spectral proof of the following result, which is an instance of the well-studied
cutoff phenomenon.
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Theorem 4 ([4]). Let P be an n-element antichain, and fix a probability p ∈ (0, 1). Let px = p
for all x ∈ P. Let Q and π be the transition matrix and stationary distribution, respectively, of
the Markov chain MJ(P).

1. For c > 1
2 and t = 1

2 log1/p n + c, we have

max
x∈J(P)

dTV(Qt(x, ·), π) ≤ 1
2

(
ep2c−1 − 1

)1/2
.

2. For 0 < c < 1
2 log1/p n and t = 1

2 log1/p n − c, we have

max
x∈J(P)

dTV(Qt(x, ·), π) ≥ 1 − 4p2c+1 − 4p2c.

It would be interesting to prove that other natural families of toggle Markov chains
exhibit cutoff.

4 Semidistrim Lattices

If P is a finite poset, then we can order J(P) by inclusion to obtain a distributive lattice.
In fact, Birkhoff’s Fundamental Theorem of Finite Distributive Lattices states that every
finite distributive lattice is isomorphic to the lattice of order ideals of some finite poset.
Thus, instead of viewing rowmotion as a bijective operator on the set of order ideals of a
finite poset, one can equivalently view it as a bijective operator on the set of elements of
a distributive lattice. This perspective has led to more general definitions of rowmotion
in recent years. Barnard [2] showed how to extend the definition of rowmotion to the
broader family of semidistributive lattices, while Thomas and Williams [17] discussed
how to extend the definition to the family of trim lattices. (Every distributive lattice is
semidistributive and trim, but there are semidistributive lattices that are not trim and
trim lattices that are not semidistributive.)

One notable example motivating these extended definitions comes from Reading’s
Cambrian lattices [12]. Suppose c is a Coxeter element of a finite Coxeter group W.
Reading [13] found a bijection from the c-Cambrian lattice to the c-noncrossing partition
lattice of W; under this bijection, rowmotion on the c-Cambrian lattice corresponds to
the well-studied Kreweras complementation operator on the c-noncrossing partition lattice
of W [2, 17]. See [5, 8, 17] for other non-distributive lattices where rowmotion has been
studied.

Recently, the first author and Williams [6] introduced the even broader family of
semidistrim lattices and showed how to define a natural rowmotion operator on them; this
is now the broadest family of lattices where rowmotion has been defined. It turns out
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that we can extend our definition of rowmotion Markov chains to semidistrim lattices;
this provides a generalization of rowmotion Markov chains that is different from the
toggle Markov chains discussed in Section 2. We sketch the details here, referring to [4]
for the full definition of a semidistrim lattice and an explanation of why this definition
specializes to the one given above when the lattice is distributive.

Let L be a semidistrim lattice, and let JL and ML be the set of join-irreducible ele-
ments of L and the set of meet-irreducible elements of L, respectively. There is a specific
bijection κL : JL → ML satisfying certain properties. The Galois graph of L is the loopless
directed graph GL with vertex set JL such that for all distinct j, j′ ∈ JL, there is an arrow
j → j′ if and only if j ̸≤ κL(j′). Let Ind(GL) be the set of independent sets of GL. There
is a particular way to label the edges of the Hasse diagram of L with elements of JL;
we write juv for the label of the edge u ⋖ v. For w ∈ L, let DL(w) be the set of labels of
the edges of the form u ⋖ w, and let UL(w) be the set of labels of the edges of the form
w ⋖ v. Then DL(w) and UL(w) are actually independent sets of GL. Moreover, the maps
DL,UL : L → Ind(GL) are bijections. The rowmotion operator Row: L → L is defined by
Row = U−1

L ◦ DL.
The rowmotion Markov chain ML has L as its set of states. For each j ∈ JL, we fix a

probability pj ∈ [0, 1]. Starting at a state u ∈ L, we choose a random subset S of DL(u)
by adding each element j ∈ DL(u) into S with probability pj and then transition to the
new state u′ = RowL(

∨
S).

When pj = 1 for all j ∈ JL, the Markov chain ML is deterministic and agrees with
rowmotion; indeed, this follows from [6, Theorem 5.6], which tells us that

∨DL(u) = u
for all u ∈ L.

Our main result about rowmotion Markov chains of semidistrim lattices is as follows.

Theorem 5 ([4]). Let L be a semidistrim lattice, and fix a probability pj ∈ (0, 1) for each join-
irreducible element j ∈ JL. The rowmotion Markov chain ML is irreducible.

Let us remark that this theorem is not at all obvious. Our proof uses a delicate
induction that relies on some difficult results about semidistrim lattices proven in [6].
For example, we use the fact that intervals in semidistrim lattices are semidistrim.

We can also generalize Theorem 3 to the realm of semidistrim lattices in the following
theorem. Given a semidistrim lattice L and an element u ∈ L, we write ddeg(u) for
the down-degree of u, which is the number of elements of L covered by u. Let α(GL)
denote the independence number of the Galois graph GL; that is, α(GL) = max

I∈Ind(GL)
|I|.

Equivalently, α(GL) = max
u∈L

ddeg(u). If P is a finite poset, then α(GJ(P)) = width(P).

Theorem 6 ([4]). Let L be a semidistrim lattice, and fix a probability pj ∈ (0, 1) for each j ∈ JL.
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Let p = max
j∈JL

pj. For each ε > 0, the mixing time of ML satisfies

tmix
ML

(ε) ≤

 log ε

log
(

1 − (1 − p)α(GL)
)
 .

We were not able to find a formula for the stationary distribution of the rowmotion
Markov chain of an arbitrary semidistrim (or even semidistributive or trim) lattice; this
serves to underscore the anomalistic nature of the formula for distributive lattices in (1.2).
However, there is one family of semidistrim (in fact, semidistributive) lattices where we
were able to find such a formula. Given positive integers a and b, let a,b be the lattice
obtained by taking two disjoint chains x1 < · · · < xa and y1 < · · · < yb and adding
a bottom element 0̂ and a top element 1̂. Let us remark that m−1,m−1 is isomorphic
to the weak order of the dihedral group of order 2m, whereas m−1,1 is isomorphic to
the c-Cambrian lattice of that same dihedral group (for any Coxeter element c). We
have J

a,b
= M

a,b
= {x1, . . . , xa, y1, . . . , yb}. For 2 ≤ i ≤ a and 2 ≤ i′ ≤ b, we have

κ
a,b
(xi) = xi−1 and κ

a,b
(yi′) = yi′−1; moreover, κ

a,b
(x1) = yb and κ

a,b
(y1) = xa. This is

illustrated in Figure 3 when a = 3 and b = 2. Figure 4 shows the transition diagram of
M

2,1
.

Theorem 7 ([4]). Fix positive integers a and b, and let κ = κ
a,b

. For each j ∈ J
a,b

, fix a
probability pj ∈ (0, 1). There is a constant Z( a,b) (depending only on a and b) such that in the
stationary distribution of M

a,b
, we have

P(0̂) =
1

Z( a,b)
px1 py1

1 − ∏
j∈J

a,b

pj

 ;

P(1̂) =
1

Z( a,b)

1 − ∏
j∈J

a,b

pj

 ;

P(xi) =
1

Z( a,b)

(1 − px1) ∏
j∈J

a,b
κ(j)≥xi

pj + (1 − py1) ∏
j∈J

a,b
κ(j) ̸<xi

pj

 for 1 ≤ i ≤ a;

P(yi) =
1

Z( a,b)

(1 − py1) ∏
j∈J

a,b
κ(j)≥yi

pj + (1 − px1) ∏
j∈J

a,b
κ(j) ̸<yi

pj

 for 1 ≤ i ≤ b.
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Figure 3: The lattice 3,2. Next to each edge u ⋖ v is a box containing the edge label
juv. The red arrows represent the action of κ

3,2
.

5 Future Directions

In Theorem 4, we saw that the rowmotion Markov chains of Boolean lattices exhibit
the cutoff phenomenon. It would be very interesting to obtain similar results for other
toggle Markov chains. Some particularly interesting toggle Markov chains T(K, x) are
as follows:

• Let P be the set of vertices of a graph G, let K be the collection of independent sets
of G, and let x be some special ordering of P. For example, if G is a cycle graph,
then x could be the ordering obtained by reading the vertices of G clockwise.

• Let P be an n-element set, and let x be an arbitrary ordering of the elements of P.
For 0 ≤ k ≤ n, let K = {I ⊆ P : |I| ≤ k}.

• Let P be an n-element set, and let x be an arbitrary ordering of the elements of P.
For 0 ≤ k ≤ n, let K = {I ⊆ P : |I| ≥ k}.
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It would also be interesting to improve our estimates for the mixing times of rowmotion
Markov chains for other families of semidistrim (or just distributive) lattices.

Figure 4: The transition diagram of M
2,1

drawn over the Hasse diagram of 2,1. Next
to each edge u ⋖ v is a box containing the edge label juv.

In Theorems 2 and 7, we computed the stationary distributions of rowmotion Markov
chains of distributive lattices and the lattices a,b. It would be quite interesting to find
other special families of semidistrim lattices for which one can compute these stationary
distributions.
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Enumerating the faces of split matroid polytopes

Luis Ferroni*1 and Benjamin Schröter†1

1KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. Computing f -vectors of polytopes is in general hard, and only little is known
about their shape. We initiate the study of properties of f -vector of matroid base
polytopes, by focusing on the class of split matroids, i.e., matroid polytopes arising
from compatible splits of a hypersimplex. Unlike valuative invariants, the f -vector
behaves in a much more unpredictable way, and the modular pairs of cyclic flats play
a role in the face enumeration. We give a concise description of how the computation
can be achieved without performing any convex hull or face lattice computation. As
applications, we deduce formulas for sparse paving matroids and rank 2 matroids.
These are two families that appear in other contexts within combinatorics.

Keywords: f -vectors, matroid polytopes, face numbers, split matroids, paving ma-
troids

1 Introduction

A question that arises naturally in the study of a convex polytope P ⊆ Rn is how many
faces of each dimension P has. The f -vector of P is defined by

f (P) := ( f0, f1, . . . , fd−1, fd),

where fi := #{i-dimensional faces of P} for each i ∈ {0, . . . , d} and d := dimP. In
particular, the number of vertices of P is just f0, the number of facets of P is fd−1, and
fd = 1.

The difficulty of calculating the f -vector may vary drastically depending on the poly-
tope P, on the properties it possesses, or on how it is described. For some concrete
examples of the computation of f -vectors and certain related problems, see [21]. The
family of possible vectors arising as the f -vector of a polytope is notoriously hard, and
their classification is open in dimensions as low as four, see [23]. Even in the case of
0/1-polytopes of fixed dimension, although the set of possible f -vectors is finite, much
remains to be discovered, see [22].
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†schrot@kth.se. Benjamin Schröter was partially supported by Swedish Research Council grant 2022-
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In this article we will initiate the study of the explicit face enumeration of matroid
polytopes, by focusing on the well-structured subclass of (elementary) split matroids.
There are many equivalent ways of introducing these matroids. A matroid is elementary
split whenever it does not contain a minor isomorphic to U0,1 ⊕U1,2 ⊕U1,1. Similarly, one
may define the class of split matroids via five excluded minors [14, 7]. When the matroid
is connected, these two notions agree. Geometrically, a connected matroid M is split
whenever every pair of facet defining hyperplanes do not intersect in the interior of the
hypersimplex containing the matroid polytope P(M).

The class of split matroids was introduced by Joswig and Schröter in [14] to study
tropical linear spaces. They have received considerable attention in the past few years,
including a forbidden minor characterization [7], hypergraphs descriptions [5], Tutte
polynomial inequalities [11], subdivisions and computation of valuations [10], and con-
jectures about exchange properties on the bases [6] which are related to White’s conjec-
ture.

The face structure of some special classes as positroids and lattice path matroids
appeared in previous work, however without an explicit enumeration. Even though the
f -vector of the matroid base polytope constitutes an invariant of the matroid M under
isomorphisms, it is not valuative; see Example 2.2 below. This makes its computation
considerably subtler and difficult. In particular, for the case of split matroids we require
a non-trivial modification of the machinery presented in [10].

One important reason why split matroids deserve to be studied is that they encom-
pass the classes of paving and copaving matroids. A long-standing conjecture often
attributed to Crapo and Rota, appearing in print in [16], predicts that asymptotically
almost all matroids are sparse paving. There is some evidence supporting this assertion
[18], but another intriguing conjecture affirms that even restricting to the enumeration
of non sparse paving matroids, the class of split matroids will continue to be predominant
[10, Conjecture 4.10].

As of today, the problem of face enumeration of matroid polytopes has not been
approached systematically in the literature, and to the best of our knowledge there are
no prior articles addressing their computation. Some articles such as [15, 19, 3, 12, 1]
may be relevant, as they discuss other aspects indirectly related to the face enumeration
for (some classes of) matroid polytopes.

In particular, perhaps as a reminiscence of the situation for polytopes in general (and
even for 0/1-polytopes), questions about properties of f -vectors of matroid polytopes
are widely open.

Summary of results

As mentioned before, the fact that the face numbers are not valuations makes the compu-
tation of the f -vector of matroid polytopes a delicate task. In the case of split matroids,
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we need more data than just the number of cyclic flats of each rank and size. Some
information on their pairwise intersection is necessary.

In order to express the f -vector of a polytope P in a more compact fashion, we will
often refer to the f -polynomial, which is defined via:

fP(t) :=
d

∑
i=0

fi · ti.

Following the notation and terminology of [10], whenever we have a matroid M of rank k
and cardinality n, we will denote by λr,h the number of stressed subsets with non-empty
cusp that M has. Although one of the main results of that article establishes that the
numbers λr,h are enough to compute any valuative invariant on M, we need further data
to compute the f -vector.

For a matroid M as before, we will denote by µα,β,a,b the number of modular pairs of
cyclic flats {F1, F2} such that a = |F1 ∖ F2|, b = |F2 ∖ F1|, α = rk(F1)− rk(F1 ∩ F2), and
β = rk(F2)− rk(F1 ∩ F2); see also equation (⋆) below.

The following constitutes the main result of this article and is stated as Theorem 2.4
further below. It tells us that the numbers µα,β,a,b are the precise additional datum needed
to perform the computation of the f -vector of a split matroid polytope. Moreover, the
statement tells us concretely how to calculate the number of faces of given dimension.

Theorem Let M be a connected split matroid of rank k on n elements. The number of faces of its
base polytope P(M) is given by the polynomial

fP(M)(t) = f∆k,n(t)− ∑
r,h

λr,h · ur,k,h,n(t)− ∑
α,β,a,b

µα,β,a,b · wα,β,a,b(t)

where the first sum ranges over all values with 0 < r < h < n and the second sum ranges over
the values 0 < α < a, 0 < β < b for which either a < b or a = b and α ≤ β.

In the above theorem, the expressions ur,k,h,n(t) and wα,β,a,b(t) are polynomials which
depend only on their subindices. We present in Propositions 2.6 and 2.7 explicit (but
complicated) formulas for them which can be used to calculate the face numbers effort-
lessly. A formula for the f -vector of the hypersimplex ∆k,n is also given explicitly in
Example 2.1. In particular, the entire calculation can be done bypassing the problem of
building costly face lattices or computing convex hulls.

As two direct but interesting applications of our result, we particularize it to the
classes of sparse paving and rank 2 matroids. The first is a class that made a prominent
appearance in the theory of the extension complexity of independence polytopes [20].
The second bears a relevant connection with the theory of edge polytopes of graphs [17].
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2 The number of faces of split matroids

2.1 The set up

Throughout this extended abstract we will assume that the reader is familiar with the
usual terminology and notation in matroid theory. For the notions and machinery in-
troduced very recently, in particular about stressed subsets, relaxations, and cuspidal
matroids we refer the reader to our previous article [10, Sections 3–4]. Regarding split
matroids and elementary split matroids the reader can consult the same article as well
as [14, 5]. However, basic knowledge on polytopes should be enough to follow the
arguments and methods in this manuscript.

For a d-dimensional polytope P we denote by f (P) := ( f0, . . . , fd) its f -vector, and by

fP(t) :=
d

∑
i=0

fi ti

its f -polynomial. In both cases, fi denotes the number of i-dimensional faces of P. Notice
that we omit the inclusion of f−1 := 1 for the empty set in both the f -vector and the
f -polynomial, but we do include fd = 1 for the polytope itself.

Essential notation Following our prequel [10], whenever we have a matroid M, unless
specified otherwise, the rank of M is denoted by k and the size of its ground set is
denoted by n. We reserve the letters r and h for the rank and the size of stressed subsets
that M may possess.

Note that under the assumption of being connected the classes of split matroids and
elementary split matroids coincide [5, Theorem 11]. Since the base polytope of a direct
sum of matroids M1 ⊕M2 is the cartesian product of P(M1) and P(M2), the f -vector
of any disconnected split matroid can be recovered from the f -vector of the connected
components, all of which are split as well.

The most basic example of a matroid polytope is the hypersimplex ∆k,n, the matroid
base polytope of the uniform matroid Uk,n of rank k on n elements.

Example 2.1 The face enumeration of hypersimplices is encoded in the following f -
polynomial:

fP(Uk,n)
(t) = f∆k,n(t) =

(
n
k

)
+

n−1

∑
i=1

(
n

i + 1

) i

∑
j=1

(
n − i − 1

k − j

)
· ti .

For a detailed proof see for example [13, Corollary 1.4].

As we will see now, the assignment M 7→ fP(M)(t) is an invariant of the matroid M

that fails to be valuative. Hence its computation is a more delicate task, even for the
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case of paving or split matroids. In these cases, we cannot rely on the strength of [10,
Theorem 6.6] — that result asserts that the evaluation of a valuative invariant on a split
matroid M can be achieved by knowing relatively little about the matroid M, consisting
of its rank k, its size n, and the parameters λr,h. If one is interested in knowing the
f -vector of P(M), the first problem one faces is identifying what additional matroid data
is required.

Example 2.2 Consider the four matroids U3,6, M, N1 and N2 with ground set {1, . . . , 6}
and rank three, whose families of bases are given as follows:

B(U3,6) :=
(
[6]
3

)
, B(N1) :=

(
[6]
3

)
∖ {{1, 2, 3}, {4, 5, 6}}

B(M) :=
(
[6]
3

)
∖ {{1, 2, 3}}, B(N2) :=

(
[6]
3

)
∖ {{1, 2, 3}, {3, 4, 5}}.

The f -vectors of their base polytopes are respectively:

f (P(U3,6)) = (20, 90, 120, 60, 12, 1), f (P(N1)) = (18, 72, 102, 60, 14, 1),
f (P(M)) = (19, 81, 111, 60, 13, 1), f (P(N2)) = (18, 72, 101, 59, 14, 1).

All of these matroids are sparse paving. In particular, the two matroids N1 and N2
have, e.g., the same Tutte polynomial and the same Ehrhart polynomial — in fact, via
[10, Corollary 6.7] any valuative invariant on these two matroids yields the same result.
However, observe that their f -vectors differ in the third and the fourth entries.

2.2 Cuspidal matroids

By using [10, Corollary 6.2], we see that the intersection of the hypersimplex ∆k,n with
the half-space of a single split hyperplane leads to the polytope:

P(Λk−r,k,n−h,n) =

{
x ∈ ∆k,n :

h

∑
i=1

xi ≤ r

}
. (2.1)

for appropriate values r and h. This is the base polytope of the cuspidal matroid
Λk−r,k,n−h,n, a matroid having exactly three cyclic flats: the empty set, the entire ground
set, and one proper cyclic flat having size h and rank r. For the purposes of this paper,
the reader may regard equation (2.1) as the definition of cuspidal matroids.

Let us introduce some notation that will help us formulate later our main results in
a more compact way:

ur,k,h,n(t) := f∆k,n(t)− fP(Λk−r,k,n−h,n)
(t). (2.2)
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A non-obvious property is that some of these coefficients may be negative while other
are positive — moreover, the actual sign of each individual coefficient a priori depends
on the four parameters r, k, h, n.

Before we go on, let us introduce a second polynomial, which will play an important
role in the sequel. For fixed numbers 0 < α < a and 0 < β < b let us define,

wα,β,a,b(t) := f∆α+β,a+b(t)− f∆α,a(t) · f∆β,b(t)− uα,α+β,a,a+b(t)− uβ,α+β,b,a+b(t)

= fP(Λβ,α+β,b,a+b)
(t) + fP(Λα,α+β,a,a+b)

(t)− f∆α+β,a+b(t)− f∆α,a(t) · f∆β,b(t).

Later, in Proposition 2.6, we provide a compact formula for the polynomials wα,β,a,b(t)
and a formula for the polynomials ur,k,h,n(t) in Proposition 2.7 both of which can be
used to calculate these polynomials, bypassing the computation of f -vectors of cuspidal
matroids using the polytopes themselves.

Remark 2.3 The intuition of why it is reasonable to consider and define the complicated
expression above stems from [10, Example 6.5]. As follows from the explanation there,
if the assignment M 7→ fP(M)(t) were valuative, then the defining formula for wα,β,a,b(t)
would actually be identically zero. The polynomial wα,β,a,b(t) quantifies (in a certain
way) how far the map M 7→ fP(M)(t) is from being valuative.

2.3 Face counting of split matroids

For a connected split matroid M, let us define the following numbers that we have al-
ready mentioned in the introduction. The number of stressed subsets with non-empty
cusp having rank r and size h, denoted λr,h — recall that by [10, Proposition 3.9], in a
connected split matroid this is the same as the number of proper non-empty cyclic flats
of rank r and size h. We also need the numbers µα,β,a,b of (unordered) modular pairs
{F1, F2} of proper non-empty cyclic flats, i.e., F1 and F2 fulfilling the modularity property,

rk(F1) + rk(F2) = rk(F1 ∩ F2) + rk(F1 ∪ F2), (⋆)

where the indices denote the following quantities:

a = |F1 ∖ F2|, α = rk F1 − rk(F1 ∩ F2)

b = |F2 ∖ F1|, β = rk F2 − rk(F1 ∩ F2) .

Note that the set F1 ∩ F2 ⊊ F1 ⊊ [n] can not contain a circuit if M is a connected split
matroid, thus it is an independent set, i.e., rk(F1 ∩ F2) = |F1 ∩ F2|.

Theorem 2.4 Let M be a connected split matroid of rank k on n elements. The number of faces
of its base polytope P(M) is given by the polynomials

fP(M)(t) = f∆k,n(t)− ∑
r,h

λr,h · ur,k,h,n(t)− ∑
α,β,a,b

µα,β,a,b · wα,β,a,b(t) (2.3)
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where the first sum ranges over all values with 0 < r < h < n and the second sum ranges over
the values 0 < α < a, 0 < β < b for which either a < b or a = b and α ≤ β.

On one hand, note that the polynomials f∆k,n(t), ur,k,h,n(t) and wα,β,a,b(t) can be pre-
computed for all the occurring instances of the variables which appear as subindices.
The first non-trivial fact that is deduced by our statement is that in addition to the
parameters λr,h, which always appear in the computation of a valuative invariant, the
precise additional matroidal datum needed to compute the f -vector consists of the num-
bers µα,β,a,b. Strikingly, the last sum in equation (2.3) does not take into consideration
the rank nor the size of the matroid M itself, only the intersection data for the modular
pairs of flats. The second non-trivial fact is that it explains how to put together this
information in order to effectively computing the f -vector of P(M) for a split matroid,
circumventing the necessity of constructing the polytope.

Example 2.5 Let us take a look again at Example 2.2. The matroids N1 and N2 are sparse
paving, have rank k = 3 and size n = 6. In each case the proper non-empty cyclic
flats are exactly the non-bases, yielding for both matroids λ2,3,3,6 = 2. One can compute
the corresponding polynomial, u2,3,3,6(t) = 1 + 9t + 9t2 − t4. In N1, the intersection of
the only pair of proper non-empty cyclic flats, F1 = {1, 2, 3} and F2 = {4, 5, 6}, does
not satisfy the property (⋆), because rk(F1 ∩ F2) + rk(F1 ∪ F2) = 0 + 3, whereas rk(F1) +
rk(F2) = 2 + 2 = 4.

For N2, the situation is different, as F1 = {1, 2, 3} and F2 = {3, 4, 5} indeed satisfy (⋆),
and we have a = |F1 ∖ F2| = 2, b = |F2 ∖ F1| = 2, α = rk(F1)− |F1 ∩ F2| = 2 − 1 = 1,
and β = rk(F2) − |F1 ∩ F2| = 2 − 1 = 1, so that µ1,1,2,2 = 1 and we need to subtract
w1,1,2,2(t) = t2 + t3 to obtain the correct f -polynomial, as we expected.

2.4 Explicit formulas

The polynomials ur,k,h,n(t) and wα,β,a,b(t) in Theorem 2.4 are defined in terms of f -vectors
of specific matroid polytopes. In this subsection we will present explicit descriptions
for these polynomials, enabling us to do the face enumeration of a split matroid poly-
tope, without any convex hull or face lattice computation. To express the formulas in a
compact form, we will make use of multinomial coefficients. Let i, j, ℓ be non negative
integers, then (

i + j + ℓ

i, j

)
:=

(
i + j + ℓ

i, j, ℓ

)
=

(i + j + ℓ)!
i!j!ℓ!

.

We begin with an explicit formula for the polynomials wα,β,a,b(t).
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Proposition 2.6 For any 0 < α < a and 0 < β < b, the following formula holds:

wα,β,a,b(t) =
a−α−1

∑
i=0

α−1

∑
j=0

b−β−1

∑
i′=0

β−1

∑
j′=0

(
a

i, j

)(
b

i′, j′

)
· (1 + t) · ta+b−i−j−i′−j′−2 .

For the polynomials ur,k,h,n(t) we provide the following formula.

Proposition 2.7 For any 0 < r < k < n and r < h < n the following formula holds

ur,k,h,n(t) = pr,k,h,n(t)− p′r,h(t) · p′k−r,n−h(t) · (1 + t) +
k

∑
i=r+1

(
h
i

)(
n − h
k − i

)
where p′r,h(t) = f∆r,h(t)− (h

r) and

pr,k,h,n(t) =
h−r−1

∑
j=0

min{h−j,k−1}

∑
i=0

min{k−i,k−r}−1

∑
ℓ=0

min{n−h−ℓ,n−k−j−1}

∑
m=0

(
h

i, j

)(
n − h
ℓ, m

)
tn−1−s.

where s denotes i + j + ℓ+ m in the above sum.

Example 2.8 Let M be the projective geometry PG(2, 3). This is a matroid on n = 13
elements of rank k = 3. It is split as it is in fact paving. This matroid has 13 stressed
hyperplanes, i.e., rank k− 1 = 2 flats, all of which have cardinality h = 4. In other words,
we have λ2,4 = 13. In particular, to use the formula of Theorem 2.4, the polynomial

u2,3,4,13(t) = − t11 − 11 t10 − 54 t9 − 156 t8 − 294 t7 − 378 t6

− 336 t5 − 195 t4 + t3 + 166 t2 + 114 t + 4

is required. Since projective geometries are modular matroids, any pair of distinct proper
non-empty cyclic flats fulfills the property (⋆). Also, every pair of them intersect in a
single element. Moreover, for every pair of these cyclic flats we have a = |F1 ∖ F2| = 3,
and by symmetry b = |F1 ∖ F2| = 3. Additionally, α = rk(F1)− |F1 ∩ F2| = 2 − 1 = 1 and
again by symmetry β = rk(F2)− |F1 ∩ F2| = 1. Therefore there is a single non-vanishing
coefficient µα,β,a,b which is

µ1,1,3,3 =

(
13
2

)
= 78 .

It remains to compute:

w1,1,3,3(t) = t5 + 7t4 + 15t3 + 9t2 .

Now applying Theorem 2.4, we obtain:

fP(PG(2,3))(t) = f∆3,13(t)− 13 u2,3,4,13(t)− 78 w1,1,3,3(t)

= t12 + 39 t11 + 455 t10 + 2704 t9 + 9893 t8 + 24414 t7 + 42666 t6+

54054 t5 + 49608 t4 + 31707 t3 + 12870 t2 + 2808 t + 234 .
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2.5 Face numbers of sparse paving matroids

As mentioned in the introduction, it is conjectured that almost all matroids are sparse
paving; see [16] for the details. Furthermore, many famous examples of matroids fall
into this class; notable examples are the Fano matroid, the Vámos matroid, the com-
plete graph on four vertices, and the duals of each of them. Sparse paving and paving
matroids are split, so we can make use of our main result.

Corollary 2.9 Let M be a connected sparse paving matroid of rank k on n elements having
exactly λ circuit-hyperplanes, and let µ count the pair of circuit-hyperplanes which have k − 2
elements in common. Then

fP(M)(t) = f∆k,n(t)− λ · u(t)− µ · (t2 + t3)

where u(t) is given by

1 − k · (n − k) · (t + 1) +
(
(n − k) · (t + 1)k+1 + k · (t + 1)n−k+1 − n · (t + 1)

)
· t−1

+
(
(t + 1)k + (t + 1)n−k − (t + 1)n − 1

)
· t−2 .

Remark 2.10 This formula can be used to prove that the number of facets of the base
polytope of a matroid on n elements may be as large as c2n/n3/2 for an absolute constant
c. However, for arbitrary 0/1-polytopes in Rn it is known that the number of facets can

be larger than
(

cn
log n

)n/4
, via a random construction [4].

Given a lattice polytope P ⊆ Rn, an extended formulation of P is another lattice poly-
tope Q ⊆ Rm together with a projection map π : Rm → Rn which projects Q onto P.
The complexity of an extended formulation is the number of facets of the polytope Q.
The extension complexity of P, denoted xc(P), is the minimum complexity of an extended
formulation of P.

In a landmark paper [20, Corollary 6], Rothvoss proved 1 that for all n there exists
a matroid M on n elements whose base polytope has extension complexity xc(P(M)) ∈

Ω
(

2n/2

n5/4
√

log(2n)

)
. Moreover, Rothvoss’ proof is non-constructive and relies only on an

enumerative result of matroids, that therefore guarantees that whatever these examples
are, they must belong to the class of sparse paving matroids, and are therefore split
matroids. It remains a notorious open problem to find an explicit family of matroids
having exponential extension complexity. In fact, having one would yield an explicit
infinite family of Boolean functions requiring superlogarithmic depth circuits, according

1To be precise, Rothvoss proved that the extension complexity of the independence polytope of some ma-
troid is exponential, but an elementary reasoning shows that this is equivalent to an analogous statement
for the base polytope. See for example the short explanation in [2, p. 1].
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to an observation attributed to Göös in [2, Section 8]. We conjecture, however, that
a certain class of “extremal” sparse paving matroids must already constitute such an
example; for the details of the conjecture we refer to the extended version of the present
paper [9].

2.6 Face numbers of rank two matroids

A loopless matroid of rank two is trivially paving, and hence a split matroid. This allows
us to use the strength of Theorem 2.4 to compute their f -vectors. The hyperplanes,
i.e., the flats of rank one, of a loopless matroid of rank two form a partition of the
ground, and conversely, any partition of the ground set defines precisely a single rank
two matroid having each part as a flat. The bases of the matroid are obtained by taking
two elements of the ground set, not belonging to the same part.

Base polytopes of matroids of rank two have made prominent appearances through-
out algebraic combinatorics, under various guises. Notably, as is pointed out in [8,
Section 6.1], they coincide with edge polytopes of complete multipartite graphs — we
refer to that paper for the precise definition of edge polytopes and a short overview of
them. In this vein, the work of Ohsugi and Hibi [17] addresses the edge polytopes of
complete multipartite graphs, motivated both from toric geometry and graph theory. In
particular, the content of [17, Theorem 2.5] provides a formula for the f -vector of the
edge polytope of an arbitrary complete multipartite graph, and thus for general rank
two matroid polytopes. Let us point out that there appears to be an error in the formula
as they stated it — in particular within the quantity they denote by αi. As an application
of Theorem 2.4 we can give another formula for the f -vector of these polytopes.

Corollary 2.11 Let M be a loopless matroid of rank two having s hyperplanes with cardinalities
h1, . . . , hs. Then, the number of i-dimensional faces of P(M) or, equivalently, the edge polytope
of a complete multipartite graph with parts of sizes h1, . . . , hs is given by:

fi(P(M)) =

(
n + 1
i + 2

)
+ (s − 1)

(
n

i + 2

)
− ∑

j<ℓ

(
hj + hℓ + 1

i + 2

)

+ (s − 2)
s

∑
j=1

(
hj + 1
i + 2

)
−

s

∑
j=1

(
n − hj

i + 2

)
.

2.7 Questions on the shape of f -vectors of matroids

A recent trend in matroid theory is that of proving unimodal and log-concave inequali-
ties for various vectors of numbers associated to matroids. A finite sequence of numbers
(a0, . . . , an) is said to be unimodal if there exists some index 0 ≤ j ≤ n with the property
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that
a0 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · ≥ an.

If all the ai’s are positive, a stronger condition is that of log-concavity, which asserts that
for each index 1 ≤ j ≤ n − 1 the inequalities a2

j ≥ aj−1aj+1 hold.
It is quite inviting to ask the following question.

Question 2.12 Are the f -vectors of matroid base polytopes unimodal, or even log-
concave?

It is known that there are simplicial polytopes having a non-unimodal f -vector; see
[21, Chapter 8.6]. Within the existing literature we were not able to find any examples
of non-unimodal f -vectors for the general class of 0/1-polytopes. We have been able to
verify the log-concavity of the f -vectors of the following classes of matroids, in some
cases relying critically on the results of this paper:

• All matroids on a ground set of size at most 9.

• Split matroids on a ground set of size at most 15.

• Sparse paving matroids on a ground set of size at most 40.

• Lattice path matroids on a ground set of size at most 13.

• Rank two matroids on a ground set of size at most 60.

Note: An extended version of this manuscript including all proofs can be found on the
arXiv, see [9].
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Abstract. We show that the higher Bruhat orders of Manin and Schechtman provide
a useful conceptual framework for understanding Steenrod’s cup-i coproducts, which
are used to define the cohomology operations known as Steenrod squares. Indeed, we
show that the elements of the (i + 1)-dimensional higher Bruhat order are in bijection
with all possible cup-i coproducts on the chain complex of the simplex which give a
homotopy between cup-(i− 1) and its opposite. The Steenrod cup-i coproduct and its
opposite are then given by the maximal and minimal elements of the higher Bruhat
order. This correspondence uses the geometric realisation of the higher Bruhat orders
in terms of tilings of cyclic zonotopes, and enables us to give conceptual proofs of the
fundamental properties of the cup-i coproducts.

Keywords: Higher Bruhat orders, zonotopal tilings, cubillages, cup-i coproducts, Steen-
rod squares

1 Introduction

In a classical article from 1947, N. E. Steenrod introduced the cup-i products on the
cochains of a simplicial complex [12]. These can allow one to distinguish between non-
homotopy-equivalent spaces with isomorphic cohomology rings, such as the suspen-
sions of CP2 and S2 ∨ S4. More recently, they were shown to be part of an E∞-algebra
structure on the cochains of a space X [11, 1], which faithfully encodes its homotopy
type when X is of finite type and nilpotent [8, 9].

The cup-0 product is the usual cup product. This is commutative at the level of
cohomology, but not at the level of cochains. The cup-1 product provides an explicit
homotopy between cup-0 and its opposite which witnesses this fact. However, the cup-1
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product is itself not commutative, which gives rise to the cup-2 product, and so on. In
this paper, we consider cup-i coproducts, which give rise to cup-i products via linear
duality.

Over 40 years later, Yu. I. Manin and V. V. Schechtman introduced the higher Bruhat
orders, with an entirely different purpose [10]. Their original motivation was to study
hyperplane arrangements and higher braid groups, but the higher Bruhat orders have
gone on to subsequently find connections with Soergel bimodules [4], the quantum
Yang–Baxter equation [3], and many other areas of mathematics besides.

The 1-dimensional higher Bruhat order is the weak Bruhat order on the symmetric
group. The elements of the 2-dimensional higher Bruhat order are then equivalence
classes of maximal chains in the weak order, that is, reduced expressions for the longest
element, up to swapping commuting simple reflections. The covering relations of the 2-
dimensional order are then given by braid moves. This pattern repeats, with the (i + 1)-
dimensional higher Bruhat orders having as elements equivalence classes of maximal
chains in the i-dimensional order.

Already, one can see a resemblance between the cup-i coproducts and the higher
Bruhat orders insofar as in each case the objects in a given dimension give rise to the
objects in one dimension higher. In fact, it is more than a resemblance, as we show. To
state our main theorem, we need the following notation.

• B([0, n], i+ 1) is the (i+ 1)-dimensional higher Bruhat poset on the base set [0, n] :=
{0, 1, . . . , n}.

• ∆i : C•(∆n) → C•(∆n)⊗ C•(∆n) is the Steenrod cup-i coproduct on the chain com-
plex of the n-simplex ∆n, where we set ∆−1 = 0.

• T : C•(∆n)⊗ C•(∆n) → C•(∆n)⊗ C•(∆n) is the isomorphism given by exchange of
tensor factors, with the Koszul sign rule applied.

Theorem ([7, Theorem 3.6, Theorem 3.9]). For all i ⩾ 0, there is a bijection between elements
of B([0, n], i + 1) and coproducts ∆′i on C•(∆n) satisfying the homotopy formula

∂ ◦ ∆′i − (−1)i∆′i ◦ ∂ = (1 + (−1)iT)∆i−1, (1.1)

and containing no redundant terms, with the additional assumption in the i = 0 case that
∆′0(p) = p⊗ p for all vertices p of ∆n.

Moreover, under this bijection, the minimal and maximal elements of the higher Bruhat orders
correspond to ∆i and T∆i, up to sign.

The Steenrod cup-i coproduct ∆i alternates between corresponding to the minimal
element of the higher Bruhat poset and the maximum, according to the parity of i. This
is due to differing conventions in the two theories.
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The proof of this theorem uses the geometric realisation of the higher Bruhat orders
B([0, n], i + 1) in terms of zonotopal tilings of Z([0, n], i + 1), the (i + 1)-dimensional
cyclic zonotope with n + 1 vertices. We call these tilings “cubillages” and refer to their
tiles as “cubes”. There is a natural bijection between cubes of cubillages and basis el-
ements of C•(∆n)⊗ C•(∆n), such that the terms of ∆′i([0, n]) in C•(∆n)⊗ C•(∆n) is de-
scribed by a set of cubes of a cubillage of Z([0, n], i + 1). Simplifying slightly, this is
used to derive the homotopy formula as follows. Taking the boundary ∂ corresponds to
taking the boundary of the cubes of the cubillage. Facets of cubes which are shared with
other cubes cancel out, so that the only remaining terms come from the boundary of the
zonotope. These terms turn out to be precisely (1+ (−1)iT)∆i−1. Running the argument
in reverse shows that all coproducts satisfying the homotopy formula must arise from
cubillages, that is, elements of B([0, n], i + 1).

This paper is an extended abstract of [7]. In Section 2, we give background on the
Steenrod cup-i coproducts, followed by background on the higher Bruhat orders. We
then outline our main results in Section 3, referring to [7] for complete proofs.

2 Background

In this section, we recall the definitions of Steenrod operations and higher Bruhat orders,
and set up notation.

2.1 Steenrod cup-i coproducts

2.1.1 Chain complexes

By a (non-negatively graded) chain complex C we mean an N-graded Z-module with
linear maps

C0
∂1←− C1

∂2←− C2
∂3←− · · ·

satisfying ∂p ◦ ∂p+1 = 0 for each p ∈ N. As usual, we refer to ∂p as the p-th boundary
map and suppress the subscript when convenient. A morphism of chain complexes,
referred to as a chain map, is a morphism of N-graded Z-modules f : C → C′ satisfying
∂′p+1 fp+1 = fp∂p+1 for p ∈ N.

The tensor product of two chain complexes X and Y is the chain complex X ⊗ Y
whose degree r component is (X ⊗ Y)r := ⊕p+q=rXp ⊗ Yq, and whose differential is
defined by ∂(x⊗ y) := ∂(x)⊗ y + (−1)deg(x)x⊗ ∂(y). There is an isomorphism T : X ⊗
Y → Y⊗ X defined by T(x⊗ y) := (−1)deg(x)deg(y)y⊗ x.
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2.1.2 Chain complex of the simplex

We denote the standard n-simplex ∆n := {(x0, . . . , xn) ∈ Rn+1 | x0 + · · ·+ xn = 1, xi ⩾
0}. We refer to faces of the n-simplex using their vertex sets, where we use the notation
[p, q] := {p, p+ 1, . . . , q} and (p, q) := [p, q] \ {p, q}. When we give a set {v0, v1, . . . , vq} ⊆
[0, n], we mean that the elements are ordered v0 < v1 < · · · < vq.

We will consider the Z-module given by the cellular chains C•(∆n) on the standard
n-simplex. This chain complex has as basis the faces of ∆n, whose degree is given by
the dimension; for example, the face {v0, . . . , vq} has dimension q. The boundary map
of this chain complex is given by

∂({v0, . . . , vq}) :=
q

∑
p=0

(−1)p{v0, . . . , v̂p, . . . , vq}.

2.1.3 The Steenrod cup-i coproducts

An overlapping partition of [0, n] is a family L = (L0, L1, . . . , Li+1) of intervals Lp =
[lp, lp+1] such that l0 = 0, li+2 = n, and for each 0 < p < i + 1 we have lp < lp+1.
The Steenrod cup-i-coproduct is the coproduct ∆i : C•(∆n) → C•(∆n)⊗ C•(∆n) given by
the formula

∆i([0, n]) := ∑
L
(−1)ε(L)(L0 ∪ L2 ∪ · · · )⊗ (L1 ∪ L3 ∪ · · · ),

where the sum is taken over all overlapping partitions of [0, n] into i + 2 intervals. If
n ⩽ i− 1, there are no such overlapping partitions, and the coproduct is zero. Denoting
by wL the shuffle permutation putting 0, 1, . . . , n into the order

[0, l1], [l2, l3], . . . , (l1, l2), (l3, l4), . . . ,

the sign is given by ε(L) := sign(wL) + in. The coproduct ∆i is then defined similarly
on lower-dimensional faces, by summing over increasing overlapping partitions of their
vertex sets. Steenrod [12] then shows that

∂∆i − (−1)i∆i∂ = (1 + (−1)iT)∆i−1, (2.1)

where we set ∆−1 = 0. We refer to this as the homotopy formula, since it is equivalent to
saying that ∆i gives a chain homotopy from T∆i−1 to ∆i−1.

2.2 Higher Bruhat orders

There are many ways of defining the higher Bruhat orders. For the purposes of this
abstract, we only consider the geometric definition of the higher Bruhat orders in terms
of cubillages of cyclic zonotopes due to [5, 13]. Other definitions can be found in [7].
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Definition 2.1. Consider the Veronese curve ξ : R → Ri+1, given by ξt = (1, t, t2, . . . , ti).
The cyclic zonotope Z([0, n], i+ 1) is defined to be the Minkowski sum of the line segments

0ξ0 + · · ·+ 0ξn,

where 0 is the origin and 0ξp is the line segment from 0 to ξp. One similarly defines
Z(S, i + 1) for S ⊆ [0, n] a subset. There is a natural projection πi+1 : Z([0, n], n + 1) →
Z([0, n], i + 1) given by forgetting the last n− i coordinates.

Definition 2.2. A cubillage U of Z([0, n], i + 1) is a set of (i + 1)-dimensional faces {Fp}
of Z([0, n], n + 1) such that πi+1 is a bijection when restricted to

⋃
p Fp. Such faces Fp are

necessarily (i + 1)-dimensional, and we refer to them as the cubes of the cubillage.

A cubillage U of Z([0, n], i + 1) gives a subdivision of Z([0, n], i + 1) consisting of the
images of the cubes under πi+1. In the literature, cubillages are often called fine zonotopal
tilings.

Recall that a facet of a polytope is a face of codimension one. The standard basis of
Rn+1 induces orientations of the faces of Z([0, n], n + 1), in the sense that the facets of a
face can be partitioned into two sets, called upper facets and lower facets.

Definition 2.3. If F is a i-dimensional face of Z([0, n], n + 1), with G a facet of F, then G
is a lower (resp. upper) facet of F if normal vectors to G which lie inside the affine span
of F and point into F have positive (resp. negative) i-th coordinates.

One may similarly talk of lower and upper facets of Z([0, n], i + 1).

Definition 2.4 ([13, Thm. 2.1, Prop. 2.1], [5, Thm. 4.4]). The elements of B([0, n], i + 1)
consist of the cubillages of Z([0, n], i + 1). The covering relations of B([0, n], i + 1) are
given by pairs of cubillages U ⋖ U′ that differ by an increasing flip, that is when there is
a (i + 2)-face G of Z([0, n], n + 1) such that (

⋃
F∈U F) \ G = (

⋃
F′∈U′ F′) \ G and such that

U contains the lower facets of G, whereas U′ contains the upper facets of G.

In Figure 1 we illustrate a pair of cubillages, where the right-hand cubillage is an
increasing flip of the left. Here we have illustrated the cubillages using their images
under π2, but really they are sets of faces of the four-dimensional zonotope Z([0, 3], 4).
We have labelled the vertices ξA = ∑a∈A ξa of Z([0, 3], 4) which lie in the cubillage by
dropping the ‘ξ’ and only retaining the subscript ‘A’; we will continue to do this.

The cyclic zonotope Z([0, n], i + 1) possesses two canonical cubillages. One is given
by the set of faces Umin of Z([0, n], n + 1) that project to the lower facets of Z([0, n], i + 2)
under the projection πi+2. This is known as the lower cubillage. The other is given by
the set of faces Umax that project to the upper facets of Z([0, n], i + 2), which we call the
upper cubillage. The lower cubillage Umin of Z([0, n], i + 1) gives the unique minimum of
the poset B([0, n], i + 1), and the upper cubillage Umax gives the unique maximum. We
have the following important theorem.
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012
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13
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0123
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23

123
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13

013

Figure 1: A pair of cubillages of Z([0, 3], 2) such that the right is an increasing flip of
the left.

Theorem 2.5 ([10, Thm. 2.3]). There is a bijection between equivalence classes of maximal
chains in B([0, n], i + 1) and elements of B([0, n], i + 2).

The idea is that the (i + 2)-dimensional faces which give covering relations in a max-
imal chain in B([0, n], i + 2) give a cubillage of Z([0, n], i + 2). The equivalence relation
mentioned in the theorem identifies maximal chains such that the set of these (i + 2)-
dimensional faces is the same.

Every (i + 1)-dimensional face of Z([0, n], n + 1) is given by a Minkowski sum

ξA + ∑
l∈L

0ξl

for some subset L ∈ ([0,n]
i+1 ) and A ⊆ [0, n] \ L. We call L the set of generating vectors and

A the initial vertex. In Figure 2, we illustrate the initial vertices and generating vectors of
the cubillages from Figure 1. The initial vertices are labelled in blue, and the generating
vectors are labelled in red in the centre of the cube. Given a cubillage U ∈ B([0, n], i + 1),
we write AU

L for the initial vertex of the cube with generating vectors L in U. We also
write BU

L := [0, n] \ (L ∪ AU
L ) for the vectors which are neither generating vectors nor

present in the initial vertex.
Given a cubillage U of Z([0, n], i + 1) and k ∈ [0, n], we write U/k for the cubillage of

Z([0, n] \ k, i + 1) given by the set of faces of Z([0, n] \ k, n + 1) which results from taking
U and contracting all edges given by the vector ξk until they have length zero. For a
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Figure 2: The pair of cubillages, with initial vertices and generating vectors indicated.

more precise construction, see [2, (4.3)], or for a construction using a different realisation
of the higher Bruhat orders, see [7, Section 2.2.2].

3 Coproducts from cubillages

In this section, we show how one can construct a coproduct ∆U
i : C•(∆n) → C•(∆n)⊗

C•(∆n) from any cubillage U ∈ B([0, n], i + 1). We show that all these coproducts give
homotopies between ∆i−1 and T∆i−1 and that all coproducts for which this is true arise
from cubillages, provided they contain no redundant terms.

A central observation is as follows. Basis elements of C•(∆n)⊗C•(∆n) are of the form
X ⊗ Y for X and Y non-empty faces of ∆n. Given a basis element X ⊗ Y ∈ C•(∆n) ⊗
C•(∆n), we can always write X = L ∪ A and Y = L ∪ B, where L, A, and B are pairwise
disjoint. Given a subset S ⊆ [0, n], we then say that L ∪ A ⊗ L ∪ B is supported on S
if L ∪ A ∪ B = S.

Proposition 3.1. There is a bijection between faces of Z(S, |S|) excluding ∅ and S and basis
elements of C•(∆n) ⊗ C•(∆n) which are supported on S, given by sending a face with initial
vertex A and generating vectors L to L ∪ A⊗ L ∪ B, where B := S \ (L ∪ A).

Hence, we may identify basis elements of C•(∆n)⊗ C•(∆n) with the corresponding
faces of Z(S, |S|), in particular in the case S = [0, n].

We illustrate in Figure 3 the elements of C•(∆3)⊗C•(∆3) assigned by Proposition 3.1
to the cubes of our running pair of cubillages. Compare this to the description of the
generating vectors and initial points in Figure 2. The coproduct ∆U

i associated to a
cubillage U of Z([0, n], i + 1) is defined by setting ∆U

i ([0, n]) as the sum of elements of
C•(∆n)⊗C•(∆n) assigned to the cubes of U.
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01⊗ 0123
13⊗ 0123

013⊗ 023 123⊗ 012

0123⊗
23

0123⊗ 02

013⊗ 012
013⊗ 123

03⊗ 0123

123⊗ 012

0123⊗
23

0123⊗ 02

Figure 3: The terms of C•(∆n)⊗C•(∆n) corresponding to the maximal cubes.

Construction 3.2. For any U ∈ B([0, n], i + 1), where n ⩾ i, we now define the cup-i
coproduct

∆U
i : C•(∆n)→ C•(∆n)⊗C•(∆n).

We define ∆U
i on the top face of ∆n by the formula

∆U
i ([0, n]) := ∑

L∈([0,n]
i+1 )

(−1)ε(L∪AU
L⊗L∪BU

L )L ∪ AU
L ⊗ L ∪ BU

L ,

where
ε(L ∪ AU

L ⊗ L ∪ BU
L ) := ∑

b∈BU
L

|AU
L |<b + ∑

l∈L
|L|<l + (n + 1)|AU

L |.

For codimension one faces, we define

∆U
i ([0, n] \ {i}) := ∆U/i

i ([0, n] \ {i}).

In this way, we inductively extend the definition to lower-dimensional faces too. Once
we reach a non-empty subset S ⊆ [0, n] with |S| ⩽ i, we define ∆U

i (S) := 0, since in this
case B(S, i + 1) is empty.

The reader may wish to ignore the sign ε(L ∪ AU
L ⊗ L ∪ BU

L ) for the purposes of this
abstract. Many explicit sign calculations are carried out in [7, Appendix A].

3.1 Comparing with original Steenrod cup-i coproducts

Due to differing conventions, the Steenrod cup-i coproducts alternate between the min-
imal element of the higher Bruhat orders and the maximal element, according to the
parity of i.
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Theorem 3.3. For i even, we have

∆Umin
i = (−1)i/2∆i and ∆Umax

i = (−1)i/2T∆i,

whilst for i odd we have

∆Umin
i = (−1)⌈i/2⌉T∆i and ∆Umax

i = (−1)⌊i/2⌋∆i.

Sketch. Cubes of Umin or Umax with generating vectors L have initial points given by
taking alternating parts of increasing overlapping paritions whose overlaps are given
by L. This means that the terms of the coproducts coincide, up to applying T and
adding a sign.

3.2 Deriving the homotopy formula

The boundary of a term in the coproduct has a neat description in terms of the cubillage.
Recalling Proposition 3.1, we may talk of upper and lower facets of a basis element F of
C•(∆n)⊗ C•(∆n), meaning the respective terms corresponding to the upper and lower
facets of the face of Z([0, n], n+ 1) corresponding to F. The following proposition follows
from direct computation.

Proposition 3.4. Let F = L ∪ AU
L ⊗ L ∪ BU

L be a basis element of C•(∆n)⊗C•(∆n) supported
on [0, n]. Adopting the notation F/k := L ∪ AU/k

L ⊗ L ∪ BU/k
L , we have that

∂((−1)ε(F)F) = ∑
G

lower facet

(−1)ε(G)G + ∑
H

upper facet

(−1)ε(H)+1H + ∑
k∈[0,n]\L

(−1)ε(F/k)+k+i+2F/k.

Remark 3.5. Note that terms in ∂((−1)ε(F)F) are of one of the forms L \ {k}∪ AU
L ⊗ L∪ BU

L ,
L ∪ AU

L ⊗ L \ {k} ∪ BU
L , L ∪ AU

L \ {k} ⊗ L ∪ BU
L , or L ∪ AU

L ⊗ L ∪ BU
L \ {k}. The first and

second of these may either be lower facets or upper facets, whilst the third and fourth
give terms in the last sum in Proposition 3.4.

Showing that the coproduct ∆U
i satisfies the homotopy formula is now straightfor-

ward.

Theorem 3.6 ([7, Theorem 3.6]). For any U ∈ B([0, n], i + 1), and for any i ⩾ 0, we have that

∂ ◦ ∆U
i − (−1)i∆U

i ◦ ∂ = (1 + (−1)iT)∆Umin
i−1 .

Sketch. Using Proposition 3.4, when we expand ∂ ◦ ∆U
i ([0, n]) we see that terms from

shared facets of cubes lying inside Z([0, n], i + 1) cancel, and that we are left with terms
of the form (−1)ε(F/k)+k+i+2F/k and terms corresponding to the upper and lower facets
of Z([0, n], i + 1). The former terms cancel with those from (−1)i∆U

i ◦ ∂, and the latter
terms give the right-hand side.
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Figure 4: Illustrating why the homotopy formula holds.

Example 3.7. In Figure 4, we illustrate the proof of Theorem 3.6 for our two coprod-
ucts from Figure 3. The boundary of each red term from the cubes of the cubillage
consists of terms coming from the facets of the cube F, along with terms of the form
(−1)ε(F/k)+k+i+2F/k. While we do not illustrate these latter terms, it can be seen that
when we have two cubes sharing a facet inside the zonotope, the terms on the facet
given by each cube have opposite sign, and so cancel. We are left with the terms on
the boundary of the zonotope. The left-hand facets are the lower facets and correspond
to terms of the usual ∆0 cup-coproduct, whereas the terms on the right-hand facets are
the terms of −T∆0. Note that the terms on the boundary remain the same despite the
different cubillages.

In fact, Construction 3.2 comprises all coproducts that satisfy the homotopy formula,
up to redundancies. The idea is to run the proof of Theorem 3.6 in reverse, so that if
a coproduct satisfies the homotopy formula, then the cubes corresponding to its terms
must have come from a cubillage.

Theorem 3.8 ([7, Theorem 3.9]). Suppose that we have a degree-i coproduct ∆′i : C•(∆n) →
C•(∆n)⊗C•(∆n) with i ⩾ 0, such that

∂ ◦ ∆′i − (−1)i∆′i ◦ ∂ = (1 + (−1)iT)∆Umin
i−1 . (3.1)

1. If, for i > 0, we have that for all non-empty S ⊆ [0, n], ∆′i(S) has a minimal number of
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terms amongst coproducts which satsify this formula, then we have that ∆′i = ∆U
i for some

U ∈ B([0, n], i + 1).

2. For i = 0, if we have that ∆′i(p) = p⊗ p for all p ∈ [0, n] and that ∆′i(S) otherwise has
a minimal number of terms for non-empty S ⊆ [0, n], then we have ∆′i = ∆U

i for some
U ∈ B([0, n], 1).

3.3 Extensions of the construction

There are several natural ways our construction can be extended.

1. One can consider cup-i coproducts on a whole simplicial complex, rather than a
single simplex. In this case, for each maximal simplex in the simplicial complex,
one can choose an element of the higher Bruhat orders. If these chosen elements
agree on the intersections of the maximal simplices in an appropriate way, then they
define a cup-i coproduct on the chain complex of the whole simplicial complex.
The homotopy formula can then be verified simplex-by-simplex, as in Theorem 3.6.

One interesting question is whether particular families of simplicial complexes give
rise to other familiar objects on the combinatorial side.

2. It is natural to also consider cup-i coproducts on singular homology. Here, there
are infinitely many singular simplices; the only feasible option is to assign the same
element of the higher Bruhat orders to each of them. One can show that the only
consistent way to do this is by assigning all of them the minimal elements, or all
of them the maximal elements. Thus, the only cup-i coproducts that exist in the
singular case are the Steenrod ones.

3. Instead of defining a homotopy from T∆i−1 to ∆i−1, one can instead consider ho-
motopies from T∆U

i−1 to ∆U
i−1. Here the relevant posets are the “re-oriented higher

Bruhat orders”.

4. The cup-i coproducts give rise to the cohomology operations known as Steenrod
squares. These operations are defined in mod 2 cohomology by Sqi([α]) = [α ⌣i α],
where ⌣i is the product which is the linear dual of the coproduct ∆i. We show
that different choices of elements of the higher Bruhat orders always produce the
same Steenrod squares. There also exist mod p cohomology operations, which
were described in terms of multi-arity versions of the cup-i products in [6].
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Abstract. For affine Weyl groups and elements associated to dominant coweights, we
present a convex geometry formula for the size of the corresponding lower Bruhat
intervals. Extensive computer calculations for these groups have led us to believe that
a similar formula exists for all lower Bruhat intervals.
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1 Introduction

In this extended abstract of the article [9], we study, for any affine Weyl group, the
lower Bruhat interval for the element θ(λ) (see Definition 2.1) associated to a dominant
coweight λ. These elements are intimately related to representation theory (character
formulas for Lie groups, geometric Satake equivalence, quantum groups, among others).
While calculating with indecomposable Soergel bimodules [12] and Kazhdan-Lusztig
polynomials [4, 13], it became apparent that finding formulas for the cardinalities of
lower Bruhat intervals played a crucial role. Surprisingly, little is known apart from
length 2 (general) intervals [6, Lemma 2.7.3], lower intervals for smooth elements in
Weyl groups [17, 14] and related results for affine Weyl groups [20, 7].

Our two main results relate the lower interval ≤ θ(λ) := [id, θ(λ)], i.e. the elements
below θ(λ) in the (strong) Bruhat order, with a certain convex polytope P(λ). We give a
construction of ≤ θ(λ) in terms of lattice points in P(λ). By using this construction, we
then derive a formula which computes the cardinality of ≤ θ(λ) as a linear combination
of the volumes of the faces of P(λ). For the sake of clarity, we will first explain these
results in a small example.
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Let us consider W the affine Weyl group of type Ã2, and the usual identification
between elements in W and triangles (alcoves) in the tessellation of the plane by equi-
lateral triangles. If x is an element of W, when we write x ⊂ R2, we mean the set
of points in the closure of the alcove corresponding to x (the closed triangle). In Fig-
ure 1 we have the simple roots α1 and α2 in red and in blue, and the fundamental
weights ϖ1 and ϖ2. The id-triangle is the fundamental alcove. For a dominant weight
λ ∈ X+ := Z≥0ϖ1 + Z≥0ϖ2 (depicted by a white dot in Figure 1), let θ(λ) ∈ W denote
the λ-translate of the opposite of the fundamental alcove: those are the grey triangles.

Let also P(λ) denote Conv(W f · λ), the convex hull of the orbit of λ under the finite
Weyl group W f . For λ = 2ϖ1 + ϖ2, it is the yellow hexagon in Figure 2. The faces of
P(λ) containing λ are

FJ := P(λ) ∩ (λ + ∑
i∈J

Rαi), J ⊂ {1, 2}.

Figure 1 Figure 2

Consider the lattice L := λ + Zα1 + Zα2. Let λ = 2ϖ1 + ϖ2, as before. In Figure 3
the interval ≤ θ(λ) := {w ∈ W | w ≤ θ(λ)} is colored in grey, and the green dots are
the set Xλ := P(λ) ∩ L. Let µ ∈ Xλ and notice that there are six (grey) triangles adjacent
to µ. Since the subgroup W f of W corresponds to the six triangles adjacent to the origin
(where the three thick lines meet), the triangles adjacent to µ are precisely the µ-translate
of W f . In fact, this describes all the grey triangles:

≤ θ(λ) =
⊔

µ∈Xλ

W f + µ. (1.1)

In particular we get the following equation, which we call the Lattice Formula

| ≤ θ(λ)| = 6 |P(λ) ∩ L|. (1.2)
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Figure 3: Lattice Formula Figure 4: Geometric Formula

On the other hand, take the area of each colored part in Figure 4. By adding these
areas and dividing by the area of any triangle, we get

| ≤ θ(λ)| = µ1,2Area(F1,2) + µ1Length(F1) + µ2Length(F2) + µ∅Card(F∅), (1.3)

for some real numbers µJ . That is, µ1,2Area(F1,2) is the number of triangles in the yellow
part, µ1Length(F1) corresponds to the red part, µ2Length(F3) to the blue part and the
last term corresponds to the 6 turquoise triangles.

It is obvious that for a given λ, there are some µ’s satisfying Equation (1.3). However
it turns out that the coefficients µ’s corresponding to the partition of Figure 4 do not
depend on the choice of λ and that they are unique in this sense. We call this formula
the Geometric Formula.

Remark 1.1. The reader may notice that the formula presented here bears strong similar-
ities to Pick’s theorem. For the proof of Theorem B, a generalization of the formula (1.3)
applicable to any root system, we use a generalized version of Pick’s theorem developed
by Berline and Vergne. For more details see Section 3.2.

For any irreducible root system Φ one has an associated affine Weyl group W and
one can define similar concepts as in the Ã2 case. For example, θ(λ) corresponds to
the alcove touching λ in the direction of ρ (the sum of the fundamental weights). The
following theorem, a generalization of Equation (1.2), builds the bridge between Coxeter
combinatorics and convex geometry.

Theorem A (Lattice Formula). For every dominant coweight λ, we have

| ≤ θ(λ)| = |W f | |Conv(W f · λ) ∩ (λ + ZΦ∨)|.
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This formula is a key step to prove our main theorem below but it is also interesting
in its own right, as we now explain. In [19] Postnikov studied permutohedra of general
types. Among them, one of the most remarkable is the regular permutohedron of type
An. The number of integer points of that polytope can be interpreted [21, §3] as the
number of forests on {1, 2, . . . , n}. There are other interpretations for the integer points
of the regular permutohedron of type An, for instance, [1, Proposition 4.1.3] gives one as
certain orientations of the complete graph. We remark that these interpretations are only
for the regular permutohedron of type An. For non-regular permutohedra of any type,
before the present paper, there was no interpretation of the integer points. Theorem
A gives a first interpretation of this sort, and it is also of a different nature than the
pre-existent ones in that it is not related to graph theory but to Coxeter theory.

This theorem also gives an interesting new insight. For a generic permutohedron (i.e.
Conv(W f · λ) for some λ ∈ Z>0ϖ1 + Z>0ϖ2), the set of vertices is in bijection with the
finite Weyl group W f = {w ≤R w0} where ≤R is the right weak Bruhat order on W f and
w0 is the longest element. The Hasse diagram of ≤R on {w ≤R w0} corresponds to the
graph of the polytope.

Theorem A (or more precisely Proposition 2.4, a generalization of Equation (1.1))
says that if we consider the strong Bruhat order, the set ≤ θ(λ) can be obtained from the
lattice points inside the polytope. Heuristically, the weak Bruhat order gives the vertices
of the polytope and the strong Bruhat order gives the lattice points inside the polytope.

Now we can present our main result. For J ⊆ {1, 2, . . . , n}, one can define the face
FJ = Conv(WJ · λ) of Conv(W f · λ). See section 3.1 for more details.

Theorem B (Geometric Formula). For every rank n irreducible root system Φ, there are unique
µΦ

J ∈ R such that for any dominant coweight λ,

| ≤ θ(λ)| = ∑
J⊂{1,...,n}

µΦ
J Vol(FJ),

Remark 1.2. This Theorem generalizes Equation (1.3). One should be careful with the
intuition coming from type Ã2. In that small example, recall that the coefficients were
determined by the partition in Figure 4. For a given λ one can always construct a
partition P of (the alcoves of) ≤ θ(λ) according to Conv(W f · λ), and then derive some
coefficients µ’s. It is fortuitous that in the Ã2 case, these coefficients coincide with the
ones in the Geometric Formula. Already in Ã4 it is not true that Conv(W f · λ) ⊂≤ θ(λ),
and in Ã24 there is a negative µJ coefficient, so µJVol(FJ) is not the number of alcoves in
some p ∈ P .

Theorem B is proved by combining Theorem A with a particular formula for com-
puting the number of lattice points developed by Berline-Vergne [5] and Pommersheim-
Thomas [18]. The construction we use is part of a bigger family of formulae relating the
number of lattice points of a polytope with the volumes of its faces, see [3, §6].
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In [19], Postnikov gives several formulas for the volumes Vol(FJ) for any Φ. When Φ
is the root system of type An, in Section 4 we give some geometric coefficients µAn

J .
The volumes are polynomials in the coordinates m1, . . . , mn of λ in the coweight basis.

As a consequence of Theorem B we obtain that the size of the lower Bruhat intervals
generated by θ(λ) is a polynomial function on the coordinates of λ.

2 Lattice Formula

We refer the reader to [11, 8] for more details about Weyl groups.
For the rest of this extended abstract, we fix an irreducible (reduced, crystallographic)

root system Φ of rank n, and we denote by V be the ambient (real) Euclidean space
spanned by Φ, with inner product (−,−) : V × V → R.

Let α1, · · · , αn ∈ Φ be a choice of simple roots. The fundamental coweights ϖ∨
i are

defined by the equations (ϖ∨
i , αj) = δij. They form a basis of V. A coweight is an integral

linear combination of the fundamental coweights, and a dominant coweight is a coweight
whose coordinates in this basis are non-negative. The set of coweights will be denoted
by Λ∨.

For a root α ∈ Φ and an integer k ∈ Z, consider the hyperplane

Hα,k = {λ ∈ V | (λ, α) = k},

and the affine reflection sα,k through this hyperplane. We write si := sαi,0, for 1 ≤ i ≤ n,
and s0 := sα̃,−1, where α̃ is the highest root. The affine Weyl group W is the group
generated by S := {s0, s1, . . . , sn}. We have that (W, S) is a Coxeter system. We denote
by ≤ the (strong) Bruhat order on W: u ≤ w if u can be obtained by deleting some letters
of a reduced word for w. For J ⊂ S, the parabolic subgroup WJ is the subgroup of W
generated by J. The finite Weyl group W f is the parabolic subgroup of W generated by
S f := {s1, . . . , sn}. It has a maximal element w0 with respect to ≤.

An alcove is a connected component of V \ ∪α,kHα,k. The closure of an alcove is a
fundamental domain for the action of W on V. The fundamental alcove is the simplex

Aid := {λ ∈ V | −1 < (λ, α) < 0, ∀α = α1, . . . , αn, α̃}.

We have a bijection w 7→ Aw := wAid between W and the set of alcoves.
The coroot α∨ corresponding to a root α ∈ Φ is α∨ := 2α/(α, α). The lattice Λ∨

contains ZΦ∨ as a subgroup of finite index. Consider the group Ω := Λ∨/ZΦ∨. Define
vi = −ϖ∨

i for 1 ≤ i ≤ n and let v0 be the zero vector. Define M := {i | (ϖ∨
i , α̃) = 1}. The

set {v0, vi | i ∈ M} is a complete system of representatives of Ω. This group classifies all
parabolic subgroups of W that are isomorphic to W f . We will denote by Wσ the parabolic
subgroup corresponding to σ ∈ Ω. It is the subgroup generated by S \ {si}, where σ = vi
in Ω. From now on, we will identify Ω with the representatives {v0, vi | i ∈ M}.
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Definition 2.1. Let λ be a dominant coweight. Since Aw0 + λ is an alcove, there exists a
unique element θ(λ) ∈ W such that Aθ(λ) = Aw0 + λ. See Figure 1 for an example.

For any X ⊂ W, let A(X) be the union of alcoves corresponding to X. That is,
A(X) = ⊔x∈X Ax. The following Lemma captures the geometric intuition needed to
prove Theorem A.

Lemma 2.2. Let λ be a dominant coweight and let σ ∈ Ω such that λ ∈ σ + ZΦ∨. Then,

1. A(Wσ) = A(W f ) + σ.

2. A(θ(λ)Wσ) = A(W f ) + λ.

3. θ(λ) is maximal with respect to the Bruhat order in its double coset W f θ(λ)Wσ.

4. The maximal elements of the double cosets in
⊔

σ∈Ω W f \W/Wσ, are precisely the θ-
elements.

Definition 2.3. For any λ ∈ V, we define the orbit polytope PΦ(λ) as the convex polytope
whose vertex set is the W f -orbit of λ. See Figure 2 for an example.

As long as λ is not the zero vector, the orbit polytope is always full dimensional.
Using Lemma 2.2, we can derive the following Proposition, which describes the al-

coves corresponding to ≤ θ(λ) in terms of lattice points in PΦ(λ).

Proposition 2.4. For every dominant coweight λ, we have

A
(
≤ θ(λ)

)
=

⊔
µ∈Xλ

A(W f ) + µ, (2.1)

where Xλ = PΦ(λ) ∩ (λ + ZΦ∨).

Then, by counting alcoves in Equation (2.1), we get the Lattice Formula.

Theorem 2.5 (Lattice Formula). For every dominant coweight λ, we have

| ≤ θ(λ)| = |W f | |PΦ(λ) ∩ (λ + ZΦ∨)|. (2.2)

3 Geometric Formula

3.1 Faces of the orbit polytope and their volumes

For any X ⊂ V we denote by Conv(X) the convex hull of X. Let λ be a dominant
coweight. The faces of the orbit polytope PΦ(λ) are given by

F(w, J) = wConv(WJ · λ),

where J ⊂ S f and w ranges over any representatives of W/WJ . In particular, the facets
of PΦ(λ) containing λ, are precisely F(id, S f \ {si}) for 1 ≤ i ≤ n.
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Definition 3.1. For a subset J ⊂ S f , we define VΦ
J (λ) as the |J|-dimensional volume of

the face F(id, J) of PΦ(λ).

It will turn out that the volumes VΦ
J (λ) can be seen as polynomials, as we now

explain. For simplicity, suppose J = S f and that λ is generic1, i.e. its coordinates (in
the fundamental coweight basis) are strictly positive. We can decompose PΦ(λ) into
pyramids having the facets of PΦ(λ) as their bases, and the zero vector as their apex.
Thus we can compute the n-dimensional volume of PΦ(λ), i.e. VΦ

S f
(λ), by adding up

the volumes of these pyramids. After considering symmetries, we get the following
equation.

VΦ
S f
(λ) =

1
n

n

∑
j=1

[
W : WS f \{sj}

] (λ, ϖ∨
j )

∥ϖ∨
j ∥

VΦ
S f \{sj}(λ). (3.1)

Now let m = (m1, . . . , mn) be a n-tuple of positive integers. Define VΦ
S f
(m) :=

VΦ
S f
(m1ϖ∨

1 + . . . + mnϖ∨
n ). It is clear that the term (λ, ϖ∨

j ) (coming from the height of the

pyramids) is a polynomial in m1, . . . , mn. Since VΦ
∅ (λ) = 1, Equation (3.1) implies that

VΦ
S f
(m) is a homogeneous polynomial of degree n in m1, . . . , mn, by induction.
For any J ⊂ S f and dominant coweight λ, a similar formula to Equation (3.1) allows

us to see the volumes VΦ
J (λ) as polynomials. Furthermore, we can deduce their linear

independence. We collect this in the following Lemma (for more details, see [9, §4]).

Lemma 3.2. Let m = (m1, . . . , mn) be a n-tuple of non-negative integers. For J ⊂ S f , define
VΦ

J (m) := VΦ
J (m1ϖ∨

1 + . . . + mnϖ∨
n ).

• VΦ
J (m) is a homogeneous polynomial of degree |J| in the variables mj, for j ∈ J (identifying

J with a subset of {1, 2, . . . , n}).

• The polynomials VΦ
J (m) with J ⊂ S f are linearly independent.

Remark 3.3. To compare our results to Potnikov’s formulas for the volumes, suppose Φ
has type An. In this case, PΦ(λ) is a permutohedron. Our variables m1, . . . , mn corre-
spond to the variables u1, . . . , un in [19, §16]. There is a missing scalar factor of

√
n + 1,

which is the Euclidean volume of the fundamental parallelepiped spanned by the simple
roots, but his formulas are scaled so that its volume is 1.

1In the literature, a coweight is regular if it is not orthogonal to any root. Thus, a dominant coweight is
generic if and only if it is regular.
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3.2 Counting lattice points

For any (possibly non-pointed) cone C that includes the origin, we define its polar as

C◦ = {v ∈ V : (v, w) ≤ 0, ∀w ∈ C}.

Let Γ ⊂ V be a lattice.

Definition 3.4. Let P be a full dimensional lattice polytope, that is, a convex polytope
whose vertices lie in Γ. For a face F ⊂ P let H be its affine span, L the corresponding
linear subspace and π : V → L⊥ the orthogonal projection. We define four cones:

• The normal cone n(F,P) = cone{uG : G is a facet such that F ⊂ G}, where uG is
an outer normal for the facet G ⊂ P.

• The feasible cone f(F,P) is the polar of the normal cone n(F,P).

• The supporting cone s(F,P) := H + f(F,P). It is a translation of the feasible cone.

• The transverse cone t(F,P) = π(s(F,P)).

We say that a pointed cone C is rational if its vertex is a lattice point and every ray
(1-dimensional face) contains a lattice point. The following is the Euler-Maclaurin formula
developed by Berline and Vergne [5] (see also [2, Chapters 19-20] for an exposition).
There exists a function ν on pointed rational cones such that the following is true for all
lattice polytopes P.

|P∩ Γ| = ∑
F⊆P

ν (t(F,P)) relVol(F), (3.2)

where the sum is indexed over all nonempty faces of P. The relative volume relVol(F)
of a face is the volume on its affine span H normalized with respect to the lattice Γ ∩ L,
where L is the linear subspace parallel to H. More precisely,

relVol(F) =
Vol(F)

det(Γ ∩ L)
. (3.3)

Remark 3.5. To be more precise, Berline and Vergne’s main construction in [5] is a func-
tion µ that maps pointed rational cones to meromorphic functions [5, §4]. In this paper
we only use the function ν which is µ evaluated at zero [5, Definition 25], and then Equa-
tion (3.2) is equivalent to [5, Theorem 26] when the function h is the constant function
equal to 1.

We remark that for a single polytope P, it is obvious that there will be a formula
resembling Equation (3.2). The interesting part of Berline-Vergne’s theorem is that the
ν function satisfies Equation (3.2) for all lattice polytopes simultaneously and has cer-
tain local properties. Namely, the following operations do not change the ν value of a
transverse cone.
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i Applying a lattice-preserving orthogonal transformation.

ii Translating by a lattice element.

We use these tools to prove Theorem B, which we restate for the reader’s convenience.

Theorem 3.6 (Geometric Formula). For every irreducible root system Φ, there are unique
µΦ

J ∈ R such that for any dominant coweight λ,

| ≤ θ(λ)| = ∑
J⊂S f

µΦ
J VΦ

J (λ). (3.4)

The sketch of the proof is as follows. We focus on proving the existence of the
coefficients, since Lemma 3.2 implies uniqueness.

Let λ be a dominant coweight. The polytope QΦ(λ) := PΦ(λ)− λ is a lattice polytope
with respect to the lattice ZΦ∨. Note that the Lattice Formula, Theorem 2.5, yields

| ≤ θ(λ)| = |W f | |PΦ(λ) ∩ (λ + ZΦ∨)| = |W f | |QΦ(λ) ∩ ZΦ∨|. (3.5)

Applying Berline-Vergne formula (3.2), we get

| ≤ θ(λ)| = |W f | ∑
F⊆QΦ(λ)

ν
(
t(F,QΦ(λ))

)
relVol(F). (3.6)

The faces of the lattice polytope QΦ(λ) are GJ(w, λ) := FJ(w, λ) − λ for all pairs
w ∈ W f and J ⊂ S f . We define GJ(λ) := GJ(id, λ). Recall that a generic dominant
coweight is a positive integer linear combination of the fundamental coweights.

Lemma 3.7. Let λ be a generic dominant coweight and J ⊂ S f . Then

1. The ν value of the transverse cone of GJ(λ) in QΦ(λ) is independent of λ.

2. The ν value of the transverse cones of GJ(λ) and GJ(λ, w) are equal for all w ∈ W f .

3. For w ∈ W f we have that Vol(GJ(λ)) = Vol(GJ(λ, w)). Furthermore, relVol(GJ(λ)) =
relVol(GJ(λ, w)).

Combining Lemma 3.7 and Equation (3.6), we get the existence in the generic case.

Proposition 3.8 (Existence in the generic case). For every irreducible root system Φ, there
exists µΦ

J ∈ R such that for any generic dominant coweight λ,

| ≤ θ(λ)| = ∑
J⊂S f

µΦ
J VΦ

J (λ). (3.7)
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On the other hand, we can express QΦ(λ) as a Minkowski sum m1Q
Φ(ϖ∨

1 ) + · · · +
mnQ

Φ(ϖ∨
n ), where λ = m1ϖ∨

1 + · · · + mnϖ∨
n . Using Equation (3.5), we get the quasi-

polynomiality of | ≤ θ(λ)| (see [15, Theorem 7]).

Proposition 3.9 (Quasi-polynomiality). For every dominant coweight λ = ∑i miϖ
∨
i (generic

or not), we have that | ≤ θ(λ)| is a quasi-polynomial in m1, . . . , mn.

We now prove the Geometric Formula.

Proof of Theorem 3.6. Proposition 3.8 together with the fact that VΦ
J are polynomials (by

Lemma 3.2) imply that | ≤ θ(λ)| = ∑ µΦ
J VΦ

J (λ) is a polynomial in the coordinates
m1, . . . , mn of λ (in the fundamental coweight basis) when they are positive integers. By
Proposition 3.9 we know that | ≤ θ(λ)| is in general a quasi-polynomial in the mi’s.
Put m = (m1, . . . , mn). We have a polynomial ∑ µΦ

J VΦ
J (m) agreeing with the quasi-

polynomial | ≤ θ(m)| on the set Zn
>0. Thus, they must agree on Zn

≥0. Therefore, formula
(3.7) holds for every dominant coweight λ, generic or not, giving the existence in every
case.

Finally, by Lemma 3.2, the volume polynomials are linearly independent hence the
coefficients µΦ

J are unique.

A direct consequence of the Geometric Formula 3.6, is that if Φ has rank n and
λ = (m1, . . . , mn) in the fundamental coweight basis, then | ≤ θ(λ)| is a polynomial of
degree n in the m1, . . . , mn. Taking the sum over a fixed rank |J| = d gives the degree d
part of the polynomial. We call the coefficients µΦ

J the geometric coefficients.

4 On the geometric coefficients µΦ
J

We finish by giving some values of the geometric coefficients. The coefficient corre-
sponding to the empty set is easily determined. Using the Geometric Formula (3.4), we
get

µΦ
∅ = ∑

J⊆S f

µΦ
J VΦ

J (0) = | ≤ θ(0)| = | ≤ w0| = |W f |.

The coefficient corresponding to the set S f also has a nice expression.

Lemma 4.1. Let Vol(Aid) be the n-dimensional volume of the fundamental alcove. Then

µΦ
S f

=
1

Vol(Aid)
.

In Table 1, we show the values of µΦ
S f

, which were computed using [8, Plates I, . . . ,
VI].
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Type An Bn Cn Dn E6 E7 E8 F4 G2

µΦ
S f

(n + 1)!√
n + 1

n!2n−1 n!2n n!2n−4 24
√

3 · 6! 288
√

2 · 7! 17280 · 8! 576 12
√

3

Table 1: Values of the geometric coefficient µΦ
S f

.

Now let Φ be the root system of type An and let D be the corresponding Dynkin
diagram. We say that J ⊆ S f is connected if the subgraph of D corresponding to J is
connected. For example, {s1, s2, . . . , sl} ⊂ S f is connected for every 1 ≤ l ≤ n.

In [9, §6.2], we compute the geometric coefficients µAn
J for connected subsets J ⊆ S f .

To achieve this, we use the following Lemma.

Lemma 4.2. For all m ∈ Z≥0, and for all 1 ≤ k ≤ n,

| ≤ θ(mϖk)| = (n + 1)! Ek,n+1(m), (4.1)

where Ek,n+1 is the Ehrhart polynomial of the hypersimplex

∆k,n+1 =
{

x ∈ [0, 1]n+1 | x1 + · · ·+ xn+1 = k
}

.

In [10], the author gave a polynomial expansion of Ek,d(m). On the other hand, the
polynomial expansion of | ≤ θ(mϖk)| ∈ R[m] via the Geometric Formula 3.6, depends
on the polynomials VAn

J (mϖk). They are of the form VAn
J (mϖk) = ck,Jm|J|, for some

number ck,J (depending on the Eulerian numbers [16, A008292]). The connectedness of
J is necessary (but not sufficient) to assure that ck,J ̸= 0. After comparing coefficients
in Equation (4.1), we get a system of linear equations which, upon solving, gives all the
geometric coefficients of connected sets.

For example, for every 1 ≤ l ≤ n,

µAn
{s1,s2,...,sl}

=
l!√

l + 1
(n + 1)

[
n + 1
l + 1

]
, (4.2)

where the brackets denote the (unsigned) Stirling numbers of the first kind [16, A008275].
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Abstract. The present note explores a connection between two concepts arising from
different fields of mathematics. The first concept, called vine, is a graphical model
for dependent random variables. This concept first appeared in a work of Joe (1994),
and the formal definition was given later by Cooke (1997). Vines have nowadays be-
come an active research area whose applications can be found in probability theory
and uncertainty analysis. The second concept, called MAT-freeness, is a combinatorial
property in the theory of freeness of logarithmic derivation module of hyperplane ar-
rangements. This concept was first studied by Abe-Barakat-Cuntz-Hoge-Terao (2016),
and soon afterwards investigated further by Cuntz-Mücksch (2020).

In the particular case of graphic arrangements, the last two authors (2023) recently
proved that the MAT-freeness is completely characterized by the existence of certain
edge-labeled graphs, called MAT-labeled graphs. In this paper, we first introduce a
poset characterization of a vine. Then we show that, interestingly, there exists an
explicit equivalence between the categories of locally regular vines and MAT-labeled
graphs. In particular, we obtain an equivalence between the categories of regular vines
and MAT-labeled complete graphs.
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1 Motivation

The starting point of our note is a question of Cuntz-Mücksch [8] (Question 1.3) in the
theory of free hyperplane arrangements.

Let V be a finite dimensional vector space. A hyperplane in V is a 1-codimensional
linear subspace of V. Let {x1, . . . , xℓ} be a basis for the dual space V∗. Any hyperplane
in V can be described by a linear equation of the form a1x1 + · · · + aℓxℓ = 0 where at
least one of the ai’s is non-zero.

A hyperplane arrangement A is a finite set of hyperplanes in V. The intersection
lattice of A is the set of all intersections of hyperplanes in A, which is often referred to
as the combinatorics of A. An arrangement is said to be free if its module of logarithmic
derivations is a free module. For basic definitions and properties of free arrangements,
we refer the interested reader to [17, 14]. Freeness is an algebraic property of hyperplane
arrangements which has been a major topic of research since the 1970s. A central ques-
tion in the theory is to study the freeness of an arrangement by combinatorial structures,
especially by the intersection lattice of the arrangement.

Among others, MAT-freeness is an important concept which was first used by Abe-
Barakat-Cuntz-Hoge-Terao [1] to settle the conjecture of Sommers-Tymoczko [15] on the
freeness of ideal subarrangements of Weyl arrangements. This concept is formally defined
later by Cuntz-Mücksch [8] and we will use their definition throughout. For a hyper-
plane H ∈ A, define the restriction AH of A to H by

AH := {K ∩ H | K ∈ A \ {H}}.

Definition 1.1 (MAT-partition and MAT-free arrangement [8]). Let A be a nonempty
arrangement. A partition (disjoint union of nonempty subsets) π = (π1, . . . , πn) of A is
called an MAT-partition if the following three conditions hold for every 1 ≤ k ≤ n.

1. The hyperplanes in πk are linearly independent.

2. There does not exist H′ ∈ Ak−1 such that
⋂

H∈πk
H ⊆ H′, where Ak−1 := π1 ⊔ · · · ⊔

πk−1 (disjoint union) and A0 := ∅ is the empty arrangement.

3. For each H ∈ πk, |Ak−1| − |(Ak−1 ∪ {H})H| = k − 1.

An arrangement is called MAT-free if it is empty or admits an MAT-partition.

As the name suggests, any MAT-free arrangement is a free arrangement. This follows
from the remarkable Multiple Addition Theorem by Abe-Barakat-Cuntz-Hoge-Terao [1,
Theorem 3.1] (justifying the abbreviation MAT). MAT-freeness is a helpful combinatorial
tool (as it depends only on the intersection lattice) to examine the freeness of arrange-
ments. One of its most famous applications we mentioned earlier is a proof that the
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ideal subarrangements of Weyl arrangements are free. The MAT-freeness has received
increasing attention in recent years, see [2, 3, 13, 7] for some other applications.

Let V = Rℓ with the standard inner product (·, ·). Let Φ be an irreducible (crystallo-
graphic) root system in V, with a fixed positive system Φ+ ⊆ Φ and the associated set
of simple roots ∆ := {α1, . . . , αℓ}. For α ∈ Φ, define Hα := {x ∈ V | (α, x) = 0}. For
Σ ⊆ Φ+, the Weyl subarrangement AΣ is defined by AΣ := {Hα | α ∈ Σ}. In particular,
AΦ+ is called the Weyl arrangement.

We can make Φ+ into a poset (partially ordered set) by defining a partial order ≤ on
Φ+ as follows: β1 ≤ β2 if β2 − β1 ∈ ∑ℓ

i=1 Z≥0αi. The poset (Φ+,≤) is called the root
poset of Φ. For an ideal I (Definition 2.7) of the root poset Φ+, the corresponding Weyl
subarrangement AI is called the ideal subarrangement.

Theorem 1.2 ([1, Theorem 1.1]). Any ideal subarrangement AI is MAT-free, hence free.

The ideal subarrangements form a significant subclass of MAT-free arrangements.
However, there are many MAT-free arrangements (or MAT-partitions of a given MAT-
free arrangement) that do not arise from ideal subarrangements (Example 3.7). One may
wonder if the hyperplanes in an arbitrary MAT-free arrangement satisfy some poset
structure similar to the root poset? This question was asked by Cuntz-Mücksch [8] and
is the main motivation of our work.

Question 1.3 ([8, Problem 47]). Given an MAT-free arrangement A, can we characterize all
possible MAT-partitions of A by a poset structure generalizing the classical root poset?

Cuntz-Mücksch’s question is difficult in general as the number of different MAT-
partitions of a given MAT-free arrangement might be very large. Also, the definition of
an MAT-partition itself does not reveal a natural choice of the desirable partial order. In
the present note, we pursue this question along graphic arrangements, a well-behaved class
of arrangements in which both freeness and MAT-freeness are completely characterized
by combinatorial properties of graphs.

Let G be a simple graph (i.e. no loops and no multiple edges) with vertex (or node)
set NG = {v1, . . . , vℓ} and edge set EG. The graphic arrangement AG is an arrangement
in an ℓ-dimensional vector space V defined by

AG := {xi − xj = 0 | {vi, vj} ∈ EG}.

A graph is chordal if it does not contain an induced cycle of length greater than three.
A chordal graph is strongly chordal if it does not contain a sun graph as an induced
subgraph. Here an n-sun Sn (n ≥ 3) is a graph with vertex set NSn = {u1, . . . , un} ∪
{v1, . . . , vn} and edge set

ESn = {{ui, uj} | 1 ≤ i < j ≤ n} ∪ {{vi, uj} | 1 ≤ i ≤ n, j ∈ {i, i + 1}},

where we let un+1 = u1.
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Theorem 1.4 ([16], [9, Theorem 3.3]). The graphic arrangement AG is free if and only if G is
chordal.

Theorem 1.5 ([18, Theorem 2.10]). The graphic arrangement AG is MAT-free if and only if G
is strongly chordal.

While the definition of an MAT-free arrangement may seem technical at first glance,
Theorem 1.5 enables us to view MAT-freeness as a rather natural property. Furthermore,
the correspondence between MAT-freeness and strong chordality establishes a nice ana-
log1 of the classical correspondence between freeness and chordality.

The good thing about graphs is that MAT-partition of a graphic arrangement can
be rephrased in terms of a special edge-labeling of graphs, the so-called MAT-labeling
(Definition 2.1). A graph together with such a labeling is called an MAT-labeled graph.
To approach Question 1.3 for graphic arrangements, the first question would be how
many non-isomorphic MAT-labelings can a (strongly chordal) graph have? A computa-
tion aided by computer for complete graphs on up to 8 vertices gives us the sequence
1, 1, 1, 2, 6, 40, 560, 17024. Surprisingly, we found out that this sequence coincides with
the number of equivalence classes of (graphical) regular vines (or R-vines) in dimension
up to 8 given in [12, §10.3]. This observation is indeed compelling as it leads us to the
notion of the node poset of a graphical vine (Definitions 2.9 and 2.10), which is a perfect
candidate for the poset structure we are looking for.

2 Definitions

2.1 MAT-labeled graphs

All graphs in this paper are undirected, finite and simple. Let G = (NG, EG) be a
graph with the set NG of vertices (or nodes) and the set EG of edges (unordered pairs of
vertices). In this paper, a vertex and a node in a graph are synonyms. The former will
be used more often for graphs, while the latter will be used for an element in a poset.

An edge-labeled graph is pair (G, λ) where G is a simple graph and λ : EG −→ Z>0 is
a map, called (edge-)labeling. The following definition of an MAT-labeling is equivalent
to the original one in [18, Definition 4.2].

Definition 2.1 (MAT-labeling). Let (G, λ) be an edge-labeled graph. For k ∈ Z>0, let
πk := λ−1(k) ⊆ EG denote the set of edges of label k. Define π≤k := π1 ⊔ · · · ⊔ πk and
π<1 := ∅. The labeling λ is an MAT-labeling if the following two conditions hold for
every k ∈ Z>0.

1Many important concepts in the classical theory such as simplicial vertex and perfect elimination ordering
of chordal graphs have their analogs in MAT-labeled graphs (see [18] for more details).
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1. Any edge e ∈ π≤k does not form a cycle with edges in πk.

2. Every edge e ∈ πk forms exactly k − 1 triangles with edges in π<k.

Given an edge e ∈ πk, a conditioning vertex of e is a vertex that together with the
endvertices of e forms two edges both of label < k. Condition (2) above can be rephrased
as every edge e of label k has exactly k − 1 conditioning vertices.

Definition 2.2 (MAT-labeled (complete) graph). An edge-labeled graph (G, λ) is an
MAT-labeled graph if λ is an MAT-labeling of G. In particular, an MAT-labeled graph
(G, λ) is an MAT-labeled complete graph if G is a complete graph.

MAT-partition of a graphic arrangement is nothing but MAT-labeling of the underly-
ing graph [18, Proposition 4.3]. Thus, MAT-free graphic arrangement and MAT-labeled
graph are essentially the same object.

Recall that a clique of a graph is a subset of vertices such that every two distinct
vertices in the clique are adjacent.

Lemma 2.3 (Principal clique). Let (G, λ) be an MAT-labeled graph. Let e = {i, j} ∈ πk
be an edge in G of label k and h1, . . . , hk−1 be the conditioning vertices of e. Then the set
Ke := {i, j, h1, . . . , hk−1} is a clique of G. We call Ke the principal clique generated by e.

Definition 2.4 (Label-preserving isomomorphism). Let (G, λ) and (G′, λ′) be two edge-
labeled graphs. A label-preserving homomorphism from (G, λ) to (G′, λ′), written
σ : (G, λ) −→ (G′, λ′) is a map σ : NG −→ NG′ such that for all u, v ∈ NG, {u, v} ∈ EG
implies {σ(u), σ(v)} ∈ EG′ and λ(u, v) = λ′(σ(u), σ(v)).

We call σ an isomorphism if σ is bijective and its inverse is a label-preserving ho-
momorphism. The edge-labeled graphs (G, λ) and (G′, λ′) are said to be isomorphic,
written (G, λ) ≃ (G′, λ′) if there exists an isomorphism σ : (G, λ) −→ (G′, λ′). If
(G, λ) ≃ (G, λ′), we say that two labelings λ and λ′ are the same (or isomorphic).

If (G, λ) ≃ (G′, λ′) and (G, λ) is an MAT-labeled graph, then (G′, λ′) is also an MAT-
labeled graph.

Definition 2.5 (Category of MAT-labeled (complete) graphs). The category MG of MAT-
labeled graphs is the category whose objects are the MAT-labeled graphs and whose
morphisms are the label-preserving homomorphisms. The category MCG of MAT-
labeled complete graphs is a full subcategory of MG whose objects are the MAT-labeled
complete graphs.

2.2 Vines: graphical and poset definitions

All posets P = (P ,≤P ) in this note are finite. Denote by max(P) (resp. min(P)) the set
of all maximal (resp. minimal) elements in a poset P .
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Definition 2.6 (Graded poset). A finite poset P is graded if there exists a rank function
rk = rkP : P −→ Z≥0 satisfying the following three properties:

1. For any x, y ∈ P , if x < y then rk(x) < rk(y).

2. If y covers x, then rk(x) = rk(y)− 1.

3. All minimal elements of P have the same rank. In this note, we assume2 rk(x) = 1
for all x ∈ min(P).

Equivalently, for every x ∈ P , all maximal chains among those with x as greatest element
have the same length.

The dimension3 dim(P) of P is defined as dim(P) := |min(P)|. The rank rk(P) of
a graded poset P with rank function rk is defined as

rk(P) := max{rk(x) | x ∈ P}.

Definition 2.7 (Ideal, principal ideal). Let P be a poset. An (order) ideal I of P is a
downward-closed subset, i.e. for every x ∈ P and y ∈ I , x ≤ y implies that x ∈ I . For
a ∈ P , the ideal

P≤a := {x ∈ P | x ≤ a}

is called the principal ideal of P generated by a.

Definition 2.8 (Poset homomorphism). Let P and P ′ be posets. A (poset) homomor-
phism φ : P −→ P ′ is an order-preserving map, i.e. x ≤ y implies φ(x) ≤ φ(y) for
all x, y ∈ P . We call φ a join-preserving homomorphism if for any x, y ∈ P such that
the join x ∨ y exists, then φ(x) ∨ φ(y) exists and φ(x ∨ y) = φ(x) ∨ φ(y). We call φ an
isomorphism if φ is bijective and its inverse is a homomorphism. The posets P and P ′

are said to be isomorphic, written P ≃ P ′ if there exists an isomorphism φ : P −→ P ′.
When P = (P , rk) and P ′ = (P ′, rk′) are graded posets, a homomorphism φ : P −→ P ′

is called rank-preserving if rk′(φ(x)) = rk(x) for all x ∈ P .

Now we recall the graphical definition of a vine following [4, Definition 4.1].

Definition 2.9 (Graphical definition of vine). Let 1 ≤ n ≤ ℓ be positive integers. A
(graphical) vine V on ℓ elements [ℓ] = {1, . . . , ℓ} (or more generally, on an ℓ-element set
called N1) is an ordered n-tuple V = (F1, F2, . . . , Fn) such that

2A motivation for this assumption is the equivalence between D-vine and root poset of type A (Remark
3.4). The latter is graded by heights of positive roots, and all the minimal elements (simple roots) have
rank (height) 1.

3The term "dimension" of a poset may have a different meaning in the other context. The present
definition is to make a compatibility for dimensions of a vine (Remark 2.11) and the ambient space of
graphic arrangements.
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1. F1 is a forest with nodes N1 = [ℓ] and a set of edges denoted E1,

2. for 2 ≤ i ≤ n, Fi is a forest with nodes Ni = Ei−1 and edge set Ei.

We call Fi the i-th associated forest of V . A graphical vine is uniquely determined by
its associated forests. Denote by N(V) = N1 ∪ · · · ∪ Nn the set of nodes (of the associated
forests) of V . We call the numbers n and ℓ the rank and dimension of V , respectively.

If node u is an element of node v, i.e. u ∈ v, we say that u is a child of v. If v is
reachable from u via the membership relation: u ∈ u1 ∈ · · · ∈ v, we say that u is a
descendant of v.

Definition 2.10 (Node poset). Let V be a graphical vine with node set N(V). The node
poset P = P(V) of V is the poset (N(V),≤) defined as follows: For any u, v ∈ N(V),

u ≤ v if u is a descendant of v.

Remark 2.11. We emphasize that a graphical vine is uniquely determined by its node
poset. The terminology "rank" of a vine has motivation from poset theory. If a vine V is
an ordered n-tuple, then P = P(V) is a graded poset with rank function rk(v) = i for
v ∈ Ni (1 ≤ i ≤ n). Thus this number n equals the rank of P . In addition, the dimension
of V equals the number of minimal elements in P , or the dimension of P .

Assumption & Notation 2.12. From now on, unless otherwise stated we assume that P
is a finite graded poset with a rank function rk : P −→ Z>0. Denote n := rk(P) and
ℓ := dim(P). For v ∈ P , denote by E(v) the set of elements covered by v. For i ≥ 0,
define Pi := {v ∈ P | rk(v) = i} and E(Pi) := {E(v) | v ∈ Pi}. If P is an ℓ-dimensional
poset, we assume P1 = min(P) = [ℓ].

As noted earlier in Remark 2.11, we may think of a graphical vine and its node poset
essentially as the same object. It is thus natural to look for a characterization of the
node poset of a vine. We give below such a characterization obtained immediately from
Definition 2.9.

Definition & Proposition 2.13 (Poset definition of vine). A finite graded poset P is the
node poset of a graphical vine if and only if P satisfies the following conditions:

1. Every non-minimal node covers exactly two other nodes, and any two distinct
nodes of the same rank are covered by at most one node.

2. For each 1 ≤ i ≤ n = rk(P), the graph Fi = (Ni, Ei) with node set Ni := Pi and
edge set Ei := E(Pi+1) is a forest.

Assumption & Notation 2.14. From now on, unless otherwise stated, by a vine P we
mean a finite graded poset satisfying the two conditions in 2.13. We will also retain the
notion i-th associated forest Fi = (Pi, E(Pi+1)) (1 ≤ i ≤ n) of P . If v is a node in a vine
P and E(v) = {a, b}, we will often abuse notation and write v = {a, b}. This notation is
compatible with the notation of node/edge in the graphical definition of a vine.
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The main reason why we choose the poset definition of a vine is because many terms
and properties of a (graphical) vine have natural meanings in the language of posets.
Under this consideration, the following poset definition of a regular vine is equivalent to
the well-known graphical definition of it in the literature, e.g. [4, Definition 4.1].

Definition 2.15 (R-vine). A vine P is a regular vine, or an R-vine for short, if P satisfies
the following conditions:

1. rk(P) = dim(P), i.e. n = ℓ.

2. Each associated forest Fi = (Pi, E(Pi+1)) is a tree (1 ≤ i ≤ n).

3. Proximity: For any distinct nodes a, b ∈ Pi for i ≥ 2, if a and b are covered by a
common node, then a and b cover a common node.

Next we introduce the notion of a locally regular vine.

Definition 2.16 (LR-vine). A vine P is a locally regular vine, or an LR-vine for short, if
every principal ideal of P is an R-vine.

Remark 2.17. Intuitively, an LR-vine is a vine that "locally" looks like an R-vine. In
particular, any R-vine is an LR-vine. Any ideal of a vine (resp. an LR-vine) is itself a
vine (resp. an LR-vine).

The following theorem indicates the equivalence between the ideals of an R-vine and
LR-vines.

Theorem 2.18. Let P be a vine. The following are equivalent:

1. P is an ideal of an R-vine.

2. P satisfies the proximity condition.

3. P is an LR-vine.

Definition 2.19 (Category of (L)R-vines). The category LRV of LR-vines is the category
whose objects are the LR-vines and whose morphisms are the homomorphisms preserv-
ing rank and join. The category RV of R-vines is a full subcategory of LRV whose objects
are the R-vines.

3 The main result

Having introduced the concepts, we are ready to state our main result.

Theorem 3.1. The categories MG and LRV are equivalent. In particular, the categories MCG and
RV are equivalent.
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To prove the equivalence between MG and LRV, we construct two functors Ψ : MG −→
LRV and Ω : LRV −→ MG. The former amounts to constructing an LR-vine from a given
MAT-labeled graph which is presented in Theorem 3.2 below. The proof is direct and
largely dependent upon the notion of MAT-perfect elimination ordering developed in an
earlier work of the last two authors [18]. The argument on the functor Ω is however
more complicated, and the details are omitted.

Theorem 3.2. Let (G, λ) be an MAT-labeled graph with NG = [ℓ]. Define a finite graded poset
P = (P ,≤P , rkP ) from (G, λ) as follows:

1. P consists of the sets {i} for 1 ≤ i ≤ ℓ and all the principal cliques in (G, λ) (Lemma 2.3).

2. For u, v ∈ P , u ≤P v if u is a subset of v.

3. rkP (v) = |v| for all v ∈ P .

Then the poset P is an LR-vine. In particular, if (G, λ) is an MAT-labeled complete graph, then
P is an R-vine.

We give two examples to illustrate the construction in Theorem 3.2.

Definition 3.3 (D-vine). An R-vine is called a D-Vine if each associated tree has the
smallest possible number of vertices of degree 1. Equivalently, each associated tree is a
path graph.

Remark 3.4. Let Φ be an irreducible root system in Rℓ with a fixed positive system Φ+ ⊆
Φ and the associated set of simple roots ∆ = {α1, . . . , αℓ}. Suppose that Φ is of type Aℓ

and the Dynkin diagram of Φ is the path graph α1 − α2 − · · · − αℓ. Then the positive
roots of Φ are given by

Φ+ =

{
∑

i≤k≤j
αk

∣∣∣∣∣ 1 ≤ i ≤ j ≤ m

}
.

It is not hard to show that the D-vine P with the first associated tree 1 − 2 − · · · − ℓ
is isomorphic to the root poset of type Aℓ.

Example 3.5. Figure 1 depicts a 4-dimensional D-vine (middle) that can be constructed
in three ways. First, it is the node poset of a graphical vine on [4] (left). Second, it is the
poset defined an MAT-labeled complete graph (right) via Theorem 3.2. Third, it is the
root poset of type A4 by Remark 3.4. The elements in the poset are written without set
symbol for simplicity. The conditioned set of a non-minimal node is given to the left of
the "|" sign, while the conditioning set appears on the right. For example, the top node
{1, 2, 3, 4} (or the largest clique generated by {v1, v4}) is written by 14|23.
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{{{3, 4}, {2, 3}}, {{1, 2}, {2, 3}}}

{{3, 4}, {2, 3}}{{1, 2}, {2, 3}}

{1, 2} {2, 3} {3, 4}

2 31 4

Graphical D-vine

14|23

24|313|2

342312

4321

D-vine

v1 v2

v4v3

1 2

1

3

1

2

MAT-labeled graph

Figure 1: An MAT-labeled complete graph on 4 vertices (right), the D-vine (middle)
(= type A root poset) defined by the graph via Theorem 3.2, and the corresponding
graphical vine (left).

Definition 3.6 (C-vine). An R-vine is called a C-Vine if each associated tree has the
largest possible number of vertices of degree 1. Equivalently, each associated tree is a
star graph.

D-vine and C-vine can be regarded as the "extreme" cases of R-vines.

Example 3.7. In dimension 4, there are exactly two non-isomorphic R-vine structures: D-
vine and C-vine. Likewise, there are exactly two non-isomorphic MAT-labeled complete
graphs on 4 vertices. Figure 2 depicts a graphical C-vine on [4] (left), the corresponding
node poset (middle), and the corresponding MAT-labeled complete graph (right) via
Theorem 3.2. The C-vine in dimension ≥ 4 is not an ideal of any D-vine hence the
corresponding MAT-partition is not obtained from an ideal of the type A root poset.

{{{1, 2}, {1, 3}}, {{1, 2}, {1, 4}}}

{{1, 2}, {1, 4}}{{1, 2}, {1, 3}}

{1, 2}{1, 3} {1, 4}

1

2

3 4

Graphical C-vine

34|12

24|123|1

141312

4321

C-vine

v1 v2

v4v3

2 2

3

1

1

1

MAT-labeled graph

Figure 2: C-vine on 4 elements and the corresponding graphical version, MAT-labeled
complete graph from Example 3.7.
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4 Applications

From the view point of category theory, the equivalence establishes a strong similarity
between the categories and allows many properties and structures to be translated from
one to the other. We obtain two main applications from LR-vines to MAT-labeled graphs.
First, LR-vine is an answer for Question 1.3 in the case of graphic arrangements. We find
it interesting that although the class of MAT-free arrangements is strictly larger than that
of ideal subarrangements in general, any MAT-free graphic arrangement is characterized
by being an ideal of a poset structure (Theorem 2.18). Second, an explicit formula for the
number of non-isomorphic MAT-labelings of complete graphs is obtained. This equals
the number of equivalence classes of regular vines whose explicit formula is known [12,
§10.3].

A vine is a graphical tool for representing the joint distribution of random variables.
The first construction of a vine was given by Joe [10], and the formal definition was
given and refined further by Cooke, Bedford and Kurowicka [5, 4, 11]. Vines have
been studied extensively and proved to have various applications in probability theory
and related areas. We refer the reader to [12] for a comprehensive handbook of vines.
Our main result gives a new appearance and applications of vines in the arrangement
theory. In the present note, we do not pursue the probabilistic or applied aspects of
vines (neither does the proof of the main result) but emphasize and develop more on
the theoretical aspects. In the full version of this extended abstract, we give several new
combinatorial properties of vines, hoping that they will be useful for the future research
on vines. For instance, we give an alternative way to associate an m-vine to a strongly
chordal graph compared with the work of Zhu-Kurowicka [19], and an extension of the
notion of sampling order [6] from R-vine to LR-vine.
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Abstract. Eulerian idempotents of types A and B generate representations with topolog-
ical interpretations, as the cohomology of configuration spaces of types A and B. We
provide an analogous cohomological interpretation for the representations generated
by idempotents in the peak algebra, called the peak representations. We describe the peak
representations as sums of Thrall’s higher Lie characters, give Hilbert series and branching
rule recursions for them, and discuss connections to Jordan algebras.

Keywords: Peak algebra, configuration spaces, Solomon’s descent algebra, higher lie
characters, hyperplane arrangements, Varchenko-Gelfand ring, Type A, Type B

1 Introduction

This abstract concerns the cohomology H∗X = H∗(X, k) with coefficients in a field k for
three different topological configuration spaces X = Xn, Yn, Zn having large symmetry
groups W. For each, the (ungraded) cohomology carries the regular representation of W,
that is, H∗X ∼= k W. Our goal is to study and exploit the following surprising fact: for k
of characteristic zero, the decomposition into HiX matches a combinatorial direct sum
decomposition for certain complete families {Ei} of orthogonal idempotents in k W:

H∗X =
⊕

i

HiX ∼=
⊕

i

(k W)Ei = k W. (1.1)

The first two spaces Xn, Yn are well-studied: Xn is the ordered configuration space of n
points in R3 while Yn is the Z2-orbit configuration spaces for the Z2-action via x 7→ − x:

Xn := Confn R3 = {x ∈ (R3)n : xi ̸= xj for 1 ≤ i < j ≤ n},
Yn := ConfZ2

n R3 = {x ∈ (R3)n : xi ̸= ±xj for 1 ≤ i < j ≤ n, and xi ̸= 0 for 1 ≤ i ≤ n}

Note that Xn has an action of the symmetric group W = Sn permuting the coordinates
of x, while Yn carries an action of the hyperoctahedral group W = S±n by permuting and
negating coordinates. Both spaces have cohomology concentrated only in even degrees
and total cohomology carrying the regular representation k W for W = Sn,S±n .

*sarahbrauner@gmail.com. Brauner is supported by the NSF MSPRF DMS 2303060.
†Reiner is partially supported by NSF grant DMS 2053288.

sarahbrauner@gmail.com


2 Marcelo Aguiar, Sarah Brauner, and Vic Reiner

The idempotent decompositions of kSn and kS±n will come from the type A and B
Eulerian idempotents {ESn

k }k=0,1,...,n−1 in kSn and {ES±n
k }k=0,1,...,n in kS±n , defined in work

of Reutenauer [13], Gerstenhaber–Schack [10], and F. Bergeron and N. Bergeron [4].
The Eulerian idempotents lie within the subalgebras of the group algebras k W known

as Solomon’s descent algebra Sol(W), meaning that when expressed as ∑w∈W cww, their
coefficients cw depend only upon the Coxeter group descent set of w. Work of Hanlon [11],
Sundaram-Welker [16] and Brauner [6] gives a correspondence between these objects:

H2kXn ∼= (kSn) ESn
n−1−k for k = 0, 1, . . . , n− 1, (1.2)

H2kYn ∼=
(
kS±n

)
ES±n

n−k for k = 0, 1, . . . , n. (1.3)

In this abstract, we use (1.2) and (1.3) as the starting point to give a third correspon-
dence of the form (1.1) for the space Zn := Yn/ Zn

2
∼= Confn(RP2×(0, ∞)), where Zn

2 is
the normal subgroup of S±n consisting of sign changes; thus Sn ∼= S±n / Zn

2 acts on Zn.
The idempotents {EPn

k } in this new correspondence lie inside the peak algebra Pn,
which is the further subalgebra of Sol(Sn) inside kSn whose elements ∑w∈W cww have
coefficients cw depending only upon the peak set of w = (w0 := 0, w1, . . . , wn)

Peak(w) := {i : 1 ≤ i ≤ n− 1 and wi−1 < wi > wi+1}.
Our main contribution is to relate the peak representations (kSn) EPn

n−k to the cohomology
ring H∗Zn, and to explicitly describe these families of representations in terms of Thrall’s
famed higher Lie characters Lieλ for λ an integer partition of n.

Theorem 1.1. Let k be a field of characteristic zero.

(i) The peak idempotent EPn
k in kSn vanishes unless k ≡ n mod 2.

(ii) The cohomology HiZn = Hi(Zn, k) vanishes unless i ≡ 0 mod 4.

(iii) As a Sn-representation, the total cohomology carries the regular representation:

H∗Zn ∼= kSn.

(iv) For 0 ≤ k ≤ n with k even, one has Sn-representation isomorphisms

(kSn) EPn
n−k
∼= H2kZn ∼=

⊕
λ⊢n:

odd(λ)=n−k

Lieλ,

where odd(λ) is the number of odd parts of λ.

In fact, we refine Theorem 1.1 (see Theorems 4.4 and 4.6) by introducing several
(compatible) decompositions of H∗Zn and a family of primitive idempotents in Pn.

Although Pn is a well-known subalgebra of Sol(Sn), it is in general difficult to directly
relate the two algebras. Our work offers a step in this direction. The novelty of our
approach is to avoid computations in the algebras themselves, and instead develop and
utilize concrete combinatorial descriptions of the rings H∗Xn, H∗Yn, and H∗Zn.
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The remainder of the abstract proceeds as follows. Section 2 gives necessary back-
ground on the Type A and B stories. We then develop properties of H∗Yn in Section
3, which will be instrumental in proving our main results on the peak representations
in Section 4. In Section 5 we provide generating function formulae and branching rule
recursions for the peak representations, and relate this story to the free Jordan algebra.

2 Background

We review here in more detail the spaces Xn, Yn, their cohomology rings, and their
relationship to the Eulerian idempotents and Lie characters Lieλ discussed in Section 1.

2.1 The (associated graded) Varchenko-Gelfand ring

The cohomology rings Xn := H∗Xn and Yn := H∗Yn are closely related to the reflection
hyperplane arrangements AW ⊂ V = Rn associated to the groups W = Sn,S±n :

ASn = {xi = xj}1≤i<j≤n AS±n
= {xi = 0}1≤i≤n ⊔ {xi = ±xj}1≤i<j≤n.

In particular, Moseley [12] proved there are algebra isomorphisms

Xn ∼= VG(ASn) Yn ∼= VG(AS±n
),

where VG(A) is the (associated graded) Varchenko-Gelfand ring, defined for any real hyper-
plane arrangement A ⊂ Rn as the quotient of k[ui]Hi∈A by an ideal1

JA = ⟨u2
i ,

c

∑
j=1

ϵ(C, ij) · ui1ui2 · · · ûij · · · uic−1uic for all C ⊂ A⟩.

Here C = (C+, C−) is an oriented matroid signed circuit of A, with ϵ(C, ij) = ±1, depend-
ing on whether ij lies in C+ or C−.

Example 2.1. When A = ASn , work of Arnol’d [2] and Cohen [8] shows that Xn has
presentation given by

Xn ∼= VG(ASn) = k[uij]1≤i<j≤n/⟨u2
ij, uijuik − uijujk + uikujk⟩.

Barcelo [3] constructed an elegant non-broken circuit monomial basis for Xn, obtained by
taking products with at most one element from each set Ui below:

U1 = {u12}, U2 = {u13, u23}, · · · , Un−1 = {u1n, u2n, · · · , u(n−1),n}.
1In fact, one can take coefficients in Z rather than k. However, in what follows, we will want k to be a

field with characteristic not dividing 2.
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In [6], the second author showed that VG(A) admits a decomposition by intersection
subspaces (i.e. flats) in A. The component of VG(A)X indexed by X is the Z-span of all
monomials {ui1 · · · uiℓ} for which Hi1 ∩ · · · ∩ Hiℓ = X.

In the case of a reflection arrangement AW , we can group flats by their W-orbits [X],
which gives a coarser decomposition of VG(AW) =

⊕ VG(AW)[X]. The flats and flat
orbits in ASn and AS±n

have elegant (and useful!) combinatorial descriptions.
Famously, the flats of ASn biject with set partitions of [n]. This isomorphism identifies

a flat X with the set partition πX = {B1, · · · , Bk} where i and j are in the same block Bℓ if
and only if xi = xj in X. The Sn-orbits of these flats biject with integer partitions of n:
the orbit of πX corresponds to the partition λX = {|B1|, · · · , |Bk|}.

Similarly, the flats in AS±n
can be identified with a set partition on a subset S of

[n]± := {1, 2, · · · , n, 1, 2, · · · n}, where S does not contain both i and i. Given a flat X,
identify i with −xi and let τX = {C1, · · ·Ck} where for i, j ∈ [n], indices i and j (resp.
i and j) appear in the same block Cℓ if and only if xi = xj ̸= 0 (resp. if and only if
xi = −xj ̸= 0) in X. Note that two set partitions related by i 7→ ī correspond to the same
flat. The S±n orbit of τX is indexed by a partition µX = {|Ci|, · · · , |Ck|} of 0 ≤ m ≤ n.

We write X (n)
λX

:= VG(ASn)[πX ] and Y (n)
µX := VG(AS±n

)[τX ], giving the decompositions

Xn =
⊕
λ⊢n

X (n)
λ Yn =

⊕
µ⊢0≤m≤n

Y (n)
µ .

2.2 The Eulerian idempotents and higher Lie characters

The idempotents {ESn
k } and {ES±n

k } from Section 1 can be defined via the formula in [6]:

r

∑
k=0

tkEW
k =

1
|W| ∑

w∈W

(
des(w)

∏
i=1

(t− ei)
r−des(w)

∏
i=1

(t + ei)

)
· w,

which recovers work of Garsia–Reutenauer [9] for W = Sn and Bergeron–Bergeron [4]
for W = S±n . Here, r is the rank of AW (r = n− 1 for W = Sn and r = n for W = S±n )
and the ei are the exponents of W (ei = i for W = Sn and ei = 2i− 1 for W = S±n ). The
descent number, des(w) is the number of simple reflections s of W with ℓ(ws) < ℓ(w).

The EW
k have a refinement due to Bergeron–Bergeron–Howlett–Taylor [5], who intro-

duced families of complete, primitive orthogonal idempotents in Sol(W) for any finite
Coxeter group W. These idempotents, which we will call the BBHT idempotents, are in-
dexed by W-flat orbits. We omit the technical definitions, but note that by the discussion
in §2.1, for W = Sn,S±n they can be indexed as {ESn

λ : λ ⊢ n} and {ES±n
µ : µ ⊢ m, m ≤ n}.

To recover the {ESn
k } and {ES±n

k }, group {ESn
λ } and {ES±n

µ } by partition length ℓ:

ESn
k = ∑

λ: ℓ(λ)=k
ESn

λ ES±n
k = ∑

µ: ℓ(µ)=k
ES±n

µ . (2.1)
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We can also refine the isomorphisms in (1.2) and (1.3) using the BBHT idempotents:

Theorem 2.2 (Brauner, [6]). There are Sn and S±n representation isomorphisms

X (n)
λ
∼= (kSn) ESn

λ Y (n)
µ
∼=
(
kS±n

)
ES±n

µ .

In fact, there is more to say in the case of W = Sn, relating to the higher Lie representa-
tions {Lieλ} of Thrall [17]. Let Cλ be the conjugacy class of Sn indexed by the partition
λ = (1m1 , 2m2 , · · · nmn). The centralizer Zλ of an element of Cλ has isomorphism type

Zλ
∼=

n

∏
j=1

Smj [Zj],

where Zj is the cyclic group of order j, and Smj [Zj] is the wreath product. Specifically,
the action of Smj in this wreath product swaps the mj blocks of λ of size j.

We will be interested in a linear character ωλ on Zλ obtained from extending faithful
characters on each Zj to Zλ, where ωλ restricts trivially on the wreath factors Smj of Zλ.

Write ↑G
H to be the representation induction from a subgroup H of G to G.

Definition 2.3. Give a partition λ ⊢ n, define Lieλ := ωλ ↑Sn
Zλ

.

Thrall proved that kSn ∼=
⊕

λ⊢n Lieλ. A beautiful result of Hanlon [11] then shows
that Lieλ

∼= (kSn)ESn
λ . Using (2.1), we can thus conclude

(kSn) ESn
n−1−k

∼=
⊕
λ⊢n:

ℓ(λ)=n−k

Lieλ
∼= H2kXn.

Example 2.4. When λ = (n), the representation Lien := Lie(n) is isomorphic to the
multilinear component of the free Lie algebra, defined and generalized in §5.1.

3 Presentations, Filtrations, and Decompositions of H∗Yn

Our first task is to study the ring Yn := H∗Yn in greater detail. It will be important
for the remainder of this section to assume that the field k has characteristic larger
than n, so that 2 ∈ k× and k[S±n ] is semisimple. This allows us to make an invertible
change-of-variables that diagonalizes the action of the normal subgroup Zn

2 within S±n .
The presentation of Yn ∼= VG(AS±n

) was first given by Xicotencatl [18]; it is isomorphic
to k[u+

ij , u−ij , ui]/JS±n for 1 ≤ i < j ≤ n, with generators corresponding to

u+
ij ←→ {xi = xj} u−ij ←→ {xi = −xj} ui ←→ {xi = 0}

respectively. The generating relations for JS±n are given in Table 1.
We will introduce a new basis for Yn, a filtration using that basis, and a corresponding

associated graded ring. Along the way, we will see several useful decompositions of Yn.
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Definition 3.1. For 1 ≤ i < j ≤ n, define an isomorphism of graded k-algebras B by

ui 7−→ ui vij 7−→ u+
ij + u−ij wij 7−→ u+

ij − u−ij

with inverse given by B−1(ui) = ui,B−1(u+
ij ) =

1
2(vij + wij),B−1(u−ij ) =

1
2(vij − wij).

We wish to rewrite the presentation Yn := k[u+
ij , u−ij , ui]/JS±n in terms of these new

variables vij, wij, using a Gröbner basis argument. Introduce a lexicographic monomial
ordering ≺ on k[vij, wij, ui], in which the variables ui, vij, wij are ordered as follows:

u1 < u2 < · · · un < v12 < w12 < v13 < w13 < · · · < v(n−1)1 < w(n−1)n. (3.1)

Theorem 3.2. The isomorphism B : k[vij, wij, ui] −→ k[u+
ij , u−ij , ui] induces a graded k-algebra

isomorphism, where I is generated by the relations G listed in Table 1 below:

k[vij, wij, ui]/ I
∼−→ k[u+

ij , u−ij , ui]/JS±n =: Yn,

Moreover, G gives a Gröbner basis for the ideal I with respect to ≺, in which the standard
monomial k-basis for the quotient k[vij, wij, ui]/ I is the set of monomials V obtained from taking
products with at most one element from each of these sets Vi:

V1 = {u1}, V2 = {u2, v12, w12}, · · · , Vn = {un, v1n, w1n, · · · , v(n−1)n, w(n−1)n}.

We make two observations about the S±n action on Yn. First, elements of Zn
2 ⊂ S±n

scale all of ui, vij, wij via ±1; thus Theorem 3.2 will allow us to construct a monomial basis
for H∗Zn ∼= (Yn)Zn

2 in §4. Second, the generators segregate into two S±n -orbits: {ui}1≤i≤n
and {vij, wij}1≤i<j≤n. This leads to a helpful filtration, as follows.

For q ∈ k[vij, wij, ui], let deg(q) be the polynomial degree of q, degV (q) to be the
degree of q in the vij and wij variables, and degu(q) be the degree in the ui variables. Our
key insight is that Yn admits a filtration by degu. In particular, define the ideal

P(i) :={q ∈ Yn ⊂ k[ui, vij, wij] : degu(q) ≥ i}.

For example, when n = 2 the ideal P(1) is the k-span of {u1, u2, u1v12, u1w12, u1u2}.

Proposition 3.3. There are S±n -stable ascending filtrations on Yn given by

P(n) ⊂ P(n−1) ⊂ · · · ⊂ P(1) ⊂ P(0).

The associated graded ring Yn =
⊕n

i=0 P(i)/P(i+1) has presentation k[vij, wij, ui]/gr(I) for
1 ≤ i < j ≤ n, where the relations generating gr(I) are given in Table 1.

The motivation for introducing and studying the associated graded ring Yn is that
in our context (i.e. kS±n being a semisimple algebra), we have Yn ∼= Yn as S±n -modules.
Hence, it suffices to study the basis and representations on Yn.

We will see that Yn has several useful decompositions that make studying the repre-
sentations on Yn (and eventually H∗Zn) far more tractable.
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Relations for JS±n Relations for I Relations for gr(I)

u2
i u2

i u2
i

uiu+
ij − uiu−ij − u+

ij u−ij vijwij vijwij

uiuj − uiu−ij − uju−ij uiwij − ujvij uiwij − ujvij

(u+
ij )

2 v2
ij − 2uiwij v2

ij

(u−ij )
2 w2

ij + 2uiwij w2
ij

uiuj − uiu−ij − uju−ij uivij − 2uiuj − ujwij uivij − ujwij

u+
ij u+

jk − u+
ij u+

ik − u+
ik u+

jk vijwjk − wijwik − vikvjk vijwjk − wijwik − vikvjk

u−ij u+
jk − u−ij u−ik − u−ik u+

jk wijwjk − vijwik − wikwjk wijwjk − vijwik − wikwjk

−u−ij u−jk + u−ij u+
ik − u+

ik u−jk vijvjk − vijvik − vikwjk vijvjk − vijvik − vikwjk

−u+
ij u−jk + u+

ij u−ik − u−ik u−jk wijvjk − wijvik − wikvjk wijvjk − wijvik − wikvjk

Table 1: Generating relations for the ideals JSn , I and gr(I).

First, one can show that the flat orbit decomposition from §2.1 persists in Yn; we will

abuse notation and write Y (n)
µ instead of Yµ

(n)
since they are isomorphic.

The second useful decomposition is the following bi-grading:

Y (n)
k,ℓ := spank{q ∈ Yn : deg(q) = k degV (q) = ℓ}.

In fact, this bi-grading can be refined to a third decomposition by signed partitions, which
are pairs of partitions (λ+, λ−) such that |λ+|+ |λ−| = n.

Definition 3.4. Given a monomial in q ∈ Q[ui, vij, wij], associate to q a signed partition
(λ+

(q), λ−
(q)) as follows:

1. Construct a graph G(q) with vertex set [n] = {1, 2, · · · , n} by drawing an edge
between i and j if vij or wij occurs in q, and drawing a loop at i if ui occurs in q;

2. Let G1 = (E1, V1), · · · ,Gk = (Ek, Vk) be the connected components of G(q). Then

λ+
(q) := {|Vℓ| : Gℓ has no loops} λ−

(q) := {|Vℓ| : Gℓ has loops}.

Proposition 3.5. There is a decomposition of Yn by signed partitions Yn =
⊕

(λ+,λ−) Y
(n)
(λ+,λ−),

where
Y (n)
(λ+,λ−) := spank{monomials q ∈ Yn : (λ+

(q), λ−
(q)) = (λ+, λ−)}.
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This decomposition is compatible with the other decompositions of Yn, in the sense that:

Y (n)
µ =

⊕
(λ+,λ−): λ+=µ

Y (n)
(λ+,λ−) Y (n)

k,ℓ =
⊕

(λ+,λ−): ℓ(λ+)=n−k
ℓ(λ+)+ℓ(λ−)=n−ℓ

Y (n)
(λ+,λ−)

For example, suppose n = 8 and q = w12 · u5 · v56 · u7 · v24. Then q is in the bi-graded
piece Y (8)

5,3 and we have λ+
(q) = {3, 1, 1} and λ−

(q) = {2, 1}. Thus q ∈ Y (8)
((3,1,1),(2,1)) ⊂ Y

(8)
(3,1,1).

Theorem 3.6. There is a well-defined, Sn-equivariant surjection of k-vector spaces

γ : Yn −→ Xn = k[uij]1≤i<j≤n/⟨u2
ij, uijuik − uijujk + uikujk⟩

Y (n)
(λ+,λ−) 7−→ X

(n)
(λ+∪λ−),

defined by sending γ(ui) = 1, γ(wij) = uij γ(vij) = uij.

Proof idea. The key observation is that the relations uiwij − ujvij and uivij − ujwij in gr(I)
mean that one can give a presentation of Yn as a quotient of a subring of k[vij, wij, ui], by
an ideal Ĩ ⊂ gr(I) that omits the relation u2

i . From this, one can define a surjection of
vector spaces; note however that γ cannot be extended to a map of algebras.

4 Main Results

At last, we are ready to analyze the peak representations. Our investigations began from
an observation of Aguiar, Bergeron and Nyman [1] relating the descent algebras Sol(Sn)
and Sol(S±n ) to the peak algebra Pn.

Recall that one can express the hyperoctahedral group of all signed permutations as
S±n = Sn ⋉ Zn

2 where Zn
2 is the normal subgroup performing arbitrary sign changes in

the coordinates. The quotient map S±n ↠ S±n / Zn
2
∼= Sn of groups, which forgets the

signs in a signed permutation, gives rise to a surjective k-algebra map φ : kS±n ↠ kSn.
In [1], it was shown that the peak subalgebra Pn is exactly the image under φ of Sol(S±n ),

that is, φ restricts to an algebra surjection Sol(S±n )
φ
↠ Pn.

As a consequence, one can define a family of peak idempotents inside Pn ⊂ kSn via

EPn
k := φ(ES±n

k ) for k = 0, 1, · · · , n EPn
µ := φ(ES±n

µ ) for µ ⊢ m ≤ n.

Both families inherit from {ES±n
k } and {ES±n

µ } the property of being a complete system of
orthogonal idempotents in kSn, and the {EPn

µ } are also primitive if nonzero. Note that
some of the EPn

k and EPn
µ will be zero, which we characterize in Theorems 1.1 and 4.6.

By construction, one recovers EPn
k from the EPn

µ by summing over all µ of length k.
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Our goal is to relate the peak idempotents to the ring Zn := H∗Zn, where

Zn := Yn/ Zn
2 = Confn(

(
R3 \{0}

)
/ Z2) = Confn(RP2×(0, ∞))

is the configuration space of n ordered points within the quotient R3 \{0} under the
Z2-action via x 7→ − x, so that

(
R3 \{0}

)
/ Z2

∼= RP2×(0, ∞).
Note that (Yn)Zn

2 ∼= Zn. The filtration, bigrading, and finer decompositions (by flat
orbits and signed partitions) on Yn from Section 3 persist when one takes Zn

2 -fixed spaces,
giving a bigraded Sn-representation on an associated graded ring Zn:

Z (n)
k,ℓ := (Y (n)

k,ℓ )
Zn

2 , Z (n)
µ := (Y (n)

µ )Zn
2 , Z (n)

(λ+,λ−) := (Y (n)
(λ+,λ−))

Zn
2 .

We first construct monomial a basis for Zn, using the fact that by Theorem 3.2, the
basis V of Yn diagonalizes the action of the normal subgroup Zn

2 ≤ S±n on Yn.

Definition 4.1. For 1 ≤ i < j < k ≤ n, let I1 := {uiwij}, I2 := {wijwik}, I3 := {vijwjk}.
Let Ṽ be the monomials obtained from products in I j for j = 1, 2, 3 that are also in V .

Theorem 4.2. The set Ṽ is a basis for Zn and Zn that is compatible with the decomposition by
signed partitions: Zn =

⊕Z (n)
(λ+,λ−).

Proof idea. We construct a bijection from Ṽ to the monomial basis of Xn from Example 2.1.
This involves defining a “pairing lemma” to group quadratic terms appearing in q ∈ Ṽ
and then mapping: uiwij to uij, wijwik to uijuik, and vijwjk to uijujk.

Example 4.3. The basis for Z (4)
4,2 is {(u1w12)(u3w34), (u1w13)(u2w24), (u1w14)(u2w23)}.

Given a partition λ of n, recall that ℓ(λ) is its number of parts and |λ| is its size. Let
Odd(λ) (resp. Even(λ)) be the partition obtained by taking only the odd (resp. even)
parts of λ. We call λ an odd partition if Odd(λ) = λ and an even partition if Even(λ) = λ.
Write odd(λ) = ℓ(Odd(λ)) and even(λ) = ℓ(Even(λ)).

Theorem 4.4. The space Z (n)
(λ+,λ−) vanishes unless λ+ is an odd partition and λ− is an even

partition, while Z (n)
µ vanishes unless µ is an odd partition and n− |µ| is even.

Moreover, the map γ restricts to an Sn-equivariant vector-space isomorphism γ : Zn −→ Xn:

γ(Z (n)
(λ+,λ−)) = X

(n)
(λ+∪λ−) γ−1(X (n)

λ ) = Z (n)
(Odd(λ),Even(λ)).

Thus, for non-vanishing Z (n)
(λ+,λ−), Z

(n)
µ , and Z (n)

2k,ℓ, there are Sn-representation isomorphisms

Z (n)
(λ+,λ−)

∼= Lie(λ+∪λ−), Z (n)
µ
∼=

⊕
λ: Odd(λ)=µ

Lieλ, Z (n)
2k,ℓ
∼=

⊕
λ:ℓ(λ)=n−ℓ

odd(λ)=n−2k

Lieλ .

Example 4.5. When n = 4, the non-vanishing pieces Z (4)
µ are as follows:

Z (4)
∅
∼= Lie(2,2)⊕Lie(4) Z (4)

(1,1)
∼= Lie(2,1,1) Z (4)

(3,1)
∼= Lie(3,1) Z (4)

(1,1,1,1)
∼= Lie(1,1,1,1) .
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The non-vanishing bi-graded pieces Z (4)
2k,ℓ are

Z (4)
0,0
∼= Lie(1,1,1,1) Z (4)

2,1
∼= Lie(2,1,1) Z (4)

2,2
∼= Lie(3,1) Z (4)

4,2
∼= Lie(2,2) Z (4)

4,3
∼= Lie(4) .

In fact, we now have all the tools necessary to provide a cohomological interpretation
of the Sn-representations generated by the Peak idempotents, by analyzing the Zn

2 fixed
spaces of Theorem 2.2 and applying Theorem 4.4.

Theorem 4.6. The idempotent EPn
µ does not vanish if and only if µ is an odd partition (including

µ = ∅) and n− |µ| is even. In this case, there are Sn-representation isomorphisms

(kSn)EPn
µ
∼= Z (n)

µ
∼=

⊕
λ: Odd(λ)=µ

Lieλ .

Note that combining Proposition 3.5 with Theorems 4.4 and 4.6 implies Theorem 1.1.

5 Hilbert series and the free Jordan algebra

Having established the connection between the peak algebra and the ring Zn, we now
develop enumerative and recursive properties of the latter.

Let Λ denote the ring of symmetric functions (of bounded degree, in infinitely many
variables). It has a Z-algebra isomorphism known as the Frobenius characteristic map
ch : ⊕n≥0Rep(Sn) → Λ, where Rep(Sn) are the virtual characters of Sn. We will study
the Frobenius characteristic of Z (n)

2k,ℓ, using the fact that Z (n)
2k+1,ℓ = 0 by Theorem 1.1.

Definition 5.1. Write ΛZ[t,q] to be the ring Λ with coefficients in Z[t, q] and define

Mn(t, q) := ∑
k,ℓ

dim
(
Z (n)

2k,ℓ

)
tkqℓ ∈ Z[t, q], M(n)(t, q) := ∑

k,ℓ
ch
(
Z (n)

2k,ℓ

)
tkqℓ ∈ ΛZ[t,q].

For w ∈ Sn let even(w), odd(w) denote the number of even-sized and odd-sized cycles
of w, and cyc(w) the number of cycles of w.

Theorem 5.2. Write Lλ := ch(Lieλ). Then one can rewrite Mn(t, q) andM(n)(t, q) as follows:

Mn(t, q) = ∑
w∈Sn

t
n−odd(w)

2 qn−cyc(w), M(n)(t, q) = ∑
λ⊢n

Lλ · t
|λ|−odd(λ)

2 q|λ|−ℓ(λ).

Using Theorem 5.2, we manipulate the symmetric functions in M(n)(t, q) to give a
branching rule recurrence for the bi-graded pieces Z (n)

2k,ℓ. Let ↑ denote representation
induction from Sn to Sn+1 and ↓ denote representation restriction from Sn to Sn−1.



Configuration spaces and peak representations 11

Theorem 5.3. The restriction of Z (n)
2k,j from an Sn to an Sn−1-module is given by

Z (n)
2k,ℓ ↓ = Z

(n−1)
2k,ℓ +Z (n−2)

2(k−1),ℓ−1 ↑+
(
Z (n−2)

2(k−1),ℓ−2 ↑
)
∗ χ(n−2,1),

where ∗ is the Kronecker product and χ(n−2,1) is the irreducible reflection representation of Sn−1.

Theorem 5.3 implies a recursive formula for Mn(t, q) with interesting specializations:

Mn(1, q) = (1 + q)(1 + 2q) · · · (1 + (n− 1)q), (5.1)
Mn(t, 1) = (1 + (n− 1)q) ·Mn−1(1, q), (5.2)

where (5.1) is the generating function for the Stirling numbers of the first kind, and (5.2)
describes the Sheffer polynomials [15] counting permutations w according to odd(w).

5.1 The space of simple Jordan elements

Finally, we mention an interesting connection between Zn and the multilinear part of the
space of simple Jordan elements within the free associative algebra k⟨x⟩ = k⟨x1, . . . , xn⟩.

Consider a deformation of the Lie bracket on k⟨x⟩ by α ∈ C: [x, y]α := xy− αyx. Let
Jα be the smallest k-subspace of k⟨x⟩ containing the generators x and closed under [·, ·]α.

For example, J1 ⊂ k⟨x⟩ is the free Lie algebra. Define Vn(α) ⊂ Jα to be the k-subspace
spanned by these multilinear bracketings of homogeneous degree n for w ∈ Sn:

[[· · · [xw(1), xw(2)]α, xw(3)]α, · · · ]α, xw(n)]α

Then Vn(1) ∼= Lien is the multilinear component of the free Lie algebra, while Vn(−1) is
the multilinear part of the space of simple Jordan elements. The following was proved by
Robbins in [14, §6, Thm. 7] and later in [7, Thm 2.1] by Calderbank–Hanlon–Sundaram:

Vn(−1) ∼=
⊕
λ⊢n

odd(λ)=ℓ(λ)

Lieλ . (5.3)

We combine Theorem 4.4 and (5.3), to give a cohomological interpretation for Vn(−1).

Corollary 5.4. The space Vn(−1) is isomorphic as an Sn-representation to
⊕

k Z
(n)
2k,2k.
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Abstract. We obtain scaling and local limit results for large random multirectangular
Young tableaux via the asymptotic analysis of a determinantal point process due to
Gorin and Rahman (2019). In particular, we find an explicit description of the limiting
surface, based on solving a complex-valued polynomial equation. As a consequence,
we find a simple criterion to determine if the limiting surface is continuous in the
whole domain, implying that, for multirectangular tableaux, the limiting surface is
generically discontinuous.

1 Introduction

Random Young diagrams form a classical theme in probability theory, starting with
the work of Logan–Shepp and Vershik–Kerov on the Plancherel measure [12, 19]. The
topic is deeply connected with random permutations, random matrix theory and particle
systems, and has known an increase of interest after the discovery of an underlying
determinantal point process for a Poissonized version of the Plancherel measure [4]. It
would be vain to do a complete review of the related literature, and we refer only to [8,
17] for books on the topic.

In comparison, random Young tableaux have a shorter history. Motivations to study
random Young tableaux range from asymptotic representation theory to connections
with other models of combinatorial probability, such as random permutations with short
monotone subsequences [16] or most notably random sorting networks; see e.g. [1].

As in most of the literature, we are interested in the simple model where we fix a
partition λ (or rather a sequence of growing partitions) and consider a uniform random
tableau T of shape λ. In [14], Pittel and Romik derived a limiting surface result for uni-
form random Young tableaux of rectangular shapes, based on the hook length formula

*valentin.feray@univ-lorraine.fr. This is an extended abstract of [3], submitted elsewhere.

mailto:valentin.feray@univ-lorraine.fr
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and analytic arguments. An earlier result of Biane in asymptotic representation theory
[2] implies, in fact, the existence of such limiting surfaces for any underlying shape.
However, getting explicit formulas for these limiting surfaces is difficult since their de-
scription involves the Markov–Krein correspondence and the free compression of prob-
ability measures. More recently, entropy optimization methods have been applied to
prove the existence of limiting surfaces, extending the result to skew shapes [18]. These
techniques lead to some natural gradient variational problems in R2 whose solutions are
explicitly parameterized by κ-harmonic functions, as shown in [10].

Recently, in [5], a determinantal point process structure was discovered for a Pois-
sonized version of random Young tableaux. This determinantal structure was used for a
specific problem motivated by the aforementioned sorting networks, namely describing
the local limit of uniform tableaux of staircase shape around their outer diagonal [5, 6].

The goal of the current paper is to exploit this determinantal point process structure
in order to get limiting results for a large family of shapes. Namely, we consider shapes
obtained as dilatations of any given Young diagram λ0, i.e. multirectangular diagrams.
Here is an informal description of our results.

• We obtain a new description of the limiting surface corresponding to the shape λ0,
based on solving a complex-valued polynomial equation (Theorem 4). This new
description is more explicit compared to the one obtained through the existence
approaches.

• This first result leads us to a surprising discontinuity phenomenon for the limiting
surface corresponding to λ0. More precisely, we establish a simple criterion –
some equations involving the so-called interlacing coordinates of λ0 – to determine
whether the limiting surface is continuous (Theorem 6). This shows that such
limiting surfaces are typically discontinuous for multirectangular tableaux.

• We also obtain a local limit result in the bulk of random Young tableaux. Due to
space constraints, we do not present this result in this extended abstract and refer
the interested reader to the long version of the article [3].

Remark 1. In parallel to this work, explicit formulas for the limiting surfaces of random Young
tableaux have also been obtained by Prause [15] through a different method (solving a variational
problem obtained by the tangent plane method of Kenyon and Prause [10]).

2 Results

2.1 Young tableaux and height function

Let us start by fixing terminology and notation. A partition of n is a non-increasing list
λ = (λ1, λ2, . . . , λl) of positive integers with N = ∑l

i=1 λi. We write |λ| = N for the size
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Figure 1: Left: The Young diagram of the partition (4, 4, 2, 1) drawn in Russian conven-
tion, with the coordinates of each box inside it. Right: A Young tableau T : λ → [N]

of shape λ corresponding to the partition (6, 6, 6, 4, 4, 4, 3, 3) drawn according to the
Russian convention; all the boxes are squares with area 2. We indicate the interlacing
coordinates a0 < b1 < a1 < b2 < · · · < bm < am below the x-axis.

of the partition and ℓ(λ) = l for the length of the partition and use the convention λi = 0
when i > ℓ(λ). We represent partitions graphically with the Russian convention, i.e. for
each i ≤ ℓ(λ) and j ≤ λi we have a square box whose sides are parallel to the lines x = y
and x = −y and whose center has coordinates (j − i, i + j − 1); see the left-hand side of
Figure 1. This graphical representation is called Young diagram of shape λ.

When looking at a Young diagram λ, its upper boundary is the graph of a 1-Lipschitz
function, denoted by ωλ : R → R, and the diagram λ can be encoded using the local
minima and maxima of the function ωλ. Following Kerov [11], we denote them by

a0 < b1 < a1 < b2 < · · · < bm < am, ai, bi ∈ Z, (2.1)

and we call them interlacing coordinates. See the right-hand side of Figure 1 for an ex-
ample. Note that a0 = −ℓ(λ) and am = λ1. Furthermore, interlacing coordinates satisfy
∑m

i=0 ai = ∑m
i=1 bi, see, e.g., [9, Proposition 2.4].

A Young tableau of shape λ is a filling of the boxes of λ with the numbers 1, 2, . . . , N
such that the numbers along every row or column are increasing. We see Young tableaux
as functions T : λ → [N] = {1, 2, . . . , N}, where the Young diagram λ is identified with
the set {(j − i, i + j − 1), i ≤ ℓ(λ), j ≤ λi}; see again the right-hand side of Figure 1 for an
example. The function T : λ → [N] can be thought of as the graph of a (non-continuous)
surface above the set λ.

We also represent a tableau T of size N by its height function HT (normalized in the
second argument). It is a map from ([a0, am] ∩ Z)× [0, 1] to Z≥0 defined by

HT(x, t) = # {y : T(x, y) ≤ Nt} , (2.2)

i.e. HT(x, t) is the number of entries smaller than Nt in the vertical line {x} × Z≥0.
Clearly, the tableau T is entirely determined by the height function HT. Moreover, we
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have that
T(x, y) < Nt if and only if H(x, t) > 1

2(y − |x|). (2.3)

2.2 Previous results: existence of a limiting height function

We now look at growing Young diagrams, and the associated random tableaux. We fix
a Young diagram λ0, and take our growing sequence of diagrams as dilatations of λ0.
Namely, for n > 0, we define N = N(n, λ0) = n2|λ0| and consider the (n × n)-dilated
diagram λN obtained by replacing each box of λ0 by a square of n × n boxes. Note that
λN has size N. We set η = 1/

√
|λ0|, so that scaling λ0 in both directions by a factor

η gives a diagram of area 2. Finally, we let TN be a uniform random Young tableau of
shape λN.

The following convergence result for the height function of TN is proved in [18, Theo-
rem 7.15]. It also follows indirectly from earlier concentration results on random Young
diagrams by Biane [2]; see [13, Proposition 10.1].

Theorem 2 ([18, Theorem 7.15] and [13, Proposition 10.1]). Let λ0 be a fixed Young diagram
and a0, . . . , am be its interlacing coordinates as defined in (2.1). We let TN be a uniform random
Young tableau of shape λN. Then there exists a deterministic function H∞ : [η a0, η am] ×
[0, 1] → R such that the following convergence in probability holds:

1√
N

HTN

(
⌊x
√

N⌋, t
)
−−−−→
N→+∞

H∞(x, t), (2.4)

uniformly for all (x, t) in [η a0, η am]× [0, 1].

In [18], the limiting function H∞ is implicitly found to be the unique maximizer of a
certain entropy functional subject to some boundary conditions depending on the dia-
gram λ0. Using the approach of [2, 13], for each t ∈ [0, 1], the section H∞(·, t) is described
using the free cumulants of an associated probability measure. Both descriptions are dif-
ficult to manipulate. Our first result gives an alternative and more explicit description
of H∞ through the solution of a polynomial equation, called the critical equation.

2.3 First result: a compact description of the limiting height function

Let a0 < b1 < a1 < b2 < · · · < am be the interlacing coordinates of λ0, introduced in
(2.1). For (x, t) in [η a0, η am] × [0, 1], we consider the following polynomial equation,
referred to throughout the paper as the critical equation:

U
m

∏
i=1

(x − η bi + U) = (1 − t)
m

∏
i=0

(x − η ai + U). (2.5)
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This is a polynomial equation in the complex variable U of degree m + 1. Using the fact
that the ai’s and bi’s are alternating, one can easily prove that (2.5) has at least m − 1 real
solutions; see [3, Lemma 24] for details. Hence it has either 0 or 2 non-real solutions.

Definition 3. We let L be the set of pairs (x, t) in [η a0, η am] × [0, 1] such that (2.5) has
two non-real solutions and we call it liquid region. The complement of the liquid region in
[η a0, η am]× [0, 1] will be referred to as the frozen region.

For (x, t) ∈ L, we denote by Uc = Uc(x, t) the unique solution with a positive imag-
inary part of the critical equation (2.5). We use the notation Rz and Iz for the real and
imaginary parts of the complex number z. It turns out that the limiting height function
H∞ is expressed in terms of Uc using the following simple formula.

Theorem 4. With the above notation, for (x, t) ∈ [η a0, η am]× [0, 1], we have

H∞(x, t) =
1
π

∫ t

0

IUc(x, s)
1 − s

1[(x, s) ∈ L] ds .

Informally, the liquid region is the limit of the region where the height function HTN is
strictly increasing in the t-direction, and the t-derivative of HTN in this region is roughly
given by

√
N IUc(x, s)/(π(1 − s)).

2.4 Limiting surfaces and discontinuities

It is natural to try to translate the limiting result for the height function to a limit result
for the tableau itself, seen as a discrete surface. Namely, we set

Dλ0 :=
{
(x, y) ∈ R2 : |x| < y < η ωλ0(x/η)

}
, (2.6)

which is the open domain of R2 corresponding to the diagram λ0 (in Russian conven-
tion), normalized to have area 2. For (x, y) in Dλ0 , letting TN be a uniform tableau of
shape λN, we consider

T̃N(x, y) :=
1
N

TN

(
⌊x
√

N⌋, ⌊y
√

N⌋+ δ
)

, (2.7)

where δ ∈ {0, 1} is chosen so that the arguments of TN have distinct parities. We want
to find a scaling limit for the function T̃N(x, y). To this end, we set for all (x, y) ∈ Dλ0 ,

T∞
+ = T∞

+ (x, y) := sup
{

t ∈ [0, 1] : H∞(x, t) ≤ 1
2(y − |x|)

}
,

T∞
− = T∞

− (x, y) := inf
{

t ∈ [0, 1] : H∞(x, t) ≥ 1
2(y − |x|)

}
.

(2.8)

Comparing Equations (2.3) and (2.8), the following statement is an easy consequence
of Theorem 2, see [3] for details.
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Proposition 5. For all ε > 0, the following limit holds uniformly for all (x, y) ∈ Dλ0 :

lim
N→+∞

P
(
T̃N(x, y) < T∞

− − ε
)
= lim

N→+∞
P
(
T̃N(x, y) > T∞

+ + ε
)
= 0.

We let Dreg
λ0 be the set of coordinates (x, y) ∈ Dλ0 such that T∞

− (x, y) = T∞
+ (x, y).

For such points, we simply write T∞(x, y) for this common value. Then Proposition 5
implies the following convergence in probability for (x, y) ∈ Dreg

λ0 :

lim
N→+∞

T̃N(x, y) = T∞(x, y), (2.9)

On the other hand, for (x, y) in Dλ0 \ Dreg
λ0 , we do not know whether T̃N(x, y) converges

at all, and the limiting surface T∞ is discontinuous at such points.
A natural question is whether such discontinuity points (x, y) exist at all in Dλ0 . Our

second main result shows that such points indeed exist unless λ0 is a rectangle, or unless
its interlacing coordinates satisfy some specific equations.

Theorem 6. For a Young diagram λ0, the following assertions are equivalent:

1. The limiting surface T∞ is continuous in the whole domain Dλ0 ;

2. The interlacing coordinates defined in (2.1) satisfy the system of equations:

m

∑
i=0
i ̸=i0

1
ai0 − ai

=
m

∑
i=1

1
ai0 − bi

, for all i0 = 1, . . . , m − 1. (2.10)

Note that when m = 1, i.e. when λ0 has a rectangular shape, there are no equations
in the second item. Indeed, the limiting surface T∞ is always continuous in this case.
For m > 1 however, the limiting surface is generically discontinuous.

3 Examples

In this section, we illustrate our results in the cases m = 1 (rectangular shapes) and
m = 2 (L-shapes). Before starting, let us note that our model and all results are invariant
when multiplying all interlacing coordinates of λ0 by the same positive integers. We
will therefore allow ourselves to work with diagrams λ0 with rational (non-necessarily
integer) interlacing coordinates.
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Figure 2: Left: The graphs of the function α(x, s) =
√

4s−4s2−x2

2s−2s2 from Remark 8. Right:
The corresponding limiting surface T∞

1 (x, y) for squared diagrams. Note that we are
using two different orientations of axes in order to improve the visualization.

3.1 An explicit formula for the rectangular case

In this section, we consider a rectangular diagram λ0. Without loss of generality, we
assume a0 = −1 and write r = a1. Necessarily, b1 = r − 1. Solving explicitly the critical
equation (2.5), which is in this case a degree 2 polynomial equation, we get:

Proposition 7. The limiting height function corresponding to a 1 × r rectangular shape λ0 is
given by

H∞
r (x, t) =

1
π

∫ t

0

√
s(4r − (1 + r)2s) + 2(r − 1)

√
rsx − rx2

2
√

r(1 − s)s
ds (3.1)

with the convention that
√

x = 0 if x ≤ 0. Furthermore, the limiting surface T∞
r is continuous

on Dλ0 and is therefore implicitly determined by the equation

H∞
r (x, T∞

r (x, y)) = 1
2(y − |x|). (3.2)

Remark 8. In the case r = 1 (square Young tableaux), we get

H∞
1 (x, t) =

1
π

∫ t

0

√
4s − 4s2 − x2

2s − 2s2 ds .

The graph of the function α(x, s) =
√

4s−4s2−x2

2s−2s2 is plotted on the left-hand side of Figure 2,
while the corresponding limiting surface T∞

1 is on the right. The above integral can be explicitly
computed, recovering the formula found by Pittel and Romik from [14]. Pittel and Romik also
give formulas for the general rectangular case, which should coincide with (3.1), though we could
not verify directly the equivalence of both formulae.

One can also obtain explicit formulas for L-shaped diagrams; since the latter expres-
sions are involved, we decided not to display them, and to discuss examples instead.
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a0 = −5

b1 = −4

a1 = −1

b2 = 3

a2 = 5

(m = 2)

-1.0 -0.5 0.0 0.5 1.0 1.39-1.39
0.0

0.2

0.4

0.6

0.8

1.0

ã0 = −200 b̃1 = −197

ã1 = −90 b̃2 = 10 ã2 = 103

(m = 2)

-1.0 -0.5 0.0 0.5 1.0-1.5
0.0

0.2

0.4

0.6

0.8

1.0

-2.0

Figure 3: Figures for the heart example (top row) and for the pipe example (bottom
row). In each row, from left to right: The Young diagram λ0 or λ̃0 with its interlacing
coordinates, the boundary curve of the corresponding liquid region, a uniform random
tableau TN of shape λN (with respectively N = 130000 and N = 59400 boxes) and the
corresponding height function HTN (in 3D plots, the brown colour is used for small
values of the surface and blue for large ones).

3.2 Two concrete examples of L-shape diagrams

We now consider two specific diagrams λ0 and λ̃0 which are both L-shaped (i.e. m = 2).
Due to the shape of the corresponding liquid regions (see the pictures in Figure 3), the
first one is called the heart example and the second one the pipe example.

In the heart example, the Young diagram λ0 has interlacing coordinates

a0 = −5 < b1 = −4 < a1 = −1 < b2 = 3 < a2 = 5. (3.3)

In this case we have |λ0| = 13, so that η = 1/
√
|λ0| = 1/

√
13 and [η a0, η am] =

[−5/
√

13, 5/
√

13] ≈ [−1.39, 1.39].
In the pipe example, the Young diagram λ̃0 has interlacing coordinates

ã0 = −200 < b̃1 = −197 < ã1 = −90 < b̃2 = 10 < ã2 = 103. (3.4)

In this case, we have |λ̃0| = 9900, so that η̃ = 1
30
√

11
and [η̃ ã0, η̃ ãm] = [− 200

30
√

11
, 103

30
√

11
] ≈

[−2.01, 1.04].
For both examples, we have computed the boundary of the liquid region defined

in Definition 3. Independently, we have also generated a uniform random tableau of
shape λN for large N (using the Greene–Nijenhuis–Wilf hook walk algorithm [7]), and
we present 3D plots both of the tableau T as a function from λ to [0, 1] and of its height
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function HT (which is a function from [na0, nam] × [0, 1] to Z≥0). In both cases, the
domain where the height function HT is increasing in t fits very well with the liquid
region, as predicted by Theorem 4.

An essential difference between the two examples is that the interlacing coordinates
satisfy Condition (2.10) in the heart example, while this is not the case in the pipe exam-
ple. From Theorem 6, the limiting surface is continuous in the heart example and not in
the pipe example. This is indeed visible on the pictures, as we now explain.

In the heart example, the intersection of the liquid region with any vertical line is
connected; in other terms, for every x ∈ [η a0, η am], the function t 7→ H∞(x, t) is first
constant equal to 0, then strictly increasing, and then constant equal to its maximal value.
Therefore, with the notation of (2.8), we have T∞

− (x, y) = T∞
+ (x, y) for all (x, y) in Dλ0

and the limiting surface T∞ is defined and continuous on the whole set Dλ0 . Looking at
the random tableau drawn as a discrete surface, it is indeed plausible that it converges
to a continuous surface.

In the pipe example, however, we can find some x0 just on the right of η ã1 = − 3√
11

≈
−0.9 so that the liquid region intersects the line x0 × [0, 1] in two disjoint intervals.
The function t 7→ H∞(x0, t) is then constant, equal to some value y0 between these
two intervals. It follows that T∞

− (x0, y0) < T∞
+ (x0, y0) and the limiting surface T∞ is

discontinuous at (x0, y0). This discontinuity can be observed on the 3D plot of the
tableau TN (see the zoom inside the red circle on the left-hand side, where we observe a
jump in the values of TN).

4 Proof strategy

We now discuss the proof strategy of Theorems 4 and 6. Details can be found in [3].

4.1 Poissonized tableaux and determinantal point process

Following [5], we define a Poissonized Young tableau of shape λ as a function λ → [0, 1]
satisfying the same monotonicity constraints as standard tableaux. We encode such a
tableau T by a set MT of particles in Z × [0, 1] defined as

MT =
{
(x, T(x, y)), (x, y) ∈ λ

}
.

A remarkable result of [5] states that, for any shape λ, if T is a uniform random Pois-
sonized tableau of shape λ, then MT is a determinantal point process with kernel

Kλ((x1, t1), (x2, t2)) = − 1
(2iπ)2

∮
γz

∮
γw

Fλ(z)
Fλ(w)

Γ(w−x1+1)
Γ(z−x2+1)

(1−t2)
z−x2 (1−t1)

−w+x1−1

z−w dw dz , (4.1)

where
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• Fλ(u) := Γ(u + 1) ∏∞
i=1

u+i
u−λi+i =

∏m
i=0 Γ(u−ai+1)

∏m
i=1 Γ(u−bi+1) ;

• γw and γz are counterclockwise contours containing all the integers in [a0, x1] and
in [x2, am] respectively;

• γw and is inside (resp. outside) γz if t1 ≥ t2 (resp. t1 < t2);
• the ratio 1

z−w remains uniformly bounded on the contours γw and γz.

4.2 Asymptotic behaviour of the kernel

To prove Theorem 4, we look for the asymptotic behaviour of the kernel in the regime

xi = x0
√

N + ξi, ti = t0 +
τi√
N

(i = 1, 2),

where (x0, t0) is fixed in [ηa0, ηam]× [0, 1]. In particular, the density of particles in MT
around (x0

√
N, t0), normalized by 1/

√
N, is given by Kλ((x0

√
N, t0), (x0

√
N, t0)), corre-

sponding hence to ξ1 = ξ2 = τ1 = τ2 = 0. In this regime, a careful asymptotic analysis
shows that the integrand in Equation (4.1) behaves as

IntN(W, Z) ≃ (
√

N)ξ2−ξ1e
√

N(S(W)−S(Z)) h(W, Z), (4.2)

for some function S and h. The critical equation (2.5) corresponds to the equation
S′(U) = 0, i.e. its solutions are critical points of S. The idea is then to move the in-
tegration contours so that S(W) < S(Z) on the new contours, making the integrand and
thus the integral tend to 0. Moving the integration contour may yield a residue term,
which gives the non-trivial asymptotic of Kλ((x0

√
N, t0), (x0

√
N, t0)).

Let us explain briefly how this works when (x0, t0) is in the liquid region. By def-
inition, in this case, S has two non-real critical points, which are necessarily conjugate,
that we denote by Uc and Ūc. Comparing RS(U) (for generic U) to RS(Uc) divides the
complex plane into regions as shown on Figure 4 (the shape of those regions is carefully
justified in the long version of the paper [3]). We then move the integration contours so
that S(W) < S(Uc) < S(Z) almost everywhere on the new contours. Note that the new
contour γnew

W is not inside γnew
Z , while γw is inside γz since t1 = t2 in the case of inter-

est. Thus moving the contours yields a residue term associated with the pole Z = W in
Equation (4.1), which can be computed explicitly. We find

lim
N→+∞

Kλ((x0
√

N, t0), (x0
√

N, t0)) =
IUc(x0, t0)

π(1 − t0)
,

which implies after some work Theorem 4.
We note that the general proof strategy is standard in integrable probability but needs

many careful estimations and arguments to justify the existence of the appropriate con-
tours, and the asymptotic behaviour of the various terms (see [3]).
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0

Uc

U c

γW γZ

A B C 0

Uc

U c

γnew
W γnew

Z

CBA D E

Figure 4: Left: The yellow regions correspond to {RS(U) < RS(Uc)}, while the
white regions correspond to {RS(U) > RS(Uc)}. We plotted the original integration
contours γW (in green) and γZ (in purple) appearing in Equation (4.1). The green and
purple dots are respectively the W-poles and Z-poles of the integrand. Right: The new
integration contours so that S(W) < S(Z) almost everywhere on the contours.

4.3 Characterization of continuous limit shapes

We now discuss the proof of Theorem 6. Looking at the shape of the liquid regions in
Figure 3 and at the discussions on the heart and pipe examples, we see that the limit
shape is continuous if and only if the tangent vectors to the boundary of the liquid region
at its cusp points are all vertical. The boundary of the liquid region is precisely the set
of points (x, t) where the discriminant of the polynomial equation (2.5) vanishes, see [3,
Proposition 27]. Using this description, we can obtain an explicit parametrization of this
boundary curve, and compute the tangent vectors at its cusp points. Each cusp point
gives one of the condition given in Equation (2.10), concluding the proof of the theorem.

References

[1] O. Angel, A. E. Holroyd, D. Romik, and B. Virág. “Random sorting networks”. Adv. Math.
215.2 (2007), pp. 839–868. doi.

[2] P. Biane. “Approximate factorization and concentration for characters of symmetric groups”.
Internat. Math. Res. Notices 4 (2001), pp. 179–192.

[3] J. Borga, C. Boutillier, V. Féray, and P.-L. Méliot. “A determinantal point process approach
to scaling and local limits of random Young tableaux”. 2023. arXiv:2307.11885.

[4] A. Borodin, A. Okounkov, and G. Olshanski. “Asymptotics of Plancherel measures for
symmetric groups”. J. Amer. Math. Soc 13 (2000), pp. 481–515.

https://dx.doi.org/10.1016/j.aim.2007.05.019
https://arxiv.org/abs/2307.11885


12 J. Borga, C. Boutillier, V. Féray and P.-L. Méliot

[5] V. Gorin and M. Rahman. “Random sorting networks: local statistics via random matrix
laws”. Probab. Theory Relat. Fields 175.1-2 (2019), pp. 45–96.

[6] V. Gorin and J. Xu. “Random sorting networks: edge limit”. 2022. arXiv:2207.09000.

[7] C. Greene, A. Nijenhuis, and H. Wilf. “A probabilistic proof of a formula for the number
of Young tableaux of a given shape”. Young Tableaux in Combinatorics, Invariant Theory, and
Algebra. Elsevier, 1982, pp. 17–22.

[8] A. Hora. The limit shape problem for ensembles of Young diagrams. Vol. 17. SpringerBriefs
Math. Phys. Tokyo: Springer, 2016. doi.

[9] V. Ivanov and G. Olshanski. “Kerov’s central limit theorem for the Plancherel measure on
Young diagrams”. Symmetric functions 2001: surveys of developments and perspectives. Vol. 74.
NATO Sci. Ser. II Math. Phys. Chem. Dordrecht: Kluwer Acad. Publ., 2002, pp. 93–151.

[10] R. Kenyon and I. Prause. “Gradient variational problems in R2”. Duke Math. J. 171.14
(2022), pp. 3003–3022. doi.

[11] S. V. Kerov. “Anisotropic Young diagrams and Jack symmetric functions”. Funct. Anal.
Appl. 34.1 (2000), pp. 41–51. doi.

[12] B. F. Logan and L. A. Shepp. “A variational problem for random Young tableaux”. Advances
in Math. 26.2 (1977), pp. 206–222.
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Generalized Heawood graphs and triangulations
of tori

Cesar Ceballos*1 and Joseph Doolittle1

1TU Graz, Institut für Geometrie, Kopernikusgasse 24, 8010 Graz, Austria

Abstract. The Heawood graph is a remarkable graph that played a fundamental role
in the development of the theory of graph colorings on surfaces in the 19th and 20th
centuries. Based on permutahedral tilings, we introduce a generalization of the clas-
sical Heawood graph indexed by a sequence of positive integers. We show that the
resulting generalized Heawood graphs are toroidal graphs, which are dual to higher
dimensional triangulated tori. We also present explicit combinatorial formulas for their
f -vectors and study their automorphism groups.

Keywords: Heawood graph, triangulations of tori, permutahedron, map coloring.

1 Introduction

The Heawood graph is a remarkable graph which played a fundamental role in the his-
torical development of the theory of map colorings on surfaces. The four color theorem
is an important result in this area, and perhaps one of the most well known results in
mathematics in general. It states that for any map on a sphere, for example Europe,
there is a coloring of that map with four colors, such that each region (or country) has
one color and any two adjacent regions1 have different colors. This problem has an
interesting history dating back to 1852, but the theorem was only proved more than a
hundred years later in 1976 by Kenneth Appel and Wolfgang Haken [1] after many false
proofs and false counterexamples, and it is the first major result in mathematics that was
proved using a computer.

One famous false proof of the four color theorem was given by Alfred Kempe in
1879 [4]. His proof was announced in Nature [5] and was regarded as an established fact
for more than a decade. In 1890, Percy John Heawood found a gap in Kempe’s proof,
and modified his argument to show that five colors are sufficient to color a map on a
sphere [3]. This became known as the five color theorem.

*cesar.ceballos@tugraz.at. Both authors were supported by the Austrian Science Fund FWF,
Project P 33278. Our work was also supported by the ANR-FWF International Cooperation Project
PAGCAP, funded by the FWF Project I 5788.

1Two regions are adjacent if they share a common boundary curve segment, not just a point.
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In the same paper [3], Heawood investigated coloring of maps on other surfaces.

He showed that Np =

⌊
7+
√

1+48p
2

⌋
colors are sufficient to color a map on the oriented

surface of genus p ≥ 1, where ⌊x⌋ is the largest integer not greater than x. For instance,
it is possible to color any map on a torus (genus p = 1 surface) using seven colors.
Heawood also showed that for p = 1 the number seven is tight, by showing a map of
the torus where seven colors are necessary: a map consisting of seven regions for which
any two regions are adjacent to each other.

1

2

6
7

2

6
7

3

3

54

1

5
4

Figure 1: Reproduction of Heawood’s map on a torus from 1890. The inner and outer
circle are identified to produce a torus.

The fact that the number Np is tight for a genus p orientable surface became known
as Heawood’s Conjecture, and was finally proved in 1968 [10]. The case p = 1 (the torus)
is known as the seven color theorem, and has inspired beautiful math-art works.

The Heawood graph is defined as the graph of Heawood’s map: its vertices are the
common points of three pairwise adjacent regions, and the edges are the lines connecting
these points. It is a toroidal and distance-transitive graph on 14 vertices and 21 edges.
Our favorite representation of Heawood’s graph is illustrated in Figure 2a, which is
based on a highly symmetric representation due to Leech in [8, Figure 2]. Note that
here, the graph is the graph induced by the edge graph of the seven hexagons, where
the boundary is identified by gluing the opposite colored lines as illustrated.

The main purpose of this paper is to introduce a generalization Hk of Heawood’s
graph that extends Leech’s representation. Our generalization is indexed by a sequence
k = (k1, . . . , kd+1) ∈ Nd+1 of positive integers for some d ≥ 2, and recovers the classical
Heawood graph when k = (1, 1, 1). As in the classical case, we show that Hk is a toroidal
graph which is naturally embedded in a d-dimensional torus.

When there are three parameters, the generalized Heawood graph H(k1,k2,k3) is a 2-
dimensional generalization of the classical Heawood graph. It is obtained by gluing
together ∏(ki + 1) − ∏ ki regular hexagons: From a “central" hexagon one adds ki
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1

1

1

(a) k = (1, 1, 1)

2

2

2

(b) k = (2, 2, 2)

3

1

2

(c) k = (3, 1, 2)

Figure 2: Examples of the Heawood graph Hk in dimension 2. The opposite sides
(with the same color) are identified, making this graph a toroidal graph. The torus is
the gray hexagon with opposite edges identified.

hexagons pointing in the direction at angle (i − 2)2π
3 for i = 1, 2, 3; then fill the “big

hexagon” that they generate with other small hexagons. Several examples are illustrated
in Figure 2. We also provide three different choices of fundamental domain in Figure 3,
where the torus can be visualized in its more common rectangular presentation.

The case d = 3 gives 3-dimensional generalizations of the Heawood graph. The
smallest choice of parameters is H(1,1,1,1), which is obtained by gluing 15 = 24 − 14

polytopes that are 3-dimensional permutahedra, see Figure 4. The boundary of the result
is identified to itself to form the complex into a 3-dimensional torus (see Section 4.2).

One special object of interest is the dual triangulation of H(1,1,...,1). This triangulation
consists of 2d+1 − 1 vertices and appeared in the work of Wolfgang Kühnel and Gunter
Lassmann from the 1980’s in [6, 7]. Interestingly, it is conjectured to be a minimal
triangulation of the d-dimensional torus [9, Conjecture 21].

A longer version of this extended abstract with more details and proofs is available
at [2].

2 The generalized Heawood graph

The generalized Heawood graph Hk is indexed by a sequence k = (k1, . . . , kd+1) ∈ Nd+1

of positive integers for some d ≥ 2. It is obtained by making some identifications on an
infinite graph G̃d, which is the graph of the d-dimensional permutahedral tiling. Before
explaining this connection, we provide a direct definition in this section.
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Figure 3: Different presentations of the fundamental domain for the Heawood graphs
H(1,1,1), H(2,2,2) and H(3,1,2).

The vertices Vert(G̃d) of the graph G̃d are the elements of the affine subspace

{x = (x1, . . . , xd+1) : x1 + · · ·+ xd+1 = 1 + · · ·+ (d + 1)} ⊂ Rd+1

whose entries are integers containing all the numbers 1, 2, . . . , d + 1 mod (d + 1). For
instance, all permutations of [d + 1] satisfy this property. Two vertices x, y of G̃d are
connected by an edge if y − x = ej − ei for some i ̸= j, where e1, . . . , ed+1 denote the
standard basis vectors in Rd+1. Figure 5 shows a portion of the graph G̃2, where the
blue hexagon is the convex hull of all permutations of [3].

For k = (k1, . . . , kd+1) ∈ Nd+1 we denote by Mk the matrix

Mk =



k1 + 1 −k2
k2 + 1 −k3

. . . . . .
. . . . . .

kd + 1 −kd+1
−k1 kd+1 + 1


(2.1)
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Figure 4: The Heawood graph H(1,1,1,1) is the edge graph of this portion of the 3-
dimensional permutahedral tiling after properly identifying its boundary by transla-
tions (see Section 4.2), making it into a toroidal graph.

and let w1, . . . , wd+1 ∈ Zd+1 be the vectors

wi = (d + 1)ei −
d+1

∑
j=1

ej. (2.2)

Equivalently, wi has ith coordinate equal to d and all other coordinates equal to −1.
Note that if x ∈ Vert(G̃d) then x + wi ∈ Vert(G̃d). Moreover, if x, y ∈ Vert(G̃d) are

connected by an edge then x + wi and y + wi are connected by an edge as well. In other
words, the graph G̃d is invariant under translations by the vectors w1, . . . , wd+1.

We denote by Ld the lattice of integer linear combinations of the wi

Ld := {a1w1 + · · ·+ ad+1wd+1 : a1, . . . , ad+1 ∈ Zd+1}, (2.3)

and by Sk ⊂ Ld the sublattice

Sk :=
{

a1w1 + · · ·+ ad+1wd+1 :
(a1, . . . , ad+1) = (b1, . . . , bd+1)Mk
for some b1, . . . , bd+1 ∈ Z

}
. (2.4)

That is, Sk is the set of linear combinations of w1, . . . , wd+1 whose coefficient vector
(a1, . . . , ad+1) is an integer linear combination of the rows of Mk.

We say that x, y ∈ Vert(G̃d) are k-equivalent, in which case we write x ∼k y, if

y = x + v for some v ∈ Sk. (2.5)

Two edges of G̃d are k-equivalent if one is a translation of the other by a vector in Sk.
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123
132

312
321

501
510

042
051

231
240

420
431̄

1̄61
1̄70

150
161̄

341̄
352̄

2̄80
2̄91̄

071̄
082̄

262̄
273̄

015
024

1̄34
1̄43

2̄53
2̄62

3̄72
3̄81

1̄07
1̄16

2̄26
2̄35

3̄45
3̄54

4̄64
4̄73

204
213

41̄3
402

11̄6
105

32̄5
31̄4

Figure 5: The graph G̃2 of the permutahedral tiling for d = 2. Commas and parenthesis
are omited for simplicity. An overlined number k represent the negative number −k.
For instance, 143 represents the vertex (−1, 4, 3).

Definition 2.1 (Generalized Heawood graph). Let k = (k1, . . . , kd+1) ∈ Nd+1 be a se-
quence of positive integers for some d ≥ 2. The Heawood graph Hk is the graph whose
vertices and edges are the k-equivalent classes of vertices and edges of G̃d, respectively.
In other words, Hk is the graph obtained by identifying vertices and edges of G̃d up to
translation by vectors in Sk.

Example 2.2 (Classical Heawood graph). The classical Heawood graph is obtained when
d = 2 and k = (1, 1, 1), and is illustrated in Figure 6. The lattice L2 consists of integer
linear combinations of the vectors w1 = (2,−1,−1) , w2 = (−1, 2,−1), w3 = (−1,−1, 2).

The associated matrix is

M(1,1,1) =

 2 −1
2 −1

−1 2


The sublattice S(1,1,1) consists of integer linear combinations of the rows of this matrix,
when considered as vectors of coefficients of the wi’s, i.e. integer linear combinations of
the vectors 2w1 − w2, 2w2 − w3, 2w3 − w1.

Figure 6 shows a tiling of the plane, where each fundamental tile consists of seven
hexagons: one hexagon in the center together with its six surrounding hexagons. The
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barycenters of the central hexagons correspond exactly to elements of the sublattice
S(1,1,1). The equivalence relation ∼=k then identifies vertices and edges via translations
that transform one fundamental tile into another.

0

w1

w2

w3

2w1 − w2

2w2 − w3

2w3 − w1

Figure 6: The classical Heawood graph H(1,1,1) as a quotient of the graph of the per-
mutahedral tiling in dimension two.

Our aim is to prove some structural and enumerative properties of the generalized
Heawood graph. Our first result is the following.

Theorem 2.3. The generalized Heawood graph Hk is a vertex-transitive graph with d!Dk many
vertices and (d+1)!

2 Dk many edges, where

Dk = det Mk = ∏(ki + 1)− ∏ ki. (2.6)

Similarly to the classical case, the generalized Heawood graph is the dual graph of a
triangulated torus, for which a simple combinatorial formula for its number of faces can
be explicitly given.
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We denote by {n
k} the Stirling number of the second kind, which counts the number

of ways to partition a set of n objects into k non-empty subsets. These numbers can be
explicitly calculated as {

n
k

}
=

1
k!

k

∑
i=1

(−1)k−i
(

k
i

)
in. (2.7)

Theorem 2.4. The generalized Heawood graph Hk is the dual graph of a triangulation of a
d-dimensional torus with f -vector ( f0, f1, . . . , fd) determined by

fi = i!
{

d + 1
i + 1

}
Dk. (2.8)

In particular,

f0 = Dk, fd = d! Dk, fd−1 =
(d + 1)!

2
Dk. (2.9)

Table 1 shows the factor c(i, d) := fi/Dk for some small values.

d
i

0 1 2 3 4 5

2 1 3 2
3 1 7 12 6
4 1 15 50 60 24
5 1 31 180 390 360 120

Table 1: The factor c(i, d) for some small values of i and d.

Example 2.5 (d = 2). We consider the classical Heawood graph, when k = (1, 1, 1). The
factor D(1,1,1) = 23 − 13 = 7 counts the number of hexagons in Figure 2a. The f -vector
of its dual 2-dimensional triangulated torus is

(1 · 7, 3 · 7, 2 · 7) = (7, 21, 14).

Interpreting this in the graph setting, we have 7 hexagons, 21 edges, and 14 vertices.
When d = 2, with a general k, we have Dk many hexagons, 3Dk many edges, and

2Dk many vertices. Table 2 shows these numbers for all the examples in Figure 2.

3 The affine arrangement and the permutahedral tiling

In order to prove these results, it is useful to build on the connection with permuta-
hedral tilings and their dual affine arrangements. We consider the collection of affine
hyperplanes

Hk
ij = {x ∈ Rd+1 : xj − xi = k}
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k
i

0 1 2

(1, 1, 1) 1 · 7 3 · 7 2 · 7
(2, 2, 2) 1 · 19 3 · 19 2 · 19
(3, 1, 2) 1 · 18 3 · 18 2 · 18

Table 2: Number of hexagons, edges, and vertices for the Heawood graphs in Figure 2.

for 1 ≤ i < j ≤ d + 1 and k ∈ Z.
The affine Coxeter arrangement H̃d of type Ãd is the restriction of this arrangement to

the hyperplane V = {x ∈ Rd+1 : x1 + · · ·+ xd+1 = 0}. For d = 2, this is the arrangement
of affine hyperplanes of a triangular lattice, which is illustrated on the left of Figure 7.

w̃1

w̃2

w̃3

0

w1

w2

w3

Figure 7: A finite piece of the simplicial complex C̃2 of the affine Coxeter arrangement
of type Ã2 (left). A finite piece of its dual tiling of space by permutahedra PT 2 (right).

In general, the arrangement H̃d decomposes the space V into an infinite number of
simplices, giving rise to an infinite simplicial complex that we denote by C̃d. The vertices
of this complex are the elements of

L̃d := {x ∈ V : xj − xi ∈ Z, for all 1 ≤ i < j ≤ d + 1}. (3.1)

This set is a lattice, which is known as the weight lattice of type Ad. It is generated by
integer linear combinations of the vectors w̃1, . . . , w̃d+1 determined by (d + 1)w̃i = wi, as
defined in (2.2). They satisfy the relation

w̃1 + · · ·+ w̃d+1 = 0. (3.2)

For d = 2, the dual of the triangular lattice is the hexagonal lattice, which is illustrated
on the right of Figure 7. This generalizes to higher dimensions, where the dual of the
complex C̃d is a combinatorial structure known as the permutahedral tiling.
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The permutahedron Permd is the convex hull of all permutations of [d + 1]:

Permd = conv {(i1, . . . , id+1) : for {i1, . . . , id+1} = [d + 1]} ⊆ Rd+1. (3.3)

The permutahedral tiling PT d is the infinite tiling of the affine subspace

{x ∈ Rd+1 : x1 + · · ·+ xd+1 = 1 + · · ·+ (d + 1)} (3.4)

whose tiles are translates Permd +v of the permutahedron, for v ∈ Ld. An example for
d = 2 is shown on the right of Figure 7.

4 The triangulated torus and the Heawood complex

4.1 The triangulated torus

We consider the sublattice S̃k ⊂ L̃d defined by

S̃k :=
{

a1w̃1 + · · ·+ ad+1w̃d+1 :
(a1, . . . , ad+1) = (b1, . . . , bd+1)Mk
for some b1, . . . , bd+1 ∈ Z

}
. (4.1)

Its elements are integer linear combinations of the vectors w̃1, . . . , w̃d+1, whose vector of
coefficients is an integer linear combination of the rows of the matrix Mk.

We say that two faces F, F′ ∈ C̃d are k-equivalent, and write F ∼k F′, if F′ = F + v for
some v ∈ S̃k. That is, the face F′ is a translation of F by v ∈ S̃d.

Definition 4.1 (The torus). The quotient complex Tk = C̃d/S̃k is the simplicial complex of
k-equivalent classes of faces of C̃d. In other words, Tk is the simplicial complex of faces
of C̃d up to translation by vectors in S̃k.

We define the fundamental vectors with respect to k as the elements of the set

F̃k =

{
a1w̃1 + · · ·+ ad+1w̃d+1 :

0 ≤ ai ≤ ki ∈ Zd+1

at least one ai = 0

}
. (4.2)

Lemma 4.2. The quotient L̃d/S̃k is finite. Its cardinality is det Mk = ∏(ki + 1)− ∏ ki. The
fundamental vectors in F̃k are element representatives of the classes of L̃d/S̃k.

Proposition 4.3. Tk is a triangulated d-dimensional torus on Dk = det Mk many vertices.

The proof of this proposition is based on a parallelepiped domain of Tk, which we
explain in the longer version of this manuscript [2], see the first illustration in Figure 8.

We also provide a permutahedral domain, see the second illustration in Figure 8,
which leads to the following independent result.

Proposition 4.4. The permutahedron Permd with opposite facets identified by translation is a
topological d-dimensional torus.
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Figure 8: The parallelepiped domain and the permutahedron domain of T(3,1,2), and
the fundamental tile and the permutahedron domain of HC(3,1,2).

4.2 The Heawood complex

We say that two faces B, B′ of the permutahedral tiling PT d are k-equivalent, and write
B ∼k B′, if B′ = B + v for some v ∈ Sk. That is, the face B′ is a translation of B by a
vector v ∈ Sk.

Definition 4.5 (The Heawood complex). The Heawood complex HCk = PT d/Sk is the
polytopal complex of k-equivalent classes of faces of PT d. That is, HCk is the polytopal
complex of faces of PT d up to translation by vectors in Sk.

We define

Fk =

{
a1w1 + · · ·+ ad+1wd+1 :

0 ≤ ai ≤ ki ∈ Zd+1

at least one ai = 0

}
. (4.3)

Since wi = (d + 1)w̃i, then the vectors in Fk are just the fundamental vectors in F̃k,
dilated by a factor of d + 1. The fundamental tile Pk is the union of the permutahedra of
the form Permd +v with v ∈ Fk. An example of the fundamental tile P(1,1,1), including
six translations of it, is illustrated in Figure 6.

In general, translations of the fundamental tile Pk by elements of the sublattice Sk
tile space. Thus, the Heawood complex is the complex of faces of this fundamental tile,
where the boundary is identified according to how the translations glue together, see
also Figure 4.

Proposition 4.6. The following hold:

1. The Heawood graph Hk is the edge graph of the Heawood complex HCk.

2. The Heawood complex and the torus are dual complexes: HCk
∼= T ∗

k .
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3. The Heawood graph Hk is the dual graph of the torus Tk.

This, together with Proposition 4.3, finishes part of the proof of our main Theo-
rem 2.4. The proof of the remaining enumerative part can be found in the longer version
of this manuscript [2]. There, we also describe the automorphism groups of the trian-
gulated torus Tk and the generalized Heawood graph Hk, and discuss about potential
generalizations including the hyperbolic setting.

In view of Proposition 4.4, we finish with the following open question.

Question 4.7. What is the topology of other families of polytopes with opposite facets
identified by translation?

Natural families that fit into this context are Permutahedra arising from finite Cox-
eter groups, Postnikov’s generalized permutahedra obtained by removing some pairs
of opposite facets of the classical permutahedron, and Zonotopes in general. A small
example of the first and the last is an octagon. Identifying opposite edges of an octagon
leads to a topological 2-hole torus.
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Abstract. We introduce and study the somewhere-to-below shuffles, which are elements of
the group algebra of the symmetric group Sn defined as sums of cycles. We show that
these elements are simultaneously triangularizable (in an easily-defined basis of k [Sn]),
and compute their joint eigenvalues with multiplicities. We furthermore discuss some
identities between them, a card shuffling interpretation and its probabilistic properties,
and a possible generalization to the Hecke algebra.

Keywords: symmetric group, permutations, card shuffling, top-to-random shuffle,
group algebra, substitutional analysis, Fibonacci numbers, filtration, representation
theory, Markov chain, Specht module, symmetric functions

1 Introduction

The group algebra k [Sn] of the symmetric group Sn is one of the most elementary,
yet richest examples of an algebra in combinatorics. Over a characteristic-zero field, it is
known (by the representation theory of the symmetric group) to be isomorphic to a direct
product of matrix rings, a viewpoint that clarifies some of its features while obscuring
others. The structure of k [Sn] becomes more interesting when k is less well-behaved
(e.g., the ring Z), but also when combinatorics is invited back onto the stage.

The latter can be done by defining a simple-looking family of elements of k [Sn] com-
binatorially and asking algebraic questions: Do its elements commute? Do they have
integer eigenvalues (viewed as endomorphisms of k [Sn] by left multiplication)? What
subalgebra do they generate? Such families often come with a rich provenance. Ex-
amples are the Young–Jucys–Murphy elements (originating from representation theory),
the Eulerian idempotents (born in homological algebra) and the more recent Wronski–
Purbhoo elements (inspired by mathematical physics).

A wide class of recent examples has come from probability theory, the most elemen-
tary example being perhaps the top-to-random shuffle

t1 := cyc1 + cyc1,2 + cyc1,2,3 + · · ·+ cyc1,2,...,n ∈ k [Sn] ,

*darijgrinberg@gmail.com
†nadia.lafreniere@concordia.ca

mailto:darijgrinberg@gmail.com
mailto:nadia.lafreniere@concordia.ca
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where cyci1,i2,...,im denotes the m-cycle sending i1 7→ i2 7→ · · · 7→ im 7→ i1. After this
shuffle was fully analyzed in 1986 [6], several generalizations and extensions have come
up and are still undergoing active research.

The work outlined in this abstract, and detailed in our papers [4] and [3] (and forth-
coming work), concerns the perhaps simplest way to generalize the top-to-random shuf-
fle: namely, by embedding it in the n-tuple (t1, t2, . . . , tn) of the somewhere-to-below shuffles

ti := cyci + cyci,i+1 + cyci,i+1,i+2 + · · ·+ cyci,i+1,...,n ∈ k [Sn]

for all i ∈ {1, 2, . . . , n}. These n shuffles have a simple probabilistic meaning (shuffling
a deck of cards by picking the i-th card from the top and randomly moving it further
down the deck), and are also related to the insertion sort algorithm and to subgroups
(each ti is a sum of coset representatives for a certain Sn−i subgroup inside Sn−i+1).

The somewhere-to-below shuffles t1, t2, . . . , tn do not commute, but they “commute
up to nilpotent error terms”. In rigorous language, this means that there exists a ba-
sis (a1, a2, . . . , an!) of the k-module k [Sn] on which these elements act from the right as
upper-triangular matrices (i.e., we have aktℓ ∈ span (a1, a2, . . . , ak) for each k). This basis
can be constructed explicitly over any ring k, in contrast to the more classical diagonaliz-
ing bases that exist for various other known families but only over characteristic-0 fields.
(A common diagonalizing basis is impossible for the t1, t2, . . . , tn, since some of their lin-
ear combinations fail to act semisimply.) A more conceptual but less catchy formulation
of our main result is the existence of a filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

of the k-module k [Sn] that is preserved by the somewhere-to-below shuffles t1, t2, . . . , tn
(acting from the right), and on whose quotients Fi/Fi−1 these shuffles act as scalars. The
length of this filtration is (rather unexpectedly) the (n + 1)-st Fibonacci number fn+1.

A consequence of all this is that each linear combination λ1t1 + λ2t2 + · · ·+ λntn of
the somewhere-to-below shuffles has explicitly computable eigenvalues, which are all
integers if the coefficients λ1, λ2, . . . , λn are, and of which at most fn+1 are distinct. Their
multiplicities (in the generic case) are certain divisors of n!, counting some kinds of per-
mutations. We give the constructions and say a few words on the proofs below; details
can be found in [4]. Some variants of these results (replacing right by left multiplication,
and replacing the t1, t2, . . . , tn by their “antipodes”) are briefly outlined in Section 8.

The filtration above explains much but not everything. In particular, it shows that
the commutators

[
ti, tj

]
are nilpotent, but gives fairly bad (exponential) bounds on their

nilpotency degrees. The actual nilpotency degrees, however, are much smaller (in fact,
no larger than n/2 + 1). This is elaborated upon in Section 9, but the detailed proofs are
too long to even hint at; they can be found in [3].

The motivation for studying the somewhere-to-below shuffles comes largely from
probability theory. Card shuffling can be thought of applying a permutation at random,
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according to some probability, to a deck of cards. For us, it means acting on the right by
an element of k [Sn] whose coefficients are nonnegative reals. A question of interest is
thus, given the choice of an element of k [Sn], how many applications of it would suffice
to shuffle the deck of cards properly. In Section 10, we give an optimal strong stationary
time for linear combinations of the somewhere-to-below shuffles.

Anything about k [Sn] is, of course, connected to integer partitions and Young dia-
grams, since the irreducible representations of k [Sn] are the Specht modules Sλ assigned
to the partitions λ of n. Thus, one can wonder how the somewhere-to-below shuffles
t1, t2, . . . , tn act on a given Specht module Sλ. We answer this in Section 11; the proof
will appear in forthcoming work.

In the last Section 12, we suggest a further potential generalization, replacing the
symmetric group algebra k [Sn] by the Hecke algebra Hn (q). We have only just began
the study of this setting, but it appears that many of our results extend to it. Research
on this, as well as on our Specht module conjecture, is underway.

2 Definitions

2.1 Combinatorics

Let us first introduce some basic notations (more will be defined as needed). We set
N := {0, 1, 2, . . .}. Furthermore, we set [a, b] := {x ∈ Z | a ≤ x ≤ b} for any a, b ∈ Z.
For any k ∈ Z, we set [k] := [1, k] = {1, 2, . . . , k}.

We fix a positive integer n. We let Sn denote the n-th symmetric group; it consists of
the n! permutations of [n], with multiplication given by composition: (αβ) (i) = α (β (i))
for each α, β ∈ Sn and i ∈ [n].

2.2 Algebra

We fix a commutative ring k. (The cases k = Z and k = Q are fully sufficient.)
We let k [Sn] denote the group algebra of Sn over k. This k-algebra consists of all for-

mal k-linear combinations ∑σ∈Sn λσσ of the permutations σ ∈ Sn, and its multiplication
is the k-linear extension of the multiplication on Sn. Its unity is 1 = id[n] ∈ Sn.

For each u ∈ k [Sn], we define the two k-linear maps L (u) : k [Sn] → k [Sn] and
R (u) : k [Sn] → k [Sn] by

(L (u)) (a) = ua and (R (u)) (a) = au for each a ∈ k [Sn] .

These are just the left multiplication and the right multiplication by u. Being endomor-
phisms of the k-module k [Sn], they can be represented as n! × n!-matrices over k (since
k [Sn] is a free k-module of rank n!, with basis (w)w∈Sn

), and thus have characteristic
polynomials, eigenvalues and eigenvectors (at least when k is a field).
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2.3 Cycles, somewhere-to-below and other random-to-below shuffles

For any distinct elements i1, i2, . . . , ik of [n], we let cyci1,i2,...,ik
be the permutation in Sn

that cyclically permutes i1 7→ i2 7→ i3 7→ · · · 7→ ik 7→ i1 and leaves all other elements of
[n] unchanged. In particular, cyci,j is a transposition, while cyci = id = 1.

We are now ready for our main definition: For each ℓ ∈ [n], we define the element

tℓ := cycℓ + cycℓ,ℓ+1 + cycℓ,ℓ+1,ℓ+2 + · · ·+ cycℓ,ℓ+1,...,n ∈ k [Sn] .

These n elements t1, t2, . . . , tn will be called the somewhere-to-below shuffles. The first of
these elements, t1, is also known as the top-to-random shuffle or the Tsetlin library, whereas
the last is just the identity (tn = cycn = 1).

Linear combinations of the somewhere-to-below shuffles are also interesting. Assum-
ing the coefficients λ1, λ2, . . . , λn are nonnegative reals, λ1t1 +λ2t2 + . . .+λntn represents
the action of choosing the i-th somewhere-to-below shuffle with some probability dic-
tated by λi. In particular, the random-to-below shuffle is the shuffle in which we pick i with
uniform probability (among [n]), and then apply the i-th somewhere-to-below shuffle.
In terms of card shuffling, this amounts to drawing a card (uniformly) at random and
moving it weakly below. See [4, §3] for other interesting shuffles of this sort.

3 The descent-destroying basis

The n somewhere-to-below shuffles do not commute (e.g., we have t1t2 ̸= t2t1 for n = 3).
Nevertheless, they behave far better than a “random” family of elements of k [Sn]. In
particular, there exists a basis of the k-module k [Sn] in which all of the endomorphisms
R (t1) , R (t2) , . . . , R (tn) are represented by upper-triangular matrices. We shall construct
this basis now. This requires some more definitions.

For each w ∈ Sn, we define the descent set of w to be the set

Des w := {i ∈ [n − 1] | w (i) > w (i + 1)} .

For each i ∈ [n − 1], we define the simple transposition si := cyci,i+1 ∈ Sn.
For each I ⊆ [n − 1], we define the Young subgroup G (I) to be the subgroup of Sn

generated by the si for i ∈ I. This can be viewed as a product Sn1 × Sn2 × · · · × Snk with
n1 + n2 + · · ·+ nk = n, embedded into Sn via the canonical homomorphism.

For each w ∈ Sn, we define

aw := ∑
σ∈G(Des w)

wσ ∈ k [Sn] .

The following is easy to see by triangularity:

Proposition 1. The family (aw)w∈Sn
is a basis of the k-module k [Sn].
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Example 1. For n = 3, we have

a[123] = [123] ; a[231] = [231] + [213] ;

a[132] = [132] + [123] ; a[312] = [312] + [132] ;

a[213] = [213] + [123] ; a[321] = [321] + [312] + [231] + [213] + [132] + [123]

(where we use one-line notation for permutations: [i1i2 · · · in] means the permutation of [n] that
sends 1, 2, . . . , n to i1, i2, . . . , in).

Now, we claim that the endomorphisms R (t1) , R (t2) , . . . , R (tn) are upper-triangular
with respect to this basis (appropriately ordered). More concretely:

Theorem 1. There is some partial order ≺ on Sn such that for any w ∈ Sn and ℓ ∈ [n], we have

awtℓ = µw,ℓaw + ∑
v∈Sn;
v≺w

λw,ℓ,vav for some µw,ℓ ∈ N and λw,ℓ,v ∈ Z.

Example 2. For n = 4, we have a[4312]t2 = a[4312] + a[4321] − a[4231] − a[3241] − a[2143]︸ ︷︷ ︸
subscripts are ≺[4312]

.

4 The invariant spaces F (I)

To prove Theorem 1 directly, we would need to understand how R (tℓ) acts on each
single aw. But this is not easy. Thus, we shall instead analyze the action of R (tℓ) on a
certain filtration 0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn] of k [Sn] by left ideals (which
are preserved by the R (tℓ)). The basis (aw)w∈Sn

will then reveal itself to be compatible
with this filtration (i.e., each Fi is spanned by some subfamily of this basis), and thus we
will be able to draw conclusions about awtℓ from the action of R (tℓ) on the filtration.
Essentially, the filtration will act as a “middleman” between the tℓ and the aw.

In order to construct the filtration, we shall in turn need another middleman: some
left ideals F (I) defined for each I ⊆ [n]. These are easy to define:

For each subset I of [n], we define the number

sum I := ∑
i∈I

i,

and the sets

Î := {0} ∪ I ∪ {n + 1} and I′ := [n − 1] \ (I ∪ (I − 1))

(where I − 1 := {i − 1 | i ∈ I}), and finally the left ideal

F (I) :=
{

u ∈ k [Sn] | usi = u for all i ∈ I′
}
⊆ k [Sn]

(the “invariant space” corresponding to I).
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Example 3. Let n = 9 and I = {2, 3, 7}. Then, Î = {0, 2, 3, 7, 10} and I′ = [8] \ {1, 2, 3, 6, 7} =
{4, 5, 8} and F (I) = {u ∈ k [Sn] | us4 = us5 = us8 = u}.

The following is easy to see:

Proposition 2. For each I ⊆ [n], the family (aw)w∈Sn; I′⊆Des w is a basis of the k-module F (I).

The main workhorse of our study of the somewhere-to-below shuffles is a lemma
which, for each I ⊆ [n] and ℓ ∈ [n] and u ∈ F (I), expresses the product utℓ as a scalar
multiple of u plus a sum of “error terms” in “smaller” invariant spaces F (J) (to be
precise: invariant spaces F (J) for subsets J ⊆ [n] satisfying sum J < sum I). We can
actually be more specific and characterize the scalar in front of the u as follows:

For any ℓ ∈ [n], we let mI,ℓ be the distance from ℓ to the next-higher element of Î. In
other words,

mI,ℓ :=
(

smallest element of Î that is ≥ ℓ
)
− ℓ ∈ {0, 1, . . . , n} .

Example 4. If n = 9 and I = {2, 3, 7}, then Î = {0, 2, 3, 7, 10} and

(mI,1, mI,2, . . . , mI,9) = (1, 0, 0, 3, 2, 1, 0, 2, 1) .

Lemma 1 (Workhorse lemma). Let I ⊆ [n] and ℓ ∈ [n]. Then,

utℓ ∈ mI,ℓu + ∑
J⊆[n];

sum J<sum I

F (J) for each u ∈ F (I) .

Proof idea. Expand utℓ by the definition of tℓ, and break up the resulting sum into smaller
bunches using the interval decomposition

[ℓ, n] = [ℓ, ik − 1] ⊔ [ik, ik+1 − 1] ⊔ [ik+1, ik+2 − 1] ⊔ · · · ⊔
[
ip, n

]
(where ik < ik+1 < · · · < ip are the elements of I larger or equal to ℓ). The [ℓ, ik − 1]
bunch gives the mI,ℓu term; the others live in appropriate F (J)’s. See [4, Theorem 7.3]
for details.

5 The Fibonacci filtration

The filtration 0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn] that we want to construct
will consist of sums of certain invariant spaces F (I). However, we do not need all
F (I), but only the ones that correspond to certain subsets I: namely, those that are
lacunar (i.e., contain no two consecutive integers) and do not contain n. Arranging these
lacunar subsets I in order of increasing sum, we will define Fi as the sum of the F (I)
corresponding to the first i many I’s.
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Let us elaborate on this. A set S of integers is called lacunar if it contains no two
consecutive integers (i.e., we have s + 1 /∈ S for all s ∈ S). The number of lacunar subsets
of [n − 1] is known to be the Fibonacci number fn+1. (Recall that the Fibonacci numbers
f0, f1, f2, . . . are defined by f0 = 0 and f1 = 1 and fk = fk−1 + fk−2 for each k ≥ 2.)

The following lemma (essentially [4, Proposition 8.7]) is easy to check:

Lemma 2. Let J ⊆ [n] be a subset that fails to be lacunar or contains n. Then, there exists some
subset K ⊆ [n] such that sum K < sum J and K′ ⊆ J′ (so that F (J) ⊆ F (K)).

Now, we let Q1, Q2, . . . , Q fn+1 be the fn+1 lacunar subsets of [n − 1], listed in such an
order that sum (Q1) ≤ sum (Q2) ≤ · · · ≤ sum

(
Q fn+1

)
. (We fix such an order once and

for all.) Then, for each i ∈ [0, fn+1], define a left ideal

Fi := F (Q1) + F (Q2) + · · ·+ F (Qi) of k [Sn]

(so that F0 = 0). The resulting filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

satisfies the following crucial property:

Theorem 2. For each i ∈ [ fn+1] and ℓ ∈ [n], we have Fi ·
(
tℓ − mQi,ℓ

)
⊆ Fi−1 (so that R (tℓ)

preserves Fi and Fi−1, and acts as multiplication by mQi,ℓ on Fi/Fi−1).

Proof idea. This follows from Lemmas 1 and 2. See [4, Theorem 8.1 (c)] for details.

Now we claim that our basis (aw)w∈Sn
of k [Sn] respects the filtration 0 = F0 ⊆ F1 ⊆

F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]. To make this precise, we introduce some more notation:
The Q-index Qind w of a permutation w ∈ Sn is defined to be the smallest i ∈ [ fn+1]

such that Q′
i ⊆ Des w. (Note that this depends on our ordering of Q1, Q2, . . . , Q fn+1 .)

The following facts ([4, §10]) are not hard to see:

Proposition 3. Let w ∈ Sn and i ∈ [ fn+1]. Then, Qind w = i if and only if Q′
i ⊆ Des w ⊆

[n − 1] \ Qi.

Theorem 3. For each i ∈ [0, fn+1], the k-module Fi is free with basis (aw)w∈Sn; Qind w≤i.

Corollary 1. For each i ∈ [ fn+1], the k-module Fi/Fi−1 is free with basis (aw)w∈Sn; Qind w=i.

6 Triangularizability

Combining Theorem 3 with Theorem 2, we easily obtain the following concretization of
Theorem 1 ([4, Theorem 11.1]):
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Theorem 4. Let w ∈ Sn and ℓ ∈ [n]. Let i = Qind w. Then,

awtℓ = mQi,ℓaw + ∑
v∈Sn;

Qind v<Qind w

λw,ℓ,vav for some integers λw,ℓ,v.

Thus, the endomorphisms R (t1) , R (t2) , . . . , R (tn) are upper-triangular with respect
to the basis (aw)w∈Sn

, as long as the permutations w ∈ Sn are ordered by increasing
Q-index. Their diagonal entries are the numbers mQQind w,ℓ ∈ N.

Therefore, any k-linear combination R
(

n
∑
ℓ=1

λℓtℓ

)
=

n
∑
ℓ=1

λℓR (tℓ) of these endomor-

phisms R (t1) , R (t2) , . . . , R (tn) (with λ1, λ2, . . . , λn ∈ k) is upper-triangular with respect
to this basis as well, and its diagonal entries will be the appropriate k-linear combina-

tions
n
∑
ℓ=1

λℓmQQind w,ℓ. Hence, regarded as an n! × n!-matrix, R
(

n
∑
ℓ=1

λℓtℓ

)
is triangulariz-

able with eigenvalues
n
∑
ℓ=1

λℓmQQind w,ℓ for w ∈ Sn.

This matrix is not always diagonalizable. A sufficient (but far from necessary) crite-
rion can nevertheless be given:

Theorem 5. Let k be a field, and let λ1, λ2, . . . , λn ∈ k. Then, the eigenvalues of the operator
R (λ1t1 + λ2t2 + · · ·+ λntn) are the linear combinations

λ1mI,1 + λ2mI,2 + · · ·+ λnmI,n for I ⊆ [n − 1] lacunar

(with multiplicities discussed below). If all these fn+1 linear combinations are distinct, then
R (λ1t1 + λ2t2 + · · ·+ λntn) is diagonalizable.

Proof idea. The first claim follows from the discussion above; the second uses Theorem 2
and some linear algebra. See [4, Corollary 12.2 and Theorem 12.3] for details.

7 Multiplicities of the eigenvalues

We can also describe the multiplicities of the eigenvalues of R (λ1t1 + λ2t2 + · · ·+ λntn)
([4, Theorem 13.2]):

Theorem 6. Assume that k is a field. Let λ1, λ2, . . . , λn ∈ k. For each i ∈ [ fn+1], let δi be the
number of all permutations w ∈ Sn satisfying Qind w = i, and let

gi :=
n

∑
ℓ=1

λℓmQi,ℓ ∈ k.

Let κ ∈ k. Then, the algebraic multiplicity of κ as an eigenvalue of R (λ1t1 + λ2t2 + · · ·+ λntn)
equals the sum of the δi over all i ∈ [ fn+1] satisfying gi = κ.



Somewhere-to-below shuffles 9

Furthermore, these δi can be expressed by an explicit formula (similar to but simpler
than the famous hook-length formula), and are divisors of n! (just like in the hook-length
formula); we refer to [4, Theorem 13.1] for details.

8 Variants

So far, we have directed our attention at the right multiplication maps R (t1) , R (t2) , . . . ,
R (tn), while neglecting their left counterparts L (t1) , L (t2) , . . . , L (tn). However, almost
all our claims about the former can be extended to the latter using general properties
of group algebras. In particular, there exists a basis of the k-module k [Sn] in which
all of the endomorphisms L (t1) , L (t2) , . . . , L (tn) are represented by upper-triangular
matrices. This basis is not the basis (aw)w∈Sn

, but rather its dual basis with respect to a
certain bilinear form (and its order is modified). Theorems 5 and 6 remain valid if “R” is
replaced by “L” throughout them. For the proofs of all these claims, we refer to [4, §14];
all we shall say here is that they are derived from the analogous properties of R purely
algebraically, with no further combinatorial input.

It is also natural to study the below-to-somewhere shuffles t′1, t′2, . . . , t′n, where

t′ℓ := cycℓ + cycℓ+1,ℓ + cycℓ+2,ℓ+1,ℓ + · · ·+ cycn,n−1,...,ℓ ∈ k [Sn]

for each ℓ ∈ [n]. Again, Theorems 5 and 6 remain valid if each tℓ is replaced by the
corresponding t′ℓ; but this is again not too surprising, since the t′ℓ are the images of tℓ
under a very simple k-algebra anti-automorphism of k [Sn] called the antipode (sending
each permutation w ∈ Sn to its inverse w−1). Thus, again, most properties can be
transferred between the tℓ and the t′ℓ by purely algebraic tools (see [4, §14] for details).

9 Nilpotent commutators

Since the endomorphisms R (t1) , R (t2) , . . . , R (tn) are simultaneously triangularizable,
their pairwise commutators are nilpotent. Hence, the pairwise commutators

[
ti, tj

]
in

k [Sn] are also nilpotent. A natural question is: How small is the required exponent?
As it turns out, it is much smaller than one might expect:

Theorem 7. Let 1 ≤ i ≤ j ≤ n. Then,[
ti, tj

]m
= 0 holds for m = min {j − i + 1, ⌈(n − j) /2⌉+ 1} .

We conjecture (and have verified for all n ≤ 12) that this choice of m is optimal (i.e.,
that

[
ti, tj

]m−1 ̸= 0, at least for k = Z).
Actually, Theorem 7 can be generalized, replacing the m-th power of a single

[
ti, tj

]
by a product of several

[
ti, tj

]
’s (with the same j but possibly different i’s). The reader
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can find this generalization in [3, Theorems 8.15 and 9.10], where it is proved by long
and tricky but completely elementary manipulations of permutations and sums.

Several other curious facts hold, such as the following ([3, Theorems 5.1 and 6.1,
Corollaries 7.6 and 8.20]):

Proposition 4. If i ∈ [n − 1], then ti+1ti = (ti − 1) ti.
If i ∈ [n − 2], then ti+2 (ti − 1) = (ti − 1) (ti+1 − 1).

Proposition 5. Let i, j ∈ [n]. Then, tn−1 [ti, tn−1] = 0 and [ti, tn−1]
[
tj, tn−1

]
= 0.

These facts suggest that the k-subalgebra k [t1, t2, . . . , tn] of k [Sn] has some interesting
structure (apart from the “split-semisimple-by-nilpotent” decomposition following from
Theorem 1). Yet it remains mysterious in many ways. For k = Q and n ∈ [8], here is its
dimension as a Q-vector space (the sequence is not in the OEIS as of 2023-11-07!):

n 1 2 3 4 5 6 7 8
dim (Q [t1, t2, . . . , tn]) 1 2 4 9 23 66 212 761

. (9.1)

10 Probability theory

We shall now make a few comments on the probabilistic side of the one-sided cycle shuf-
fles. Viewing them as shuffling operators, we are interested in the number of iterations
needed to get a well-mixed deck of cards. We describe a strong stationary time for all
one-sided cycle shuffles (see [4, §10]), imitating a similar result for the top-to-random
shuffle ([1]). Once the strong stationary time is reached, the deck is perfectly mixed.

Theorem 8. If λ1 ̸= 0, then the one-sided cycle shuffle λ1t1 + λ2t2 + · · · + λntn admits a
stopping time τ obtained as follows: Place a bookmark right above the bottommost card of the
deck. The bookmark itself does not move (but cards can move down past it). We let τ be the time
it takes for the bookmark to reach the top of the deck.

The distribution of the deck is uniform at time τ and any time afterwards; i.e., τ is a strong
stationary time. Furthermore, this stopping time is optimal.

If λ1 = 0, then the top card never moves, so the deck will never be uniformly mixed.
For the random-to-below shuffle, we can compute the waiting time explicitly:

Theorem 9. Let Hn be the n-th harmonic number. The expected number of steps to get to the
strong stationary time for the random-to-below shuffle is

E(τ) =
n

∑
i=2

n
i (Hn − Hi−1)

≤ n log n + n log (log n) + n log 2 + 1 if n ≥ 2.

We conjecture that the strong stationary time for the random-to-below shuffle satisfies
E(τ) = n (log n + log (log n) + O(1)), which makes the random-to-below shuffle slower
than top-to-random, for which the strong stationary time approaches n log n ([1]).
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11 Representation theory

Recall the maps L (u) and R (u) defined in Subsection 2.2 for any u ∈ k [Sn]. Any repre-
sentation theorist will recognize them as the actions of u on the left and the right regular
representation of Sn. Similar maps can be defined for any other representation of Sn. It
thus is natural to ask about analogues of Theorems 5 and 6 for arbitrary representations.
We shall briefly summarize the answer (yet unpublished).

In this section, we assume that k is a field of characteristic 0. We shall use some basic
notions from the representation theory of Sn and from symmetric functions; the reader
can find all prerequisites in [2, Chapters 6 and 7]. For any partition λ of n, a Specht
module Sλ is defined, which is an irreducible representation of Sn with a basis indexed
by standard tableaux of shape λ. Each u ∈ k [Sn] acts (on the left) on this Specht module
Sλ; we let Lλ (u) denote this action (viewed as a k-module endomorphism of Sλ).

We let R denote the representation ring of the symmetric groups (called R in [2,
§7.3]), and Λ denote the ring of symmetric functions over Z (defined in [2, §6.2]). An
isomorphism φ : Λ → R (often called the Frobenius characteristic map) is defined in
[2, §7.3], and the famous Schur function sλ ∈ Λ corresponding to a partition λ is the
preimage of the Specht module Sλ under this isomorphism φ.

For each m ∈ N, we let hm ∈ Λ denote the m-th complete homogeneous symmetric
polynomial. For each m > 0, we let zm ∈ Λ denote the Schur function s(m−1,1) =
hm−1h1 − hm ∈ Λ. (This is 0 for m = 1.)

For each subset I of [n], we define a symmetric function zI := hi1−1 ∏k
j=2 zij−ij−1 ∈ Λ,

where i1, i2, . . . , ik are the elements of I ∪ {n + 1} in increasing order (so that ik = n + 1
and I = {i1 < i2 < · · · < ik−1}). When this symmetric function zI is expanded in the
basis (sλ)λ is a partition of Λ, the coefficient of a given Schur function sλ shall be called
cI

λ. This coefficient cI
λ is actually a Littlewood–Richardson coefficient (since zI is a skew

Schur function), hence ∈ N.
We now claim the following:

Theorem 10. Let ν be a partition. Let λ1, λ2, . . . , λn ∈ k. Then, the eigenvalues of the operator
Lν (λ1t1 + λ2t2 + · · ·+ λntn) on the Specht module Sν are the linear combinations

λ1mI,1 + λ2mI,2 + · · ·+ λnmI,n for I ⊆ [n − 1] lacunar satisfying cI
ν ̸= 0,

and their respective multiplicities are the cI
ν in the generic case (i.e., if no two I’s produce the

same linear combination; otherwise the multiplicities of colliding eigenvalues should be added
together). If all these linear combinations are distinct, then Lν (λ1t1 + λ2t2 + · · ·+ λntn) is
diagonalizable.

Relatedly, (the isomorphism class of) the representation Fi/Fi−1 of Sn is φ
(
zQi

)
.
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12 Into the Hecke algebra

Like many objects originating in combinatorics, the symmetric group algebra k [Sn] has
a q-deformation. This deformation is the type-A Hecke algebra (or Iwahori-Hecke algebra),
defined in terms of a parameter q ∈ k. It is commonly denoted by H = Hq (Sn); it has a
basis (Tw)w∈Sn

indexed by the permutations w ∈ Sn, but a more intricate multiplication
than k [Sn]. We refer to [5] for the definition of this multiplication, and much more about
H. We can now define the q-deformed somewhere-to-below shuffles tH1 , tH2 , . . . , tHn by

tHℓ := Tcycℓ + Tcycℓ,ℓ+1
+ Tcycℓ,ℓ+1,ℓ+2

+ · · ·+ Tcycℓ,ℓ+1,...,n
∈ H.

Surprisingly, these q-deformed shuffles appear to share many properties of the original
t1, t2, . . . , tn. In particular, the analogues of Theorems 1 and 7 in H (where the tℓ are
replaced by the tHℓ ) seem to hold. Even more surprisingly perhaps, the dimensions of
Q [t1, t2, . . . , tn] tabulated in (9.1) (at least for n ≤ 6) appear to be the same for the H-
analogue, which suggests that all algebraic relations between the t1, t2, . . . , tn are “coming
from” the Hecke algebra. Attempts to prove these conjectures are underway.
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Abstract. We survey some recent advances in combinatorial modular representation
theory in type A through the lens of p-Kazhdan–Lusztig theory.

1 Introduction

The diagrammatic Hecke category has provided the intuition and tools necessary to cut
through the most famous conjectures of Lie theory: the Lusztig and Kazhdan–Lusztig
positivity conjectures. These conjectures place the Kazhdan–Lusztig polynomials (asso-
ciated to parabolic Coxeter systems) centre-stage in the (modular) representation theory
of Lie theoretic objects.

Kazhdan–Lusztig polynomials encode a great deal of character-theoretic and indeed
cohomological information about cell modules. We further know that Kazhdan–Lusztig
polynomials often carry information about the radical layers of indecomposable pro-
jective and cell modules. Given the almost ridiculous level of detail these polynomials
encode, it is natural to ask “what are the limits to what p-Kazhdan–Lusztig combinatorics can
tell us about the structure of the Hecke category?"

The family of ordinary Kazhdan–Lusztig polynomials which are combinatorially best
understood are those for maximal parabolics of finite symmetric groups Sm × Sn ⩽
Sm+n. These polynomials can be calculated in terms of the combinatorics of Dyck tilings
[9]. The starting point of this project was to extend this to the modular case by proving
that the p-Kazhdan–Lusztig polynomials of Sm ×Sn ⩽ Sm+n are entirely independent
of p ⩾ 0. We also find that there is a wealth of extra, richer combinatorial informa-
tion which can be encoded into the Dyck tilings. Instead of looking only at the sets of
Dyck tilings (which enumerate these Kazhdan–Lusztig polynomials) we look at the re-
lationships for passing between these Dyck tilings. In fact, this “meta-Kazhdan–Lusztig

*chris.bowman-scargill@york.ac.uk

mailto:chris.bowman-scargill@york.ac.uk
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combinatorics" is sufficiently rich as to completely determine the full structure of our
Hecke categories. In this extended abstract, we discuss how this allows us to provide
a complete combinatorial description of the submodule lattices of the cell modules for
these categories.

We also proved in [2] that the Hecke categories of Sm ×Sn ⩽ Sm+n control the struc-
ture of parabolic Verma modules for Lie algebras [4, 8, 9]; the representation category of
the general linear supergroups [3]; arc algebras from categorified knot theory [5]; walled
Brauer algebras [6]; and the combinatorics of attracting cells for torus fixed points in
Springer fibers [11]. This makes the cell modules of these categories some of the most
well-understood representations in all of non-semisimple Lie theory.

2 Kazhdan–Lusztig polynomials

Let (W, SW) be a Coxeter system: W is the group generated by the finite set SW subject
to the relations (στ)mστ = 1 for σ, τ ∈ SW , mστ ∈ N ∪ {∞} satisfying mστ = mτσ, and
mστ = 1 if and only if σ = τ. Let ℓ : W → N be the corresponding length function.
Consider SP ⊆ SW a subset and (P, SP) its corresponding Coxeter system. We say that
P is the parabolic subgroup corresponding to SP ⊆ SW . Let PW ⊆ W denote a set of
minimal coset representatives in P\W. For w = σ1σ2 · · · σℓ an expression, we define a
subword to be a sequence t = (t1, t2, . . . , tℓ) ∈ {0, 1}ℓ and set wt := σt1

1 σt2
2 · · · σ

tℓ
ℓ . We let

⩽ denote the strong Bruhat order on PW: namely y ⩽ w if for some reduced expression
w there exists a subword t and a reduced expression y such that wt = y. We denote
the Hasse diagram of this poset by G(W,P) and we refer to it as the Bruhat graph of the
pair (W, P). Explicitly, the vertices of G(W,P) are labelled by the elements of PW and for
λ ∈ PW we have a directed edge λ → λsi if λ < λsi ∈ PW for some si ∈ SW . We denote
by ∅ (for the empty word in the generators) the minimal coset representative for the
identity coset P.

We define the extended Bruhat graph Ĝ(W,P) to be the directed graph having the same
set of vertices as G(W,P) but replacing each edge in G(W,P) between λ and λsi for λ < λsi
by four “up" and “down" directed edges

λ
i−→ λsi, λ

i−→ λ, λsi
i−→ λ λsi

i−→ λsi, (2.1)

which we denote U1
i , U0

i , D1
i , D0

i respectively. We assign a degree to each edge in Ĝ(W,P)
by setting

deg(λ i−→ λsi) = deg(λsi
i−→ λ) = 0 deg(λ i−→ λ) =

{
1 if λsi > λ

−1 if λsi < λ
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s2s3s1s2

∅

s2

s2s3s2s1

s2s3s1

∅

s2

s2s3s2s1

s2s3s1 s2s3s4

s2s3s4s1s2s3s1s2

s2s3s4s1s2

s2s3s4s1s2s3

Figure 1: The graph G(W,P) for (W, P) = (S4,S2 ×S2) and (S5,S2 ×S3) respectively.

Given a path (or “Bruhat stroll") on Ĝ(W,P)

T : λ1
i1−→ λ2

i2−→ λ3
i3−→ . . .

ik−1−−→ λk,

we say that the degree deg(T) is the sum of the degrees of each edge in T. (The degree is
also sometimes known as the “Deodhar defect".) We also define the weight of T, denoted
by w(T) to be the expression

w(T) := si1si2si3 . . . sik−1 .

Given λ ∈ PW, we let Path(λ) denote the set of all paths from ∅ and ending at λ in the
extended Bruhat graph.

Definition 2.1. We say that a path T ∈ Path(µ) is reduced if it is a path of shortest possible
length from ∅ to µ.

Throughout the paper we will fix one reduced path, Tµ ∈ Path(µ), for each µ ∈ PW.
For a fixed λ, we denote the set of all paths T ∈ Path(λ) with w(T) = Tµ by Path(λ,Tµ).

Examples are given in Figure 2.
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Definition 2.2. Given (W, P) a parabolic Coxeter system, we define the matrix of light-
leaves polynomials

∆(W,P) := (∆λ,µ(q))λ,µ∈PW ∆λ,µ(q) = ∑
S∈Path(λ,Tµ)

qdeg(S)

which is a (square) lower uni-triangular matrix. This matrix can be factorised uniquely
as a product of lower uni-triangular matrices

N(W,P) := (nλ,ν(q))λ,ν∈PW B(W,P) := (bν,µ(q))ν,µ∈PW

such that nλ,ν(q) ∈ qZ[q] for λ ̸= ν and bν,µ(q) ∈ Z[q + q−1]. The polynomials nλ,ν(q)
are the anti-spherical Kazhdan–Lusztig polynomials of (W, P).

α

β

Figure 2: On the left we depict a path Tα and on the right we depict the unique element
S ∈ Path(β,Tα) for α = s2s3s4s1s2s3 and β = s2s1. These are paths on Ĝ(S5,S2×S3) (also
known as “Bruhat strolls") but we depict only the edges in G(S5,S2×S3) (for readability).

Example 2.3. The matrix ∆k in type (S4,S2 ×S2) is depicted below.

∆k s2s1s3s2 s2s1s3 s2s1 s2s3 s2 ∅
s2s1s3s2 1 · · · · ·

s2s1s3 q 1 · · · ·
s2s1 · q 1 · · ·
s2s3 · q · 1 · ·

s2 q q2 q q 1 ·
∅ q2 · · · q 1
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The factorisation of this matrix is trivial, with N = ∆k and B = Id6×6 the identity matrix.

The Hecke category (over the complex field) gives a categorification of this matrix
factorisation.

3 Hecke categories and p-Kazhdan–Lusztig polynomials

Hecke categories provide the interface between Lie theory and Kazhdan–Lusztig theory.
We begin by lifting the “folded paths" of the previous section to provide (what will be)
a basis of the Hom-spaces of the Hecke category.

In this section, we will only explicitly discuss the generators and relations for H(W,P),
the category algebra of the Hecke category, when W = Sn+m is a finite symmetric
group and P is a maximal parabolic P = Sm × Sn, as this simplifies the definitions
considerably, whilst still illustrating the important points of the general case. We define
the Soergel generators to be the framed graphs

1∅ = 1σ = spot∅
σ = forkσ

σσ = braidτσ
στ =

associated to any pair σ, τ ∈ SW with mστ = 2. We define the northern/southern read-
ing word of any diagram obtained from horizontal and vertical concatenation of Soergel
generators to be the word in the alphabet SW which records the colours along the north-
ern/southern edge of the frame respectively. We let ⊗ to be horizontal concatenation
of diagrams, the algebra multiplication ◦ will be given by vertical concatenation in the
usual manner for diagram algebras. We let ∗ denote the anti-involution which flips a
diagram through the horizontal axis.

Definition 3.1. We define up and down operators on diagrams as follows

◦ Suppose that D has northern colour sequence Tλ with λσ > λ. We define

U1
σ(D) = D U0

σ(D) = D

◦ Now suppose that D has northern colour sequence Tλ ⊗ σ with λσ > λ. We define

D0
σ(D) =

D

1Tλ

D1
σ(D) =

D

1Tλ

.
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We do not emphasise the braids in our construction/notation since it will not matter if
we pre- or post-multiply (at any stage of this construction) with a braid generator.

Definition 3.2. For S ∈ Path(λ) we construct a Soergel diagram by performing the up
and down operators of Definition 3.1 as we encounter any of the four up/down steps in
the path. We denote the resulting diagram by cS. The Soergel diagram corresponding to
the path on the right hand side of Figure 2 is given below.

cS =

U1U1 U1 U0U1 U1 U0 U1U1 U1 U0 U0 D1

Definition 3.3. (B.-D.-H.-N. [1], Libedinsky–Williamson [10]) Let (W, P) = (Sn+m,Sn ×
Sm). The algebra H(W,P) has a graded cellular basis given by {c∗ScT : S,T ∈ Path(λ), λ ∈
Pm,n} with deg(c∗ScT) = deg(S) + deg(T) with respect to the poset (Pm,n,⩽) and the
anti-involution ∗. The multiplication is given by vertical concatenation subject to the
following local relations together with their horizontal and vertical flips:

= = = 0 = 2 −

and for mστ = 3 we have the 2-colour barbell relation,

= − +

and for mστ = 3 and mτρ = 2 we have the Temperley–Lieb relations,

= − =

and for mτρ = mτπ = mρπ = 2 the commutativity relations,

= = =
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Finally, we have the non-local cyclotomic relations,

⊗ 1w = 0 ⊗ 1w = 0

for σ ∈ SW , τ ∈ SP, and w an arbitrary word for some w ∈ W.

The following theorems will hold true in the setting of arbitrary parabolic Coxeter
systems (W, P). Thus we state them in that language (lifting the combinatorics from
Section 2) despite the fact that we have only provided the (much simplified!) relations
of the case (W, P) = (Sn+m,Sn ×Sm).

For λ ∈ PW we let H <λ
(W,P) denote the span of all diagrams c∗ScT with S,T ∈ Path(µ)

with µ < λ.

Theorem 3.4 (The light leaves basis [10]). For each λ ∈ PW the graded cell module ∆k(λ)

has a basis given by
{cS +H <λ

(W,P) | S ∈ Path(λ)}

This module has a unique proper maximal submodule, rad(∆k(λ)), with simple quotient

Lk(λ) = ∆k(λ)/rad(∆k(λ))

Moreover, the set {Lk(λ)⟨k⟩ | λ ∈ PW, k ∈ Z} provides a complete set of pairwise non-
isomorphic graded simple modules for H(W,P).

Theorem 3.5 (The Kazhdan–Lusztig positivity conjecture, Elias–Williamson [7]). Let k be
a field of characteristic p ⩾ 0. The p-Kazhdan–Lusztig polynomials are defined to be the graded
composition factor multiplicities

pnλ,µ(q) = ∑
k∈Z

[∆k(λ) : Lk(µ)⟨k⟩]qk.

For p = 0 we have that the pnλ,µ(q) specialise to the classical Kazhdan–Lusztig polynomials of
Section 2 and thus the classical Kazhdan–Lusztig polynomials have non-negative coefficients.

4 Partitions and their Dyck combinatorics

Formally, a partition λ of ℓ is defined to be a weakly decreasing sequence of non-negative
integers λ = (λ1, λ2, . . .) which sum to ℓ. We call ℓ(λ) := ℓ = ∑i λi the length of the
partition λ. We define the Young diagram of a partition to be the collection of tiles

[λ] = {[r, c] | 1 ⩽ c ⩽ λr}



8 Chris Bowman, Maud De Visscher, Amit Hazi, and Catharina Stroppel

depicted in Russian style with rows at 135◦ and columns at 45◦ (as in Figure 3). We
identify a partition with its Young diagram and we write λ ⊆ µ if every box of λ is
contained in µ (that is λi ⩽ µi for all i ⩾ 1). We let λt denote the transpose partition given
by reflection of the Russian Young diagram through the vertical axis. Given m, n ∈ N

we let Pm,n denote the set of all partitions which fit into an m × n rectangle, that is

Pm,n = {λ | λ1 ⩽ m, λt
1 ⩽ n}.

For λ ∈ Pm,n, the x-coordinate of a tile [r, c] ∈ λ is equal to r − c + m ∈ {1, 2, . . . , m + n}
and we define this x-coordinate to be the “colour" or “content" of the tile and we write
cont[r, c] = r − c + m. It is well-known that a partition is uniquely determined by the
contents of its boxes and this can be seen as the main ingredient in the following result:

Proposition 4.1. For (W, P) = (Sn+m,Sn × Sm) there is a poset isomorphism between
(PW,⩽) (the minimal coset representatives under the Bruhat ordering) and (Pm,n,⩽) (the par-
titions in an (m × n)-rectangle ordered by inclusion), sending the identity coset to ∅ and the
longest element to (mn) (see Figures 1 and 3).

S2 ×S3 ⩽ S5

Figure 3: The partitions in a (2 × 3)-rectangle, ordered by inclusion. At the bottom we
depict the empty partition inside a (2 × 3)-grid and at the top we depict the unique
partition of maximal size, namely the rectangle (23). Compare this poset with the
rightmost poset depicted in Figure 1.

Having encoded the Bruhat order in terms of partition combinatorics, we ask whether
it is possible compute the Kazhdan–Lusztig polynomials in a similar fashion. The answer
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is yes, and makes use of the idea of Dyck paths. We define a path on λ to be a finite
non-empty set P of tiles that are ordered [r1, c1] ∈ λ, . . . , [rs, cs] ∈ λ for some s ⩾ 1 such
that for each 1 ⩽ i ⩽ s − 1 we have [ri+1, ci+1] = [ri + 1, ci] or [ri, ci − 1]. Note that the set
cont(P) of contents of the tiles in a path P form an interval of integers. We say that P is
a Dyck path if

min{ri + ci : 1 ⩽ i ⩽ s} = r1 + c1 = rs + cs,

that is the minimal height of the path is achieved at the start and end of the path, see
the leftmost diagram in Figure 4 for an example of a single Dyck path on a partition.
We say that P and Q are adjacent if and only if the multiset given by the disjoint union
cont(P) ⊔ cont(Q) is an interval (see the central diagram in Figure 4 for an example).

Definition 4.2. Let λ ⊆ µ ∈ Pm,n. A Dyck tiling of the skew partition µ \ λ is a set
{P1, . . . , Pk} of Dyck paths such that

µ \ λ =
k⊔

i=1

Pi

and for each i ̸= j we have Pi and Pj are not adjacent. If such a Dyck tiling exists, we
call (λ, µ) a Dyck pair. Dyck tilings for a given µ \ λ are not unique. However, it can be
shown that if we have two Dyck tilings µ \ λ = ⊔k

i=1Pi = ⊔l
j=1Qj then we must have k = l

and there is a bijection {Pi} → {Qji} satisfying cont(Pi) = cont(Qji) for all 1 ⩽ i ⩽ k.
Thus it makes sense to define the degree of the Dyck pair (λ, µ) to be deg(λ, µ) = k.

Figure 4: On the left we depict a Dyck path on (96, 63). The centre diagram depicts
two adjacent Dyck paths (and so (96, 63) \ (92, 83, 53, 3) does not admit a Dyck tiling).
On the right we depict a Dyck tiling of (96, 63) \ (9, 7, 6, 5, 4, 2, 12) of degree 6.

We are now ready to provide a closed combinatorial interpretation for the p-Kazhdan–
Lusztig polynomials of (Sn+m,Sn ×Sm). This generalises existing results of Lascoux–
Schutzenberger to arbitrary fields.
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Theorem 4.3 (B.–D.–H.–Norton [1]). Let (W, P) = (Sn+m,Sn ×Sm) and p ⩾ 0. We have
that

pnλ,µ(q) =

{
qdeg(λ,µ) if (λ, µ) is a Dyck pair;

0 otherwise.

Proof. By Definition 3.3 we know that H(W,P) has basis indexed by pairs of paths in the
weak Bruhat graph of PW. In [1] we provide a graded bijection between Path(λ,Tµ)

and Dyck tilings of shape µ \ λ. Any Dyck tiling µ \ λ is manifestly of positive degree,
unless λ = µ in which case we obtain a unique (trivial) Dyck tableau of degree zero.
Now, since any graded simple module is fixed by the anti-involution ∗ we deduce that
it must have graded dimension belonging to Z⩾0[q + q−1]. Putting together the above
facts, we deduce that the simple modules are 1-dimensional (concentrated in degree
zero) regardless of the characteristic of the field and the result follows.

5 Submodule lattices of cell modules

We are now ready to discuss one of the main results of [2]. Namely, we will provide the
full submodule lattice of the cell modules for H(W,P) when (W, P) = (Sn+m,Sn ×Sm)

over any field k. We prove in [2] that (the basic algebra of) H(W,P) is generated in
degrees 0 and 1 and hence the grading gives a submodule filtration of ∆k(λ). Thus to
determine whether there is an extension between two composition factors Lk(µ) and
Lk(ν) within ∆k(λ) (where (λ, µ) and (λ, ν) are Dyck pairs, by Theorem 4.3) it is enough
to consider pairs of adjacent degree , that is where deg(λ, ν) = deg(λ, µ) + 1. Using
the presentations of [2, Theorem B] we are able to fully determine these extensions
combinatorially as follows:

Definition 5.1. Let (λ, µ) and (λ, ν) be Dyck pairs of degree k and k + 1 respectively. We
write (λ, µ) → (λ, ν) if either:

◦ ν is obtained from µ by adding a Dyck path.

−−→

◦ ν is obtained from µ by removing a Dyck path, splitting some Dyck path in the
tiling of µ \ λ into two distinct Dyck paths:

−−→ or or
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We extend this to a partial ordering, ≺, by taking the transitive closure of →.

Figure 5: The submodule lattice of ∆k(2, 1) for m = n = 3.

An example of the lattice on ∆k(λ) for λ = (2, 1) and m = n = 3 is depicted in
Figure 5. With a little more work, one can prove that there is a unique Dyck pair (λ, α) of
maximal degree (and that the submodule lattice is a bonafide lattice in the combinatorial
sense!). Indeed we have the following:

Theorem 5.2 (B.-D.-H.-S. [2]). Fix λ ∈ PW for (W, P) = (Sn+m,Sn ×Sm). The module
∆k(λ) has a unique simple submodule, it is rigid (its socle and radical layers coincide) and the
full submodule lattice of ∆(λ) is given by the partial ordering ≺.

Proof. We first provide a full quiver and relations presentation of H(W,P) and then use
this to analyse the submodule structures of ∆k(λ). For example let µ = (32, 1) as in the
leftmost vertex of the penultimate layer of the module of the module ∆k(2, 1) depicted in
Figure 5. The composition factor Lk(32, 1) has three distinct paths leading into it; these
come from the simple modules labelled by (32), (32, 2), and (2, 12) respectively. These
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three paths can be seen to be equal using the fork-spot relations as follows:

= =

The remaining cases also follow by fork-spot relations, but with a little more thought
required. One must then show that these relations are exhaustive — this requires the
full quiver and relations presentation of H(W,P) alluded to above.
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A framework unifying some bijections for graphs
and its connection to Lawrence polytopes

Changxin Ding∗1
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Abstract. Let G be a connected graph. The Jacobian group (also known as the Picard
group or sandpile group) of G is a finite abelian group whose cardinality equals the
number of spanning trees of G. The Jacobian group admits a canonical simply transi-
tive action on the set R(G) of cycle-cocycle reversal classes of orientations of G. Hence
one can construct combinatorial bijections between spanning trees of G and R(G) to
build connections between spanning trees and the Jacobian group. The geometric bi-
jections (defined by Backman, Baker, and Yuen) and the Bernardi bijections are two
important examples. In this paper, we construct a new family of such bijections that
includes both. Our bijections depend on a pair of atlases (different from the ones
in manifold theory) that abstract and generalize certain common features of the two
known bijections. The definitions of these atlases are derived from triangulations and
dissections of the Lawrence polytopes associated to G. The acyclic cycle signatures
and cocycle signatures used to define the geometric bijections correspond to regular
triangulations. Our bijections can extend to subgraph-orientation correspondences.
Most of our results hold for regular matroids. We present our work in the language of
fourientations, which are a generalization of orientations.

Keywords: sandpile group, cycle-cocycle reversal class, Lawrence polytope, triangula-
tion, dissection, fourientation

1 Overview

This paper is an extended abstract of our recent work [8] to be submitted to the con-
ference FPSAC 2024. Most of this paper comes from [8, Section 1]. The major change
we have made is that this paper is written in the setting of graphs rather than regular
matroids. We hope this will benefit some readers who are not familiar with matroids.

Given a connected graph G, we build a new family of bijections between the set T (G)
of spanning trees of G and the set R(G) of equivalence classes of orientations of G up to
cycle and cocycle reversals. The new family of bijections includes the BBY bijection (also

∗cding66@gatech.edu
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known as the geometric bijection) constructed by Backman, Baker, and Yuen [2], and the
Bernardi bijection1 in [6].

These bijections are closely related to the Jacobian group (also known as the Picard
group or sandpile group) Jac(G) of G. The group Jac(G) and the set T (G) of spanning
trees are equinumerous. Recently, many efforts have been devoted to making T (G)
a torsor for Jac(G), i.e., defining a simply transitive action of Jac(G) on T (G). In [4],
Baker and Wang interpreted the Bernardi bijection as a bijection between T (G) and
break divisors. Since the set of break divisors is a canonical torsor for Jac(G) (see [1]),
the Bernardi bijection induces the Bernardi torsor. In [14], Yuen defined the geometric
bijection between T (G) and break divisors of G. Later, this work was generalized in
[2] where Backman, Baker, and Yuen defined the BBY bijection between T (G) and the
cycle-cocycle reversal classes R(G). The set R(G) was introduced by Gioan [10] and is
known to be a canonical torsor for Jac(G) [2]. Hence any bijection between T (G) and
R(G) makes T (G) a torsor. From the point of view in [2], replacing break divisors with
R(G) provides a more general setting. In particular, we may also view the Bernardi
bijection as a bijection between T (G) and R(G) and define the Bernardi torsor.

Our work puts all the above bijections in the same framework. It is surprising because
the BBY bijection and the Bernardi bijection rely on totally different parameters. The
main ingredients to define the BBY bijection are an acyclic cycle signature σ and an acyclic
cocycle signature σ∗ of G. The BBY bijection sends spanning trees to (σ, σ∗)-compatible
orientations, which are representatives ofR(G). The Bernardi bijection relies on a ribbon
structure on the graph G together with a vertex and an edge as initial data. Although
for planar graphs, the Bernardi bijection becomes a special case of the BBY bijection,
they are different in general [14, 2]. The main ingredients to define our new bijections
are a triangulating atlas and a dissecting atlas of G. These atlases (different from the ones
in manifold theory) abstract and generalize certain common features of the two known
bijections. They are derived from triangulations and dissections of the Lawrence polytopes
associated to graphs. The acyclic cycle signatures and cocycle signatures used to define
the BBY bijections correspond to regular triangulations.

Our bijections extend to subgraph-orientation correspondences. The construction is
similar to the one that extends the BBY bijection in [9]. The extended bijections have nice
specializations to forests and connected subgraphs.

Our results are also closely related to and motivated by Kálmán’s work [11], Kálmán
and Tóthmérész’s work [12], and Postnikov’s work [13] on root polytopes of hypergraphs,
where the hypergraphs specialize to graphs, and the Lawrence polytopes generalize the
root polytopes in the case of graphs. See [8, Section 1.8] for details.

We find it very efficient to present our theory in the language of fourientations, which
are a generalization of orientations introduced by Backman and Hopkins [3].

1The Bernardi bijection in [6] is a subgraph-orientation correspondence. In this paper, by the Bernardi
bijection we always mean its restriction to spanning trees.
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Most of our results hold for regular matroids as in [2], although in this paper we focus
on graphs. See [8] for the regular matroid version of this paper.

2 Notation and terminology

2.1 Cycles and cocycles of a graph

Let G be a connected finite graph with nonempty edge set E, where loops and multiple
edges are allowed. For each edge e ∈ E, we may assign a direction to it and hence get an
arc. Note that a loop also has two possible directions. An orientation of the graph G is an
assignment of a direction to each edge, typically denoted by

−→
O .

A subset C of E is called a cycle if there exist distinct vertices v1, v2, · · · , vn such that
C = {edge vivi+1 : i = 1, 2, · · · , n}, where vn+1 := v1. Note that a cycle may be a loop.
If we direct every edge in C from vi to vi+1 or direct every edge in C from vi+1 to vi,
then we get a directed cycle, typically denoted by

−→
C . Given a subset W of vertices, the

set of edges with one endpoint in W and the other one not in W is called a cut. A cocycle
C∗ is a cut which is minimal for inclusion. If we direct every edge in C∗ from W to its
complement (or in the other way), then we get a directed cocycle, typically denoted by

−→
C∗.

When an arc −→e , a directed cycle
−→
C , or a directed cocycle

−→
C∗ is specified, the corre-

sponding underlying edge(s) will be denoted by e, C, or C∗, respectively. Viewing
−→
O ,

−→
C , and

−→
C∗ as sets of arcs, it makes sense to write −→e ∈ −→O , etc.

Now we define cycle-cocycle reversal (equivalence) classes of orientations of G introduced
by Gioan [10]. If

−→
C is a directed cycle in an orientation

−→
O of G, then a cycle reversal

replaces
−→
C with the opposite directed cycle in

−→
O . The equivalence relation generated

by cycle reversals defines the cycle reversal classes of orientations of G. Similarly, we may
define the cocycle reversal classes. The equivalence relation generated by cycle and cocycle
reversals defines the cycle-cocycle reversal classes. It is proved in [10] that the number of
cycle-cocycle reversal classes of G equals the number of spanning trees of G.

Let T be a spanning tree of G and e be an edge. If e /∈ T, then we call the unique cycle
in T ∪ {e} the fundamental cycle of e (with respect to T); if e ∈ T, then we call the unique
cocycle in (E\T) ∪ {e} the fundamental cocycle of e (with respect to T).

2.2 Fourientations, potential cycles, and potential cocycles

It is convenient to introduce our theory in terms of fourientations. Fourientations of
graphs are systematically studied by Backman and Hopkins [3]. We will only make use
of the basic notions. A fourientation

−→
F of the graph G is a subset of the set of all the 2|E|

arcs. Intuitively, a fourientation is a choice for each edge of G whether to make it one-way
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oriented, leave it unoriented, or biorient it. We denote by −−→F the fourientation obtained
by reversing all the arcs in

−→
F . In particular, the bioriented edges remain bioriented. We

denote by
−→
F c the set complement of

−→
F , which is also a fourientation. A potential cycle

of a fourientation
−→
F is a directed cycle

−→
C such that

−→
C ⊆ −→F . A potential cocycle of a

fourientation
−→
F is a directed cocycle

−→
C∗ such that

−→
C∗ ⊆ −−→F c. See Figure 1 for examples.

−→
F −

−→
F

c

−
−→
F

−→
F

c −→
F

−→
C

−→
C

∗

Figure 1: Examples of fourientation, potential cycle and potential cocycle

3 New framework: a pair of atlases and its induced map

The BBY bijection studied in [2] relies upon a pair consisting of an acyclic cycle signa-
ture and an acyclic cocycle signature. We will generalize this work by building a new
framework where the signatures are replaced by atlases and the BBY bijection is replaced
by a map fA,A∗ . This section will introduce these new terminologies.

Definition 3.1. Let T be a tree of G (from now on, by trees we mean spanning trees).
(1) We call the edges in T internal and the edges not in T external.
(2) An externally oriented tree

−→
T is a fourientation where all the internal edges are

bioriented and all the external edges are one-way oriented. Dually, an internally oriented
tree
−→
T∗ is a fourientation where all the external edges are bioriented and all the internal

edges are one-way oriented.
(3) An external atlas A of G is a collection of externally oriented trees

−→
T such that

each tree of G appears exactly once. Dually, an internal atlas A∗ of G is a collection of
internally oriented trees

−→
T∗ such that each tree of G appears exactly once.

Given an external atlas A (resp. internal atlas A∗) and a tree T, by
−→
T (resp.

−→
T∗) we

always mean the oriented tree in the atlas though the notation does not refer to the atlas.

Definition 3.2 (See Figure 2). For a pair of atlases (A,A∗), we define the following map

fA,A∗ : {trees of G} → {orientations of G}

T 7→ −→T ∩
−→
T∗ (where

−→
T ∈ A,

−→
T∗ ∈ A∗).

In the forthcoming Example 3.4 and Example 3.5, we will put the BBY bijection and
the Bernardi bijection in our framework. Before that, we recall the definitions of cycle
(resp. cocycle) signatures and acyclic cycle (resp. cocycle) signatures in [2].
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An external atlas A

An internal atlas A∗

The map fA,A∗

�→means( )

⋂

‖

⋂

‖

⋂

‖

In the last row,

Figure 2: An example for Definition 3.1 and 3.2. The trees of the triangle graph are in
red. For each tree T, the externally oriented tree

−→
T ∈ A and the internally oriented

tree
−→
T∗ ∈ A∗ are in the same column. Their intersection fA,A∗ =

−→
T ∩
−→
T∗ is displayed

at the bottom.

Definition 3.3. Let G be a graph.
(1) A cycle signature σ of G is the choice of a direction for each cycle of G. For each

cycle C, we denote by σ(C) the directed cycle we choose for C. By abuse of notation,
sometimes we also view σ as the set of the directed cycles of G chosen by σ.

(2) The cycle signature σ is said to be acyclic if whenever aC are nonnegative reals
with ∑C aCσ(C) = 0 in RE we have aC = 0 for all C, where the sum is over all cycles of
G, and σ(C) is viewed as a {0,±1}-vector in RE w.r.t. a fixed reference orientation.

(3) Cocycle signatures σ∗ and acyclic cocycle signatures are defined similarly.

Example 3.4 (Atlases Aσ,A∗σ∗ and the BBY map (bijection)). Let σ be a cycle signature of
G. We may construct an external atlas Aσ from σ such that for each externally oriented
tree
−→
T ∈ Aσ, each external arc −→e ∈ −→T is oriented according to the orientation of the

fundamental cycle of e determined by σ. Similarly, we may construct an internal atlas
A∗σ∗ from any cocycle signature σ∗ such that for each internally oriented tree

−→
T∗ ∈ A∗σ∗ ,

each internal arc −→e ∈
−→
T∗ is oriented according to the orientation of the fundamental

cocycle of e determined by σ∗. Then when the two signatures are acyclic, the map
fAσ,A∗

σ∗
is exactly the BBY map defined in [2].

Example 3.5 (Atlases AB,A∗q and the Bernardi map (bijection)). The Bernardi bijection is
defined for a connected graph G equipped with a ribbon structure and with initial data
(q, e), where q is a vertex and e is an edge incident to the vertex; see [6, Section 3.2] for
details. Here we use an example (Figure 3) to recall the construction of the bijection in
the atlas language. The Bernardi bijection is a map from trees to certain orientations.
The construction makes use of the Bernardi tour which starts with (q, e) and goes around
a given tree T according to the ribbon structure. We may construct an external atlas AB
of G as follows. Observe that the Bernardi tour cuts each external edge twice. We orient
each external edge toward the first-cut endpoint, biorient all the internal edges of T, and
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hence get an externally oriented tree
−→
T . All such externally oriented trees form the atlas

AB.
The internal atlas A∗q of G is constructed as follows. For any tree T, we orient each

internal edge away from q, biorient external edges, and hence get
−→
T∗ ∈ A∗q . We remark

that A∗q is a special case of A∗σ∗ , where σ∗ is an acyclic cocycle signature [2, Example
1.3.4].

The map fAB,A∗q is exactly the Bernardi map.

q

e

q

e

tree T and Bernardi tour

v

e

q

−→
T

−→
T ∗

−→
T ∩

−→
T ∗

Figure 3: An example for the Bernardi map. The tree T is in red.

4 Bijections and the two atlases

We will see in this section that the map fA,A∗ induces a bijection between trees of G and
cycle-cocycle reversal classes of G when the two atlases satisfy certain conditions which
we call dissecting and triangulating. Furthermore, we will extend the bijection as in [9].

The following definitions play a central role in our paper. Although the definitions
are combinatorial, they were derived from dissecting and triangulating Lawrence poly-
topes; see Section 6.

Definition 4.1. Let A be an external atlas and A∗ be an internal atlas of G.
(1) We call A dissecting if for any two distinct trees T1 and T2, the fourientation

−→
T1 ∩ (−−→T2) has a potential cocycle. Dually, we call A∗ dissecting if for any two distinct
trees T1 and T2, the fourientation (

−→
T∗1 ∩ (−

−→
T∗2 ))

c has a potential cycle.
(2) We call A triangulating if for any two distinct trees T1 and T2, the fourientation

−→
T1 ∩ (−

−→
T2) has no potential cycle. Dually, we call A∗ triangulating if for any two distinct

trees T1 and T2, the fourientation (
−→
T∗1 ∩ (−

−→
T∗2 ))

c has no potential cocycle.

Remark 4.2. Being triangulating is stronger than being dissecting by [3, Proposition 2.6].

Now we are ready to present the first main result in this paper.
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Theorem 4.3. Given a pair of dissecting atlases (A,A∗) of a graph G, if at least one of
the atlases is triangulating, then the map

fA,A∗ : {trees of G} → {cycle-cocycle reversal classes of G}

T 7→ [
−→
T ∩
−→
T∗]

is bijective, where [
−→
T ∩
−→
T∗] denotes the cycle-cocycle reversal class containing

−→
T ∩
−→
T∗.

Example 4.4 (Example 3.4 continued). One of the main results in [2] is that the BBY map
induces a bijection between trees and cycle-cocycle reversal classes. Because Aσ and A∗σ∗
are triangulating ([8, Lemma 3.4]), Theorem 4.3 recovers this result.

Example 4.5 (Example 3.5 continued). Theorem 4.3 also recovers the bijectivity of the
Bernardi map for trees in [6]. In [6], it is proved that the Bernardi map is a bijection
between trees and the q-connected outdegree sequences. Baker and Wang [4] observed that
the q-connected outdegree sequences are essentially the same as the break divisors. Later
in [2], the break divisors are equivalently replaced by cycle-cocycle reversal classes. The
external atlas AB is dissecting ([8, Lemma 3.15]). The internal atlas A∗q is triangulating
because it equals A∗σ∗ for some acyclic signature σ∗. Hence our theorem applies.

In Theorem 4.3, if we do not further assume that one of the atlases is triangulating,
then the map fA,A∗ is not necessarily bijective; see [8, Example 1.11].

In [9], the BBY bijection is extended to a bijection between spanning subgraphs of G
(i.e., subsets of E) and orientations of G in a canonical way. We also generalize this work
by extending f−1

A,A∗ to ϕA,A∗ .

Definition 4.6 (The map ϕA,A∗). We will define a map ϕA,A∗ from orientations to sub-
graphs such that ϕA,A∗ ◦ fA,A∗ is the identity map, and hence ϕA,A∗ extends f−1

A,A∗ . We

start with an orientation
−→
O . By Theorem 4.3, we get a tree T = f

−1
A,A∗([

−→
O ]). Since

−→
O

and fA,A∗(T) are in the same cycle-cocycle reversal class, one can obtain one of them by
reversing disjoint directed cycles {−→Ci }i∈I and cocycles {

−→
C∗j }j∈J in the other ([8, Lemma

2.7]). Define ϕA,A∗(
−→
O ) = (T ∪ ⊎

i∈I
Ci)\

⊎
j∈J

C∗j , where the symbol ] means disjoint union.

The amazing fact here is that ϕA,A∗ is a bijection, and it has nice specializations.

Theorem 4.7. Fix a pair of dissecting atlases (A,A∗) of G with ground set E. Suppose
at least one of the atlases is triangulating.

(1) The map ϕA,A∗ is a bijection from orientations of G to spanning subgraphs of G.
(2) The image of the spanning forests of G under the bijection ϕ−1

A,A∗ is a representative
set of the cycle reversal classes of G.

(3) The image of the spanning connected subgraphs of G under the bijection ϕ−1
A,A∗ is

a representative set of the cocycle reversal classes of G.

Remark 4.8. We can apply Theorem 4.7 to extend and generalize the Bernardi bijection;
see [8, Corollary 3.16] for a formal statement.
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5 Signatures and the two atlases

This section studies cycle signatures (resp. cocycle signatures) in terms of external atlases
(resp. internal atlases). In particular, we will see Theorem 4.3 and Theorem 4.7 generalize
the bijections in [2] and [9], respectively.

Recall in Example 3.4 that from signatures σ and σ∗, we may construct atlases Aσ

and A∗σ∗ . It is natural to ask: (1) Which signatures induce triangulating atlases? (2) Is
any triangulating atlas induced by a signature?

The following definition and theorem answer these two questions.

Definition 5.1. A cycle signature σ is said to be triangulating if for any
−→
T ∈ Aσ and

any directed cycle
−→
C ⊆ −→T ,

−→
C belongs to σ. Dually, a cocycle signature σ∗ is said to be

triangulating if for any
−→
T∗ ∈ A∗σ∗ and any directed cocycle

−→
C∗ ⊆

−→
T∗,
−→
C∗ belongs to σ∗.

Theorem 5.2. The map α : σ 7→ Aσ is a bijection from the set of triangulating cycle
signatures of G to the set of triangulating external atlases of G. Dually, the map α∗ :
σ∗ 7→ A∗σ∗ is a bijection from the set of triangulating cocycle signatures of G to the set of
triangulating internal atlases of G.

Remark 5.3. For a dissecting external atlas A, it is possible for there to be no cycle
signature σ such that Aσ = A; see [8, Remark 1.18].

Remark 5.4. Acyclic signatures are all triangulating; see [8, Lemma 3.4]. There exists a
triangulating signature that is not acyclic; see [8, Proposition 3.14]. In Section 6, we will
see acyclic signatures correspond to regular triangulations.

A nice thing about the acyclic signatures is that the associated compatible orienta-
tions (defined below) form representatives of orientation classes (proved in [2]). The
triangulating signatures also have this property; see the proposition below.

Definition 5.5. Let G be a graph, σ be a cycle signature, σ∗ be a cocycle signature, and
−→
O be an orientation of G.

(1) The orientation
−→
O is said to be σ-compatible if any directed cycle in

−→
O is in σ.

(2) The orientation
−→
O is said to be σ∗-compatible if any directed cocycle in

−→
O is in σ∗.

(3) The orientation
−→
O is said to be (σ, σ∗)-compatible if it is both σ-compatible and

σ∗-compatible.

Proposition 5.6. Suppose σ and σ∗ are triangulating signatures.
(1) The set of (σ, σ∗)-compatible orientations is a representative set of the cycle-

cocycle reversal classes of G.
(2) The set of σ-compatible orientations (resp. σ∗-compatible orientations) is a repre-

sentative set of the cycle (resp. cocycle) reversal classes of G.
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To reformulate Theorem 4.3 and Theorem 4.7 in terms of signatures and compatible
orientations, we write

BBYσ,σ∗ = fAσ,A∗
σ∗

and ϕσ,σ∗ = ϕAσ,A∗
σ∗

.

They are exactly the BBY bijection in [2] and the extended BBY bijection in [9] when the
two signatures are acyclic. By the two theorems and a little extra work, we have the
following theorems, which generalize the work in [2] and [9], respectively.

Theorem 5.7. Suppose σ and σ∗ are triangulating signatures of a graph G. The map
BBYσ,σ∗ is a bijection from trees of G to (σ, σ∗)-compatible orientations of G.

Theorem 5.8. Suppose σ and σ∗ are triangulating signatures of a graph G.
(1) The map ϕσ,σ∗ is a bijection from orientations of G to spanning subgraphs of G.
(2) The map ϕσ,σ∗ specializes to a bijection between σ-compatible orientations and

spanning forests of G.
(3)The map ϕσ,σ∗ specializes to a bijection between σ∗-compatible orientations and

spanning connected subgraphs of G.

The definition of triangulating signatures is somewhat indirect. However, we have
the following nice description for the triangulating cycle signatures, the proof of which
is due to Gleb Nenashev. We do not know whether it holds for regular matroids.

Theorem 5.9. A cycle signature σ of a graph G is triangulating if and only if for any three
directed cycles in σ, their sum (as vectors in ZE) is not zero.

6 Lawrence polytopes and the two atlases

In this section, we will introduce a pair of Lawrence polytopes2 P and P∗ associated to a
graph G. We will see that dissections and triangulations of the Lawrence polytopes cor-
respond to the dissecting atlases and triangulating atlases, respectively, which is actually
how we derived Definition 4.1. We will also see that regular triangulations correspond
to acyclic signatures.

By fixing a reference orientation of G, we get an oriented incidence matrix of G. The
matrix is not of full rank. By deleting its last row, we get a matrix Mr×n, where n equals
the number of edges of G and r equals the number of edges of any tree of G. We can also
construct another matrix M∗(n−r)×n viewed as the dual of M. The construction is classic;
see [9, Section 3.6]. For the readers who are familiar with matroids, we can simply say
that M (resp. M∗) represents the graphic (resp. cographic) matroid associated to G.

2Readers can find some information on Lawrence polytopes in [5].
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Definition 6.1. (1) We call (
Mr×n 0
In×n In×n

)
the Lawrence matrix, where In×n is the identity matrix. The columns of the Lawrence
matrix are denoted by P1, · · · , Pn, P−1, · · · , P−n ∈ Rn+r in order.

(2) The Lawrence polytope P ⊆ Rn+r of G is the convex hull of the points P1, · · · , Pn,
P−1, · · · , P−n.

(3) If we replace the matrix M in (1) with M∗ , then we get the Lawrence polytope
P∗ ⊆ R2n−r. We use the labels P∗i for the points generating P∗.

(4) We further assume that G is loopless when defining P and that G is coloopless
when defining P∗, to avoid duplicate columns of the Lawrence matrix.

We recall some basic notions in discrete geometry.

Definition 6.2. A simplex S is the convex hull of some affinely independent points. A
face of S is a simplex generated by a subset of these points, which could be S or ∅.

Definition 6.3. Let P be a polytope of dimension d.
(1) If d + 1 of the vertices of P form a d-dimensional simplex, we call such a simplex

a maximal simplex of P .
(2) A dissection of P is a collection of maximal simplices of P such that (I) the union

is P , and (II) the relative interiors of any two distinct maximal simplices in the collection
are disjoint.

(3) If we replace the condition (II) in (2) with the condition (III) that any two distinct
maximal simplices in the collection intersect in a common face (which could be empty),
then we get a triangulation. (See Figure 4.)

triangulation dissection

Figure 4: A triangulation and a dissection of an octahedron

The next two theorems build the connection between the geometry of the Lawrence
polytopes and the combinatorics of the graph. To state them, we need to label the 2|E|
arcs of G. Note that each column of M corresponds to the arcs of G in the reference
orientation. We denote them by −→e1 , · · · ,−→en . For the rest of the arcs, we let −→e−i = −−→ei .
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Theorem 6.4. We have the following threefold bijections, all of which are denoted by χ.
(It should be clear from the context which one we are referring to when we use χ. )

(1) The Lawrence polytope P ⊆ Rn+r is an (n + r− 1)-dimensional polytope whose
vertices are exactly the points P1, · · · , Pn, P−1, · · · , P−n. Hence we may define a bijection

χ : {vertices of P} → {arcs of G}
Pi 7→ −→ei

(2) The map χ in (1) induces a bijection

χ : {maximal simplices of P} → {externally oriented trees of G}
a maximal simplex

with vertices {Pi : i ∈ I}
7→ the fourientation {χ(Pi) : i ∈ I}.

(3) The map χ in (2) induces two bijections

χ : {triangulations of P} → {triangulating external atlases of G}
a triangulation with

maximal simplices {Sj : j ∈ J}
7→ the external atlas {χ(Sj) : i ∈ J},

and

χ : {dissections of P} → {dissecting external atlases of G}
a dissection with

maximal simplices {Sj : j ∈ J}
7→ the external atlas {χ(Sj) : j ∈ J}.

(4) The statements dual to (1), (2), and (3) hold for the Lawrence polytope P∗.

Recall that the map α : σ 7→ Aσ is a bijection between triangulating cycle signatures
and triangulating external atlases of G.

Theorem 6.5. The restriction of the bijection χ−1 ◦ α to the set of acyclic cycle signatures
of G is bijective onto the set of regular triangulations of P . The dual statement also holds.
(See [7] for the definition of regular triangulations.)

We conclude this section with Table 1.

types of dissections of
Lawrence polytope P dissection triangulation regular triangulation

types of external atlas A dissecting triangulating (no good description)
types of cycle signature σ (may not exist) triangulating acyclic

Table 1: A summary of the correspondences among dissections of Lawrence polytopes,
atlases, and signatures via α and χ. We omit the dual part.
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Abstract. Given an arbitrary Coxeter system (W, S) and a nonnegative integer m, the
m-Shi arrangement of (W, S) is a subarrangement of the Coxeter hyperplane arrange-
ment of (W, S). The classical Shi arrangement (m = 0) was introduced in the case of
affine Weyl groups by Shi to study Kazhdan-Lusztig cells for W. As two key results,
Shi showed that each region of the Shi arrangement contains exactly one element of
minimal length in W and that the union of their inverses form a convex subset of the
Coxeter complex. The set of m-low elements in W were introduced to study the word
problem of the corresponding Artin-Tits (braid) group and they turn out to produce
automata to study the combinatorics of reduced words in W.

We generalize and extend Shi’s results to any Coxeter system. First, for m ∈ N the set
of minimal length elements of the regions in a m-Shi arrangement is precisely the set of
m-low elements, settling a conjecture of the first and third authors in this case. Second,
for m = 0 the union of the inverses of the (0-)low elements form a convex subset in the
Coxeter complex, settling a conjecture by the third author, Nadeau and Williams.

Keywords: Coxeter groups, low elements, Shi arrangements, Garside shadows

1 Introduction

Let (W, S) be a Coxeter system with length function ℓ : W → N and set of reflections
T = ∪w∈WwSw−1 = {sα | α ∈ Φ+}, where Φ+ is a set of positive roots in a root system
Φ for (W, S). As a reflection group, W acts on the Coxeter complex U (W, S) that arises
naturally from the Coxeter (hyperplane) arrangement A(W, S) = {Hα | α ∈ Φ+}. The
maximal simplices of C(W, S) are called chambers and they correspond to the connected
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components of the complement of A(W, S). The map w 7→ Cw is a bijection between W
and the set of chambers; see for instance Figure 1 and Figure 2 below.

Let m ∈ N. A positive root β ∈ Φ+ is m-small if there are at most m parallel, or ul-
traparallel, hyperplanes separating Hβ from the fundamental chamber Ce (not counting
Hβ). Denote by Σm the set of m-small roots. Small roots were introduced by Brink and
Howlett to prove that any finitely generated Coxeter system is automatic [2]; a key and
remarkable result in their article was to prove that Σ0 is a finite set. Later, Fu [6] proved
that Σm is finite for all m ∈ N. The sets of m-small roots are the building blocks of a
family of regular automata that recognize the language of reduced words in (W, S).

The m-Shi arrangement Shim(W, S) of (W, S) is the hyperplane subarrangement of
A(W, S):

Shim(W, S) = {Hα | α ∈ Σm}.

The regions of Shim(W, S) are union of chambers and define therefore an equivalence
relation ∼m on W. It was conjectured in [5, Conjecture 2] that each equivalence class
under ∼m contains a unique minimal length element and that the set of these minimal
length elements is the set of m-low elements. An element w ∈ W is m-low if the inversion
set Φ(w) of w is spanned by the m-small roots it contains. The set Lm of m-low elements
turns out to be a finite Garside shadow [5, 3], that is, it shadows a finite Garside family
in a corresponding Artin-Tits group.

The following two theorems are the main results of this abstract: the first theorem
settles [5, Conjecture 2] and the second settles [7, Conjecture 3].

Theorem 1.1. Let (W, S) be a Coxeter system and m ∈ N.
1. Each region of Shim(W, S) contains a unique element of minimal length.
2. The set of the minimal length elements of Shim(W, S) is equal to the set Lm of m-low

elements.

A noteworthy consequence of the Theorem 1.1 and of the fact that Lm is a Garside
shadow is that if the join z (under the right weak order) of two minimal elements of
Shim(W, S) exists, then z is also the minimal element of a region of Shim(W, S).

Theorem 1.2. Let (W, S) be a Coxeter system. The union of the chambers Cw for w−1 ∈ L0 is a
convex set.

These theorems are illustrated in Figures 1 and 2. The proofs of these theorems de-
pend on the sandwich property of short inversion posets, discussed in §3. The first author
showed in 2019 that the inversion set Φ(w) of w ∈ W is spanned by its set of short in-
versions Φ1(w). We endow Φ1(w) with a poset structure arising from the configuration
of maximal dihedral reflection subgroups: α ≺̇w β if β is not in the simple system of
the maximal dihedral reflection subgroup containing α, β ∈ Φ1(w), see §3.2. Then we
prove that any short inversion β ∈ Φ1(w) is sandwiched between a left-descent root and a
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(a) The 1-Shi arrangement
(with the 0-Shi arrangement in
darker blue)

(b) The 1-Shi polyhedron (with
the 0-Shi polyhedron inside)

Figure 1: The 1-Shi arrangement and the 1-Shi polyhedron for B̃2.
right-descent root, roots naturally defined from the left and right descent sets of w; this
is Theorem 3.6, which is the core result of this abstract. We emphasize that these posets
are new and have been very useful in analyzing elements of W.

In order to properly introduce m-Shi arrangements in as many realizations of the
Coxeter arrangement as possible (e.g. Tits cones, Davis complexes, Euclidean and Hy-
perbolic spaces, etc.), the full paper uses the notion of chambered sets. Our discussion of
chambered sets is omitted in the extended abstract.

Finally, in §5, we introduce extended Shi arrangements and we focus on Theorem 1.1
and Theorem 1.2. Combinatorics of roots and reduced words are surveyed in §2 while
m-small roots and m-low elements are discussed in §4.

Let us give a bit of history about the m-Shi arrangement. For more details and refer-
ences, see [4]. In 1986, Shi introduced the Shi arrangement Shi(W, S) = Shi0(W, S) in the
case of irreducible affine Weyl groups to study Kazhdan-Lusztig cells for W. Surprising
connections to Shi arrangements have been studied: to ad-nilpotent ideals of Borel sub-
algebras, and to Catalan arrangements, for example. In 1988, Shi proved a conjecture by
Carter on the number of sign-types of an affine Weyl group. In order to prove that con-
jecture, Shi enumerated the number of regions in Shi0(W, S). In particular, Shi proves
that each region of the Shi arrangement contains a unique minimal element and that
the union of the chambers corresponding to the inverses of those minimal elements is a
convex subset of the Euclidean space. Theorems 1.1 and 1.2 are a generalization of both
results to arbitrary Coxeter systems. Notice that in the case of affine Coxeter systems
and for m = 0, Theorem 1.1 was proven by Chapelier-Laget and the second author, while
for rank 3 and m = 0 it was proven by Charles. Osajda and Przytycki independently, in
2022, have a proof of Theorem 1.1(1) in the case m = 0,

As far as we know, the m-(extended) Shi arrangements were defined for affine Coxeter
systems in Armstrong’s thesis, but were implicit in Athanasiadis’s work on generalized
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1

23 4

(a) The 0-Shi arrangement. The low ele-
ments are shaded.

(b) The 0-Shi polyhedron

Figure 2: The 0-Shi arrangement and polyhedron of the Coxeter system with Coxeter
graph given in the upper left.

Catalan numbers. In the extended case, the regions in Shim(W, S) were first enumerated
by Yoshinaga using techniques from representation theory. In his thesis, Thiel gives a
direct proof by extending Shi’s result to any m in the case of affine Coxeter systems.

Theorem 1.1 shows that Thiel’s minimal elements for Shim(W, S) are precisely the
m-low elements. We recover Thiel’s results as a direct consequence of the proof of The-
orem 1.2.

Theorem 1.3. If (W, S) is of affine type, then the union of the chambers Cw for w−1 ∈ Lm is a
convex set.

Theorem 1.3 is not true for an indefinite Coxeter system, i.e., neither affine nor fi-
nite; for a counterexample see Figure 4. There are many new questions about the Shi
arrangement in indefinite type; see [4] for a few of them.

Acknowledgements

The authors are grateful to Christian Stump, Vic Reiner, Nathan Williams, James Parkin-
son, Franco Saliola, and the referees.

2 Preliminaries

Fix a Coxeter system (W, S) with length function ℓ : W → N; the rank of (W, S) is the
cardinality of S. We assume the reader familiar with the basics of the theory of Coxeter
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groups; see for instance [8, 1].

Combinatorics of reduced words We say that a word s1 . . . sk (si ∈ S) is a reduced word
for w ∈ W if w = s1 . . . sk and k = ℓ(w). For u, v, w ∈ W, we say u is a prefix of w if a
reduced word for u can be obtained as a prefix of a reduced word for w; v is a suffix of w
if a reduced word for u can be obtained as a suffix of a reduced word for w; and w = uv
is a reduced product if ℓ(w) = ℓ(u) + ℓ(v). More generally, we say that w = u1 . . . uk is a
reduced product if ℓ(w) = ℓ(u1) + · · ·+ ℓ(uk), ui, w ∈ W.

Weak and Bruhat orders This suffix/prefix terminology is best embodied by the weak
order. The right weak order is the poset (W,≤R) defined by u ≤R w if u is a prefix of w.
The right weak order gives a natural orientation of the right Cayley graph of (W, S): for
w ∈ W and s ∈ S, we orient the edge w → ws if w ≤R ws.

Recall that the Bruhat order is the poset (W,≤) defined as follows: u ≤ w if and only if a
word for u can be obtained as a subword of a reduced word for w. We denote covering
in the Bruhat order by x ◁ y.

Root system Please see [8] for information on geometric representations of (W, S), the
symmetric bilinear form B, and root systems. We note that (1) if B is positive definite,
then W is finite; if it is positive semi-definite but not positive definite, then W is affine;
and otherwise W is indefinite; and (2) there is a bijection between the positive roots Φ+

and the reflections T.

Depth of positive roots The depth on Φ+ [2] is the function dp : Φ+ → N defined by:

dp(β) = min{ℓ(g) | g(β) ∈ ∆}.

There is a recursion for depth [1, Lemma 4.6.2] and dp(αs) = 0 for all s ∈ S. The depth
may be seen as measuring how far a positive root is from ∆ in the orbit Φ = W(∆). There
are many different depths and they are not equivalent. In this article we also consider
the ∞-depth. For more on depths, lengths and weak orders on root systems, see [5, §5.1].

Inversion sets The inversion set Φ(w) of w ∈ W is defined by:

Φ(w) = Φ+ ∩ w(Φ−) = {β ∈ Φ+ | ℓ(sβw) < ℓ(w)}.

Its cardinality is ℓ(w) and is sometimes denoted in the literature by N(w) or inv(w).

Reflection subgroups We end this section by recalling some useful facts about reflection
subgroups and, in particular, about maximal dihedral reflection subgroups [5, §2.8]. A
reflection subgroup W ′ of W is a subgroup W ′ = ⟨sβ | β ∈ A⟩ generated by the reflections
associated to the roots in some A ⊆ Φ+. We set ΦW ′ := {β ∈ Φ | sβ ∈ W ′} and ∆W ′ :=
{α ∈ Φ+ |Φ(sα)∩ΦW ′ = {α}}. The first author showed in 1990 that ΦW ′ is a root system
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in (V, B) with simple root system ∆W ′ and simple reflections χ(W ′) := {sα | α ∈ ∆W ′}.
There are corresponding positive roots: Φ+

W ′ = ΦW ′ ∩Φ+; both notions depend on (W, S)
and not just W.

Maximal dihedral reflection subgroups A reflection subgroup W ′ of rank 2 is well-
known to be isomorphic to a dihedral group and is so called a dihedral reflection subgroup.
This following result gives a criterion for comparing depths of roots.

Proposition 2.1. Let α, β ∈ Φ+. Assume there is a dihedral reflection subgroup W ′ such that
such that α ∈ ∆W ′ and β ∈ Φ+

W ′ \ ∆W ′ , then dp(α) < dp(β).

A dihedral reflection subgroup W ′ is a maximal dihedral reflection subgroup if it is not
contained in any other dihedral reflection subgroup but itself. Our partial order on the
short inversions is based on maximal dihedral reflection subgroups. The following result
is useful: it gives the form of inversion sets in maximal dihedral reflection subgroup.

Proposition 2.2. Let W ′ be a maximal dihedral reflection subgroup. The inversion set of u ∈ W ′,
u ̸= e, is of the form ΦW ′(u) = coneΦ(α, β) with α ∈ ∆W ′ and β ∈ Φ+

W ′ .

Any dihedral reflection subgroup is contained in a unique maximal dihedral reflection
subgroup. In particular, for α, β ∈ Φ such that Rα ̸= Rβ, the dihedral reflection sub-
group ⟨sα, sβ⟩ is contained in the unique maximal dihedral reflection subgroup Mα,β,
with root subsystem Φα,β = (Rα ⊕ Rβ) ∩ Φ, and simple system ∆Mα,β . For simplicity, if
s = sα ∈ T and t = sβ ∈ T, we write Ms,t = Mα,β.

Remark 2.3. The finite maximal dihedral reflection subgroups of (W, S) are precisely the
finite parabolic subgroups of rank 2, that is, the conjugates of the standard parabolic sub-
groups Ws,t = ⟨s, t⟩ for s, t ∈ S distinct such that the order ms,t of st is finite. Conversely,
any conjugate of a rank 2 finite parabolic subgroup is maximal [3, Theorem 3.11(b)].

3 Short inversion posets

Among all inversions of an element of W, the short inversions span all the others. The
key to proving Theorem 4.3 is to exhibit an order on the short inversions and to show
that any short inversion is sandwiched between a left descent-root and a right descent-root.

3.1 Short inversions and descent roots

We think of Φ(w) as a polyhedral cone in Φ ⊆ V since Φ(w) = coneΦ(Φ(w)). The set of
short inversions of Φ(w) is the set

Φ1(w) = {β ∈ Φ+ | ℓ(sβw) = ℓ(w)− 1} = {β ∈ Φ+ | sβw ◁ w} ⊆ Φ(w).
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The first author showed in 1994 that Φ1(w) is a basis of cone(Φ(w)): the set of extreme
rays of coneΦ(Φ(w)) is indeed {R≥0β | β ∈ Φ1(w)}.

Proposition 3.1. Let w ∈ W and α, β ∈ Φ1(w) with α ̸= β. Then α ∈ ∆Mα,β or β ∈ ∆Mα,β . In
particular: (1) if ∆Mα,β = {α, α′} and β ̸= α′, then α′ /∈ Φ(w); or (2) if ∆Mα,β = {α, β}, then
Φ+

Mα,β
⊆ Φ(w) and Mα,β is finite.

The well-known left and right descent sets of w ∈ W have their natural counterparts
in Φ1(w). The left descent set DL(w) = {s ∈ S | sw ◁ w} is in bijection with the set of left
descent-roots: ΦL(w) = Φ(w) ∩ ∆. The right descent set DR(w) = {s ∈ S | ws ◁ w} is in
bijection with the set of right descent-roots: ΦR(w) = {−w(αs) | s ∈ DR(w)}.

3.2 Short inversion posets

Let w ∈ W. For α, β ∈ Φ1(w), we write α ≺̇w β if β /∈ ∆Mα,β . By Proposition 3.1, this
is equivalent to α ∈ ∆Mα,β and β /∈ ∆Mα,β . Proposition 3.2 is a direct consequence of
Proposition 2.1.

Proposition 3.2. Let w ∈ W and α, β ∈ Φ1(w). If α ≺̇ β, then dp(α) < dp(β).

For w ∈ W, we define the relation ⪯w to be the transitive and reflexive closure of ≺̇w,
which turns out to be a partial order on Φ1(w).

Proposition 3.3. The relation ⪯w is a partial order on Φ1(w). Moreover, for any reduced
word w = s1 . . . sk consider the following total order ≤ on Φ(w): αs1 < s1(αs2) < · · · <
s1 . . . sk−1(αsk). Then α ⪯w β implies α ≤ β and dp(α) ≤ dp(β) for any α, β ∈ Φ1(w).

Remark 3.4. (1) The relation ≺̇w is not the cover relation for ⪯w. (2) The total order on
Φ(w) in the statement of Proposition 3.3 is in fact the restriction of an admissible order on
Φ+ to Φ(w). Admissible orders on Φ+ are in bijection with reflection orders, which plays
a role in Kazhdan-Lusztig theory

Example 3.5. Consider (W, S) with S = {1, 2, 3, 4} and the Coxeter graph in Figure 3.
This is an indefinite Coxeter system. Let w = 1234232314, so that ΦL(w) = {α1},
ΦR(w) = {123432321(α4)} and Φ1(w) = {α1, 1(α2), 31(α2), γ = 1234232(α1), 1(α4), β =
123432321(α4)}. The Hasse diagram of the short inversion poset of w is in Figure 3.

We state now the main result of this section, the sandwich theorem.

Theorem 3.6. Let w ∈ W. For the poset (Φ1(w),⪯w), the minimal elements are the left-descent
roots in ΦL(w) and the maximal elements are the right-descent roots in ΦR(w). More precisely,
for any β ∈ Φ1(w) there is α ∈ ΦL(w) and γ ∈ ΦR(w) such that α ⪯w β ⪯w γ.

The key to proving Theorem 3.6 is to explicitly construct, for w ∈ W and for each
β ∈ Φ1(w) \ ΦL(w), a short inversion α ∈ Φ1(w) such that α ≺̇w β. For such a β ∈
Φ1(w) \ ΦL(w), we consider g ∈ W such that g(β) ∈ ∆ and ℓ(g) = dp(β), which exists
by definition of the depth.
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(a) The Coxeter graph

α1
d∞ = 0

1(α2) d∞ = 0

31(α2) d∞ = 0

γ
d∞ = 5

1(α4)d∞ = 0

β

d∞ = 7

(b) The short root poset for w.

Figure 3: Observe that any short inversion is sandwiched between a left descent-root
and a right descent-root in the short root poset. To the side of each root is its ∞-depth.
See Example 3.5 and Section 4.1.

4 m-Small roots and m-low elements

Let (W, S) be a Coxeter system and m ∈ N. In this section, we provide, as a consequence
of Theorem 3.6, a key characterization of m-low elements: an element w ∈ W is m-low if
and only if ΦR(w) consists of m-small roots, see Theorem 4.3 below.

4.1 Dominance order, dominance-depth, and m-small roots

Defined by Brink and Howlett [2], the dominance order is the partial order ⪯dom on Φ+:

α ⪯dom β ⇐⇒ (∀w ∈ W, β ∈ Φ(w) =⇒ α ∈ Φ(w)).

In the same paper, they introduced, in relation to the dominance order, another depth-
statistic: the dominance-depth or ∞-depth dp∞ : Φ+ → N is defined by

dp∞(β) = |{α ∈ Φ+ \ {β} | α ≺dom β}|.

In particular, dp∞(αs) = 0 for all s ∈ S and there is a recurrence analogous to the
recursion for depth. For m ∈ N, the set Σm of m-small roots is the set of positive roots that
dominate at most m distinct proper positive roots; that is, Σm = {β ∈ Φ+ | dp∞(β) ≤ m}.
The set Φ+ is then

⋃
m∈N Σm. The m-small roots are defined in the introduction in

relation with parallelism. Brink and Howlett [2] (for m = 0) and Fu [6] (for all m) proved
that the set Σm is finite for all m ∈ N and finite S, which implies that the sets of m-small
roots provides a decomposition of the positive roots into finite sets whenever S is finite.

4.2 m-small inversion sets and m-low elements

The m-small inversion set of w ∈ W is the set:

Σm(w) = Φ(w) ∩ Σm.
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The set Lm of m-low elements is, see [5] for more details:

Lm = {w ∈ W | Φ(w) = coneΦ(Σ(w))} = {w ∈ W | Φ1(w) ⊆ Σm}.

Example 4.1. (1) If W is finite, then Σm = Σ0 = Φ+ for all m ∈ N. Hence Lm = L0 = W.
(2) The elements of the set L0 in affine type B̃2 are the darker blue regions in Figure 1 (a),
and the elements of L1 are shaded a lighter blue. (3) The set L0 of a non-affine Coxeter
arrangement consists of the elements in the blue regions in Figure 2.

If S is finite, the set Σm is finite and therefore the set Lm is also finite. Actually, if S is
finite, the set of m-low elements is a finite Garside shadow, that is, Lm contains S and is
closed under taking suffixes and under taking join in the right weak order.

The key notion to prove that Lm is a Garside shadow is bipodality: a set A ⊆ Φ+

is bipodal if for any β ∈ A and maximal dihedral reflection subgroup W ′ such that
β ∈ ΦW ′ \ ∆W ′ we have ∆W ′ ⊆ A; see [5, 3] for more information. Because Lm is bipodal
and a Garside shadow, we have the following useful corollary.

Corollary 4.2. Let w ∈ W, α, β ∈ Φ1(w) with α ⪯w β, then dp∞(α) ≤ dp∞(β).

As a direct consequence of Theorem 3.6 (the sandwich theorem) and Corollary 4.2, we
obtain the following theorem. Together with Corollary 4.2, it establishes the relationship
between our partial order ⪯w on Φ1 and the ∞-depth.

Theorem 4.3. Let w ∈ W and set dw = max{dp∞(γ) | γ ∈ ΦR(w)}. (1) The ∞-depth on
Φ1(w) is maximum on ΦR(w): dp∞(β) ≤ dw, for all β ∈ Φ1(w). (2) The element w is a
dw-low element; (3) For m ∈ N, w ∈ Lm if and only if m ≥ dw.

The following corollary proves [5, Conjecture 2], which is key to proving Theorem 1.1.

Corollary 4.4. Let m ∈ N. The map λm : Lm → Λm = {Σm(w) | w ∈ W}, defined by
w 7→ Σm(w), is a bijection.

The next proposition is crucial to proving Theorem 1.2 and Theorem 1.3. For their
proofs, we need the existence of a supporting hyperplane of Csw which is not m-low and
which separates Csw from Ce.

Proposition 4.5. Let m ∈ N, w ∈ Lm and s ∈ S. Then sw ∈ Lm+1. Moreover: (1) sw ∈
Lm+1 \ Lm if and only if w < sw and there is r ∈ DR(w) such that dp∞(−sw(αr)) = m + 1.
(2) Under the conditions above, αs ≺dom −sw(αr) for any r ∈ DR(w) with dp∞(−sw(αr)) =
m + 1.

5 Extended Shi arrangements and low elements

Let (W, S) be a Coxeter system and m ∈ N. In this section we first introduce extended
Shi arrangements and discuss Theorem 1.1 and Theorem 1.2. We also discuss how we
obtained, as a byproduct, a direct proof of Thiel’s Theorem 1.3. Then we provide in a
counterexample to the convexity of the inverses of Lm if m > 0 and (W, S) is indefinite.
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5.1 Extended Shi arrangements and proof of Theorem 1.1

Let m ∈ N. The (extended) m-Shi arrangement Shim(W, S) is the set of m-small hyperplanes:

Shim(W, S) = {Hβ | β ∈ Σm},

which consists of the hyperplanes in A that are separated from the fundamental chamber
C by at most m parallel hyperplanes.

The closed regions for Shim(W, S) are called the m-Shi regions. The corresponding
equivalence relation ∼Σm on W is abbreviated ∼m in this case. We have u ∼m v if and
only if Cu and Cv are contained in the same m-Shi region.

Example 5.1. See Figures 1(a) and 2(a) where the blue chambers correspond to the m-
low elements and are the unique minimal chamber of their corresponding m-Shi region.
For m = 0, observe that the small hyperplanes (thick blue lines) do not have any other
hyperplanes between them and C. In Figure 1, the 1-small hyperplanes consist of the
small hyperplanes plus hyperplanes that have exactly one hyperplane between them
and C.

Proposition 5.2. For m ∈ N and u, v ∈ W, we have u ∼m v ⇐⇒ Σm(u) = Σm(v). In other
words, two chambers Cu and Cu are in the same m-Shi region if and only if u and v have the
same m-small inversion set.

In affine Weyl group and in the case m = 0, the map w 7→ Σ0(w) from W to Λ0 is
the generalization of Shi’s admissible sign type map. The following theorem proves in
particular Theorem 1.1.

Theorem 5.3. Let m ∈ N. For any w ∈ W, there is a unique m-low element u ∈ Lm such that
u ∼m w. Moreover u ≤R w. In particular, each region of Shim(W, S) contains a unique element
of minimal length, which is a low element.

Remark 5.4. (1) The proof of Theorem 5.3 depends on the bijection between m-low
elements and m-small short inversions given in Corollary 4.4. (2) In the terminology of
Parkinson and Yau, Theorem 5.3 means that any m-Shi arrangement is gated and that Lm
is the set of gates of Shim(W, S).

5.2 The m-Shi polyhedron and convexity

We now discuss the proofs of Theorem 1.2 and Theorem 1.3. Let m ∈ N. Consider the
set

Bm = {x−1(αs) | x ∈ Lm, s ∈ S, sx /∈ Lm}.

Since the set Lm is a Garside shadow, it is stable under taking suffixes, so s ∈ S \ DL(x)
in the definition above. The set Bm ⊆ Φ+ and is finite if S is.
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Definition 5.5. We define the m-Shi polyhedron to be the convex set:

Sm =
⋂

β∈Bm

H+
β .

In the case of irreducible affine Weyl groups, Shi proved in in 1987 that S0 is a
simplex with |S| half-spaces in the above definition. See Figures 1 (b) and 2 (b) where
the shaded regions correspond to the corresponding m-Shi polyhedron.

The following two theorems are Theorem 1.2 and Theorem 1.3.

Theorem 5.6. The 0-Shi polyhedron is:

S0 =
⋃

w∈L0

Cw−1 .

Theorem 5.7. Let (W, S) be an affine Coxeter system and let m ∈ N. The m-Shi polyhedron is
the union of Cw−1 for w ∈ Lm.

The proof that the m-Shi polyhedron is contained in the union of Cw−1 for w ∈ Lm is
relatively straightforward and is a consequence of Lemma 5.8.

Lemma 5.8. Let m ∈ N and w ∈ W such that Φ(w−1) ∩ Bm = ∅. Then w ∈ Lm. In other
words: Lm ⊇ {w ∈ W | Φ(w−1) ∩Bm = ∅}.

Proving that the union of Cw−1 for w ∈ Lm is contained in the Shi polyhedron is
trickier and is not true in general for m > 0 in indefinite types–see Remark 5.9. It
amounts to showing Lm ⊆ {w ∈ W | Φ(w−1) ∩ Bm = ∅}. The proof of this boils down
to showing that if we have a w ∈ W such that Φ(w−1) ∩ Bm ̸= ∅, then w is not low.
Here we need the existence of a supporting hyperplane which is not m-low (and some
other conditions) and use Proposition 4.5 to obtain it.

Remark 5.9. In the proof of Theorem 5.7, we needed and proved the following property
: if α, β, γ ∈ Φ+ are such that α ⪯dom γ and β ⪯dom γ, then either α ⪯dom β ⪯dom γ or
β ⪯dom α ⪯dom γ. This property arises from the transitivity of the parallelism relation
in Euclidean geometry. Unfortunately, it is not true in non-Euclidean space.

Convexity and extended Shi arrangements in indefinite Coxeter systems There can be
no result analogous to Theorem 1.2 for all indefinite systems and m > 0. For instance,
consider (W, S) be the indefinite system whose Coxeter graph is given in Figure 4. The
red hyperplanes on the right do form a polyhedron, but C21 and C23 are not enclosed in
it (light gray Figure 4(b)), although 12 and 32 are 1-low. The union of Cw−1 for w ∈ L1 is
not even convex, since C213 (red) is not in the union as 312 = 132 /∈ L1.
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2

1

∞

3

∞

e 1

2

3 13

23

21213

12

32 132

(a) The 0 and 1-Shi arrangements

2(Hα3)

2(Hα1)

12(Hα1)

12(Hα3)

32(Hα1)

32(Hα3)

132(Hα1)

132(Hα3)

(b) The 0- and 1-polyhedron.

Figure 4: The 0 and 1-Shi arrangements and a counterexample of convexity for the
indefinite system whose Coxeter graph is in the top middle of the picture. See Sec-
tion 5.2.
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Universal Plücker coordinates for the Wronski
map and positivity in real Schubert calculus
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Abstract. Given a d-dimensional vector space V ⊂ C[u] of polynomials, its Wronskian
is the polynomial (u + z1) · · · (u + zn) whose zeros −zi are the points of C such that V
contains a nonzero polynomial with a zero of order at least d at −zi. Equivalently, V is
a solution to the Schubert problem defined by osculating planes to the moment curve
at z1, . . . , zn. The inverse Wronski problem involves finding all V with a given Wronskian
(u + z1) · · · (u + zn). We solve this problem by providing explicit formulas for the
Grassmann–Plücker coordinates of the general solution V, as commuting operators in
the group algebra C[Sn] of the symmetric group. The Plücker coordinates of individual
solutions over C are obtained by restricting to an eigenspace and replacing each operator
by its eigenvalue. This generalizes work of Mukhin, Tarasov, and Varchenko (2013) and
of Purbhoo (2022), which give formulas in C[Sn] for the differential equation satisfied
by V. Moreover, if z1, . . . , zn are real and nonnegative, then our operators are positive
semidefinite, implying that the Plücker coordinates of V are all real and nonnegative.
This verifies several outstanding conjectures in real Schubert calculus, including the
positivity conjectures of Mukhin and Tarasov (2017) and of Karp (2021), the disconjugacy
conjecture of Eremenko (2015), and the divisor form of the secant conjecture of Sottile
(2003). The proofs involve the representation theory of Sn, symmetric functions, and
τ-functions of the KP hierarchy.

Keywords: Wronskian, Schubert calculus, symmetric group, symmetric functions, KP
hierarchy, total positivity

1 Introduction

For a system of real polynomial equations with finitely many solutions, we normally
expect that some — but not all — of the solutions are real, while the remaining solutions
come in complex-conjugate pairs. The precise number of real solutions usually depends
in a complicated way on the coefficients of the equations. However, in some rare cases, it
is possible to obtain a better understanding of the real solutions. A remarkable example
occurs in the Schubert calculus of the Grassmannian Gr(d, m), for Schubert problems

∗skarp2@nd.edu

mailto:skarp2@nd.edu
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defined by flags osculating a rational normal curve. In 1993, Boris and Michael Shapiro
conjectured that all such Schubert problems with real parameters have only real solutions.
The corresponding systems of equations arise in various guises throughout mathematics,
from algebraic curves [6, 20] to differential equations [30] to pole-placement problems [35,
7]. The conjecture was eventually proved by Mukhin, Tarasov, and Varchenko [31], using
a reformulation in terms of Wronski maps, and machinery from quantum integrable
systems and representation theory.

While the details of the Mukhin–Tarasov–Varchenko proof are rather intricate, the basic
idea is relatively straightforward. They consider a family of commuting linear operators
arising from the Gaudin model, and show that they satisfy algebraic equations defining a
Schubert problem. Hence, by considering the spectra of these operators, they are able to
infer some basic properties of the solutions to the Schubert problem. In this paper we
extend these results, making the connection between the commuting operators and the
corresponding solutions more explicit and concrete. Consequently, we obtain stronger
results in real algebraic geometry, including several generalizations of the Shapiro–Shapiro
conjecture. Namely, we resolve the divisor form of the secant conjecture of Sottile (2003),
the disconjugacy conjecture of Eremenko [10], and the positivity conjectures of Mukhin–
Tarasov (2017) and Karp [18]. Proofs and further details appear in the paper [19].

2 The Wronski map and the Bethe algebra

Let Gr(d, m) denote the Grassmannian of all d-dimensional linear subspaces of Cm. We
identify Cm with Cm−1[u], the m-dimensional vector space of univariate polynomials of
degree at most m− 1, via the isomorphism

(a1, . . . , am)↔
m

∑
j=1

aj
uj−1

(j− 1)!
. (2.1)

In particular, we also view Gr(d, m) as the space of d-dimensional subspaces of Cm−1[u].
Now fix a nonnegative integer n, and let ν be a partition of n with at most d parts whose

sizes are at most m− d. The Schubert cell X ν ⊆ Gr(d, m) is the space of all d-dimensional
linear subspaces of C[u] that have a basis ( f1, . . . , fd), with deg( fi) = νi + d− i. As a
scheme, X ν is isomorphic to n-dimensional affine space.

Let Pn ⊆ C[u] denote the n-dimensional affine space of monic polynomials of degree
n. Given V ∈ X ν, choose any basis ( f1, . . . , fd) for V. We define Wr(V) to be the unique
monic polynomial which is a scalar multiple of the Wronskian

Wr( f1, . . . , fd) :=

∣∣∣∣∣∣∣∣
f1 f ′1 f ′′1 . . . f (d−1)

1
...

...
... . . . ...

fd f ′d f ′′d . . . f (d−1)
d

∣∣∣∣∣∣∣∣ .
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It is not hard to see that Wr(V) ∈ Pn is a polynomial of degree n, and is independent of
the choice of basis. Thus we obtain a map Wr : X ν → Pn, called the Wronski map on X ν.
Abstractly, this is a finite morphism from n-dimensional affine space to itself.

Suppose g(u) = (u + z1) · · · (u + zn) ∈ Pn, where z1, . . . , zn are complex numbers.
The inverse Wronski problem is to compute the fibre Wr−1(g) ⊆ X ν.

In their study of the Gaudin model for gln, Mukhin, Tarasov, and Varchenko [30, 32, 26,
31, 28] discovered a connection between the inverse Wronski problem, and the problem
of diagonalizing the Gaudin Hamiltonians [16]. We will focus on the version of this story
from [29], in which the Gaudin Hamiltonians generate the Bethe algebra (of Gaudin type)
Bn(z1, . . . , zn) ⊆ C[Sn], which is a commutative subalgebra of the group algebra of the
symmetric group.

Let Mν be the Specht module (i.e. irreducible Sn-representation) associated to the parti-
tion ν. Then Bn(z1, . . . , zn) acts on Mν, and the image of this action defines a commutative
subalgebra Bν(z1, . . . , zn) ⊆ End(Mν). We have the following correspondence:

Theorem 2.1 (Mukhin, Tarasov, and Varchenko [29]). The eigenspaces E ⊆ Mν of the algebra
Bν(z1, . . . , zn) are in one-to-one correspondence with the points VE ∈Wr−1(g). The eigenvalues
of the generators of Bν(z1, . . . , zn) are coordinates for VE in some coordinate system.

Unfortunately, Theorem 2.1 is poorly suited to studying certain properties of the
Wronski map. This is because the generators of Bn(z1, . . . , zn) correspond to a somewhat
unusual coordinate system for X ν. Namely, given V ∈ X ν, there is a unique fundamental
differential operator DV = ∂d

u + ψ1(u)∂d−1
u + · · ·+ ψd(u) with coefficients ψj(u) ∈ C(u),

such that V is the space of solutions to the differential equation DV f (u) = 0. The coeffi-
cients of DV can be regarded as a coordinate system on X ν. In the precise formulation
of Theorem 2.1, the point VE ∈ Wr−1(g) is computed in these coordinates. In order to
express VE in standard coordinates, we need to solve a differential equation, resulting in
highly non-linear formulas.

Our main result is Theorem 3.2 below, which is a new version of Theorem 2.1. Rather
than using the fundamental differential operator coordinates, it computes VE ∈Wr−1(g)
in the Plücker coordinates, which are the d× d minors of a d× m matrix whose rows
form a basis for VE. We introduce (by explicit formulas) a new set of generators βλ

for Bn(z1, . . . , zn), which are indexed by partitions λ. For any eigenspace E ⊆ Mν, the
corresponding eigenvalues of the βλ’s are the Plücker coordinates of VE.

There are three major advantages of this formulation. First, we obtain a more direct
description of VE which does not require solving a differential equation; the implicit part
of our construction lies entirely in understanding the representation theory of Sn. Second,
many natural objects of interest are given by linear functions of the Plücker coordinates.
For example, we readily obtain explicit bases for VE; the Wronskian and the fundamental
differential operator coordinates are given as linear functions of the Plücker coordinates;
and Schubert varieties and Schubert intersections are defined by linear equations in the
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Plücker coordinates. Third, basic properties of the operators βλ imply positivity results
about the Plücker coordinates of VE. This enables us to resolve several conjectures in real
algebraic geometry, as we explain in Section 4.

3 Universal Plücker coordinates

We now state our main theorem. For every partition λ, define

βλ(t) := ∑
X⊆[n],
|X|=|λ|

∑
σ∈SX

χλ(σ)σ ∏
i∈[n]\X

(zi + t) . (3.1)

Here [n] = {1, . . . , n}, SX ⊆ Sn is the group of permutations of X, and χλ : SX → C is
the character of the Specht module Mλ. We note that χλ is integer-valued, so βλ(t) is in
fact defined over Z. Also, βλ(t) is nonzero if and only if |λ| ≤ n. Set βλ := βλ(0).

Example 3.1. If λ = (1, 1), then χλ is the sign character on S2. When n = 3, we get

β11 = (1S3 − σ1,2)z3 + (1S3 − σ1,3)z2 + (1S3 − σ2,3)z1 ,

where 1S3 denotes the identity element of S3, and σi,j := (i j) is the transposition
swapping i and j.

Theorem 3.2. Let z1, . . . , zn ∈ C, and set g(u) := (u + z1) · · · (u + zn) ∈ C[u]. The operators
βλ(t) ∈ C[Sn] satisfy the following algebraic identities:

(i) Commutativity relations:

βλ(s)βµ(t) = βµ(t)βλ(s) for all partitions λ and µ . (3.2)

(ii) Translation identity:

βµ(s + t) = ∑
λ⊇µ

fλ/µ

|λ/µ|! t|λ/µ|βλ(s) for all partitions µ , (3.3)

where fλ/µ denotes the number of standard Young tableaux of shape λ/µ.
(iii) The quadratic Plücker relations.

Furthermore:
(iv) For every partition λ and t ∈ C, we have βλ(t) ∈ Bn(z1, . . . , zn). The set {βλ | |λ| ≤ n}

generates Bn(z1, . . . , zn) as an algebra.
(v) If E ⊆ Mν is any eigenspace of Bν(z1, . . . , zn), then the corresponding eigenvalues of

the operators βλ are the Plücker coordinates of a point VE ∈ X ν ⊆ Gr(d, m) such that
Wr(VE) = g. Every point of Wr−1(g) corresponds to some eigenspace E ⊆ Mν of
Bν(z1, . . . , zn).
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(vi) The multiplicity of VE as a point of Wr−1(g) is equal to dim Ê, where Ê ⊆ Mν is the
generalized eigenspace of Bν(z1, . . . , zn) containing E.

We note that while the translation identity in part (ii) is linear, parts (i) and (iii) both
involve quadratic expressions in Bn(z1, . . . , zn), making them intractable to prove directly.
In both of these cases we proceed by reducing the problem to — and then proving — an
easier identity, using a diverse set of algebraic tools. For part (i), we use properties of
Bn(z1, . . . , zn) and combinatorial ideas which appeared in [34]. For part (iii), we employ
the translation identity, properties of the exterior algebra, new combinatorial identities of
symmetric functions, and the theory of τ-functions of the KP hierarchy. Once identities
(i)–(iii) are established, parts (iv)–(vi) are relatively straightforward consequences. See
[19, Sections 3–4] for the details.

There is a precise scheme-theoretic formulation of Theorem 3.2(v); see [19, Section 5.1].
In [19, Section 5.2], we also use Theorem 3.2 to give two explicit bases for any element
V ∈Wr−1(g), in terms of our operators βλ(t) acting on the associated eigenspace E.

Example 3.3. We illustrate Theorem 3.2 in the case n = 2, for the Grassmannian Gr(2, 4).
Writing S2 = {1S2 , σ1,2}, we have

β0 = 1S2 z1z2 , β1 = 1S2(z1 + z2) , β2 = 1S2 + σ1,2 , β11 = 1S2 − σ1,2 ,

and βλ = 0 for all other partitions λ. Note that the βλ’s satisfy the equation

−β0β22 + β1β21 − β11β2 = 0 ,

which is the first non-trivial Plücker relation.
There are two Specht modules for S2, namely M2 and M11, which are both 1-

dimensional. In M2, both 1S2 and σ1,2 act with eigenvalue 1, and so

β0  z1z2 , β1  z1 + z2 , β2  2 , β1,1  0 . (3.4)

These are the Plücker coordinates of the element V =
〈

1, z1z2u + z1+z2
2 u2 + 1

3 u3
〉
∈ X 2.

That is, when we represent V as the row span of the 2× 4 matrix(
1 0 0 0
0 z1z2 z1 + z2 2

)
(where vectors correspond to polynomials as in (2.1)), the maximal minors are precisely
the βλ’s, where we read off the column set of a minor from λ as in Figure 1.

On the other hand, in M11, the element 1S2 acts with eigenvalue 1 and σ1,2 acts with

eigenvalue −1, giving the solution V =
〈

z1+z2
2 + u, −z1z2 + u2

〉
∈ X 1,1. We can check

that both elements V of Gr(2, 4) have Wronskian g(u) = (u + z1)(u + z2).



6 Steven N. Karp and Kevin Purbhoo

1

4

2 3d = 2

m− d = 2

Figure 1: The partition λ = (2) corresponds to the column set {1, 4}, where d = 2 and
m = 4. When we label the edges of the border of the diagram of λ by 1, . . . , m from
southwest to northeast, the elements of I are the labels of the vertical edges.

Example 3.4. We illustrate parts (i) and (iii) of Theorem 3.2 in the case n = 4. Consider
the 2-dimensional representation Mν of S4, ν = (2, 2). Following the conventions used
by Sage [37], the simple transpositions σ1,2 and σ3,4 both act as ( 1 0

1 −1 ), and σ2,3 acts as
( 0 −1
−1 0 ). Let βλ

ν ∈ End(Mν) denote the operator βλ acting on Mν, which we regard as a
2× 2 matrix. Then

β0
ν = z1z2z3z4

(
1 0
0 1

)
, β1

ν = (z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4)
(

1 0
0 1

)
,

β2
ν =

(
2z1z2 + z1z4 + z2z3 + 2z3z4 z1z3 − z1z4 − z2z3 + z2z4

z1z2 − z1z4 − z2z3 + z3z4 2z1z3 + z1z4 + z2z3 + 2z2z4

)
,

β11
ν =

(
2z1z3 + z1z4 + z2z3 + 2z2z4 −z1z3 + z1z4 + z2z3 − z2z4
−z1z2 + z1z4 + z2z3 − z3z4 2z1z2 + z1z4 + z2z3 + 2z3z4

)
,

β21
ν = 3(z1 + z2 + z3 + z4)

(
1 0
0 1

)
, β22

ν = 12
(

1 0
0 1

)
,

and βλ
ν = 0 for all other partitions λ. We can see that the βλ

ν ’s pairwise commute and
satisfy the Plücker relation −β0

νβ22
ν + β1

νβ21
ν − β11

ν β2
ν = 0 .

4 Conjectures in real algebraic geometry

We continue to work with the Schubert cell X ν ⊆ Gr(d, m), where ν is a partition of n.
The Schubert variety X ν ⊆ Gr(d, m) is the closure of X ν. We write@A for the rectangular
partition (m− d)d = (m− d, . . . , m− d). In this case, X@A = Gr(d, m).

We will be mainly concerned with the following Schubert problem. Given W1, . . . , Wn
in Gr(m− d, m), determine all d-planes V such that

V ∈ X ν and V ∩Wi 6= {0} for all i = 1, . . . , n . (4.1)

When W1, . . . , Wn are sufficiently general, the number of distinct solutions V to the
Schubert problem (4.1) is exactly fν = dim Mν.

We will be concerned with solving (4.1) over the real numbers when W1, . . . , Wn are
real, and especially with instances for which all the solutions are real. The interest in
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algebraic problems with only real solutions dates back at least to Fulton [13, Section 7.2],
who wrote, “The question of how many solutions of real equations can be real is still very
much open, particularly for enumerative problems.” Note that the property of having
only real solutions is extremely rare; for example, for a ‘random’ Schubert problem on
Gr(d, m) defined over R, the number of real solutions is roughly the square root of the
number of complex solutions [4]. We refer to [39] for a detailed survey of real enumerative
geometry.

4.1 The Shapiro–Shapiro conjecture

The moment curve γ : C → Cm−1[u] is the parametric curve

γ(t) :=
(u + t)m−1

(m− 1)!
. (4.2)

The closure of the image of γ in Pm−1 is a rational normal curve. A d-plane V ∈ Gr(d, m)
osculates γ at w ∈ C if (γ(w), γ′(w), γ′′(w), . . . , γ(d−1)(w)) is a basis for V. The Shapiro–
Shapiro conjecture can be stated as follows:

Theorem 4.1 (Mukhin, Tarasov, and Varchenko [31]). Let z1, . . . , zn be distinct real numbers.
For i = 1, . . . , n, let Wi ∈ Gr(m− d, m) be the osculating (m− d)-plane to γ at zi. Then there
are exactly fν distinct solutions to the Schubert problem (4.1), and all solutions are real.

Theorem 4.1 was conjectured by Boris and Michael Shapiro in 1993, and extensively
tested and popularized by Sottile [38]. It was proved in the cases d ≤ 2 and m− d ≤ 2
by Eremenko and Gabrielov [8], and in general by Mukhin, Tarasov, and Varchenko [31].
Their proof was later restructured and simplified in [34]. A very different proof, based on
geometric and topological arguments, is given in [23].

Using Theorem 3.2, we obtain a number of generalizations of Theorem 4.1:

4.2 The divisor form of the secant conjecture

Let I ⊆ R be an interval. An (m− d)-plane W ∈ Gr(m− d, m) is a secant to γ along I if
there exist distinct points w1, . . . , wm−d ∈ I such that (γ(w1), . . . , γ(wm−d)) is a basis for
W. More generally, W is a generalized secant to γ along I if there exist distinct points
w1, . . . , wk ∈ I and positive integers m1, . . . , mk, such that m1 + · · · + mk = m − d and(
γ(w1), γ′(w1), . . . , γ(m1−1)(w1), . . . , γ(wk), γ′(wk), . . . , γ(mk−1)(wk)

)
is a basis for W.

Around 2003, Frank Sottile formulated the secant conjecture, which asserts in particu-
lar that Theorem 4.1 remains true when W1, . . . , Wn are generalized secants to γ along
disjoint intervals of R. This statement is what we call the divisor form of the secant
conjecture, since it arises from intersecting Schubert varieties of codimension one, i.e.,
Schubert divisors; the general form of the secant conjecture involves intersecting Schubert
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varieties of arbitrary codimension. Note that this case of the secant conjecture is a gener-
alization of the Shapiro–Shapiro conjecture, since an osculating plane to γ is a special
case of a generalized secant.

The secant conjecture appeared in [36] (cf. [39, Section 13.4]), and it was extensively
tested experimentally in a project led by Sottile [15], as described in [17]. It has also
been proved in special cases: Eremenko, Gabrielov, Shapiro, and Vainshtein [9, Section 3]
established the case m − d ≤ 2; and Mukhin, Tarasov, and Varchenko [27] (cf. [15,
Section 3.1]) verified the case of the divisor form when there exists r > 0 such that every
Wi is a (non-generalized) secant where w1, . . . , wm−d ∈ Ii are an arithmetic progression of
step size r.

We show that the divisor form of the secant conjecture is true in general:

Theorem 4.2 (Secant conjecture, divisor form). Let I1, . . . , In ⊆ R be pairwise disjoint real
intervals. For i = 1, . . . , n, let Wi ∈ Gr(m− d, m) be a generalized secant to γ along Ii. Then
there are exactly fν distinct solutions to the Schubert problem (4.1), and all solutions are real.

This verifies the secant conjecture in the first non-trivial case of interest for a Schubert
problem on an arbitrary Grassmannian. We do not yet know how to address the general
form of the secant conjecture with our methods.

4.3 The disconjugacy conjecture

Suppose that V is a d-dimensional vector space of real analytic functions, defined on
an interval I ⊆ R. Disconjugacy is concerned with the question of how many zeros
a function in V can have. By linear algebra, there always exists a nonzero function
f ∈ V such that f has at least d− 1 zeros on I. We say that V is disconjugate on I if
every nonzero function in V has at most d− 1 zeros on I (counted with multiplicities).
Disconjugacy has long been studied because it is related to explicit solutions for linear
differential equations; see [5], as well as [18, Section 4.1] and the references therein.

It is not always straightforward to decide if V is disconjugate on I. However, a
necessary condition is that Wr(V) has no zeros on I. This is because Wr(V) has a zero at
w if and only if there exists a nonzero f ∈ V such that f has a zero at w of multiplicity at
least d. In general, the converse is false; for example, V = 〈cos u, sin u〉 is not disconjugate
on I = R, and Wr(V) = 1. Eremenko [10, 11] conjectured that the converse statement
is actually correct under very special circumstances. This is known as the disconjugacy
conjecture, which we state now as a theorem:

Theorem 4.3 (Disconjugacy conjecture). Let V ⊆ R[u] be a finite-dimensional vector space of
polynomials such that Wr(V) has only real zeros. Then V is disconjugate on every interval which
avoids the zeros of Wr(V).

The disconjugacy conjecture was previously verified in the case that dim(V) ≤ 2 [9]
(cf. [10, p. 341]).
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4.4 Positivity conjectures

A d-plane V ∈ Gr(d, m) is called totally nonnegative if all of its Plücker coordinates are
real and nonnegative (up to rescaling). Similarly, V is called totally positive in X ν if
V ∈ X ν and all of its Plücker coordinates which are not trivially zero on X ν are positive,
i.e.,

∆λ > 0 for all λ ⊆ ν and ∆λ = 0 for all λ 6⊆ ν . (4.3)

For example, each element V ∈ Gr(2, 4) from Example 3.3 is totally nonnegative if and
only if z1, z2 ≥ 0, and is totally positive in its Schubert cell if and only if z1, z2 > 0.

The totally nonnegative part of Gr(d, m) is a totally nonnegative partial flag variety in
the sense of Lusztig [24, 25] (see [3, Section 1] for further discussion), and was studied
combinatorially by Postnikov [33]. Total positivity in Schubert cells was considered
by Berenstein and Zelevinsky [2]. These and similar totally positive spaces have been
extensively studied in the past few decades, with connections to representation theory
[24], combinatorics [33], cluster algebras [12], soliton solutions to the KP equation [22],
scattering amplitudes [1], Schubert calculus [21], topology [14], and many other topics.

Mukhin–Tarasov and Karp conjectured that the reality statements from Sections 4.1
and 4.2 have totally positive analogues. We verify this in slightly greater generality:

Theorem 4.4 (Positive Shapiro–Shapiro conjecture). Let z1, . . . , zn and W1, . . . , Wn be as in
Theorem 4.1.

(i) If z1, . . . , zn ∈ [0, ∞), then all solutions to the Schubert problem (4.1) are real and totally
nonnegative.

(ii) If z1, . . . , zn ∈ (0, ∞), then all solutions to the Schubert problem (4.1) are real and totally
positive in X ν.

Theorem 4.5 (Positive secant conjecture, divisor form). Let I1, . . . , In and W1, . . . , Wn be as
in Theorem 4.2.

(i) If I1, . . . , In ⊆ [0, ∞), then there are exactly fν distinct solutions to the Schubert problem
(4.1), and all solutions are real and totally nonnegative.

(ii) If I1, . . . , In ⊆ (0, ∞), then there are exactly fν distinct solutions to the Schubert problem
(4.1), and all solutions are real and totally positive in X ν.

In the special case ν =@A, Theorem 4.4(i) was conjectured by Evgeny Mukhin and
Vitaly Tarasov in 2017, and Theorems 4.4 and 4.5 were conjectured independently in [18].

4.5 Relationships between conjectures

We now explain how the conjectures stated in this section are related to each other, and
why they follow from our main result Theorem 3.2. We have already noted that the
divisor form of the secant conjecture (Theorem 4.2) implies the Shapiro–Shapiro conjecture
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(Theorem 4.1). Eremenko showed that the disconjugacy conjecture (Theorem 4.3) implies
the divisor form of the secant conjecture; in fact, his motivation was to generalize the
argument used to prove the m − d ≤ 2 case of the secant conjecture [9, Section 3].
Moreover, it was shown in [18] using topological arguments that the four statements
in Theorems 4.4 and 4.5 in the case ν = @A are all pairwise equivalent, and that they
are moreover equivalent to the disconjugacy conjecture. We can similarly show that
Theorem 4.4 implies Theorem 4.5. Therefore to prove all of these statements, it suffices to
establish Theorem 4.4. This is a direct consequence of Theorem 3.2; we briefly sketch the
argument (see [19, Section 1] for the details).

If W ∈ Gr(m− d, m) osculates γ at w ∈ C, then V ∩W 6= {0} if and only if −w is a zero
of Wr(V). Hence in the setting of Theorem 4.4, the Schubert problem (4.1) is equivalent
to V ∈ X ν and Wr(V) = g, where g(u) = (u + z1) · · · (u + zn). By Theorem 3.2(v),
we can write any such solution V as VE for some eigenspace E ⊆ Mν of Bν(z1, . . . , zn).
This means that the Plücker coordinates [∆λ : λ ⊆ @A] of V are the eigenvalues of
the operators βλ on E. If z1, . . . , zn ∈ [0, ∞), then one can show that each βλ is positive
semidefinite. Therefore the eigenvalues of βλ are real and nonnegative, so V is totally
nonnegative. This proves part (i) of Theorem 4.4. Similarly, if z1, . . . , zn ∈ (0, ∞), then
each βλ with λ ⊆ ν is positive definite, and hence has positive eigenvalues. This implies
that V is totally positive in X ν, proving part (ii).
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Wilting Theory of Flow Polytopes
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1Department of Mathematics, University of Kentucky, Lexington, Kentucky, USA

Abstract. Many important polytopes and their canonical triangulations appear as
DKK triangulations of a framed directed acyclic graph (DAG) Γ. These triangulations
are combinatorially modelled by cliques of routes on the framed DAG. When Γ is
amply framed, the dual graph of its DKK triangulation, or DKK graph, has a lattice
structure called the DKK lattice. We study the clique complex of routes which avoid
an arbitrary set of “wilted” edges. This leads to various decompositions of the DKK
lattice into intervals, generalizing decompositions of the Tamari lattice into ν-Tamari
intervals. We further classify the framed DAGs whose DKK graphs may be understood
as an interval in the DKK lattice of an amply framed DAG. We realize ν-Tamari lattices
and the s-weak order as DKK lattices of such “rooted” DAGs and we extend results
about shellability and h∗-polynomials from the amply framed case to the rooted case.

Keywords: flow polytopes, triangulation, ν-Tamari lattice, gentle algebras

1 Introduction

Flow polytopes, which model the space of unit flows on a directed acyclic graph (DAG),
are a fundamental object of combinatorial optimization and have relations to many
fields such as representation theory and algebraic geometry. Danilov, Karzanov, and
Koshevoy [5] introduced framed DAGs and defined a notion of pairwise compatibility
on routes. The complex of cliques, or sets of pairwise compatible routes, of a framed
DAG Γ serves as a combinatorial model for a (regular unimodular) DKK triangulation
of the associated flow polytope. Many important classes of polytopes and their canon-
ical triangulations appear in this way, such as associahedra, generalized permutahedra,
s-permutahedra, and many order polytopes. We refer to the dual graph of the DKK
triangulation as the DKK Graph GΓ. An exceptional route is one which is in every maximal
clique, and Γ is amply framed if every edge is in an exceptional route. It was shown in [1]
that the clique complex of an amply framed DAG Γ agrees with the support τ-tilting
complex of a gentle algebra as described in [3, 7]; in particular, its dual graph has a
lattice stucture which we call the DKK Lattice LΓ.

In this abstract, we mark a set W of edges of a framed DAG as wilted and we study
the lush subgraph G(Γ,W) of GΓ of maximal cliques whose nonexceptional routes avoid
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all edges of W. We show that when Γ is amply framed, this gives an interval of the
DKK lattice LΓ which we call the lush interval L(Γ,W). We call the wilted framed DAG
(Γ, W), or the set W, viable if the lush subgraph is nonempty. Our first result provides
a complete characterization of the viable edge sets W of a framed DAG G. By choosing
a set S of exceptional routes and varying W across all ways to wilt exactly one edge
from each route of S, we obtain the wilted decomposition of GΓ by S into lush subgraphs.
When Γ is amply framed, this is a decomposition of the DKK lattice into lush intervals.
Polyhedrally, we are individually restricting the DKK triangulation of the flow polytope
to all codimension-|S| facets which avoid all vertices of exceptional routes in S; taking
the cone of these triangulations with these exceptional vertices recovers the original DKK
triangulation. As an application, we realize various decompositions of the Tamari lattice,
which arises as the DKK lattice of a framed DAG car(1n) [9, 2], into ν-Tamari intervals
as wilted decompositions.

Next, we use wilting theory to define a new class of framed DAGs which we call
rooted. Given a rooted DAG Γ, we construct an ample envelope (Γ′, W ′) of Γ such that
L(Γ′,W ′)

∼= GΓ. We thus prove that rooted DAGs are precisely the framed DAGs whose
DKK graphs may be understood as intervals in the DKK lattice of an amply framed
DAG. As a consequence, we induce a well-defined lattice structure on DKK graphs of
rooted DAGs, we prove that clique complexes of rooted DAGs are shellable, and we get
a formula for the h∗-vectors of rooted flow polytopes. Rooted DAGs thus inherit many
nice properties of amply framed DAGs.

In recent years, the Hasse diagrams of many prominent lattices and their general-
izations have been realized as DKK graphs of framed DAGs. In particular, the Hasse
diagrams of the ν-Tamari lattice and the s-weak order have been realized as the DKK
graphs of car(ν) and oru(s) DAGs. In fact, these framed DAGs are rooted, and our
lattice structure realizes their DKK lattices as the ν-Tamari lattice and s-weak order.

We remark that many of our results are phrased more generally for gentle algebras,
though for brevity we do not treat this generality in this extended abstract.

2 Background on DAGs and Ample Framings

We start by recalling some background on flow polytopes and amply framed DAGs. Let
G = (V, E) be a finite directed acyclic graph (DAG) with vertex set V and edge set E.
For each v ∈ V, let in(v) and out(v) denote the set incoming and outgoing edges of v,
respectively. A vertex v is called a source if in(v) = ∅, a sink if out(v) = ∅, and internal
otherwise. An edge α ∈ E is directed from its tail t(α) to its head h(α). The edge α is
internal if it is between two internal vertices, and otherwise it is a source edge and/or a
sink edge. A route of G is a maximal (directed) path in G.

Definition 2.1. A flow f on a DAG G is a function f : E → R which preserves flow at
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each internal vertex, i.e., for every internal vertex v we have ∑e∈in(v) f (e) = ∑e∈out(v) f (e).
The flow polytope F1(G) is the space of unit flows on G; i.e., flows satisfying xe ≥ 0 for all
edges e ∈ E and ∑v is a source

e∈out(v)
f (e) = 1.

The dimension of F1(G) is dim(F1) = |E| − #{v ∈ V : v is an inner vertex} − 1.
The vertices of F1(G) are precisely the indicator vectors of routes of G.

Definition 2.2. Let G = (V, E) be a DAG. For each internal vertex v of G, assign a
linear order to the edges in in(v) and assign a linear order to the edges in out(v). This
assignment is called a framing of G, which we denote by F. We use the symbol Γ to refer
to a framed DAG (G, F). If e is less than f in the linear order for F on in(v), we write
e <F,in(v) f (and similarly for out(v)). We may drop one or both subscripts when clear.

In the following, assume Γ = (G, F) is a framed DAG. To denote a framing, we often
label the half-edges or edges of a DAG with integers. See Figure 1 and Figure 2 for
examples. An edge of a framed DAG Γ is tail-highest (respectively tail-lowest) if α is the
greatest (respectively least) element in the partial order on out(t(α)). An edge which is
neither tail-highest nor tail-lowest is tail-middle. Similarly, an edge may be head-highest,
head-lowest, or head-middle. An edge which is both tail-highest and head-highest is called
highest. We similarly may call edges middle or lowest. An edge is steep if it is head-highest
and tail-lowest, or head-lowest and tail-highest.

Definition 2.3. A path p of Γ is up-incompatible to a path q if p contains α1Rα2 and q
contains β1Rβ2, for some path R and some edges αi, βi with α1 >in(v) β1 and α2 <out(w)

β2. Two paths are incompatible if one is up-incompatible to the other. Otherwise, they
are compatible. If a route p in Γ is compatible with every other route in Γ, we say that p
is exceptional. A clique is a set of pairwise-compatible routes in Γ.

For example, in Figure 1, the route 121 and the route 211 are incompatible, as they
share the first internal vertex but 121 enters this vertex with a higher edge and leaves
with a lower edge compared to 211.

It follows that a route p of a framed DAG Γ is exceptional if and only if either
every edge is highest, every edge is lowest, or p consists of a single edge. Note that an
exceptional route is a route which is in every maximal clique. The clique complex KΓ of Γ
is the simplicial complex of cliques of Γ.

An edge α of Γ is an idle edge if in(h(α)) = 1 and h(α) is internal, or out(t(α)) = 1
and t(α) is internal. Idle edges may be contracted to obtain a new framed DAG whose
clique complex and DKK graph agree with the original. Hence, we may safely assume
that our DAGs have no idle edges. Γ is amply framed if every edge is contained in some
exceptional route. In [1], it was shown that a framed DAG Γ with no idle edges is
amply framed if and only if (1) Γ is full (i.e., for any internal vertex v of Γ, we have
|in(v)| = 2 = |out(v)|), and (2) there is a map ϕF : E → {1, 2} realizing the framing F
(i.e., there are no steep edges in F).
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2.1 Flow Polytopes and DKK Triangulations

Recall that vertices of the flow polytope F1(Γ) are indicator vectors of routes of Γ.
Through this correspondence, we may view maximal cliques of Γ as collections of ver-
tices of F1(G) which form a simplex of a regular unimodular triangulation:

Theorem 2.4 ([5]). Let Γ be a framed DAG. The set of maximal cliques of Γ forms a regular
unimodular triangulation of the flow polytope F1(G).

See Figure 1, where the top clique corresponds to the simplex whose vertices are
given by (the indicator vectors of) the routes {111, 211, 221, 222} appearing in the clique
(the exceptional routes 111 and 222 are not drawn for readability). The triangulation
from Theorem 2.4 is called the DKK triangulation of Γ. We will be particularly interested
in the dual graph of a DKK triangulation (equivalently, the dual graph of the clique
complex), which we refer to as the DKK graph GΓ.

When Γ is amply framed, GΓ may be interpreted as the Hasse diagram of a lattice
(whose lattice structure is inherited from the τ-tilting theory of an associated gentle
algebra [1]), which we call the DKK lattice LΓ. This lattice structure may be described as
follows using directional compatibility (see Figure 1 and Figure 5 for examples).

Definition 2.5 ([1, Definition 6.1]). Let M1 = M ∪ {p} and M2 = M ∪ {q} be adjacent
maximal cliques in GΓ for Γ amply framed. Then, without loss of generality, p is up-
incompatible to q and q is not up-incompatible to p. In this case, M1 > M2 in LΓ.

3 Wilted Framed DAGs

We now wilt a set W of edges of a framed DAG and consider the maximal cliques whose
nonexceptional routes avoid the wilted edges. In the amply framed case, these cliques
form a lush interval in the DKK lattice LΓ. We characterize the sets of wilted edges giving
nonempty lush intervals and we give a recipe to obtain canonical decompositions of LΓ
into lush intervals.

Definition 3.1. A wilted framed DAG (Γ, W) is a framed DAG Γ = (G, F) along with a set
W of edges of G considered as wilted. We say that a route of Γ is wilted if it contains an
edge of W. Otherwise, it is lush. A clique is wilted if it contains a wilted nonexceptional
route, and is otherwise lush. Let S be the set of exceptional routes containing an edge
of W; then the lush clique complex K(Γ,W) is the pure simplicial complex whose maximal
simplices are of the form M\S, for any lush maximal clique M. The lush subgraph G(Γ,W)

is the dual graph of K(Γ,W). We say that (Γ, W) is viable if G(Γ,W) is nonempty.
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Remark 3.2. Let (Γ, W) be a viable wilted framed DAG. Let del(Γ, W) be the framed
DAG obtained by deleting all edges of W from Γ. There is a natural bijection be-
tween lush routes of (Γ, W) and routes of del(Γ, W) which induces a bijection K(Γ,W)

∼=
Kdel(Γ,W). Hence, the lush subgraph G(Γ,W) is isomorphic to the DKK graph Gdel(Γ,W).

The following result is proven representation-theoretically by considering the τ-tilting
lattice of the associated gentle algebra of an amply framed DAG.

Proposition 3.3. Let (Γ, W) be a wilted amply framed DAG. The lush subgraph G(Γ,W) forms
an interval in L(Γ,W). We call this the lush interval L(Γ,W).

We now characterize the sets of edges which produce viable wilted framed DAGs.

Theorem 3.4. Let (Γ, W) be a wilted framed DAG. Then (Γ, W) is viable if and only if

1. each edge of W is contained in an exceptional route, no exceptional route contains more
than one edge of W, and

2. every internal vertex has an incoming and outgoing lush edge.

3.1 Wilted Decompositions of Framed DAGs and Flow Polytopes

We define the wilted decomposition of a framed DAG with respect to a set of exceptional
routes and provide an interpretation in terms of flow polytopes.

Definition 3.5. Let S be a subset of the set of exceptional routes of Γ. Define

WS := {W ⊆ E | W consists of exactly one edge from each route of S} .

For each element W of WS, we obtain a wilted framed DAG (Γ, W) and a (possibly
empty) lush subgraph G(Γ,W). Each maximal clique M of Γ is contained in exactly one
such lush subgraph G(Γ,WM). Hence, the set S gives a wilted decomposition of GΓ into lush
subgraphs. Conversely, given a viable wilted framed DAG (Γ, W), we may let SW be
the set of exceptional routes containing an edge of W; then G(Γ,W) appears in the wilted
decomposition of Γ by SW .

When Γ is amply framed, GΓ has a lattice structure LΛ and Proposition 3.3 shows that
each lush subgraph G(Λ,W) is actually an interval L(Λ,W) ⊆ LΛ. In the future, we will see
that this situation holds more generally for rooted DAGs. See Figure 1 or Figure 5 for an
example of a decomposition of LΛ into intervals for an amply framed DAG Γ.

Proposition 3.6. Let Γ be a framed DAG and let S be a set of exceptional routes of Γ. The
nonzero flow polytopes {F1(del(Γ, W)) : W ∈ WS} are precisely the codimension-|S| faces of
F1(Γ) containing none of the vertices given by exceptional routes in S.
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1
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121 122

112111

212211

221 222

Figure 1: Shown is an amply framed DAG, the wilted decomposition of its DKK
lattice by the route 222 (with no exceptional routes drawn for readability), and its flow
polytope.

If S is a set of exceptional routes of Γ, then for any W ∈ WS, Proposition 3.6
shows that the lush subgraph G(Γ,W) ⊆ GΓ is the dual graph the DKK triangulation
of the codimension-|S| face F1(del(Γ, W)) of F1(Γ). By taking the DKK triangulations
F1(del(Γ, W)) for all W ∈ WS and adding the vertices corresponding to exceptional
routes of S to all simplices, we recover the original DKK triangulation of F1(Γ).

Example 3.7. Shown in Figure 1 is an amply framed DAG Γ and its flow polytope F1(Γ),
which is a cube. The vertex labelled 121, for example, corresponds to the route which
first takes a 1-edge, then a 2-edge, then a 1-edge. Let S = {222} consist only of the
2-route of Γ. The wilted decomposition of Γ by S separates LΓ into three intervals, high-
lighted in different colors in the middle of Figure 1, based on which 2-edge is avoided
by the nonexceptional routes. By Proposition 3.6, deleting any 2-edge of Γ restricts the
triangulation to one of the three facets of F1(Γ) not incident to the vertex corresponding
to 222, which are highlighted in Figure 1. For example, wilting the sink 2-edge yields the
lush interval highlighted in blue and deleting it yields the back face of the cube with ver-
tices {111, 121, 211, 221}, highlighted in blue, with the dotted DKK triangulation. Taking
the cone of these three separate DKK triangulations with the vertex corresponding to
222 gives the DKK triangulation of Γ.

4 Rooted Framed DAGs

In this section, we define a new class of framed DAGs which we call rooted. Given a
rooted DAG, we obtain a wilted amply framed DAG (Γ′, W ′) whose lush clique complex
K(Γ′,W ′) is isomorphic to KΓ. As a consequence, we give a lattice structure to GΓ and
extend results about shellability and h∗-polynomials from the amply framed case.

Definition 4.1. An exceptional segment of a framed DAG Γ (with no idle edges) is a
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Figure 2: A framed DAG and its exceptional segments (exceptional routes in purple).

maximal path p of Γ which is compatible with every other path. An exceptional segment
is rooted if it starts at a source vertex or ends at a sink vertex (or both). A framed DAG Γ
is rooted if every exceptional segment of Γ is rooted.

An exceptional route is an exceptional segment which starts at a source vertex and
ends at a sink vertex. Any middle edge makes up its own exceptional segment. When Γ
has no idle edges, any steep edge is a part of exactly two exceptional segments, and any
non-steep edge is a part of exactly one exceptional segment. See Figure 2.

Lemma 4.2. Given a viable wilted amply framed DAG (Γ, W), the framed DAG del(Γ, W)
obtained by deleting all edges of W from Γ is rooted.

Proof. Exceptional segments of del(Γ, W) correspond to maximal lush segments of ex-
ceptional routes of (Γ, W). Theorem 3.4 shows that any exceptional route of Γ contains
at most one edge of W, ensuring that each exceptional segment of del(Γ, W) either starts
at a source or ends at a sink.

We now focus on showing the converse of Lemma 4.2. More concretely, given a
rooted framed DAG Γ, we wish to obtain an amply framed DAG (Γ′, W ′) such that
KΓ

∼= K(Γ′,W ′). If a framed DAG Γ is not amply framed, then either Γ is not full (i.e.,
there is an internal vertex of Γ with in-degree or out-degree greater than 2), or Γ has a
steep edge. We will define operations which fix these issues while preserving the lush
DKK graph. We first define an operation which pulls a framed DAG closer to being full.

Definition 4.3. Let α be a tail-middle edge of a viable wilted framed DAG (Γ, W). In
particular, it is necessary that h(α) has an in-degree greater than 2. By Theorem 3.4, α

is lush. The wilted 2-decontraction of (Γ, W) with respect to α is the wilted framed DAG
(Γ′, W ′) whose vertex set is given by V′ := {v′ : v ∈ V} ∪ {vα} and whose edges are
described as follows. For any edge β : i → j of Γ, there is an edge β′ : i′ → j′ (if i ̸= t(α)
or if i = t(α) and β <out(t(α)) α) or β′ : vα → j′ (else). There is an additional connecting
edge δ : v′ → vα and there is a wilted dummy edge ϵ : vsource → vα. The framing of Γ′

is inherited from the framing on Γ, with the stipulation that the connecting edge δ is
highest and the dummy edge ϵ is lowest. Performing a wilted 2-decontraction to the left
DAG of Figure 3 at its unique tail-middle edge results in the middle DAG of Figure 3.
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Note that α′ is tail-lowest in Γ′ and that deleting the dummy edge ϵ and contracting
Γ′ along the connecting edge δ recovers (Γ, W). A wilted 1-decontraction with respect to
an edge α which is tail-middle is obtained by reversing all partial orders of the framing
F, performing a wilted 2-decontraction, and reversing the partial orders again. Dually,
we may define wilted 1-decontractions and wilted 2-decontractions with respect to an edge
which is head-middle. Given an edge α of (Γ, W) which is head-middle or tail-middle,
any wilted decontraction of α which does not create a steep edge preserves the lush
clique complex. This gives us the following lemma.

Lemma 4.4. Let α be a head-middle or tail-middle edge of a viable wilted framed DAG (Γ, W).
There exists a wilted decontraction (Γ′, W ′) of (Γ, W) with respect to α such that (Γ′, W ′) is
viable and K(Γ′,W ′)

∼= K(Γ,W).

If Γ is a rooted framed DAG with no idle edges which is not full, then it must have
an edge which is head-middle or tail-middle. Then we may repeatedly apply Lemma 4.4
to obtain a full wilted DAG (Γ′, W ′) whose lush clique complex agrees with that of Γ.
The framed DAG Γ′ may not be amply framed, since it may have steep edges. We now
define an operation to fix this.

Definition 4.5. Let (Γ, W) be a wilted framed full DAG. Let α be an edge of Γ which is
steep. Without loss of generality, suppose α is tail-highest and head-lowest; the other
case is similar. We define the amplification of (Γ, W) with respect to α as the wilted framed
DAG (Γ′, W ′) as follows. See the middle and right of Figure 3 for an example. The vertex
set of Γ′ consists of the vertices of Γ as well as an additional vertex vα. For any edge β

of Γ other than α, there is a corresponding edge β′ of Γ′. Replacing α in Γ′ is an edge α′1
from t(α) to vα which is highest in F, and an edge α′2 from vα to h(α) which is lowest in
F. Additionally, there is a highest wilted edge γ from a source to vα and a lowest wilted
edge β from vα to a sink.

Lemma 4.6. If α is a steep edge of a full viable wilted framed DAG (Γ, W), then the amplification
(Γ′, W ′) of (Γ, W) with respect to α is viable and K(Γ′,W ′)

∼= K(Γ,W).

Theorem 4.7. If Γ is a rooted framed DAG, then there is a wilted amply framed DAG (Γ′, W ′)
such that KΓ

∼= K(Γ′,W ′).

Proof. We may suppose that Γ is rooted and has no idle edges. First, we repeatedly apply
Lemma 4.4 until we have reached (Γ′′, W ′′), where Γ′′ is full, and then we repeatedly
apply Lemma 4.6 to fix the steep edges, resulting in an amply framed (Γ′, W ′) with
KΓ

∼= K(Γ′,W ′). For any exceptional segment p of Λ, there is an exceptional route p′ of Λ′

that begins with a wilted edge if and only if p begins with an internal vertex and ends
with a wilted edge if and only if p ends with an internal vertex. Hence, the condition
that Γ is rooted corresponds to the condition that (Γ′, W ′) is viable by Theorem 3.4. See
Figure 3 for an example of this process.
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Figure 3: A framed DAG (left), a wilted 2-decontraction with respect to a its tail-
middle edge (middle), and an amplification of the resulting DAG at its steep edge
(right). Wilted edges are red and the connecting edge is blue.

We call (Γ′, W ′) as in the statement of Theorem 4.7 an ample envelope of Γ. A conse-
quence of the existence of ample envelopes is that the DKK graph of a rooted framed
DAG has a lattice structure generalizing the amply framed case [1].

Definition 4.8. Let Γ be a rooted framed DAG. Let M1 = M ∪ {p} and M2 = M ∪ {q} be
adjacent maximal cliques in GΓ. Then, without loss of generality, p is up-incompatible to
q and q is not up-incompatible to p. In this case, we say that M1 > M2.

Corollary 4.9. The transitive closure of the relations of Definition 4.8 gives GΓ the structure of
the Hasse diagram of a lattice, which we refer to as the DKK lattice LΓ.

Corollary 4.9 is proven by inheriting the lattice structure of an ample envelope. More-
over, any lush subgraph of a rooted DAG may be considered as an interval in LΓ. Hence,
the wilted decomposition of a rooted DAG by a set of exceptional routes (Definition 3.5)
is a decomposition of LΓ into lush intervals. The next corollary, which follows from
Theorem 4.7 and Lemma 4.2, characterizes rooted DAGs as those whose DKK graphs
may be understood as lush intervals of amply framed DAGs .

Corollary 4.10. A nonempty lattice is of the form L(Γ,W), where (Γ, W) is a wilted amply framed
DAG, if and only if it is of the form LΓ′ , where Γ′ is a rooted framed DAG.

It was shown in [1] that if Γ is amply framed then any linear extension of LΓ is a
shelling order for KΓ. By realizing the DKK graph of a rooted DAG as an interval in the
DKK lattice of an ample envelope, we prove the following.

Theorem 4.11. Let Γ be a rooted framed DAG. Then any linear extension of LΓ gives a shelling
order of the lush clique complex KΓ.

Following [1, §6], we get a formula for the h∗-polynomials of flow polytopes arising
from rooted framed DAGs.

Proposition 4.12. Let Γ be a rooted DAG. The ith coefficient of the h∗-vector of F1(Γ) is given
by the number of elements in LΓ covering exactly i elements.
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5 Motivating Example: The (ν-)Tamari Lattice

The Tamari lattice is a mathematical structure that captures the partial order of binary
trees under a rotation operation. Préville-Ratelle and Viennot [8] introduced ν-Tamari
lattices as a generalization of Tamari lattices and showed that the Tamari lattice has a
decomposition into ν-Tamari intervals. In [4] the ν-Tamari lattice was realized as the
one-skeleton of the polyhedral complex known as the ν-associahedron, and in [2] it was
shown that ν-Tamari lattices arise as DKK graphs of a class of DAGs known as ν-caracol
graphs. In this section, we interpret certain wilted decompositions on caracol graphs as
decompositions of Tamari lattices into ν-Tamari intervals. Moreover, given a ν-Tamari
lattice Lcar(ν), we obtain a canonical Tamari lattice Lcar(1n), which is the DKK lattice of
a framed DAG car(1n), and a set S of exceptional routes of car(1n) such that the lattice
Lcar(ν) appears in the wilted decomposition of Lcar(1n) by S.

Definition 5.1. Let a, b be nonnegative integers, and let ν := NEν1 NEν2 . . . NEνa be a
lattice path from (0, 0) to (b, a) (with νi ≥ 0). The ν-caracol graph car(ν) is the graph on
the vertex set {0, 1, . . . , a}, together with νi copies of the edge (0, i) for i = 1, . . . , a − 1,
one copy of the edge (i, a) for i = 1, . . . , a − 1, and the edges (i, i + 1) for i = 0, . . . , a − 1.
Give car(ν) the framing such that the horizontal edges from i to i + 1 are given the
highest element in the vertex order on either side. See Figure 4 for an example. In the
classical case, ν = 1n = (1, . . . , 1) for some n and the DKK lattice Lcar(1n) is Tamari.

It was shown in [2, Theorem 1.2] that Gcar(ν) is the Hasse diagram of the ν-Tamari
lattice. In fact, the framed DAGs Gcar(ν) are rooted, and our lattice structure realizes
Lcar(ν) as the ν-Tamari lattice. See Figure 5.

Theorem 5.2. Let V ⊆ [n]. Then the wilted decomposition of car(1n) by the set of 1-labelled
routes whose internal vertices are in V is a decomposition of the Tamari lattice into ν-Tamari
intervals. Any ν-Tamari lattice appears in such a decomposition, for some n and V.

Proof. If W is a viable set of 1-edges of car(1n), then deleting them and contracting yields
some car(ν). Conversely, it may be seen that any DAG car(ν) has an ample envelope
(car(1n), W) where W consists of 1-edges. See the left and middle of Figure 5.

Example 5.3. The left of Figure 5 shows the decomposition of the Tamari lattice car(T3)
into ν-Tamari intervals given by the first and last 1-labelled routes. The lush interval
in red is the lush interval of the wilted framed DAG car(T3) in the middle of Figure 4,
which is the DKK graph of the car(ν) DAG on the left of Figure 4 by Proposition 3.6.

The right of Figure 5 shows the wilted decomposition by the set of all 1-labelled
routes, which recovers the partition introduced in [8]. This induces a wilted decomposi-
tion of Lcar(ν) into two chains.

We end the extended abstract with some open questions:
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Figure 4: A ν-Caracol graph where ν = (0, 2, 0, 1), its realization as a wilted car(T3)

graph, and the corresponding lattice path.

Figure 5: Shown is the wilted decomposition of the (Tamari) lattice Lcar(1n), shown in
the middle of Figure 4, induced by the first and third 1-routes (left) and by the set of
all 1-routes (right). For readability, exceptional routes are not drawn.
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1. Rooted framed DAGs inherit nice properties from amply framed DAGs. Examples
of rooted framed DAGs include ν-caracol and s-oruga [6] graphs, whose DKK
lattices are the ν-Tamari lattices and the s-weak order. What other lattices may be
realized as DKK lattices of rooted framed DAGs?

2. The notable class of ν-Tamari lattices may be defined as the lush intervals of car(1n)
in its decomposition by some set of 1-routes. Can we realize other interesting lattice
decompositions using wilting theory?

3. The DKK theory of rooted framed DAGs is in some sense equivalent to the wilting
theory of viable wilted amply framed DAGs. What can be gained from studying
amply framed DAGs with sets of wilted edges which are not viable? In particular,
can we realize the DKK graph of an arbitrary framed DAG as an interval in the
DKK lattice of an amply framed DAG?
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and plethysm
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Abstract. An old theorem of D. E. Littlewood asserts that the Schur function with
variables “twisted” by a primitive t-th root of unity vanishes unless the t-core of the
indexing partition is empty, in which case it factors as a product of Schur functions
indexed by the t-quotient. Recently, Ayyer and Kumari generalised Littlewood’s result
to characters of the classical groups O(2n, C), Sp(2n, C) and SO(2n + 1, C). We show
that Ayyer and Kumari’s results may be lifted to the universal characters of the asso-
ciated groups, and in doing so give a uniform extension involving a determinant of
Bressoud and Wei which was later generalised by Hamel and King. What facilitates
this extension is a new property of the Littlewood decomposition, extending results
of Garvan, Kim and Stanton. We also explain the connection between Littlewood’s
original result and an instance of plethysm.

Keywords: Littlewood’s decomposition, Schur functions, t-core, t-quotient, universal
characters, z-asymmetric partitions

1 Introduction

In his classic 1940 book on group characters D. E. Littlewood gives a factorisation for the
Schur function with variables “twisted” (not his term) by a primitive t-th root of unity
ζ [13, §7.3]. More precisely, he proves that the Schur function sλ with tn variables ζ jxi
for 1 6 i 6 n and 0 6 j 6 t − 1 vanishes if the t-core of λ is nonempty. If the t-core
is empty then, up to a sign, it factors as a product of Schur functions indexed by the
partitions forming its t-quotient, each with variables xt

1, . . . , xt
n. His proof is based on a

clever manipulation of the classical definition of sλ as a ratio of alternants.
Inspired by a recent rediscovery of Littlewood’s theorem, Ayyer and Kumari proved

analogous factorisation theorems for the characters of the classical groups O(2n, C),
Sp(2n, C) and SO(2n + 1, C) using Littlewood’s method [3]. As in the Schur case, when
these twisted characters are nonzero they factor as a product of other group characters
expressed in terms of the t-quotient of the indexing partition. However, the vanishing
is now governed by the t-core having a particular form. Specifically, Ayyer and Kumari
show that the twisted characters for O(2n, C), Sp(2n, C) and SO(2n + 1, C) are nonzero
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mailto:seamus.albion@univie.ac.at
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if and only if t-core(λ) may be written in Frobenius notation as (a + z | a) for z = 1, −1
and 0 respectively; see the next section for the relevant definitions.

In [2] we lifted the results of Ayyer and Kumari to the universal characters of the
aforementioned groups as defined by Koike and Terada [11]. To describe how this works,
let hr denote the r-th complete homogeneous symmetric function, the set of which is
algebraically independent over Z and generates Λ, the ring of symmetric functions. The
notion of “twisting” by a root of unity is replaced by an endomorphism ϕt of Λ for each
integer t > 2, defined by

ϕthr =

{
hr/t if t divides r,
0 otherwise.

This operator is occasionally referred to as the t-th Verschiebung operator, see for instance
[7, §2.9] and references therein.1 It is a quite a natural operator on symmetric functions,
being the adjoint of plethysm by a power sum pt with respect to the Hall scalar product;
see Subsection 3.1. The main results of [2] are the action of ϕt on the universal characters.

In the present work we outline a new approach to proving these universal character
factorisations. Following Ayyer and Kumari we call partitions which for z ∈ Z may
be expressed in Frobenius notation as (a + z | a) z-asymmetric. Bressoud and Wei [4]
and Hamel and King [8] have defined a general symmetric function Xλ(z) which essen-
tially reduces to the above universal characters for z = 1, −1 or 0. They also show that
Xλ(z) may be expressed as a signed sum over skew Schur functions with inner shape
a z-asymmetric partition. Using this expression and the action of ϕt on the skew Schur
functions (Theorem 4) we can compute ϕtXλ(z). This is one of our main results, which,
in order to keep things as simple as possible, we state only for 0 6 z 6 t− 1 as Theo-
rem 6 below. The cases z > t and z < 0 require slightly cumbersome modifications, but
no new techniques, so we defer these to future work [1]. The main advantage of our
approach is that it produces a parameterised family of such factorisations which may be
stated and proved uniformly. A key tool in our proof is the Littlewood decomposition, a
bijection which maps a partition to its t-core and t-quotient. Our first main result, The-
orem 2, is a characterisation of the Littlewood decomposition of z-symmetric partitions
through restrictions on the core and quotient, which reduces to results of Garvan, Kim
and Stanton for z = 0, 1 [6].

2 Littlewood’s decomposition and z-asymmetric partitions

2.1 Preliminaries

A partition is a weakly decreasing sequence of nonnegative integers λ = (λ1, λ2, λ3, . . . )
such that the size |λ| := λ1 + λ2 + λ3 + · · · is finite. The nonzero λi are called parts

1Verschiebung is German for shift.
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and the number of parts the length, denoted l(λ). The set of all partitions is written P
and the empty partition, the unique partition of 0, is denoted by ∅. We write (m`) for
the partition with ` parts equal to m, and the difference λ− (m`) is then the partition
obtained by subtracting m from the first ` parts of λ. We identify a partition with its
Young diagram, which (in English notation) is the left-justified array of cells consisting of
λi cells in row i with i increasing downward. An example is given in Figure 1. We define
the conjugate partition λ′ by reflecting the diagram of λ in the main diagonal, so that the
conjugate of (6, 5, 5, 1) is (4, 3, 3, 3, 3, 1).

The Frobenius rank of a partition, d(λ), is defined as the number of cells along its main
diagonal. Another way to notate partitions is with Frobenius notation, which records the
number of cells to the right of and below each cell on the main diagonal, which we write
in terms of the partition λ as λ = (λ1 − 1, . . . , λd(λ) − d(λ) | λ′1 − 1, . . . , λ′d(λ) − d(λ));
again, see Figure 1 for an example. Any two strictly decreasing nonnegative integer
sequences a, b with the same number of elements, say k, thus give a unique partition
λ = (a | b) of Frobenius rank k. Clearly self-conjugate partitions are those of the form
(a | a). Now let a + z := (a1 + z, . . . , ak + z) for any z ∈ Z. Ayyer and Kumari [3] define
what they call z-asymmetric partitions to be those of the form (a + z | a) for any sequence
a (of any length) and fixed z ∈ Z. The set of z-asymmetric partitions is denoted by Pz
and (6, 5, 5, 1) in Figure 1 is 2-asymmetric.

9 7 6 5 4 1
7 5 4 3 2
6 4 3 2 1
1

Figure 1: The partition λ = (6, 5, 5, 1) = (5, 3, 2 | 3, 1, 0) with its main diagonal shaded
(left) and the same partition with hook length of each cell inscribed (right). We have
|λ| = 17, l(λ) = 4 and d(λ) = 3.

Given a cell s in the Young diagram of λ its hook length is one more than the sum of
the number of cells below and to the right of s; see Figure 1. For an integer t > 2 we
say a partition is a t-core if it contains no cell with hook length t (or, equivalently, no cell
with hook length divisible by t). For a pair of partitions λ, µ we say µ is contained in λ,
written µ ⊆ λ, if its Young diagram may be drawn inside the Young diagram of λ. The
corresponding skew shape is the arrangement of cells formed by removing µ’s diagram
from λ’s. A skew shape is a ribbon if it is edge-connected and contains no 2× 2 square
of cells, and a t-ribbon is a ribbon containing t cells.2 The height of a ribbon R, ht(R), is
one less than the number of rows it occupies; see Figure 2.

2Elsewhere in the literature ribbons are variously called border strips, rim hooks or skew hooks.
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Figure 2: The pair of partitions (4, 4, 2, 1) ⊆ (6, 5, 5, 1). The unshaded cells form a
6-ribbon of height 2.

We say a skew shape λ/µ is t-tileable if there exists a sequence of partitions

µ =: ν(0) ⊆ ν(1) ⊆ · · · ⊆ ν(m−1) ⊆ ν(m) := λ

such that the skew shapes ν(r)/ν(r−1) are each t-ribbons for 1 6 r 6 m. It is a non-trivial
fact, see, e.g. [17, Lemma 4.1], that the sign

sgnt(λ/µ) := (−1)∑m
r=1 ht(ν(r)/ν(r−1)) (2.1)

is constant over the set of all t-ribbon decompositions of λ/µ (so, indeed, the above is
well-defined).

2.2 Littlewood’s decomposition

The Littlewood decomposition is, for each integer t > 2, a bijection which decomposes
a partition λ into a pair (t-core(λ), λ), where t-core(λ) is the unique t-core of λ and
λ = (λ(0), . . . , λ(t−1)) is a t-tuple of partitions called the t-quotient [14]. Here we describe
the Littlewood decomposition through the lens of Maya diagrams, which is essentially
the abacus model of James and Kerber [9, §2.7]. A purely algebraic description may be
found in [16, p. 12].

Given a partition λ its Maya diagram is the following subset of the set of half integers,
sometimes called the beta set

β(λ) :=
{

λi − i +
1
2

: i > 1
}

.

This is visualised as a configuration of “beads” on the real line placed at the positions
indicated by β(λ). The map from partitions to Maya diagrams is clearly a bijection, and
one way to reconstruct λ from β(λ) is to count the number of empty spaces to the left
of each bead starting from the right. From the Maya diagram we extract t sub-diagrams
formed by the beads at positions x such that x − 1/2 is r modulo t for 0 6 r 6 t− 1,
which we dub the t-Maya diagram. An example of this procedure is given in Figure 3.
The corresponding partitions are denoted by λ(r) according to the residues modulo t of
the original positions, and these precisely form Littlewood’s t-quotient.
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The key observation behind the definition of the t-core is that moving a bead one
space to the left in the t-Maya diagram is equivalent to the removal of a t-ribbon from λ

such that what remains is still a partition. Since such ribbons are in correspondence with
hooks of length t in λ, pushing all beads to the left leaves a t-core. The t-Maya diagram
shows that this is independent of the order in which such ribbons are removed, and so
the resulting unique partition is denoted t-core(λ).

Theorem 1 (Littlewood’s decomposition). For any integer t > 2 the above procedure encodes
a bijection

P −→ Ct ×P t

λ 7−→
(
t-core(λ), (λ(0), . . . , λ(t−1))

)
such that |λ| = |t-core(λ)|+ t(|λ(0)|+ · · ·+ |λ(t−1)|).

λ(0)

λ(1)

λ(2)

λ

Figure 3: The Maya diagram of λ = (6, 5, 5, 1) (top) and the 3-Maya diagram of the
same partition (bottom). We have that 3-core(λ) = (1, 1), κ3((1, 1)) = (1,−1, 0) and
(λ(0), λ(1), λ(2)) = ((1),∅, (2, 2)).

We will also need a different characterisation of t-cores. Call a Maya diagram balanced
if it contains as many beads to the right of 0 as empty spaces to the left. The way we
defined Maya diagrams ensures they are always balanced, but Figure 3 shows that the
constituent diagrams of the quotient need not be. Let c+r (resp. c−r ) denote the number of
beads to the right of 0 (resp. number of empty spaces to the left of 0) in row λ(r) of the t-
Maya diagram. Now the sequence of integers (c0, . . . , ct−1) defined by cr := c+r − c−r has
total sum zero, and is invariant under valid bead movements. As observed by Garvan,
Kim and Stanton, this encodes a bijection [6, Bijection 2]

κt : Ct −→ {(c0, . . . , ct−1) ∈ Zt : c0 + · · ·+ ct−1 = 0} (2.2)

such that for µ ∈ Ct

|µ| =
t−1

∑
r=0

(
tc2

r
2

+ rcr

)
.
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The conjugate of a partition λ can be read off its Maya diagram by interchanging
beads and empty spaces and then reflecting the picture about 0. Using this fact one
may show that t-core(λ′) = t-core(λ)′ which, if κt(t-core(λ)) = (c0, . . . , ct−1), trans-
lates to κt(t-core(λ′)) = (−ct−1, . . . ,−c0) in terms of (2.2). Moreover, the quotient of λ′

is given by ((λ(t−1))′, . . . , (λ(0))′). From these properties it is easy to see that the Lit-
tlewood decomposition of a self-conjugate partition must satisfy t-core(λ) ∈ P0, i.e.,
cr + ct−r−1 = 0 for 0 6 r 6 t− 1 and λ(r) = (λ(t−r−1))′ for r in the same range. Garvan,
Kim and Stanton [6, §8] show that something similar holds for 1-asymmetric partitions.
That is, if λ ∈ P1 then t-core(λ), λ(0) ∈ P1 and the remaining entries in the quotient
satisfy λ(r) = (λ(t−r))′ for 1 6 r 6 t− 1.

Our first main result is a generalisation of the theorems of Garvan, Kim and Stanton
to z-asymmetric partitions. To keep things simple we restrict to 0 6 z 6 t − 1, with
negative z being obtained by conjugation and larger values of z requiring only a minor,
but slightly cumbersome, modification. To fix some notation, let Cz;t ⊂ Zt consist of
those sequences for which cr + cz−r−1 = 0 for 0 6 r 6 z− 1 and cs + ct+z−s−1 = 0 for
z 6 s 6 t − 1. Also let dc(λ) denote the Frobenius rank of the partition obtained by
removing the first c rows of λ.

Theorem 2. Let t > 2 and z be integers and λ a partition such that 0 6 z 6 t− 1 and λ ∈Pz.
Then κt(t-core(λ)) ∈ Cz;t and the quotient (λ(0), . . . , λ(t−1)) is such that for 0 6 r 6 z − 1
with cr > 0 there exists a partition ν(r) with3

λ(r) = ν(r) + (1cr+dcr (ν
(r))) and λ(z−r−1) = (ν(r))′ + (1dcr (ν

(r))). (2.3a)

Moreover, for z 6 s 6 t− 1.

λ(s) = (λ(t+z−s−1))′. (2.3b)

Before we comment on the proof of this characterisation an example is in order. Let
t = 5, z = 3 and λ = (21, 17, 16, 15, 12, 11, 6, 6, 5, 4, 4, 4, 3, 2, 1, 1, 1, 1), or, in Frobenius
notation, λ = (20 15 13 11 7 5 | 17 12 10 8 4 2). Then 5-core(λ) = (6, 5, 3, 2, 1, 1, 1, 1)
which has associated integer vector (2, 0,−2, 1,−1) ∈ C3,5 and the quotient is given by(

λ(0), λ(1), λ(2), λ(3), λ(4)) = ((3, 3, 2), (3, 1), (4, 2), (2), (1, 1)
)
. (2.4)

The reader may check the conditions (2.3) are satisfied by looking at Figure 4.
Note that if z is even then the r = z/2 case of (2.3a) just says that λ(z/2) is 1-

asymmetric. This this it is clear that the 0- and 1-asymmetric cases are contained in
the theorem. However, as the above example shows, not all cores with image in Cz;t
are themselves z-asymmetric. The following corollary clarifies when the t-core of a
z-asymmetric partition is again z-asymmetric, the first part of which is essentially con-
tained in [3, Lemma 3.6].

3If cr = 0 then ν(r) = (ν(z−r−1))′ is forced by (2.3a).
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Figure 4: Young diagrams representing the 5-quotient (2.4). Note that c0 = 2 so
dc0(λ

(0)) = 1, ν(0) = (2, 2, 1) and ν(1) = (2, 1). The highlighted cells in the first and
third partitions denote those subtracted when verifying (2.3a).

Corollary 3. A t-core µ is z-asymmetric if and only if κt(µ) satisfies cr = 0 for 0 6 r 6 z− 1.
Moreover, for any sequence c ∈ Cz;t the unique z-asymmetric partition µc with κt(t-core(µc)) =

c and minimal |µc| has quotient µ
(r)
c = (1cr) for those r with 0 6 r 6 z− 1 and cr > 0.

Proof. By Theorem 2 a z-asymmetric partition µ must have κt(t-core(µ)) ∈ Cz;t and λ(r) =
∅ for all 0 6 r 6 t− 1. However, the restrictions (2.3a) admit the empty partition as a
solution if and only if cr = 0. The second part of the corollary is then immediate.

Theorem 2 may be proved by induction on z. For z > 1 there is an obvious bijection
from Pz−1 to Pz which adds one to the first d(λ) parts of λ. We imagine the t-Maya
diagram is wrapped around a cylinder, so that this bijection pushes the beads at positive
positions up one row, and additionally moves the beads passing from row t− 1 to row
0 one space to the right. This leads to an extension of Theorem 2 for z > 0, and to
this end we say a pair of partitions satisfying (2.3a) are 1-conjugate. Then one writes
z = at + b for a > 0 and 0 6 b 6 t− 1, so that the generalisation of Theorem 2 claims
that t-core(λ) ∈ Cb;t, and the partitions in (2.3a) will now be (a + 1)-conjugate and those
in (2.3b) a-conjugate [1].

3 Factorisations of universal characters

3.1 Symmetric functions and plethysm

As mentioned in the introduction, the ring of symmetric functions Λ has an algebraic
basis given by the complete homogeneous symmetric functions, which for a countably infinite
alphabet X = (x1, x2, x3, . . . ) may be defined by the generating function

∏
i>1

1
1− uxi

= ∑
k>0

ukhk(X).

The most important linear basis for Λ is given by the Schur functions sλ, which we define
at the generality of skew shapes by the Jacobi–Trudi determinant

sλ/µ := det
16i,j6l(λ)

(hλi−µj−i+j), (3.1)
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where h−k := 0 for k > 1. There is an inner product on Λ, the Hall inner product, under
which the sλ are orthonormal, so

〈sλ, sµ〉 = δλµ

with δλµ the usual Kronecker delta.
Plethysm is a composition of symmetric functions first introduced by Littlewood

which we denote by f ◦ g for f , g ∈ Λ; see, e.g., [16, §1.9]. We only require the case
where g = pt(X) := ∑i>1 xt

i , the t-th power sum. This may most easily be defined by ex-
panding f as a sum of monomials in X and then replacing each xi by xt

i . This particular
plethysm satisfies f ◦ pt = pt ◦ f and ps ◦ pt = pst for s, t ∈ N. Another way to define
the operator ϕt is as the adjoint of the plethysm by a power sum with respect to the Hall
inner product, i.e., for any f , g ∈ Λ,

〈 f ◦ pt, g〉 = 〈 f , ϕtg〉. (3.2)

This may also be verified directly using, for instance, the orthonormality of the complete
homogeneous and monomial symmetric functions.

As alluded to in the introduction, the content of [13, §7.3] is the computation of the
action of ϕt on the Schur basis.4 Later on, Farahat generalised this result to skew Schur
functions of the form sλ/t-core(λ) [5], and the full skew Schur function case may be found
in [16, p. 91]. Here the notion of “empty t-core” is replaced by the requirement that
λ/µ is t-tileable. This is equivalent to t-core(λ) = t-core(µ) and λ(r) ⊇ µ(r) for each
0 6 r 6 t− 1 [2, Lemma 2.1].

Theorem 4. For any integer t > 2 and skew shape λ/µ we have that ϕtsλ/µ = 0 unless λ/µ is
t-tileable, in which case

ϕtsλ/µ = sgnt(λ/µ)
t−1

∏
r=0

sλ(r)/µ(r) ,

where the sign is defined in (2.1).

It is our opinion that this theorem has been somewhat neglected, and deserves to be
better known. Although we will not give a full account its history here, the interested
reader may find a few historical remarks in [2, §3] and its references. Using the Jacobi–
Trudi formula (3.1) and the algebraic description of the t-core and t-quotient the proof
is relatively straightforward, with the only difficulty being the identification of the sign.

One of the first applications of Littlewood’s core and quotient construction is to the
plethysm sλ ◦ pt which is now referred to as the SXP rule [14, p. 351].

4In his book [13] Littlewood does not use the language of cores and quotients, nor the map ϕt, and
they appear only implicitly.
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Theorem 5. Let cλ
ν(0),...,ν(t−1) be the coefficient of sλ in the Schur expansion of the product

sν(0) · · · sν(t−1) . Then for any t > 2,

sλ ◦ pt = ∑
ν

t-core(ν)=∅

sgnt(ν)c
λ
ν(0),...,ν(t−1)sν.

By the adjoint relation (3.2) this is equivalent to Theorem 4 with µ = ∅. Wildon has
given a generalisation of the SXP rule for the expression sτ(sλ/µ ◦ pt) [19], which may be
derived from the full Theorem 4 in the same manner. Littlewood proved versions of the
SXP rule for orthogonal and symplectic characters in the cases t = 2, 3 [15], and these
were given lifts to the universal characters by Scharf and Thibon [18]. Lecouvey then
greatly extended this by proving SXP rules for the universal symplectic and orthogonal
characters for arbitrary t > 2 [12]. Using the adjoint relation (3.2), one can show that
these expressions are equivalent to special cases of our Theorem 6 below.

3.2 Generalised universal characters

For a finite set of n variables the Schur function sλ(x1, . . . , xn) may be regarded as the
character of the irreducible polynomial representation of GL(n, C) indexed by λ. The
classical groups O(2n, C), Sp(2n, C) and SO(2n + 1, C) also carry irreducible represen-
tations indexed by partitions. The characters of these representations are rather sym-
metric Laurent polynomials in n variables, however they may still be expressed as de-
terminants in the complete homogeneous symmetric functions hr(x1, 1/x1, . . . , xn, 1/xn).
Using these expressions, Koike and Terada defined the universal characters of the above
groups, which are lifts of the characters to symmetric functions, and proved some expan-
sions in terms of skew Schur functions [11, Theorem 2.3.1]. For example the universal
character of O(2n, C) satisfies

oλ := det
16i,j6l(λ)

(hλi−i+j − hλi−i−j) = ∑
µ∈P1

(−1)|µ|/2sλ/µ. (3.3)

with similar identities for the universal characters spλ and soλ as sums over −1- and
0-asymmetric partitions respectively.

In [4] Bressoud and Wei proved an extension of (3.3) involving an integer z > −1
which reproduces the classical cases for z ∈ {−1, 0, 1}. This was generalised further
by Hamel and King to an expression valid for all z ∈ Z and including an additional
parameter q [8]. Let [S] denote the Iverson bracket: [S] = 1 if the statement S is true and
zero otherwise. Then the identity of Hamel and King is

Xλ(z; q) := det
16i,j6l(λ)

(
hλi−i+j + [j > −z]qhλi−i−j+1−z

)
(3.4a)

= ∑
µ∈Pz

(−1)(|µ|−d(µ)(z+1))/2qd(µ)sλ/µ. (3.4b)
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The odd and even orthogonal cases are recovered by setting q = (−1)z and then choos-
ing z = 0, 1 respectively. The expression in terms of skew Schur functions immedi-
ately implies the following duality with respect to the involution ω on Λ which acts as
ωsλ/µ = sλ′/µ′ :

ωXλ(z; q) = Xλ′(−z; (−1)zq).

Again setting q = (−1)z and then z = 1 on the right then recovers the symplectic case
of (3.3), thus extending ωoλ = spλ′ [11, Theorem 2.3.2]. Since our results require only
minor modification to account for negative z we now restrict to 0 6 z 6 t− 1.

Our main result is the action of ϕt on Xλ(z; (−1)z) (which was denoted simply Xλ(z)
in the introduction). To state this we need one more symmetric function, defined for
a, b, c ∈ N by the following sum

rsλ,µ(a, b; c) := ∑
ν

(−1)|ν|sλ/(ν+(ac+dc(ν)))sµ/(ν′+(bdc(ν))),

where dc(ν) is the modified Frobenius rank from Theorem 2. This symmetric function
not only arises naturally in the proof of our main theorem, but also has Jacobi–Trudi-
type determinantal expressions. For c = 0 this was also considered by Hamel and King,
who also gave a Jacobi–Trudi-type expression [8]. If a = b = c = 0 it is essentially the
universal character of the rational representation of GL(n, C) indexed by the pair (λ, µ)
as defined by Koike [10]. (In fact, Koike’s universal character was the inspiration for the
extension of Hamel and King.) The function rsλ,µ(a, a; 0) is symmetric in λ and µ, how-
ever the same does not hold for c 6= 0. To make the statement below compact we adopt
the convention that rsλ(r),λ(z−r−1)(a, a; cr) = rsλ(z−r−1),λ(r)(a, a;−cr) if cr < 0. Finally, recall
that for c ∈ Cz;t, µc is the unique smallest z-asymmetric partition with κt(t-core(µc)) = c
provided by Corollary 3. With this established, we are ready to state our second main
result.

Theorem 6. Let t > 2 and z be integers such that 0 6 z 6 t− 1. Then ϕtXλ(z) vanishes unless
κt(t-core(λ)) := c ∈ Cz;t and λ ⊇ µc. If these conditions are satisfied, then

ϕtXλ(z; (−1)z) = ε
b(z−2)/2c

∏
r=0

rsλ(r),λ(z−r−1)(1, 1; cr)
b(t+z−2)/2c

∏
s=z

rsλ(s),λ(t+z−s−1)(0, 0; 0)

×


1 if z even, t even,
Xλ((z−1)/2)(1;−1) if z odd, t odd,
Xλ((t+z−1)/2)(0; 1) if z even, t odd,
Xλ((z−1)/2)(1;−1)Xλ((t+z−1)/2)(0;−1) if z odd, t even,

where the sign ε may be expressed as

ε = (−1)(|µc|+(z−1)d(µc))/2 sgnt(λ/µc).
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For z = 1 the theorem states that ϕtoλ vanishes unless t-core(λ) is 1-asymmetric, in
which case

ϕtoλ = (−1)|t-core(λ)|/2 sgnt(λ/t-core(λ))oλ(0)

b(t−1)/2c

∏
r=1

rsλ(r),λ(t−r) ×
{

so−
λ(t/2) t even,

1 t odd,

where so−ν := Xν(0,−1). This is precisely [2, Theorem 3.2], which generalises [3, The-
orem 2.15]. One notable improvement on both our previous results and those of Ayyer
and Kumari is that the sign in the above has a much nicer, combinatorial, expression.
Another improvement is that Theorem 6 admits a uniform statement and uniform proof
for 0 6 z 6 t− 1. To obtain the symplectic case one must compute ϕtXλ(−z; (−1)z−1),
which is completely analogous to the proof of the above, even though it is (unfortu-
nately) not contained in Theorem 6. There is also a more general version of the theorem
where z ∈ N, as for Theorem 2, which we defer to future work [1].

Let us briefly sketch the proof of Theorem 6. The first step is to apply the map ϕt
to each term in the skew Schur expansion (3.4b) using Theorem 4. Doing so gives the
expression

ϕtXλ(z; (−1)z) = ∑
µ∈Pz

λ/µ t-tileable

(−1)(|µ|+(z−1)d(µ))/2 sgnt(λ/µ)
t−1

∏
r=0

sλ(r)/µ(r) .

From this vantage point the vanishing is already visible. Since λ/µ being t-tileable
means that, in particular, t-core(λ) = t-core(µ) the first part of Theorem 2 implies that
κt(t-core(λ)) ∈ Cz;t for the sum to be non-vanishing. The second part of the same
theorem combined with Corollary 3 tells us that (1cr) ⊆ µ(r) ⊆ λ(r) (since λ/µ is t-
tileable) for those 0 6 r 6 z− 1 such that cr > 0, which is equivalent to the requirement
that l(λ(r)) > cr for 0 6 r 6 z− 1. The next step is to show that the sum decouples as a
product, and each factor in this product corresponds to the symmetric functions present
in the factorisation. This is the meat of the proof, requiring a careful analysis of the sign
and Frobenius rank as they relate to the Littlewood decomposition. Unfortunately, at
this stage we are unable to include the parameter q present in (3.4) precisely because the
Frobenius rank does not decompose nicely in terms of the Littlewood decomposition.
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Inhomogeneous particle process defined by
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Abstract. We construct a time, particle, and position inhomogeneous discrete time
particle process on the nonnegative integers that generalizes one of those studied in
a Dieker and Warren. The particles move according to an inhomogeneous geometric
distribution and stay in (weakly) decreasing order, where smaller particles block larger
particles. We show that the transition probabilities for our particle process is given by
a (refined) canonical Grothendieck function up to a simple overall factor.

Keywords: Grothendieck polynomial, particle process, transition probability

1 Introduction

The totally asymmetric simple exclusion process (TASEP) with sites on Z is a classical one
dimensional model that has many interesting features and applications. In this stochastic
process, there is at most one particle in each site and the particles move in one direction
— say, to the right — according to some specified dynamic. For the continuous time
process, particle p jumps one step with rate πp, subject to an exclusion interaction,
where a particle immediately to the right of p blocks it. For discrete time, then particles
decide to move by flipping (biased) coins, where success rate πp depends on particle.
However, we need a rule to resolve when two particles move simultaneously that could
interact. For the rule particles update right-to-left, this is Case B studied by Dieker and
Warren [4]. On the other hand, if the particle keeps moving one step each time it flips
the (biased) coin successfully until it fails, then it moves by the geometric distribution.
This is [4, Case C] with instead updating the particles from left-to-right.

In a seemingly different area, the (refined) Grothendieck polynomials Gλ//µ(xn; β)
originated from the (connective) K-theoretic Schubert calculus of the Grassmannian, and
so they are a natural generalization of the Schur polynomials. They have been well-
studied since their inception (for the unrefined case β = β) in the work of Lascoux and
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Schützenberger [13], which includes explicit combinatorial descriptions [2, 3, 7]. How-
ever, this is related to the aforementioned particle processes as follows. When we addi-
tionally make the success probability of Case C TASEP depend on the time t according
to πpxt, then the n-step transition probabilities can be easily seen to equal Gλ//µ(xn; β)
up to an explicit overall simple factor [8, Thm. 1.1]. Indeed, this can be seen in a number
of different ways: Directly comparing the Jacobi–Trudi formula [9] with the natural sym-
metric function replacements in the determinants in [4], using extensions of the Schur
operators to encode the dynamics [8, Sec. 4.2], or bijectively with set-valued tableaux [8,
Sec. 5.3]. A similar statement holds for Case B with the weak Grothendieck polynomials.

A natural question is what particle process corresponds to the canonical Grothen-
dieck polynomials [7, 16] (up to an analogous simple factor). However, it does not seem
possible to build a particle process from naively combining the Case BC processes, which
is similar to some of the combinatorial aspects of Gλ//µ(x; α, β). Instead, we develop our
stochastic model by using the Schur operators for Gλ//µ(x; α, β) developed in [8, Sec. 3] as
they were shown to encode the particle movements when α = 0. This leads to a position
inhomogeneous version of the Case BC process described above, which has been studied
when β = 0 in recent works [1, 11]. Our main result is that our new discrete time particle
process has a transition kernel given by the canonical Grothendieck polynomials. Using
this, we give a formula for the multi-point distribution for this process. All of our
formulas can be described as determinants of contour integrals using [9].

This is an extended abstract based on [8, Sec. 8], and is organized as follows. In
Section 2, we describe canonical Grothendieck polynomials. In Section 3, we give the
necessary free fermion representations. In Section 4, we describe our particle process.

2 Grothendieck polynomials

Let P denote the set of all partitions λ = (λ1, λ2, . . .), weakly decreasing sequences of
nonnegative integers with finite sum. We draw our Young diagrams using English con-
vention. Let ℓ(λ) denote the largest index ℓ such that λℓ > 0, called the length of λ. Let
λ′ denote the conjugate partition. A hook is a partition a1m with arm a − 1 and leg m.

Let x = (x1, x2, . . .) denote a countably infinite sequence of indeterminates and de-
note xn := (x1, . . . , xn, 0, 0, . . .). We make similar definitions for other such sequences. In
particular, we take parameters α = (α1, α2, . . .) and β = (β1, β2, . . .).

A hook-valued tableau of skew shape λ/µ is a filling of the Young diagram by hook
shaped tableau, fillings of a hook shape with entries weakly (resp. strictly) increasing
along the arm (resp. leg), satisfying the local conditions

a b

c

max(a) ≤ min(b)

<

min(c)
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Work [7] [16] [3] [14]

Specialization Gλ(x;−α, β) Gλ(x;−α,−β) Gλ(x; 0, β) Gλ(x; 0,−β)

Table 1: The relationship between our sign choices and some other papers.

(provided the requisite box exists). Note that this is a generalization of the semistandard
conditions, which reduce to the usual ones when a, b, c all consist of a single entry.

For µ ⊆ λ, the canonical Grothendieck function (we omit the word “refined” to simplify
our nomenclature from [7]) is the generating function

Gλ/µ(x; α, β) = ∑
T

∏
b∈T

(−αi)
a(b)(−β j)

b(b) wt(b),

where we sum over all hook-valued tableaux T of shape λ/µ, product over all entries b

in T with a(b) (resp. b(b)) the arm (resp. leg) of the shape of b and i (resp. j) the row
(resp. column) of the entry. We indicate various specializations and relation with some
of the literature in Table 1, which Gλ/µ(x; α, β) also specializes those in [2, 12]. While
technically we should work in a completion of the ring of symmetric functions, this does
not affect our results, so we suppress this here. The set {Gλ(x; α, β)}λ∈P is a basis for
(the completion of) symmetric functions (see, e.g., [6, 7]).

The skew shape description is not natural from the algebraic perspective. Hence,
refining [2, Eq. (6.4)] and [16, Prop. 8.8], we define [9, Sec. 4.1]

Gλ//µ(x; α, β) := ∑
ν⊆µ

∏
(i,j)∈µ/ν

−(αi + β j)Gλ/ν(x; α, β), (2.1)

where ν is formed by removing some corners of µ (boxes (i, µi) such that µi > µi+1).

Proposition 2.1 (Branching rules [9, Prop. 4.5]). We have

Gλ/µ(x, y; α, β) = ∑
ν⊆λ

Gλ//ν(y; α, β)Gν/µ(x; α, β),

Gλ//µ(x, y; α, β) = ∑
µ⊆ν⊆λ

Gλ//ν(y; α, β)Gν//µ(x; α, β).

The dual canonical Grothendieck functions {gλ(x; α, β)}λ∈P are defined as the dual ba-
sis to the canonical Grothendieck functions under the Hall inner product, defined by
{sλ(x)}λ∈P , where sλ(x) = Gλ(x; 0, 0) are the Schur functions, is an orthonormal basis.
A combinatorial definition of gλ(x; α, β) was given in [7], which is a refinement of the
rim border tableaux description of [16].

We have the skew Cauchy formula [9, Thm. 4.6] (a non-skew version is in [7] or
implied from [3, Rem. 3.9]). This is a refined version of [17, Thm. 1.1].
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Theorem 2.2 (Skew Cauchy formula). We have

∑
λ

Gλ//µ(x; α, β)gλ/ν(y; α, β) = ∏
i,j

1
1 − xiyj

∑
η

Gν//η(x; α, β)gµ/η(y; α, β).

3 Free fermions and Schur-type operators

We describe the free-fermion presentation of the (dual) canonical Grothendieck poly-
nomials from [9]. For more details, we refer the reader to [10]. The unital associative
Clifford algebra (over C) is generated by {ψn, ψ∗

n | n ∈ Z} with relations

ψmψn + ψnψm = ψ∗
mψ∗

n + ψ∗
nψ∗

m = 0, ψmψ∗
n + ψ∗

nψm = δm,n,

known as the canonical anti-commuting relations. The current operators are defined as
ak := ∑i∈Z ψiψ

∗
i+k, (care is needed for k = 0, but we will not use this) and satisfy the

Heisenberg algebra relations [am, ak] = mδm,−k, We will use the Hamiltonian operators

H(x/y) := ∑
k>0

pk(x/y)
k

ak, H∗(x/y) := ∑
k>0

pk(x/y)
k

a−k, where pk(x/y) =
∞

∑
i=1

xk
i − yk

i ,

and the corresponding half vertex operators eH(x/y) and eH∗(x/y). These satisfy the relations

eH(x/y)ψke−H(x/y) =
∞

∑
i=0

hi(x/y)ψk−i, e−H(x/y)ψ∗
k eH(x/y) =

∞

∑
i=0

hi(x/y)ψ∗
k+i,

where hi(x/y) is the homogeneous supersymmetric function.
Fermionic Fock space is the Clifford algebra representation F generated by the shifted

vacuum vectors with relations

|m⟩ =
{

ψm−1 · · · ψ0|0⟩ if m ≥ 0,
ψ∗

m · · · ψ∗
−1|0⟩ if m < 0,

⟨m| =
{
⟨0|ψ∗

0 · · · ψ∗
m−1 if m ≥ 0,

⟨0|ψ−1 · · · ψm if m < 0.

Note that eH(x/y)|m⟩ = |m⟩ and ⟨m|eH∗(x/y) = ⟨m| for all m. We will use the vectors

|λ⟩[α,β] :=
→
∏

1≤i≤ℓ

(
e−H(Aλi−1)ψλi−ieH(βi)eH(Aλi−1)

)
|−ℓ⟩,

|λ⟩[α,β] :=
→
∏

1≤i≤ℓ

(
eH∗(Aλi

)ψλi−ie−H∗(βi)e−H∗(Aλi
)
)

eH∗(Aλℓ
)|−ℓ⟩,

here Ak = −αk = (−α1, . . . ,−αk) and the product is ordered Ψ1 · · · Ψℓ. We restrict
ourselves to the subspace F 0 and the bases [9, Thm. 3.10] {|λ⟩[α,β]}λ∈P and {|λ⟩[α,β]}λ∈P .
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There is also the dual representation F ∗, which has a canonical bilinear pairing called
the vacuum expectation value that satisfies

⟨k|m⟩ = δkm, (⟨w|X)|v⟩ = ⟨w|(X|v⟩)

for all k, m ∈ Z, operator X, ⟨w| ∈ F ∗, and |v⟩ ∈ F . Note that |k⟩∗ = ⟨k|. Define by the
anti-involution ψi ↔ ψ∗

i the vectors [α,β]⟨λ| := (|λ⟩[α,β])∗ and [α,β]⟨λ| := (|λ⟩[α,β])
∗. We

have the orthonormal bases [9, Thm. 3.10]

[α,β]⟨λ|µ⟩[α,β] =
[α,β]⟨λ|µ⟩[α,β] = δλµ. (3.1)

Moreover, there is the boson-fermion correspondence from F 0 to symmetric functions de-
fined by |v⟩ 7→ ⟨0|eH(x/y)|v⟩, which satisfies [9, Cor. 4.2, Eq. (4.1)]

Gλ//µ(x; α, β) = [α,β]⟨µ|eH(x)|λ⟩[α,β], gλ/µ(x; α, β) = [α,β]⟨µ|eH(x)|λ⟩[α,β]. (3.2)

We denote κi : k[P ] → k[P ] the i-th (row) Schur operator that adds a box to the i-th
row of a partition λ if λi < λi−1 (that is, we can add the box and obtain a partition) and
is 0 otherwise. We define the linear operator U(α,β)

i by

U(α,β)
i := κi + Θi, where Θi · λ :=

{
−αλi λ if λi < λi−1,
βi−1λ if λi = λi−1,

for any λ ∈ P . We consider λ0 = ∞ and α0 = 0 (although our proofs could have α0 be
an arbitrary parameter). When there is no ambiguity, we will simply write Ui := U(α,β)

i .

Lemma 3.1 ([8, Lemma 3.2]). The operators U = {Ui}∞
i=1 satisfy the weak Knuth relations.

Lemma 3.1 implies we can use U with noncommutative symmetric functions [5].

Theorem 3.2 ([8, Thm. 3.3]). We have [α,β]⟨λ|Sµ(a1, a2, . . .) = [α,β]⟨sµ(U/β) · λ|, where
Sλ(p1(x), p2(x), . . .) = sλ(x).

4 Particle Process

Now we describe a particle process whose transition kernel naturally uses the canonical
Grothendieck polynomials. We start by explicitly defining the stochastic process, and
then we will show how to interpret it using the noncommutative operators U. Let π =
(π1, π2, . . .) be a sequence of parameters such that 0 ≤ πixj < 1 for all i and j.

Let G(j, i) denote the position of the j-th particle at time i, which is determined by

G(j, i) = min
(
G(j, i − 1) + wji, G(j − 1, i − 1)

)
, (4.1)
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Figure 1: A sampling using 10000 samples of the inhomogeneous geometric distribu-
tion PG for xi = 1, πj = .5, and αk = 1 − ke−k/2 (blue) under the exact distribution
(red), which is under the geometric distribution with parameter πjxi (green).

by convention G(0, i − 1) := ∞, where the random variable wij (which depends on
G(j, i − 1)) is determined by the inhomogeneous geometric distribution defined by

PG(wji = m′ | G(j, i − 1) = m) :=
1 − πjxi

1 + αm+m′xi

m+m′−1

∏
k=m

(αk + πj)xi

1 + αkxi
. (4.2)

In other words, the j-th particle at time i attempts to jump wji steps, but can be blocked
by the (j − 1)-th particle, which updates its position after the j-th particle moves.

Let us digress slightly on why (4.2) is called an inhomogeneous geometric distri-
bution. We can realize it as the waiting time for a failure in sequence of Bernoulli
variables (i.e., weighted coin flips), but the k-th trial given a probability of success
(αk + πj)xi(1 + αkxi)

−1. Indeed, we note that the probability of a failure is

1 −
αkxi + πjxi

1 + αkxi
=

1 − πjxi

1 + αkxi
.

Hence, this gives us a sampling algorithm for the distribution PG . We illustrate the
effectiveness of this sampling in Figure 1. This perspective also allows us to easily see
that we have a probability measure on Z≥m for any fixed m. The case π = 0 can also be
seen as a projection of the Warren–Windridge dynamics [15]; see also [1, Sec. 2.2].

We will give some remarks on the meaning of the α parameters. From the behavior
of the operators U, it would be tempting to consider the α parameters as a viscosity, but
for α > 0, we have PG(wji = k) > PGe(wji = k), where PGe denotes the usual geometric
distribution with parameter πjxi. Thus, in this case, the α parameters act as a current
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being applied to the system, the strength (and direction) of which can vary at each
position. On the other hand, when α < 0, we have PG(wji = k) < PGe(wji = k), and so
indeed α then acts as (position-based) viscosity. We can also introduce locations where
certain particles must stop by having −αk = πj since this would have PG(wij = k′) = 0
for all k′ that would move the j-th particle past position k.

To see how to obtain this process using the noncommutative operators U, we initiate
by taking the skew Cauchy formula (Theorem 2.2) with ν = ∅ and with the specializa-
tions y = π1 and β j = πj+1, yielding

∑
λ

Gλ//µ(xn; α, β)gλ(π1; α, β) = ∏
i
(1 − π1xi)

−1gµ(π1; α, β). (4.3)

In particular, if we let λ̂i = λi − 1 for all 1 ≤ i ≤ ℓ(λ), then from the combinato-
rial description of [7, Thm. 7.2], we have gλ(π1; α, β) = π1ℓ(λ) ∏(i,j)∈λ̂

(αi + πj). Hence,
Equation (4.3) can be considered a Littlewood-type identity for canonical Grothendieck
polynomials. Dividing this by the factor on the right hand side and taking the term cor-
responding to λ, we obtain a probability distribution for n step random growth process
(since we must have µ ⊆ λ and currently the interpretation we have described is only on
partitions) given by

PC,n(λ|µ) =
n

∏
i=1

(1 − π1xi)π
1ℓ(λ)/1ℓ(µ) ∏

(i,j)∈λ̂/µ̂

(αi + πj)Gλ//µ(xn; α, β). (4.4)

Note that Equation (4.3) is equivalent to ∑λ PC,n(λ|µ) = 1 for any fixed µ and n.
Rephrasing Equation (4.4) and adding an α0 = 0 parameter in order to simplify the

product in gλ(π1; α, β), what we have computed are coefficients

Cλµ =
n

∏
i=1

(1 − π1xi)(⃗α + β)λ/µ, where (⃗α + β)λ/µ := ∏
(i,j)∈λ/µ

(αi−1 + πj)

that is defined to be 0 if λ ̸⊇ µ, such that

Cλµ · [α,β]⟨µ|eH(xn)|λ⟩[α,β] = PC,n(λ|µ) ⇐⇒ [α,β]⟨µ|eH(xn) = ∑
λ⊇µ

PC,n(λ|µ)
Cλµ

· [α,β]⟨λ|, (4.5)

where the equivalence of the two formulas is given by the orthonormality (3.1).
We now restrict ourselves to a single timestep at time i in order to encode the growth

process as a particle process by using the operators U. This incurs no loss of generality
as PC,n+n′(λ|µ) = ∑ν PC,n(λ|ν)PC,n′(ν|µ) by the branching rules (Proposition 2.1) and we
have a Markov process. Define the time evolution operator

TC =
∞

∑
k=0

hk(xiU) =
∞

∑
k=0

xk
i hk(U).
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Figure 2: Samples of our process with ℓ = 500 particles after n = 50000 time steps with
(left) π = 1, x = 0.01, and α = −0.5; (right) π = 0.5, x = .2, and αk = 0.5 sin(k/50)6.

By Theorem 3.2, by some algebraic and plethystic manipulations as in [8, Sec. 4.2]

[α,β]⟨µ|eH(xi) =
∞

∏
j=2

1
1 − πjxi

· [α,β]⟨TC · µ|.

Thus, if we consider the expansion ⟨TC · µ| = ∑λ Bλµ · [α,β]⟨λ|, and matching coefficients
in (4.5) (equivalently, pairing with |λ⟩[α,β]), we obtain

PC(λ|µ) =
Bλµ

(⃗α + β)λ/µ

∞

∏
j=1

(1 − πjxi)
−1.

Example 4.1. Consider µ = (1, 1) and set πj = 0 for all j > 3. Using

h1(u3) = u1 + u2 + u3, h2(u3) = u2
1 + u1u2 + u1u3 + u2

2 + u2u3 + u2
3,

h3(u3) = u3
1 + u2

1u2 + u2
1u3 + u1u2

2 + u1u2u3 + u1u2
3 + u3

2 + u2
2u3 + u2u2

3 + u3
3,

and recalling we consider α0 = 0, we compute

h1(U3) · µ =
(
−α1 +

)
+ π1 + ,

h2(U3) · µ =
(

α2
1 − (α1 + α2) +

)
+ π1

(
−α1 +

)
+

(
−α1 +

)
+ π2

1 + π1 + π2 ,

h3(U3) · µ =
(
−α3

1 + (α2
1 + α1α2 + α2

2) − (α1 + α2 + α3) +
)

+ π1

(
α2

1 − (α1 + α2) +
)
+

(
α2

1 − (α1 + α2) +
)

+ π2
1
(
−α1 +

)
+ π1

(
−α1 +

)
+ π2

(
−α1 +

)
+ π3

1 + π2
1 + π1π2 + π2

2 .
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Recall that Ak = −αk. Therefore, we have
[α,β]⟨TC · µ| = (1 + h1(β1 ⊔ A1)xi + h2(β1 ⊔ A1)x2

i + h3(β1 ⊔ A1)x3
i + · · · ) · [α,β]⟨1, 1|

+ xi(1 + h1(β1 ⊔ A2)xi + h2(β1 ⊔ A2)x2
i + · · · ) · [α,β]⟨2, 1|

+ xi(1 + h1(β2 ⊔ A1)xi + h2(β2 ⊔ A1)x2
i + · · · ) · [α,β]⟨1, 1, 1|

+ x2
i (1 + h1(β1 ⊔ A3)xi + · · · ) · [α,β]⟨3, 1|

+ x2
i (1 + h1(β2 ⊔ A2)xi · · · ) · [α,β]⟨2, 1, 1|+ · · ·

=
(1 + α1xi)

−1

1 − π2xi
· [α,β]⟨1, 1|+ (α1xi + π1xi)(1 + α1xi)

−1(1 + α2xi)
−1

(1 − π2xi)(⃗α + π)(2,1)/µ
· [α,β]⟨2, 1|

+
(α0xi + π3xi)(1 + α1xi)

−1

(1 − π2xi)(1 − π3xi)(⃗α + π)(1,1,1)/µ
· [α,β]⟨1, 1, 1|

+
(α1xi + π1xi)(α2xi + π1xi)(1 + α1xi)

−1(1 + α2xi)
−1(1 + α3xi)

−1

(1 − π2xi)(⃗α + π)(3,1)/µ
· [α,β]⟨3, 1|

+
(α1xi + π1xi)(α0xi + π3xi)(1 + α1xi)

−1(1 + α2xi)
−1

(1 − π2xi)(1 − π3xi)(⃗α + π)(2,1,1)/µ
[α,β]⟨2, 1, 1|+ · · · .

If we include α0 in the U operators, then all terms will be multiplied by (1 + α0xi)
−1

since the third particle can move from position 0. With this, some probabilities are

PC(1, 1|µ) = (1 − π1xi)(1 − π3xi)

(1 + α0xi)(1 + α1xi)
,

PC(2, 1|µ) = (α1xi + π1xi)(1 − π1xi)(1 − π3xi)

(1 + α0xi)(1 + α1xi)(1 + α2xi)
,

PC(1, 1, 1|µ) = (α0xi + π3xi)(1 − π1xi)

(1 + α0xi)(1 + α1xi)
,

PC(3, 1|µ) = (α1xi + π1xi)(α2xi + π1xi)(1 − π1xi)(1 − π3xi)

(1 + α0xi)(1 + α1xi)(1 + α2xi)(1 + α3xi)
,

PC(2, 1, 1|µ) = (α1xi + π1xi)(α0xi + π3xi)(1 − π1xi)

(1 + α0xi)(1 + α1xi)(1 + α2xi)
.

Any individual (free) particle motion is (up to changing πj 7→ π1) equivalent to
the first particle’s motion. Thus, let us consider λ with ℓ(λ) = 1, and a straightforward
computation (say, at time i) using either the operators U or the combinatorial description
of Gλ//µ(xi; α, β) yields

PC
(
m′|m

)
=

1 − πjxi

1 + αm′+mxi

m+m′−1

∏
k=m

(αk + πj)xi

1 + αkxi
,

which is precisely the measure specified in (4.4). By (4.4), for any fixed m this is a
probability measure for all αk + πj ≥ 0 with the natural assumptions 0 ≤ πjxi < 1 and
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αkxi ≥ −1. This can also be extended to include (αk)k∈Z by shifting the parameters
αk 7→ αk±1. Hence, the same analysis as in [8, Sec. 4.2] yields the following.

Theorem 4.2. Suppose ℓ(λ) ≤ ℓ, πjxi ∈ (0, 1), αkxi > −1, and αk + πj ≥ 0 for all i, j, k.
Set β j = πj+1. Let PC,n(λ|µ) denote the n-step transition probability for particle system using
the distribution (4.2) for the jump probability of the particles with interactions as given by (4.1).
Then the n-step transition probability is given by

PC,n(λ|µ) =
n

∏
i=1

(1 − π1xi)(⃗α + π)λ/µGλ//µ(xn; α, β).

Remark 4.3. Since the α parameters used, and hence the probabilities, now depend on
the positions of the particles, we can only work with the bosonic model, where multiple
particles can occupy the same site. If we instead switch to a fermionic model by mapping
the j-th particle at position λj to λj − j, then we are required to introduce additional
parameters αk for k < 0, in which case Theorem 4.2 no longer holds, or to account for
the shifting of positions by replacing αk 7→ αk+j for the j-th particle distribution PG .

We could also prove Theorem 4.2 by using the combinatorics of hook-valued tableaux
as in [8, Sec. 5.3], where the positions of the particles is dictated by the smallest value
in each entry of the hook-valued tableaux. The key observation is that we have a factor
xi(1 − αkxi)

−1 for every box in the k-th column that would normally contain an i in the
set-valued tableaux (over all k), or where there is no arm. The leg (the column part
except for the corner) corresponds to the choice between 1 and −πixj in the numerator
of the normalization constant as in [8, Sec. 5.3]. The arm (the row part except for the
corner) comes from waiting at that particular position and contributes an −αxi, which
contributes a factor of (1 + αxi)

−1 as in the Case B combinatorial proof [8, Sec. 5.4].
From [9, Thm. 4.1], we obtain determinant formulas for PC,n(λ|µ), where we can

write the entries of the matrix as contour integrals [9, Thm. 4.19]. We can also redo [8,
Thm. 6.8] at this level of generality to obtain the multi-point distribution.

Theorem 4.4. The multi-point distribution is given by

P≥,n(ν|µ) := P(G(ℓ, n) ≥ νℓ, . . . , G(1, n) ≥ ν1 | G(ℓ, 0) = µℓ, . . . , G(1, 0) = µ1)

=
ℓ

∏
j=2

n

∏
i=1

(1 − πjxi)
−1 det

[
hνi−µj−i+j

(
x//(A(µj,νi]

⊔ πi/βj
)]ℓ

i,j=1.

We can give another simpler proof of Theorem 4.2 for the case when α = α. This will
follow from a straightforward generalization of the unrefined case [16, Prop. 3.4], noting
our sign convention means we need to substitute −α.

Proposition 4.5. Gλ(x; α, β) = Gλ(x/(1+ αx); 0, α+ β) by xi 7→ xi/(1+ αxi), βi 7→ α+ βi.
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Indeed, under this substitution, we have πjxi 7−→ (α+πj)xi
1+αxi

. Hence, the geometric
distribution PGe transforms to the distribution PG in (4.2) with α = α. Moreover, in our
formula in Case C of [8, Thm. 1.1], the total x degree and total π degree in each term of
πλ/µGλ//µ(x; β) are equal, and so we can perform this substitution.

Remark 4.6. Let us discuss the relationship between this model and the doubly geomet-
ric inhomogeneous corner growth model defined in [11]. In their corresponding TASEP
model, there is an additional set of position-dependent parameters ν that are only in-
volved after the initial movement of the particle (akin to static friction). Yet, if we set
ν = 0, then the model in [11] is the fermionic realization of our model (cf. Remark 4.3)
at β = 0 with their parameters (a, β) equaling our parameters (α, x). Hence, we end up
with another TASEP version that is equivalent to Case B. It would be interesting to see
if the model in [11] can be recovered from the free fermionic description.

We also remark that our model with π = 0 was studied in [1], but using very dif-
ferent techniques based on Toeplitz matrices and Markov semigroups. Therefore, from
the specialization of the canonical Grothendieck polynomials, it is essentially Case B as
before, with a more probabilistic link being made by [1, Thm. 2.43].

We can similarly define a Bernoulli process with the position-dependent probability

PB(wji = 1 | G(j, i − 1) = m) :=
(ρj + βm)xi

1 + ρjxi
. (4.6)

Analogously to Theorem 4.2 (including its proof), we have the following.

Theorem 4.7. Suppose λ1 ≤ ℓ, βkxi ∈ (0, 1), ρjxi > −1, and ρj + βk ≥ 0 for all i, j, k.
Set αj = ρj+1. The n-step transition probability for the particle system using Bernoulli jumps
according to the distribution (4.6) is given by

PB,n(λ|µ) =
(β⃗ + ρ)λ/µ

∏n
i=1(1 + ρ1xi)

Gλ′//µ′(xn; α, β).

If we set α = 0 in this position-dependent version of [8, Case B], then we end up with
a Bernoulli random variable version of [11] at ν = 0.
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Chow rings of matroids as permutation
representations

Robert Angarone*1, Anastasia Nathanson†1, and Victor Reiner‡1

1University of Minnesota - Twin Cities, Minneapolis MN 55455

Abstract. Given a matroid and a group of its matroid automorphisms, we study the
induced group action on the Chow ring of the matroid. This turns out to always be
a permutation action. Work of Adiprasito, Huh and Katz showed that the Chow ring
satisfies Poincaré duality and the Hard Lefschetz theorem. We lift these to statements
about this permutation action, and suggest further conjectures in this vein.

Keywords: matroid, Chow ring, Koszul, log-concave, unimodal, Kahler package, Burn-
side ring, equivariant, Polya freqency, real-rooted

1 Introduction

A matroid M is a combinatorial abstraction of lists of vectors v1, v2, . . . , vn in a vector
space, recording only the information about which subsets of the vectors are linearly in-
dependent or dependent, forgetting their coordinates. In groundbreaking work, Adipr-
asito, Huh and Katz [1] affirmed long-standing conjectures of Rota–Heron–Welsh and
Mason about vectors and matroids via a new methodology. Their work employed a cer-
tain graded Z-algebra A(M) called the Chow ring of M, introduced by Feichtner and
Yuzvinsky [4] as a generalization of the Chow ring of DeConcini and Procesi’s wonderful
compactifications for hyperplane arrangement complements. A remarkable integral Gröb-
ner basis result proven by Feichtner and Yuzvinsky [4, Thm. 2] shows that for a matroid
M of rank r + 1 with Chow ring A(M) =

⊕r
k=0 Ak, each homogeneous component is

free abelian: Ak ∼= Zak for some Hilbert function (a0, a1, . . . , ar). A key step in the work
of Adiprasito, Huh and Katz shows not only symmetry and unimodality for the Hilbert
function

ak = ar−k for r ≤ k/2 (1.1)
a0 ≤ a1 ≤ · · · ≤ a⌊ r

2 ⌋ = a⌈ r
2 ⌉ ≥ · · · ≥ ar−1 ≥ ar, (1.2)

*angar017@umn.edu
†natha129@umn.edu
‡reiner@umn.edu

angar017@umn.edu
natha129@umn.edu
reiner@umn.edu
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but in fact proves that A(M) enjoys a trio of properties referred to as the Kähler package,
reviewed in Section 2.2 below. The first of these properties is Poincaré duality, proving
(1.1) via a natural Z-module isomorphism Ar−k ∼= HomZ(Ak, Z). The second property,
called the Hard Lefschetz Theorem, shows that after tensoring over Z with R to obtain
A(M)R =

⊕
k=0 Ak

R, one can find Lefschetz elements ω in A1
R such that multiplication by

ωr−2k give R-linear isomorphisms Ak
R → Ar−k

R for k ≤ r
2 . In particular, multiplication by

ω mapping Ak
R → Ak+1

R is injective for k < r
2 , strengthening the unimodality (1.2).

We are interested in how these Poincaré duality and Hard Lefschetz properties interact
with the group G := Aut(M) of symmetries of the matroid M. It is not hard to check
that G acts via graded Z-algebra automorphisms on A(M), giving ZG-module struc-
tures on each Ak, and RG-module structures on each Ak

R. One can also check (see the
proof of Corollary 6 below) that Ar ∼= Z with trivial G-action. From this, the Poincaré
duality pairing immediately gives rise to a ZG-module isomorphism

Ar−k ∼= HomZ(Ak, Z) (1.3)

where g in G acts on φ in HomZ(Ak, Z) via φ 7→ φ ◦ g−1; similarly Ar−k ∼= HomR(Ak, R)
as RG-modules. Furthermore, it is not hard to check (see Corollary 6 below) that one
can pick an explicit Lefschetz element ω as in [1] which is G-fixed, giving RG-module
isomorphisms and injections

Ak
R

∼−→ Ar−k
R for r ≤ k

2
Ak

R ↪→ Ak+1
R for r <

k
2

a 7−→ a · ωr−2k a 7−→ a · ω. (1.4)

Our goal is to use Feichtner and Yuzvinsky’s Gröbner basis result to prove a combi-
natorial strengthening of the isomorphisms and injections (1.3), (1.4). To this end, recall
that the matroid M can be specified by its family F of flats; then the Chow ring A(M)
is presented as a quotient of the polynomial ring S := Z[xF] having one variable xF for
each nonempty flat F in F \ {∅}. The presentation takes the form A(M) := S/(I + J)
where I, J are certain ideals of S defined more precisely in Definition 1 below.

Feichtner and Yuzvinsky exhibited a Gröbner basis for I + J that leads to the follow-
ing standard monomial Z-basis for A(M), which we call the FY-monomials of M:

FY := {xm1
F1

xm2
F2

· · · xmℓ
Fℓ

: (∅ =: F0) ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fℓ, and mi ≤ rk(Fi)− rk(Fi−1)− 1}.

Here rk(F) denotes the matroid rank of the flat F. The subset FYk of FY-monomials
xm1

F1
· · · xmℓ

Fℓ
of total degree m1 + · · ·+ mℓ = k then gives a Z-basis for Ak. One can readily

check (see Corollary 4 below) that the group G = Aut(M) permutes the Z-basis FYk for
Ak, endowing Ak with the structure of a permutation representation, or G-set. Our main
result is this strengthening of the isomorphisms and injections seen in (1.3), (1.4).
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Theorem 1. For every matroid M of rank r + 1, there exist

(i) G-equivariant bijections π : FYk ∼−→ FYr−k for k ≤ r
2 , and

(ii) G-equivariant injections λ : FYk ↪→ FYk+1 for k < r
2 .

2 Background

Among the many definitions of a matroid M on ground set E, the most useful here
specifies its collection of flats F ⊊ 2E, satisfying certain axioms. When ordered by in-
clusion the collection of flats (F,⊆) forms a geometric lattice; in an abuse of notation,
we will use F to refer to both the lattice and the set. This lattice is ranked, with rank
function denoted rk(F). The rank of the matroid M itself is defined to be rk(E), and
we assume throughout that rk(E) = r + 1. An automorphism of the matroid M is any
permutation g : E → E of the ground set E that carries flats to flats: for all F in F one has
g(F) in F. Let G = Aut(M) denote the group of all automorphisms of M. Since such
automorphisms respect the partial order via inclusion on F, they also preserve the rank
function: rk(g(F)) = rk(F) for all g in G and F in F.

2.1 Chow Rings

As defined in the Introduction, Feichtner and Yuzvinsky [4] introduced the Chow ring
A(M) of a matroid M.

Definition 1. The Chow ring A(M) of a matroid M is the quotient Z-algebra

A(M) := S/(I + J)

where S = Z[xF] is a polynomial ring having one variable xF for each nonempty flat
F ∈ F \ {∅}, and where I, J are the following ideals of S:

• I is generated by products xFxF′ where F, F′ are incomparable flats,

• J is generated by the linear elements ∑
a∈F∈F

xF for each atom a in the lattice F.

The presentation of the Chow ring A(M) only uses the information about the partial
order on the lattice of flats F has some consequences. For one, the Chow ring depends
only upon the associated simple matroid of M (one without loops and parallel edges);
hence, we assume all matroids to be such. Another consequence is that any element g in
G = Aut(M) will send the generators of the ideals I, J to other such generators. Thus
I + J is a G-stable ideal, and G acts on A(M).
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Note if one considers S = Z[xF] as a graded Z-algebra, then the ideals I, J are gen-
erated by homogeneous elements. Hence the quotient A(M) = S/(I + J) inherits the
structure of a graded Z-algebra A(M) =

⊕∞
k=0 Ak. Since the action of G = Aut(M)

on the Chow ring preserves rank and hence degree, both A(M) and each homogeneous
component Ak become ZG-modules.

The following crucial result appears as [4, Thm. 2]. To state it, define an FY-monomial
order on S = Z[xF]∅ ̸=F∈F to be any monomial order based on a linear order of the
variables with xF > xF′ if F ⊊ F′.

Theorem 2. Given a matroid M and any FY-monomial order on S = Z[xF]∅ ̸=F∈F, the ideal
I + J presenting A(M) = S/(I + J) has a monic Gröbner basis {gF,F′} indexed by F ̸= F′ in
F, with gF,F′ and their initial terms in≺(gF,F′) as shown here:

condition on F ̸= F′ in F gF,F′ in≺(gF,F′)

F, F′ non-nested xFxF′ xFxF′

∅ ̸= F ⊊ F′ xF

 ∑
F′′∈F:
F′′⊇F′

xF′′


rk(F′)−rk(F)

xF · xrk(F′)−rk(F)
F′

∅ = F ⊊ F′

 ∑
F′′∈F:
F′′⊇F′

xF′′


rk(F′)

xrk(F′)
F′

Corollary 3. ([4, Cor. 1]) For a matroid M of rank r + 1, the Chow ring A(M) has these
properties:

(i) A(M) is free as a Z-module, with Z-basis given by the set of what we call FY-monomials

FY := {xm1
F1

xm2
F2

· · · xmℓ
Fℓ

: F1 ⊊ · · · ⊊ Fℓ ∈ F, and mi ≤ rk(Fi)− rk(Fi−1)− 1}. (2.1)

(ii) A(M) vanishes in degrees strictly above r, that is, A(M) =
⊕r

k=0 Ak.

(iii) Ar has Z-basis {xr
E}, and so a Z-module isomorphism deg : Ar −→ Z sending xr

E 7−→ 1.
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Assertions (ii) and (iii) follow immediately from the first. To see this, note that the
typical FY-monomial xm1

F1
xm2

F2
· · · xmℓ

Fℓ
, has total degree

ℓ

∑
i=1

mi ≤
ℓ

∑
i=1

(rk(Fi)− rk(Fi−1)− 1) = rk(Fℓ)− ℓ ≤ (r + 1)− 1 = r + 1.

Equality here occurs only if ℓ = 1 and Fℓ = E, in which case the FY-monomial is xr
E.

For any matroid automorphism g, the fact that rk(g(F)) = rk(F) for every flat F in F
implies that g sends any FY-monomial to another FY-monomial:

xm1
F1

xm2
F2

· · · xmℓ
Fℓ

g7−→ xm1
g(F1)

xm2
g(F2)

· · · xmℓ
g(Fℓ)

.

This has a corollary, inspired by work of H.-C. Liao on Boolean matroids [8, Thm. 2.5].

Corollary 4. For any matroid M, the group G = Aut(M) permutes the set FY, as well as
its subset of degree k monomials FYk ⊂ FY. Consequently, the ZG-modules on the Chow ring
A(M) and each of its homogeneous components Ak lift to G-permutation representations on FY
and each FYk.

Example 1. Let M = U4,5 be the uniform matroid of rank 4 on E = {1, 2, 3, 4, 5}, associ-
ated to a list of 5 generic vectors v1, v2, v3, v4, v5 in a 4-dimensional vector space, so that
any quadruple vi, vj, vk, vℓ is linearly independent. One has these flats of various ranks:

rank flats F ∈ F
0 ∅
1 1, 2, 3, 4, 5
2 12, 13, 14, 15, 23, 24, 25, 34, 35, 45
3 123, 124, 125, 134, 135, 145, 234, 235, 245, 345
4 E = 12345

The Chow ring A(M) = S/(I + J), where S = Z[xi, xjk, xℓmn, xE] with {i}, {j, k}, {ℓ, m, n}
running through all one, two and three-element subsets of E = {1, 2, 3, 4, 5}, and

I =
(

xFxF′

)
F ̸⊂F′,F′ ̸⊂F

, J =

(
xi + ∑

1≤j<k≤5
i∈{j,k}

xjk + ∑
1≤ℓ<m<n≤5

i∈{ℓ,m,n}

xℓmn + xE

)
i=1,2,3,4,5

.

The FY-monomial bases for A0, A1, A2, A3 are shown here, together with the G-equivariant
maps λ:

FY0 FY1 FY2 FY3

1 λ7−→ xE
λ7−→ x2

E x3
E

xijk
λ7−→ x2

ijk

xij
λ7−→ xij · xE
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Thus in this case, the ranks of the free Z-modules (A0, A1, A2, A3) form the symmet-
ric, unimodal sequence (a0, a1, a2, a3) = (1, 21, 21, 1). Here the bijection π : FY0 → FY3

necessarily maps 1 7−→ x3
E, and the bijection π : FY1 → FY2 coincides with the map

λ : FY1 → FY2 above.

2.2 The Kähler package

The following theorem on the Kähler package for A(M) compiles some of the main
results of the work of Adiprasito, Huh and Katz [1].

Theorem 5. For a matroid M of rank r + 1, the Chow ring A(M) satisfies the Kähler package:

• (Poincaré duality) For every k ≤ r
2 , one has a perfect Z-bilinear pairing

Ak × Ar−k −→ Z

(a, b) 7−→ deg(a · b)

• (Hard Lefschetz) Tensoring over Z with R, the (real) Chow ring AR(M) = ∑r
k=0 Ak

R

contains Lefschetz elements ω in A1
R, meaning that a 7→ a · ωr−2k is an R-linear iso-

morphism Ak
R → Ar−k

R for k ≤ r
2 . In particular, multiplication by ω is an injection

Ak
R → Ak+1

R for k < r
2 .

• (Hodge-Riemann-Minkowski inequalities) The Lefschetz elements ω define quadratic forms
a 7−→ (−1)k deg(a · ωr−2k · a) on Ak

R that become positive definite upon restriction to the
kernel of the map Ak

R −→ Ar−k+1
R that sends a 7−→ a · ωr−2k+1.

In fact, they show that one obtains a Lefschetz element ω whenever ω = ∑∅ ̸=F∈F cFxF

has coefficients cF coming from restricting to F any function A 7→ cA that maps 2E → R

and satisfies these two properties:

(1) the strict submodular inequality cA + cB > cA∩B + cA∪B for all A ̸= B, and

(2) c∅ = cE = 0.

This has consequences for G acting on A(M) and each Ak. Properties (1) and (2)
above are refined by Theorem 1’s parts (i) and (ii) respectively.

Corollary 6. For any matroid M, one has an isomorphism of ZG-modules Ar−k → Ak for each
k ≤ r

2 and RG-module maps Ak
R → Ak+1

R which are injective for k < r
2 .
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3 Results

We recall the statement of the theorem, involving the FY-monomial Z-basis for A(M)
in Corollary 3:

FY := {xm1
F1

xm2
F2

· · · xmℓ
Fℓ

: ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fℓ in F, and mi ≤ rk(Fi)− rk(Fi−1)− 1}

This also means that the FY-monomials FYk of degree k form a Z-basis for Ak for each
k = 0, 1, 2, . . . , r.

Theorem 1 For every matroid M of rank r + 1, there exist

(i) G-equivariant bijections π : FYk ∼−→ FYr−k for k ≤ r
2 , and

(ii) G-equivariant injections λ : FYk ↪→ FYk+1 for k < r
2 .

The prove this, we organize monomials according to the fibers of the following map.

Definition 2. Define the extended support supp+(a) ⊂ F of an FY-monomial a = xm1
F1

· · · xmℓ
Fℓ

by

supp+(a) := {F1, . . . , Fℓ} ∪ {E} =

{F1, . . . , Fℓ} ∪ {E} if Fℓ ⊊ E,
{F1, . . . , Fℓ} if Fℓ = E.

Define a partial order <+ on the FY-monomials in which a <+ b if a divides b and
supp+(a) = supp+(b).

For integers p < q, let [p, q] denote the integer linear order inclusively from p to q.
Given a sequence of such pairs pi < qi for i = 1, 2, . . . , m, let

n

∏
i=1

[pi, qi] = [p1, q1]× [p2, q2]× · · · × [pm, qm] (3.1)

denote their Cartesian product, partially ordered componentwise.

Proposition 7. For any nested flag {F1 ⊊ · · · ⊊ Fℓ ⊊ E} in F containing E, with con-
ventions F0 := ∅ and Fℓ+1 := E, the fiber supp−1

+ {F1, . . . , Fℓ, E} is the set of monomials
{xm1

F1
xm2

F2
· · · xmℓ

Fℓ
xmℓ+1

E } satisfying these inequalities:

1 ≤ mi ≤ rk(Fi)− rk(Fi−1)− 1 for i ≤ ℓ,
0 ≤ mℓ+1 ≤ rk(E)− rk(Fℓ)− 1 = r − rk(Fℓ).

Consequently, the minimum and maximum degree of monomials in supp−1
+ {F1, . . . , Fℓ, E} are ℓ

and r − ℓ, and one has a poset isomorphism

(supp−1
+ {F1, . . . , Fℓ, E},<+) −→

ℓ

∏
i=1

[1, rk(Fi)− rk(Fi−1)− 1] × [0, r − rk(Fℓ)]

xm1
F1

xm2
F2

· · · xmℓ
Fℓ

xmℓ+1
E 7−→ (m1, m2, . . . , mℓ, mℓ+1).
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Most assertions of the proposition are immediate from the definition of the order on FY-
monomials <+ and the map supp+. The minimum and maximum degrees of monomials
in supp−1

+ {F1, . . . , Fℓ, E}) are achieved by

deg(x1
F1

x1
F2
· · · x1

Fℓx
0
E) = ℓ and

deg

(
ℓ

∏
i=1

xrk(Fi)−rk(Fi)−1
Fi

· xrk(E)−rk(Fℓ)−1)
E

)
=

ℓ+1

∑
i=1

(
rk(Fi)− rk(Fi−1)− 1

)
= rk(E)− (ℓ+ 1)
= r − ℓ.

The idea behind the proof of Theorem 1 stems from the observation that all products
of chains, as in (3.1), have symmetric chain decompositions, which can then be pulled back
to each fiber supp−1

+ {F1, . . . , Fℓ, E}.

Definition 3. A symmetric chain decomposition (SCD) of a finite ranked poset P of rank
r is a disjoint decomposition P =

⊔t
i=1 Ci in which each Ci is a totally ordered subset

containing one element of each rank {ρi, ρi + 1, . . . , r − ρi − 1, r − ρi} for some ρi ≤ ⌊ r
2⌋.

It is not hard to check that when posets P1, P2 each have an SCD, then so does their
Cartesian product. In particular, all products of chains have an SCD. Fix one such SCD for
each product poset in (3.1), once and for all, and use the isomorphisms from Proposition 7
to induce an SCD on each fiber supp−1

+ {F1, . . . , Fℓ, E}.

Example 2. Assume M has rk(E) = 10 = r + 1 with r = 9, and one has a pair of nested
flats F ⊂ F′ with rk(F) = 3, rk(F′) = 7. Then the poset supp−1

+ {F, F′, E} and one choice
of SCD for it look as follows:

xFxF′

xFx2
F′ x2

FxF′ xFxF′xE

xFx3
F′ x2

Fx2
F′ xFx2

F′xE x2
FxF′xE xFxF′x2

E

x2
Fx3

F′ xFx3
F′xE x2

Fx2
F′xE xFx2

F′x2
E x2

FxF′x2
E

x2
Fx3

F′xE xFx3
F′x2

E x2
Fx2

F′x2
E

x2
Fx3

F′x2
E

xFxF′

xFx2
F′ x2

FxF′ xFxF′xE

xFx3
F′ x2

Fx2
F′ xFx2

F′xE x2
FxF′xE xFxF′x2

E

x2
Fx3

F′ xFx3
F′xE x2

Fx2
F′xE xFx2

F′x2
E x2

FxF′x2
E

x2
Fx3

F′xE xFx3
F′x2

E x2
Fx2

F′x2
E

x2
Fx3

F′x2
E
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4 Further questions and conjectures

So far, we have mentioned that the unimodality statement (1.2), asserting for k < r
2 that

one has ak ≤ ak+1, is weaker than the statement in Corollary 6 asserting that there are
injective RG-module maps Ak

R → Ak+1
R , which is weaker than Theorem 1(ii) asserting

that there are injective G-equivariant maps of the G-sets FYk ↪→ FYk+1. Here, we wish to
consider not only unimodality for (a0, a1, . . . , ar), but other properties like log-concavity,
the Pólya frequency property, and how to similarly lift them to statements regarding RG-
modules and G-permutation representations. In phrasing this, it helps to consider the
character and Burnside rings.

Definition 4. For a finite group G, its virtual (complex) character ring RC(G) is the free Z-
submodule of the ring of (conjugacy) class functions { f : G → C}, having as a Z-basis
the irreducible complex characters of G. If a character χ can be written as a positive
linear combination of irreducible characters of G, we say that χ is a genuine character,
and write χ ≥RC(G) 0.

Similarly, one can define its Burnside ring B(G) by now having as basis the isomor-
phism classes [X] of finite G-sets X. Then B(G) is the Z-module that mods out by the
span of all elements [X ⊔ Y]− ([X] + [Y]) and if b ∈ B(G) can be written as a positive
linear combination of isomorphism classes, then b is a genuine permutation representation,
and b ≥B(G) 0.

4.1 PF sequences and log-concavity

For a sequence of positive real numbers (a0, a1, . . . , ar), the property of unimodality lies at
the bottom of a hierarchy of concepts

unimodal ⇐ PF2 ⇐ PF3 ⇐ · · · ⇐ PF∞
∥ ∥

(strongly) log-concave PF
(4.1)

which we next review, along with their equivariant and Burnside ring extensions.

Definition 5. Say a sequence of positive reals (a0, a1, . . . , ar) is strongly log-concave (or
PF2) if 0 ≤ i ≤ j ≤ k ≤ ℓ ≤ r and i + ℓ = j + k implies

aiaℓ ≤ ajak, or equivalently, det

[
aj aℓ
ai ak

]
≥ 0.
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For ℓ = 2, 3, 4, . . ., say that the sequence is PFℓ if the associated (infinite) Toeplitz matrix

T(a0, . . . , ar) :=


a0 a1 a2 · · · ar−1 ar 0 0 · · ·
0 a0 a1 · · · ar−2 ar−1 ar 0 · · ·
0 0 a0 · · · ar−3 ar−2 ar−1 ar · · ·
...

...
...

...
...

...
...

... . . .


has all nonnegative square minor subdeterminants of size m × m for 1 ≤ m ≤ ℓ. Say that
the sequence is a Pólya frequency sequence (or PF∞, or just PF) if it is PFℓ for all ℓ = 2, 3, . . ..

Definition 6. For a finite group G and (genuine, nonzero) CG-modules (A0, A1, . . . , Ar),
define the analogous notions of equivariant unimodality, equivariant strong log-concavity,
equivariant PFr or PF∞ by replacing the numerical inequalities in Definition 5 by inequal-
ities in RC(G), or, similarly, one can define all these concepts to be Burnside if these
inequalities are in the Burnside ring B(G).

We’ve seen for Chow rings A(M) of rank r + 1 matroids M, and G = Aut(M),
the sequence (a0, a1, . . . , ar) with ak := rkZ Ak is unimodal; after tensoring with C, the
sequence of CG-modules (A0

C
, A1

C, . . . , Ar
C) is equivariantly unimodal; and the sequence of

G-sets (FY0, FY1, . . . , FYr) is Burnside unimodal.

Conjecture 1. In the Chow ring of a rank r + 1 matroid M, one has that

(i) (Ferroni-Schröter [6, Conj. 10.19]) (a0, . . . , ar) is PF∞.

(ii) (A0
C

, . . . , Ar
C) is equivariantly PF∞.

(iii) (FY0, . . . , FYr) is Burnside PF2 (Burnside log-concave).

Of course, in Conjecture 1, assertion (ii) implies assertion (i). However the same is
not true of assertion (iii): it would only imply the weaker PF2 part of the conjectural
assertion (ii), and only imply the PF2 part of Ferroni and Schröter’s assertion (i), but not
their PF∞ assertions. We have some evidence for the following two further conjectures.

Conjecture 2. For a Boolean matroid M of rank n and i ≤ j ≤ k ≤ ℓ with i + ℓ = j + k,
not only is the element [FYj][FYk]− [FYi][FYℓ] ≥B(Sn) 0, so that it is a genuine permutation
representation, but furthermore one whose orbit-stabilizers are all Young subgroups Sλ.
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Conjecture 3. For a matroid M of rank r + 1 with Chow ring A(M), and any composition
α = (α1, . . . , αℓ) with m := ∑i α ≤ r, the analogous Toeplitz minors of G-sets have

det



[FYα1 ] [FYα1+α2 ] [FYα1+α2+α3 ] · · · [FYm]
[FY0] [FYα2 ] [FYα2+α3 ] · · · [FYm−α1 ]

0 [FY0] [FYα3 ] · · · [FYm−(α1+α2)]

0 0
...

...
... [FYαℓ−1+αℓ ]

0 0 · · · [FY0] [FYαℓ ]


≥B(G) 0.

4.2 Further Questions

So far, we have focused on the Chow ring of a matroid M using its maximal building set.
One relevant example of such a building set is the minimal building set, which is

stable under the full automorphism group Aut(M), and which arises, for example, in
the study of the moduli space M0,n of genus 0 curves with n marked points; see, e.g.,
Dotsenko [3], Gibney and Maclagan [7].

Question 4. Does the analogue of Theorem 1 hold for the Chow ring of a matroid M with respect
to any G-stable building set? In particular, what about the minimal building set?

In [9, Lem. 3.1], Stembridge provides a generating function for the symmetric group
representations on each graded component of the Chow ring for all Boolean matroids;
see also Liao [8]. Furthermore, Stembridge’s expression exhibits them as permutation
representations, whose orbit-stabilizers are all Young subgroups in the symmetric group.

Question 5. Can one provide such explicit expressions as permutation representations for other
families of matroids with symmetry?

Hilbert functions (a0, a1, . . . , ar) for Chow rings of rank r + 1 matroids are not only
symmetric and unimodal, but satisfy the stronger condition of γ-positivity, as shown by
: one has nonnegativity for all coefficients γ = (γ0, γ1, . . . , γ⌊ r

2 ⌋) appearing in the unique
expansion

r

∑
i=0

aiti =
⌊ r

2 ⌋

∑
i=0

γi ti(1 + t)r−2i.

This has been shown, independently by Ferroni, Matherne, Stevens and Vecchi [5, Thm.
3.25] and by Wang (see [5, p. 29]), that the γ-positivity for Hilbert series of Chow rings
of matroids follows from results of [2].

One also has the notion of equivariant γ-positivity for a sequence of G-representations
(A0, A1, . . . , Ar): upon replacing each ai with the element [Ai] of RC(G), one asks that
the uniquely defined coefficients γi in RC(G) have γi ≥RC(G) 0.
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Conjecture 6. For any matroid M of rank r + 1 and its Chow ring A(M) =
⊕

i Ai, the
sequence of G-representations (A0

C
, A1

C, . . . , Ar
C) is equivariantly γ-positive.
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Abstract.

It is well known that the Young lattice is the Bratelli diagram of the symmetric groups
expressing how irreducible representations restrict from SN to SN−1. In 1988, Stanley
discovered a similar lattice called the Young-Fibonacci lattice which was realized as
the Bratelli diagram of a family of algebras by Okada in 1994.

In this paper, we realize the Okada algebra and its associated monoid using a labeled
version of Temperley-Lieb arc-diagrams. We prove in full generality that the dimension
of the Okada algebra is n!. In particular, we interpret a natural bijection between
permutations and labeled arc-diagrams as an instance of Fomin’s Robinson-Schensted
correspondence for the Young-Fibonacci lattice. We prove that the Okada monoid is
aperiodic and describe its Green relations. Lifting those results to the algebra allows
us to construct a cellular basis of the Okada algebra.

Résumé. Il est bien connu que le treillis de Young peut s’interpréter comme le
diagramme de Bratelli des groupes symétriques, décrivant, par exemple, comment
les représentations irréductibles se restreignent de Sn à Sn−1. En 1975, Stanley a
découvert un treillis similaire appelée treillis de Young-Fibonacci qui a été interprété
comme le diagramme de Bratelli d’une famille d’algèbres par Okada en 1994.

Dans cet article, nous réalisons l’algèbre d’Okada et le monoïde associé grâce à une
version étiquetée des diagrammes d’arcs du monoïde de Jones et de l’algèbre de
Tempeley-Lieb. Nous prouvons en toute généralité que l’algèbre d’Okada est de
dimension n!. En particulier, nous interprétons la bijection naturelle entre les per-
mutations et les diagrammes d’arcs comme une instance de la correspondance de
Robinson-Schensted-Fomin associée au treillis de Young-Fibonacci. Nous prouvons
que le monoïde est apériodique et décrivons ses relations de Green. En relevant, ces
dernières à l’algèbre nous en construisant une base cellulaire.
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†jeanne@imsc.res.in
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1 Introduction

The theory of 1-differential posets was developed by R. Stanley [7] as a framework for
generalizing the Robinson-Schensted correspondence beyond the combinatorics of the
Young lattice Y of integer partitions. A similar undertaking was made by S. Fomin in his
work on dual graded graphs and growth processes, where the later technique was used
to construct an explicit RS-correspondence for Stanley’s Young-Fibonacci lattice YF [1,
7]. Both Y and YF are 1-differential and they are the only lattices having this property.
Fomin’s approach involves a Fibonacci version of standard tableaux; a notion later ex-
amined independently by T. Roby, K. Killpatrick, and J. Nzeutchap (whose formulation
by-passes the growth construction altogether), see [5] and the references therein.

S. Okada [6] showed that the YF-lattice supports a theory of clone symmetric functions
with analogues of the classical bases (e.g. complete homogeneous, Schur, and power-
sum symmetric functions) as well as a YF-variant of the Littlewood-Richardson rule.
The clone theory appears in Goodman-Kerov’s determination of the Martin boundary of
the YF-lattice [2] and is related to various random processes.

The Okada algebras {ON(X, Y)}N≥0 were introduced by S. Okada as a counterpart to
the clone theory, and occupy a role similar to that played by the symmetric groups in the
classical theory of symmetric functions. Okada algebras are finite dimensional, associa-
tive, and depend on parameters X = (x1, . . . , xN−1) and Y = (y1, . . . , yN−2). When those
parameters are generic, they are semi-simple and their branching rule, which describes
how irreducible representations restrict from ON(X, Y) to ON−1(X, Y), is expressed by
the covering relations of the YF-lattice.

In this paper we realize the Okada algebra ON(X, Y) as a diagram algebra with a mul-
tiplicative/monoidal basis expressed in terms of certain arc-labeled, non-crossing perfect
matchings (as appear in both the Temperley-Lieb and Martin-Saleur Blob algebras [4]).
Like most diagram algebras, this basis is cellular and affords us with a novel, diagram-
matic presentation of the irreducible representations of ON(X, Y) (i.e. as cell modules).
We interpret Fomin’s RS-correspondence diagrammatically. This involves constructing a
bijection between saturated chains in the YF-lattice (presented in terms of sequences of
Fibonacci sets) and Okada half arc-diagrams. In addition we examine the structure theory
of the Okada algebra and monoid via a dominance order on Fibonacci sets.

2 Background

Throughout this paper N denotes a non-negative integer. We denote by [N] the set
{1, . . . , N}. We often write negative numbers as overlined numbers such as 4. The
cardinality of a set S is denoted # S. For a non-negative integer N we endow [N] ∪ [N]
with the total order {1 < 2 < · · · < N < N < · · · < 2 < 1} . Overlining numbers which
are negative should also help the reader remember this unusual ordering.
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Stanley’s original construction of the Young-Fibonacci lattice [7] involves endowing
the set of Fibonacci words, i.e. binary words in the alphabet {1, 2}, with a partial order.
We present an alternative description using Fibonacci sets.

Definition 2.1. A Fibonacci set of rank N is a subset S = {s1 < s2 < · · · < sk} of [N] whose
size k has the same parity as N and such that sℓ have the same parity as ℓ. We write YFSN for
the collection of all rank N Fibonacci sets and YFS for the disjoint union of YFSN as N varies.

The entire interval [N] itself is always a Fibonacci set of rank N, while ∅ is a Fibonacci
set only when N is even. We emphasize on the fact that in YFS the set {1, 2, 5} of rank 5
is not the same Fibonacci set as {1, 2, 5} of rank 7. When they need to be distinguished
we include N as a subscript, as in {1, 2, 5}5 and {1, 2, 5}7.

The covering relations which generate the lattice structure on YFS are defined by
S� T if and only if S ∈ YFSN−1 and T ∈ YFSN and one of these two sets can be obtained
from the other one by removing its largest element. Stanley’s description is equivalent to
ours through the bijection sending a binary word w to the set of the sums of its suffixes
whose first digit is 1. The Hasse diagram of YFS upto rank 5 is illustrated below.

ε
∅0

1
{1}1

11
{1, 2}2

2
∅2

111
{1, 2, 3}3

21
{1}3

1111
{1, 2, 3, 4}4

211
{1, 2}4

11111
{1, 2, 3, 4, 5}5

2111
{1, 2, 3}5

12
{3}3

112
{3, 4}4

22
∅4

1112
{3, 4, 5}

212
{3}5

121
{1, 4}4

1121
{1, 4, 5}5

221
{1}5

1211
{1, 2, 5}5

122
{5}5

Definition 2.2. Fix a positive integer N. Given a field K, fix also X = (x1, . . . , xN−1) and
Y = (y1, . . . , yN−2) two sequences of parameters in K. The Okaka algebra ON(X, Y) is the
algebra generated by {Ei | i = 1 . . . N − 1} with the relations

E2
i = xiEi 1 ≤ i ≤ N − 1, (I(X, Y))

EiEj = EjEi |i − j| ≥ 2, (C(X,Y))

Ei+1EiEi+1 = yiEi+1 1 ≤ i ≤ N − 2, (S(X,Y))
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If all the X’s and the Y’s are equal to 1, the Okada algebra is actually the algebra of
a monoid; we call this the Okaka Monoid and denote it ON. Recall that setting all yi := 1
and all xi := q and adding the extra relation EiEi+1Ei+1 = Ei defines the Temperley-Lieb
algebra which is also a deformation of the algebra of a monoid called the Jones monoid
(obtained when q = 1).

We now review some of Okada’s results [6]: For generic values of the X and Y
parameters ON(X, Y) is semi-simple and its irreducible representations VT correspond to
rank N Fibonacci sets T. When VT is restricted to the subalgebra ON−1(X, Y) ⊂ ON(X, Y)
it decomposes as a direct sum of irreducible representations VS of ON−1(X, Y) where
S � T is a covering relation in YFS.

The dimension of ON(X, Y) is N! and a basis for ON(X, Y) can be constructed from
permutations in the following way. Recall that the code of a permutation σ ∈ SN is
code(σ) = (c1, . . . cN) where ci := #

{
j < i

∣∣ σ−1(j) > σ−1(i)
}

. It is well known that the
product ∏n

i=1 σi−1σi−2 · · · σi−ci taken from left to right, increasing with i, is the lexico-
graphically minimal reduced factorization of σ into simple transpositions σi = (i, i + 1).
Define Eσ := ∏n

i=1 Ei−1Ei−2 · · · Ei−ci . Okada showed in [6] that the family {Eσ | σ ∈ Sn}
is, generically, a basis of the Okada algebra. His proof, however, requires semi-simplicity
and doesn’t apply to degenerate specializations, such as the monoid case.

3 Diagram models for the Okada Monoid and Algebra

The goal of this section is to build a basis of the Okada algebra in full generality us-
ing rewriting techniques. Inspired by Viennot’s theory of heaps of dimers [8], we use
diagram rewriting rather than word rewriting.

A diamond diagram of rank-N is a trapezoidal arrangement of boxes with N − 1 rows
starting with a north-east diagonal and ending with south-east diagonal, where each
box can be either black or white. The rows are indexed from bottom to top. The reading
of such a diagram is the sequence i = (i1, . . . , iℓ) obtained by recording the row index
ik of the k-th black box, starting on the left and reading each south-east diagonal from
top to bottom. Associated to the reading i is the monomial Ei := Ei1 · · · Eiℓ in the Okada
algebra ON(X, Y). We identify diagrams differing by empty south-east diagonals on the
right. This identification is compatible with the reading and the associated monomial.
See Figure 1 for some examples. Using rewriting techniques on such diagrams, one can
show right away that the Okada algebra has dimension N!.

The relevant combinatorics becomes more transparent after we re-encode a dia-
mond diagram as a fully packed loop configuration (FPLC). This is done by replacing
black and white squares respectively with double U-turn and double horizontal squares:

→ and → . The paths fragments at the top and bottom of the trapezoid
are completed by adding horizontal lines. The result is a set C of non-crossing planar
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loops and arcs. The endpoints of the arcs are situated on the left and right boundaries of
the trapezoid and we number these endpoints, from bottom to top, with positive indices
(on the left) and negative indices (overlined, on the right). See Figure 1 where we’ve
colored some of the arcs in order to make the picture more legible.

1
2

1

3
2

1

4
3

2
1

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

21 3 42 521 42 321 1

1
2

3
4

5
6 6

5
4

3
2

1

1 1
2 2
3 3
4 4
5 5
6 6

1
1

2

4

2
1

Figure 1: A diamond diagram, its reading together with the associated loop configu-
ration and arc diagram

The horizontal arc segments in the -boxes occupy levels 1, . . . , N starting from
the bottom of the trapezoid. The height of an arc/loop in an FPLC is the minimal level
of the horizontal segments which form it. The height statistic of an arc/loop is invariant
under the following local moves which implement the Okada relations:

O :=

{
7−→ , 7−→ xi , 7−→ yi−1

}
.

The first and third moves can be viewed as restricted isotopies which transform arcs and
loops horizontally and downward, while the second move erases loops. By repeatedly
applying local moves, each FPLC can be brought to a normal form (ie. a configuration
without any possible move). This normal form is independent of the sequence of moves
used to obtain it and is therefore uniquely defined. It contains no arcs which go up and
then down when followed in any direction; in particular, there are no loops. There is a
bijection between permutations and normal forms which shows the following result:

Theorem 3.1. For any N and for any specialization of the X, Y parameters, the map σ 7→ Eσ is
a bijection from SN to the monoid ON and the family (Eσ)σ∈SN is a basis for the Okada algebra
ON(X, Y). In particular the dimension of the Okada algebra ON(X, Y) is always N!.

We abbreviate the structure of a FPLC C by removing its loops, labeling each arc
by its respective height, and taking the isotopy class of what remains. We denote the
result [C]; an example is depicted in the third image of Figure 1. In view of the previous
remarks [C] = [D] whenever C and D are two FPLCs of rank N which are related by a
sequences of moves. It turns out that this is actually an equivalence, providing us with
a diagram model for the Okada algebra which we now examine.

Recall that a rank N non-crossing arc-diagram is a visualization of a perfect matching
linking vertices {1, . . . , N} and {1, . . . , N} on the right and left boundaries of a rectangle
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by non-crossing arcs (drawn in the interior of the rectangle). A pair {a, b} in the matching
is depicted by an arc joining vertices a, b ∈ [N]∪ [N] and is denoted by a b. Either a, b
are both positive, both negative, or else have different signs; in the later case we say the
arc a b is a propagating. Only the incidence relations of the arc-diagram are relevant,
and so isotopic diagrams are considered equivalent.

An arc a b is said to be nested in another arc c d if c < a < b < d. Nesting
defines a partial order on the arcs of a non-crossing arc diagram. The reader should be
aware that any arc situated above a propagating arc is nested in the later. In particular,
given any pair of propagating arcs, one arc must be nested in the other; consequently
the nesting order is total when restricted to propagating arcs.

Definition 3.2. A rank N Okada arc-diagram is a rank N non-crossing arc-diagram where each
arc a b is assigned an height-label h(a b) such that

1. h(a b) must be at least 1 and at most min(|a|, |b|),

2. h(a b) must have the same parity as min(|a|, |b|),

3. h(a b) > h(c d) whenever a b is nested in c d.

The set of all Okada arc-diagrams of rank N is denoted AN and CAN will denote the
vector space spanned by all Okada arc-diagrams of rank N.

Definition 3.3. Given C, D ∈ AN their composition C ◦ D is the diagram obtained by merg-
ing the right boundary nodes of C with the left boundary nodes of D and concatenating their
respective arcs. The diagram C ◦ D may include loops, created from concatenated arc fragments
of diagrams C and D. The height label of an arc/loop in C ◦ D is the minimum of the height labels
of the arc fragments of C and D which comprise it. Let [C ◦ D] denoted the isotopy class of the
height labeled, non-crossing arc-diagram obtained by removing all loops from the composition.

Lemma 3.4. If C, D ∈ AN then [C ◦ D] ∈ AN. Hence AN acquires the structure of a monoid
denoted ON whose unit is the identity Okada arc-diagram idN which consists entirely of labeled
propagating arcs h(a a) = a for all 1 ≤ a ≤ N.

For simplicity we’ll present the following results for arbitrary X-parameters together
with the assumption that yk = 1 for all k ≥ 1. This is sufficiently generic to include the
semi-simple case and all but the most degenerate specializations.

Definition 3.5. Given C, D ∈ AN their product C · D is the element Xℓ [C ◦ D] in CAN where
Xℓ = ∏k≥0 xℓk

k and ℓk counts the number of loops γ in C ◦ D whose height label equals k.

Lemma 3.6. The product C · D endows CAN with the structure of an associative, unital algebra,
denoted ÕN(X, 1). Using a rewriting rule, the Y-parameters can also be incorporated in the
diagram product and ÕN(X, Y) will denote the corresponding diagram algebra. (See Figure 2 .)
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Figure 2: The identity, the generator G3 and a composition of Okada arc-diagrams of
rank 8. The red arrows indicate the Hasse diagram of the nesting order.

The mirror D⋆ of an Okada arc-diagram, obtained by reflecting D horizontally, is an
Okada-arc diagram and the map D 7→ D⋆ extends to an anti-isomorphism of ÕN(X, Y).
Let ιN denote the map from ÕN(X, Y) to ÕN+1(X, Y) adding the labeled, propagating
arc h(N + 1 N + 1) = N + 1 to each arc-diagram. Then ιN is an injective algebra
homomorphism with image the set of diagrams containing h(N + 1 N + 1) = N + 1.

Definition 3.7. For 1 ≤ i < N, let Gi denote the elementary Okada arc-diagram containing the
labeled arcs h(j j) = j for j ̸= i, i + 1, h(i i + 1) = i and h(i i + 1) = i.

The elementary Okada diagrams G1, . . . ,GN−1 satisfy Okada relations I(X, Y), C(X,Y),
and S(X,Y). To construct the isomorphism from ON(X, Y) to ÕN(X, Y), we first need to
show that the elements (Gi) generate ÕN(X, Y). It is clear from the definition that if a
product ends with Gi, then the diagram contains the arc h(i i + 1) = i. The converse
is actually true: If an element e ∈ AN contains the arc h(i i + 1) = i then it can be
factored as e = f · Gi.

Proposition 3.8. Suppose D ∈ AN doesn’t contain the arc h(N N) = N. Then there exist
an integer i such that D contains the arc h(i i + 1) = i. If I is the largest such integer, then
there exists a unique arc diagram D♭ ∈ AN−1 such that D factorize as

D = ιN−1(D♭)GN−1GN−2 · · ·GI .

By induction, this proves the following theorem:

Theorem 3.9. The dimension of ÕN(X, Y) is N! and it is generated by the elementary diagrams
G1, . . . ,GN−1. Furthermore the map sending Ei to Gi extends multiplicatively to a unique algebra
isomorphism Θ : ON(X, Y) → ÕN(X, Y).
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We conclude this section by making explicit the relation between fully packed loop
configurations and Okada arc-diagrams:

Proposition 3.10. For simplicity assume Y = 1. Let C be a FPLC of rank N, let i be its reading,
and let Ei be the corresponding monomial in the Okada algebra ON(X, 1). Then Θ(Ei) = Xℓ [C]
where Xℓ = ∏k≥1 xℓk

k and ℓk counts the number of loops in C with height k.

4 Fomin correspondence and Okada arc-diagrams

We have a bijection between SN and the monoid ÕN of Okada arc-diagrams, however, it
is circuitous: Starting from a permutation, first its code is computed, then the associated
FPLC is drawn, from which an Okada arc-diagram is obtained. It is not obvious, for
example, that the inverse of a permutation corresponds to the mirror of the associated
Okada arc-diagram. The goal of this section is to better explicate this graphical bijection
which turns out to be an incarnation of Fomin’s Robinson-Schested correspondence for
the Young-Fibonacci [7, 1] lattice. Recall that this is a bijection between permutations of
SN and pairs of saturated chains in the Young-Fibonacci lattice starting at ∅ and sharing
a common endpoint in YFN. The reader who is not familiar with Fomin’s construction
should refer to [1]. See Figure 3a for an example. We will see in this section that Okada
arc-diagrams are also in natural bijection with the same pairs of chains.

Cutting a labeled arc-diagram D in the middle gives a natural notion of a Okada half
arc-diagram containing either a labeled full arc h(a b) joining two nodes a, b ∈ [N], or
else a labeled half arc h(a ) with a free end. Such a half arc is called propagating. The
bra ⟨D| is the Okada half arc-diagram obtained by restricting D to its positive part. The
ket |D⟩ is defined to be the bra ⟨D⋆| of the mirror D⋆.

Definition 4.1. The propagating label set of an Okada half arc-diagram H is the subset PLab(H)
of [N] consisting of the height labels of its propagating arcs.

The propagating label set of an Okada half arc-diagram of rank N is always a Fi-
bonacci set of rank N. The following trivial lemma-definition is of great importance:

Lemma 4.2 (Gluing lemma). For any Okada arc diagram D, the left and right half diagram
⟨D| and |D⟩ are two Okada half arc diagrams which have the same propagating labels set. As
consequence, it makes sense to define PLab(D) := PLab(⟨D|) = PLab(|D⟩).

Moreover if L and R are two Okada half arc-diagrams such that PLab(L) = PLab(R), there
is a unique Okada arc-diagram L 1 R such that ⟨L 1 R| = L and |L 1 R⟩ = R.

To convert half arc diagrams to chains we need to restrict the former:

Definition 4.3. For r ≤ N, the r-restriction of an Okada half arc diagram H is the Okada half
arc-diagram denoted by H/[r] of rank r possessing
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• a full arc h(a b) = h whenever H contains a full arc h(a b) = h with a, b ≤ r

• a half arc h(a ) = h whenever H contains either a full arc h(a b) = h with a ≤ r < b
or a half arc h(a ) = h with a ≤ r.

If r ≤ s then clearly the r-restriction of the s-restriction of any Okada half arc-diagram
H coincides with the r-restriction of H.

Definition 4.4. To any Okada half arc-diagram H of rank N we associate the sequence of Fi-
bonacci sets Chain(D) := (C0, . . . , CN) defined by Ci := PLab(H/[i]).

Proposition 4.5. The map Chain is a bijection between Okada half arc-diagrams and saturated
chains of rank N in the YFS-lattice. See Figure 3a for an example.

Theorem 4.6. Given a permutation σ ∈ SN, let Lσ and Rσ denote the two Okada half arc-
diagrams associated to the pair of saturated chains obtained from Fomin’s RS-correspondence.
Then Θ(Eσ) = Lσ 1 Rσ. Moreover Θ(Eσ)⋆ = Θ(Eσ−1) = Rσ 1 Lσ.

5 Structure of the Okada algebra and monoid

From now on, we identify ON(X, Y) and ÕN(X, Y) through the isomorphism Θ. The
goal of this section is to understand the structure of the Okada algebra and its monoid
via the YFSN dominance order. In particular, we describe the stratification of the Okada
algebra by two-sided ideals (generated by free elements) and the Green relations for the
monoid (which allows us show that the monoid is aperiodic). This allows us to prove
cellularity of the Okada algebra in the next section.

Definition 5.1. Let S = {s1 < · · · < sk} and T = {t1 < · · · < tℓ} be two Fibonacci sets of the
same rank N. We says that S is dominated by T and write S ⪯ T if k < ℓ and sk−i ≤ tℓ−i for
any 0 ≤ i < k. We write S ≺ T if S ⪯ T but S ̸= T.

Proposition 5.2. (YFSN,⪯) is a ranked lattice.

Definition 5.3. A free set of rank N is a subset of [N] which does not contain both i and i + 1
for all 1 ≤ i < N. The map S 7→ F(S) := {i | i − max{s ∈ S | s < i} is odd} defines a
bijection from the collection of rank N Fibonacci sets to the collection of rank N free sets.

Definition 5.4. For S ∈ YFSN the associated free element in ON(X, Y) is ES := ∏i∈F(S) Ei.

Note that ES = EσS where σS := ∏i∈F(S) σi is the associated free involution in SN.

Remark 5.5. The half arc-diagrams ⟨ES| and |ES⟩ coincide for any S ∈ YFSN. Further-
more ⟨ES| consists only of labeled propagating arcs h(s ) = s for s ∈ S and labeled
full arcs h(i i + 1) = i for i ∈ F(S).
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Proposition 5.6. Let JS be the two-sided ideal in ON(X, Y) generated a free element ES for
S ∈ YFSN, then JS ⊆ JT if and only if T ⪯ S for any pair S, T ∈ YFSN.

Theorem 5.7 (Triangular Factorization). For σ ∈ SN there exists a unique pair of per-
mutations ρ, τ ∈ SN such that Eσ = Eρ · ES · Eτ where ℓ(σ) = # S + ℓ(ρ) + ℓ(τ) and
S⪯ inf(PLab(Eρ), PLab(Eτ)) and where S = PLab(Eσ).

Returning to the Okada monoid, an element e ∈ ON is said to be involutive whenever
it equals its mirror e⋆. Involutive elements are always idempotents and thanks to the
RS correspondence, these are precisely the basis monomials Eσ where σ ∈ SN is an
involution (i.e. σ2 = 1).

Remark 5.8. The set of idempotents in ON is not exhausted by the involutive elements.
For example in O3 all element are idempotents, while E1E2E3 and E3E2E1 are the only
non-idempotents in O4. Computer calculations show that the number of idempotents
for N ≤ 10 are: 1, 1, 2, 6, 22, 108, 594, 4116, 30500, 274006, 2560400.

Proposition 5.9. Let e, f ∈ ON. Then either ⟨ef| = ⟨e| and thus PLab(ef) = PLab(e) or
PLab(ef) ≺ PLab(e). As a consequence, PLab(ef) ⪯ inf(PLab(e), PLab(f)).

The previous proposition is the main ingredient of the following theorem which
describe the structure of the Okada monoid:

Theorem 5.10. The monoid ON is aperiodic, i.e. there exists an integer K such that eK = eK+1

for all e ∈ ON. Equivalently, all the groups in ON are trivial.

Recall that R (resp. J ) is the equivalence relation on ON such that e R f if e and f
generate the same right (resp. two-sided) ideals.

Theorem 5.11. Each R-class of ON contains a unique involutive element. Each J -class of ON
contains a unique free element. Moreover, the free representative of e ∈ ON is the free element
having the same propagating set as e.
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6 Cellular structure of the Okada algebra

Recall that a cellular algebra A is a finite dimensional algebra with distinguished cellular
basis which is particularly well-adapted to studying the representation theory of A,
especially as the ground ring/field varies. For brevity, we skip a general discussion
about cellular algebras and point the reader to [3] for definitions and context.

Definition 6.1. Let HN and CHN denote respectively the set and the vector space spanned by
all Okada half arc-diagrams of rank N. Likewise HS

N and CHS
N will denote the set and the vector

space spanned by all half diagrams H ∈ HN for which PLab(H) = S where S ∈ YFSN. We
extend the bra map D 7→ ⟨D| by linearity to obtain a map from ON(X, Y) to CHN.

The following result is a consequence of the factorization given in Proposition 5.7:

Theorem 6.2. The Okada algebra ON(X, Y) is cellular with the following data

1. A cell-poset is ΛN = (YFSN,⪯).

2. An index set MS = HS
N for each S ∈ YFSN

3. A cellular basis element CS
L,R := L 1 R associated to L, R ∈ HS

N

4. An involutive anti-isomorphism given by the mirror map ⋆ : L 1 R 7→ R 1 L.

Remark 6.3. The left ON(X, Y) cell module associated to S ∈ YFSN can be realized by the
vector space CHS

N equipped with the left action defined by

D • H :=

{〈
D · (H 1 H)

∣∣ if PLab
(

D ◦ (H 1 H)
)
= S

0 otherwise

where D ∈ ON(X, Y) and H ∈ HS
N. For generic values of X and Y, CHS

N is irreducible.1

7 Prospectives

For a fixed choice of a threshold k ≥ 1, we truncate any Okada arc-diagram D, replacing
its height labels h by min(h, k). The k-truncated Okada arc-diagrams form a multiplica-
tive basis for a higher Blob algebra Blob(k)

N , which can be realized as a quotient of the
Okada algebra ON(X, Y) after specializing the X, Y parameters appropriately. In partic-
ular the Temperely-Lieb and Martin-Saleur Blob algebras [4] are recovered for k = 1, 2
respectively. It seems that the corresponding Bratelli diagram YF(k) naturally embeds

1The cell module HS
N carries an invariant bilinear form φS. We conjecture an explicit value for the

determinant of the associated Gram matrix GS, which we express in terms of clone Schur functions.
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into the YF-lattice and can be seen as a Fibonacci counterpart of the sublattice of inte-
ger partitions with at most k parts. Both the Temperely-Lieb and the Blob algebras are
intertwiner algebras which raises the question of whether the higher Blob algebras have
such a description for k ≥ 3. If so, this would be indicative of a Fibonacci version of
Schur-Weyl duality, and would entail, on a combinatorial level, a well-behaved version of
the RSK-correspondence.

It should be possible to incorporate height labels into other diagram algebras such
as the partition and Brauer algebras. Can one, for example, define a suitable notion of
height labeled braids together with skein relations consistent with these labels? A satisfac-
tory answer might shed light onto the problem of identifying appropriate Jucys-Murphy
elements for the Okada algebras.
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Abstract. This extended abstract is an introduction to a conjecture attempting to relate
the representation theory of finite unipotent groups to the representation theory of
symmetric groups via combinatorial Hopf algebras. Chromatic symmetric functions
arise naturally through the representation theory of unipotent groups, and a positive
answer to the conjecture should have useful things to say about the e-positivity of these
functions.
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1 Introduction

Stanley chromatic symmetric functions have seen increased attention in recent years
with attempts to construct Sn-modules via Hessenberg varieties [9], and connections
to the representation theory of the finite general linear groups via induced characters
from unipotent groups [6]. This paper explores a seemingly more direct relationship
between the representation theory of the finite groups of unipotent upper-triangular
matrices and the representation theory of symmetric groups that has chromatic functions
at its core. A framework developed by Aguiar–Bergeron-Sottile [1] for canonical maps
on combinatorial Hopf algebras gives the mechanism underlying this connection. In
particular, for a cocommutative Hopf algebra H, we get Hopf algebra morphisms

ch : H → Sym ∼= cf(S•),

where Sym is the Hopf algebra of symmetric functions and

cf(S•) =
⊕
n≥0

cf(Sn)

is the Hopf algebra of class functions of the finite symmetric groups Sn with product
given by induction from Young subgroups and coproduct given by restriction to Young
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subgroups (e.g. [8]). While the function ch can be given quite explicitly, it unfortunately
does not obviously lend itself to representation theoretic interpretations (vis-a-vis Sn).

The paper [2] established a Hopf algebra structure on

cf(UT•) =
⊕
n≥0

cf(UTn),

where cf(UTn) is the set of class functions on the finite group of upper-triangular matri-
ces UTn (the product comes from inflation and the coproduct from restriction). In fact,
this paper lifts the Hopf structure from a subHopf algebra

scf(UT•) =
⊕
n≥0

scf(UTn)

defined in [3]. While the latter paper also shows this Hopf algebra is isomorphic to the
symmetric functions in non-commuting variables NCSym, this point of view will not be
the focus of this abstract.

In summary, we have the following Hopf algebras of interest:

Sym ∼= cf(S•) ∼= Sym∗

scf(UT•) scf(UT•)∗

cf(UT•) cf(UT•)∗

c̃h∗
1•⟩c̃h1•⟩

ch1•⟩ ch∗
1•⟩

It is worth noting that while c̃h1•⟩ is the restriction of ch1•⟩, the functions ch∗
1•⟩ and c̃h∗

1•⟩
are fundamentally different, and only ch∗

1•⟩ seems to be functorial. The main conjecture
of this paper is as follows.

Conjecture 1. The functions ch1•⟩ and ch∗
1•⟩ come from adjoint functors UTn-mod −→ Sn-mod

and Sn-mod −→ UTn-mod.

In particular, if we apply either function to a character we should obtain a character.
By construction, it will be clear that both functions are in fact virtual characters (send
a character to a Z-linear combination of characters), but all evidence seems to indicate
that the signs all cancel.

2 Setting the stage

This section reviews the Aguiar–Bergeron–Sottile framework for combinatorial Hopf al-
gebras, and introduces the main Hopf algebra of interest on characters of the unipotent
upper-triangular matrices.
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2.1 The Aguiar–Bergeron–Sottile framework

The framework developed by Aguiar–Bergeron–Sottile [1] takes a pair (H, ζ) —where
H is a cocommutative, graded, connected Hopf algebra and ζ : H → C is an algebra
morphism— and constructs a canonical Hopf algebra homomorphism chζ : H → Sym
given explicitly on graded components by

chζ : Hn −→ Symn
h 7→ ∑

µ⊢n
ζ(∆µ(h))mµ,

where mµ is the monomial symmetric functions corresponding to the integer partition
µ, and if ℓ(µ) = ℓ, then ∆µ is the composition of ∆ℓ with the standard projection H⊗ℓ →
Hµ1 ⊗ · · · ⊗Hµℓ

; in this case, ζ is applied diagonally.
While often applied to other situations, the framework can in fact be applied to the

classical situation of
ch : cf(S•) −→ Sym

ψλ 7→ sλ,
(2.1)

where λ is an integer partition, ψλ is the corresponding irreducible character of S|λ|, and
sλ is the corresponding Schur function. Let 1n denote the trivial character of Sn, and ⟨·, ·⟩
the usual inner product on class functions. If 1•⟩ : cf(S•) → C is the algebra morphism
on graded components given by

1•⟩ : cf(Sn) −→ C

γ 7→ ⟨γ,1n⟩,

then ch1•⟩ is the same as the standard function (2.1).

2.2 The Hopf algebra cf(UT•)

Fix a power of a prime q, and for n ∈ Z≥0, let

UTn = {g ∈ GLn(Fq) | (g − Idn)ij ̸= 0 implies i < j}

be the subgroup of unipotent upper-triangular matrices with entries in the finite field
Fq. The representation theory of these groups is well-known to be wild, but we won’t
let that deter us. In particular, the space of class functions cf(UTn) has a canonical basis
given by the irreducible characters Irr(G).

We form a graded vector space,

cf(UT•) =
⊕
n≥0

cf(UTn),
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which has an inner product

⟨γ, ψ⟩ =


1

|UTn| ∑
u∈UTn

γ(u)ψ(u) if γ, ψ ∈ cf(UTn),

0 otherwise.
(2.2)

The basis of irreducible characters forms an orthonormal basis of this space. We upgrade
to a graded Hopf algebra with the graded product

· : cf(UTm)⊗ cf(UTn) −→ cf(UTm+n)

ψ ⊗ γ 7→ InfUTm+n
UTm⊕UTn

(ψ ⊗ γ),

where UTm ⊕UTn is the block diagonal quotient (and inflation Inf lifts functions up from
that quotient), and coproduct

∆ : cf(UTn) −→
n⊕

j=0

cf(UTj)⊗ cf(UTn−j)

ψ 7→ ∑
A⊆{1,2,...,n}

ResUTn
UTA×UTA

(ψ),

where Ā is the complement of A and UTA (∼= UT|A|) is the subset of matrices whose
nonzero entries above the diagonal only occur in the rows and columns in A.

We obtain the dual Hopf algebra cf(UT•)∗ by dualizing using the inner product (2.2).
The underlying space is the same, but uses the adjoint functor induction for the product
and deflation for the coproduct.

Returning to the ABS framework, we have an algebra morphism suggested by the
symmetric group case given by

1•⟩ : cf(UTn) −→ C

γ 7→ ⟨γ,1n⟩,

which gives a corresponding canonical map ch1•⟩ : cf(UT•) −→ Sym. In particular, for
γ ∈ cf(UTn),

ch1•⟩(γ) = ∑
A⊨{1,2,...,n}

bl(A)⊢n

⟨ResUTn
UTA

(γ),1⟩mbl(A),

where A = (A1, . . . , Aℓ) ⊨ {1, 2, . . . , n} is a set composition (an ordered list of nonempty
subsets that partition {1, 2, . . . , n}) and bl(A) = (|A1|, |A2|, . . . , |Aℓ|) is a composition of
n. In particular, since the transition matrix from monomial to symmetric functions is
integral, we see that the image of a character will be a virtual character.
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3 Evidence for the conjecture

In this section we gather some evidence for the conjecture (though we omit complete
computations of smaller examples). We begin by examining some natural UTn charac-
ters that are more understandable than the basis Irr(UTn). Then we examine the two
functions ch1•⟩ and ch∗

1•⟩, individually.

3.1 More combinatorial spaces of characters

An F×
q -set partition of {1, 2, . . . , n} is a subset

λ ⊆ {(i, j; a) | 1 ≤ i < j ≤ n, a ∈ F×
q }

such that if (i, k; a), (j, l; b) ∈ λ, then i = j or k = l implies (i, k; a) = (j, l; b). Let

Pn(q) = {F×
q -set partitions of {1, 2, . . . , n}}.

We typically view λ as an edge labeled graph Γλ on vertices {1, 2, . . . , n} with an edge
(called an arc) labeled by a from i to j if (i, j; a) ∈ λ. For example,

{
(1, 3; a), (2, 7; b), (3, 5; c),

(7, 8; d), (8, 9; e)

}
↔ •

1
•
2

•
3

•
4

•
5

•
6

•
7

•
8

•
9

a
b

c ed .

In practice, the labels are not particularly important for our purposes, so we will usually
omit the edge labels in the graph Γλ, and we obtain a more standard interpretation of
set partition if we let the blocks of the set partition be the connected components of Γλ.

We say an element λ ∈ Pn(q) is

• non-nesting if the set of nestings NSTλ = ∅, where

NSTλ = {((i, l; a), (j, k; b)) ∈ λ × λ | i < j < k < l}.

• non-crossing if the set of crossings CRSλ = ∅, where

CRSλ = {((i, k; a), (j, l; b)) ∈ λ × λ | i < j < k < l}.

In either case, we can evaluate in the graph Γλ whether the edges have any nestings or
crossings.

Using this combinatorics we construct two families of characters by inducing from
families of subgroups. Fix a non-trivial homomorphism ϑ : F+

q → C×. For λ ∈ Pn(q),
define

ϑλ : UTn −→ C

u 7→ ∏
(i,j;a)∈λ

ϑ(auij),
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which restricts to a linear character of the subgroup

UTλ = {u ∈ UTn | uij = 0 if (i, k; a) ∈ λ, i < j < k}.

This gives us an induced character

χλ = IndUTn
UTλ

(ϑλ).

For λ, µ ∈ Pn(q), these characters are orthogonal

⟨χλ, χµ⟩ = q|CRSλ|δλµ, (3.1)

and every irreducible character in Irr(G) is a constituent of exactly one such character
[5]. Here, χ∅ = 1UTn is the trivial character.

If we take the space spanned by these characters we get a subspace

scf(UT•) =
⊕
n≥0

scf(UTn), where scf(UTn) = C-span{χλ | λ ∈ Pn(q)},

that forms a subHopf algebra of cf(UT•) [3].
Another family of characters comes from λ ∈ Pn(2) non-nesting. Define

χ̄λ = IndUTn
UTλ

(1) where UTλ = {u ∈ UTn | ujk = 0, if i ≤ j < k ≤ l, (i, l; a) ∈ λ}.

For example, if λ = {(1, 4; 1), (3, 5; 1), (5, 6; 1)} ∈ P6(2), then

UTλ =



1 0 0 0 ∗ ∗
0 1 0 0 ∗ ∗
0 0 1 0 0 ∗
0 0 0 1 0 ∗
0 0 0 0 1 0
0 0 0 0 0 1

 ⊆ UTλ =



1 0 0 ⊛ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 0 ⊛ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ⊛
0 0 0 0 0 1

 ,

where the coordinates of λ are indicated by bold 0 or circled ⊛. Both the regular char-
acter χ̄{(1,n;1)} and the trivial character χ̄∅ of UTn are of this form.

While these characters are no longer pairwise orthogonal, we still have that

scf(UT•) =
⊕
n≥0

scf(UTn), where scf(UTn) = C-span{χ̄λ | λ ∈ Pn(2), non-nesting},

is a subHopf algebra of scf(UT•) [4].
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3.2 The function ch1•⟩

We begin by considering the image of the characters χλ for λ ∈ Pn(q). Our most com-
plete answer is for those characters χλ corresponding to elements λ ∈ Pn(q) that are
both non-nesting and non-crossing. By (3.1), these are also irreducible characters.

Chromatic symmetric functions arise naturally in the image. Recall, a proper coloring
of a graph Γ = (V, E) is a function c : V → Z≥1 such that if (a, b) ∈ E then c(a) ̸= c(b).
Stanley [10] defined the chromatic symmetric function

XΓ = ∑
c:V→Z≥1

a proper coloring

Xc, where Xc = X|c−1(1)|
1 X|c−1(2)|

2 · · · .

For λ ∈ Pn(q), let

Nλ = {1 ≤ j ≤ n | i < j < k, (i, k, a) ∈ λ},

and for any subset M ⊆ Nλ define a graph ΓM
λ with vertices {1, 2, . . . , n} and edges

{{j, k} | i ≤ j < k ≤ l, (i, l, a) ∈ λ, j, k ∈ M ∪ {i, l}}.

For example, if λ = {(1, 5; a), (5, 6; b), (8, 10; c)}, then

Nλ = {2, 3, 4, 9} and Γ{2,4,9}
λ = •

1
•
3

•
5

•
6

•
7

•
8

•
10− − − −

•
2

•
4

•
9

.

Note that Γλ is a subgraph of ΓM
λ for every subset M. We now get the image of some of

the irreducible characters of UTn.

Theorem 1. Let t = q − 1. For λ ∈ Pn(q) non-nesting and non-crossing,

ch1•⟩(χ
λ) = ∑

M⊆Nλ

t|M|XΓM
λ

.

The following lemma gives an essential outline for how to compute the restriction of
characters with an eye towards finding a copy of the trivial character. Heuristically, we
can think of restriction as picking a subset of vertices in our graph Γλ. If an edge has
endpoints in the subset, that edge remains. If an edge is missing one or two endpoints,
we either re-attach the unattached endpoints in all possible ways such that the new edge
weakly nests in the original edge or remove the edge.

Lemma 1 ([11]). (a) Factorization. For λ ∈ Pn(q) and A = (A1, A2, . . . , Aℓ) ⊨ n,

ResUTn
UTA

( χλ

χλ(1)

)
=

⊙
1≤j≤ℓ
(i,l;a)∈λ

ResUTn
UTAj

( χ(i,l;a)

χ(i,l;a)(1)

)
,

where ⊙ denotes the pointwise product on functions.
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(b) Local restriction. For (i, l, a) ∈ λ and A ⊆ {1, 2, . . . , n},

ResUTn
UTA

(χ(i,l;a)) =



q#{1≤j≤l|j/∈A}χ(i,l;a) if i, l ∈ A,

q#{1≤j≤l|j/∈A}
(
1+ ∑

i<k<l,
k∈A,b∈F×q

χ(i,k;b)
)

if i ∈ A, l /∈ A,

q#{1≤j≤l|j/∈A}
(
1+ ∑

i<k<l
k∈A,b∈F×q

χ(k,l;b)
)

if i /∈ A, l ∈ A,

q#{1≤j≤l|j/∈A}
(
(|A ∩ [i, l]|t + 1)1+ ∑

i<j<k<l
j,k∈A,b∈F×q

χ(j,k;b)
)

if i, l /∈ A.

(c) Conflict resolution. For i ≤ j < k ≤ l,

χ(i,k;a) ⊙ χ(j,l,b) =



χ{(i,k;a),(j,l;b)} if i ̸= j and k ̸= l,
χ(i,l;b) + ∑

i<i′<k
c∈F×q

χ{(i′,k;c),(i,l;b)} if i = j and k ̸= l,

χ(i,k;a) + ∑
j<l′<l
c∈F×q

χ{(i,k;a),(i,l′;c)} if i ̸= j and k = l.

Using this lemma we see that to get the trivial character (corresponding to the graph
with no edges) when λ ∈ Pn(q) is non-nesting, we must detach an endpoint of every
arc.

Lemma 2. Suppose λ ∈ Pn(q), and A ⊨ n. Then

(a) If (i, j, a) ∈ λ implies i and j are in different blocks of A, then

⟨ResUTn
UTA

(χλ),1⟩ ̸= 0.

(b) If λ is non-nesting and
⟨ResUTn

UTA
(χλ),1⟩ ̸= 0,

then (i, j, a) ∈ λ implies i and j are in different blocks of A.

Note that if λ ∈ Pn(q), then every A specifies a function

cA : {1, 2, . . . , n} −→ {1, 2, . . . , ℓ(A)}
j 7→ i, where j ∈ Ai

By the Lemma 2, when λ is also non-nesting, this function is a proper coloring of the
graph Γλ if and only if

⟨ResUTn
UTA

(χλ),1⟩ ̸= 0.
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Lemma 3. If λ ∈ Pn(q) is a non-nesting and non-crossing, then

ch1⟩(χ
λ) = ∑

c:Vλ→Z≥1
a proper coloring

of Γλ

∏
(i,k;a)∈λ

d/∈{c(i),c(k)}

(
#{i < j < k | c(j) = d}t + 1

)
Xc.

Since the graphs in question are unit interval graphs, from Gasharov [7] we obtain
the following corollary to Theorem 1.

Corollary 1. For λ ∈ Pn(q) non-nesting and non-crossing, ch1•⟩(χ
λ) is a non-negative linear

combination of schur functions with coefficients in Z≥0[t].

Examples 1. Some easy examples include:

(a) Since the trivial character 1n ∈ cf(UTn) is in fact InfUTn
{1} (1), by the multiplicativity

of the canonical map,

ch1•⟩(1UTn) = IndSn
S1×S1×···×S1

(11 ⊗ 11 ⊗ · · · ⊗ 11),

or the regular character of Sn.

(b) The linear characters of UTn are all obtained from F×
q -set partitions and they cor-

respond to λ ∈ Pn(q) such that (i, j; a) ∈ λ implies j − i = 1. At q = 2 these are in
bijective correspondence with integer compositions and give a subHopf algebra of
cf(UTn) isomorphic to the Hopf algebra of noncommutative symmetric functions
NSym. For the single block partition σn, we have

ch1•⟩(χ
σn) = XPn ,

where Pn is the path graph. In general, we get a product of path graphs corre-
sponding to the composition part lengths.

(c) The minimal n such that scf(UTn) ̸= cf(UTn) is n = 4. In particular, for a, b ∈ F×
q ,

χ{(1,3;a),(2,4;b)} = ∑
c∈Fq

χ
{(1,3;a),(2,4;b)}
c ,

is a decomposition into irreducible characters, where

χ
{(1,3;a),(2,4;b)}
c (u) =

{
qϑc(u12)ϑa(u13)ϑb(u24) if u23 = 0 and u12a = u34b,
0, otherwise.

Then direct computation gives

ch1•⟩(χ
{(1,3;a),(2,4;b)}
c ) = 2(1 + δc,0)m(2,2) + (6 + 2q)m(2,1,1) + 24qm(14)

=

{
4s(2,2) + 2(2 + t)s(2,1,1) + (18t + 4)s(14) if c = 0,
2s(2,2) + 2(3 + t)s(2,1,1) + (18t + 2)s(14) if c ̸= 0.
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For the permutation modules χ̄λ we again get a sum of chromatic symmetric func-
tions with coefficients powers of t = q − 1.

Theorem 2. For λ ∈ Pn non-nesting,

ch1•⟩(χ̄
λ) = ∑

E⊆E
Nλ
λ

t|E|X({1,2,...,n},E),

where ENλ
λ is the edge set of ΓNλ

λ .

The key step to this theorem is the following lemma that writes the image of ch1•⟩
in terms of monomials. Given a coloring c : {1, 2, . . . , n} → Z≥1 of a graph ΓNλ

λ (not
necessarily proper), we define

Mc(λ) = max{E | c is a proper coloring of ({1, 2, . . . , n}, E)},

where maximality is with respect to containment.

Lemma 4. For λ ∈ Pn non-nesting,

ch1•⟩(χ̄
λ) = ∑

c:{1,2,...,n}→Z≥1

q|Mc(λ)|Xc.

Note that Theorem 2 hardly seems like evidence, since we get plenty of graphs show-
ing up that are not unit-interval graphs. In fact, in the case of λ = {(1, n; a)}, we get
all possible graphs appearing in the sum, since ΓNλ

λ is the complete graph. However, it
appears that we still get positive sums, as the bad graphs get corrected by good ones.
For example,

ch1•⟩(χ̄
{(1,4;a)}) =t0(s(4) + 3s(3,1) + 2s(2,2) + 3s(2,1,1) + s(1,1,1,1))

+ t112(s(3,1) + s(2,2) + 2s(2,1,1) + 1s(1,1,1,1))

+ t212(s(3,1) + 2s(2,2) + 6s(2,1,1) + 5s(1,1,1,1))

+ t34(s(3,1) + 5s(2,2) + 23s(2,1,1) + 38s(1,1,1,1))

+ t46(s(2,2) + 9s(2,1,1) + 31s(1,1,1,1))

+ t512(s(2,1,1) + 9s(1,1,1,1)) + t624s(1,1,1,1).

In fact, the constant term is a familiar module.

Proposition 1. For λ ∈ Pn(2) non-nesting,

lim
t→0

ch1•⟩(χ̄
λ) = h(1n),

or the symmetric function corresponding to the regular character of Sn.
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3.3 The function ch∗
1•⟩

In this section, we investigate the dual map ch∗
1•⟩ : Sym → cf(UT•)∗, given by

⟨ch∗
1•⟩( f (X)), γ⟩ = ⟨ f (X), ch1•⟩(γ)⟩.

The previous section allows us to quickly compute the image of hn by duality.

Proposition 2. For n ∈ Z≥0,
ch∗

1•⟩(hn) = 1UTn .

Note that the codomain is in fact the dual to cf(UT•), so has product given by

γm · φn = ∑
A=(A1,A2)⊨m+n
|A1|=m,|A2|=n

IndUTm+n
UTA

(γm ⊗ φn) for γm ∈ cf(UTm)
∗, φn ∈ cf(UTn)

∗.

Remark 1. Here we note that while scf(UT•) ⊆ cf(UT•) as Hopf algebras, the same does
not hold for the dual spaces, as we instead obtain quotient Hopf algebras. While the
coproduct is defined in the same way for both dual spaces, the product will use different
adjoint functors to restriction in each case. In this paper we are therefore using the dual
of cf(UT•), since it preserves modules unlike the variant of induction used in the dual to
scf(UT•). However, it is worth noting that Proposition 2 holds for the dual of scf(UT•)
as well.

By Proposition 2 and because ch∗
1•⟩ is a Hopf algebra morphism, for any integer

partition λ ⊢ n of length k,

ch∗
1•⟩(hλ) = ∑

A=(A1,...,Ak)⊨{1,2,...,n}
|Aj |=λj

IndUTn
UTA

(1).

In particular, we get that the permutation module IndSn
Sλ
(1) gets sent to a UTn-module.

If we add the Jacobi–Trudi formula we obtain that for an integer partition λ ⊢ n of
length k,

ch∗
1•⟩(sλ) = ∑

w∈Sk

(−1)ℓ(w) ∑
A=(A1,A2,...,Ak)⊨{1,2,...,n}

|Aj |=λw(j)−w(j)+j

IndUTn
UTA

(1). (3.2)

In particular, it is evident that ch∗
1•⟩(sλ) will be a virtual character.

A particular case of interest is the sign character or en.

Lemma 5. For n ∈ Z≥0

en = ∑
µ⊨n

(−1)n−ℓ(µ)hµ.
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We conclude with the following intriguing consequence concerning the antipode S∗

of the dual Hopf algebra cf(UT•)∗.

Corollary 2. For n ∈ Z≥0,
ch∗

1•⟩(en) = (−1)nS∗(1n).

Remark 2. Note that if one could show that ch∗
1•⟩(en) is a character, then this would

imply that ch1•⟩(χ) is e-positive for all χ ∈ Irr(UTn).
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Regular Schur labeled skew shape posets and
their 0-Hecke modules
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Abstract. Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled
skew shape posets are precisely the finite posets P with underlying set {1, 2, . . . , |P|}
such that the P-partition generating function is symmetric and the set of linear exten-
sions of P, denoted ΣL(P), is a left weak Bruhat interval in the symmetric group S|P|.
We describe the permutations in ΣL(P) in terms of reading words of standard Young
tableaux when P is a regular Schur labeled skew shape poset, and classify ΣL(P)’s up
to descent-preserving isomorphism as P ranges over regular Schur labeled skew shape
posets. The results obtained are then applied to classify the 0-Hecke modules MP as-
sociated with regular Schur labeled skew shape posets P up to isomorphism. Then
we characterize regular Schur labeled skew shape posets as the finite posets P whose
linear extensions form a dual plactic-closed subset of S|P|. Using this characterization,
we construct distinguished filtrations of MP with respect to the Schur basis when P is
a regular Schur labeled skew shape poset.

Keywords: labeled poset, P-partition, weak Bruhat order, 0-Hecke algebra, representa-
tion, skew Schur function

1 Introduction

Schur labeled skew shape posets naturally appear in the context of the celebrated Stanley’s
P-partition conjecture. Let Pn be the set of posets on [n] := {1, 2, . . . , n}. To each poset
P ∈ Pn, one can associate a quasisymmetric function KP, called the P-partition generating
function. In 1972, Stanley [15, p. 81] proposed a conjecture stating that for P ∈ Pn, KP is
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a symmetric function if and only if P is a Schur labeled skew shape poset. While this
conjecture has been verified to be true for all posets P with |P| ≤ 8, it remains open in
the general case (see [12]). For the definition of Schur labeled skew shape posets, see
Subsection 2.3. We denote by SPn the set of all Schur labeled skew shape posets in Pn.

On the other hand, regular posets were introduced by Björner–Wachs [4] during their
investigation of the convex subsets of the symmetric group Sn on [n] under the right
weak Bruhat order. For P ∈ Pn with the partial order ⪯, let ΣR(P) be the set of per-
mutations π ∈ Sn satisfying that if x ⪯ y, then π−1(x) ≤ π−1(y). They observed that
every convex subset of Sn under the right weak Bruhat order appears as ΣR(P) for some
P ∈ Pn, and every right weak Bruhat interval in Sn is convex. This observation led them
to characterize the posets P ∈ Pn satisfying that ΣR(P) is a right weak Bruhat interval.
They introduced the notion of regular posets, and proved that P ∈ Pn is a regular poset
if and only if ΣR(P) is a right weak Bruhat interval in Sn. For the definition of regular
posets, refer to Definition 2.1. We denote by RPn the set of all regular posets in Pn. Let
ΣL(P) := {γ−1 | γ ∈ ΣR(P)}. By considering the left Bruhat order and ΣL(P) instead of
the right Bruhat order and ΣR(P), we can establish a similar characterization. However,
we prefer the former over the latter as it is better suited for handling left Hn(0)-modules.

Let RSPn := RPn ∩ SPn. In the following, we explain the reason why we study regular
Schur labeled skew shape posets from the perspective of the representation theory of the
0-Hecke algebra.

In 1996, Duchamp–Krob–Leclerc–Thibon [7] introduced a ring isomorphism, called
the quasisymmetric characteristic, from the Grothendieck ring G0(H•(0)) of the tower of
0-Hecke algebras to the ring QSym of quasisymmetric functions. For the definition of
the quasisymmetric characteristic, see Subsection 2.4. In 2002, Duchamp–Hivert–Thibon
[6] associated a right Hn(0)-module MP with each poset P ∈ Pn, such that the image
of MP under the quasisymmetric characteristic is KP. This was achieved by defining a
suitable right Hn(0)-action on ΣR(P). For technical reasons, we use a slightly different 0-
Hecke module, denoted as MP, instead of Duchamp–Hivert–Thibon’s module MP. Our
MP is a left Hn(0)-module with the basis ΣL(P). For the precise definition of MP, refer to
Definition 2.4.

Since the middle of 2010, various left 0-Hecke modules, each equipped with a tableau
basis and yielding an important quasisymmetric characteristic image, have been con-
structed ([1, 3, 14, 16, 17]). In order to handle these modules in a uniform manner,
Jung–Kim–Lee–Oh [9] introduced a left Hn(0)-module B(I), referred to as the weak Bruhat
interval module associated with I, for each left weak Bruhat interval I in Sn. Furthermore,
they showed that the Grothendieck ring

⊕
n≥0 G0(Bn) is isomorphic to QSym as Hopf

algebras, where Bn is the category direct sums of finitely many isomorphic copies of
weak Bruhat interval modules of Hn(0). Recently, Choi–Kim–Oh [5] clarified the exact
relationship between the weak Bruhat interval modules and the 0-Hecke modules MP,
using Björner–Wachs’ characterization.
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The aim of this paper is to give a comprehensive investigation of regular Schur la-
beled skew shape posets and their associated 0-Hecke modules. Firstly, we provide an
explicit description of ΣL(P) for P ∈ RSPn. Next, we study the classification of left weak
Bruhat intervals in Sn up to descent-preserving poset isomorphism. Using the classi-
fication, we classify the Hn(0)-modules MP up to isomorphism as P ranges over RSPn.
Then, we characterize regular Schur labeled skew shape posets as the posets such that
ΣL(P) is a dual plactic-closed subset of Sn. This characterization is applied to show
that for P ∈ RSPn, MP admits a distinguished filtration with respect to the Schur basis.
A tableau description of MP for P ∈ RSPn is also provided. Lastly, we discuss further
issues concerned with the classification of the Hn(0)-modules MP.

For details and more results, we refer the reader to [10].

2 Preliminaries

Throughout this paper, n will denote a nonnegative integer unless otherwise stated.

2.1 Compositions, Young diagrams, and bijective tableaux

A composition α of n, denoted by α |= n, is a finite ordered list of positive integers
(α1, α2, . . . , αk) satisfying ∑k

i=1 αi = n. We call k =: ℓ(α) the length of α and n =: |α| the
size of α. Given α = (α1, . . . , αℓ(α)) |= n, we define set(α) := {α1, α1 + α2, . . . , ∑ℓ(α)−1

i=1 αi}.
The reverse composition αr of α is the composition (αk, αk−1, . . . , α1) and the complement
αc of α is the unique composition satisfying set(αc) = [n − 1] \ set(α). If a composition
λ = (λ1, λ2, . . . , λk) |= n satisfies λ1 ≥ λ2 ≥ · · · ≥ λk, then it is called a partition of n
and denoted as λ ⊢ n. Given two partitions λ and µ with ℓ(λ) ≥ ℓ(µ), we write λ ⊇ µ if
λi ≥ µi for all 1 ≤ i ≤ ℓ(µ). A skew partition λ/µ is a pair (λ, µ) of partitions with λ ⊇ µ.
We call |λ/µ| := |λ| − |µ| the size of λ/µ.

Given a partition λ, we define the Young diagram yd(λ) of λ to be the left-justified
array of n boxes, where the ith row from the top has λi boxes for 1 ≤ i ≤ k. Similarly,
given a skew partition λ/µ, we define the Young diagram yd(λ/µ) of λ/µ to be the Young
diagram yd(λ) with all boxes belonging to yd(µ) removed. A skew partition is called basic
if the corresponding Young diagram contains neither empty rows nor empty columns.
In this paper, every skew partition is assumed to be basic unless otherwise stated. For
skew partitions λ/µ and ν/κ, λ/µ ⊕ ν/κ is the skew partition whose Young diagram
is obtained by taking a rectangle of empty squares with the same number of rows as
yd(λ/µ) and the same number of columns as yd(ν/κ), and putting yd(ν/κ) below and

yd(λ/µ) to the right of this rectangle. For instance, yd((2) ⊕ (1)) = .

Given a skew partition λ/µ of size n, a bijective tableau of shape λ/µ is a filling of
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yd(λ/µ) with distinct entries in [n]. For later use, we denote by τ
λ/µ
0 the bijective tableau

of shape λ/µ obtained by filling 1, 2, . . . , n from right to left starting with the top row.
A bijective tableau is referred to as a standard Young tableau if the elements in each row
are arranged in increasing order from left to right, and the elements in each column are
arranged in increasing order from top to bottom. We denote by SYT(λ/µ) the set of all
standard Young tableaux of shape λ/µ. And, we let SYTn :=

⋃
λ⊢n SYT(λ).

2.2 Weak Bruhat orders on the symmetric group

Let Sn denote the symmetric group on [n]. For 1 ≤ i ≤ n − 1, let si be the simple
transposition (i, i + 1). For σ ∈ Sn, let

DesL(σ) := {i ∈ [n − 1] | ℓ(siσ) < ℓ(σ)} and DesR(σ) := {i ∈ [n − 1] | ℓ(σsi) < ℓ(σ)},

where ℓ(σ) is the length of σ. The left weak Bruhat order ⪯L (resp., right weak Bruhat order
⪯R) on Sn is the partial order on Sn whose covering relation ⪯c

L(resp., ⪯c
R) is given as

follows: σ ⪯c
L siσ if and only if i /∈ DesL(σ) (resp, σ ⪯c

R σsi if and only if i /∈ DesR(σ)).
Given σ, ρ ∈ Sn, the left weak Bruhat interval [σ, ρ]L (resp., right weak Bruhat interval [σ, ρ]R)
denotes the closed interval {γ ∈ Sn | σ ⪯L γ ⪯L ρ} (resp., {γ ∈ Sn | σ ⪯R γ ⪯R ρ}).
Let Int(n) be the set of nonempty left weak Bruhat intervals in Sn.

2.3 Regular posets and Schur labeled skew shape posets

Let Pn be the set of posets on [n]. Given P ∈ Pn, we write the partial order of P as ⪯P.

Definition 2.1. A poset P ∈ Pn is said to be regular if the following holds: for all x, y, z ∈
[n] with x ⪯P z, if x < y < z or z < y < x, then x ⪯P y or y ⪯P z.

We denote by RPn the set of all regular posets in Pn. From the result of Björner–Wachs
[4, Theorem 6.8], it follows that

(i) for P ∈ Pn, P is regular if and only if ΣL(P) is a left weak Bruhat interval, and

(ii) the map RPn → Int(n) sending P to ΣL(P) is a one-to-one correspondence.

Here, ΣL(P) := {σ ∈ Sn | σ(i) ≤ σ(j) for all i, j ∈ [n] with i ⪯P j}.
Next, let us introduce Schur labeled skew shape posets. Let λ/µ be a skew partition

of size n. Given a bijective tableau τ of shape λ/µ, we define poset(τ) to be the poset
([n],⪯τ), where i ⪯τ j if and only if i lies weakly northeast of j in τ. A Schur labeling of
shape λ/µ is a bijective tableau of shape λ/µ such that the entries in each row decrease
from left to right and the entries in each column increase from top to bottom. Let S(λ/µ)
be the set of all Schur labelings of shape λ/µ. Since τ

λ/µ
0 is a Schur labeling, S(λ/µ) is

nonempty. Set SP(λ/µ) := {poset(τ) | τ ∈ S(λ/µ)} and SPn :=
⋃
|λ/µ|=n SP(λ/µ).
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Definition 2.2. A poset in Pn is said to be a Schur labeled skew shape poset if it is contained
in SPn.

Example 2.3. When λ/µ = (2, 2), we have S(λ/µ) =

ß
τ1 := 2 1

4 3
, τ2 := 3 1

4 2

™
.

Therefore, SP(λ/µ) consists of the following posets:

poset(τ1) = 1

2

3

4 and poset(τ2) = 1

3

2

4 .

For simplicity, we set RSPn := RPn ∩ SPn.

2.4 The 0-Hecke algebra and the quasisymmetric characteristic

The 0-Hecke algebra Hn(0) is the associative C-algebra with 1 generated by π1, π2, . . . , πn−1
subject to the following relations: (1) π2

i = πi for 1 ≤ i ≤ n − 1, (2) πiπi+1πi =
πi+1πiπi+1 for 1 ≤ i ≤ n − 2, and (3) πiπj = πjπi if |i − j| ≥ 2. According to [13],
there are 2n−1 pairwise nonisomorphic irreducible Hn(0)-modules which are naturally
parametrized by compositions of n. For each α |= n, the irreducible module Fα cor-
responding to α is the 1-dimensional Hn(0)-module spanned by a vector vα, which is
annihilated by πi if i ∈ set(α) or fixed by πi otherwise for all 1 ≤ i ≤ n − 1.

Let G0(Hn(0)) be the Grothendieck group of the category of finitely generated left Hn(0)-
modules and G0(H•(0)) :=

⊕
n≥0 G0(Hn(0)) the ring equipped with the induction product.

In [7], Duchamp–Krob–Leclerc–Thibon showed that the linear map

ch : G0(H•(0)) → QSym, [Fα] 7→ Fα,

called quasisymmetric characteristic, is a ring isomorphism. Here, QSym is the ring of
quasisymmetric functions and Fα is the fundamental quasisymmetric function.

2.5 Modules arising from posets and weak Bruhat interval modules

Definition 2.4. (cf. [6, Definition 3.18]) Let P ∈ Pn. Define MP to be the left Hn(0)-module
with CΣL(P) as the underlying space and with the Hn(0)-action defined by

πi · γ :=


γ if i ∈ DesL(γ),
0 if i /∈ DesL(γ) and siγ /∈ ΣL(P),
siγ if i /∈ DesL(γ) and siγ ∈ ΣL(P).

For P ∈ Pn, a map f : [n] → Z≥0 is called a P-partition if (i) f (i) ≤ f (j) for all i ⪯P j
and (ii) f (i) < f (j) for all i ⪯P j with i > j. The P-partition generating function is defined

by KP := ∑ f :P-partition x| f−1(1)|
1 x| f−1(2)|

2 · · · .
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Theorem 2.5. ([6, Theorem 3.21(i)]) For P ∈ Pn, we have ch([MP]) = ψ(KP), where ψ is the
involution of QSym defined by ψ(Fα) = Fαc .

In order to provide a unified method for dealing with Hn(0)-modules constructed
using tableaux in [1, 3, 14, 16, 17], Jung–Kim–Lee–Oh [9] introduced the weak Bruhat
interval module B(I) associated with a left weak Bruhat interval I in Sn. For I ∈ Int(n),
B(I) can be defined as MP, where P is the unique poset in RPn such that ΣL(P) = I.

3 The weak Bruhat interval structure of ΣL(P) for P ∈ RSPn

First, we introduce a specific Schur labeling associated with a Schur labeled skew shape
poset. For P ∈ SPn, we define τP to be the unique Schur labeling such that

sh(τP) is basic, poset(τP) = P, and mini(τP) < minj(τP) for 1 ≤ i < j ≤ k. (3.1)

Here, mini(τP) is the smallest entry in the ith connected component of τP from the top
for all 1 ≤ i ≤ k and k is the number of connected components of P.

Example 3.1. Let P = 1

2

3

4 5 . There are two Schur labelings τ such that poset(τ) = P,

more precisely,

τ1 :=
2 1

4 3

5

and τ2 :=
5

2 1

4 3

.

Since τ1 is a Schur labeling and satisfies (3.1), τP = τ1.

Definition 3.2. Let P ∈ SPn and λ/µ = sh(τP). The τP-reading is the map

readτP : SYT(λ/µ) → Sn, T 7→ readτP(T),

where readτP(T) is the permutation in Sn given by readτP(T)(k) = TτP−1(k), the entry of T
in the box τ−1(k), for 1 ≤ k ≤ n.

With these notions, we state the following theorem.

Theorem 3.3. Let P ∈ SPn and λ/µ = sh(τP). Then, ΣL(P) = readτP(SYT(λ/µ)). In particular,
if P ∈ RSPn, then

ΣL(P) = [readτP(Tλ/µ), readτP(T′
λ/µ)]L.

Here, Tλ/µ(resp. T′
λ/µ

) is the standard Young tableau obtained by filling yd(λ/µ) by 1, 2, . . . , n
from left to right starting with the top row (resp. from top to bottom starting with leftmost
column).
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Example 3.4. Let P be the poset given in Example 3.1 and λ/µ = (3, 3, 1)/(1, 1). Note that

Tλ/µ =
1 2

3 4

5

, T′
λ/µ =

2 4

3 5

1

, and τP =
2 1

4 3

5

.

Since readτP(Tλ/µ) = 21435 and readτP(T′
λ/µ

) = 42531, we have ΣL(P) = [21435, 42531]L.

4 An equivalence relation on Int(n)

For I1, I2 ∈ Int(n), a poset isomorphism f : (I1,⪯L) → (I2,⪯L) is called descent-preserving

if DesL(γ) = DesL( f (γ)) for all γ ∈ I1. We define an equivalence relation
D≃ on Int(n)

by I1
D≃ I2 if there is a descent-preserving poset isomorphism between I1 and I2. In [10,

Section 4], we show that B(I1) ∼= B(I2) for all I1, I2 ∈ Int(n) with I1
D≃ I2. This leads us

to study the equivalence classes under
D≃. The following theorem provides significant

information regarding equivalence classes under
D≃.

Theorem 4.1. Let C be an equivalence class under
D≃. Then, {σ | [σ, ρ]L ∈ C} is a right weak

Bruhat interval in Sn.

According to Theorem 4.1, every equivalence class C can be expressed as follows:

C = {[γ, ξCγ]L | γ ∈ [σ0, σ1]R},

where ξC := ρσ−1 for any [σ, ρ]L ∈ C and σ0, σ1 ∈ Sn with [σ0, σ1]R = {σ | [σ, ρ]L ∈ C}.
When P ∈ RSPn, we explicitly describe the equivalence class of ΣL(P) in the following
theorem.

Theorem 4.2. Let P ∈ RSPn and C the equivalence class of ΣL(P) under
D≃. Then,

C = {ΣL(Q) | Q ∈ RSPn with sh(τQ) = sh(τP)}.

Theorem 4.2 tells us that {ΣL(P) | P ∈ RSPn} is closed under
D≃ and the equivalence

classes in this set are parametrized by skew partitions of size n. To be precise, for any
skew partition λ/µ of size n, let

Cλ/µ = {ΣL(P) | P ∈ RSPn with sh(τP) = λ/µ}.

This set is nonempty since poset(τλ/µ
0 ) ∈ Cλ/µ, and therefore it is an equivalence class by

Theorem 4.1. To summarize, {ΣL(P) | P ∈ RSPn} =
⊔
|λ/µ|=n Cλ/µ (disjoint union).
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5 The classification of MP’s for P ∈ RSPn

In [15], Stanley proposed the following conjecture, called Stanley’s P-partitions conjecture.

Conjecture 5.1. ([15, p. 81]) For P ∈ Pn, if KP is symmetric, then P ∈ SPn.

Assuming Stanley’s P-partitions conjecture holds, Theorem 2.5 implies that for any
P ∈ RSPn and Q ∈ RPn \ SPn, ch([MP]) is symmetric but ch([MQ]) is not symmetric, thus
MP ̸∼= MQ. In addition, by the correspondence between RPn and Int(n) in Subsection 2.3,

{MP | P ∈ RSPn} = {B(I) | I ∈ Int(n) and ch([B(I)]) ∈ Sym}.

This leads us to consider the classification problem for {MP | P ∈ RSPn}. We solve this
problem by determining the projective cover and injective hull of MP (P ∈ RSPn) up to
isomorphism.

It is well known that there is a one-to-one correspondence between the set of irre-
ducible Hn(0)-modules and that of projective indecomposable Hn(0)-modules. For α |= n,
let Pα be the projective indecomposable module corresponding to Fα, that is, Pα/rad(Pα) ∼=
Fα. In [6, Propsition 4.1], it was shown that Hn(0) is a Frobenius algebra. Thus, an Hn(0)-
module M is projective if and only if it is injective (see [2, Proposition 1.6.2]).

A generalized composition α of n is a formal sum α(1) ⊕ α(2) ⊕ · · · ⊕ α(k), where α(i) |= ni
for positive integers ni’s with n1 + n2 + · · · + nk = n. For a generalized composition
α = α(1) ⊕ α(2) ⊕ · · · ⊕ α(k) of n, set αc := (α(1))c ⊕ (α(2))c ⊕ · · · ⊕ (α(k))c and αr := (α(k))r ⊕
(α(k−1))r ⊕ · · · ⊕ (α(1))r. And, define Pα := Pα(1) ⊗ Pα(2) ⊗ · · · ⊗ Pα(k) ↑Hn(0)

Hn1 (0)⊗Hn2 (0)⊗···⊗Hnk (0) ,

where ni := |αi| for 1 ≤ i ≤ k. This module is projective and its decomposition into
projective indecomposable modules was provided in [8, Theorem 3.3].

For a connected skew partition λ/µ of size n, define

αproj(λ/µ) := (λ1 − µ1, λ2 − µ2, . . . , λℓ(λ) − µℓ(λ)).

And, for a disconnected skew partition λ/µ of size n, define

αproj(λ/µ) := αproj(λ(1)/µ(1)) ⊕αproj(λ(2)/µ(2)) ⊕ · · · ⊕αproj(λ(k)/µ(k)),

where λ/µ = λ(1)/µ(1) ⊕ λ(2)/µ(2) ⊕ · · · ⊕ λ(k)/µ(k) with connected λ(i)/µ(i)’s (1 ≤ i ≤ k).
Set

αinj(λ/µ) := (αproj(λt/µt)c )r,

where λt and µt denote the transpose of λ and µ, respectively.

Lemma 5.2. For P ∈ RSPn and λ/µ = sh(τP), Pαproj(λ/µ) (resp. Pαinj(λ/µ)) is the projective
cover (resp. the injective hull) of MP.

Using this lemma, we establish the following classification theorem of MP’s for P ∈
RSPn up to Hn(0)-module isomorphism.



Regular Schur labeled skew shape posets and their 0-Hecke modules 9

Theorem 5.3. Let P, Q ∈ RSPn. Then MP
∼= MQ if and only if sh(τP) = sh(τQ).

The “if” part can be derived from Theorem 4.2. Let us briefly explain how we prove
the “only if” part. Considering Lemma 5.2 together with Huang’s decomposition of Pα in
[8, Theorem 3.3], we prove that for P, Q ∈ RSPn, MP and MQ have either nonisomorphic
projective covers or nonisomorphic injective hulls if τP and τQ have different shapes.

6 A characterization of regular Schur labeled skew shape
posets P and distinguished filtrations of MP

We first characterize regular Schur labeled skew shape posets from the viewpoint of dual
plactic congruence. The Robinson–Schensted correspondence is a one-to-one correspondence
between Sn and

⋃
λ⊢n SYT(λ) × SYT(λ). For σ ∈ Sn, we use the notation (ins(σ), rec(σ))

to represent the image of σ under this bijection. The dual plactic congruence is an equiv-

alence relation
K∗
∼= on Sn defined by σ

K∗
∼= ρ if rec(σ) = rec(ρ). A subset S of Sn is called

dual plactic-closed if S is a union of equivalence classes under the dual plactic congruence.
In [11, Theorem 1], Malvenuto proved that if ΣL(P) is dual plactic-closed, then P ∈

SPn. We improve Malvenuto’s result by providing the following characterization of reg-
ular Schur labeled skew shape posets.

Theorem 6.1. For P ∈ Pn, P is a regular Schur labeled skew shape poset if and only if ΣL(P) is
dual plactic-closed.

Example 6.2. Consider the posets P =
1

3
2 and Q =

1

2
3 in SP3. One sees

that (i) P is non-regular and Q is regular and that (ii) ΣL(P) = {231, 312, 321} is not dual
plactic-closed and ΣL(Q) = {213, 312, 321} is dual plactic-closed.

Using the characterization given in Theorem 6.1, we construct a filtration of MP (P ∈
RSPn) which provides a representation theoretic interpretation of sλ/µ = ∑ν⊢n cλ

µ,νsν,
the expansion of the skew Schur function sλ/µ in the Schur basis {sν | ν ⊢ n}. Here,
λ/µ = sh(τP) and cλ

µ,ν is the Littlewood–Richardson coefficient. To handle such filtrations
in a uniform manner, we introduce the notion of distinguished filtrations.

Definition 6.3. Let B = {Bα | α ∈ I} be a linearly independent subset of QSymn with
the property that Bα is F-positive for all α ∈ I, where I is an index set. Given a finite
dimensional Hn(0)-module M, a distinguished filtration of M with respect to B is an Hn(0)-
submodule series of M

0 =: M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Ml := M

such that for all 1 ≤ k ≤ l, ch([Mk/Mk−1]) = Bα for some α ∈ I.
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It should be remarked that a distinguished filtration of M with respect to B may not
exist even if ch([M]) expands positively in B. For instance, see [10, Example 6.6]. If such
a filtration exists, we have a representation theoretic interpretation of the expansion of
ch([M]) in B.

Theorem 6.4. For every P ∈ RSPn, MP admits a distinguished filtration with respect to the
Schur basis {sλ | λ ⊢ n}.

Example 6.5. Let P = poset(τ(4,2,1)/(2,1)
0 ). The set {rec(γ) | γ ∈ ΣL(P)} is equal toQ1 :=

1

2

3

4

, Q2 :=
1 3

2

4

, Q3 :=
1 4

2

3

, Q4 := 1 3

2 4
, Q5 := 1 3 4

2

 .

For 0 ≤ k ≤ 5, let Bk := {γ ∈ S4 | rec(γ) = Ql for some 1 ≤ l ≤ k}. Then, 0 = CB0 ⊂
CB1 ⊂ CB2 ⊂ CB3 ⊂ CB4 ⊂ CB5 = MP is a filtration of MP, as seen in the figure:

B5 \ B4

B4 \ B3

B3 \ B2

B2 \ B1

B1

2134

3124 2143

3214 4123 3142

4213 4132 3241

4312 4231

4321

π1

π2 π1, π3

π1, π2 π3 π2

π1, π3 π2, π3 π1, π2

π2, π3 π1, π3

π1, π2, π3

π2 π3

π1 π3 π2

π3 π1 π2 π3 π1

π2 π1 π3

π1 π2

Moreover, since ch([CBk/CBk−1]) = ssh(Qk)t for all 1 ≤ k ≤ 5, it is a distinguished filtra-
tion with respect to {sλ | λ ⊢ 4}.

7 A tableau description of MP for P ∈ RSPn

Let λ/µ be a skew partition of size n. Define Xλ/µ to be the Hn(0)-module with the
underlying space CSYT(λ/µ) and with the Hn(0)-action given by

πi · T =


T if i is strictly left of i + 1 in T,
0 if i and i + 1 are in the same column of T,
si · T if i is strictly right of i + 1 in T
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for 1 ≤ i ≤ n − 1 and T ∈ SYT(λ/µ). Here, si · T is the tableau obtained from T by
swapping i and i + 1. One can see that this Hn(0)-action is well defined and Xλ/µ

∼=
M

poset(τλ/µ
0 )

. Theorem 5.3 says that MP
∼= Xsh(τP) for P ∈ RSPn, and Xλ/µ ̸∼= Xν/κ for

distinct skew partitions λ/µ, ν/κ of size n.

Proposition 7.1. We have the following isomorphisms.

(1) For skew partitions λ/µ of size n and ν/κ of size m,

Xλ/µ ⊗ Xν/κ ↑Hn+m(0)
Hn(0)⊗Hm(0)

∼= Xλ/µ⊕ν/κ as Hn+m(0)-modules.

(2) For a skew partition λ/µ of size n and 1 ≤ k ≤ n − 1,

Xλ/µ ↓Hk(0)⊗Hn−k(0)
∼=

⊕
|ν/µ|=k
µ⊂ν⊂λ

X
ν/µ

⊗ X
λ/ν

as Hk(0) ⊗ Hn−k(0)-modules.

Here, ν/µ and λ/ν denote the basic skew partitions whose Young diagrams are obtained
from yd(ν/µ) and yd(λ/ν), respectively, by removing empty rows and empty columns.

8 Final remarks

In Theorem 5.3, we show that for P, Q ∈ RSPn,

MP
∼= MQ if and only if sh(τP) = sh(τQ). (8.1)

Since RSPn = RPn ∩ SPn, it would be natural to consider the classification problem for
{MP | P ∈ SPn} and {MP | P ∈ RPn}.

(1) Although the notion ‘the shape of τP’ is available for P ∈ SPn, (8.1) does not hold
for P, Q ∈ SPn in general (see [10, Section 7.1.1]).

(2) Unlike (i), the notion ‘the shape of τP’ is not available for P ∈ RPn in general. For
this reason, we modify (8.1) in the following form: for P, Q ∈ RSPn,

MP
∼= MQ if and only if ΣL(P)

D≃ ΣL(Q), (8.2)

which can be obtained by combining Theorem 4.2 and Theorem 5.3. Since the equiv-

alence relation
D≃ is defined on Int(n) = {ΣL(P) | P ∈ RPn}, we expect that this

classification can be extended to RPn in its current form. The validity of this expec-
tation has been checked for values of n up to 6 with the aid of the computer program
SageMath. Also, we show that (8.2) holds when P ∈ RSPn, Q ∈ RPn, and ch([MP])
is a Schur function. For more detail, see [10, Section 7.1.2].
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Abstract. Given a building set B and an oriented matroid M on the same ground
set, we define the acyclic nested complex as the simplicial complex of nested sets on B
which are in some sense acyclic with respect to M. We prove that this complex is
always the face lattice of an oriented matroid, obtained as a stellar subdivision of the
positive tope of the oriented matroid M. When the oriented matroid M is the ori-
ented matroid of a vector configuration A, we moreover prove that this complex is the
boundary complex of an acyclonestohedron, a polytope obtained as the section of a
nestohedron for B by the evaluation space of A. Our work specializes to explicit poly-
topal realizations of the poset associahedra and affine poset cyclohedra of Galashin.

Résumé. Étant donné un ensemble de construction B et un matroïde orienté M
sur le même ensemble, nous définissons le complexe imbriqué acyclique comme le
complexe simplicial des ensembles imbriqués de B qui sont acycliques pour M en un
certain sens. Nous montrons que ce complexe est toujours le treillis des faces d’un
matroïde orienté, obtenu par subdivisions stellaires du tope positif du matroïde ori-
enté M. Quand le matroïde orienté M est le matroïde orienté d’une configuration de
vecteurs A, nous montrons que ce complexe est le complexe de bord d’un acyclonestoè-
dre, un polytope obtenu comme la section du nestoèdre de B par l’espace vectoriel des
évaluations linéaires sur A. Notre travail se spécialise à des réalisations polytopales
explicites des associaèdres d’ordres et des cycloèdres d’ordres affines de Galashin.

Keywords: building sets, nested complexes, oriented matroids, poset associahedra

Introduction

Motivated by the recent work of Galashin on poset associahedra and affine poset cyclo-
hedra [8], we introduce the acyclic nested complexes and the acyclonestohedra, some
simplicial complexes and polytopes at the interface between nestohedra [10, 4, 6, 12]
(Section 1.1) and oriented matroids [1] (Section 1.2).
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The input data is an oriented building set (B,M) (Section 2.1), that is, a building
set B and an oriented matroid M on the same ground set so that any circuit of M is a
block of B. The acyclic nested complex A(B,M) is the simplicial complex of nested sets
on B which are in some sense acyclic with respect to M (Section 2.2).

Prototypical examples are graphical oriented building sets. The graphical oriented
building set of a directed graph D is formed by the graphical building set of the line
graph L(D) together with the graphical oriented matroid of D. The graphical acyclic
nested complex is then given by all tubings T on L(D) such that for each tube t ∈ T, the
contraction in the restriction D|t of all arcs contained in some tube s ∈ T with s ⊊ t yields
an acyclic directed graph. It is not difficult to see that this definition actually only de-
pends upon the transitive closure of D and coincides with the poset associahedron of [8].
A similar (but slightly more intricate) construction shows that the affine poset cyclohedra
of [8] are also acyclic nested complexes of specific oriented building sets.

Our main results are geometric realizations of acyclic nested complexes (Sections 2.3
and 2.4). We show that the acyclic nested complex of an oriented building set (B,M) is

(i) the face lattice of an oriented matroid obtained by stellar subdivisions of M,
(ii) the boundary complex of a convex polytope, obtained by stellar subdivisions of the

positive tope of M when the latter is realizable,
(iii) the boundary complex of the polar of the acyclonestohedron, a polytope obtained

as the section of a nestohedron for B with the evaluation space of A, when M is
realized by the vector configuration A.

Note that (i) is valid for all oriented matroids (realizable or not), while (ii) and (iii) only
apply to realizable oriented matroids. The advantage of (iii) over (ii) is that it leads to ex-
plicit realizations with controlled integer coordinates. For poset associahedra and affine
poset cyclohedra, (ii) recovers the construction of [8] using stellar subdivisions of order
polytopes, and (iii) answers a question left open in [8], and independently settled in [11].

In fact, the oriented building sets and their acyclic nested complexes are closely re-
lated to the lattice building sets and their lattice nested complexes of [4, 6]. Namely, we
show that the building sets on the Las Vergnas face lattice of M are obtained from the
oriented building sets (B,M) by keeping only the blocks of B which are faces of M, and
that the two notions of nested complexes coincide (Section 3). We exploit this correspon-
dence in both directions: we recover our results on stellar subdivisions as reformulations
of [5, 4], and we use our acyclonestohedra to get explicit polytopal realizations with in-
teger coordinates for the all nested complexes over face lattices of realizable matroids.

Finally, Galashin’s main motivation for poset associahedra was that they model com-
pactifications of the space of order preserving maps P → R, which can be identified
with the interior of an order polytope. We observe that results of [7] imply that acyclon-
estohedra are associated to nice compactifications of interiors of polytopes (Section 4).

Many details and all proofs are omitted in this extended abstract due to space limi-
tations. We refer to the long version of this work which should soon become available.
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1 Preliminaries

1.1 Building sets, nested complexes, and nestohedra

We start with the classical definitions of building sets, nested sets, nested complexes,
and nestohedra from [10, 4, 6, 12] and their specializations to the graphical case [2].

Definition 1.1 ([10, 4, 6]). A building set on S is a set B of non-empty subsets of S such that
• B contains all singletons {s} for s ∈ S, and
• if B, B′ ∈ B and B ∩ B′ ̸= ∅, then B ∪ B′ ∈ B.

We denote by κ(B) its set of B-connected components, i.e., its inclusion maximal elements.

Example 1.2 ([2]). Consider a graph G on S. A tube of G is a non-empty subset of S
which induces a connected subgraph of G. The set B(G) of all tubes of G is a graphical
building set. Moreover, the blocks of κ(B(G)) are the connected components of G.

Remark 1.3 ([3]). More generally, a hypergraph H on S defines a building set B(H) on S
given by all non-empty subsets of S which induce connected subhypergraphs of H. Any
building set B on S is the building set of a hypergraph, but not always of a graph.

Definition 1.4 ([10, 4, 6]). A nested set is a subset N of B containing κ(B) such that
• for any B, B′ ∈ N , either B ⊆ B′ or B′ ⊆ B or B ∩ B′ = ∅,
• for any k ≥ 2 pairwise disjoint B1, . . . , Bk ∈ N , the union B1 ∪ · · · ∪ Bk is not in B.

The nested complex of B is the simplicial complex N(B) whose faces are N ∖ κ(B) for all
nested sets N on B.

Example 1.5 ([2]). Consider a graph G on S. Two tubes t, t′ of G are compatible if they are
either nested (i.e., t ⊆ t′ or t′ ⊆ t), or disjoint and non-adjacent (i.e., t ∪ t′ /∈ B(G)). A
tubing on G is a set T of pairwise compatible tubes of G containing all connected com-
ponents κ(G). Tubings are precisely the nested sets of the graphical building set B(G).
The nested complex N(B(G)) is a graphical nested complex.

We now introduce restrictions and contractions of building sets. These operations
are used to describe links of nested complexes [12, Prop. 3.2], and will be crucial here to
define acyclic nested complexes.

Definition 1.6. For any R ⊆ S, define
• the restriction of B to R as the building set B|R := {B ∈ B | B ⊆ R} on R,
• the contraction of R in B as the building set B/R := {B ∖ R | B ∈ B, B ̸⊆ R} on S ∖ R.

Example 1.7. For a graph G on S and R ⊆ S,
• B(G)|R = B(G|R) where G|R is the subgraph of G induced by R,
• B(G)/R = B(G/R) where G/R is the reconnected complement of R in G, i.e., the graph

on S ∖ R with an edge {r, s} if there is a path between r and s in G with vertices
in R ∪ {r, s}, see [2].
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Finally, we recall the definition of the nestohedron which realizes the nested complex.
See for instance Figure 1. We denote by (es)s∈S the standard basis of RS. For a building
set B, we denote by RB

+ :=
{

λ ∈ RB ∣∣ λB > 0 for all B ∈ B with |B| ≥ 2
}

.

Definition 1.8 ([10, 6]). For a building set B and a positive vector λ = (λB)B∈B ∈ RB
+, the

nestohedron Nest(B, λ) is the Minkowski sum ∑B∈B λB△B, where △B := conv {eb | b ∈ B}
denotes the face of the standard simplex △S corresponding to B.

Figure 1: A nestohedron whose vertices are labeled by the corresponding maximal
nested sets (left), and a graph associahedron whose vertices are labeled by the corre-
sponding maximal tubings (right). The maximal block or tubing is always omitted.

Theorem 1.9 ([10, 6, 12]). For a building set B and any λ ∈ RB
+, the nested complex N(B) is

isomorphic to the boundary complex of the polar of the nestohedron Nest(B, λ).

Proposition 1.10. For λ ∈ RB
+, the vertex of the nestohedron Nest(B, λ) corresponding to a

maximal nested set N is

v(N , λ) = ∑
s∈S

∑
B∈B, s∈B⊆B(v,N )

λBes,

where B(s,N ) denotes the inclusion minimal block of N containing s.

Proposition 1.11. For λ ∈ RB
+, the nestohedron Nest(B, λ) is given by the equalities gB(x) = 0

for all B ∈ κ(B) and the inequalities gB(x) ≥ 0 for all B ∈ B, where

gB(x) :=
〈

∑
b∈B

eb
∣∣ x

〉
− ∑

B′∈B, B′⊆B
λB′ .

Example 1.12. For a graph G on S, the nestohedra of B(G) are the graph associahedra of G,
introduced in [2]. For instance, the associahedron of the complete graph is a permutahe-
dron, the associahedron of a path graph is an associahedron, and the associahedron of a
cycle graph is a cyclohedron.
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1.2 Vector configurations and oriented matroids

We now recall some aspects of oriented matroids. We only give the precise definition for
those associated to vector configurations and refer to [1] for the general definition.

Definition 1.13. For a finite vector configuration A := (as)s∈S ∈ (Rd)S, we denote by
• D(A) :=

{
δ ∈ RS

∣∣ ∑s∈S δsas = 0
}

the space of linear dependences on A,
• D∗(A) :=

{
( f (as))s∈S∈RS

∣∣ f ∈ (Rd)∗
}

the space of evaluations of linear forms on A.
Note that, D∗(A) and D(A) are orthogonal spaces whose dimensions are the rank rk(A)
and the he corank rk∗(A) := |S| − rk(A) of A respectively.

Notation 1.14. Define σ(S) := {(x+, x−) | x+, x− ⊆ S and x+ ∩ x− = ∅}. The signature
of δ ∈ RS is σ(δ) := ({s ∈ S | δs > 0} , {s ∈ S | δs < 0}) in σ(S). For x = (x+, x−) ∈ σ(S),
we define the support of x by x := x+ ∪ x−, and the opposite of x by −x := (x−, x+).

Definition 1.15. The oriented matroid M(A) of a finite vector configuration A ⊂ Rd is the
combinatorial data given equivalently by

• the vectors V(A) of A, i.e., signatures of linear dependences of A,
• the covectors V∗(A) of A, i.e., signatures of linear evaluations on A,
• the circuits C(A) of A, i.e., support minimal signatures of linear dependences of A,
• the cocircuits C∗(A) of A, i.e., support minimal signatures of linear evaluations

on A.

Example 1.16. Consider a directed graph D with vertex set V and arc set S (loops and
multiple arcs are allowed). Let (bv)v∈V denote the standard basis of RV . The incidence
configuration AD of D has a vector a(u,v) := bu − bv ∈ RV for each arc (u, v) of D. Its
oriented matroid, whose ground set is the set S of arcs of D, is the graphical oriented
matroid M(D) of D. See [9, Prop. 1.1.7 & Chap. 5] and [1, Sect. 1.1].

In this paper, we will consider abstract oriented matroids, which are combinatorial
abstractions for the dependences and evaluations of vector configurations considered in
Definitions 1.13 and 1.15. We rest on [1] to avoid the detailed axioms.

Definition 1.17. An oriented matroid on S is the combinatorial data M given by four
subsets of σ(S), the vectors V(M), covectors V∗(M), circuits C(M) and cocircuits C∗(M),
which satisfy the axioms of [1, Sect. 3].

Definition 1.18. An oriented matroid M is realizable if there exists a vector configuration
A := (as)s∈S ∈ (Rd)S such that V(M) = V(A), V∗(M) = V∗(A), C(M) = C(A),
and C∗(M) = C∗(A) (these four conditions are actually equivalent).

Definition 1.19. An oriented matroid M is acyclic if it has no positive circuit.

Example 1.20. A realizable oriented matroid M(A) is acyclic if and only if A has no pos-
itive dependence, i.e., if and only if A is contained in a positive linear half-space of Rd. A
graphical oriented matroid M(D) is acyclic if and only if D is acyclic (no directed cycle).
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Definition 1.21. Let M be an acyclic oriented matroid. A set F ⊆ S is a face of M if it
is the complement of a non-negative covector, i.e., (S ∖ F,∅) ∈ V∗(M). The Las Vergnas
face lattice F (M) is the poset of faces of M ordered by inclusion.

We conclude with restrictions and contractions in oriented matroids.

Definition 1.22. For any R ⊆ S, define
• the restriction M|R as the oriented matroid on R with circuits {c ∈ C(M) | c ⊆ R},
• the contraction M/R as the oriented matroid on S∖R with vectors {v∖R |v∈V(M)},

where v ∖ R := (v+ ∖ R, v− ∖ R).

Example 1.23. For a vector configuration A := (as)s ∈ S and R ⊆ S,
• M(A)|R = M(A|R) where A|R is the vector subconfiguration (ar)r∈R,
• M(A)/R = M(A/R) where A/R is the vector configuration obtained by projecting

the vectors as with s /∈ R on the space orthogonal to all vectors ar with r ∈ R.
For a directed graph D and a subset R of arcs of D,

• M(D)|R = M(D|R) where D|R is the subgraph of D formed by the arcs in R,
• M(D)/R = M(D/R) where D/R is the contraction of the arcs of R in D.

2 Acyclic nested complexes and acyclonestohedra

2.1 Oriented building sets

Definition 2.1. An oriented building set is a pair (B,M) where B is a building set and M
is an oriented matroid on the same ground set S such that c ∈ B for any c ∈ C(M). We
say that (B,M) is realizable if M is realizable.

Example 2.2. Consider a directed graph D with vertex set V and arc set S. The line graph
of D is the graph L(D) on S with an edge between two arcs of D if and only if they share
an endpoint. The graphical oriented building set of D is the pair (B(L(D)),M(D)). Note
that it is indeed an oriented building set: S is the ground set of both B(L(D)) and MD,
and the circuits in M(D) are cycles in D, hence of L(D), thus belong to B(L(D)).

Lemma 2.3. If (B,M) is an oriented building set on S and R ⊆ S, then both (B|R,M|R)
and (B/R,M/R) are oriented building sets on R and S ∖ R respectively.

Definition 2.4. Given an oriented building set (B,M), a nested set N on B and B ∈ N ,
we consider the oriented buiding set (B,M)B∈N := (BB∈N ,MB∈N ) on SB∈N := B ∖ R
defined by BB∈N := (B|B)/R and MB∈N := (M|B)/R, where R = RB∈N :=

⋃
B′∈N , B′⊊B C.

Example 2.5. Consider the graphical oriented building set of a directed graph D of Exam-
ple 2.2, and a tube t in a tubing T of L(D). The oriented building set (B(L(D)),M(D))t∈T
is the graphical oriented building set of the directed graph obtained as the contraction
in the restriction D|t of all arcs contained in some tube s ∈ T with s ⊊ t.
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2.2 Acyclic nested complexes

Definition 2.6. The acyclic nested complex of an oriented building set (B,M) is the sim-
plicial complex A(B,M) whose faces are N ∖ κ(B) for all nested sets N of B such that
MB∈N is acyclic for every B ∈ N .

Remark 2.7. Observe that:
• For any building set B on S, the nested complex N(B) is the acyclic nested com-

plex A(B, I), where I is the independent (i.e., no circuit) oriented matroid on S.
• If M is not acyclic, then the acyclic nested complex A(B,M) is empty.
• If M contains a circuit c = (c+, c−) with |c−| = 1, then A(B,M) is isomorphic

to A(B|S∖{s},M|S∖{s}).

Example 2.8. From Example 2.2, consider a directed graph D and its graphical oriented
building set (B(L(D)),M(D)). The graphical acyclic nested complex A(B(L(D)),M(D))
is then given by all tubings T on L(D) such that for each tube t ∈ T, the contraction
in the restriction D|t of all arcs contained in some tube s ∈ T with s ⊊ t yields an
acyclic directed graph. Figure 2 illustrates two graphical acyclic nested complexes. Note
that these two directed graphs have the same line graph, but distinct graphical oriented
matroids, and thus distinct graphical acyclic nested complexes.

31
4 2

d b

a cD

1 2

4 3

a

c

d bL(D)

3

1

4

2
d b

a

c

D

1 2

4 3

d b

a

c

L(D)

Figure 2: Two graphical acyclic nested complexes. For each one, we have drawn the
directed graph D, its line graph L(D) with vertices colored black and white according
to the sign of the corresponding arcs in the only circuit of D, and all tubings of L(D)

labeling the faces of the graph associahedron, colored green if acyclic and red if cyclic.



8 Chiara Mantovani, Arnau Padrol, and Vincent Pilaud

Remark 2.9. It follows from Remark 2.7 that the graphical acyclic nested complex of D is
• isomorphic to the classical nested complex of the line graph L(D) when D is an

oriented forest (for instance, it is isomorphic to the simplicial permutahedron if D
is a star, and to the simplicial associahedron if D is a path),

• empty if D is cyclic (i.e., has an oriented cycle),
• isomorphic to the graphical acyclic nested complex of the Hasse diagram of the

transitive closure of D if D is acyclic.
Hence, graphical acyclic nested complexes are in fact intrinsically associated to posets.
The graphical case of Examples 2.2 and 2.8 actually motivated Definitions 2.1 and 2.6,
and was inspired from the poset associahedra defined in [8]. The following statement
can serve as definition of poset associahedra, which we omit here for space reason.

Proposition 2.10. The poset associahedron of a finite poset P defined in [8] is isomorphic to the
graphical acyclic nested set of the Hasse diagram of P.

We note that affine poset associahedra of [8] are also acyclic nested complexes of
certain specific oriented building sets, although their definition is slightly more intricate.

2.3 Stellar subdivisions

We now show that the acyclic nested complex of any oriented building set (realizable
or not) is always the face lattice of an oriented matroid, hence a topological sphere [1,
Thm. 4.3.5]. The main tool here is that of stellar subdivisions.

Definition 2.11. For a cell σ in a regular cell complex ∆, the stellar subdivision sd(∆, σ) is
the cell complex obtained by gluing the cone s ∗ (star(σ, ∆)∖ star(σ, ∆)) to ∆ ∖ star(σ, ∆)
along star(σ, ∆)∖ star(σ, ∆), where s is a new vertex, and star(σ, ∆) := {τ ∈ ∆ | σ ⊆ τ}
is the star of σ and star(σ, ∆) := {ρ ∈ ∆ | ρ ⊆ τ for some τ ∈ star(σ, ∆)} is its closure.

Proposition 2.12 ([1, Prop. 9.2.3 & Sect. 7.2]). Let M be an acyclic oriented matroid with
ground set S, and F be one of its proper faces. Then the face lattice of the stellar subdivi-
sion sd(∆(M), F) is isomorphic to the face lattice of an oriented matroid on S ∪ {F} (this
oriented matroid is not unique, but its face lattice is). Moreover, this oriented matroid can be
chosen to be realizable when M is realizable.

Theorem 2.13. For any oriented building set (B,M) (realizable or not), the acyclic nested
complex A(B,M) is the face lattice of an oriented matroid, obtained by stellar subdivisions of M.

Corollary 2.14. For any realizable oriented building set (B,M(A)), the acyclic nested complex
A(B,M(A)) is isomorphic to the boundary complex of a convex polytope, obtained by stellar
subdivisions of the positive tope of A.

Example 2.15. In the graphical situation discussed in Examples 2.2 and 2.8, Remark 2.9,
and Proposition 2.10, we obtain that the poset associahedron of a poset P can be realized
as a stellar subdivision of the order polytope of P, thus recovering the construction of [8].
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2.4 Acyclonestohedra

We now consider a realizable oriented building set (B,M(A)). From Corollary 2.14, we
know that the acyclic nested complex A(B,M(A)) is realizable as a polytope by stellar
subdivisions of the positive tope of A. However, this non-explicit approach does not
allow any control on the coordinates of the realizations. In this section, we obtain explicit
polytopal realizations with controlled integer coordinates, using sections of nestohedra.

Definition 2.16. As each c ∈ C(A) is the signature of a unique (up to rescaling) linear de-
pendence δ ∈ D(A), we define rc := max δ ̸=0/ min δ ̸=0 where δ ̸=0 := {|δs| | s ∈ S}∖ {0}
and R := |B| · maxc∈C(A) rc. We then define ρ := (ρB)B∈B ∈ RB

+ by ρB := 0 if |B| = 1
and ρB := R|B| if |B| ≥ 2.

We use these coefficients ρ ∈ RB
+ to define two polytopes Acyc(B, A) and Acyc(B, A)

that we both call acyclonestohedra. While these two polytopes are affinely equivalent, the
first is more natural for our construction, but the second has the advantage to live in the
right dimensional space.

Definition 2.17. The acyclonestohedron Acyc(B, A) is the polytope in RS defined as the
intersection of the nestohedron Nest(B, ρ) with the evaluation space D∗(A) of A.

Definition 2.18. The acyclonestohedron Acyc(B, A) is the polytope of RA defined by the
equalities gB(y) = 0 for all B ∈ κ(B) and the inequalities gB(y) ≥ 0 for all B ∈ B, where

gB(y) :=
〈

∑
b∈B

ab
∣∣ y

〉
− ∑

B′∈B, B′⊆B
ρB′ .

Proposition 2.19. The acyclonestohedron Acyc(B, A) ⊂ RS of Definition 2.17 and the acyclon-
estohedron Acyc(B, A) ⊂ RA of Definition 2.18 are affinely equivalent.

Theorem 2.20. For any realizable oriented building set (B,M(A)), the acyclic nested com-
plex A(B,M(A)) is isomorphic to the boundary complex of the polar of the acyclonestohe-
dron Acyc(B, A) (or equivalently of Acyc(B, A)).

Remark 2.21. Following Remark 2.7, note that if A is linearly independent, then its eval-
uation space D∗(A) is RS, and the acyclonestohedra Acyc(B, A) and Acyc(B, A) both
coincide with the classical nestohedron Nest(B, ρ). For instance, the acyclonestohe-
dron of the graphical oriented building set of an oriented forest D is the graph asso-
ciahedron of L(D) (for instance, a permutahedron if D is a star, and an associahedron
if D is a path).

Example 2.22. Specializing Definitions 2.17 and 2.18 and Theorem 2.20 to the graphical
situation discussed in Examples 2.2 and 2.8, Remark 2.9, and Proposition 2.10, we obtain
that the poset associahedron of a poset P with Hasse diagram D is explicitly realized as
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31
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L(D)

Figure 3: The graphical acyclonestohedra (green polygons) realizing the graphical
acyclic nested complexes of Figure 2, obtained as the section of the line graph of L(D)

by the evaluation space of the graphical oriented matroid of D.

• the section of a graph associahedron of the line graph of D with the linear hyper-
planes normal to 1c+ − 1c− for all circuits c = (c+, c−) of D, see Figure 3,

• the polytope in RP defined by the equality gP(y) = 0 and the inequalities gt(y) ≥ 0
for all t ∈ B(P), where

gt(y) :=
〈

∑
p,q∈t
p≺·q

bp − bq
∣∣ y

〉
− ∑

t′∈B(P)
t′⊆t

|B(P)||t|.

This answers an open question of [8]. During the completion of this paper, we became
aware that this question was independently solved in [11]. The approach of [11] is quite
different but leads essentially to the same realization of poset associahedra. We actually
want to acknowledge that we originally only worked with the acyclonestohedron of
Definition 2.17, and that the affinely equivalent acyclonestohedron of Definition 2.18
was motivated by the approach of [11].

Remark 2.23. To conclude this section, we want to give a vague idea of the proof of
Theorem 2.20. As illustrated in Figures 2 and 3, the main point is that our choice of
coefficients ρ guaranties that a face of Nest(B, ρ) intersects the evaluation space D∗(A)
if and only if the corresponding nested set on B is acyclic for M(A). Note that the coef-
ficients could sometimes be chosen smaller, our exponential choice is just a convenient
hammer to kill all small contributions. For instance, for graphical oriented building sets,
the coefficient ρt of a tube t can in fact be chosen of order 4|t|.
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3 Nested complexes of building sets of the face lattice

Although less popular in the combinatorics community, the original definition of [4] for
building sets and their nested complexes depends upon an underlying lattice.

Definition 3.1 ([4, 6]). A subset B of a finite lattice L is a L-building set if the lower
interval of any element x ∈ L is the direct product of the lower intervals of the maximal
elements of B below x. We denote by κ(B) := max(B) the set of B-connected components.

Definition 3.2 ([4, 6]). Let B be an L-building set. An L-nested set N on B is a subset
of B containing κ(B) and such that for any k ≥ 2 pairwise incomparable elements
B1, . . . , Bk ∈ N , the join B1 ∨ · · · ∨ Bk does not belong to B. The L-nested complex of B is
the simplicial complex NL(B) whose faces are N ∖ κ(B) for all L-nested sets N on B.

Example 3.3. If L is the boolean lattice on S, then the L-building sets are the building
sets on S of Definition 1.1 and the L-nested sets are the nested sets of Definition 1.4.

We will use these definitions over the Las Vergnas face lattice F (M) of the oriented
matroid M, see Definition 1.21. We first select the facial part of an oriented building set.

Definition 3.4. The facial building set B̂ of an oriented building set (B,M) is the set of
blocks B ∈ B that are also faces of M.

Theorem 3.5. The facial building sets of M coincide with the F (M)-building sets.

Definition 3.6. The facial nested complex NF (M)(B̂) is the F (M)-nested complex of B̂.

Theorem 3.7. Let B̂ be the facial building set of an oriented building set (B,M). Then the
acyclic nested complex A(B,M) and the facial nested complex NF (M)(B̂) coincide.

Example 3.8. If M is independent (i.e., no circuit), then its positive tope is a simplex, its
Las Vergnas face lattice is boolean, so that we are in the classical situation of Example 3.3.

We conclude with a few remarks in light of Theorems 3.5 and 3.7. First, we observe
that this interpretation actually recovers the results of Section 2.3. Namely,

• [5, Cor. 4.3] proved that the nested complex of a finite atomic meet-semilattice is
homeomorphic to its order complex. Since the face lattices of oriented matroids en-
code face lattices of regular cell decompositions of spheres [1, Thm. 4.3.5], their or-
der complexes are the face lattices of the barycentric subdivisions of these spheres.

• The stellar subdivisions of Theorem 2.13 are actually oriented matroid realizations
of the combinatorial blowups of [4, Thm. 3.4] on face lattices of oriented matroids.

In turn, our acyclonestohedra of Section 2.4 provide explicit polytopal realizations with
integer coordinates for the F (M)-nested complexes over realizable matroids. To sum up:

Corollary 3.9. AnyF (M)-nested complex of anyF (M)-building set over the face lattice F (M)
of an acyclic oriented matroid M is the face lattice of an oriented matroid obtained by stellar sub-
divisions of the positive tope of M. When M is realizable, it can be realized as a polytope either
by realizing these stellar subdivisions polytopaly, or as the polar of a section of a nestohedron.
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4 Compactifications

Galashin’s main motivation for defining poset associahedra was that they model com-
pactifications of the space of order preserving maps P → R, which can be identified
with the interior of an order polytope. In fact, the connection above reveals that all acy-
clonestohedra are associated to nice compactifications of interiors of polytopes, via [7].

Theorem 4.1 ([7]). Consider a realizable oriented building set (B,M(A)), and let P be the
polytope associated to the positive tope. Then there is a compactification PB of the interior of P
that is a stratified C∞ manifold with corners such that

(i) except for the open dense stratum, all the strata lie in the boundary,
(ii) the codimension 1 strata are in correspondence with the facial blocs of B̂,

(iii) the intersection of the closures of the strata indexed by a subset N ⊆ B̂ is non empty if and
only if N is a F (M)-nested set,

(iv) the strata of PB can be indexed by the faces of the acyclic nested complex A(B,M(A)).
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Abstract. We present a combinatorial proof of the Graham–Pollak formula for the
determinant of the distance matrix of a tree, via sign-reversing involutions and the
Lindström–Gessel–Viennot lemma.

Résumé. Nous présentons une preuve combinatoire de la formule de Graham et Pollak
pour le déterminant de la matrice des distances d’un arbre, en utilisant des involutions
et le lemme de Lindström–Gessel–Viennot.

Keywords: Distance matrix of a tree. Lindström–Gessel–Viennot’s Lemma. Sign-
reversing involutions. Bijective Combinatorics.

1 Introduction

Consider a tree T with vertices labeled from one to n, and edge set E. Define the distance
between vertices i and j, denoted by d(i, j), as number of edges in the unique path of T
connecting i and j. Define the distance matrix of T as M(T) = (d(i, j))1≤i,j≤n .

In their influential 1971 paper [6], Graham and Pollak established that the determi-
nant of the distance matrix of T obeys the Graham–Pollak formula:

det M(T) = (−1)n−1(n − 1)2n−2 (1.1)

Observe that this implies that the determinant of the distance matrix of T is solely de-
pendent on its number of vertices, and not on its tree structure.

Multiple techniques drawn from linear algebra, ranging from Gauss elimination to
Charles Dodgson’s condensation formula, have been used to prove the Graham–Pollak
formula [4, 6, 8, 9, 10]. However, the expression (−1)n−1(n − 1)2n−2 suggests the exis-
tence of a signed enumeration problem solved by det M(T).

Pursuing this trail has led us to a novel combinatorial proof of the Graham–Pollak
formula that relies on the existence of sign-reversing involutions, and on the celebrated
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Lindström–Gessel–Viennot lemma. Our journey concludes by establishing that our com-
binatorial proof provides a solid framework for many of the existing generalizations and
q-analogues of the Graham–Pollak formula, and facilitates the derivation of new ones.

2 Catalysts

Where we introduce the idea of a catalyst for a tree, and demonstrate how det(T) does a signed
enumeration of all catalysts of a fixed tree T = ([n], E).

Fix a tree T = ([n], E). Let E± = {(i, j) : {i, j} ∈ E} denote the set of arcs supported
on T. Given a permutation σ in Sn and a map f : [n] → E±, the ordered pair (σ, f ) is a
catalyst for T if for each vertex i, f (i) = (vi, vi+1) is a pair of successive vertices in the path
P(i, σ(i)) (i.e., an arrow). The sign of a catalyst is the sign of its underlying permutation.

(a) (b) (c)

1 2

3

4 5

6

7

8

9

κ = (σ, f ) κ′ = (σ′, f ′) κ′′ = (σ′′, f ′′)

Figure 1: A tree T and the diagrams of three of its catalysts. We can recover a catalyst
from its diagram. E.g., from the first diagram we see that σ(1) = 6 and f (1) = (1, 2),
that σ(2) = 5 and f (2) = (2, 5), that σ(3) = 8 and f (3) = (3, 1), and so on.

The determinant det M(T) does a signed enumeration of all catalysts for T. This is so
because d(i, σ(i)) counts the number of edges in the unique path P(i, σ(i)) in T. Indeed,

det M(T) = ∑
σ∈Sn

sgn(σ) d(1, σ(1))d(2, σ(2)) . . . d(n, σ(n)) = ∑
κ∈K

sgn κ, (2.1)

where we are summing over K, the set of all catalysts for T. It is worth noting that the
definition of catalyst implies that its underlying permutation must be a derangement, that
is, a permutation without fixed points.

Partitioning catalysts by their underlying permutations proves ineffective in our search
of a combinatorial proof of the Graham–Pollak formula, as in general, there are no can-
cellations between resulting summands.
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3 Arrowflows and the Graham–Pollak formula

Where we present the definition of the arrowflow induced on T by a catalyst, and show how the
Graham–Pollak formula becomes transparent when catalysts are partitioned according to them.

An arrowflow on T is a directed multigraph with vertex set [n], with exactly n arcs
when counted with multiplicity, and whose underlying simple graph is a subgraph of
T. By definition, given any catalyst κ = (σ, f ), the image of f , considered as a multiset,
is always an arrowflow on T. We refer to it as arrowflow induced by κ.

We say that an arrowflow A is connected when its underlying simple graph is. If
A is a connected arrowflow, there exist precisely two vertices that belong to more than
one arrow of A. It turns out that these two vertices always belong to precisely two
arrows, that we call the repeated arrows. We say that the repeated arrows of a connected
arrowflow are parallel when they point in the same direction, and anti-parallel when they
point in opposite directions.

An arrowflow is said to be unital when it is connected and its repeated arrows are
anti-parallel, as illustrated in Figure 2 (a). Otherwise, it is said to be zero-sum. There
are two possible causes for an arrowflow to be zero-sum. Either the arrowflow is dis-
connected, as illustrated in Figure 2 (b), or the arrowflow is connected, but the repeated
arrows are parallel, as in Figure 2 (c).

Example 3.1. Figure 2 shows the three arrowflows induced by the three catalysts of
Figure 1. The first arrowflow (a) is unital. The second arrowflow (b) is zero-sum because
it is disconnected. The last one (c) is zero-sum because arc (1, 2) appears twice.

(a) (b) (c)

1 2

3
4 5

6

7
8

9

1 2

3
4 5

6

7
8

9

1 2

3
4 5

6

7
8

9

Figure 2: (a) Unital, (b) disconnected zero-sum, (c) connected zero-sum arrowflows.

It is crucial to observe that different catalysts on T can result on the same arrowflow.
On the other hand, it is worth pointing out that there exist arrowflows on T that are not
induced by any catalyst for T. We leave it to the reader to come up with such examples.

We define the arrowflow class of A, denoted by C(A), as the set of catalysts inducing
A on T. An arrowflow class C(A) is unital or zero-sum according to whether A is unital
or zero-sum. Nonempty arrowflow classes define a partition K =

⊔
A C(A) of the set
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K of all catalysts for T, that we call the arrowflow partition of K. It allows us to rewrite
Equation (2.1) as

det M(T) = ∑
A

arrowflow

∑
κ∈C(A)

sgn(κ), (3.1)

where the first sum is taken over all arrowflows on T, and the second one over all
catalysts κ in the arrowflow class C(A).

Theorem 3.2. The arrowflow partition defines an optimal way of partitioning the set of catalysts
for T. More precisely, if C(A) is an arrowflow class, then

∑
κ∈C(A)

sgn(κ) =

{
(−1)n−1 if A is a unital arrowflow,
0 if A is a zero-sum arrowflow.

(3.2)

The proof of this result will unfold in the following two sections.
We close this section by showing how a combinatorial proof of the Graham–Pollak

formula can be obtained by gathering all the elements of our reasoning. First observe
that Theorem 3.2 implies that there can be no cancellations between the different sum-
mands in Equation (3.1). Therefore, it suffices to show that

∑
A unital

arrowflow

(−1)n−1 = (−1)n−1(n − 1) 2n−2.

Or equivalently, that there exists (n − 1) 2n−2 unital arrowflows on T. This is immediate
as the factor (n − 1) counts the number of ways of selecting the edge of T that gives
rise to the anti-parallel repeated arrows, whereas factor 2n−2 counts the number of ways
in which the remaining n − 2 edges can be oriented. Finally, to show that the sign of
a unital arrowflow class is (−1)n−1, we show that the underlying permutation of the
unique catalyst that survives the involution process is always an n-cycle.

4 Zero-sum arrowflows

Where we present a sign-reversing involution without fixed points on each zero-sum arrowflow
class, and conclude that the signed sum of catalyst in such a class is always zero.

This is achieved in Lemma 4.1, which implies that the signed sum of catalysts in a
zero-sum arrowflow class C(A) is zero. This constitutes one half of Lemma 3.2.

Lemma 4.1. Let A be a zero-sum arrowflow on T. If A is connected, let i and j be the two
preimages of the repeated arrow (a, b) of A. On the other hand, if A is disconnected, we let {i, j}
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• i σ(i) • i (σ ◦ (i j)) (j)

• a b • • a b •

j σ(j) • j (σ ◦ (i j)) (i) •

f(i)

f(j)

(f◦(i j))(j)

(f◦(i j))(i)

Figure 3: Involution φ acting on a zero-sum connected arrowflow A.

be an edge of T such that neither (i, j) nor (j, i) is in A. Then, the map φ : C(A) → C(A) that
sends the catalyst (σ, f ) to the catalyst (σ ◦ (i j), f ◦ (i j)) is a sign-reversing involution without
fixed points.

Sketch of proof. It is enough to show that f (i) is an arc in both P(j, σ(i)) and P(i, σ(i)).
Observe that if A is connected, then i, j and a lie in one connected component of the
graph obtained by deleting from T edge {a, b}, while σ(i), σ(j) and b lie in the other one.
See Figure 3.

On the other hand, when A is disconnected, then P(j, σ(i)) and P(i, σ(i)) differ in
exactly one arc, either (i, j) or (j, i). Therefore, since f (i) is neither of them, we conclude
that f (i) belongs to both paths. See Figure 4.

σ(j) • • (σ ◦ (i j))(i) • •

• i j • • i j •

• σ(i) • • (σ ◦ (i j))(j) •

f(j) (f◦(i j))(i)

f(i) (f◦(i j))(j)

Figure 4: Involution φ acting on zero-sum disconnected arrowflow A.

5 Unital arrowflows

Where we rely on the Lindström–Gessel–Viennot Lemma to compute the signed sum of all cata-
lysts in a unital arrowflow class.

We rely on the following version of the Lindström–Gessel–Viennot lemma here.

Lemma 5.1 (Lindström [7], Gessel–Viennot [5]). Let R be an acyclic directed graph. Dis-
tinguish two sequences of nodes (v(1), . . . , v(n)) and (v′(1), . . . , v′(n)) with no repeated nodes
in either of them. Let P be the set of all sequences of paths (P1, ..., Pn) for which there exists a
permutation σP ∈ Sn such that, for each i in [n], the path Pi stars at v(i) and finishes at v′(σ(i)).
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Then,
∑

(P1,...,Pn)∈P
sgn(σP) = ∑

(P1,...,Pn)∈P
non-intersecting

sgn(σP).

We break down our argument into three parts. First, we prepare for the application
of the Lindström–Gessel–Viennot Lemma and create an acyclic directed graph, the route
map RA, from any unital arrowflow A on T. Subsequently, we establish a sign-preserving
bijection that sends each catalyst in C(A) to a family of n paths on RA, which we refer to
as n-paths. The application of the Lindström–Gessel–Viennot Lemma reduces our origi-
nal quest to the problem of finding a description of the non-intersecting n-paths. Finally,
we establish that in each unital arrowflow class, there exists exactly one catalyst κ that
generates a non-intersecting n-path, and that its underlying permutation of κ is always
an n-cycle. Therefore, the sole surviving catalyst, has sign (−1)n−1.

5.1 The route map RA. To construct RA, the route map of T, we proceed in several
steps. First, we use arrowflow A to define a plane rooted directed tree T0. Then, we
define the Southern hemisphere, an acyclic directed graph; and its anti-isomorphic coun-
terpart, the Northern hemisphere. Finally, we add bridges connecting both hemispheres
and pointing from South to North.

Step 1. Construct a rooted directed tree A0 from A.

Let e = {a, b} be the edge of T connecting the two vertices appearing in the re-
peated edge of A. We construct a rooted directed tree A0 from A by adding a new
vertex r as a root and substituting the arcs (a, b) and (b, a) by (r, b) and (r, a) re-
spectively. This construction induces a bijection between arcs of A and A0. An
arc of A0 will be said to be ascending if it points to the root, and descending if it
points away from the root. A child node u of a parent node v is termed ascending
when the associated arc for the edge {u, v} is ascending, and descending when it is
descending. See Figures 5 (a) and (b).

We denote the underlying undirected rooted tree of A0 by T0.

Step 2. Give a compatible plane structure to the rooted directed tree A0.

A plane structure for A0 is said to be compatible if for each node v with children
u1, . . . , uk, every ascending child of v lies to the left of every descending child. In
general there exist multiple compatible plane structures on A0. We just choose one
of them. See Figure 5 (c).

The underlying rooted tree T0 inherits a plane rooted tree structure. The neighbors
of a vertex i of T0 are ordered starting with the children of i in increasing order (as
in the plane structure of T0), and ending with the parent.
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(a) (b) (c)
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3
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Figure 5: (a) A unital arrowflow A with repeated edge {1, 2}. (b) The rooted directed
tree A0 with root r. (c) A compatible plane structure for A0.

Step 3. Construct the Southern hemisphere of T0.

The Southern hemisphere S(T0) of an undirected plane rooted tree T0 is a directed
multigraph whose vertex set is composed of three types of nodes (v-node, e-node,
and s-node). Each node i of T0, including the root, contributes with a node v(i).
Each edge {i, j} of T0, contributes two nodes e(i, j) and e(j, i). Finally, we add two
nodes si(jk−1, jk) and si(jk, jk−1) for each vertex i of T0 and each pair of consecutive
neighbors jk−1, jk of i. See Figure 6.

The arcs of the route map connect these nodes in a natural way, as to allow one to
understand the paths of T0 as paths in the route map. The explicit construction of
the set of arcs can be daunting, but these arcs do not need to be included in the
graphical representations of S(T0) as they can be inferred from the set of nodes.

To construct the set of arcs of S(T0) we add, for each i, two arcs between s-nodes for
each three consecutive neighbors jk−1, jk, jk+1, an arc (v(i), si(j1, j2)) for each node i
that is not a leaf, and an arc (v(i), e(i, j1)) for each node i. Additionally, from each
e-node e(j, i) there is an arc to (at most) two s-nodes around i, and conversely from
each s-node si(jk, jk+1) to its corresponding e(i, jk+1) node.

(a) (b) (c)
rr
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54

8 9
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r
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8 9

7

6

r
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3

2
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8 9

7

6

Figure 6: Highlighted, the sets of (a) v-nodes, (b) e-nodes, and (c) s-nodes of S(T0).

Step 4. Construct the Northern hemisphere, an anti-isomorphic copy of the Southern hemisphere.
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Let T0 be an undirected plane rooted tree, let T′
0 be its mirror image; a copy of T0 in

which local orders are inverted. The Northern hemisphere N (T0) of T0 is constructed
from S(T′

0) by replacing each arc (v(i), e(i, j1)) by the arc (e(j1, i), v(i)), and, when-
ever i is not a leaf, replacing arc (v(i), si(j1, j2)) by the arc (si(j2, j1), v(i)) . We denote
nodes of N (T0) using primed letters.

Step 5. Construct the route map RA.

The route map RA of the unital arrowflow A is the directed multigraph obtained
by adding to S(T0)∪N (T0) an arc (e(u, v), e′(u, v)) for each arc (u, v) of A0. These
arcs are referred to as the bridges between hemispheres of RA.

The key property of the route map RA is that it is always acyclic. The Southern hemi-
sphere S(T0) is acyclic because any cycle in S(T0) would induce a cycle in the rooted
plane tree T0. The Northern hemisphere N (T0) is acyclic because it is an anti-isomorphic
copy of S(T0). Finally, the route map is acyclic because all the bridges point from South
to North.

5.2 Catalyst and n-paths. Let A be a unital arrowflow, and (σ, f ) be a catalyst in C(A).
Let Λi be the unique path of RA going from v(i) to v′(σ(i)) and passing through the
bridge (e(ui, vi), e′(ui, vi)), where (ui, vi) is the arc of A0 defined by f (i). See Figure 7.

(a) (b)
r

1

3

2

54

8 9

7

6

r′

1′

3′

2′

5′4′

8′ 9′

7′

6′

Figure 7: (a) A path P(9, σ(9) = 1) marked at f (9) = (4, 1). (b) The path Λ9 of RA.

We define the n-path induced by catalyst κ = (σ, f ) on the route map RA as Λ(κ) =
{Λ1, . . . , Λn}, and say that κ has been lifted to the n-path Λ(κ). One can recover the
permutation σ from Λ(κ). Thus we define sgn(Λ(κ)) as sgn(σ).

Example 5.2. Let κ be the catalyst of Figure 1 (a). Figure 8 (b) illustrates the n-path
induced by κ, where we mark path Λi with subscript i. Moreover, since each node in the
route map belongs to at most one path, it is an example of a non-intersecting n-path.

We say that an n-path is full when every bridge (e(u, v), e′(u, v)) belongs to exactly
one of its paths. Since any n-path that is not full must contain an intersection at some
bridge, non-intersecting n-paths are always full. Moreover, the lifting of any catalyst
belonging to a unital arrowclass is always full.
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Figure 8: (a) A catalyst and (b) its induced n-path Λ(κ) = {Λ1, . . . , Λn}.

Lemma 5.3. The operation of lifting defines a permutation-preserving bijection between the set
of catalysts with unital arrowflow A and the set of full n-paths of RA.

Sketch of proof. To prove that the lifting map is a bijection, we define its inverse. Any
n-path P defines a permutation σ, where Pi is a path from v(i) to v′(σ(i)). On the other
hand, we use the bridges of P to define a map f : [n] → E±. If the arc e defining the
bridge of Pi does not include the root, we define f (i) = e. Otherwise, we let f (i) be
the repeated edge with the appropiate orientation. It can be shown that (σ, f ) ∈ C(A)
and, that the map we just defined is the inverse of the lifting map. Since the underlying
permutation of a catalyst is the permutation induced by its lifting, we conclude that the
lifting map is a permutation-preserving bijection.

Lemma 5.3 allows us to rewrite Equation (3.2) as ∑κ∈C(A) sgn(κ) = ∑ sgn(Λ), where
the second sum is taken over the set of full n-paths on RA.

5.3 There is an unique catalyst inducing a non-intersecting n-path. Moreover, its
underlying permutation is always an n-cycle.

Proposition 5.4. Let A be a unital arrowflow on T. Consider all n-paths in the route map RA
induced by catalysts in C(A). There exists precisely one catalyst inducing a non-intersecting
n-path in RA. Its underlying permutation is an n-cycle. Therefore, its sign is (−1)n−1.

Sketch of proof. Fix a plane rooted tree A0 and let Λ be an n-path. Assume Λ is the lift
of catalyst (σ, f ). Consider the set E consisting of the e-nodes appearing in the paths of
Λ. We can show that E uniquely determines the catalyst (σ, f ). On the other hand, for
each arc (i, j) of A0, the set E contains both e(i, j) and e′(i, j). Furthermore, if Λ is non-
intersecting, a counting argument allows us to show that (i, j) is ascending if and only if
E contains e′(j, i), and descending if and only if it contains e(j, i). This gives uniqueness.

The argument concludes by noting that the underlying permutation of the sole cat-
alyst inducing a non-intersecting n-path is always an n-cycle, and that the depth-first
search algorithm allows us to explicitly describe this cycle, as illustrated in Figure 9.
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Figure 9: Applying the depth-first search algorithm to this rooted tree results in the
word r 1 3 1 4 8 4 7 4 9 4 1 r 2 6 2 5 2 r, which we identify with the cycle (3 8 4 7 9 1 6 2 5).

Example 5.5. Figure 9 illustrates how the depth-first search algorithm describes the non-
intersecting path in the route map RA of our running example.

The Lindström–Gessel–Viennot Lemma [5, 7] allows us to conclude that when we
perform the signed sum of all catalysts in a unital arrowflow class, catalysts that in-
duce intersecting n-paths on RA cancel each other out. Finally, since the unique non-
intersecting n-path has as its underlying permutation an n-cycle, the signed sum of
catalysts in a unital arrowflow class is equal to (−1)n−1, which concludes the proof of
Lemma 3.2.

6 Beyond the Graham–Pollak formula

Where we show that our combinatorial proof of the Graham–Pollak formula not only establishes a
solid framework for the understanding of the existing generalizations but also paves the way for
the creation of new ones.

Various generalizations of the Graham–Pollak formula exist in the literature. In [1], a
version of this formula is presented for simple trees with weighted edges, while the situ-
ation of arc-weighted trees is treated in [2]. In both cases, the weight of a path is defined
as the sum of the weights of its edges. In contrast, using q-integers to define the vertex
distance results in q-analogues of the results. Simple trees obey the q-Graham–Pollak
formula (−1)n−1(n − 1)(1+ q)n−2 [9, Cor. 2.3], and a q-analogue for trees weighted with
integers is given in [9, Thm. 2.4]. There also exist q-analogues for the Graham–Pollak
formula when T is arc-weighted with integers [2, Thm. 3.1], or over a commutative ring
[10, Thm. 4], or with matrices over a commutative ring [10, Thm. 7].

We present a new generalization of the Graham–Pollak formula. Towards this end,
we define a q-sum, denoted by q⃝, as a q⃝ b = a + b + (q − 1)ab. This operation allows
us to simplify [9, Thm. 2.4], by noting that [1]q = 1 and [a + b]q = [a]q q⃝ [b]q. More
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crucially, the q-sum operation is well-defined over any commutative ring, and not just
integers. This makes our setting more general.

Let e+ and e− be the arcs originating from edge e, and let E± be the set of arcs of T.
Let R be a commutative ring, and α : E± → R[q] be a weight function. Let the (ik, ik+1)’s
be the arcs in the unique path from i = i0 to j = id(i,j). Define the q-distance between
vertices i and j as dq(i, j) = α(i, i1) q⃝ α(i1, i2) q⃝ · · · q⃝ α(id(i,j)−1, j). For any arc a of E±,
we write αa for α(a). Then, the following theorem holds.

Theorem 6.1. The determinant of the dq-distance matrix of a tree T is

(−1)n−1 ∑
e∈E

(
αe+αe− ∏

f∈E
f ̸=e

(α f+ q⃝ α f−)
)

.

Before discussing this result’s proof, it’s worth noting that the same argument pro-
vides a combinatorial proof for the very general Choudhury–Khare formula [3, Thm.
A]. It is interesting to note that while the Choudhury–Khare’s generalization is, in some
precise sense, the most general possible [3, Example 1.13], Theorem 6.1 stands indepen-
dently from this framework. It represents the most natural simultaneous generalization
of [10, Thm. 4] and [9, Thm. 2.4], as depicted in the diagram appearing in Figure 10.

[6, p. 2511]
Graham–Pollak

[1, Cor. 2.5]
weighted edges

[10, Thm. 4]
weighted arcs

[9, Cor. 2.3]
q-Graham–Pollak

[9, Thm. 2.4]
weighted edges, q-sum

Thm. 6.1
weighted arcs, q-sum

αij=1 αij=αji

q=1

αij=1

q=1

αij=αji

q=1

Figure 10: Relationship between the formulas found in the literature.

Both Theorem 6.1 and the Choudhury–Khare formula [3, Thm. A] readily follow
from our combinatorial construction. In both situations, we want to compute the deter-
minant of an appropriate matrix M′(T). Towards this end, we define a weight function
on the catalyst set of T, in such a way that the determinant of M′(T) does the weighted
(q-) sum of all catalysts, as in Equation 3.1.

To show that the weighted (q-) sum of all catalysts in a zero-sum arrowflow class is
zero, we show that the involution φ defined in Section 4 is weight-preserving. On the
other hand, we use the constructions presented in Section 5 to compute the weighted (q-)
sum of all catalysts in a unital arrowflow class. For this, we assign weights to the edges
of the route map RA, and show that the lifting map is weight-preserving. A weighted
version of the Lindström–Gessel–Viennot Lemma allows us to conclude that det M′(T)
does a weighted (q-) sum of non-intersecting n-paths within RA. Finally, we use the
characterization of the sole catalyst inducing a non-intersecting n-path on RA obtained
in Proposition 5.4 to deduce the desired formula for the determinant of M′(T).
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Abstract. The pop-stack operator of a finite lattice L is the map that sends each x in L to
the meet of x with the set of elements covered by x. Using tools from representation
theory, we provide simple Coxeter-theoretic and lattice-theoretic descriptions of the
image of the pop-stack operator of a Cambrian lattice of a finite irreducible Coxeter
group. When specialized to a bipartite Cambrian lattice of type A, this result settles a
conjecture of Choi and Sun. We also settle a related enumerative conjecture of Defant
and Williams. When L is an arbitrary lattice quotient of the weak order on W, we
prove that the maximum size of a forward orbit under the pop-stack operator of L is
at most the Coxeter number of W; when L is a Cambrian lattice, we provide an explicit
construction to show that this maximum forward orbit size is actually equal to the
Coxeter number.

Keywords: torsion classes, Cambrian lattice, weak order, pop-stack operator

1 Introduction

Let L be a finite lattice with meet operation ∧ and join operation ∨. The pop-stack operator
pop↓L : L→ L and the dual pop-stack operator pop↑L : L→ L are defined by

pop↓L(x) = x ∧
(∧
{y | y <· x}

)
and pop↑L(x) = x ∨

(∨
{y | x <· y}

)
,

where we write ul v to mean that u is covered by v in L. These operators have appeared
in various contexts; they serve as both useful tools and objects of interest in their own
right. When the lattice L is understood, we will omit subscripts and simply denote these
operators by pop↓ and pop↑.

Given an element x ∈ L, the forward orbit of x under pop↓L is the set

OL(x) =
{

x, pop↓L(x), (pop↓L)
2(x), . . .

}
,
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where (pop↓L)
t is the map obtained by composing pop↓L with itself t times. If t is suf-

ficiently large, then (pop↓L)
t(x) is equal to the minimal element 0̂ of L (which is the

unique fixed point of pop↓L). Thus, |OL(x)| − 1 is equal to the number of iterations of
pop↓L needed to send x to 0̂.

Given an interesting lattice L, one of the primary problems one can consider about
its pop-stack operator is that of maximizing OL(x). When L is the weak order on a
finite irreducible Coxeter group W, Defant [7] proved that maxx∈L |OL(x)| is the Coxeter
number h of W; in type A, this result was originally proven much earlier by Ungar [17].
Defant also studied this problem for ν-Tamari lattices in [6].

Defant and Williams [8] found that it is fruitful to study the image of the pop-stack
operator when L is a semidistributive (or more generally, a semidistrim) lattice; this is
because the image of pop↓ has numerous interesting properties, some of which relate to
a certain bijective rowmotion operator row: L→ L. For example, |pop↓(L)| and |pop↑(L)|
are both equal to the number of elements x ∈ L such that row(x) ≤ x. The images of
pop↓ and pop↑ are also naturally in bijection with the set of facets of a certain simplicial
complex called the canonical join complex of L.

In our full article [3], we take a representation-theoretic perspective and consider a
finite-dimensional basic algebra Λ over a field K. The set of torsion classes of finitely-
generated (right) Λ-modules forms a lattice, denoted torsΛ [13]. While the pop-stack
operator of torsΛ has already appeared (sometimes under different names) in the theory
of lattices of torsion classes (see e.g. [1, 4, 9]; a longer list can be found in introduction
of our full article [3]), it has primarily been used as a tool rather than a dynamical
operator worthy of its own investigation. Our full article, on the other hand, studies
the image and dynamical properties of the pop-stack operator of torsΛ in the case when
torsΛ is finite. We show that applying the pop-stack operator and its dual to a torsion
class corresponds to performing certain mutations on associated 2-term simple-minded
collections. We characterize the preimages of a prescribed torsion class under pop↓torsΛ
and pop↑torsΛ. As corollaries, we obtain descriptions of the elements of torsΛ that require
exactly 1 or exactly 2 iterations of pop↓ to reach 0̂.

When Λ is a Dynkin quiver (or more generally, a Dynkin species), the lattice torsΛ
is isomorphic to a Cambrian lattice [12]. For the sake of remaining explicit and combi-
natorial, we will devote this extended abstract to the pop-stack operators of Cambrian
lattices; we will also consider Cambrian lattices of arbitrary finite irreducible Coxeter
groups (not just crystallographic). That said, some of our proofs, which we omit in this
extended abstract, are heavily representation-theoretic.

Let c be a (standard) Coxeter element of a finite irreducible Coxeter group W. Let
Weak(W) denote the (right) weak order on W. The set of c-sortable elements of W (see
Section 2 for definitions) forms a sublattice Cambc of Weak(W) called the c-Cambrian
lattice. Hong [11] found a description of the image of the pop-stack operator on a Tamari
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lattice (a particular Cambrian lattice of type A), and Choi and Sun [5] found a similar
description for the image of the pop-stack operator on a type B analogue of the Tamari
lattice. Choi and Sun also conjectured a description of the image of the pop-stack oper-
ator on a type A Cambrian lattice associated to a bipartite Coxeter element.

In Section 3, we provide an explicit description of the image of the pop-stack oper-
ator on an arbitrary Cambrian lattice; we were only able to discover this description by
thinking representation-theoretically (it involves projective modules), but we can state it in
purely Coxeter-theoretic and lattice-theoretic terms. This characterization allows us to
obtain a surprising dynamical result (see Theorem 2). When W is of type A and c = c×

is a bipartite Coxeter element, our description of the image of the pop-stack operator al-
lows us to resolve the aforementioned conjecture of Choi and Sun [5]. We then construct
a bijection from the image of pop↓Cambc×

to a certain set of Motzkin paths (Theorem 3);
this allows us to resolve an enumerative conjecture of Defant and Williams [8]. This
result provides an enumeration of the facets of the canonical join complex of a bipartite
type A Cambrian lattice.

When W≡ is a lattice quotient of the weak order on a finite irreducible Coxeter group
W, we show that maxx∈W≡ |OW≡(x)| ≤ h, where h is the Coxeter number of W. We prove
that this inequality is actually an equality when W≡ is the c-Cambrian lattice associated
to a Coxeter element c of W.

Section 2 provides background on posets, lattices, Coxeter groups, and Cambrian
lattices. Section 3 is devoted to the images of the pop-stack operators of Cambrian
lattices, and Section 4 is devoted to studying maximum-sized orbits. In Section 5, we
collect several ideas for future work.

2 Background

2.1 Posets and Lattices

Let P be a poset. For x, y ∈ P, we say y covers x and write x l y if x < y and there
does not exist z ∈ P such that x < z < y. The dual of P is the poset P∗ with the same
underlying set as P defined so that x ≤ y in P∗ if and only if y ≤ x in P. A lattice is a
poset L such that any two elements x, y ∈ L have a greatest lower bound, which is called
their meet and denoted by x ∧ y, and a least upper bound, which is called their join and
denoted by x ∨ y. We write

∧
X and

∨
X for the meet and join, respectively, of a finite

subset X of a lattice. Given lattices L and L′, a lattice homomorphism is a map φ : L → L′

such that φ(x ∧ y) = φ(x) ∧ φ(y) and φ(x ∨ y) = φ(x) ∨ φ(y) for all x, y ∈ L. We say L′

is a lattice quotient if there is a surjective lattice homomorphism from L to L′.
Assume L is a finite lattice. Then L has a unique minimal element 0̂ =

∧
L and a

unique maximal element 1̂ =
∨

L. An element j ∈ L is called join-irreducible if it covers
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exactly one element of L. Dually, an element m ∈ L is meet-irreducible if it is covered
by exactly one element of L. A set A ⊆ L is join-irredundant (resp. meet-irredundant) if∨

A′ <
∨

A (resp.
∧

A′ >
∧

A) for every proper subset A′ of A. Let JIrrL (resp. MIrrL)
be the set of join-irredundant (resp. meet-irredundant) subsets of L. The canonical join
representation of an element x ∈ L (if it exists) is the unique set A ∈ JIrrL satisfying
x =

∨
A with the property that for every B ∈ JIrrL satisfying x =

∨
B, there exist a ∈ A

and b ∈ B such that a ≤ b. Dually, the canonical meet representation of x (if it exists) is
the unique set A ∈ MIrrL satisfying x =

∧
A with the property that for every B ∈ MIrrL

satisfying x =
∧

B, there exist a ∈ A and b ∈ B such that a ≥ b.
We say L is semidistributive if for all x, y, z ∈ L, we have

x ∧ y = x ∧ z =⇒ x ∧ y = x ∧ (y ∨ z) and x ∨ y = x ∨ z =⇒ x ∨ y = x ∨ (y ∧ z).

Suppose L is finite and semidistributive. It is known that every element v of L has a
canonical join representation D(v) and a canonical meet representation U (v); in fact,
the existence of both representations for every v ∈ L is equivalent to semidistributivity.
Moreover, the collection of canonical join representations (resp. canonical meet repre-
sentations) of elements of L forms a simplicial complex called the canonical join complex
(resp. canonical meet complex) of L. The canonical join complex and canonical meet com-
plex of L are isomorphic simplicial complexes by [2, Corollary 5]. Moreover, the number
of facets in each of these simplicial complexes is equal to both |pop↓L(L)| and |pop↑L(L)|
by [8, Theorem 9.13]. Indeed, the facets of the canonical join complex (resp. canonical
meet complex) of L are precisely the canonical meet representations (resp. canonical join
representations) of the elements of pop↓L(L) (resp. pop↑L(L)). Let PL(q) be the generating
function that counts the facets of the canonical join complex (equivalently, the canonical
meet complex) according to their sizes. Then

PL(q) = ∑
v∈pop↓L(L)

q|U (v)| = ∑
v∈pop↑L(L)

q|D(v)|. (2.1)

2.2 Coxeter groups

Let (W, S) be a finite Coxeter system. This means that S is a finite set and that W is a
finite group with a presentation of the form 〈S | (ss′)m(s,s′) = e for all s, s′ ∈ S〉, where e
is the identity element of W and we have m(s, s) = 1 and m(s, s′) = m(s′, s) ∈ {2, 3, . . .}
for all distinct s, s′ ∈ S. (We often refer to just the Coxeter group W, tacitly assuming
that this refers to the Coxeter system (W, S).)

The elements of S are called the simple reflections. A reflection is an element of W of
the form wsw−1 for s ∈ S and w ∈ W. The Coxeter graph of W is the graph ΓW with
vertex set S in which two simple reflections s and s′ are connected by an edge whenever
m(s, s′) ≥ 3; this edge is labeled with the number m(s, s′) if m(s, s′) ≥ 4. We will assume
that W is irreducible, which means that ΓW is connected.
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A reduced word for an element w ∈ W is a word over S that represents w and is as
short as possible. The number of letters in a reduced word for w is called the length of
w and is denoted `(w). A left inversion of w is a reflection t such that `(tw) < `(w). The
(right) weak order is the partial order ≤ on W defined so that u ≤ v if and only if there
exists a reduced word for v that has a reduced word for u as a prefix. Let Weak(W)
denote the poset (W,≤). It is well known that Weak(W) is a lattice. A descent of an
element w ∈ W is a simple reflection s ∈ S such that ws < w in Weak(W). The long
element of W, denoted w◦, is the unique maximal element of Weak(W).

A (standard) Coxeter element of W is an element c obtained by multiplying the simple
reflections in some order (with each appearing once in the product). Thus, a reduced
word for c is a word in which each simple reflection appears exactly once.

Fix a reduced word c for a Coxeter element c, and consider the infinite word c∞ =
c(1)c(2) · · · , where each c(k) is a copy of c. Following Reading [15], we define the c-sorting
word of an element w ∈W to be the reduced word sortc(w) for w that is lexicographically
first as a subword of c∞. Let I(k)c (w) be the set of simple reflections that are taken from
c(k) when we form sortc(w) as the lexicographically first subword of c∞. Although I(k)c (w)
depends on the Coxeter element c, it does not depend on the choice of the reduced word
c. The element w is called c-sortable if I(1)c (w) ⊇ I(2)c (w) ⊇ · · · . The set of c-sortable
elements of W forms a sublattice of Weak(W) called the c-Cambrian lattice, which we
denote by Cambc.

For each w ∈ W, the set Cambc ∩ {v ∈ W | v ≤ w} has a unique maximal element
in the weak order; we denote this element by πc

↓(w). The map πc
↓ is a surjective lattice

homomorphism from Weak(W) to Cambc, so Cambc is a lattice quotient of Weak(W)

[15]. According to [6, Theorem 3.2], we have pop↓Cambc
= πc

↓ ◦ pop↓Weak(W)
.

3 The Image of Pop-Stack on a Cambrian Lattice

Let c be a Coxeter element of a finite irreducible Coxeter group W. Let s1, . . . , sn be the
simple reflections of W; these are the elements that cover 0̂ in Cambc. For 1 ≤ i ≤ n, let

pi =
∨
{w ∈ Cambc | si ≤ w and sj 6≤ w for all sj ∈ S \ {si}}.

Our main result describing the image of pop↓Cambc
is as follows.

Theorem 1 ([3]). For w ∈ Cambc, the following are equivalent:

1. w is in the image of pop↓Cambc
.

2. The descents of w all commute, and w has no left inversions in common with c−1.

3. The interval [pop↓Cambc
(w), w] is Boolean, and pi 6≤ w for all i ∈ [n].
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In [3], we apply Theorem 1 (together with further representation-theoretic argu-
ments) to deduce the following result.

Theorem 2 ([3]). Let c be a Coxeter element of a finite irreducible crystallographic Coxeter group
W. If w ∈ Cambc and t ≥ 0, then

(pop↓Weak(W)
)t(pop↓Cambc

(w)) = (pop↓Cambc
)t+1(w).

The Coxeter group An is the same as the symmetric group whose elements are per-
mutations of the set [n + 1] = {1, . . . , n + 1}. We will frequently represent a permutation
w ∈ An in one-line notation as the word w(1) · · ·w(n + 1). The simple reflections of An
are s1, . . . , sn, where si is the transposition that swaps i and i + 1. The Coxeter graph ΓAn

is a path that contains an (unlabeled) edge {si, si+1} for each i ∈ [n]. Let

c×
(n) = c1c2, where c1 = ∏

i∈[n]
i odd

si and c2 = ∏
i∈[n]
i even

si. (3.1)

We refer to the Coxeter element c×
(n) as a bipartite Coxeter element.

3.1 Arc diagrams

Let c denote an arbitrary Coxeter element of An. Define νc : {2, . . . , n} → {A, B} by

νc(i) =

{
A if si precedes si−1 in every reduced word for c;
B if si−1 precedes si in every reduced word for c.

(3.2)

The map c 7→ νc is a bijection from the set of Coxeter elements of An to the set of
functions from {2, . . . , n} to {A, B}. Reading [14, Example 4.9] showed that a permu-
tation w ∈ An is c-sortable if and only if for all i ∈ [n + 1] and j ∈ [n] such that
w(j + 1) < w(i) < w(j), we have νc(w(i)) = A if and only if j < i. Arrange n + 1
points along a horizontal line, and identify them with the numbers 1, . . . , n + 1 from left
to right. An arc is a curve that moves monotonically rightward from a point i to another
point j (for some i < j), passing above or below each of the points i + 1, . . . , j− 1. Two
arcs are considered to be the same if they have the same endpoints and they pass above
the same collection of numbered points. A noncrossing arc diagram (of type An) is a col-
lection of arcs that can be drawn so that no two arcs have the same left endpoint or have
the same right endpoint or cross in their interiors. We write |δ| for the number of arcs in
a noncrossing arc diagram δ. Let ADn be the set of noncrossing arc diagrams of type An.

Given a permutation w ∈ An, form a noncrossing arc diagram ∆(w) ∈ ADn as
follows. For each index i such that w(i) > w(i + 1), draw an arc from w(i + 1) to w(i)
such that for each integer k satisfying w(i + 1) < k < w(i), the arc passes above (resp.
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below) the point k if i+ 1 < w−1(k) (resp. w−1(k) < i). This defines a map ∆ : An → ADn,
and it is straightforward to check that ∆ is a bijection.

Given a Coxeter element c of An, say an arc a with left endpoint i and right endpoint
j is c-sortable if for every k ∈ {i + 1, . . . , j− 1}, a passes above (resp. below) k if νc(k) = A
(resp. νc(k) = B). Note that for all 1 ≤ i < j ≤ n + 1, there is a unique c-sortable arc
from i to j. Let AD(c) = ∆(Cambc) be the set of noncrossing arc diagrams of c-sortable
elements of An. It is immediate from Reading’s characterization of c-sortable elements
that a noncrossing arc diagram is in AD(c) if and only if all of its arcs are c-sortable.
Hence, AD(c) is a simplicial complex whose vertices are the c-sortable arcs.

Cambrian lattices are semidistributive, so we can consider the canonical join complex
and the canonical meet complex of Cambc (and we know these simplicial complexes
are isomorphic by [2, Corollary 5]). An element v ∈ Cambc is join-irreducible if and
only if it has exactly one descent, and this occurs if and only if ∆(v) contains a single
arc. Therefore, ∆ establishes a one-to-one correspondence between the join-irreducible
elements of Cambc and the c-sortable arcs. Then for each w ∈ Cambc, the noncrossing
arc diagram ∆(w) corresponds to the canonical join representation of w. It follows that
the simplicial complex AD(c) is isomorphic to the canonical join complex of Cambc. Say
a noncrossing arc diagram in AD(c) is maximal if it is a facet of AD(c). In other words, a
noncrossing arc diagram in AD(c) is maximal if it is not properly contained in another
noncrossing arc diagram in AD(c). Let MAD(c) denote the set of maximal noncrossing
arc diagrams in AD(c).

The preceding discussion yields the identity

PCambc(q) = ∑
δ∈MAD(c)

q|δ|, (3.3)

where PCambc(q) is the generating function defined in Equation (2.1). Defant and Williams
conjectured [8, Conjecture 11.2] that

∑
n≥1

PCambc×
(n)
(q)zn =

1
qz

(
2

1− qz(1− 2z) +
√

1 + q2z2 − 2qz(1 + 2z)
− 1

)
− 1. (3.4)

The remainder of this section is devoted to stating the bijection that we use in [3] to
prove this conjecture.

3.2 Motzkin paths

A Motzkin path is a lattice path in the plane that consists of up (i.e., (1, 1)) steps, down
(i.e., (1,−1)) steps, and horizontal (i.e., (1, 0)) steps, starts at the origin, never passes
below the horizontal axis, and ends on the horizontal axis. Let U, D, and H denote up,
down, and horizontal steps, respectively. Given a word P over the alphabet {U, D, H}, let
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#U(P), #D(P), and #H(P) denote the number of U′s, the number of D’s, and the number of
H’s in P, respectively. We can think of a Moztkin path as a word M over the alphabet
{U, D, H} such that #U(M) = #D(M) and #U(P) ≥ #D(P) for every prefix P of M.

A peak of a Motzkin path M is a point (j, k) where an up step in M ends and a down
step in M begins; the height of this peak is the number k. If we view M as a word over
{U, D, H}, then a peak corresponds to a consecutive occurrence of UD, and the height of
the peak is #U(P)− #D(P), where P is the prefix of M that ends with the up step involved
in the peak. The only peak of the Motzkin path at the bottom of Figure 1 is (5, 2).

Let Mn be the set of Motzkin paths of length n that have no peaks of height 1. Let
M(q, z) = ∑n≥0 ∑M∈Mn

q#U(M)zn. In [3], we use straightforward enumerative techniques
to show that

M(q, z) =
2

1− z + 2qz2 +
√

1− 2z + (1− 4q)z2
. (3.5)

Using Equation (3.5), one can readily check that the expression on the right-hand side of
Equation (3.4) is

1
qz
(
M(1/q, qz)− 1

)
− 1 = ∑

n≥1
∑

M∈Mn+1

qn−#U(M)zn.

Therefore, in order to prove Equation (3.4), it suffices (by Equation (3.3)) to exhibit a
bijection Ψ : MAD(c×

(n))→Mn+1 such that |δ| = n− #U(Ψ(δ)) for every δ ∈ MAD(c×
(n)).

3.3 The bijection

Throughout the remainder of this section, fix a positive integer n, and write c× = c×
(n).

The map νc× : {2, . . . , n} → {A, B} is such that νc×(i) = A if i is odd and νc×(i) = B if i
is even.

Suppose δ ∈ MAD(c×). Let Ψ(δ) be the word M1 · · · Mn+1, where for 1 ≤ i ≤ n + 1,
we define

Mi =


U if i ≤ n and i + 1 is not the right endpoint of an arc in δ;
D if i ≥ 2 and i− 1 is not the left endpoint of an arc in δ;
H otherwise.

(3.6)

In [3], we prove that Ψ(δ) is well defined in the sense that no letter in Ψ(δ) can be both
U and D. See Figure 1 for an illustration of Ψ.

We can now state the main theorem of this section; as mentioned at the end of Sec-
tion 3.2, this theorem implies the identity Equation (3.4), thereby settling the conjecture
of Defant and Williams.

Theorem 3 ([3]). The map Ψ is a bijection from MAD(c×) toMn+1. For each δ ∈ MAD(c×),
we have Ψ(δ) ∈ Mn+1 and |δ| = n− #U(Ψ(δ)).
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Figure 1: When n = 13, the map Ψ sends a noncrossing arc diagram of type A13 to
a Motzkin path of length 14 with no peaks of height 1. For each 2 ≤ i ≤ 13, a blue
semicircle appears on the top (resp. bottom) of the circle containing i if νc×(i) = A
(resp. if νc×(i) = B). (The letters drawn below the noncrossing arc diagram represent
the Moztkin path; they are not part of the noncrossing arc diagram.)

4 Maximum-Size Pop-Stack Orbits

As above, let (W, S) be a finite irreducible Coxeter system. The Coxeter number of W is
the quantity h = 2|T|/|S|, where T is the set of reflections in W.

Theorem 4 ([3]). If W≡ is a lattice quotient of Weak(W), then

max
x∈W≡

|OW≡(x)| ≤ h.

The next theorem states that the inequality in Theorem 4 is tight for Cambrian lattices.

Theorem 5 ([3]). For each Coxeter element c of W, we have

max
x∈W≡

|OCambc(x)| = h.

The spine of Cambc, denoted spine(Cambc), is the union of the maximum-length
chains of Cambc. Hohlweg, Lange, and Thomas [10] proved that spine(Cambc) is a dis-
tributive sublattice of Cambc. Let us define zc = (pop↑spine(Cambc)

)h−1(e) (where e = 0̂
is the identity element). In our full article [3], we prove Theorem 5 by showing that
|OCambc(zc)| = h. To do so, we make use of combinatorial AR quivers and the combinato-
rial aspects of the c-sorting word for the long element of W (we omit this proof here).
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Example 1. Let W be the hyperoctahedral group B3. Then S = {s0, s1, s2}, and we have
m(s0, s1) = 4, m(s1, s2) = 3, and m(s0, s2) = 2. Let c = s0s2s1 and c′ = s0s1s2. The lattices
Cambc and Cambc′ are shown on the left and right, respectively, in Figure 2. The spine
of each lattice has been colored in red. The Coxeter number of B3 is h = 6. In the lattice
on the left, we obtain the element zc, which is marked by a blue circle, by starting at the
bottom element and applying the dual pop-stack operator in the spine h− 1 = 5 times.
This amounts to traveling up the blue dotted curves. If we start at zc and iteratively
apply pop↓Cambc

, then we just travel down the same blue dotted curves (the fact that this
happens for arbitrary Cambrian lattices is not obvious). This shows that OCambc(zc) is
contained in the spine of Cambc and that |OCambc(zc)| = h. Similarly, zc′ is obtained by
traveling up the blue dotted curves in the lattice on the right, and OCambc′

(zc′) has size
h and is contained in the spine of Cambc′ .

Figure 2: Two Cambrian lattices of type B3. The spine of each lattice is in thick red.
In each lattice, we have circled in blue an element whose forward orbit under the
pop-stack operator has size h = 6.

5 Future Directions

Consider the linear Coxeter element c→ = s1s2 · · · sn of An. The Cambrian lattice Cambc→

is the (n + 1)-st Tamari lattice. Hong [11] proved that the size of the image of pop↓Cambc→
is the n-th Motzkin number (i.e., the number of Motzkin paths of length n). In Section 3,
we determined the size of the image of pop↓Cambc×

, where c× = c×
(n) is the bipartite

Coxeter element of An defined in Equation (3.1). Using these formulas, one can verify
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that |pop↓Cambc→
(Cambc→)| ≤ |pop↓Cambc×

(Cambc×)|. Numerical evidence has led us to
conjecture that the linear and bipartite Coxeter elements are, in some sense, extremal
with regard to the sizes of the images of pop-stack operators.

Conjecture 1. For every Coxeter element c of An, we have

|pop↓Cambc→
(Cambc→)| ≤ |pop↓Cambc

(Cambc)| ≤ |pop↓Cambc×
(Cambc×)|.

Suppose L is a finite lattice, and let υL = maxx∈L |OL(x)|. Let

ΥL = {x ∈ L | |OL(x)| = υL}

be the set of elements of L whose forward orbits under pop↓L attain the maximum possi-
ble size.

Let c be a Coxeter element of a finite irreducible Coxeter group W. We saw in The-
orem 5 that the maximum possible size of the forward orbit of an element of Cambc

under pop↓Cambc
is the Coxeter number h; however, we said nothing about the number of

elements that actually attain this maximum. In the case when W = An and c is the linear
Coxeter element c→ (i.e., Cambc is the (n + 1)-st Tamari lattice), it is known that |ΥCambc |
is the (n− 1)-st Catalan number [6]. It would be interesting to understand |ΥCambc | for
other Cambrian lattices Cambc. In particular, we have the following conjecture.

Conjecture 2. The number of elements of Cambc× whose forward orbits under the pop-stack
operator have size h is 1 if n is even and is 2 if n is odd.

The original use of the term pop-stack comes from the setting where L is the weak
order on An; in this case, Ungar proved that maxx∈Weak(An) |OWeak(An)(x)| is n+ 1 (which
is the Coxeter number of An).

Question 1. What can be said about |ΥWeak(An)|?
Defant [7] proved that if W is a finite irreducible Coxeter group with Coxeter number

h, then maxx∈W |OWeak(W)(x)| = h. In Theorem 4, we found that maxx∈L |OL(x)| ≤
h whenever L is a lattice quotient of Weak(W), and we saw in Theorem 5 that this
inequality is an equality whenever L is a Cambrian lattice. We are naturally led to ask
the following questions.

Question 2. Let W be a finite irreducible Coxeter group with Coxeter number h. For which
lattice quotients L of Weak(W) is it the case that maxx∈L |OL(x)| = h?

Question 3. Let L′ be a lattice quotient of a finite lattice L. Is it necessarily the case that

max
x′∈L′
|OL′(x′)| ≤ max

x∈L
|OL(x)|?

It would be interesting to see how much of our work on Cambrian lattices can be
extended to more general families of lattices. For example, it could be interesting to
study the pop-stack operators on m-Cambrian lattices, which were introduced by Stump,
Thomas, and Williams [16].
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Abstract. Kamiya, Takemura, and Terao initiated the theory of the characteristic
quasi-polynomial of an integral arrangement, which is a function counting the ele-
ments in the complement of the arrangement modulo positive integers. The charac-
teristic quasi-polynomials of crystallographic root systems exhibit many interesting
properties. Recently, the authors extended the concept of the characteristic quasi-
polynomials for arrangements over a Dedekind domain, where every residue ring
with respect to nonzero ideal is finite. In this article, we investigate the characteristic
quasi-polynomials for exceptional well-generated complex reflection groups, using the
root systems over the rings of definition introduced by Lehrer and Taylor. We demon-
strate that a specific relation between the Coxeter numbers and the LCM-periods of
the characteristic quasi-polynomials is generalized in this context.

Résumé. Kamiya, Takemura et Terao ont initié la théorie du quasi-polynôme carac-
téristique d’un agencement intégral, qui est une fonction comptant les éléments dans
le complément de l’agencement modulo les entiers positifs. Les quasi-polynômes car-
actéristiques des systèmes de racines cristallographiques présentent de nombreuses
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entre les nombres de Coxeter et les LCM-périodes des quasi-polynômes caractéris-
tiques est généralisée dans ce contexte.
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1 Introduction

1.1 Characteristic quasi-polynomials

For a positive integer ℓ, let A = {c1, . . . , cn} ⊆ Zℓ be a finite subset consisting of nonzero
integral column vectors. Define the hyperplane arrangement A(R) in the vector space
Rℓ by A(R) := {H1, . . . , Hn}, where

Hj :=
{

x := (x1, . . . , xℓ) ∈ Rℓ
∣∣∣ xcj = 0

}
(j ∈ [n] := {1, . . . , n}).

Let L(A(R)) :=
{

HJ
∣∣ J ⊆ [n]

}
be the set of intersections HJ :=

⋃
j∈J Hj. The set

L(A(R)) equipped with the order defined by X ≤ Y ⇔ X ⊇ Y is called the intersection
lattice. The characteristic polynomial χA(R) is defined by

χA(R)(t) := ∑
Z∈L(A(R))

µ(Z)tdim Z,

where µ denotes the Möbius function on L(A(R)), which is defined recursively by

µ(Rℓ) := 1 and µ(Z) := − ∑
Y<Z

µ(Y) for Z ̸= Rℓ.

The complement of an arrangement is the complement of the union of the members
of the arrangement in the ambient space. Each connected component of the complement
of A(R) is called a chamber. Zaslavsky [20] proved that the numbers of chambers and
bounded chambers coincide with |χA(R)(−1)| and |χA(R)(1)|. Orlik and Solomon [13]
proved that χA(R)(t) is equivalent to the Poincaré polynomial of the complement of the
complexification of A(R).

Next, for any positive integer q, we define the q-reduced arrangement A(Z/qZ) in
(Z/qZ)ℓ by A(Z/qZ) := {H1,q, . . . , Hn,q}, where

Hj,q :=
{
[x]q ∈ (Z/qZ)ℓ

∣∣∣ xcj ≡ 0 (mod q)
}

(j ∈ [n])

and [x]q denotes the equivalence class of x.
Athanasiadis [1, Theorem 2.2] provided a method to compute the characteristic poly-

nomial of an integral arrangement by counting the points of the complement of A(Z/pZ)
for large enough prime numbers p. Athanasiadis [2, Theorem 2.1] also proved that the
characteristic polynomial can be computed by counting the points of the complement of
A(Z/qZ) for large enough integers q relatively prime a constant which depends only
on A.

Kamiya, Takemura, and Terao developed Athanasiadis’ method by considering the
complement of A(Z/qZ) for all positive integers q as follows. For a nonempty subset
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J = {j1, . . . , jk} ⊆ [n], suppose that the matrix CJ := (cj1 · · · cjk) has the Smith normal
form 

dJ,1 0 · · · 0 · · · · · · 0

0 dJ,2
...

...
... . . . 0
0 · · · 0 dJ,r(J)
... 0
... . . . ...
0 · · · · · · 0


,

where dJ,i is a positive integer such that dJ,i divides dJ,i+1. Define ρA ∈ Z>0 by

ρA := lcm
{

dJ,r(J)

∣∣∣ ∅ ̸= J ⊆ [n]
}

.

Theorem 1.1 (Kamiya–Takemura–Terao [6]). Let M(A(Z/qZ)) := (Z/qZ)ℓ \⋃
J⊆[n] HJ,q

denote the complement of A(Z/qZ). Then the function |M(A(Z/qZ))| is a monic inte-
gral quasi-polynomial in q ∈ Z>0 with a period ρA. Namely, there exist monic polynomials
f k
A(t) ∈ Z[t] (1 ≤ k ≤ ρA) such that f k

A(q) = |M(A(Z/qZ))| if q ≡ k (mod ρA). Further-
more, the quasi-polynomial has the GCD-property, that is, f k

A(t) = f k′
A(t) when gcd(k, ρA) =

gcd(k′, ρA).

Definition 1.2. We call the quasi-polynomial

χ
quasi
A (q) := |M(A(Z/qZ))|

the characteristic quasi-polynomial of A. The period ρA is called the LCM-period. The
polynomial f k

A(t) is said to be the k-constituent of χ
quasi
A (q).

Interestingly enough, each constituent of the characteristic quasi-polynomial has a
combinatorial interpretation (See [12, 17] for details). In particular, the following holds.

Theorem 1.3 (Kamiya–Takemura–Terao [6, Theorem 2.5]). The 1-constituent of the char-
acteristic quasi-polynomial of A is the characteristic polynomial of the hyperplane arrangement
A(R). Namely, f 1

A(t) = χA(R)(t).

For a decade, it was an open problem whether the LCM-period is minimum or not.
Recently Higashitani, Tran, and Yoshinaga gave an affirmative answer for central ar-
rangements.

Theorem 1.4 (Higashitani–Tran–Yoshinaga [4, Theorem 1.2]). The LCM-period ρA is the
minimum period of the characteristic quasi-polynomial χ

quasi
A (q).

Remark 1.5. The characteristic quasi-polynomial and its LCM-period can be considered
for non-central arrangements [8]. Higashitani, Tran, and Yoshinaga [4] also studied non-
central arrangements such that the LCM-periods are not minimum.
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1.2 Crystallographic root systems

Let Φ be an irreducible crystallographic root system and Φ+ a positive system of Φ.
Every positive root is expressed as a linear combination of the simple roots with integral
coefficients. Gathering the coefficient column vectors, we obtain the set AΦ consisting of
integral column vectors. Kamiya, Takemura, and Terao [5, 7] computed the characteristic
quasi-polynomial χ

quasi
Φ (q) of AΦ and its LCM-period explicitly by using the classifica-

tion of root systems. Note that Suter [16] gave essentially the same calculation in terms of
the number of lattice points in the fundamental alcoves (the Ehrhart quasi-polynomials).

Kamiya, Takemura, and Terao [7, Theorem 3.1] gave an explicit formula of the gen-
erating function ΓΦ := ∑∞

q=1 χ
quasi
Φ (q)tq for an irreducible crystallographic root system Φ

in terms of the coefficient of the highest root and the Coxeter number. We obtain the
following corollaries.

Corollary 1.6 (Kamiya–Takemura–Terao [7, Corollary 3.2]). Let n1, . . . , nℓ be the coefficient
of the highest root of Φ with respect to the simple roots. Then lcm(n1, . . . , nℓ) coincides with the
LCM-period of χ

quasi
Φ (q).

Corollary 1.7 (Kamiya–Takemura–Terao [7, Corollary 3.4]). Let h be the Coxeter number of
Φ. Then χ

quasi
Φ (q) > 0 if and only if q ≥ h.

The characteristic quasi-polynomial of an irreducible crystallographic root system
also has duality with respect to the Coxeter number. The duality can be shown from the
explicit expressions given by Kamiya, Takemura, and Terao [5], or Suter [16]. Yoshinaga
[19] gave a classification-free proof.

Theorem 1.8 (Yoshinaga [19, Corollary 3.8]). Let Φ be an irreducible crystallographic root
system of rank ℓ and h its Coxeter number. Then χ

quasi
Φ (q) = (−1)ℓχquasi

Φ (h − q).

Note that the duality holds as quasi-polynomials but not the level of the constituents.
Yoshinaga [18] studied the condition for the constituents to hold the duality in detail.

Combining Theorem 1.8, Theorem 1.3, and the following theorem, we can deduce
that the characteristic polynomial χΦ(t) of the arrangement AΦ satisfies the duality
(Corollary 1.10).

Theorem 1.9 (Kamiya–Takemura–Terao [7], Suter [16]). The radical of the LCM period of
χ

quasi
Φ (q) divides the Coxeter number h.

Corollary 1.10. Let Φ be an irreducible crystallographic root system of rank ℓ and h its Coxeter
number. Then χΦ(q) = (−1)ℓχΦ(h − q).
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1.3 Characteristic quasi-polynomials over residually finite Dedekind
domains

Let O be a Dedekind domain such that the residue ring O/a is finite for every nonzero
ideal a. Such a ring O is called a residually finite Dedekind domain or a Dedekind
domain with the finite norm property. The ring Z is an example of a residually finite
Dedekind domain. More generally, the ring of integers of an algebraic number field is a
residually finite Dedekind domain. The authors generalized the notion of characteristic
quasi-polynomials for O as follows.

Let A = {c1, . . . , cn} ⊆ Oℓ and a ∈ I(O), where I(O) denotes the set of nonzero
ideals of O. Define the a-reduced arrangement A(O/a) by A(O/a) :=

{
Hj,a

∣∣ j ∈ [n]
}

,
where

Hj,a :=
{
[x]a ∈ (O/a)ℓ

∣∣∣ xcj ≡ 0 (mod a)
}

.

Let M(A(O/a)) denote the complement of A(O/a). Namely

M(A(O/a)) := (O/a)ℓ \
n⋃

j=1

Hj,a.

Definition 1.11. The function χ
quasi
A : I(O) → Z determined by χ

quasi
A (a) := |M(A(O/a))|

is called the characteristic quasi-polynomial of A.

The function χ
quasi
A is described by using finitely many polynomials periodically as

ordinary quasi-polynomials.

Theorem 1.12 ([9, Theorem 3.1]). There exists an ideal ρ ∈ I(O) such that the following
statement holds: For any divisor κ | ρ there exists a monic polynomial f κ

A(t) ∈ Z[t] such that

a+ ρ = κ =⇒ χ
quasi
A (a) = f κ

A(N(a)),

where N(a) := |O/a|, the absolute norm of a.

The ideal ρ above is called a period. We can construct a period ρA (called the LCM-
period) for χ

quasi
A (a) using the structure theorem for finitely generated modules over

Dedekind domains and the authors proved that the LCM-period ρA is minimum (See [9,
Theorem 5.1] for details). If O is a Euclidean domain, then we can compute the LCM-
period algorithmically by computing the Smith normal forms and elementary divisors.

2 Characteristic quasi-polynomials for exceptional well-
generated complex reflection groups

Let V be a finite-dimensional complex vector space. A map r ∈ GL(V) is called a
reflection if ker(r − idV) has codimension 1. A finite subgroup G ⊆ GL(V) is called a
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complex reflection group is G is generated by reflections. We say that G is irreducible if
there are no nontrivial G-invariant subspaces. In this case, the dimension of the ambient
space is called the rank of G. An irreducible complex reflection group G of rank ℓ is
well-generated if G is generated by ℓ reflections. Irreducible complex reflection groups
are classified by Shephard and Todd [14]. There are an infinite family G(m, p, ℓ) and
34 exceptional cases labeled by G4, . . . , G37. Among the exceptional groups, we have 26
well-generated ones, which are listed in Table 1.

Definition 2.1. Let G be an irreducible reflection group. Define the field of definition
K(G) by

K(G) := Q(tr(σ) | σ ∈ G).

Define the ring of definition O(G) as the ring of integers of K(G).

It is shown that G can be representable a vector space U over K(G). Note that since
K(G)/Q is a finite extension, the ring of definition O(G) is a residually finite Dedekind
domain.

Let (−,−) denote the Hermitian inner product of V = C ⊗K(G) U. Let µ(O(G))
denote the group of roots of unity in O(G). For every a ∈ U \ {0} and λ ∈ µ(O(G)), we
define a reflection ra,λ by

ra,λ(v) := v − (1 − λ)
(v, a)
(a, a)

a.

Lehrer and Taylor [10] defined a generalization of root systems for algebraic integers
and showed that every finite complex reflection group admits a "root system". Namely
there exists a pair (Σ, f ) satisfying the following.

• Σ is a finite subset of U \ {0} and Σ spans U.

• f : Σ → µ(O(G)).

• G is generated by the reflections
{

ra, f (a)

∣∣∣ a ∈ Σ
}

.

• For all a ∈ Σ and all λ ∈ K(G) we have λa ∈ Σ ⇔ λ ∈ µ(O(G)).

• For all a ∈ Σ and λ ∈ µ(O(G)) we have f (λa) = f (a) ̸= 1.

• For all a, b ∈ Σ we have (1 − f (b))(a, b)/(b, b) ∈ O(G).

• For all a, b ∈ Σ we have ra, f (a)(b) ∈ Σ and f (ra, f (a)(b)) = f (b).
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We call (Σ, f ) a O(G)-root system for G. If O(G) = Z, then the above definition coin-
cides with the definition of crystallographic root system. Namely a Z-root system is a
crystallographic system.

When G is well-generated, there exist roots a1, . . . , aℓ ∈ Σ such that every root in Σ
is reperesented by a linear combination of a1, . . . , aℓ over O(G). Hence we can obtain a
finite coefficient column vectors A(Σ, f ) ⊆ O(G)ℓ from the root system (Σ, f ) over O(G).
Note that the characteristic quasi-polynomial determined by (Σ, f ) does not depend on
the choice of roots a1, . . . , aℓ.

Lehrer and Taylor listed the Cartan matrices of O(G)-root systems for exceptional
irreducible complex reflection groups. We can recover the root system from the corre-
sponding Cartan matrix.

Example 2.2. Consider the group G4. The rank of G4 is two and its ring of definition is
Z[ω], where ω = −1+

√
−3

2 . The matrix

C4 =

(
1 − ω 1
−ω 1 − ω

)
is a Cartan matrix for G4. Let {a1, a2} a basis for C2 and r1, r2 the correspondence
reflections. The Cartan matrix C4 tells us rj(ai) = ai − cijaj, where cij denotes the (i, j)
entry of C4. Thus we have

r1(a1) = a1 − (1 − ω)a1 = ωa1, r2(a1) = a1 − 1 · a2 = a1 − a2,
r1(a2) = a2 − (−ω)a1 = ωa1 + a2, r2(a2) = a2 − (1 − ω)a2 = ωa2.

Hence we obtain the matrix representations of r1, r2 with respect to the basis {a1, a2} as
follows.

r1 =

(
ω ω

0 1

)
, r2 =

(
1 0
−1 ω

)
.

Therefore G4 = ⟨r1, r2⟩ ⊆ GL2(C) and Σ can be recovered as Σ = { r(ai) | r ∈ G4, i = 1, 2 }
with a1 =

(
1
0
)

and a2 =
(

0
1

)
. As a result, Σ consists of the following 24 vectors.

λ

(
1
0

)
, λ

(
0
1

)
, λ

(
1
−1

)
, λ

(
ω

1

)
, λ ∈ µ(Z[ω]) = {±1,±ω,±ω2}.

Setting f (a1) = f (a2) = ω, we obtain the Z[ω]-root system (Σ, f ) and

A(Σ, f ) =

{(
1
0

)
,
(

0
1

)
,
(

1
−1

)
,
(

ω

1

)}
⊆ Z[ω]2.

Since Z[ω] is a Euclidean domain, we can compute the LCM-period by finding the
elementary divisors. The LCM-period is the unit ideal ⟨1⟩ and hence the characteristic
quasi-polynomial has only one constituent (the characteristic polynomial)

f ⟨1⟩(t) = t2 − 4t + 3 = (t − 1)(t − 3).
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Example 2.3. Consider G33 and the Cartan matrix

C33 =


2 −1 0 0 0
−1 2 −1 −1 0
0 −1 2 −ω 0
0 −1 −ω2 2 −ω2

0 0 0 −ω 2

 .

The ring of definition is Z[ω] and the LCM-period is ⟨2
√
−3⟩. The characteristic quasi-

polynomial consists of the following constituents:

f ⟨1⟩(t) = t5 − 45t4 + 750t3 − 5590t2 + 17169t − 12285.
= (t − 1)(t − 7)(t − 9)(t − 13)(t − 15).

f ⟨2⟩(t) = t5 − 45t4 + 750t3 − 5590t2 + 17574t − 18360.

= (t − 4)(t − 15)(t3 − 26t2 + 196t − 306).

f ⟨
√
−3⟩(t) = t5 − 45t4 + 750t3 − 5590t2 + 18129t − 20925.

= (t − 3)(t − 9)(t3 − 33t2 + 327t − 775).

f ⟨2
√
−3⟩(t) = t5 − 45t4 + 750t3 − 5590t2 + 18534t − 27000.

The authors calculated the LCM-period for the root systems determined by the Car-
tan matrices in Table 2. Note that C20 is modified from the one in [10] so that it recovers
the root system correctly. According to [11] and [15], the rings of definition for excep-
tional irreducible complex reflection groups are Euclidean domains except for O(G21).
Although the authors are not sure whether O(G21) is Euclidean or not, since O(G21)
is a principal ideal domain (See [3]), there exist the Smith normal forms. Fortunately
the authors could find the Smith normal forms and hence the LCM-period for G21. We
summarize the results in Table 1. From this computational result, we have the following
theorem, which is a generalization of Theorem 1.9.

Theorem 2.4. Every exceptional well-generated irreducible complex reflection group G admits
an O(G)-root system such that the radical of the LCM-period divides the Coxeter number.

Remark 2.5. We anticipated phenomenon analogous to Corollary 1.6, Corollary 1.7, The-
orem 1.8, and Theorem 1.9. However, only Theorem 1.9 has been observed.
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Table 1: LCM-periods and Coxeter numbers
G O(G) LCM-period h Coexponents
G4 Z[ω] ⟨1⟩ 6 1, 3
G5 Z[ω] ⟨2

√
−3⟩ 12 1, 7

G6 Z[i, ω] ⟨1 + i⟩ 12 1, 9
G8 Z[i] ⟨1 + i⟩ 12 1, 5
G9 Z[ζ8] ⟨6⟩ 24 1, 17
G10 Z[i, ω] ⟨(1 + i)

√
−3⟩ 24 1, 13

G14 Z[ω,
√
−2] ⟨6⟩ 24 1, 19

G16 Z[ζ5] ⟨1 − ζ5⟩ 30 1, 11
G17 Z[i, ζ5] ⟨6

√
5⟩ 60 1, 41

G18 Z[ω, ζ5] ⟨2
√
−3(1 − ζ3

15)⟩ 60 1, 31
G20 Z[ω, τ] ⟨2

√
−3⟩ 30 1, 19

G21 Z[i, ω, τ] ⟨6
√

5⟩ 60 1, 49
G23 = H3 Z[τ] ⟨2⟩ 10 1, 5, 9
G24 Z[λ] ⟨4⟩ 14 1, 9, 11
G25 Z[ω] ⟨

√
−3⟩ 12 1, 4, 7

G26 Z[ω] ⟨6⟩ 18 1, 7, 13
G27 Z[ω, τ] ⟨4

√
−3⟩ 30 1, 19, 25

G28 = F4 Z ⟨12⟩ 12 1, 5, 7, 11
G29 Z[i] ⟨10(1 + i)⟩ 20 1, 9, 13, 17
G30 = H4 Z[τ] ⟨6

√
5⟩ 30 1, 11, 19, 29

G32 Z[ω] ⟨2
√
−3⟩ 30 1, 7, 13, 19

G33 Z[ω] ⟨2
√
−3⟩ 18 1, 7, 9, 13, 15

G34 Z[ω] ⟨84⟩ 42 1, 13, 19, 25, 31, 37
G35 = E6 Z ⟨6⟩ 12 1, 4, 5, 7, 8, 11
G36 = E7 Z ⟨12⟩ 18 1, 5, 7, 9, 11, 13, 17
G37 = E8 Z ⟨60⟩ 30 1, 7, 11, 13, 17, 19, 23, 29

i =
√
−1, ω =

−1 +
√
−3

2
, τ =

1 +
√

5
2

, λ =
−1 +

√
−7

2
, ζk = e2πi/k.
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Table 2: Cartan matrices (C20 is modified)

C4 =

(
1 − ω 1
−ω 1 − ω

)
, C5 =

(
1 − ω 1
−2ω 1 − ω

)
, C6 =

(
2 1

1 − ω + iω2 1 − ω

)
,

C8 =

(
1 − i 1
−i 1 − i

)
, C9 =

(
2 1

(1 +
√

2)ζ8 1 + i

)
, C10 =

(
1 − ω 1
−i − ω 1 − i

)
,

C14 =

(
1 − ω 1

1 − ω + iω2
√

2 2

)
, C16 =

(
1 − ζ5 1
−ζ5 1 − ζ5

)
, C17 =

(
2 1

1 − ζ5 − iζ3
5 1 − ζ5

)
,

C18 =

(
1 − ω 1

−ω − ζ5 1 − ζ5

)
, C20 =

(
1 − ω τ − 1

ω(1 − τ) 1 − ω

)
, C21 =

(
2 1

1 − ω − iω2τ 1 − ω

)
,

C23 =

2 −τ 0
τ 2 −1
0 −1 2

 , C24 =

 2 −1 −λ

−1 2 −1
1 + λ −1 2

 , C25 =

1 − ω2 ω2 0
−ω2 1 − ω −ω2

0 ω2 1 − ω

 ,

C26 =

1 − ω −ω2 0
ω2 1 − ω −1
0 −1 + ω 2

 , C27 =

 2 −τ −ω

−τ 2 −ω2

−ω2 −ω 2

 ,

C28 =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 , C29 =


2 −1 i + 1 0
−1 2 −i 0

−i + 1 i 2 −1
0 0 −1 2

 ,

C30 =


2 −τ 0 0
−τ 2 −1 0
0 −1 2 −1
0 0 −1 2

 , C32 =


1 − ω ω2 0 0
−ω2 1 − ω −ω2 0

0 ω2 1 − ω ω2

0 0 −ω2 1 − ω

 ,

C33 =


2 −1 0 0 0
−1 2 −1 −1 0
0 −1 2 −ω 0
0 −1 −ω2 2 −ω2

0 0 0 −ω 2

 , C34 =



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 −1 0
0 0 −1 2 −ω 0
0 0 −1 −ω2 2 −ω2

0 0 0 0 −ω 2

 .
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Abstract. We introduce a new operator Γ on symmetric functions, which enables us to
obtain a creation formula for Macdonald polynomials. This formula makes a connec-
tion between the theory of Macdonald operators initiated by Bergeron, Garsia, Haiman
and Tesler, and shifted Macdonald polynomials introduced by Knop, Okounkov and
Sahi.

We use this formula to introduce a two-parameter generalization of Jack characters.
Finally, we provide a change of variables in order to formulate several positivity con-
jectures related to these generalized characters. Our conjectures extend some impor-
tant problems on Jack polynomials, including some famous conjectures of Goulden
and Jackson.

Keywords: Macdonald polynomials, Macdonald characters, Matchings-Jack conjecture

1 Introduction

1.1 Jack and Macdonald polynomials

Jack polynomials are symmetric functions depending on one parameter α which have
been introduced by Jack [13]. The combinatorial analysis of Jack polynomials has been
initiated by Stanley [20] and a first combinatorial interpretation has been given by Knop
and Sahi in terms of tableaux [14]. A second family of combinatorial objects related to
Jack polynomials is given by maps, which are roughly graphs embedded in surfaces. This
connection has first been observed in the conjectures of Goulden and Jackson [11] and
important progress has recently been made in this direction [3, 2] with a first “topological
expansion” of Jack polynomials in terms of maps.

Macdonald polynomials are symmetric polynomials introduced by Macdonald in
1989, which depend on two parameters q and t. Jack polynomials can be obtained from

*houcine.ben-dali@univ-lorraine.fr. Supported by the LUE DrEAM project of Université de Lorraine.
†michele.dadderio@unipi.it. Partially supported by PRIN 2022A7L229 ALTOP and by INDAM research

group GNSAGA.

mailto:houcine.ben-dali@univ-lorraine.fr
mailto:michele.dadderio@unipi.it


2 H. Ben Dali and M. D’Adderio

Macdonald polynomials by taking an appropriate limit. Several combinatorial results
on Jack polynomials have been generalized to the Macdonald case, in particular, an
interpretation in terms of tableaux was established in [12]. However, no connection
between Macdonald polynomials and maps is known, even conjecturally. As a first step
towards a Macdonald generalization of maps, we introduce in this paper some new tools
that make the parallel between the Jack and Macdonald stories more compelling.

First, we prove a creation formula (Equations (1.1) and (1.2)) for Macdonald polyno-
mials inspired from the one used in [2] to connect Jack polynomials to maps. Second,
we use this formula to introduce a Macdonald analog of Jack characters (Section 1.4).
Finally, we formulate a Macdonald version of some Jack conjectures, including Goulden
and Jackson’s Matchings-Jack and b-conjectures.

1.2 Preliminaries

For the results of this section we refer to [7, 17]. A partition λ = [λ1, ..., λℓ] is a weakly
decreasing sequence of positive integers λ1 ≥ ... ≥ λℓ > 0. We denote by Y the set of
integer partitions. The integer ℓ is called the length of λ and is denoted ℓ(λ). The size of
λ is the integer |λ| := λ1 + λ2 + ...+ λℓ. If n is the size of λ, we say that λ is a partition of
n and we write λ ⊢ n. The integers λ1,...,λℓ are called the parts of λ. For i ≥ 1, we denote
mi(λ) the number of parts of size i in λ. We then set zλ := ∏i≥1 mi(λ)!imi(λ). We identify
a partition λ with its Young diagram, defined by λ := {(i, j), 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi}.
Fix a box ✷ := (i, j) ∈ λ. Its arm, leg, co-arm and co-leg are respectively given by

aλ(✷) := |{(i, c) ∈ λ, c > j}|, ℓλ(✷) := |{(r, j) ∈ λ, r > i}|,

a′λ(✷) := |{(i, c) ∈ λ, c < j}|, and ℓ′λ(✷) := |{(r, j) ∈ λ, r < i}|.
Finally, n and n′ denote respectively the two statistics on Young diagram given by

n(λ) := ∑
✷∈λ

ℓλ(✷) and n′(λ) := ∑
✷∈λ

aλ(✷).

We consider the graded algebra Λ = ⊕r≥0Λ(r) of symmetric functions in the alphabet
(x1, x2, . . . ) with coefficients in Q(q, t). Let pλ and hλ denote the power-sum and the
complete symmetric functions in (xi)i≥1, respectively. We use here a variable u to keep
track of the degree of the functions, and an extra variable v; all the functions considered
are in Λ[v]JuK. Consider the Hall scalar product defined by ⟨pµ, pν⟩ = δµ,νzµ. Let f⊥

denote the adjoint of multiplication by f ∈ Λ with respect to ⟨, ⟩.
We will use the plethystic notation: if E(q, t, u, v, x1, x2, . . . ) ∈ Λ[v]JuK and f ∈ Λ then

f [E] is the image of f under the algebra morphism defined by

Λ[v]JuK −→Λ[v]JuK

pk 7−→E(tk, qk, uk, vk, xk
1, . . . ).
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Set X := x1 + x2 + . . . . Notice that f [X] = f (x1, x2, . . . ) for any f . Moreover,

pk

[
X

1− q
1− t

]
=

1− qk

1− tk pk(x1, x2, . . . ) and pλ[−X] = (−1)ℓ(λ)pλ(x1, x2, . . . ).

We consider the scalar product ⟨, ⟩q,t on Λ defined by

⟨pµ[X], pν[X]⟩q,t = δµ,νzµ(q, t) := δµ,νzµ pµ

[
1− q
1− t

]
.

The integral form of Macdonald polynomials J(q,t)
λ can be defined as the unique family of

polynomials satisfying a triangularity property in the monomial basis, and orthogonal
with respect to ⟨, ⟩q,t. More precisely

〈
J(q,t)
λ , J(q,t)

ρ

〉
q,t

= δλ,ρ j(q,t)
λ with

j(q,t)
λ := ∏

✷∈λ

(
1− qaλ(✷)+1tℓλ(✷)

) (
1− qaλ(✷)tℓλ(✷)+1

)
.

For every r ∈ N, the set {J(q,t)
λ | λ ⊢ r} is a basis of Λ(r).

Finally, let PZ be the operator such that PZ · f [X] = Exp[ZX] f [X], i.e. the multiplica-
tion by the plethystic exponential Exp[ZX] := ∑n≥0 hn[ZX], and let TZ := ∑µ∈Y z−1

µ pµ[Z]p⊥µ
be the translation operator, so that TZ · f [X] = f [X + Z]. Note that PZ+Z′ = PZ · PZ′ .

1.3 A new formula for Macdonald polynomials

Consider the operators1 ∇ and ∆v on symmetric functions defined by

∇ · J(q,t)
λ =(−1)|λ|

(
∏
✷∈λ

qa′(✷)t−ℓ
′(✷)

)
J(q,t)
λ , ∆v · J(q,t)

λ = ∏
✷∈λ

(
1− v · qa′(✷)t−ℓ

′(✷)
)

J(q,t)
λ .

These are integral versions of some known operators on modified Macdonald polyno-
mials (see Section 2.1).

We finally introduce the following operator2 on Λ[v]JuK

Γ(u, v) := ∆1/vP uv(1−t)
1−q

∆−1
1/v .

The fact that Γ(u, v) is a polynomial in v is a consequence of the Pieri rule.
We can state our new formula for Macdonald polynomials.

Theorem 1.1. For any partition λ = [λ1, λ2, . . . , λk], we have

Γ
(+)
λ1

Γ
(+)
λ2
· · · Γ(+)

λk
· 1 = J(q,t)

λ where Γ
(+)
m := [um]∇−1Γ(u, qm)∇. (1.1)

1We use boldface symbols to distinguish these operators from their relatives from Section 2.1.
2This operator is a close relative of the Theta operator in [7], first introduced in [5].
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It turns out that Theorem 1.1 is an easy consequence of the following creation formula.

Theorem 1.2. For any partition λ = [λ1, λ2, . . . , λk], we have

Γ(u, qλ1)Γ(t−1u, qλ2) · · · Γ(t−(k−1)u, qλk) · 1 = t−n(λ)∇T 1
u(1−t)

J(q,t)
λ [uX]. (1.2)

In Section 2.3, we prove an analogous result for modified Macdonald polynomials The-
orem 2.1 from which we deduce Theorem 1.2.

In addition to giving a direct construction of Macdonald polynomials, Theorem 1.2
provides a dual approach to study the structure of these polynomials. Indeed, Equa-
tion (1.2) allows to think of J(q,t)

λ as a function in the partition λ described by the alphabet
(qλ1 , qλ2 , . . . ). This dual approach plays a key role in this paper and is used in Section 3
to introduce a q, t-deformation of Jack characters.

1.4 Macdonald characters

Jack characters, introduced by Lassalle in [16], can be seen as a one parameter deforma-
tion of the symmetric group characters, and are directly related to the coefficients of Jack
polynomials in the power-sum basis. Jack characters have been useful to understand
asymptotic behavior of large Young diagram sampled with respect to a Jack deformed
Plancherel measure [4, 6]. Moreover, Goulden and Jackson’s Mathings-Jack conjecture
has a natural interpretation in terms of structure coefficients of Jack characters. Recently,
a combinatorial interpretation of Jack characters in terms of maps on non orientable
surfaces has been proved in [2], answering a positivity conjecture of Lassalle.

Using the operator Γ, we introduce a two parameter deformation θ
(q,t)
µ of Jack charac-

ters. These characters have a structure of shifted symmetric functions and are related to
shifted Macdonald polynomials, see [15, 18]. Macdonald characters θ

(q,t)
µ can be thought

of as a natural generalization of the coefficients of Macdonald polynomials in the power-
sum basis (see Equation (3.5)) which are hard to guess without the new operator Γ.

In Section 4, we make several positivity conjectures related to the new characters
θ
(q,t)
µ . These conjectures suggest that the characters θ

(q,t)
µ have a combinatorial structure

which generalizes the one given by maps and that we hope to investigate in future works.

2 A new creation formula for Macdonald polynomials

2.1 Modified Macdonald polynomials

In [8], Garsia and Haiman introduced a modified version of Macdonald polynomials

H̃(q,t)
λ = tn(λ) J(q,1/t)

λ

[
X

1− 1/t

]
.
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The operators ∇ and ∆v are defined by

∇H̃(q,t)
λ := (−1)|λ| ∏

✷∈λ

qa′λ(✷)tℓ
′
λ(✷)H̃(q,t)

λ , ∆vH̃(q,t)
λ := ∏

✷∈λ

(
1− vqa′λ(✷)tℓ

′
λ(✷)

)
H̃(q,t)

λ .

These operators are related by the five-term relation of Garsia and Mellit [10]

∇P u
M
∇−1P uv

M
= ∆1/vP uv

M
∆−1

1/v , (2.1)

where M := (1− q)(1− t). Let Bλ := ∑✷∈λ qa′λ(✷)tℓ
′
λ(✷) = ∑1≤i≤ℓ(λ) ti−1 1−qλi

1−q , and Dλ :=
MBλ − 1. We state another fundamental identity for Macdonald polynomials, due to
Garsia, Haiman and Tesler [9]: for any partition λ

∇P− u
M
T 1

u
H̃λ[uX] = Exp

[
−uXDλ

M

]
. (2.2)

2.2 Creation formula for modified Macdonald polynomials

We start by proving a modified version of Theorem 1.2. Set Γ(u, v) := ∆1/vP uv
1−q

∆−1
1/v.

Theorem 2.1. For λ = [λ1, λ2, . . . , λk] partition we have

Γ(u, qλ1)Γ(tu, qλ2) · · · Γ(tℓ−1u, qλℓ) · 1 = ∇T 1
u

H̃λ[uX] = ∇H̃λ[uX + 1]. (2.3)

Lemma 2.2. We have
Γ(u, v) = ∇P u

M
∇−1P uv

1−q
∇P−tu

M
∇−1.

Proof. The operator Γ can be rewritten as follows

Γ(u, v) =
(

∆1/vP uv
M

∆−1
1/v

) (
∆1/vP−tuv

M
∆−1

1/v

)
=
(

∆1/vP uv
M

∆−1
1/v

) (
∆1/vP tuv

M
∆−1

1/v

)−1
.

Using the five-term relation (2.1) on each one of the two factors, we obtain

Γ(u, v) = ∇P u
M
∇−1P uv

M
P−utv

M
∇P−tu

M
∇−1 = ∇P u

M
∇−1P uv

1−q
∇P−tu

M
∇−1.

We now prove Theorem 2.1.

Proof of Theorem 2.1. It follows, using Lemma 2.2, that

Γ(u, v1)Γ(tu, v2) · · · Γ(tk−1u, vk) · 1 = ∇P u
M
∇−1P uv1

1−q
P utv2

1−q
· · · P utk−1vk

1−q

∇P−utk
M
∇−1 · 1 .
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Using ∇−1 · 1 = 1 and ∇P− z
M
· 1 = P z

M
· 1 (see e.g. [7, Eq. (1.47)] with k = n), we get

Γ(u, v1)Γ(tu, v2) · · · Γ(tk−1u, vk) · 1 =∇P u
M
∇−1P uv1

1−q
P utv2

1−q
· · · P utk−1vk

1−q

P utk
M
· 1

=∇P u
M
∇−1 Exp

[
utkX

M
+

uX
1− q ∑

1≤i≤k
ti−1vi

]

=∇P u
M
∇−1 Exp

[
uX
M
− uX

M
(1− t) ∑

1≤i≤k
ti−1(1− vi)

]
.

Fix now a partition λ. Applying the previous equation, we get

Γ(u, qλ1)Γ(tu, qλ2) · · · Γ(tℓ−1u, qλℓ) · 1 =∇P u
M
∇−1 Exp

[
uX
M
− uX

M
(1− t) ∑

i≥1
ti−1(1− qλi)

]

=∇P u
M
∇−1 Exp

[
−uXDλ

M

]
,

Now applying Equation (2.2) concludes the proof of the theorem.

2.3 Proof of Theorem 1.2

In this subsection we deduce Theorem 1.2 from Theorem 2.1.
Consider the transformation ϕ on Λ defined by

f = ∑
µ

d f
µ(q, t)pµ[X] 7−→ ϕ( f ) := ∑

µ

d f
µ(q, 1/t)pµ

[
X

1− 1/t

]
,

where d f
µ are the coefficients of f in the power-sum basis. Notice that ϕ is invertible and

ϕ−1( f ) = ∑
µ

d f
µ(q, 1/t)pµ [X(1− t)] for any f .

With this definition, one has H̃(q,t)
λ = tn(λ)ϕ(J(q,t)

λ ). Moreover, ∇ = ϕ−1 · ∇ · ϕ and
∆v = ϕ−1 · ∆v · ϕ. Finally ϕ−1 · P uti

1−q
· ϕ = P t−i(1−t)u

1−q
, for any i ≥ 0. We deduce that

ϕ−1 · Γ(tiu, v) · ϕ = Γ(t−iu, v), for any i ≥ 0.
On the other hand, one can check that ϕ−1 · T 1

u
· ϕ = T 1

u(1−t)
. Hence, applying ϕ−1 on

Equation (2.3), we obtain Equation (1.2).

3 A two-parameter generalization of Jack characters

The results of this section will be proved in the long version of the paper.
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3.1 Shifted symmetric functions

Definition 3.1. We say that a polynomial in k variables f (u1, . . . , uk) is shifted symmet-
ric if it is symmetric in the variables u1, u2t−1, . . . , ukt1−k. A shifted symmetric function
f (u1, u2, . . . ) is a sequence of polynomials ( fk)k≥1 of bounded degrees, such that fk
is a shifted symmetric polynomial in k variables for each k, and fk+1(v1, . . . , vk, 1) =
fk(v1, . . . , vk).

If f is a shifted symmetric function, we consider its evaluation on a Young diagram
λ = [λ1, . . . , λk] defined by f (λ) := f (qλ1 , qλ2 , . . . , qλk , 1, 1, . . . ). It is well known that the
space of shifted symmetric functions Λ∗ can be identified with a subspace of the space of
functions on Young diagrams through the map f 7−→ ( f (λ))λ∈Y.

Theorem 3.2 (Shifted Macdonald polynomials). [18] Let µ be a partition. There exists a
unique function J∗µ(v1, v2, . . . ) such that

1. J∗µ is shifted symmetric of degree |µ|.

2. J∗µ(µ) = (−1)|µ|qn′(µ)t−2n(µ) j(q,t)
µ (normalization property).

3. for any partition λ ̸⊃ µ one has J∗µ(λ) = 0 (vanishing property).

Moreover, the top homogeneous part of J∗µ is J(q,t)
µ (v1, t−1v2, t−2v3, . . . ).

Since Macdonald polynomials form a basis of Λ, using a triangularity argument it can
be deduced that shifted Macdonald polynomials form a basis of Λ∗. As a consequence
we can extend the map Jµ 7−→ J∗µ to a linear isomorphism

Λ −→ Λ∗

f 7−→ f ∗.
(3.1)

3.2 An explicit isomorphism between the spaces of symmetric and
shifted-symmetric functions

The main purpose of this subsection is to give two explicit formulas for the isomorphism
(3.1). The first one is Equation (3.2), which gives the image of a function f ∗ as a shifted
symmetric function. The second formula is Equation (3.3), which gives the image as a
function on Young diagrams. The proof, that we omit, is based on Equation (1.2) and
the Pieri rule.

Theorem 3.3. For any symmetric function f , the following holds

f ∗(v1, . . . , vk) =
〈

f , Γ(1, v1)Γ(t−1, v2) · · · Γ(t−(k−1), vk) · 1
〉

q,t
. (3.2)
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Equivalently, for any Young diagram λ,

f ∗(λ) =
〈
P 1

1−q
∇ · f , t−n(λ) Jλ

〉
q,t

. (3.3)

Remark 1. The isomorphism given in Equation (3.3) has been implicitly described by
Lassalle, see [15, Definition 1]. However, the formula of Equation (3.2) seems to be new.

3.3 Macdonald characters

Definition 3.4. The Macdonald character θ
(q,t)
µ is the function defined by

θ
(q,t)
µ (v1, v2, . . . ) := (pµ)

∗(v1, v2, . . . ) =
〈

pµ, Γ(1, v1)Γ(t−1, v2) · · · · 1
〉

q,t
.

Moreover, for any Young diagram λ

θ
(q,t)
µ (λ) =

{ 〈
pµ,∇h⊥|λ|−|µ|

[ X
1−t
]
· t−n(λ) J(q,t)

λ

〉
q,t

if |µ| ≤ |λ|

0 otherwise.
(3.4)

In particular, when |µ| = |λ| the characters θ
(q,t)
µ (λ) are given by the power-sum expan-

sion of J(q,t)
λ :

(−1)|λ|qn(λ′)t−2n(λ) J(q,t)
λ = ∑

µ⊢|λ|

θ
(q,t)
µ (λ)

zµ(q, t)
pµ. (3.5)

We give here a characterization of θ
(q,t)
µ , which has been observed by Féray in the case

of Jack polynomials, and proved very useful in practice in this case (see [2, Theorem 2.5]).

Theorem 3.5. Let µ be a partition. Then θ
(q,t)
µ is the unique shifted symmetric function degree

|µ| whose top homogeneous part is pµ(v1, t−1v2, t−2v3, . . . ) and such that θ
(q,t)
µ (λ) = 0 for any

partition |λ| < |µ|.

4 Macdonald generalization of some Jack conjectures

4.1 A normalization related to Jack polynomials

Jack polynomials can be obtained from the integral form of Macdonald polynomials as
follows (see [17, Chapter VI, eq (10.23)])

lim
t→1

J(q=1+α(t−1),t)
λ

(1− t)|λ|
= J(α)λ . (4.1)
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In the following, we introduce the parameters (α, γ) related to (q, t) by{
q = 1 + γα

t = 1 + γ
←→

{
α = 1−q

1−t
γ = t− 1

.

We consider the following normalization of Macdonald polynomials

J
(α,γ)
λ :=

J(q,t)
λ

(1− t)|λ|
.

Hence, this normalization is directly related to Jack polynomials by J
(α,γ=0)
λ = J(α)λ .

Remark 2. Unlike the integral form J(q,t)
λ , the coefficients of J(α,γ)

λ in the monomial basis
are positive in γ and u. This can be seen using the combinatorial interpretation of
Macdonald polynomials given in [12, Proposition 8.1].

We observed that the parameterization (α, γ) allows to generalize several conjectures
about Jack polynomials to Macdonald polynomials which we now formulate.

4.2 Weak Lassalle’s conjecture

We consider the following normalization of Macdonald characters defined in Section 3.3

θ
(α,γ)
µ (s1, s2, . . . ) :=

1
zµ(q, t)γ|µ|

θ
(q,t)
µ (1 + αγs1, 1 + αγs2, . . . ).

For any partition λ, we denote

θ
(α,γ)
µ (λ) := θ

(α,γ)
µ

(
qλ1 − 1

αγ
,

qλ2 − 1
αγ

, . . .
)
=

θ
(q,t)
µ (λ)

zµ(q, t)γ|µ|
. (4.2)

Jack characters, introduced by Lassalle [16], are obtained from the characters θ
(α,γ)
µ by

specializing γ = 0. We formulate the following conjecture3, tested for k ≤ 3 and |µ| ≤ 7.

Conjecture 1. Fix k ≥ 1 and a partition µ. Then, (−1)|µ|t(k−1)|µ|zµ(q, t)θ(α,γ)
µ (s1, s2, . . . , sk)

is a polynomial in γ, b := α− 1,−αs1,−αs2, . . . ,−αsk with non-negative integer coefficients.

Computer tests also suggest that the action of the operator Γ on the power-sum basis
satisfies a positivity property that would imply the positivity part in Conjecture 1.

3This is a generalization of a weak version of Lassalle’s conjecture on Jack characters, in which we keep
one alphabet (s1, s2, . . . ) instead of two alphabets associated to the multirectangular coordinates of λ.
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4.3 Structure coefficients of θ
(α,γ)
µ

It follows from the definition of the characters θ
(q,t)
µ that they form a basis of the space

of shifted symmetric functions Λ∗. Moreover, θ
(α,γ)
µ (λ) is obtained from θ

(q,t)
µ by a nor-

malization by a scalar and a change of variables (see Equation (4.2)) and by consequence
their structure coefficients are well defined:

θ
(α,γ)
µ θ

(α,γ)
ν = ∑

π

gπ
µ,ν(α, γ)θ

(α,γ)
π . (4.3)

The coefficients gπ
µ,ν(α, γ) are a two parameter generalization of structure coefficients

of Jack characters θ
(α)
µ introduced by Dołęga and Féray in [6] (see also [19]).

Let f be the function defined on triplets of non-negative integers by

f (n1, n2, k) := (N − n)(N + n− k) + n(n− 1)− (k− N)(k− N − 1),

where N := max(n1, n2) and n = min(n1, n2). We make the following conjecture which
extends [19, Conjecture 2.2].

Conjecture 2. Let π, µ, ν be three partitions. Then, the coefficients (1 + γ) f (|µ|,|ν|,|π|)zµzνgπ
µ,ν

are polynomials in b := α− 1 and γ with non-negative integer coefficients.

4.4 Generalized Goulden and Jackson’s conjectures

We define the coefficients cπ
µ,ν and hπ

µ,ν for partitions π, µ and ν of the same size by

∑
λ∈Y

u|λ|t−2n(λ)qn′(λ)J
(α,γ)
λ [X]J

(α,γ)
λ [Y]J(α,γ)

λ [Z]

j(q,t)
λ γ−2|λ|

=∑
n≥0

∑
π,µ,ν⊢n

uncπ
µ,ν(α, γ)

zπ(q, t)
pπ[X]pµ[Y]pν[Z],

log

(
∑

λ∈Y

u|λ|t−2n(λ)qn′(λ)J
(α,γ)
λ [X]J

(α,γ)
λ [Y]J(α,γ)

λ [Z]

j(q,t)
λ γ−2|λ|

)

= ∑
n≥0

∑
π,µ,ν⊢n

unhπ
µ,ν(α, u)
α[n]q

pπ[X]pµ[Y]pν[Z],

where [n]q := 1+ q+ · · ·+ qn−1. By taking γ = 0, the coefficients cπ
µ,ν(α, γ) and hπ

µ,ν(α, γ)
give the coefficients of the celebrated Matchings-Jack and b-conjectures formulated by
Goulden and Jackson in [11]. The coefficients cπ

µ,ν are actually a special case of gπ
µ,ν.

Proposition 4.1. Let π, µ and ν be three partitions of the same size. Then

cπ
µ,ν(α, γ) = gπ

µ,ν(α, γ).
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We consider here a Macdonald analog of Goulden and Jackson conjectures.

Conjecture 3 (Macdonald generalization of the Matchings-Jack conjecture). For any pos-
itive integer n and partitions π, µ, ν of n, the quantity (1 + γ)n(n−1)zµzνcπ

µ,ν(α, γ) is a polyno-
mial in b and γ with non-negative integer coefficients.

Conjecture 4 (Macdonald generalization of the b-conjecture). For any positive integer n
and partitions π, µ, ν of n, the quantity (1 + γ)n(n−1)zπzµzνhπ

µ,ν(α, γ) is a polynomial in b and
γ with non-negative integer coefficients.

Conjecture 3 has been tested for n ≤ 8 and Conjecture 4 for n ≤ 9. Notice that by
Proposition 4.1, Conjecture 3 is a special case of Conjecture 2.

Remark 3. Given the integrality result of [1], it is easy to see that Conjecture 3 implies
the Matchings-Jack conjecture [11, Conjecture 4.2]. Similarly, Conjecture 4 implies the
positivity in the b-conjecture [11, Conjecture 6.2].

4.5 A generalization of Stanley’s conjecture

We conclude with a generalization of Stanley’s conjecture about the structures coeffi-
cients of Jack polynomials. While not directly related to Macdonald characters, this
conjecture is also obtained from the new parameterization in α and γ.

Conjecture 5 (Macdonald version of Stanley’s conjecture). Given λ, µ, ν partitions, the
quantity ⟨J(α,γ)

λ J
(α,γ)
µ , J(α,γ)

ν ⟩q,t is a polynomial in the parameters α and γ with integer non-
negative coefficients.

This conjecture has been tested for |ν| ≤ 9. Stanley’s conjecture [20, Conjecture 8.5]
corresponds to the case γ = 0 of Conjecture 5.
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Antichains in the representation theory of finite
Lattices
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Abstract. The interface between the combinatorics of a partially ordered set (poset)
and the representation theory of its incidence algebra has been studied for a long
time. Antichains naturally arise as encoding certain representations of combinatorial
nature. In this paper, we study antichains with extra properties motivated by the
search for good bases for the Coxeter matrix of a poset and the hope of categorifying
its properties. We then turn to a concrete example where our methods apply nicely
and solve a conjecture on the poset of cominuscule roots.

Résumé. Les interactions entre la combinatoire d’un ensemble ordonné et la théorie
des représentations de son algèbre d’incidence forment un sujet bien étudié. Les an-
tichaines apparaissent comme décrivant certaines représentations de nature combina-
toire. Dans cet article nous étudions des antichaines satisfaisant des hypothèses de
rigidité, motivé par la recherche de bonnes bases pour la matrice de Coxeter d’un
poset et l’espoir de catégorifier ses propriétés. On traite ensuite un exemple concret où
nos méthodes s’appliquent élégamment et nous permettent de résoudre une conjecture
sur des ensembles ordonnés de racines cominuscules.

Keywords: antichain, Calabi–Yau category, Coxeter matrix, distributive lattice

1 Introduction

Fractionally Calabi–Yau posets are fascinating objects in part due to a hypothetical rela-
tion to product formulas due to Chapoton [3]. In combinatorics, many families of sets
(En)n∈N can be counted by product formulas |En| = Πn

i=1
D−di

di
where the sum of the

numerator and denominator is constant and equal to D. Such families include the Cata-
lan numbers, the number of alternating sign matrices, the West family and the Tamari
intervals family. Chapoton’s conjectural explanation is that there should exist a partial
order on En whose derived category is equivalent to a triangulated Calabi–Yau category
constructed from the data of D and the di coefficients. That category should be geometric
in nature, a type of Fukaya category. This explanation provides with predictions about
the Calabi–Yau dimension of the incidence algebra of the poset as well as its Coxeter
polynomial that can be tested, e.g. with a computer.

∗gottesman@imj-prg.fr.
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Observe that the binomial (m+n
m ) can be written as

m + n
1

m + n− 1
2

· · · · · m + 1
n

(1.1)

where D = m + n + 1. This is probably the most natural example of product formula as
discussed above. The poset of order ideals of a product of total orders of length m and
n has cardinality (n+m

m ). We write it Jm,n. Using our results on boolean antichains we are
able to confirm Chapoton’s prediction about the Calabi–Yau dimension of these posets.

Theorem 1. The bounded derived category of Jm,n is mn
m+n+1 -Calabi–Yau.

Moreover we provide a link to a type of Fukaya category.

Theorem 2. The bounded derived category of the algebra of the poset Jm,n is equivalent
to the partially wrapped Fukaya category of the m− 1th symmetric power of the disc
with n + 1 marked points on the boundary,W(Symm−1

D, λ
(m−1)
n+1 ).

We prove this equivalence through an intermediate category, the derived category
of the higher Auslander algebra An−1

m+1 [5] which appears at the intersection of several
hot topics in contemporary representation theory [6], [9]. This algebra is known to
be equivalent to the Fukaya category which appears in Theorem 2 [4]. As a corollary
to Theorem 1 we give a positive answer to the Chapoton-Yıldırım conjecture [11] on
cominuscule root posets of type A and B.

Corollary 1. The bounded derived category of the order ideals of cominuscule posets of type A,
B are fractionally Calabi–Yau.

2 Representations of partially ordered sets

Let k be a field and X a finite poset. Define its incidence algebra A = Ak(X) over k to
be the k vector space with basis pairs (x, y) such that x ≤ y with multiplication defined
by

(x, y)(z, t) =

{
(x, t) if y = z,
0 otherwise.

For x ∈ X we write ex = (x, x) the usual primitive idempotent. Then we have 1A =

∑x∈X ex. Throughout this work we consider left modules over A. For every element
x ∈ X the associated simple module is Sx ∼= k with action (y, t) · 1k = 0 unless y = t = x
in which case ex · 1k = 1k. Its projective cover Px = A · ex has basis {(y, x)|y ≤ x}. Its
injective hull is the injective indecomposable Ix = (ex · A)∗ and has basis {(x, y)∗|x ≤ y}.
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Recall that morphisms between the projective indecomposable modules are characterised
by

HomA(Px, Py) = HomA(Aex,Aey) ∼=
{

exAey ∼= k if x ≤ y,
0 otherwise.

We denote the canonical inclusion as ι
y
x : Px ↪→ Py whenever x ≤ y: this inclusion

is nothing more than the right multiplication by (x, y). More generally for any left
A-module M, we have HomA(Px, M) ∼= ex M. This isomorphism makes the following
diagram commute

f HomA(Px, M) HomA(Py, M) g

f (ex) ex M eyM g(ey)

∈
◦ιyx

3

∈
(x,y)·

3

(2.1)

The total hom complex Hom•A(C, M) where C is a chain complex C = ((Cn)n, (∂n)) of A
modules and M is an A-module, is the complex

· · · → HomA(Cn, M)
∂∗n+1−−→ HomA(Cn+1, M)→ . . .

Assuming that Cn =
⊕

x∈Sn Px with Sn ⊆ X and taking its cohomology gives shifted
morphisms in the derived category Db(A) [12, Lemma 3.7.10]:

Hi(Hom•A(C, M)) ∼= HomDb(A)(C, M[i]) (2.2)

Moreover, using equation (2.1) we have an isomorphism of cochain complexes

. . . HomA(
⊕
x∈Sn

Px, M) HomA(
⊕

x∈Sn+1

Px, M) . . .

. . .
⊕
x∈Sn

ex M
⊕

x∈Sn+1

ex M . . .

∂∗n+1

(2.3)

The boundary maps of the bottom complex are linear combinations of left multiplication
by elements (x, y) of the algebra with coefficients inherited from the top complex.

3 Doing homological algebra with antichains

3.1 Antichains

Let (L,∧,∨) be a finite lattice. We write 1̂ its maximum and 0̂ its minimum. Let C be an
antichain in L i.e. a subset C of L that consists of pairwise incomparable elements of L. We
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say an antichain C is below an element α of L if for all c ∈ C, we have c ≤ α, and when
needed we record this information in the notation Cα. Following [7, Proposition 2.1]
we associate to an antichain C = {c1, . . . , cr} the submodule NC = ∑r

i=1 A · (ci, 1̂) of the
projective P1̂ generated by the antichain. It follows directly from the same proposition
that there is a one to one correspondence between antichains and submodules of P1̂. The
antichain module associated to C is defined by MC := P1̂/NC. We will talk of antichain
modules below α ∈ L by restricting to the sublattice [0̂, α] of L. Then α is the greatest
element of this lattice and there is a bijection between submodules of Pα and antichains
below α. The corresponding modules will be denoted Nα

C and Mα
C. As our main example

consider a ≤ b in L. The maxima of the set of elements of L which are strictly less than
b but not above a form an antichain C and the antichain module below b associated to C
has support the interval [a, b]. The corresponding antichain module is usually called an
interval module. In the rest of the paper we identify intervals with their interval modules.

Lemma 1. Intervals are antichain modules.

With the conventions of the previous paragraph, morphisms between interval mod-
ules follow a simple rule

HomA([a, b], [c, d]) =

{
k if a ≤ c ≤ b ≤ d,
0 otherwise.

(3.1)

By [7, Theorem 2.2], for every antichain C of cardinal r of a lattice L the associated
antichain module MC has a projective resolution PC of the form

0→ Pr → · · · → P0 → MC where P0 = P1̂ and Pl =
⊕
S⊆C
|S|=l

P∧S for 1 ≤ l ≤ r.

Similarly, we obtain a projective resolution Pα
C for the antichain module Mα

C below α.
The boundary maps are defined by fixing an arbitrary total ordering of elements in C
and, in each degree, setting the following maps between the indecomposable summands
of the source and target in each degree:

P∧S → P∧T(
x,∧S

)
7→

{
(−1)|i|S

(
x,∧T

)
if T t {i} = S,

0 otherwise

(3.2)

for each S = {i1, . . . , ik} and
(
∧ S,∧T

)
∈ P∧T where |i|S = |{j ∈ S|j ≤ i}|.

3.2 Boolean antichains

Note that in degree i of the projective resolution Pα
C of Mα

C there are (r
i) indecomposable

components in the direct sum. If one forgets the modules, the complex has the shape of



Antichains in the representation theory of finite Lattices 5

the power set of C, however the indices of the modules in each degree are not necessarily
in bijection with the lattice (P(C),⊆,∪,∩) (see Figures (1) to (4)).

c1 c2 c3

Figure 1:
Boolean
antichain

c1 c2 c3

(c2∧c1)
∨(c3∧c1)

Figure 2:
Strong not in-
tersective

c1 c2 c3

c1 ∧ c2 = c1 ∧ c3

Figure 3: In-
tersective not
strong

c1 c2 c3

c1 ∧ c2 = c1 ∧ c3

c2 ∨ c3

Figure 4: An
antichain that
is neither

To make this statement precise, let us introduce four definitions regarding an an-
tichain C.

Inclusive antichain. For all subsets S and S′ of C, if ∧S ≤ ∧S′ then S′ ⊆ S.

Intersective antichain. For all subsets S and S′ of C, we have (∧S) ∨ (∧S′) = ∧(S ∩ S′).

Strong antichain. For all S, S′ subsets of C of the same cardinal, ∧S and ∧S′ are incom-
parable i.e. if ∧S ≤ ∧S′ then S = S′.

Boolean antichain C is both inclusive and intersective.

If C is below α, we say that Cα satisfies one of these properties if it satisfies it in the
lattice [0̂, α]. Note that intersectivity depends on the choice of a top element α whereas
inclusivity and strength do not. Note also the following lemma.

Lemma 2. An antichain is inclusive if and only if it is strong.

Proof. The inclusion condition gives the strong antichain condition when the subsets S
and S′ have the same cardinal. To see the converse, assume that the antichain C is a
strong antichain and let S and S′ be two subsets of C such that ∧S′ ≤ ∧S. Suppose
at first that |S| + n = |S′| with n > 0. Then there exists s1, . . . , sn ∈ S′ \ S. Set S′′ =
S t {s1, . . . , sn}. Because the inequalities ∧S′ ≤ ∧S and ∧S′ ≤ ∧{s1, . . . , sn} hold, we
have

∧S′ ≤ (∧S) ∧ (∧{s1, . . . , sn}) = ∧S′′.

Because |S′| = |S′′|, the strong incomparability condition yields S′ = S′′ hence S ⊆ S′.
Next if |S| = |S′| + n, again with n > 0, then take s1, . . . , sn in S \ S′ and set S′′ =
S ∪ {s1, . . . , sn}. Then we have

∧S′′ = (∧S′) ∧ (∧{s1, . . . , sn}) ≤ ∧S.
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By the strong incomparability condition S = S′′. Then S′ ⊆ S so ∧S′ ≥ ∧S and thus
∧S′ = ∧S. Using the first part of the proof we get S = S′. This contradicts the assump-
tion on the integer n.

Remark 1. If an antichain is strong, then it follows that for each n, the set {∧S|S ⊆
C with |S| = n} is an antichain.

Denote 〈C〉α∨,∧ the sublattice of [0̂, α] generated by the elements of C and α.

Lemma 3. An antichain is boolean if and only if the map

(P(C),∩,∪) φ−→ (〈C〉α∨,∧,∧,∨)
S 7→ ∧S

is a lattice anti-isomorphism.

Proof. Assume that the map φ is a lattice anti-isomorphism. Then Cα is intersective
because φ sends ∩ to ∨. Now consider S, S′ ⊆ C such that ∧S ≤ ∧S′. This is equivalent
to the following equality

∧S = (∧S) ∧ (∧S′).

The left hand side is equal to ∧(S ∪ S′) and because φ is a bijection, S = S ∪ S′ meaning
that S′ ⊆ S. Thus C has the inclusion property as well. Conversely assume C has both
the inclusion and the intersection property below α. The fact that φ sends ∪ to ∧ is true
for any subset of a lattice. The intersection property makes φ send ∩ to ∨. To see that φ

is injective, note that if ∧S = ∧S′ then the inclusion property forces S = S′. To see that
the map is surjective, notice that the image of φ, Im(φ) = {∧S|S ⊆ C} is a lattice, using
the properties we just exhibited. Moreover, any sublattice of L containing C contains
Im(φ). It is thus the sublattice of L generated by C, i.e., 〈C〉α∨,∧ = {∧S|S ⊆ C} and φ is
surjective.

Recall that finite lattices are boolean if and only if they are isomorphic to the powerset
of a finite set; this is the real reason for our terminology.

3.3 Morphisms

It is a recurring theme in algebra (and mathematics that use categories) that morphisms
are more important than objects. For antichains with the properties we just introduced,
we can compute morphisms between their corresponding objects in the derived category
more easily as per the following two results.

Proposition 1. Let C be an antichain of a lattice L and let I ⊆ L be an interval. Suppose the set
E = {S ⊆ C| ∧ S ∈ I} is an interval of the lattice P(C). Then there exists at most one integer
p such that HomDb(A)(MC, I[p]) is non zero. When such an integer exists, the hom space is one
dimensional.
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Sketch of proof. Because the set E is an interval, we can show that the total hom complex
has the shape:

0← k← · · · ← k
(|E|j ) ← · · · ← k← 0. (3.3)

Where k(
|E|

j ) is the term in degree j. This is the shape of the simplicial resolution associ-
ated to the standard simplex. By reindexing the components of the boundary maps we
show that these match the standard simplex resolution as well. In other words this is the

Koszul complex
⊗
(k

id−→ k). By the Künneth’s formula [1, Chapter 6.3], it is thus either
acyclic or concentrated in one degree when E contains only one element.

According to the proof, there exists a non trivial morphism if and only if the set E is
a singleton i.e. there exists a unique S ⊆ C such that ∧S ∈ I. In this case, the morphism
is concentrated in degree p = |S|. When the antichain is boolean, we can show that the
set E is always an interval which leads to a proof of the following theorem.

Theorem 3. Let C be a boolean antichain of a lattice L. Let I ⊆ L be an interval. There
exists at most one integer p such that HomDb(A)(MC, I[p]) is non zero. Moreover in this
case it is of dimension 1.

Example 1. Consider the lattice in Figure 2 and the strong antichain C = {c1, c2, c3}
below 1̂. Its associated module is the simple S1̂. Consider moreover the interval I =
[c1 ∧ c2, (c1 ∧ c2) ∨ (c1 ∧ c3)]. The set E = {S ⊆ C| ∧ S ∈ I} is the singleton {{c1, c2}}
which is an interval. So Proposition 1 applies and dim HomDb(PC, I[2]) = 1 while for
any other shift of the interval it is 0.

Example 2. Consider the lattice in Figure 1 and the antichain C = {c1, c2} below 1̂.
Its associated antichain module is the interval [c3, 1̂]. Consider moreover the interval
I = [0̂, c1]. Because the antichain is boolean, Theorem 3 applies. We can check that the set
E = {S ⊆ C| ∧ S ∈ I} is the interval [c1 ∧ c2, c1]. In that case, dim HomDb(PC, I[p]) = 0
for all integer p as E is not a singleton.

4 Fractionally Calabi–Yau Lattices

For a finite poset with incidence matrix I, the Coxeter matrix is defined as C = −I ×
(I−1)t. If the poset is a lattice, then it is closely related to its rowmotion bijection [8].
The notion of Calabi–Yau categories was introduced by Kontsevich in the late nineties.
A triangulated category T with a Serre functor S is said to be fractionally Calabi–Yau
if there exists ` and d such that S` is isomorphic as a functor to the suspension func-
tor applied d times. We say that T is d

` -Calabi–Yau. When the triangulated category is
the derived category of the incidence algebra of a poset, the action of the Serre functor



8 Tal Gottesman

on the Grothendieck group of the category T coincides with the opposite of the Cox-
eter matrix. We can safely say that the Serre functor categorifies the opposite of the
Coxeter matrix. When the category T is fractionally Calabi–Yau, its Coxeter matrix has
finite order and its characteristic polynomial is a product of cyclotomic polynomials.
Both properties can be checked using a computer. In the case of posets with a unique
maximal element or a unique minimal element, [10, Theorem 3.1] enables one to prove
the fractional Calabi–Yau property by looking at the action of the Serre functor on the
projective indecomposable modules only. However, for a given poset the computation
itself is still in general very hard, see [2] and [11] for example. Using strong antichains
as described previously, we are able to provide a relaxation of [10, Theorem 3.1] to help
overcome that difficulty.

Theorem 4. Let L be a finite lattice, let m and n be integers and let (Cα)α∈L be a family
of antichains in L. For all α ∈ L, consider the following assumptions.

1. The antichain Cα is below α.

2. The module Mα
C is non zero and there is an isomorphism Sn Mα

Cα

∼= Mα
Cα
[m] in

Db(A).

3. The antichain Cα is strong.

If there exists a family of antichains (Cα)α∈L satisfying these assumptions then Db(A) is
m
n -Calabi–Yau.

Remark 2. When Cα = ∅ for all α, we recover [10, Theorem 3.1]. If Cα is the set of all
the elements covered by α then Mα

C = Sα. Such antichains will often be strong in the
examples that we consider. When it is the case the theorem can also be applied to a
family of modules which combines some projective indecomposables and some simples.
As we will see, the theorem can be applied to less obvious candidates as well.

5 Application: The lattice of order ideals of a grid and its
enhancements

In this section we discuss the lattice Jm,n in more details and we apply Theorems 3 and
4 on non trivial families of antichain modules in order to prove Theorems 1 and 2 of the
introduction.

5.1 Families of antichains

Recall that an order ideal I of a poset P is a subset I ⊆ P which is downward closed, i.e.
if x ∈ I and y ≤ x then y ∈ I. Order ideals of a poset can be ordered by inclusion and
form a distributive lattice when equipped with the union and the intersection of subsets.
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We now consider an element I of Jm,n i.e. an order ideal of the product
of total orders [m]× [n]. We can draw the ideal I as a path in an m× n
grid as in the figure on the right. The elements of the order ideal are
the points of the grid which lie below the path in the picture. Because I
is closed downward, counting the number of points in each column that
belong to I, say with increasing first value, gives a monotone sequence
which completely determines the ideal. We thus obtain a bijection

Jm,n ∼= {(a1, . . . , am)|ai ∈ {0, . . . , n} and a1 ≤ . . . ,≤ an} (5.1)

with non decreasing sequences. If the second set is equipped with term wise comparison
this is an isomorphism of posets. We call these non decreasing sequences partitions. They
can also be written as (λµ1

1 , . . . , λ
µr
r ) with ∑i µi = m, where µi encodes the multiplicity of

the value λi and λi 6= λj if i 6= j.
To apply Theorems 3 and 4, we consider several antichains below x for each x ∈ Jm,n.

These antichains can be encoded as or enhancements of x.

Definition 1. An enhanced partition is a sequence (λ
µ1
1 , . . . , λ

µr
r |nµr+1) where multiplicities

sum to m. We allow µr+1 = 0. If µr+1 6= 0 we say the partition is strictly enhanced.
A partition with µr+1 = 0 is called plain. Call Em,n the set of enhanced partitions. We
easily count (m+n+1

m ) enhanced partitions.

For an enhanced partition α = (λ
µ1
1 , . . . , λ

µr
r |nµr+1) define the mutable coefficients to be

Sα = {ε, . . . , r} the indices corresponding to nonzero coefficients. The number ε is either
1 or 2. Please remark that this excludes the coefficients beyond the enhancement bar.
Similarly, we can define a left enhanced partition (0µ0 |λµ1

1 , . . . , λ
µr
r ).

Definition 2. Take an enhanced partition α = (λ
µ1
1 , . . . , λ

µr
r |nµr+1). For any subset J of Sα

define a new partition qJ(α) = ((λ′1)
µ1 , . . . , (λ′r)µr |nµr+1) by

λ′i =

{
λi − 1 if i ∈ J
λi otherwise.

Consider now the set Cα = {qi(α)|i ∈ Sα}. Because qi(α) and qj(α) differ from α

at different indices, their associated plain partitions form an antichain. We denote Pα

the resolution associated to it. Here is another family of transformations which leads to
antichains.

Definition 3. Let α = (λ
µ1
1 , . . . , λ

µr
r |nµr+1) and take i ∈ Sα − {r}. We set

pi(α) =

{
(01, λ

µ1−1
1 , λ

µ2
2 . . . |nµn+1) if i = 0,

(λ
µ1
1 . . . λ

µi+1
i , λ

µi+1−1
i+1 . . . |nµn+1) otherwise.

(5.2)

For J = (j1, . . . , jk) a sequence of elements Sα − {r}, set pJ = pj1 ◦ · · · ◦ pjk .
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For all enhanced partition α consider the set C∨α = {pi(α)|i ∈ {0, . . . , r − 1} or i =
r if µr+1>0}. The corresponding plain partitions form an antichain below α. It is easy to
prove that Cα and C∨α are boolean antichains below α. We recover these two results of
[11]. The second one is an easy categorification of [11, Proposition 4.2].

Proposition 2 ([11, Proposition 2.13]). Let α be a right enhanced partition. Then Pα is a
projective resolution of the interval [ f (α), α] where the function f is defined by

f : (λµ1
1 , . . . , λ

µr
r |nµr+1) 7→ (0µ1−1|λµ2

1 , . . . , λ
µr+1
r ). (5.3)

Proposition 3. Let α be a right enhanced partition. Then Sm+n+1(Pα) ∼= Pα[mn].

Combining this with Theorem 4 we obtain a proof of Theorem 1. What remains of
this section is dedicated to the description of the full subcategory of the derived category
Db(Jm,n) whose objects are the Pα with α ∈ Em,n, and their shifts. We write it Ym,n.

5.2 Elementary morphisms

Figure 5: Graph of the category Y2,2

We first describe the morphisms φ : Pα →
Pβ using the combinatorics of the parti-
tions introduced in the previous subsec-
tion combined with Theorem 3.

Proposition 4. Let φ : Pα → Pβ[i] be a
non zero morphism in Ym,n. Then there ex-
ists a unique subset J of Sα such that φ factors
through PqJ(α)[i] and |J| = i completing the
following diagram.

Pα Pβ[|J|]

PqJ(α)[|J|]

φ

u µ

If we order J = {j1, . . . jk} such that jt < jt+1, then the extension u : Pα → PqJ(α) decomposes as
Pα → Pq{j1}(α)

[1] → · · · → PqJ(α)[|J|] up to signs. Similarly there exists a sequence d0, . . . , ds

such that for all 0 ≤ j < s, 0 ≤ dj < mj+1, for j = s, −ms < ds ≤ ms+1, α = pds
s ◦ · · · ◦ pd0

0 (β)
and the degree 0 morphism µ : PqJ(α) → Pβ factors through each of the objects associated to the
intermediate partitions.

Theorem 2 follows from this proposition. More precisely, we construct a tilting com-
plex with the set of plain partitions and show that its endomorphism algebra is the
higher Auslander algebra Am−1

n+1 .
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5.3 Through the lens of configurations

Using a clever bijection of Yıldırım we can give a more satisfying description of the
category Ym,n. Let Z = {−m, . . . ,−1, 0, 1, . . . , n} be a set of representatives of Z/(m +
n)Z. A configuration C = {c1 < · · · < cm} is a strictly increasing sequence of m elements
in Z . We write Cm,n the set of configurations of length m on Z . It is easy to see that
|Cm,n| = (m+n+1

m ). Given a partition α we can construct a configuration containing α’s
coefficients in its nonnegative side and encoding the multiplicities of α in its negative side.
Write xi to record the index of the last occurrence of the ith coefficient. It will be called
the ending index. The negative side is thought of as the indices of the elements of the
sequence α but with a minus sign. Remove the opposite of the ending index of each
coefficient. Call the resulting configuration the right configuration associated to α, write
it Rα. We denote φ the map sending α to Rα.

Example 3. Take n = 7, m = 5 and consider the partitions a = (0, 2, 3, 7|7). For this
partition, r = 4 and coefficients end at indices 1, 2, 3 and 4. The associated right configu-
ration is {−5 < 0 < 2 < 3 < 7}, containing the values 0, 2, 3, 7 and omitting the opposite
of the ending coefficients −1,−2,−3 and −4. It is represented in an abacus as follows:

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
• • • • •

Note that an enhanced partition is plain if and only if the column −m of its abacus is
empty.

Proposition 5 ([11, Proposition 3.3]). The map φ is a bijection between Em,n and Cm,n.

Indeed, partitions are entirely determined by their coefficients and multiplicities which
can be recovered from the positive elements of a configurations and its negative gaps.

Definition 4. Consider two sequences (x1, . . . , xk) and (y1, . . . , yk) of length k in J0, NK.
Define a sequence on Z by setting yl = yr + q · N where l = g× k + r is the euclidian
division. We say that they interpolate circularly if for all integers h, f and l such that
h ≡ l ≡ f − 1 mod [k] we have xh ≤ yl < x f .

Example 4. The configurations {−5 < 0 < 2 < 3 < 7} and {−5 < 0 < 2 < 3 < 6}
interpolate circularly.

Definition 5. Let n and m be integers. Define the category Im,n as follows :

• set Ob(Im,n) = {increasing sequences of length m in J0, m + nK};

• given two increasing sequences a and b in Ob(Im,n), set

Im,n(a, b) =

{
k if a and b interpolate circularly,
0 otherwise.
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Conjecture 1. The categories Ym,n and Im,n are equivalent.

Theorem 2 also follows from this conjecture, however its proof only involves part of Ym,n
and Am−1

n+1 is Morita equivalent to the corresponding subcategory of Im,n.

Update This form of Conjecture 1 is not exactly right. A correct statement is proven in
the thesis of this author. It requires a subtle choice of numbering for the elements of the
configurations.
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On the scaling of random Tamari intervals and
Schnyder woods of random triangulations (with

an asymptotic D-finite trick)
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Abstract. We consider a Tamari interval of size n (i.e., a pair of Tamari-comparable
Dyck paths) chosen uniformly at random. We show that the typical height of points on
the paths scales as n3/4, with an explicit limit law. By the Bernardi-Bonichon bijection,
this also applies to Schnyder trees of random plane triangulations. The exact solution
of the model is based on polynomial equations with one and two catalytic variables.
To deduce convergence in law, we use a simple analytic method based on D-finiteness,
which is essentially automatic.

1 Introduction and main results

<

d
de

e

Figure 1: Left: The covering relation defining the Tamari lattice. Right: a uniform
random Tamari interval (Pn, Qn) of size n = 65536 (blue) generated with a Python
code generously provided by Wenjie Fang, and the plot of Qn/Pn (purple).

For n ≥ 0, a Dyck path of size n is a lattice path made of n up-steps and n-down steps,
starting (and ending) at height 0, and whose height stays always nonnegative. The set
Dn of Dyck paths of size n is endowed with the Tamari partial order, whose covering
relation is described as follows. Let p be a Dyck path, and let d be a down-step in p,
followed by an up-step. Let e be the shortest excursion following d in p (an excursion is
a path staying higher than its starting point except for its last point). Then the Dyck path
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q obtained from p by exchanging d and e is declared larger than p for the Tamari order.
The reflexive transitive closure of this relation defines the Tamari lattice. See Figure 1.

The Tamari lattice plays an important role in many facets of algebraic combinatorics
and discrete mathematics, in relation with polytopes (the associahedron), flip graphs,
hyperbolic geometry, or mixing times of Markov chains.

This paper is motivated by another famous connection, between Tamari intervals and
planar maps. An interval of size n in the Tamari lattice is a pair (p, q) ∈ (Dn)2 such that
p ≤ q (for the Tamari partial order). We let In be the set of Tamari intervals of size n.
In a famous paper, Chapoton proved that the number of elements of In was given by

2
n(n+1) (

4n+1
n−1 ), which is also the number of rooted planar triangulations of size n [13]. An

elegant, and deep, direct bijective proof has been given by Bernardi and Bonichon in [1].
Since Chapoton’s discovery, the analogy between Tamari intervals and planar maps has
been much developped, from the existence of refined product formulas [2] strongly
resembling the ones appearing in enumerative geometry, to numerous coincidences be-
tween the enumeration of special families of intervals and planar maps (e.g., [8]). These
phenomena are still very partially understood and are the subject of active research.

Although large random planar maps have been intensely studied in the last decades
(see e.g. [6, 10]), it seems that the behaviour of random Tamari intervals has not been
studied, and we are not sure to know why. It is however natural to ask this question:

What does a large uniformly random Tamari interval look like?
In this paper we give a first answer to this question. If P ∈ Dn and i ∈ [0..2n], we write
P(i) for the height of the point of P lying at abscissa i. We show:

Theorem 1.1 (Main result). Let (P, Q) be a Tamari interval of size n, chosen uniformly at
random in In. Let I ∈ [0..2n] be an integer chosen uniformly at random. Then we have the
convergence in law

Qn(I)
n3/4 −→ Z = (XY)1/4 (1.1)

when n goes to infinity, where X ∼ β(1
3 , 1

6) and Y ∼ Γ(2
3 , 1

2) are independent random variables.
In fact, we have the convergence of all moments: for integer k ≥ 0,

E

[(
Qn(I)
n3/4

)k
]
−→

√
3 · 2−

k
4−1

√
π

Γ(1
4 k + 1

3)Γ(
1
4 k + 2

3)

Γ(1
4 k + 1

2)
. (1.2)

For the lower path we have similarly, with again the convergence of all moments,

Pn(I)
n3/4 −→ Z

3
. (1.3)

We recall that the random variables β(a, b) and Γ(ℓ, θ) have respective densities
Γ(a+b)

Γ(a)Γ(b)xa−1(1 − x)b−1 on (0, 1) and xk−1e−x/θ

Γ(k)θk on R+. Their respective k-th moments are
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Γ(a+b)Γ(a+k)
Γ(a)Γ(a+b+k) , and θkΓ(l+k)

Γ(ℓ) , so it is direct to check that (1.2) with k substituted by 4k is

indeed equal to the k-th moment of XY. Interestingly, the random variable Z4 already
appears in a (seemingly unrelated) physics context, see [11] or OEIS:A064352.

In view of Theorem 1.1 and simulations (Figure 1) it is natural to suspect that Pn(I)
is close to 1

3 Qn(I) with high probability. Unfortunately our methods based on functional
equations make it hard to track the joint law of (Pn(I), Qn(I)). However, they can handle
the joint law of (P̃n(J), Q̃n(J)) where J is uniform on [1, n] and where for a path P we
write P̃(j) for the height of the j-th up-step of P. In the long version of this paper we
will prove with similar methods1 that indeed, in probability,

P̃n(J) =
1
3

Q̃n(J) + o(Q̃n(J)). (1.4)

To prevent confusion, we mention that the individual convergence of P̃n(J)/n3/4 and
Q̃n(J)/n3/4 to Z and Z/3 follow from Theorem 1.1, using a coupling between I and J.

As we said, Bernardi and Bonichon [1] provided an explicit bijection between inter-
vals in In and rooted plane triangulations of size n. Such a triangulation can always be
equipped with a canonical Schnyder wood, which is a partition of its internal edges into
three trees (say red, blue, green) with certain conditions. See Figure 2. It is then not too
hard to deduce the following from (1.3):

Corollary 1.2. Let Tn be a rooted plane triangulation of size n, chosen uniformly at random,
and let (T(1)

n , T(2)
n , T(3)

n ) be its canonical Schnyder wood, that is to say, the one associated to its
minimal orientation in the sense of [1]. Let V be a uniform random internal vertex of Tn and let
H(i)

n be the height of the vertex V in the tree T(i)
n . Then, for any i ∈ [3] we have

H(i)
n

n3/4 −→ 1
3

Z.

The proof of each half of Theorem 1.1 (namely (1.1) and (1.3)) has two parts: the first
one consists in solving "exactly" the model, by obtaining an algebraic equation for the
generating function f (t, s) of intervals having a marked abscissa, with control on the
size n, and on the lower or upper height. In each case this requires to solve an equation
with catalytic variables. The second part is to deduce the asymptotic of moments from
there, which is a problem of analytic combinatorics in 2 variables, for which we need to
find good tools. We describe below a simple method that will do the trick.

1One can write a functional equation for the generating function of intervals (P, Q) of size n with a
marked j ∈ [n] with control on the parameter Q̃(j)− 3P̃(j), very similarly to Equation (3.1). The resolution
of this equation is very similar to what is done in Section 3.2, with the difference that the equation with
catalytic variable to solve in the second step is now quadratic – and can be solved with the quadratic
method. At the time of writing, we have not performed the full asymptotics of moments, but from the
solution it is immediate to show that E[(Q̃n(J)− 3P̃n(J))2] = O(n), which is enough to conclude (1.4) by
the Chebyshev inequality. For the impatient reader, we have already included all details in [5].
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Figure 2: A rooted planar triangulation equipped with its minimal Schnyder-wood,
and its image (a Tamari interval) by the Bernardi-Bonichon bijection. The lower path
is nothing but the contour function of the blue tree. Figure taken from [1].

1.1 A method to prove moment convergence from algebraic equations

Assume that we have a combinatorial class A equipped with a size function | · | and an
integer statistic µ, and consider the random variable Xn = µ(An) where An is an object
of size n in A chosen uniformly at random. Consider the generating function

f (t, s) = ∑
n≥0

∑
p∈Z

an,ptnsp = ∑
n≥0

∑
p∈Z

anP[Xn = p]tnsp, (1.5)

with an,p = |{α ∈ A, |α| = n, µ(α) = p}|, and an = |{α ∈ A, |α| = n}|, and assume
that the generating function f (t, s) is algebraic. For k ≥ 0 we consider the generating
function of factorial moments

f (k) ≡ f (k)(t) :=

((
d
ds

)k
f (t, s)

)∣∣∣∣∣
s=1

= ∑
n≥0

anE[(Xn)(k)]t
n,

with (Xn)(k) := Xn(Xn − 1) . . . (Xn − k + 1). To study the convergence of the random
variable Xn, a standard way called the method of moments consists in studying the
asymptotics for fixed k of its k-th moment E[(Xn)k] (or factorial moment E[(Xn)(k)]). In
our setting, this is equivalent to studying the asymptotics of the coefficient [tn] f (k)(t), for
fixed k. Now, since all the functions f (k)(t) are algebraic, they are amenable to singularity
analysis in the sense of [9]. Therefore, to study the asymptotics of their coefficients it is
enough to determine the nature of the dominant singularity(ies) of f (k) for each k ≥ 0.

Here comes the main trick: since the function f (t, s) is algebraic, it is also D-finite, i.e.
the coefficients of its expansion in any variable satisfy a linear equation with polynomial
coefficients (see e.g. [7]). We will apply this to the coefficients of the expansion2 in the
variable r such that s = r + 1. These coefficients are, up to a factorial factor, the functions

2The function f (t, 1 + r) is algebraic, therefore it is D-finite in the variable r. No notion of convergence
is required to say this. Of course, one has to be careful about which branch of this function one considers
when performing actual calculations.
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f (k). It follows that one can compute the f (k) by induction, with a recurrence of the form

f (k)(t) =
L

∑
d=1

hd(t, k) f (k−d)(t) , k ≥ L, (1.6)

for some L > 0, where for each d ∈ [L], hd(t, k) is a rational function in k whose coeffi-
cients are algebraic functions of t (we could assume that the hk are rational in t, but for
applications this weaker asumption is convenient: it will enable us to work under some
algebraic change of variables). This leads us to:

Method 1.3 (D-finite trick for moment pumping). Given a bivariate algebraic function f ,
obtain a linear equation for its derivatives f (k) of the form (1.6) using standard computer
algebra tools. Then, use it to determine the asymptotic of f (k) near t = ρ by induction
on k. Deduce the asymptotics of [tn] f (k) using the transfer theorem.

The idea of this method is quite general, but of course one has to be careful to carry
the analytical details in the induction. We give below a simple framework of application
whose proof is essentially immediate. For a function g and α, c ∈ R, ρ > 0 we write
g(t)∼̂c(1 − t/ρ)α if g(t), as an analytic function, has no singularity on the closed circle
of radius ρ except maybe at t = ρ, and if g(t) has a Puiseux expansion of the form
g(t) = P(t) + c(1 − t/ρ)α + o((1 − t/ρ)α) near t = ρ, where P is a polynomial.

Theorem 1.4 (D-finite trick for moment pumping, an instance). Let f (t, s) be a generating
function of the form (1.5), and assume that f (t, s) is an algebraic function. Then f is D-finite in
the variable s− 1, and it satisfies an equation of the form (1.6), with L ≥ 1 and where for d ∈ [L],
hd(t, k) is a rational function of k whose coefficients are algebraic functions of t. Assume that:
(i) There is β > 0 such that for d ∈ [L] , hd(t, k)(1 − t/ρ)βd → ad(k) for t → ρ, with possibly
ad(k) = 0. Moreover, hd(k) has no singularity other than ρ on the circle of radius ρ.
(ii) "Initial conditions": there is α ∈ R \N and numbers cℓ, with c0 > 0, such that f (ℓ)∼̂cℓ(1−
t/ρ)α−βℓ for all 0 ≤ ℓ ≤ ℓ0, with ℓ0 := L+max(⌊α/β⌋,−1). Moreover, cℓ = 0 if α− βℓ ∈ N.

Then one has f (k)∼̂ck(1 − t/ρ)α−βk for any k ≥ 0, where ck is given by the recurrence

ck =
L

∑
d=1

ad(k)ck−d , k > ℓ0, (1.7)

where the values of ck for k ≤ ℓ0 are given by the initial conditions. Moreover, for each k ≥ 0,

E[(Xn)k]

nβk → ckΓ(−α)

c0Γ(βk − α)
. (1.8)

The proof is ommitted in this extended abstract. It consists in showing that f (k)∼̂ck(1−
t/ρ)α−βk for any k ≥ 0, which in fact follows from a direction induction, and applying
the standard theorems for algebraic functions [9]. The reason why the recurrence starts
only at ℓ0 is because we want α − βℓ to be negative for all ℓ such that cℓ appears in (1.7),
so that the symbol ∼̂ is in fact a true equivalent, in order for the induction to work.
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Remark 1.5. We do not try to provide minimal hypotheses in this theorem: the only
requirement for the method to work is that dominant singularities of f (k) are "not too
hard" to track by induction from (1.6). Also, it is conceivable to use this technique
in more than bivariate examples, provided the corresponding multivariate generating
function is algebraic.

We insist that Theorem 1.4 if applicable, is essentially automatic. Indeed, computer
algebra softwares (e.g. the Maple package GFUN [12]) are able to provide a recurrence
of the form (1.6), and to check the initial conditions, automatically from an algebraic
equation for f . Apart from this, the major interest of this method is that it allows a wide
variety of limit laws (including non Gaussian) as our main applications show.

To conclude this discussion, let us recall that using D-finiteness to compute coeffi-
cients of algebraic functions in the univariate case is a well-known trick going back at
least to Comtet [7]. We are only recycling this idea in the context of bivariate asymptotics.

Example. As a simple application, we invite our reader to rediscover the well known
limit law for the height Hn of a uniform random point on a uniform random Dyck path
of size n. Using standard path decompositions one easily obtains a quadratic equation
for the corresponding generating function f (t, s), and from there it is immediate, with
Maple, to check that Theorem 1.4 applies (with −α = β = 1

2 ). The recurrence (1.7)
becomes ck = 1

4 k(k − 1)ck−2, and one thus directly shows that Hn/
√

n converges to a
Rayleigh law, of k-th moment Γ( k

2 + 1). All calculations and checks are available in [5]!

Plan of the paper. In Section 2 we solve the exact counting problem which underlies
the first half of Theorem 1.1 (Equation (1.1) by studying the classical equation with one
catalytic variable for Tamari intervals, which we enrich by an extra variable marking
the height. See Theorem 2.3. In Section 3 we solve the exact counting problem which
underlies the second half (Equation (1.3)) see Theorem 3.2. Our proof is more technical,
as we only manage to write an equation with two catalytic variables for this problem
(enriched, once again, by an extra variable for the height). In Section 4, we sketch the
proof of Theorem 1.1, which given these results directly follows from Theorem 1.4 and
computer algebra calculations.

All the calculations supporting our results (including results whose proofs are not
fully presented in this abstract) are available in the accompanying Maple worksheet [5].

2 Upper path: exact solution

2.1 The classical equation and its solution, after [4, 3]

Following [3], we call contact of a path a vertex of that path lying on the x-axis. We now
present a recursive decomposition of Tamari intervals based on contacts of the lower
path, following [4, 3].
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1
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Figure 3: The classical decomposition of Tamari intervals. To the left, an interval of
size n + 1, where v1, v2 are the first contacts of the lower and upper path, respectively.
The decomposition gives rises, to the right, to two Tamari intervals of total size n, the
first of which has a marked contact, called here ṽ. This construction is bijective.

Let (P, Q) ∈ In+1 be a Tamari interval, for n ≥ 0, and let v1 and v2 be respectively
the leftmost contact of P and Q different from the origin. By deleting the first up step
of P and Q, and the downstep of P and Q preceding respectively v1 and v2, one obtains
two paths that can be naturally seen as the concatenation of two pairs of paths (P1, Q1)
and (P2, Q2) as on Figure 3. It is proved in [4, 3] that (P1, Q1) and (P2, Q2) are two
Tamari intervals. Moreover, this operation is a bijection (!) between intervals of size
n + 1 and pairs of intervals of total size n, such that the first interval of the pair has
a distinguished contact on its lower path – inherited from the vertex v1. To translate
this recursive construction into an equation for enumeration, one needs to introduce a
two-parameter generating function:

F(x) ≡ F(t, x) := ∑
n≥0

tn ∑
(P,Q)∈In

xcontact(P)

where contact(P) is the number of contacts of the lower path P.
Note that, if a path P̃1 has k contacts, there are k possible ways to mark a contact in

P̃1, thus decomposing it as P̃1 = P̃′
1P̃′′

1 . When going through these k choices, the number
of non-final contacts of the path P̃0 := uP̃′

1dP̃′′
1 goes through the values 1, 2, . . . , k, see

Figure 4(up). At the level of generating functions, the corresponding operator is

∆x : xk 7−→ xk + · · ·+ x1 = x
xk − 1
x − 1

, ∆x : f (x) 7−→ x
f (x)− 1

x − 1
. (2.1)

This observation being made, the recursive decomposition immediately translates into
the following functional equation [4, 3]

F(x) = x + xtF(x)
F(x)− F(1)

x − 1
. (2.2)

Indeed, the first term accounts for the empty path (of size n = 0), and in the second term
the factor F(x) is the contribution of the interval (P2, Q2), and the factor x F(x)−F(1)

x−1 =
∆xF(x) is the contribution of the interval (P1, Q1).
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The solution can be written especially nicely with a rational parametrization.

Proposition 2.1 ([3, Thm. 10]). The functions F(x) and F(1) are given by

F(x) =
1 + u

(1 + zu)(1 − z)3 (1 − 2z − z2u) , F(1) =
1 − 2z
(1 − z)3 , (2.3)

with

t = z(1 − z)3 , x =
1 + u

(1 + zu)2 . (2.4)

2.2 The enriched equation and its solution

We now study intervals in which the upper path carries a marked point. We let

H(x, s) ≡ H(t, x, s) := ∑
n≥0

tn ∑
(P,Q)∈In

xcontact(P)
2n

∑
i=0

sQ(i).

It is clear that the height of the marked point can be tracked in the decomposition above.
This leads to the functional equation:

Proposition 2.2. The generating function H(x, s) is solution of the equation:

H(x, s) = F(x) + sxt
H(x, s)− H(1, s)

x − 1
F(x) + xt

F(x)− F(1)
x − 1

H(x, s). (2.5)

Proof. This follows directly from the combinatorial decomposition of Figure 3, applied
to intervals with a mark abscissa. The first term accounts for the case where the marked
abscissa (and height) is zero. The second term accounts for the case where the marked
abscissa appears before vertex v2. Through the decomposition the corresponding vertex
of the upper path becomes a marked vertex of the path Q1, and its height is shifted by 1,
hence a contribution of s∆xH(s, x) for the interval (P1, Q1), while the interval (P2, Q2)
has contribution F(x) as before. The third term accounts for the case where the marked
abscissa appears at v2 of after, in which case there is no shift in the height and the second
interval has contribution H(s, x), while the first has contribution ∆xF(x) as before.

Equation (2.5) is easily solved via the kernel method (see e.g. [9, p. 508]). First, let us
work under the change of variables (t, x) ↔ (u, z) of (2.4), so we can consider F(1) and
F(x) known. We can then write (2.5) in "kernel" form K(x, s)H(x, s) = R.H.S. where the
kernel K(x, s) is an explicit rational function of z and u. One easily checks that there is a
unique series U = U(z) cancelling the kernel, given by

s = U(1 − z)3/[z(1 + U)2(1 − Uz2 − 2z)]. (2.6)

Solving the R.H.S. for H(1) we obtain (see [5] for full calculations and checks)



On the scaling of random Tamari intervals 9

Theorem 2.3. The series H(1) ≡ H(t, s, 1) of Tamari intervals with a marked abscissa, where t
marks the size, and s the upper height at this abscissa, has the following rational parametrisation:

H(1) = (1 − 2z − Uz2)2(1 + U)/(1 − z)6 (2.7)

with the change of variables (t, s) ↔ (z, U) given by t = z(1 − z)3 and by (2.6).

3 Lower path: exact solution

We will now apply the same decomposition as in the previous sections, but keep track
of the height of points on the lower path P. In order to do this, we will have to treat
differently the contacts of P which appear before or after the marked abscissa, which
will force us to work with two catalytic variables. We write contact<i(P), contact≥i(P)
for the number of contacts of P strictly before, or weakly after, abscissa i, respectively.
We introduce the generating function

G(x, y) ≡ G(t, x, y, w) := ∑
n≥0

tn ∑
(P,Q)∈In

2n

∑
i=0

wP(i)xcontact<i(P)ycontact≥i(P).

3.1 The enriched equation

Proposition 3.1. The generating function G(x, y) ≡ G(t, x, y, w) of Tamari intervals with a
marked abscissa where w marks the lower height is solution of the equation:

G(x, y) = F(y) + txw
G(1, y)− G(1, 1)

y − 1
F(y) + tx

F(y)− yF(1)
y − 1

F(y)

+ t
x2

y
G(x, y)− y

x F(x)− G(1, y) + yF(1)
x − 1

F(y) + tx
F(x)− F(1)

x − 1
G(x, y). (3.1)

Idea of the proof. Given an interval (P, Q) of size n + 1 with a marked abscissa, we apply
again the decomposition of Figure 3. We let i1, i2 be the abscissa of the first nonzero
contact of P and Q respectively, and i the marked abscissa. We will distinguish fives
cases depending on the fact that i belongs to {0}, [1, i1 − 1], {i1}, [i1 + 1, i2 − 1], [i2, 2n].
These correspond (from left to right) to the five terms in (3.1).

In this extended abstract, we will only address the second case, which illustrates in a
simple way why we need two catalytic variables. If i ∈ [1, i1 − 1], in the decomposition
of Figure 3, the corresponding vertex of P becomes a marked vertex of P1 with a shift
of 1 in the height, hence a contribution of w. Moreover, configurations in this case
are obtained by applying the construction of Figure 4(top) but restricting it to contacts
appearing after the marked abscissa, see Figure 4(center). Therefore, an interval (P̃1, Q̃1)
having a marked abscissa, with respectively k and ℓ contacts strictly before, and weakly
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xk

7−→

Q̃1

P̃1
. . .

y`

. . .

xk+1

. . .

y`−1

. . .

xk

. . .

y`−1

. . .

+ + . . .+

x2

. . .

y`−1

. . .

x1

. . .

y`−1

. . .

x1

. . .

y0

. . .+ . . .+
7−→

v1 v1 v1

v1 v1
xk

Q̃1

P̃1
. . .

y`

. . .

xk

+ . . .+

x1

7−→

xk

+

Q̃1

xk−1

P̃1 . . .
. . . . . . . . .

v1

v1 v1 v1

Figure 4: Top: How the divided difference operator appears. On the left, the power
of x marks all contacts, while on the right it only marks contacts which are not the
last one. Center and Bottom: Refinement to distinguish the case where the marked
abscissa is before (upper figure) or after (lower figure) the contact v1.

after this abscissa (thus having a contribution of xkyℓ in G(x, y)) gives rise to ℓ intervals

contributing to this case, with a contribution of x1yℓ−1 + x1yℓ−2 + · · · + x1y0 = x yℓ−1
y−1 .

In total, the contribution for the first interval is thus x G(1,y)−G(1,1)
y−1 . The contribution of

the second interval (P2, Q2) is just F(y), since all corresponding contacts appear after the
marked abscissa. In total, this gives the second term in (3.1).

We omit other cases, but we point out that the fourth case requires a similar discus-
sion where now the catalytic variable x plays the main role, see Figure 4(bottom). Some
care is needed since the last vertex of the path Q̃1 cannot be marked in this case, hence
the slightly more complicated numerator in this term.

3.2 Solution

Although equations with two catalytic variables are notoriously difficult, Equation (3.1)
is of a very particular kind, as it involves G(x, y), G(1, y), and G(1, 1), but not G(x, 1).
This will enable us to treat (3.1) as two nested equations, each having only one catalytic
variable. In what follows we sketch the resolution, see [5] for more details.
First step: eliminating the variable x (or u). We will work under the change of vari-
ables (2.4), with a new variable v which is to y what u is to x, namely

t = z(1 − z)3 , x =
1 + u

(1 + zu)2 , y =
1 + v

(1 + zv)2 . (3.2)
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We write respectively G̃(u, v), G̃1(v), G̃11 for the quantities G(x, y), G(1, y), G(1, 1) ex-
pressed in the variables z, u, v after the substitutions (3.2).

Making the substitutions (3.2) and using the known expressions of F(x), F(y), Equa-
tion (3.1) takes the form

K̃2(z, u, v)G̃(u, v) = L̃2(z, u, v, G̃1(v), G̃11)

for some rational functions K̃2, L̃2 that can be written explicitly [5]. One easily checks that
the kernel K̃2 has a unique root U0 ≡ U0(z, v) which is a power series in z. Substituting
u = U0 in the last equation, we cancel the left-hand side, hence we also cancel the
right-hand side. We are thus left with the following polynomial equation:

L̃2(z, U0(z, v), v, G̃1(v), G̃11) = 0. (3.3)

The numerator of this equation has 91 terms, but it has only degree one in G̃1(v). At this
stage, we have eliminated the unknown G̃(u, v) and the variable u.
Second step: eliminating the variable y (or v). The last equation, (3.3), is nothing but an
equation with one catalytic variable, which is now the variable v (or x)! Since it is linear
in G̃1(v), we can just use the kernel method again: one first checks that there is a unique
series V0(z) cancelling the kernel, thus giving two equations: the linear and constant
coefficient in G̃1(v) in (3.3), which both vanish when v = V0. Eliminating V0, we obtain
a polynomial equation for the function G̃11 which is not even so big. We obtain:

Theorem 3.2. The function G(1, 1) after the change of variables z ↔ t given by (2.4) satisfies
the polynomial equation C(G(1, 1), z, w) = 0 with

C(h, z, w) = wz(−1 + z)9h3 + (−1 + z)6(2w2z2 − w2z + 2z2 + w − z)h2 + 4wz2 − 4wz + w

−(−1 + z)3(w2z3 − 3w2z2 − 2wz3 + w2z − 2wz2 + z3 + 5wz − 3z2 − 2w + z)h. (3.4)

4 Asymptotics of moments

The two parts of Theorem 1.1 are direct applications of Theorem 1.4, up to computer
algebra calculations done in [5]. In both cases we have ρ = 27

256 , corresponding to z = 1
4 .

In the case of the upper path, we start from (2.7) in Theorem 2.3, which tells us that
the function f (t, s) = H(1, s) is algebraic. With GFUN [12], we directly obtain [5] a
recurrence formula for the derivatives at s = 1 of the form (1.6) with L = 6, where the
hd(t, k) for d = 1..6 are Laurent polynomials in δ =

√
1 − 4z and rational functions of

k. It is automatic to check that the hypotheses of Theorem 1.4 holds with β = 3
4 and

α = 1
2 . One can explicitly check the values of the corresponding constants ad(k), which

are nothing but the coefficients of δ−3d in hd, up to a scaling factor. They are given [5] by

a1(k), . . . , a6(k) = 0,

√
6

96
(3k − 4)(3k − 8), 0, 0, 0, 0, (4.1)
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so the main recurrence formula (1.7) becomes

ck =

√
6(3k − 4)(3k − 8)

96
ck−2 , k > 6.

The initial conditions require to estimate the main singularity of f (1), . . . , f (6), which is
easily done automatically, and it is then a direct check that the solution is given by

ck = 16/(27π) Γ
(

k
2 +

1
3

)
Γ
(

k
2 −

1
3

)√
2 · 4−k63/4 k.

for all k ≥ 0. Applying Theorem 1.4, we directly obtain (1.2), and (1.1) follows for
example from the Carleman criterion. See [5] for full calculations.

The proof of the second half (i.e. (1.3)) follows similarly from Theorem 3.2, this time
with α = 1

2 , β = 3
4 , and L = 9. See [5] again.
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Extended Schur Functions
and Bases Related by Involutions

Spencer Daugherty*1

1Department of Mathematics, North Carolina State University

Abstract. The extended Schur and shin functions are Schur-like bases of QSym and
NSym. We define a creation operator and a Jacobi-Trudi rule for certain shin functions
and show that a similar Jacobi-Trudi rule does not exist for every shin function. We
also define the skew extended Schur functions and relate them to the multiplicative
structure of the shin basis. Then, we introduce two new pairs of dual bases that result
from applying the ρ and ω involutions to the extended Schur and shin functions.
These bases are defined combinatorially via variations on shin-tableaux much like the
row-strict extended Schur functions.

Keywords: Schur-like, QSym, NSym, extended Schur Function, Shin function

1 Introduction

There has been considerable interest over the last decade in studying Schur-like bases
of NSym and QSym. A basis {Sα}α of NSym is generally considered Schur-like basis
if χ(Sλ) = sλ for any partition λ where the forgetful map χ : NSym → Sym gives
the commutative image of an element in NSym. A Schur-like basis {S∗

α}α of QSym is
informally defined as a basis dual to a Schur-like basis {Sα}α of NSym. These bases
are usually defined combinatorially in terms of tableaux that resemble or generalize the
semistandard Young tableaux. The canonical Schur-like bases of NSym and QSym are
respectively the immaculate basis [3], the Young noncommutative Schur basis [8], and
the shin basis [6], as well as the dual immaculate basis, the Young quasisymmetric Schur
basis, and the extended Schur functions.

The shin and extended Schur functions, which are dual bases, are unique among
the Schur-like bases for having arguably the most natural relationship with the Schur
functions. In NSym, the commutative image of a shin function indexed by a partition is
a Schur function, while the commutative image of any other shin function is 0. In QSym,
the extended Schur functions indexed by partitions are equal to Schur functions [6].
The goal of this extended abstract is to answer questions about basis expansions, skew
functions, and multiplicative properties of these two bases and introduce new, related

*sdaughe@nscu.edu.

mailto:sdaughe@ncsu.edu
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bases. In the full paper, we present additional results including a second type of skew
function and connections to the antipode map on NSym [7].

1.1 The Shin and Extended Schur Functions

The dual shin functions were introduced by Campbell, Feldman, Light, Shuldiner, and
Xu in [6] as the duals to the shin functions and defined independently by Assaf and
Searles in [2] as the extended Schur functions, which are the stable limits of polynomials
related to Kohnert diagrams. We use the name “extended Schur functions” but otherwise
retain the notation and terminology of the dual shin functions.

Definition 1.1. Let α and β be a composition and weak composition of n, respectively.
A shin-tableau of shape α and type β is a labeling of the boxes of the diagram of α by
positive integers such that the number of boxes labeled by i is βi, the sequence of entries
in each row is weakly increasing from left to right, and the sequence of entries in each
column is strictly increasing from top to bottom.

Note that shin-tableaux are a direct generalization of semistandard Young tableaux
to composition shapes.

Example 1.2. The shin-tableaux of shape (3, 4) and type (1, 2, 1, 1, 2) are

1 2 2

3 4 5 5

1 2 3

2 4 5 5

1 2 4

2 3 5 5

A shin-tableau of n boxes is standard if each number 1 through n appears exactly once.
The descent set is defined as Des (U)ש! = {i : i + 1 is strictly below i in U} for a standard
shin-tableau U. Each entry i in Des (U)ש! is called a descent of U. The descent composition
of U is defined co (U)ש! = (i1, i2 − i1, . . . , id − id−1, n − id) for Des (U)ש! = {i1, . . . , id}.

The shin reading word of a shin-tableau T, denoted rw ,(T)ש! is the word obtained by
reading the rows of T from left to right starting with the bottom row and moving up.
To standardize a shin-tableau T of size n, we will replace entries in T with the numbers 1
through n to obtain a standard shin-tableau. First, replace the 1’s in T with 1, 2, . . . in the
order they appear in rw .(T)ש! Then replace the 2’s with the next consecutive numbers,
again in the order they appear in rw ,(T)ש! then the 3’s, etc.

For a composition α, the extended Schur function is defined as α∗ש! = ∑T xT where the
sum runs over shin-tableaux T of shape α. Their positive expansions into the monomial
and fundamental bases in terms of shin-tableaux are known [2, 6]. For a composition α,

α∗ש! = ∑
β

Kα,βMβ and α∗ש! = ∑
β

Lα,βFβ, (1.1)

ש! is the hebrew character shin.
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where Kα,β denotes the number of shin-tableaux of shape α and type β, and Lα,β
denotes the number of standard shin-tableaux of shape α with descent composition β.

Example 1.3. The F-expansion of the extended Schur function :(2,3)∗ש!

(2,3)∗ש! = F(2,3) + F(1,2,2)
1 2

3 4 5

1 3

2 4 5

The shin basis of NSym was introduced by Campbell, Feldman, Light, Shuldiner, and
Xu in [6]. Let α and β be compositions. Then β is said to differ from α by a shin-horizontal
strip of size r, denoted α ⊂ ש!

r β, provided for all i, we have βi ≥ αi, |β| = |α|+ r, and for
any i ∈ N if βi > αi then for all j > i, we have β j ≤ αi. The shin functions are defined
recursively based on a right Pieri rule using shin-horizontal strips.

Definition 1.4. The shin basis { α}αש! of NSym is defined as the unique set of functions
αש! such that αHrש! = ∑α⊂ ש!

r β ,βש! where the sum runs over all compositions β which differ
from α by a shin-horizontal strip of size r.

Intuitively, the compositions β in the summation are given by taking diagrams of α

and adding r blocks on the right such that if you add boxes to some row i then no row
below i is longer than the original row i. This is referred to as the overhang rule.

Example 1.5. The following expression can be visualized with the tableaux below.

H(2)(2,3,1)ש! = (2,3,1,2)ש! + (2,3,2,1)ש! + (2,4,1,1)ש! + (2,4,2)ש! + (2,5,1)ש!

Repeated application of this right Pieri rule yields the expansion of a complete ho-
mogeneous noncommutative symmetric function in terms of the shin functions. This
expansion verifies that the extended Schur functions and the shin functions are dual
bases. This allows us to expand the ribbon functions into the shin basis dually to the
expansion of the extended Schur functions expanded into the fundamental basis [2, 6].

Hβ = ∑
α≥ℓβ

Kα,β αש! and Rβ = ∑
β≤ℓα

Lα,β .αש! (1.2)

The extended Schur functions have the special property that λ∗ש! = sλ for a partition
λ. Since the forgetful map χ is dual to the inclusion map from Sym to QSym, χ( (λש! = sλ

when λ is a partition and χ( (αש! = 0 otherwise. Another interesting feature of the
shin functions is their relationship with the other two canonical Schur-like bases, the
immaculate functions and the Young noncommutative Schur functions. Given a partition
λ, the immaculate function Sλ equals the Young noncommutative Schur function ŝλ, but
the shin function λש! differs from the two.
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2 A Creation Operator for Certain Shin Functions

The Schur functions and the immaculate functions can both be defined using creation
operators. In fact, the immaculate basis was originally defined in terms of noncom-
mutative Bernstein operators [3]. It is using these operators that one can prove various
properties of the immaculate basis including the Jacobi-Trudi rule [3], a left Pieri rule [5],
a combinatorial interpretation of the inverse Kostka matrix [1], and a partial Littlewood
Richardson rule [4]. Here we give similar creation operators for certain shin functions
which then allow us to define a Jacobi-Trudi rule. This rule is especially useful because
there is currently no other combinatorial way to expand shin functions into the complete
homogeneous basis.

Definition 2.1. For a composition α = (α1, α2, . . . , αk) with k ≥ 1 and a positive integer
m, define the action of the linear operator ℶm on the complete homogeneous basis by

ℶm(1) = Hm and ℶm(Hα) = Hm,α1,α2,... − Hα1,m,α2,....

Theorem 2.2. If α = (α1, α2, . . . , αk) with k ≥ 1 and 0 < m < α1, then ℶm( (αש! = .m,αש!

This theorem follows from showing inductively that the functions given by ℶm( (αש!
satisfy the right Pieri rule defining the shin functions, and then showing ℶm( (αש! equals
(m,α)ש! by recursive calculation. These operators allow us to construct shin functions
indexed by strictly increasing compositions from the ground up.

Corollary 2.3. Let β = (β1, . . . , βk) where βi < βi+1. Then, ℶβ1 · · ·ℶβk(1) = .βש!

Example 2.4. These creation operators can be used to build up (1,3,4)ש! as follows:

ℶ1ℶ3ℶ4(1) = ℶ1ℶ3(H4) = ℶ1(H(3,4) − H(4,3)) = H(1,3,4) − H(1,4,3) − H(3,1,4) + H(4,1,3).

Using these operators, we define the following Jacobi-Trudi rule to express these
same shin functions as matrix determinants. Let S≥

k (−1) be the set of permutations
σ ∈ Sk such that σ(i) ≥ i − 1 for all i ∈ [k].

Theorem 2.5. Let β = (β1, . . . , βk) be a composition such that βi < βi+1 for all i. Then,

βש! = ∑
σ∈S≥

k (−1)

(−1)σHβσ(1)
· · · Hβσ(k)

.

Equivalently, βש! can be expressed as the matrix determinant

ℶ is the hebrew character beth.
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βש! = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Hβ1 Hβ2 Hβ3 · · · Hβk−2 Hβk−1 Hβk

Hβ1 Hβ2 Hβ3 · · · Hβk−2 Hβk−1 Hβk

0 Hβ2 Hβ3 · · · Hβk−2 Hβk−1 Hβk

0 0 Hβ3 · · · Hβk−2 Hβk−1 Hβk
...

...
... . . . ...

...
...

0 0 0 · · · Hβk−2 Hβk−1 Hβk

0 0 0 · · · 0 Hβk−1 Hβk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
using the noncommutative determinant obtained by expanding along the first row.

We can show by counterexample that there is not a matrix rule of this form for
every shin function, not even those indexed by partitions [7]. It remains open to find a
combinatorial or algebraic way of understanding the expansion of the shin basis into the
complete homogeneous basis for the general case.

3 Skew Extended Schur Functions

To define skew extended Schur functions, we first use an algebraic approach, and then
connect it to tableaux combinatorics. For F ∈ QSym, the operator F⊥ acts on elements
H ∈ NSym based on the relation ⟨H, FG⟩ = ⟨F⊥H, G⟩. For dual bases {Aα}α of QSym
and {Bα}α of NSym this expands as F⊥(H) = ∑α⟨H, FAα⟩Bα.

Definition 3.1. For compositions α and β with β ⊆ α, the skew extended Schur functions
are defined as α/β∗ש! = β⊥ש! ( ש!

∗
α).

By the equation for F⊥ above, we expand α/β∗ש! into various bases as follows.

Proposition 3.2. For compositions β ⊆ α, α/β∗ש! = ∑γ⟨ ,βHγש! α⟩Mγ∗ש! = ∑γ⟨ βש! ,γש! ⟨α∗ש! .γ∗ש!
Furthermore, let Cα

β,γ := ⟨ βש! ,γש! .⟨α∗ש! Then, βש! γש! = ∑α Cα
β,γ .αש!

Using the properties of the forgetful map and the shin basis, we have the following
statement about the coefficients that appear in the skew extended Schur functions.

Proposition 3.3. Let α, β, γ be compositions that are not partitions and let λ, µ, ν be partitions.
Then, Cν

λ,β = Cν
α,µ = Cν

α,β = 0 and Cν
λ,µ = cν

λ,µ, where cν
λ,µ are the usual Littlewood-Richardson

coefficients.

The skew extended Schur functions can also be expressed in terms of skew shin-
tableaux.

Proposition 3.4. For compositions α and β such that β ⊆ α, ⟨ ,βHγש! ⟨α∗ש! is equal to the number
of skew shin-tableau of shape α/β and type γ. Moreover, α/β∗ש! = ∑T xT, where the sum runs
over skew shin-tableau T of shape α/β.
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1

1 2 2

1

1 2 3

1

2 3 4

2

1 3 4

2

3 3 3
· · ·

(2,1)/(3,4)∗ש! = x2
1x2

2 + x2
1x2x3 + x1x2x3x4 + x1x2x3x4 + x2x3

3 + . . .

Skew shin-tableaux of shape λ/µ where λ and µ are partitions are simply skew
semistandard Young tableaux. By Proposition 3.4, these skew extended Schur functions
are equal to the usual skew Schur functions, λ/µ∗ש! = sλ/µ.

4 Involutions on QSym and Nsym

In QSym, we consider three involutions defined on the fundamental basis and their
dual maps in NSym [8]. They each are defined as extensions of involutions on com-
positions. The complement of a composition α is defined αc = comp(set(α)c), where
set((α1, . . . , αk)) = {α1, α1 + α2, . . . , α1 + · · · + αk−1} if α is a composition of n, and
comp({s1, . . . , sj}) = (s1, s2 − s1, . . . , sj − sj−1, n− sj), for {s1, . . . , sj} ⊆ [n− 1]. The reverse
of (α1, . . . , αk) is αr = (αk, . . . , α1). The transpose of α is defined by αt = (αr)c = (αc)r.

Definition 4.1. The involutions ψ, ρ and ω on QSym and NSym are defined as

ψ(Fα) = Fαc ρ(Fα) = Fαr ω(Fα) = Fαt

ψ(Rα) = Rαc ρ(Rα) = Rαr ω(Rα) = Rαt ,

extended linearly. All three involutions on QSym and ψ on NSym are automorphisms,
while ρ and ω on NSym are anti-automorphisms.

Note that we use the same notation for the corresponding involutions on QSym and
NSym. These automorphisms commute and ω = ρ ◦ ψ = ψ ◦ ρ. When ω and ψ are
restricted to Sym, they are both equivalent to the classical involution ω : Sym → Sym
which acts on the Schur functions by ω(sλ) = λ′ where λ′ is the conjugate of λ. The
conjugate of a partition λ is found by flipping the diagram of λ over the diagonal.

Applying ψ to the extended Schur and shin functions recovers the row strict extended
Schur and row strict extended shin functions (R (ש! of Niese, Sundaram, van Willigen-
burg, Vega, and Wang in [9]. We define two new pairs of dual bases ( andש! R

(ש! in QSym
and NSym by applying ρ and ω to the extended Schur and shin functions as

ψ( (α∗ש! = R α∗ש! ρ( (α∗ש! =

∗ש!
αr ω( (α∗ש! = R

∗ש!
αr

ψ( (αש! = R αש! ρ( (αש! =

ש!

αr ω( (αש! = R

ש!

αr .

We give combinatorial interpretations of these two new pairs of bases in terms of
variations on shin-tableaux. While specific definitions are to follow, we first describe
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intuitively how ψ, ρ, and ω act on the tableaux defining each basis. Recall that shin-
tableaux have weakly increasing columns and strictly increasing rows. The ψ map
switches whether the strictly changing condition is on rows or columns (while the other
has a weakly changing condition). The ρ map switches the row condition from increas-
ing to decreasing, or vice versa. The ω map does both. Through this combinatorial
interpretation, each of the four pairs of dual bases is related to any other by one of the
three involutions ψ, ρ, or ω as shown in the figure below.

R ש!

ש!

R

ש!

ש!
ψ

ψ

ω

ω

ρ ρ

Figure 1: Mappings between shin variants in NSym.

Essentially, ψ, ρ, and ω in QSym and NSym collectively serve as the analogue to
the classical ω in Sym. In Sym, the Schur basis is its own image under ω but in QSym
and NSym our Schur-like basis is instead part of a system of four related bases that
are in a sense closed under the three involutions ψ, ρ, and ω. While the combinatorics
of these bases are similar, they may have very different applications. For example, the
quasisymmetric Schur basis and the Young quasisymmetric Schur basis are related by
the involution ρ but the former is much more compatible with Macdonald polynomials
while the latter is more useful when working with Schur functions [8].

The table below serves to summarize the tableaux defined over the course of this
section. It lists each type of tableaux, the position of i + 1 relative to i that makes i a
descent, the order the boxes appear in the reading word (Left, Right, Top, Bottom), the
condition on entries of each row, and the condition on entries in each column.

Descent Reading Word Rows Columns
Shin strictly below L to R, B to T weakly increasing strictly incr.

Row-strict weakly above L to R, T to B strictly increasing weakly incr.
Reverse strictly below R to L, B to T weakly decreasing strictly incr.

Row-strict rev. weakly above R to L, T to B strictly decreasing weakly incr.



8 Spencer Daugherty

We now briefly review row-strict extended Schur and row-strict shin functions but
reserve more details for the full paper [7]. Let α be a composition and let β be a weak
composition, allowing for zero entries. A row-strict shin-tableaux (RSST) of shape α

and type β is a filling of the composition diagram of α with positive integers such that
each row strictly increases from left to right, each column weakly increases from top to
bottom, and each integer i appears βi times. A standard row-strict shin-tableaux (SRSST)
with n boxes is one containing the entries 1 through n each exactly once. For a compo-
sition α, define the row strict extended Schur function as R α∗ש! = ∑T xT, where the sum
runs over all row-strict shin-tableaux T of shape α. The row strict shin functions are
defined as the duals in NSym to the row strict extended Schur functions in QSym.

For a standard row-strict shin-tableau U, the descent set is defined to be DesR!ש(U) =
{i : i + 1 is weakly above i in U}. Each entry i in DesR (U)ש! is called a descent of U. The
descent composition of U is defined to be coR (U)ש! = (i1, i2 − i1, . . . , id − id−1, n − id) for
DesR (U)ש! = {i1, . . . , id}. Equivalently, the descent composition is found by counting the
number of entries in U (in the order they are numbered) between each descent. Note
that the set of standard row-strict shin-tableaux is exactly the same as the set of standard
shin-tableaux. Using the framework of standard row-strict shin-tableaux, it is shown
in [9] that for a composition α, the row-strict extended Schur function expands into the
fundamental basis as R α∗ש! = ∑U FcoR!ש(U), where the sum runs over all standard row-strict
shin-tableaux.

Example 4.2. The F-expansion of the row-strict extended Schur function R :(2,3)∗ש!

R (2,3)∗ש! = F(1,2,1,1) + F(2,2,1)
1 2

3 4 5

1 3

2 4 5

We can now relate the extended Schur and row-strict extended Schur functions by
using ψ on their F-expansions. This relationship follows from the fact that the set of
standard tableaux is the same but the definitions of descent sets are in a sense comple-
mentary and the map ψ is using complements. For all compositions α, ψ( (α∗ש! = R ,α∗ש! and
{R α}α∗ש! is a basis of QSym. Additionally, ψ( (αש! = R αש! and {R α}αש! is a basis of NSym.

4.1 Reverse extended Schur and shin functions.

Let α be a composition and β a weak composition. A reverse shin-tableau of shape α and
type β is a composition diagram α filled with positive integers that weakly decrease
along the rows and strictly increase along the columns (from top to bottom) where each
positive integer i appears βi times.

Definition 4.3. For a composition α, the reverse extended Schur function is defined as

∗ש!
α = ∑T xT, where the sum runs over all reverse shin-tableaux T of shape α.
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A standard reverse shin-tableau of shape α is one containing the entries 1 through n
each exactly once. For a standard reverse shin-tableau S, the descent set is defined as
Des (S)ש! = {i : i + 1 is strictly below i in S}. Each entry i in Des (S)ש! is called a descent of
S. The descent composition of S is defined co (S)ש! = comp(Des .((S)ש! Define f lip(S) to be
the tableau U obtained by flipping S horizontally (in other words, reversing the order of
the rows of S) and then replacing each entry i with n − i. It is easy to see that the map
f lip is an involution between the set of standard shin-tableaux and the set of standard
reverse shin-tableaux.

f lip
(

1 3 4

2 5

)
= 4 1

5 3 2

The reverse shin-reading word of a reverse shin-tableau T, denoted rw ,(T)ש! is the
word obtained by reading the rows of T from right to left starting with the top row and
moving down. To standardize a reverse shin-tableau T, replace the 1’s with 1, 2, . . . in the
order they appear in rw ,(T)ש! then the 2’s starting with the next consecutive number, etc.

Proposition 4.4. For a composition α, ∗ש!
α = ∑S Fco ,(S)ש! where the sum runs over standard

reverse shin-tableaux U of shape α.

Example 4.5. The F-expansion of the reverse extended Schur function ∗ש!
(3,2):

∗ש!
(3,2) = F(3,2) + F(2,2,1)

3 2 1

5 4

4 2 1

5 3

The descent composition of a standard shin-tableau U is the reverse of the descent
composition of the standard reverse shin-tableau given by f lip(U). Using this fact, we
show that the reverse extended Schur functions are the image of the extended Schur
functions under ρ.

Theorem 4.6. For a composition α, ρ( (α∗ש! =

∗ש!
αr , and { ש!

α}α is a basis of QSym.

Now, we define the reverse shin basis by applying ρ to the shin basis.

Definition 4.7. For a composition α, the reverse shin function is defined as ש!

α = ρ( .(αrש!

By the invariance of ρ under duality, we have that the reverse shin functions are the
dual basis to the reverse extended Schur functions, that is ⟨ ש!

α, ∗ש!
β⟩ = δα,β.

Let K

ש!

α,β be the number of reverse shin-tableaux of shape α and type β, and let L

ש!

α,β
be the number of reverse shin-tableaux with shape α and descent composition β. Then,

∗ש!
α = ∑

β

K

ש!

α,βMβ = ∑
β

L

ש!

α,βFβ and Hβ = ∑
α

K

ש!

α,β

ש!

α and Rβ = ∑
α

L

ש!

α,β

ש!

α.

By applying ρ, we can translate many of the results on the shin functions to the
reverse shin functions.
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Theorem 4.8. For compositions α, β and a positive integer m,

1. Hm

ש!

α = ∑
αr⊂ ש!

mβr

ש!

β.

2. Hβ = ∑
α

Kαr,βr

ש!

α and Rβ = ∑
α

Lαr,βr

ש!

α.

3. ∗ש!
λr = sλ. Also, χ(

ש!

λr) = sλ and χ(

ש!

α) = 0 when αr is not a partition.

4. For a composition γ such that γi > γi+1 for all 1 ≤ i ≤ ℓ(γ),

ש!

γ = ∑
σ∈Sℓ(γ)

(−1)σHγσ(1) · · · Hγσ(ℓ(γ))
,

where the sum runs over σ ∈ Sℓ(γ) such that σ(i) ≥ i − 1 for all i ∈ [ℓ(γ)].

4.2 Row-strict reverse extended Schur and shin functions.

Let α be a composition and β be a weak composition. A row-strict reverse shin-tableau
(BST) of shape α and type β is a filling of the diagram of α with positive integers such
that the entries in each row are strictly decreasing from left to right and the entries in
each column are weakly increasing from top to bottom where each integer i appears βi
times. These are essentially a row-strict version of the reverse shin-tableaux.

Definition 4.9. For a composition α, the row-strict reverse extended Schur function is
defined as R

∗ש!
α = ∑

T
xT, where the sum runs over all row-strict reverse shin-tableaux T

of shape α.

A row-strict reverse shin-tableau of shape α is standard if it includes the entries 1
through n each exactly once. For a standard row-strict reverse shin-tableau S, the de-
scent set is defined to be DesR (S)ש! = {i : i + 1 is weakly above i in S}. Each entry i
in DesR (S)ש! is called a descent of S. Then, we define the descent composition of S to be
coR (S)ש! = comp(DesR .((S)ש! Equivalently, the descent composition is found by counting
the number of entries in S (in the order they are numbered) between each descent. Note
that the set of standard row-strict reverse shin-tableaux is exactly the same as the set of
standard reverse shin-tableaux.

The row-strict reverse shin reading word of a row-strict reverse shin-tableau T, denoted
rwR

(T)ש! is the word obtained by reading the rows of T from right to left starting with
the bottom row and moving up. We can standardize a standard row-strict reverse shin-
tableau as follows. To standardize a row-strict reverse shin-tableau T, replace the 1’s in
T with 1, 2, . . . in the order they appear in rwR

,(T)ש! then the 2’s starting with the next
consecutive integer, then 3’s, etc.
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Proposition 4.10. For a composition α, R ∗ש!
α = ∑S FcoR ,(S)ש! where the sum runs over standard

row-strict reverse shin-tableaux S.

Example 4.11. The F-expansion of the reverse extended Schur function R

∗ש!
(3,2):

R

∗ש!
(3,2) = F(1,1,2,1) + F(1,2,2)

3 2 1

5 4

4 2 1

5 3

The descent compositions of row-strict reverse shin tableaux of shape αr are comple-
mentary to the descent compositions of reverse tableaux of shape αr, thus ψ(

ש!

αr) = R

∗ש!
αr .

Given that ∗ש!
αr = ρ( (α∗ש! and ψ ◦ ρ = ω, we have the following result.

Theorem 4.12. For a composition α, ω( (α∗ש! = R

∗ש!
αr and {R ∗ש!

α}α is a basis of QSym.

The row-strict reverse extended Schur basis is not equivalent to the extended Schur
basis, the row-strict extended Schur basis, or the reverse extended Schur basis. Again,
it is simple to check that there exist row-strict reverse extended Schur functions that
are not elements in the extended Schur, row-strict extended Schur, or reverse extended
Schur bases. Like with ψ and ρ, it follows from the dual definitions of ω in NSym and
QSym that ω is invariant under duality. Thus, the row-strict reverse extended Schur
functions are dual to the row-strict reverse shin functions when defined as follows.

Definition 4.13. For a composition α, define the row-strict reverse shin function R

ש!

α =
ω( .(αrש!

Let KR

ש!

α,β be the number of row-strict reverse shin-tableaux of shape α and type β,
and let LR

ש!

α,β be the number of standard row-strict reverse shin-tableaux with shape α

and descent composition β. The expansions of the row-strict reverse extended Schur
functions into the monomial and fundamental bases follow those of the extended Schur
functions. That is,

R

∗ש!
α = ∑

β

KR

ש!

α,βMβ = ∑
β

LR

ש!

α,βFβ, and Hβ = ∑
α

KR

ש!

α,βR

ש!

α and Rβ = ∑
α

LR

ש!

α,βR

ש!

α.

Now, we apply ω to the various results on the shin and extended Schur bases and
find analogous results on the row-strict reverse shin and row-strict reverse extended
Schur bases.

Theorem 4.14. For compositions α, β and a positive integer m,

1. EmR

ש!

α = ∑
αr⊂ ש!

mβr

R

ש!

β.

2. Eβ = ∑
α

Kαr,βrR

ש!

α and Rβ = ∑
α

Lαr,βtR

ש!

α
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3. R

∗ש!
λr = sλ′ . Also, χ(R

ש!

λr) = sλ′ and χ(R

ש!

α) = 0 when αr is not a partition.

4. For a composition γ such that γi > γi+1,

R

ש!

γ = ∑
σ∈Sℓ(γ)

(−1)σEγσ(1)Eγσ(2) · · · Eγσ(ℓ(γ))
,

where the sum runs over σ ∈ Sℓ(γ) such that σ(i) ≥ i − 1 for all i ∈ [ℓ(γ)].
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Supersolvable posets and fiber-type arrangements
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Abstract. We develop a theory of modularity and supersolvability for chain-finite
geometric posets, extending that of Stanley for finite lattices and building a new con-
nection between combinatorics and topology. From a combinatorial point of view, our
theory features results about factorizations of the characteristic polynomials, dovetails
with established notions on geometric semilattices, and behaves well under quotients
by translative group actions. We also establish a topological counterpart in the con-
text of toric and abelian arrangements, akin to Terao’s fibration theorem connecting
bundles of hyperplane arrangements to supersolvability of their intersection lattice.
From this, we obtain a combinatorially determined class of K(π, 1) toric arrangements.
Moreover, we characterize combinatorially when our toric arrangement bundles are
pulled back from Fadell–Neuwirth’s bundles of configuration spaces, and establish
an analogue of Falk–Randell’s formula relating the Poincaré polynomial to the lower
central series of the fundamental group.

Keywords: supersolvable lattice, hyperplane arrangement, configuration space

1 Introduction

The theory of supersolvable lattices is a cornerstone of enumerative, algebraic and topo-
logical combinatorics. Its foundations were laid in work by Stanley [20, 19], motivated
by the study of subgroups in supersolvable groups and building on the classical notion
of modular elements in lattices.

Supersolvable lattices arise in a variety of contexts, e.g., the study of factorizations of
characteristic polynomials [16] and of shellable posets [6], as well as in convex geometry
[1] and representation theory [8]. More generally, modularity is a key concept in lattice
theory, see [5, II.§7]. Several of these connections interact in the context of matroid
theory, where modular flats exhibit a rich structure [7].

A seminal result by Terao [21] shows the equivalence between supersolvability of
the lattice of flats of a matroid and an inductive fibration property of the complement
manifold of any arrangement of hyperplanes that realizes the given matroid over C.
This opens up a powerful bridge between combinatorics and topology.

*bibby@math.lsu.edu. C.B. was partially supported by NSF DMS-2204299.
†emanuele.delucchi@supsi.ch

mailto:bibby@math.lsu.edu
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More precisely, Terao’s result states that the intersection lattice of a complex hyper-
plane arrangement A is supersolvable if and only if the arrangement A is "fiber type",
i.e., there is a tower of arrangements ∅ = A0 ⊊ A1 ⊊ . . . ⊊ Ad = A such that the natural
projection of complements M(Ai) → M(Ai−1) is a linear fibration. Falk and Randell’s
study of fiber-type arrangements [14] unveiled a wealth of combinatorial-topological
structure echoeing classical features of configuration spaces. This includes for instance
a combinatorial formula for the lower central series of the fundamental group of the
arrangement’s complement [14, Theorem 4.1] and the proof that the fibrations arising in
fiber-type arrangements are pullbacks from the classical Fadell-Neuwirth bundle for the
configuration space of points in the plane [9].

A major point of interest of fiber-type arrangements is related to the long-standing
K(π, 1)-problem for hyperplane arrangements, asking for a combinatorial characteriza-
tion of asphericity of the arrangement’s complement. Indeed, fiber-type hyperplane ar-
rangements have aspherical complements, and they are characterized by a combinatorial
condition: supersolvability of the intersection lattice.

Here1 we devise a general theory of modular elements and supersolvability for posets
beyond lattices – so-called "geometric posets" (see Definition 1). On the combinatorial
side we derive some fundamental results about factorization of characteristic polynomi-
als (Theorem 2) and quotients by poset automorphisms (Theorem 1).

When the geometric poset is a semilattice, our definition of supersolvability agrees
with that given by Falk and Terao [15] in studying intersection posets of affine hyper-
plane arrangements. Moreover, we prove that a geometric semilattice is supersolvable
if and only if its canonical extension to a geometric lattice is supersolvable [2, Theorem
4.2.4]. This leads to a first topological consequence of our work: an affine analogue of
Terao’s fibration theorem [2, Theorem 4.3.3].

Just as for classical lattice supersolvability, our theory has a strong topological coun-
terpart in terms of toric arrangements (see Definition 6). Indeed, the notion of "geo-
metric poset" Definition 1 seems to provide the right level of generality for studying
intersection data of an arrangement of subtori in a complex torus.

The study of toric arrangements is a recent field of research that has given rise to
combinatorial structures such as arithmetic Tutte polynomials, arithmetic matroids, ma-
troid schemes and group actions on semimatroids [18, 10, 4], to name a few. In particular,
the poset of intersections of a toric arrangement has been studied from different points
of view [17, 12]. Our notion of supersolvability applies to intersection posets of toric
arrangements, and has several implications for the topology of the arrangement comple-
ment, see §3.

1This is an extended abstract of [2].
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2 Supersolvable posets

We recall basic ideas about posets and supersolvable geometric lattices. We then de-
fine M- and TM-ideals (Definition 3) and the corresponding notions of supersolvability
(Definition 4).

2.1 Generalities about posets

Let P be a partially ordered set (or “poset”) with partial order relation ≤. For x, y ∈ P
write x < y when x ≤ y and x ̸= y, and x ⋖ y when x < y and x ≤ z < y implies
x = z. Given any x ∈ P let P<x := {y ∈ P : y < x}, partially ordered by the restriction
of <. The posets P≤x, P>x and P≥x are defined analogously. The interval between
two elements x, y ∈ P is the set [x, y] := P≥x ∩ P≤y. We refer to [20] for standard
poset terminology and notation. Departing slightly from standard notation, for any two
elements x, y ∈ P , we define x ∨ y to be the set of minimal upper bounds and x ∧ y to be
the set of maximal lower bounds. That is:

x ∨ y := min{z ∈ P : z ≥ x and z ≥ y}, x ∧ y := max{z ∈ P : z ≤ x and z ≤ y}.

More generally, denote by
∨

T and
∧

T the sets of minimal upper bounds and maximal
lower bounds of a set T ⊆ P .

A complement of an element x in a chain-finite poset P is any z ∈ P such that x ∨ z ⊆
maxP and x ∧ z ⊆ minP . Given a subset X ⊆ P we say that z ∈ P is a complement to
X if z is a complement of every x ∈ X.2

2.2 Locally geometric posets

Recall that a chain-finite lattice L is called geometric if and only if, for all x, y ∈ L:

x ⋖ y if and only if there is an atom a ∈ A(L) with a ̸≤ x, y = x ∨ a.

Definition 1 (Locally geometric and geometric posets). A graded, bounded below poset
P is locally geometric if, for every x ∈ P , the subposet P≤x is a geometric lattice. A
locally geometric poset P is geometric if for all x, y ∈ P :

(‡‡) if rk(x) < rk(y) and I ⊆ A(P) is such that
∨

I ∋ y and |I| = rk(y), then there is
a ∈ I such that a ̸≤ x and a ∨ x ̸= ∅.

Remark 1. We do not require P itself to even be a (semi)lattice. If P is a lattice, then it is
locally geometric if and only if it is geometric. A geometric (semi)lattice in the sense of
[22] is precisely a (semi)lattice satisfying condition (‡‡). Further note that if P is locally
geometric, then so are P≤x and P≥x for any x ∈ P .

2Notice that this definition generalizes the usual one for lattices.
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Example 1. A classical example of a geometric lattice is a Boolean lattice Bn, the set of
all subsets of [n] = {1, 2, . . . , n} ordered by inclusion. A simplicial poset, in which every
closed interval is isomorphic to a Boolean lattice, is then a locally geometric poset. One
such example is depicted in Figure 1a: this is a geometric poset that is not a lattice nor a
semilattice.

(a) A geometric poset. (b) A locally geometric but
non-geometric poset

(c) A ranked, but not locally
geometric, poset.

Figure 1

Example 2. The poset of Figure 1b is locally geometric but not geometric.

2.3 Supersolvable geometric lattices

There are several equivalent definitions for a modular element in a geometric lattice (see
eg. [7, Theorem 3.3]). The one we state below is the most useful for our setting and
is due to Stanley [19]. We also extend Stanley’s definition of supersolvable lattices [20,
Corollary 2.3] to the context of chain-finite lattices.

Let L be a chain-finite lattice. Then L has a unique minimal element 0̂ and a unique
maximal element 1̂. Let x ∈ L. The complements of x in L are the elements y ∈ L such
that x ∧ y = 0̂ and x ∨ y = 1̂.

Definition 2. An element x in a geometric lattice L is modular if the complements of x
form an antichain. A geometric lattice L is supersolvable if there is a chain 0̂ = y0 <
y1 < · · · < yn = 1̂ where each yi is a modular element with rk(yi) = i.

2.4 Ideals in locally geometric posets

Let P be a locally geometric poset. An order ideal in P is a downward-closed subset.
An order ideal is pure if all maximal elements have the same rank. An order ideal Q is
join-closed if T ⊆ Q implies

∨
T ⊆ Q.

Definition 3 (M-ideals and TM-ideals). An M-ideal of a locally geometric poset P is a
pure, join-closed order ideal Q ⊆ P such that:

(1) if y ∈ Q and a ∈ A(P) such that a ∨ y = ∅ then a ∈ Q, and
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(2) for every x ∈ max(P), there is some y ∈ max(Q) such that y is a modular element
in the geometric lattice P≤x.

An M-ideal Q in a locally geometric poset P is a TM-ideal if |a ∨ y| = 1 for all y ∈ Q
and all a ∈ A(P) \ A(Q).

Remark 2. Our definition of an M-ideal extends Definition 2: An order ideal Q in a
geometric lattice L is an M-ideal if and only if Q = L≤y for some modular element y.

Example 3. Consider the poset P in Figure 2b. The subposet {0̂, 2, 3} is a TM-ideal; the
subposet {0̂, 4} is an M-ideal that is not a TM-ideal. Note that in every locally geometric
poset P , both P and {0̂} are M-ideals.

0̂

1 2 3

a b

(a) A supersolvable, but not
strictly supersolvable, poset.

0̂

1 2 3 4

a b

(b) A strictly supersolvable
poset.

0̂

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

(c) A “locally” supersolvable,
but not supersolvable, poset.

Figure 2

2.5 Supersolvability in geometric posets

We are now prepared to present our definition of a supersolvable locally geometric poset,
which extends the definition of a supersolvable geometric lattice (cf. Definition 2).

Definition 4. A locally geometric poset P is supersolvable if there is a chain

0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = P

where each Qi is an M-ideal of Qi+1 with rk(Qi) = i. If moreover every Qi is a TM-ideal
of Qi+1 we call P strictly supersolvable.

Example 4. Any rank-one locally geometric poset is strictly supersolvable. The poset P
from Example 3 is strictly supersolvable via the chain 0̂ ⊂ {0̂, 2, 3} ⊂ P .

Example 5. The poset P from Figure 2a is not strictly supersolvable: its only proper
M-ideals are P≤1 and P≤3, and the fact that |1 ∨ 3| = 2 means neither is a TM-ideal.
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If a locally geometric poset is supersolvable, then every closed interval P≤x is a
supersolvable geometric lattice. However, this “local” supersolvability is not enough for
P itself to be supersolvable, as demonstrated in the following example.

Example 6. Consider the poset P depicted in Figure 2c. Every closed interval in P is su-
persolvable (since every Boolean lattice is), however it is not itself supersolvable. Indeed,
the only proper order ideals which are pure and join-closed are principal, that is, P≤x for
some rank-one element x. However, such an order ideal cannot satisfy Definition 3.(2)
since no single element is covered by all maximal elements.

Remark 3. A geometric lattice L satisfies Definition 4 if and only if it satisfies the super-
solvability criterion of Definition 2. In a geometric semilattice L, M-ideals and TM-ideals
are equivalent, thus L is supersolvable if and only if it is strictly supersolvable.

For geometric posets, M-ideals can be characterized using partitions of atoms [2,
Theorem 4.1.2.], providing the following characterization of supersolvability, reminiscent
of [15, Remark 2.6] for geometric semilattices.

Proposition 1. ([2, Corollary 4.1.3]) Let P be a geometric poset. Then P is supersolvable if
and only if there is a chain {0̂} = Q0 ⊂ Q1 ⊂ . . . ⊂ Qn = P of pure, join-closed order
ideals of P with rk(Qi) = i and so that for every i = 1, . . . , n and any two distinct a1, a2 ∈
A(Qi) \ A(Qi−1) and every x ∈ a1 ∨ a2 there is a3 ∈ A(Qi−1) with x > a3.

Example 7. Dowling posets [3] form a class of locally geometric posets that generalize
partition lattices and Dowling lattices, which are known to be supersolvable geometric
lattices [11, 20]. We can show [2, Proposition 2.6.1.] that, for any positive integer n, finite
group G, and finite G-set S, the Dowling poset Dn(G, S) is strictly supersolvable.

2.6 Group actions

Let G be a group. An action of G on a poset P is any group homomorphism G →
Aut(P) from G to the group of automorphisms of P . Given a group element g ∈ G it
is customary to denote the associated automorphism by g : P → P . For x ∈ P we will
write gx for g(x). Following [10], we focus on the following special type of action.

Definition 5. Let P be a poset with an action of a group G. We call the action translative
if x ∨ gx ̸= ∅ implies x = gx for every x ∈ P and every g ∈ G.

Write Gx = {gx : g ∈ G} for the orbit of an x ∈ P under G. On the set of orbits
P/G := {Gx : x ∈ P} we consider the relation given by Gx ≤ Gy if there is g ∈ G with
x ≤ gy. If the action is translative, this is a partial order relation on P/G.

Theorem 1. Let P be a locally geometric poset with a translative action of a group G and let
Q be a G-invariant subposet of P . If Q is an M-ideal in P , then Q/G is an M-ideal in P/G.
Moreover, if P satisfies (‡‡), the converse also holds.
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2.7 Characteristic polynomial

The characteristic polynomial of any bounded-below poset P with a rank function rk is

χP (t) := ∑
x∈P

µP (x)trk(P)−rk(x),

where µP is the Möbius function of P . A feature of supersolvable geometric lattices is
that their characteristic polynomial decomposes into linear factors over Z. We show that
this is true also for strictly supersolvable posets.

Theorem 2. Let Q be a TM-ideal of a locally geometric poset P with rk(Q) = rk(P)− 1, and
let a = |A(P) \ A(Q)|. Then

χP (t) = χQ(t) · (t − a).

In particular, if P is strictly supersolvable via the chain of TM-ideals 0̂ = Q0 ⊂ Q1 ⊂ · · · ⊂
Qn = P , and ai = |A(Qi) \ A(Qi−1)| for each i, then

χP (t) =
n

∏
i=1

(t − ai).

Remark 4. The assumption that Q is a TM-ideal in Theorem 2 is necessary, as demon-
strated in the following examples. Accordingly, a poset being supersolvable is not
enough for its characteristic polynomial to factor completely over Z.

Example 8. Consider the poset P depicted in Figure 2 (see also Example 12). Its charac-
teristic polynomial is

χP (t) = t2 − 4t + 4 = (t − 2)(t − 2).

This agrees with the fact that the TM-ideal Q = {0̂, 2, 3} in Figure 2b has χQ(t) = t − 2
and |A(P) \ A(Q)| = 2.

Example 9. Consider again the poset P in Figure 2a. It is supersolvable, with {0̂, 1}
and {0̂, 3} both M-ideals. However, it is not strictly supersolvable and its characteristic
polynomial χP (t) = t2 − 3t + 3 does not factor over the integers.

3 Toric Arrangement Bundles

3.1 Toric Arrangements

Fix a finitely generated free abelian group Γ ∼= Zd and let T = Hom(Γ, C×) ∼= (C×)d be
the complex torus.



8 Christin Bibby and Emanuele Delucchi

Definition 6. A toric arrangement is a collection {Hα : α ∈ A} for some finite set A ⊆ Γ,
where

Hα := {t ∈ T : t(α) = 0}.

We will often refer to an arrangement {Hα : α ∈ A} simply by A when there is no
confusion. The complement of A is denoted by

M(A) := T \
⋃

α∈A
Hα.

We only consider toric arrangements that are essential, i.e., where A generates a full
subgroup of Γ.

Example 10. Let Γ = Z2. The arrangement A = {α1 = (1, 0), α2 = (0, 1), α3 = (1, 2)}
yields three subtori in C× × C×, cut out by equations x = 1, y = 1, and xy2 = 1. The
real part, in S1 × S1, is depicted in Figure 3a.

(a) The arrangement A from Example 10 is depicted in
S1 × S1, with H1 in green, H2 in red, and H3 in blue.

T

H1 H2 H3

(1, 1) (1,−1)

(b) The poset of layers P(A).

Figure 3

3.2 Poset of layers

The intersection data of a toric arrangement may be encoded in a geometric poset.

Definition 7. The poset of layers of an arrangement A is the set P(A) whose elements
are the nonempty connected components of intersections

⋂
α∈S Hα where S ⊆ A, par-

tially ordered by reverse inclusion.

By convention, T is the unique minimum element of P(A). The atoms of P(A) are
precisely the connected components of the Hα, where α ∈ A.

Remark 5. The poset of layers for a toric arrangement is indeed a geometric poset. The
lift of all Hα, α ∈ A, to the universal cover of T is an arrangement A↾ of affine subspaces
in Cd. Its poset of layers P(A↾) is a geometric semilattice and the action on A↾ of the
group of deck transformations induces a translative action of Zd on P(A↾). Then P(A)
is isomorphic to the quotient P(A↾)/Zd (see [10, Lemma 9.8]), and thus it is geometric
(via Theorem 1).
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Example 11. Let A be the toric arrangement from Example 10. The Hasse diagram for
its poset of layers P(A) is depicted in Figure 3b. Notice that this poset was seen in
Figure 2a and is supersolvable, with M-ideal given by P≤H1 or P≤H3 (see Example 5).

Example 12. Let Γ = Z2 and A = {α1 = (1, 0), α2 = (0, 2), α3 = (1, 2)}. Figure 4c
depicts the corresponding H1, H2, and H3 in S1 × S1 and Figure 2b depicts the Hasse
diagram for its poset of layers. As seen in Example 3 this poset is strictly supersolvable;
the maximal elements of its proper TM-ideal are the two connected components of H2.

⊇

(a) A fibration whose fibers
are homeomorphic to S1

with three punctures.

⊇

−1t ̸= −1

(b) This is not a fibration,
as indicated by the two non-
homeomorphic fibers.

⊇

(c) A fibration whose fibers
are homeomorphic to S1

with two punctures.

Figure 4: Each figure represents a restriction of the projection S1 × S1 → S1.

3.3 Characterization of fibrations

A subgroup Y of T will be called admissible if there is a rank-one direct summand Γ′ ⊆ Γ
such that Y is the image of the injection ε∗ : Hom(Γ′, C×) → Hom(Γ, C×) induced by
the projection ε : Γ → Γ′. When Y is admissible, the corresponding projection

p : T → T/Y ∼= Hom(Γ/Γ′, C×)

is a section of the map induced by the quotient q : Γ → Γ/Γ′. This allows us to define
toric arrangements

AY := {α ∈ A : Hα ⊇ Y} A/Y := q(AY) ⊆ Γ/Γ′,

in T and in T/Y, respectively. Then the projection p : T → T/Y restricts to a map on
arrangement complements p̄ : M(A) → M(A/Y) and induces an isomorphism of posets
P(AY) ∼= P(A/Y).

Definition 8. An arrangement A is fiber-type if there is a chain of subgroups Y1 ⊆
. . . Yd−1 ⊆ Yd = (C×)d such that for every projection pi : Yi → Yi/Yi−1 the induced
map p̄i is a fibration on arrangement complements whose fiber is homeomorphic to C×

minus a finite set of points.
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Remark 6. The poset of layers P(AY) may be viewed as a subposet of P(A). Its atoms
are the atoms of A that either contain Y or are disjoint from it. For any α ̸∈ AY, every
connected component of Hα will intersect Y nontrivially. Moreover, if Y ∈ P(A), then
the maximal elements of P(AY) are cosets of Y.

We prove in [2, Theorem 3.3.1.] that P(AY) is an M-ideal of P(A) if and only if
there is an integer ℓ such that the fibers of the projection M(A) → M(A/Y) are all
homeomorphic to C× with ℓ points removed. The number of punctures can be counted
by examining how the hypersurfaces not in P(AY) intersect Y or its translates. When
P(AY) is an M-ideal, the map is moreover locally trivial. Iterating this then yields:

Theorem 3 (Fibration Theorem [2, Theorem A]). An essential toric arrangement is fiber-type
if and only if its poset of layers is supersolvable.

Example 13. Consider the arrangement from Example 10 (see also Figure 2a). Letting
Y = H1, the projection M(A) → M(A/Y) is depicted in Figure 4a. As the picture sug-
gests, this map is a fibration with fiber homeomorphic to T with three points removed.
On the other hand, letting Y = H2 the projection M(A) → M(A/Y) is not a fibration.
This is evident in Figure 4b, which depicts two non-homeomorphic fibers.

This agrees with our observation in Example 3 that in the poset of layers P = P(A),
the order ideal P≤H1 is an M-ideal while P≤H2 is not.

From Theorem 3, Falk and Randell’s arguments in [14] can be adapted to prove the
following results.

Theorem 4 (Asphericity, [2, Corollary B]). If the poset of layers of a toric arrangement is
supersolvable, then the arrangement complement is a K(π, 1) space. If the poset is strictly super-
solvable, then the fundamental group is an iterated semidirect product of free groups.

Theorem 5 (Lower Central Series Formula, [2, Theorem D]). Let A be a strictly super-
solvable toric arrangement with complement M(A), let A0 = ∅ ⊊ A1 ⊊ · · · ⊊ An be the
associated tower of arrangements and set ai := |Ai \ Ai−1| for i = 1, . . . , n − 1. For j ≥ 1, let
φj be the rank of the jth successive quotient in the lower central series of the fundamental group
π1(M(A)). Then

∞

∏
j=1

(1 − tj)φj =
n

∏
i=1

(1 − (ai + 1)t). (3.1)

The right-hand side of (3.1) encodes the Betti numbers, and is a specialization of the
characteristic polynomial for the associated poset of layers (see Theorem 2).
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3.4 Pullback of Fadell–Neuwirth bundles

Suppose that p̄ : M(A) → M(A/Y) is a toric arrangement bundle arising from a TM-
ideal Q = P(AY), and fix an order H1, H2, . . . , Hℓ of the atoms in P(A) that are not in
Q. The definition of a TM-ideal implies that for any x ∈ M(A/Y), and any 1 ≤ i ≤ ℓ,
there is a unique point in Hi ∩ p−1(x). Through the identification p−1(x) ∼= C× ⊆ C, this
defines a continuous map gi : M(A) → C. Via Proposition 1, the points g1(x), . . . , gℓ(x)
must be distinct and nonzero, thus determining a point in the ordered configuration
space Confℓ+1(C) = {(z0, . . . , zℓ) ∈ Cℓ+1 : zi ̸= zj when i ̸= j}.

In fact, the bundle p̄ is pulled back from Fadell–Neuwirth’s bundle of configuration
spaces (as in [13]) through this map g. Consequently, properties of Fadell–Neuwirth’s
bundles (eg. existence of a section, trivial homological monodromy) may thus be pulled
back to obtain properties of toric arrangement bundles.

Theorem 6 ([2, Theorem 5.3.1]). The map g : M(A) → Confℓ+1(C) given by g(x) =
(0, g1(x), . . . , gℓ(x)) is continuous and yields the following pullback diagram.

M(A) Confℓ+2(C)

M(A/Y) Confℓ+1(C)

h

p̄ π

g

Example 14. Let A be the arrangement of Example 12. The fiber bundle depicted in
Figure 4c is pulled back through the map g : M(A/Y) → Conf3(C), g(x) = (0, 1, x2).
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Abstract. We prove a short, root-system uniform, combinatorial classification of Levi-
spherical Schubert varieties for any generalized flag variety G/B of finite Lie type. We
apply this to the study of multiplicity-free decompositions of Demazure modules and
their characters.
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1 Introduction

1.1 History and motivation

In his essay [17] on representation theory and invariant theory, R. Howe discusses the
significance of multiplicity-free actions as an organizing principle for the subject. Clas-
sical invariant theory focuses on actions of a reductive group G on symmetric algebras,
which is to say, coordinate rings of vector spaces. Now one also considers G-actions on
varieties X and their coordinate rings C[X]. Such an action is multiplicity-free if C[X]
decomposes, as a G-module, into irreducible G-modules each with multiplicity one. An
important example is when X is the base affine space of a complex, semisimple algebraic
group G [3]; in this case the coordinate ring is a multiplicity-free direct sum of the ir-
reducible representations of G. Lustzig’s theory of dual canonical bases [24] provides a
basis for it. In the early 2000s, understanding this basis was a motivation for S. Fomin
and A. Zelevinsky’s theory of Cluster algebras [11].

The notion of multiplicity-free actions is closely connected to that of spherical varieties.
Let G be a connected, complex, reductive algebraic group; we say that a variety X is a G-
variety if X is equipped with an action of G that is a morphism of varieties. A spherical
variety is a normal G-variety where a Borel subgroup of G has an open, and therefore
dense, orbit. A normal, affine G-variety X is spherical if and only if C[X] decomposes
into irreducible G-modules each with multiplicity one [31]. If X is instead a normal,
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projective G-variety then one can still recover one direction of this implication. That is, if
the induced G-action on the homogeneous coordinate ring of X is multiplicity-free, then
X is G-spherical [15, Proposition 4.0.1].

Spherical varieties possess numerous nice properties. For instance, projective spher-
ical varieties are Mori Dream Spaces. Moreover, Luna-Vust theory describes all the bi-
rational models of a spherical variety in terms of colored fans; these fans generalize the
notion of fans used to classify toric varieties (which are themselves spherical varieties).
N. Perrin’s excellent survey covers additional background on spherical varieties [27].

It is an open problem to classify all spherical actions on products of flag varieties.
This is solved in the case of Levi subgroups; we point to the work of P. Littelmann
[23], P. Magyar–J. Weyman–A. Zelevinsky [25, 26], J. Stembridge [29, 30], R. Avdeev–
A. Petukhov [1, 2]. Connecting back to the representation-theoretic perspective of [17],
in [29, 30], J. Stembridge relates this classification problem to the multiplicity-freeness
of restrictions of Weyl modules [12, Lecture 6]. Indeed, the homogeneous coordinate ring
of a single flag variety is a multiplicity-free sum of spaces of global sections on the
variety with respect to line bundles associated to each dominant integral weight. By the
Borel-Weil-Bott theorem, these spaces are isomorphic to the irreducible representations
of G. This is the central object of interest in Standard Monomial Theory [22] and is closely
related to the coordinate ring of base affine space mentioned above. As remarked above a
product of flag varieties is G-spherical if its homogeneous coordinate ring is multiplicity-
free as an G-module.

This paper solves a related problem. We classify all Levi-spherical Schubert varieties
in a single flag variety; that is, Schubert varieties that are spherical for the action of a
Levi subgroup. Here, the relevant ring is the homogeneous coordinate ring of a Schubert
variety and the attendant representation theory is that of Demazure modules [10], which
are Borel subgroup representations. Critically for this paper, they are also Levi subgroup
representations. Multiplicity-freeness in this setting refers to the decomposition of these
modules into irreducible Levi subgroup representations. This study was initiated in [16]
and the authors solved the problem for the GLn case in [14]. In [13] we conjectured an
answer for all finite rank Lie types; this paper proves that conjecture.1

1.2 Background

Throughout, let G be a complex, connected, reductive algebraic group and let B ≤ G
be a choice of Borel subgroup along with a maximal torus T contained in B. The Weyl
group is W := NG(T)/T, where NG(T) is the normalizer of T in G. The orbits of the
homogeneous space G/B under the action of B by left translations are the Schubert cells

1During the completion of this article, we learned that M. Can-P. Saha [4] independently proved the
conjecture.
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X◦
w, w ∈ W. Their Zariski closures

Xw := X◦
w

are the Schubert varieties. It is relevant below that these varieties are normal [9, 28].
A parabolic subgroup of G is a closed subgroup B ⊂ P ⊊ G such that G/P is a projective

variety. Each such P admits a Levi decomposition

P = L ⋉ Ru(P)

where L is a reductive subgroup called a Levi subgroup of P and Ru(P) is the unipotent
radical. One parabolic subgroup is Pw := stabG(Xw). Any of the parabolic subgroups
B ⊆ Q ⊆ Pw act on Xw.

Let LQ be a Levi subgroup of Q. A variety X is H-spherical for the action of a complex
reductive algebraic group H if it is normal and contains an open, and therefore dense,
orbit of a Borel subgroup of H. Our reference for spherical varieties is [27]; toric varieties
are examples of spherical varieties.

Definition 1.1 ([16, Definition 1.8]). Let B ⊆ Q ⊆ Pw be a parabolic subgroup of G.
Xw ⊆ G/B is LQ-spherical if Xw has a dense, open orbit of a Borel subgroup of LQ under
left-translations.

1.3 The main result

We give a root-system uniform combinatorial criterion to decide if Xw is LQ-spherical.
Let Φ := Φ(g, T) be the root system of weights for the adjoint action of T on the Lie
algebra g of G. It has a decomposition Φ = Φ+ ∪ Φ− into positive and negative roots.
Let ∆ ⊂ Φ+ be the base of simple roots. The parabolic subgroups Q = PI ⊃ B are in
bijection with subsets I of ∆; let LI := LQ. The set of left descents of w is

DL(w) = {β ∈ ∆ : ℓ(sβw) < ℓ(w)},

where ℓ(w) = dim Xw is the Coxeter length of w. Under the bijection, Pw = PDL(w), and
B ⊂ Q ⊆ Pw = PDL(w) satisfy Q = PI for some I ⊆ DL(w).

For I ⊂ ∆, a parabolic subgroup WI ⊆ W is the subgroup generated by SI := {sβ : β ∈
I}. A standard Coxeter element c ∈ WI is any product of the elements of SI listed in some
order. Let w0(I) be the longest element of WI . The following definition was given in
type A in [14, Definition 1.1] and in general type in [13, Section 4]:

Definition 1.2. Let w ∈ W and I ⊆ DL(w) be fixed. Then w is I-spherical if w0(I)w is a
standard Coxeter element for WJ where J ⊆ ∆.

We first note that if I ⊆ DL(w), then the left inversion set I(w), defined in Section 3,
contains all the positive roots in the root subsystem generated by I, and thus w = w0(I)d
is a length-additive expression for some d ∈ W, by Proposition 3.1.3 in [5].
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Theorem 1.3. Fix w ∈ W and I ⊆ DL(w). Xw is LI-spherical if and only if w is I-spherical.

Theorem 1.3 resolves the main conjecture of the authors’ earlier work [13, Conjec-
ture 4.1] and completes the main goal set forth in [16]. In [14], Theorem 1.3 was estab-
lished in the case G = GLn using essentially algebraic combinatorial methods concerning
Demazure characters (or in their type A embodiment, the key polynomials). In contrast, the
geometric arguments of this paper are quite different, significantly shorter, but require
more background of the reader in algebraic groups. Theorem 1.3 is a generalization of
work of P. Karuppuchamy [21] that characterizes Schubert varieties that are toric, which
in our setup means spherical for the action of L∅ = T. Using work of R. S. Avdeev–A.
V. Petukhov [1], Theorem 1.3 may also be seen as a generalization of some results of
P. Magyar–J. Weyman–A. Zelevinsky [25] and J. Stembridge [29, 30] on spherical actions
on G/B; see [16, Theorem 2.4]. Previously, there was not even a finite algorithm to
decide LI-sphericality of Xw in general.

1.4 Organization

Examples of the main result are given in Section 2. Sections 3 and 4 prove Theorem 1.3.
Section 5 applies our main result to the study of Demazure modules [10].

2 Examples of Theorem 1.3

We begin with a few examples illustrating Theorem 1.3.

Example 2.1 (E8 cf. [16, Example 1.3]). The E8 Dynkin diagram is
1

2

3 4 5 6 7 8
. One

associates the simple roots βi (1 ≤ i ≤ 8) with this labeling and writes si := sβi . Suppose

w = s2s3s4s2s3s4s5s4s2s3s1s4s5s6s7s6s8s7s6 ∈ W.

Then DL(w) = {β2, β3, β4, β5, β7, β8}. Let I = DL(w). Here

w0(I) = s3s2s4s3s2s4s5s4s3s2s4s5 · s7s8s7 and w0(I)w = s1s6s7s8.

Since w = w0(I)c where c = s1s6s7s8 is a standard Coxeter element, Theorem 1.3 asserts
that Xw is LI-spherical in the complete flag variety for E8.

Example 2.2 (F4 cf. [16, Example 1.5]). The F4 diagram is
1 2 3 4

. First suppose

w = s4s3s4s2s3s4s2s3s2s1s2s3s4 (I = DL(w) = {β2, β3, β4}).
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Then w0(I) = s2s3s2s3s4s3s2s3s4 and w0(I)w = s1s2s3s4 is standard Coxeter. Hence Xw is
LI-spherical. On the other hand if

w′ = s2s1s4s3s2s1s3s2s4s3s2s1 (I = DL(w′) = {β2, β4}),

then w0(I) = s2s4 and w0(I)w = s1s3s2s1s3s2s4s3s2s1 is not standard Coxeter and Xw is
not LI-spherical.

Example 2.3 (D4). The D4 diagram is
1 2

3

4
. Let

w = s3s2s3s4s2s1s2 (I = DL(w) = {β2, β3}).

Thus w0(I) = s2s3s2 and w0(I)w = s4s2s1s2 is not standard Coxeter. Hence Xw is not
LI-spherical. The interested reader can check w is I-spherical in the (different) sense of
[16, Definition 1.2]. Therefore, this w provides a counterexample to [16, Conjecture 1.9]
in type D4. This counterexample was also (implicitly) verified in [13] using a different
method, namely Demazure character computations, the topic of Section 5.

3 An equivariant isomorphism

The primary goal of this section is to construct a torus equivariant isomorphism from
a specified affine subspace of the open cell of a Schubert variety to the open cell of a
distinguished Schubert subvariety. In what follows, we assume standard facts from the
theory of algebraic groups. References we draw upon are [18, 6, 22].

Let w ∈ W. Let nw be a coset representative of w in NG(T). By definition of NG(T)
being the normalizer of T in G, t 7→ nwtn−1

w defines an automorphism γw : T → T.

Lemma 3.1. The automorphism γw does not depend on our choice of coset representative nw.

In light of Lemma 3.1, henceforth for w ∈ W we will also let w denote a coset repre-
sentative of w in NG(T). Let X be a T-variety with action denoted by ·. For each w ∈ W
we define an action ·w on X by t ·w x = γw(t) · x for all x ∈ X and t ∈ T.

Lemma 3.2. For all w ∈ W, the T-variety X has an open, dense T-orbit for the action · if and
only if it has an open, dense T-orbit for the action ·w. Indeed, the set of T-orbits in X for these
two actions is identical.

For the remainder, we fix · to be the restriction to T of the action of G on G/B by left
multiplication. The left inversion set of w ∈ W is

I(w) := Φ+ ∩ w(Φ−) = {α ∈ Φ+|w−1(α) ∈ Φ−}.
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Recall two standard facts regarding left inversion sets [19, Chapter 1]. For w ∈ W,

|I(w)| = ℓ(w) = dimC Xw, (3.1)

and
I(w0(I)) = Φ+(I), (3.2)

where Φ(I) = Φ(lI , T) is the root system for the adjoint action of T on lI = Lie(LI).
We say that an algebraic group H is directly spanned by its closed subgroups H1, . . . , Hn,

in the given order, if the product morphism

H1 × · · · × Hn → H

is bijective. For w ∈ W, define Uw := U ∩ wU−w−1, where U consists of the unipotent
elements of B and similarly, U− is the unipotent part of B− := w0Bw0. This is a subgroup
of U that is closed and normalized by T. Hence, by [6, §14.4], Uw is directly spanned,
in any order, by the root subgroups Uα, α ∈ Φ+, contained in Uw. Since by [20, Part II,
1.4(5)],

wUαw−1 = Uw(α), (3.3)

these are the Uα such that α ∈ Φ+ ∩ w(Φ−) = I(w). Thus

Uw = ∏
α∈I(w)

Uα, (3.4)

where the products Uα may be taken in any order.

Lemma 3.3. For a coset wB ∈ G/B, we have

X◦
w := BwB = UwwB = ∏

α∈I(w)

Uα wB. (3.5)

Moreover, X◦
w is isomorphic to the affine space Aℓ(w) (as varieties).

We say that w = uv ∈ W is length additive if ℓ(uv) = ℓ(u) + ℓ(v). Under this hypoth-
esis, by [7, Ch. VI, §1, Cor. 2 of Prop. 17] one has

I(uv) = I(u) ⊔ u(I(v)).

Therefore, in particular, if we assume w0(I)d ∈ W is length additive, then

I(w0(I)d) = I(w0(I)) ⊔ w0(I)(I(d)). (3.6)

Define
Vd := w0(I)Udw0(I)−1 = w0(I)Udw0(I).
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Lemma 3.4. Vd is a closed subgroup of Uw0(I)d that is normalized by T.

Lemma 3.5. Uw0(I)d is directly spanned by Uw0(I) and Vd:

Uw0(I)d = Uw0(I)Vd = VdUw0(I). (3.7)

Define
Õ := Vdw0(I)dB ⊆ G/B.

Lemma 3.6. Õ is T-stable for the action ·.

The following is the main point of this section:

Proposition 3.7. If w0(I)d ∈ W is length additive then

X◦
w0(I)d = Uw0(I)d w0(I)dB.

Hence Õ ⊂ X◦
w0(I)d. Moreover, Õ with the T-action · is T-equivariantly isomorphic to X◦

d with
the T-action ·w0(I).

4 Proof of the main result

We need a lemma examining the LI-action on Õ. This lemma is then used in conjunction
with Proposition 3.7 to prove our main result.

Let BLI = LI ∩ B and let ULI be the unipotent radical of BLI . Then BLI is a Borel
subgroup in LI [6, §14.17] with ULI = BLI ∩ U and BLI = T ⋉ ULI . Since LI is the
subgroup of G generated by T and {Uα | α ∈ Φ(I)} [22, §3.2.2], it is straightforward to
show that

ULI = ∏
α∈Φ+(I)

Uα,

where the product is taken in any order [6, §14.4].

Lemma 4.1. Let w = w0(I)d ∈ W be length additive. Let x ∈ X◦
w0(I)d \ Õ and y, z ∈ Õ.

(i) uy /∈ Õ for all u ∈ ULI with u ̸= e.

(ii) tx /∈ Õ for all t ∈ T.

(iii) There exists b ∈ BLI such that by = z if and only if there exists t ∈ T such that ty = z.

We now have the necessary ingredients to complete the proof of Theorem 1.3.
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5 Application to Demazure modules

As an application of these results we give a sufficient condition for a Demazure module
to be a multiplicity-free LI-module; equivalently, a sufficient condition for a Demazure
character to be multiplicity-free with respect to the basis of irreducible LI-characters.

Let X(T) denote the lattice of weights of T; our fixed Borel subgroup B determines a
subset of dominant integral weights X(T)+ ⊂ X(T). The finite-dimensional irreducible
G-representations are indexed by λ ∈ X(T)+. Denoting the associated representation by
Vλ, there is a class of B-submodules of Vλ, first introduced by Demazure [10], that are
indexed by w ∈ W. If vλ is a nonzero highest weight vector, then the Demazure module
Vw

λ is the minimal B-submodule of Vλ containing wvλ.
There is a geometric construction of these Demazure modules. For λ ∈ X(T)+, let Lλ

be the associated line bundle on G/B. For w ∈ W, we write Lλ|Xw for the restriction of
Lλ to the Schubert subvariety Xw ⊆ G/B. Then the Demazure module Vw

λ is isomorphic
to the dual of the space of global sections of Lλ|Xw , that is

Vw
λ
∼= H0(Xw,Lλ|Xw)

∗.

This geometric perspective highlights the fact that Vw
λ is not just a B-module, but is in

fact also a LI-module via the action induced on H0(Xw,Lλ|Xw) by the left multiplication
action of LI on Xw.

As LI is a reductive group over characteristic zero, any LI-module decomposes into
a direct sum of irreducible LI-modules. Let XLI (T)

+ be the set of dominant integral
weights with respect to the choice of maximal torus and Borel subgroup T ⊆ BI ⊆ LI .
For µ ∈ XLI (T)

+, let VLI ,µ be the associated irreducible LI-module. If M is a LI-module
and

M =
⊕

µ∈XLI (T)
+

V
⊕mLI ,µ
LI ,µ

is the decomposition into irreducible LI-modules, then we say that M is a multiplicity-free
LI-module if mLI ,µ ∈ {0, 1}. Similarly, if char(M) is the formal T-character of M and

char(M) = ∑
µ∈XLI (T)

+

mLI ,µchar(VLI ,µ),

then we say that char(M) is I-multiplicity-free if mLI ,µ ∈ {0, 1}.
The following argument was given for type A in [16, Theorem 4.13(II)]. We prove the

general type argument (which is essentially the same) for sake of completeness:

Theorem 5.1. Let w ∈ W with I ⊆ DL(w). Then Xw is LI-spherical if and only if for all
λ ∈ X(T)+, the Demazure module Vw

λ is multiplicity-free LI-module.

Corollary 5.2. Let w ∈ W be I-spherical for I ⊆ DL(w). For all λ ∈ X(T)+, the Demazure
module Vw

λ is a multiplicity-free LI-module.
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Corollary 5.3. Let w ∈ W be I-spherical for I ⊆ DL(w). For all λ ∈ X(T)+, the Demazure
character char(Vw

λ ) is I-multiplicity-free.

These two corollaries appear non-trivial from a combinatorial perspective, even for
a specific choice of dominant weight λ with fixed w ∈ W. The Demazure character can
be recursively computed using Demazure operators. There is also a combinatorial rule
for the character in terms of crystal bases (in instantiations such as the Littelmann path
model or the alcove walk model); see, e.g., the textbook [8]. However, an argument based
on these methods eludes in general type, although we have an argument in type A [14].
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Abstract. We use non-symmetric Cauchy kernel identities to get the laws of last pas-
sage percolation (LPP) models in terms of Demazure characters. The construction is
based on the restrictions of the RSK correspondence to augmented stair (Young) shape
matrices and rephrased in a unified way compatible with crystal bases.

Keywords: Non-symmetric Cauchy identity, Demazure character, crystal, percolation.

1 Introduction

We introduce the Demazure measure on nonnegative vectors corresponding to the di-
rected last passage percolation (LPP) model on matrices of Young shape, that is, nonneg-
ative integer matrices whose positive entries fit a Young shape. A nonnegative integer
vector is always in the Weyl orbit of some partition and therefore all nonnegative vectors
in a same Weyl orbit share the size of a largest entry which is the length of a longest
row of the unique partition in its orbit. When the Young shape is a rectangle, we recover
the Okounkov’s Schur measure [4, Chapter 4], [17] on the unique partition of each Weyl
orbit, corresponding to the LPP model on nonnegative integer matrices. Our main con-
tribution is the use of Demazure characters, in general, non symmetric polynomials, to
study LPP problems: this has only been carried out for models with more symmetries
using symmetric polynomials, in particular, Schur polynomials or Weyl characters or
geometric analogues as incarnations of Whittaker functions ([6, 7, 16, 19] and references
therein). Crystal theory allows the compatibility of Robinson–Schensted–Knuth (RSK)
correspondence with non-symmetric Cauchy identities by Lascoux [13] and thus, in par-
ticular, the Cauchy identity (1.1). This interpretation was discovered by Choi–Kwon [8]
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for the non-symmetric case on stair cases (3.1). We complete the picture with the trun-
cated and augmented stair shape. This extended abstract is organized in four sections.
In §2 we gather relevant definitions on crystals, in §3 present our contributions, and in
§4 provide an example for our main result. We refer the reader to the full version [3],
accepted for publication, for details and proofs, containing the results hereby presented.

Given two sets of indeterminates x = {x1, . . . , xm} and y = {y1, . . . , yn} the Cauchy
identity asserts that

m

∏
i=1

n

∏
j=1

1
1− xiyj

= ∑
λ∈Pmin(m,n)

sλ(x)sλ(y) (1.1)

where Pmin(m,n) is the set of partitions with at most min(m, n) parts and, for each such
partition λ, sλ(x) and sλ(y) are the Schur polynomials in the indeterminates x and y,
respectively. This identity has several interpretations, applications and generalizations
(see [9] and references therein). In particular, one can understand the left hand side as
the character of polynomial functions on the space Mm×n of matrices with m rows, n
columns and entries in Z≥0 and decompose this space into a direct sum of glm × gln
bimodules. The products of Schur functions sλ(x) and sλ(y) on the righthand side show
this approach as the characters of the tensor product of irreducibles finite dimensional
representations of highest weight λ for the linear Lie algebras glm(C) and gln(C). In
fact Mm,n is a realization of the the bicrystal of the symmetric space S(Cm ⊗ Cn) as a
(glm, gln)-module (see [8] and references therein). The identity (1.1) can also be proved
using the RSK correspondence [10, 18]. This is a one-to-one map ψ between the set
Mm,n and the set

⊔
λ∈Pmin(m,n)

SSYT(λ, m)× SSYT(λ, n) of pairs (P, Q) of semistandard
tableaux of the same shape λ, and entries in [m] := {1, . . . , m} and [n] := {1, . . . , n},
respectively. (The convention that we use agrees with that of Kashiwara [12] to which
we refer for another description of the RSK procedure and the connection with biwords.
See §4 and [10] for variations on RSK.) Regarding SSYT(λ, k) as the tableau realization
for the glk-crystal B(λ, k) of highest weight λ, then

ψ :Mm,n →
⊔

λ∈Pmin(m,n)

B(λ, m)× B(λ, n)

A 7→ ψ(A) = (P(A), Q(A)) (1.2)

is a (glm, gln)-bicrystal isomorphism where the bicrystal structure on Mm,n is afforded
from B(λ, m) × B(λ, n) by ψ−1, that is, by reverse column Schensted insertion. The
RSK correspondence has interesting properties. For each matrix A inMm,n, the greatest
integer p(A) obtained by summing up the entries in all the possible paths π starting at
position (1, n) and ending at position (m, 1) with steps←− or ↓

p(A) := max
π path in A

∑
(i,j)∈π

aij (1.3)
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coincides with the common largest row length of the tableaux P(A) and Q(A) in (1.2).
(We consider the paths which are compatible with the version of RSK that is used here.
See §4.) It is then natural to study percolation models based on the RSK correspondence
where random matrices whose entries follow independent geometric laws are consid-
ered [4]. This type of model, in the case of identical and independent geometric distri-
bution, has been deeply studied by Johansson in [11], who proved that the fluctuations
of the previous last passage percolation, once correctly normalized, are controlled by the
Tracy-Widom distribution (defined from the study of the largest eigenvalues of random
Hermitian matrices). The Schur measure, introduced by Okounkov based on the Cauchy
kernel identity, is an extension of the probability measure on the partitions correspond-
ing to the directed last passage percolation model with the independent and identical
geometric distribution of Johansson in [11], [4, Chapter 4]. Let ui, vj be real numbers in
[0, 1), for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Considering an array W = {Wij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
of independent random variables, with values in Z≥0, called weights, geometrically dis-
tributed as

P(Wij = k) = (1− uivj)(uivj)
k, for any k ∈ Z≥0, (1.4)

with parameter uivj,W is a random matrix with values inMm,n. We then get

P(W = A) =

(
∏

1≤i≤m,1≤j≤n
(1− uivj)

)
(uv)A

where (uv)A = ∏1≤i≤m,1≤j≤n(uivj)
ai,j . The Last Passage Percolation (LPP) time G of W

is defined to be the random variable G := p ◦W . Applying the RSK correspondence, its
properties and the Cauchy identity (1.1), one obtains the law of the random variable G,
for any k ∈ Z≥0, in terms of Schur polynomials,

P(G = k) = ∏
1≤i,j≤n

(1− uivj) ∑
λ∈Pmin(m,n)|λ1=k

sλ(u1, . . . , um)sλ(v1, . . . , vn)

where the sum is over partitions λ with largest part k. Johansson [11] has established this
result in the special case of identical geometric distribution, ui = vj =

√
q, 1 ≤ i, j ≤ n,

for a fixed q ∈]0, 1[, a special case of the Schur measure on partitions (see [4, Chapter 10]).
The RSK correspondence admits various generalizations and geometric versions which
can also be used to get interesting last passage percolation models involving symmetric
polynomials, in particular, characters of representations of Lie algebras other than gln
(symmetric with respect to the Weyl group) and geometric analogues [6, 7, 16, 19].

2 Crystal and Demazure modules

The finite dimensional irreducible polynomial representations of gln = gln(C) are pa-
rameterized by the partitions λ in Pn. To each partition λ ∈ Pn corresponds a finite



4 Olga Azenhas, Thomas Gobet , and CÃl’dric Lecouvey

dimensional representation V(λ) (or gln-module), and a crystal graph B(λ) which can
be regarded as the combinatorial skeleton of the simple module V(λ). The vertices of
B(λ) label a distinguished basis of V(λ). On the other hand, B(λ) has various combina-
torial realizations (i.e., vertex labelings) in terms of semistandard tableaux, Littelmann’s
paths [14] or semiskylines [15]. The (abstract) crystal B(λ) is a graph whose set of ver-
tices is endowed with a weight function wt : B(λ) → Zn and with the structure of a
coloured and oriented graph given by the action of the crystal operators f̃i and ẽi with

i ∈ I = [n − 1]. One has an oriented arrow b i→ b′ between two vertices b and b′ in
B(λ) if and only if b′ = f̃i(b) ⇔ b = ẽi(b′) in which case wt(b′) = wt(b)− αi, with αi
a simple root of gln. The crystal B(λ) is generated by the actions of the lowering (resp.
raising) operators f̃i (respect. ẽi) on the unique highest (resp. lowest) weight vertex bλ

(resp. bσ0λ) where one has wt(bλ) = λ, and σ0 is the longest element of the Weyl group
W here the symmetric group Sn =< s1, . . . , sn−1 > (unless mentioned differently).

For λ ∈ Pn, Wλ is the stabilizer of λ under the action of W, and Wλ collects the
unique minimal length representative of each coset in W/Wλ. Let λ ∈ Pn and σ ∈ W.
Up to a scalar in C, there exists a unique vector vσλ in V(λ) of weight σλ. Recall
the triangular decomposition gln = gl+n ⊕ h ⊕ gl−n of gln into its upper, diagonal and
lower parts. The Demazure module associated to vσλ is the U(gl+n )-module defined by
Vσ(λ) := U(gl+n ) · vσλ. Demazure introduced the character κσ,λ of Vσ(λ) and showed
that it can be computed by applying to xλ a sequence of divided difference operators
Di1 · · ·Di` given by any reduced decomposition of σ = si1 · · · si` ∈ W where ` is the
length of σ. For i ∈ I, Di is a certain linear operator on Z[x1, . . . , xn] (see [3] and
references therein) satisfying the relations

D2
i = Di for any i = 1, . . . , n− 1, DiDi+1Di = Di+1DiDi+1 for any i = 1, . . . , n− 2,

DiDj = DjDi for any i, j = 1, . . . , n− 1 such that |i− j| > 1.

Thus, by Mastumoto’s Lemma, the operator Dσ = Di1 · · ·Di` only depends on σ and
not on the chosen reduced decomposition, and κσ,λ = Dσ(xλ) ∈ Z[x1, . . . , xn] is the
(Demazure) character of Vσ(λ). In particular, we have κid,λ = xλ and κσ0,λ = sλ.

Kashiwara [12] and Littelmann [14] defined a relevant notion of crystals for the De-
mazure modules. Recall O(λ) = {σ · bλ = bσλ | σ ∈ W/Wλ} the orbit of the highest
weight vertex bλ of B(λ). Its elements, uniquely determined by their weight, are called
the keys of B(λ). (In this sense we may identify O(λ) with Wλ.) Given σ, σ′ ∈ W/Wλ,
we write σ ≤ σ′ for the Bruhat order on the cosets in W/Wλ to mean that their unique
minimal (maximal) coset representatives satisfy the same relation in the strong Bruhat
order restricted to Wλ. We also write bσλ ≤ bσ′λ when σ ≤ σ′ in W/Wλ. From the
dilatation of crystals [12] each vertex b of B(λ) carries a pair of keys K+(b) ≥ K−(b),
right, respectively, left key of b, in O(λ). For any σ ∈W, consider the Demazure atom

Bσ(λ) = {b ∈ B(λ) | K+(b) = bσλ}, where Bid(λ) = {bλ}. (2.1)
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For any σ ∈W, the opposite Demazure module, is defined to be Vσ(λ) := Uq(gl
−
n ) · vσλ, for

which we define the opposite Demazure atom

Bσ
(λ) = {b ∈ B(λ) | K−(b) = bσλ}, where Bσ0(λ) = {bσ0λ}. (2.2)

By definition we have Bσ(λ) = Bσ′(λ) and Bσ
(λ) = Bσ′

(λ) whenever σ and σ′ belong
to the same left coset of W/Wλ. We then get B(λ) =

⊔
σ∈Wλ

Bσ(λ) =
⊔

σ∈Wλ

Bσ
(λ). The

Demazure crystal Bσ(λ) and its opposite Demazure crystal Bσ(λ) are then defined by

Bσ(λ) =
⊔

σ′∈Wλ, σ′Wλ≤σWλ

Bσ′(λ) = {b ∈ B(λ) | K+(b) ≤ bσλ}, Bid(λ) = {bλ} (2.3)

Bσ(λ) =
⊔

σ′∈Wλ, σWλ≤σ′Wλ

Bσ′
(λ) = {b ∈ B(λ) | K−(b) ≥ bσλ}, Bσ0(λ) = {bσ0λ}. (2.4)

In particular, we have Bσ0(λ) = B(λ) = Bid(λ). We then note that for a given λ ∈ Pn,⊔
σ∈Wλ

Bσ
(λ)× Bσ(λ) = {(b, b′) ∈ B(λ)× B(λ) : K−(b) ≥ K+(b′)} ' B(2λ). (2.5)

We refer to [8], for the translation of (2.5) to the crystal of Lakshmibai-Seshadri paths.
The Demazure crystals respectively atoms and their opposite, are connected via the
Lusztig-Schützenberger involution ι on the crystal B(λ), a realization of the action of the
longest element of W on finite irreducible representations. The map ι is a set involution
on B(λ) reversing the arrows, flipping the labels i and n− i, and reversing the weight.
We then have K−(b) = σ0.K+(ι(b)) and we get

Bσ(λ) = ι(Bσ0σ(λ)), or equivalently Bσ0σ(λ) = ιBσ(λ), Bσ
(λ) = ι(Bσ0σ(λ)). (2.6)

Demazure (resp. opposite) crystals can also be generated by the actions of the lowering
(resp. raising) operators given by the reduced words in Wλ (resp. σ0Wλσ0) on the
highest (resp. lowest) vertex of B(λ). The Demazure character κσ,λ(x) of the Demazure
module Vσ(λ) satisfies κσ,λ(x) = ∑b∈Bσ(λ) xwt(b), and the opposite Demazure character

κσ
λ(x) for the opposite Demazure module Vσ(λ) satisfies κσ

λ(x) = ∑b∈Bσ(λ) xwt(b). Using
the involution ι and (2.6), we have κσ

λ(x1, . . . , xn) = κσ0σλ(xn, . . . , x1) and κσ
λ(x1, . . . , xn)

= κσ0σλ(xn, . . . , x1) = ∑b∈Bσ
(λ) xwt(b). Alternatively we may also label the Demazure

crystals and the Demazure characters of B(λ) directly by the elements in the orbit of λ,
Wλ. Given µ ∈ Wλ where µ = σλ and σ ∈ Wλ, we write Bµ, Bµ = ιBσ0µ instead of
Bσ(λ), Bσ(λ) respectively, and κµ, κµ = κσ0µ, κµ, κµ = κσ0µ instead of κσ,λ, κσ

λ and κσ,λ, κσ
λ

respectively. The operators Di act on Demazure characters κµ and Demazure atoms κµ

as follows

Di(κµ) =

{
κsiµ if µi > µi+1

κµ if µi ≤ µi+1,
Di(κµ) =


κsiµ + κµ if µi > µi+1

κµ if µi = µi+1

0, else.

(2.7)
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For i ∈ [n − 1], we define below ∆i and ∆̇i as operators on Demazure respectively
Demazure atom crystals to mimic the action of the operator Di on Demazure respec-
tively on Demazure atom charaters (2.7), and we then always have char(∆i(Bµ)) =
Di(κµ), and char(∆̇i(Bµ)) = Di(κµ),

∆i(Bµ) =

{
Bsiµ if µi > µi+1
Bµ otherwise,

∆̇i(Bµ) =


∆i(Bµ) = Bµ

⊔
Bsiµ if µi > µi+1

∆i(Bµ) = Bµ if µi = µi+1
∅ if µi < µi+1.

(2.8)

3 Non-symmetric Cauchy kernels, RSK on Young shapes
and LPP

We now consider last passage percolation models based on the non-symmetric Cauchy
kernel (3.1) as studied by Lascoux in [13] and its extensions to augmented stair shapes.
Demazure crystals with their opposite Demazure atoms, and certain parabolic subcrys-
tals will describe the image of RSK, as a bicrystal isomorphism, restricted to stair shape,
truncated stair shape and to augmented stair shape matrices. We detach the truncated
case from the general Young shape due to its more explicit as well interesting structure.

3.1 LPP, staircase and Demazure measure

The ordinary Cauchy identity (1.1) is then replaced by its non-symmetric analogue

∏
1≤j≤i≤n

1
1− xiyj

= ∑
µ∈Zn

≥0

κµ(x)κµ(y) (3.1)

where κµ(x) and κµ(y) are this time (opposite) Demazure atoms and Demazure charac-
ters in the indeterminates x and y (with m = n). These polynomials are not symmetric
in x and y. They correspond to characters of representations for subalgebras of the en-
veloping algebra U(gln). It was proved in [13] that the identity (3.1) can be obtained
by restricting the RSK correspondence ψ to the set of lower triangular matrices. (The
convention of our paper differs from that in [13] which considers matrices with nonzero
entries in positions (i, j) with 1 ≤ i + j ≤ n + 1 rather than lower-triangular matrices.)
Since then, other proofs have been proposed using combinatorial objects which explic-
itly carry the pairs of right and left keys [10]. More precisely, [1, Theorem 3, Corollary
2] uses the combinatorics of Mason’s semiskyline augmented fillings [15], and [8] uses
the combinatorics of crystal bases, in particular, the combinatorial model of Lakshmibai-
Seshadri paths [14]. Recently Assaf-Schilling provided an explicit tableau crystal for
MasonâĂŹs semiskyline augmented fillings [15], replacing the former objects by equiv-
alent ones, termed semistandard key tableaux (see [3] and references therein). Here we
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stand in the tableau model for gln crystals where one has the effective Lascoux’s jeu de
taquin procedure [10] to compute the right key K+(T) and left key K−(T) of a tableau
T.

Let D be any subset of [n]× [m] and writeMD
m,n for the subset ofMm,n containing the

matrices A such that ai,j 6= 0 only if (i, j) ∈ D. For D in general, the setMD
m,n is not stable

for the glm × gln-crystals operators. Nevertheless, when D corresponds to the Young
diagram of a fixed partition Λ, see (3.7), D = DΛ is stable under the action of the crystal
raising operators. When m = n and $ = (n, n− 1, . . . , 1), we get in matrix coordinates
D$ = {(i, j) | 1 ≤ j ≤ i ≤ n}. Then the bijection ψ (1.2) restricts to a bijection from the set

MD$
m,n of n× n lower triangular matrices to the set of pairs (P, Q) of semistandard Young

tableaux of the same shape on the alphabet [n] such that K−(P) ≥ K+(Q) (entrywise
comparison). (See also [1, Corollary 2] for the Knuth version of RSK.) This means that
the image of this restriction, for a fixed λ ∈ Pn, is

⊔
σ∈Wλ

Bσ
(λ) × Bσ(λ) (2.5). Thus the

restriction of RSK correspondence ψ to D$ gives

ψ :MD$
n,n →

⊔
λ∈Pn

⊔
σ∈Wλ

Bσ
(λ)× Bσ(λ) (3.2)

A 7→ ψ(A) = (P(A), Q(A)) : K+(Q(A)) ≤ K−(P(A)), (3.3)

where Bσ(λ) is a Demazure crystal (2.3) and Bσ
(λ) its opposite Demazure atom (2.2).

This time, we only consider independent random variables Wi,j when 1 ≤ j ≤ i ≤ n with
geometric distributions as in (1.4). This defines a lower triangular random square matrix
L with nonnegative integer entries. In this model we consider paths from position (1, n)
to position (n, 1) where only the entries in the lower part of A contribute to the length
of the paths. We define the random variable L = p ◦ L and determine its law. Since
(3.2) gives a bijective correspondence obtained as the restriction of the RSK map ψ (1.2)
to lower triangular matrices, the value of L still corresponds to the length of the largest
part of the partitions on the right hand side of (3.3).

Theorem 1. For any k ∈ Z≥0, we have the law

P(L = k) = ∏
1≤j≤i≤n

(1− uivj) ∑
µ∈Zn

≥0|max(µ)=k
κµ(u1, . . . , un)κµ(v1, . . . , vn). (3.4)

This law was also obtained by Baik-Rains [5, 6, Section 4] when ui = vi. In this
case, (2.5), and (3.1) with xi = yi, together give a refinement of a Littlewood identity:
∏1≤j≤i≤n(1− xixj)

−1 = ∑µ∈Zn
≥0

κµ(x)κµ(x) = ∑λ∈Pn s2λ(x). In [6] it is called a law in the
point-to-line last passage percolation in zero temperature limit. However this formula is
not produced in [6] by the geometric RSK but rather one in terms of a symplectic Cauchy
like identity.
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3.2 Main results: LPP on Young shapes and Demazure measure

Lascoux [13] also established generalizations of the formula (3.1) where positions with
nonzero entries are allowed in the matrices outside their lower triangular part. These
augmented staircase formulas below (∗) were then obtained just by computations on
polynomials and thus not related to the RSK correspondence. This connection was par-
tially done in [2] where certain truncated staircases formulas are proved to be compat-
ible with the RSK correspondence using the combinatorics of semiskyline augmented
fillings [15]. More precisely, this applies to the case where nonzero entries are autho-
rized only in positions (i, j) with n − p ≤ i ≤ j ≤ q, for p and q two nonnegative
integers such that n ≥ q ≥ p ≥ 1. We consider the Young diagram Dp,q = {(i, j) |
n − p + 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∩ D$ defined by using the matrix coordinates (i, j).
It is the intersection of D$ with a quarter of plane defined by the lines i = p and
j = q (in Cartesian coordinates). When n − p + 1 ≤ q, we get the Young diagram
Dp,q = DΛ(p,q) with Λ(p, q) = (qn−q+1, q− 1, . . . , n− p + 1), and Dn,n = DΛ(n,n) = D$.
Below one illustrates the truncated Young shape DΛ(p,q), in green, fitting the p by q rect-
angle so that the staircase D$ of size n, in red, is the smallest one containing DΛ(p,q). If
p ≤ q, D(p,p−1,...,1) is the biggest staircase inside DΛ(p,q).

p
n

q

We write Bp(λ) for the subcrystal of the gln-crystal B(λ, 0n−p) with λ ∈ Pp, obtained
by keeping only the vertices connected to its highest weight vertex by i-arrows with
i ∈ [p− 1]. Given u ∈ Sp, Bp,u(λ), Bu

p(λ), Bp,u(λ) and Bu
p(λ) denote the Demazure, its

opposite, respectively, atom and its opposite crystals associated to u in the glp-crystal

Bp(λ). See Example 4 and (4.1), (4.2). The restriction of the map ψ from MD$
n,n (3.3) to

MDΛ(p,q)
n,n gives

ψ(MDΛ(p,q)
n,n ) =

⊔
λ∈Pn

⊔
σ∈Wλ

Bσ
(λ) ∩ Bp(λ)× Bσ(λ) ∩ Bq(λ) =

⊔
µ∈Zn

≥0

Bµ ∩ Bp(λ)× Bµ ∩ Bq(λ).

By the Borel-Weil theorem, Demazure crystals and Schubert varieties are in natural cor-
respondence. Let σ ∈ Sn and σ

[q]
0 be the longest element of Sq. From the Billey–

Fan–Losonczy parabolic map (see [3, Algorithm 3.1, Proposition 3.4] and references
therein) the set {v ∈ Sq | v ≤ σ} has a unique maximal element σIq for the Bruhat
order ≤ in W. For σ ∈ Wλ, the intersections S

σ
[q]
0
∩ Sσ = S

σIq and Bσ(λ) ∩ Bq(λ) =

Bσ(λ) ∩ B
σ
[q]
0
(λ) = Bq,σIq (λ) translate into each other, where Sσ is a Schubert variety of

the flag variety G/B with B a Borel subgroup of the reductive group G with Weyl group
W [10, Chapter III]. However Bσ

(λ) ∩ Bp(λ) = ∅ unless σ ∈ σ0S
λ
p , λ ∈ Pp and then
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Bσ
(λ) ∩ Bp(λ) = ιBp,σ0σ(λ) [3]. In this case Bσ(λ) ∩ Bq(λ) = Bq,σIq (λ). The restriction of

the RSK correspondence ψ toMDΛ(p,q)
n,n then gives a one-to-one correspondence

ψ :MDΛ(p,q)
n,n → ⊔

µ∈Z
p
≥0

ι(Bp,µ)× Bq,µ̃, and (3.5)

∏
(i,j)∈DΛ(p,q)

1
1− xiyj

= ∑
(µ1,...,µp)∈Z

p
≥0

κ(µp,...,µ1)
(xn, . . . , xn−p+1)κµ̃(y1, . . . , yq), (3.6)

where for each µ ∈ Z
p
≥0, the vector µ̃ = (σ0τ)Iq(λ, 0q−p, 0n−q) with τ ∈ Sλ

p is such that
µ = τλ. It can also be explicitly computed by a simple algorithm in [1, 3, Theorem
3.20] (see also examples in [3, Section 3.1]). One can then similarly use (3.5) to study the
percolation model on random matrices Tp,q with nonnegative random integer coefficients
having zero entries in each position (i, j) such that i ≤ n− p and j > q. Each random
variable Wi,j with i ≥ n− p + 1 and j ≤ q follows a geometric distribution of parameter
uivj. Using the same arguments as before, we obtain the law of the random variable
Tp,q = p ◦ Tp,q.

Theorem 2. For any nonnegative integer k, we have for v = (v1, . . . , vq)

P(Tp,q = k) = ∏
(i,j)∈DΛ(p,q)

(1− uivj) ∑
(µ1,...,µp)∈Z

p
≥0|max(µ)=k

κ(µp,...,µ1)
(un, . . . , un−p+1)κµ̃(v).

In [13] Lascoux gave other non-symmetric Cauchy type identities for any partition
Λ ∈ Pn. One considers the largest staircase ρΛ = (m, m − 1, . . . , 1) contained in the
Young diagram of Λ. Then one chooses a box at position (i0, j0), in Cartesian coordinates,
in the augmented staircase (m + 1, m, . . . , 1) which is not in Λ. The diagonal Li,j : j −
i = j0 − i0, in Cartesian coordinates, cuts Λ in a northwest part and a southeast part
corresponding to the boxes above and below Li,j, respectively. Now fill the boxes (i, j),
in the n× n matrix convention, of the NW part of Λ by n− i (i.e., by the n× n matrix
reverse row index (equivalently counting rows from bottom to top) minus one), and the
boxes (i, j) of the SE part by j − 1 (i.e., by the index of the column minus one). Let
σ(Λ, NW) = si1 · · · sia be the element of W where the word i1 · · · ia is obtained from
right to left column reading of the NW part of Λ, each column being read from top to
bottom. Similarly, let σ(Λ, SE) = sj1 · · · sjb be the element of W where the word j1 · · · jb
is obtained from top to bottom row reading of the SE part of Λ, each row being read
from right to left. For instance, let n = 8 and Λ = (7, 4, 2, 2, 2). Take (i0, j0) = (3, 3) (the
box with N). Hence m = 4, ρΛ = (4, 3, 2, 1), and σ(Λ, NW) = s4s3s4, σ(Λ, SE) = s3s6s5s4,

4 4
� 3
��N
��� 3
���� 4 5 6

(3.7)
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The following identity is established in [13] and reproved for near stair shapes in [2],

(∗) ∏
(i,j)∈Λ

1
1− xiyj

= ∑
(µ1,...,µm)∈Zm

Dσ(Λ,NW)κ(µm,...,µ1)
(xn, . . . , xn−m+1)Dσ(Λ,SE)κ(µ1,...,µm)(y),

where y = (y1, . . . , ym), and Dσ(Λ,NW) = Di1 · · ·Dia , Dσ(Λ,SE) = Dj1 · · ·Djb are composi-
tions of Demazure operators (2.7).

Theorem 3. The restriction of the RSK correspondence ψ to MDΛ
n,n gives the one-to-one corre-

spondence

ψ :MDΛ
n,n →

⊔
(µ1,...,µm)∈Zm

≥0

ι
(

∆̇σ(Λ,NW)(B(µm,...,µ1)
)
)
× ∆σ(Λ,SE)

(
B(µ1,...,µm)

)
(3.8)

where ∆σ(Λ,SE) = ∆j1 · · ·∆jb and ∆̇σ(Λ,NW) = ∆̇i1 · · · ∆̇ia (2.8). (As usual ∅×U = ∅.)

Now, for a fixed partition Λ in Pn, we consider random matrices AΛ with nonneg-
ative random integer coefficients having zero entries in each position (i, j) such that
(i, j) /∈ Λ. Here again each random variable Wi,j for (i, j) ∈ Λ follows a geometric dis-
tribution of parameter uivj. Define the random variable AΛ = p ◦ AΛ. Then, by (∗) and
(3.8), we get the law of AΛ.

Theorem 4. For any nonnegative integer k,

P(AΛ = k) = ∏
(i,j)∈DΛ

(1− uivj).

. ∑
(µ1,...,µm)∈Zm|max(µ)=k

Dσ(Λ,NW)κ(µm,...,µ1)
(un, . . . , un−m+1)Dσ(Λ,SE)κ(µ1,...,µm)(v1, . . . , vm).

4 An example for RSK on augmented stair shapes

Let us resume to the setting of (3.7) with n = 8, Λ = (7, 4, 2, 2, 2), and σ(Λ, NW) = s4s3s4,
σ(Λ, SE) = s3s6s5s4. Let ψ be the RSK restricted toMDΛ

8,8 . Then (3.8) gives for m = 4

ψ :MD(7,4,2,2,2)
8,8 → ⊔

(µ1,...,µ4)∈Z4
≥0

ι
(

∆̇4∆̇3∆̇4(B(µ4,...,µ1)
)
)
× ∆3∆6∆5∆4

(
B(µ1,...,µ4)

)
A 7→ ψ(A) = (P, Q).

Let A=


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0
0 0 0 0 1 0 2 0

∈M
DΛ
8,8 encoded as a tensor product of row tableaux 577⊗ 45⊗ 7⊗

7⊗ 8⊗∅⊗ 88⊗∅ on the alphabet [8] where ai,j is the number of letters i in the tensor j-
th component. One then applies the column insertion procedure from left to right. This
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means that we begin by reading the first column (of A) 775 and compute the column
insertions 5→ 7→ 7 to get 577 then read the second column 54 and compute the column
insertion 4 → 5 → 577 to get 45577, then 7 → 45577 to get 7

4 5 5 7 7 , and eventually get
the tableau P below. The "recording tableau" Q is obtained by filling with letters j the
new boxes appearing during the insertion of column j of A,

P =
8 8
7 7 8
4 5 5 7 7

K−(P) =
8 8
7 7 8
4 4 4 4 4

= K(03, 5, 02, 2, 3) (4.1)

Q =
5 7
3 4 7
1 1 1 2 2

K+(Q) =
7 7
4 4 7
2 2 2 2 2

= K(0, 5, 0, 2, 02, 3, 0). (4.2)

We show that there exists µ = (µ1, µ2, µ3, µ4) ∈ Z4
≥0 such that ψ(A) = (P, Q) ∈

ι(∆̇4∆̇3∆̇4B(σ0µ,04))× ∆3∆6∆5∆4B(µ,04), where σ0 ∈ S4 and ι is the Schützenberger (evacu-
ation) involution. From (2.8) one has ι(∆̇4∆̇3∆̇4B(µ4,...,µ1,04)) =

=



ιB(µ4,µ3,µ2,0,04)

⊔
ιB(µ4,µ3,0,µ2,04)

⊔
ιB(µ4,µ3,02,µ2,03), if µ2 > µ1 = 0 (∗∗)

ιB(µ4,µ3,0,0,04), if µ1 = µ2 = 0

ιB(µ4,µ3,µ2,µ2,04)

⊔
ιB(µ4,µ3,µ2,0,µ2,03)

⊔
ιB(µ4,µ3,0,µ2,µ2,03), if µ1 = µ2 > 0

∅, if µ1 > µ2 ≥ 0
ιB(µ4,...,µ1,04)

⊔
ιB(µ4,µ3,µ1,µ2,04)

⊔
ιB(µ4,µ3,µ2,0,µ1,03)

⊔
ιB(µ4,µ3,0,µ2,µ1,03)

⊔
ιB(µ4,µ3,0,µ1,µ2,03)⊔

ιB(µ4,µ3,µ1,0,µ2,03), if µ2 > µ1 > 0.

Then, by (2.2), K−(P) = K(03, 5, 02, 2, 3) ⇔ P ∈ B(03,5,02,2,3)
= ιB(3,2,02,5,03), and we

are in case (∗∗), where µ2 = 5 > µ1 = 0, µ3 = 2, µ4 = 3. Hence, µ = (0, 5, 2, 3)
and ι(∆̇4∆̇3∆̇4B(3,2,5,0,04)) = ιB(3,2,5,0,04)

⊔
ιB(3,2,0,5,04)

⊔
ιB(3,2,02,5,03). Therefore, by the LHS

of (2.8), ∆3∆6∆5∆4B(µ,04) = B(0,5,0,2,0,0,3,0). Indeed K+(Q) ≤ K(0, 5, 0, 2, 02, 3, 0) and

from (2.4), Q ∈ B(0,5,0,2,02,3,0). Hence, (P, Q) ∈ B(03,5,02,2,3) × B(0,5,0,2,02,3,0) and ψ(A) ∈
ι(∆̇4∆̇3∆̇4B(3,2,5,0,04))× ∆3∆6∆5∆4B(0,5,2,3,04).
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Tamari intervals and blossoming trees
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Abstract. We introduce a simple bijection between Tamari intervals and the blossom-
ing trees (Poulalhon and Schaeffer, 2006) encoding planar triangulations, using a new
meandering representation of such trees. Its specializations to the families of synchro-
nized, Kreweras, new/modern, and infinitely modern intervals give a combinatorial
proof of the counting formula for each family. Compared to (Bernardi and Bonichon,
2009), our bijection behaves well with the duality of Tamari intervals, enabling also the
counting of self-dual intervals.

Résumé. Nous donnons une nouvelle bijection simple entre les intervalles de Tamari
et les arbres bourgeonnants (Poulalhon et Schaeffer, 2006) qui encodent les trian-
gulations planaires, en passant par une nouvelle représentation méandrique de ces
arbres. Les spécialisations aux familles des intervalles synchrones, Kreweras, nou-
veaux/modernes, et infiniment modernes donnent des preuves combinatoires des for-
mules de comptage pour ces familles. Par rapport à (Bernardi et Bonichon, 2009),
notre bijection se comporte bien vis-à-vis de la dualité des intervalles de Tamari, nous
permettant de compter les intervalles auto-duaux.

Keywords: Tamari intervals, blossoming trees, enumeration, duality

1 Introduction

The Tamari lattice Tamn is a well-known poset on Catalan objects of size n, that plays an
important role in several domains, such as representation theory [1, 5], polyhedral com-
binatorics and Hopf algebras [3, 13]. Partially motivated by such links, the enumeration
of intervals in the Tamari lattice was first considered by Chapoton [6] who discovered
the beautiful formula

In =
2

n(n + 1)

(
4n + 1
n − 1

)
(1.1)

for the number of intervals in Tamn. The subject has attracted much attention since then,
with strikingly simple counting formulas found for several other families [4, 5, 10].
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Regarding combinatorial proofs, Bernardi and Bonichon [2] gave a bijection from
Tamari intervals to planar (simple) triangulations via Schnyder woods. Then, a bijection
by Poulalhon and Schaeffer [15] encodes the same triangulations by a class of blossoming
trees, which yields (1.1). The bijection in [2] can be specialized to some subfamilies of
Tamari intervals, such as Kreweras intervals [2] and synchronized Tamari intervals [11].
Another strategy, for instance in [10], is to construct bijections between Tamari intervals
and planar maps inspired by their recursive decompositions.

In this extended abstract, we present a more direct bijection between Tamari inter-
vals and the blossoming trees from [15]. Readers are referred to [9] for the full version.
Our construction, presented in Sections 2 and 3, starts from a suitable planar represen-
tation of an interval as a pair of binary trees. With simple local operations, we get a
“meandering representation” of the interval, closely related to interval-posets of Châtel
and Pons [7]. Such a representation can be seen as a folded version of a blossoming
tree. When unfolded, the blossoming tree is characterized by local conditions as in [15].
We also find it convenient to give a certain bicoloring to half-edges in blossoming trees,
which breaks symmetries.

Due to its simplicity, our bijection is also well-suited for specializations to known
subfamilies of Tamari intervals, by characterizing the blossoming trees in each case (The-
orem 4.5). In addition to synchronized intervals, whose specialization is much simpler
than that in [11], and Kreweras intervals, already given in [2], our bijection also special-
izes to new/modern intervals [6, 16] and infinitely modern intervals [16]. Compared
to [2], our bijection has also the advantage that it transfers the duality involution on
Tamari intervals in a simple way, which amounts to a color-switch in blossoming trees
(Proposition 4.6). Self-dual intervals thus correspond to blossoming trees with a half-
turn symmetry, which are easy to count for each family we consider (see Table 1), lead-
ing to counting formulas that are new to our knowledge, except for Kreweras intervals,
for which it is known.

The following statement summarizes our main results.

Theorem 1.1. There is a bijection Φ between intervals in Tamn and bicolored blossoming trees of
size n that sends self-dual intervals to blossoming trees with a half-turn symmetry. Its specializa-
tion to synchronized, Kreweras, modern/new, and infinitely modern intervals yields combinatorial
proofs of counting formulas for intervals and self-dual intervals in each case, see Table 1.

Finally, besides color switch, another natural involution on blossoming trees is to
apply a reflection. This yields a new involution on Tamari intervals with interesting
properties, see Remark 4.7.



Tamari intervals and blossoming trees 3

2 Tamari intervals and their meandering representation

Let Tn be the set of rooted binary trees with n nodes. Recall that the Tamari lattice Tamn
is the poset (Tn,≤) whose covering relations are given by right rotations, i.e., changing a
subtree of the form ((T1, T2), T3)) into (T1, (T2, T3)). An interval in Tamn is a pair (T, T′)
such that T ≤ T′. Let Xn = Tn × Tn, and In ⊆ Xn the set of intervals in Tamn. In the
following, we denote by [n] the set {1, . . . , n} ⊂ N.

T
canonical drawing smooth drawing

Figure 1: A binary tree T with its canonical drawing and smooth drawing.

We first review some representations and encodings of binary trees. For T ∈ Tn,
the canonical drawing of T is the crossing-free drawing of T with its n + 1 leaves placed
from left to right at the points of abscissas 0, . . . , n on the x-axis, its nodes in the upper
half-plane, and its left (resp. right) branches being segments of slope 1 (resp. −1). The
smooth drawing of T is obtained by removing all lines, then for each node u, adding a
semi-circle in the upper half-plane linking the leftmost and the rightmost leaves of the
subtree induced by u, see Figure 1. For t ∈ [n], let At be the unique arc covering the
unit-segment [t − 1, t] and visible from it, see the left-part of Figure 2.

1 1 2 0 3 1 0 0 0

diagram-drawing

degree-vector

Figure 2: Construction of the diagram-drawing from the smooth drawing, with its
degree-vector.

For T ∈ Tn, the diagram-drawing T̂ of T is obtained from the smooth drawing of T as
follows. For each t ∈ [n], we add a white point at t − 1

2 , and we replace At by an arc
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T

ab
a in V(T )
b in V′(T )V(T ) :

V′(T ) :

7 6 40 1 0 0 0

0 0 10 0 0 2 3

Figure 3: A binary tree T, its bracket-vector V(T) and dual bracket-vector V′(T).

from this white point to the black point at the left end of At, see Figure 2. To recover the
smooth drawing from T̂, for each white point w of T̂, its right-attachment point b is the
black point at x = n if there is no arc above w, and is the black point to the left of w′ if w
is covered by an arc b′ → w′. Then, to obtain the smooth drawing of T, each arc b → w
in T̂ is replaced by an arc connecting b to the right-attachment point of w.

For T ∈ Tn, the degree-vector of T is the vector Deg↗(T) = (d0, . . . , dn) such that di

is the number of arcs incident to the black point b at x = i in the diagram-drawing T̂
for 0 ≤ i ≤ n. We see that di is also the right-degree of b in the smooth drawing of T,
and is the length of the left branch of T ending at the leaf at abscissa i in the canonical
drawing. The diagram-drawing of T is easily recovered from its degree-vector.

Finally, we recall the bracket-vector and dual bracket-vector encoding of a binary tree
T ∈ Tn. We label the nodes of T by left-to-right infix order, with vi the node of label
i ∈ [n]. Let ai (resp. bi) be the size of the right (resp. left) subtree of vi. The bracket-vector
of T is V(T) = (a1, . . . , an), and the dual bracket-vector of T is V′(T) = (b1, . . . , bn), see
Figure 3 for an illustration. These vectors can also be specified by inequality constraints,
which we do not reproduce here, see [12]. The bracket-vector encoding is convenient to
characterize Tamari intervals. For (T, T′) ∈ Xn, it is known [12] that (T, T′) ∈ In if and
only if V(T) ≤ V(T′) componentwise, or equivalently, V′(T) ≥ V′(T′) componentwise.

Remark 2.1. The dual bracket-vector is closely related to the diagram drawing. For T ∈ Tn
and t ∈ [n], the unique arc at the white point t − 1

2 is connected to the black vertex at
x = t − 1 − bt.

The mirror of a binary tree T, denoted by mir(T), is the mirror image of T exchanging
left and right. The mirror canonical drawing (resp. mirror smooth drawing) of T is the canon-
ical drawing (resp. smooth drawing) of mir(T) rotated by a half-turn, which preserves
the left-to-right order of leaves of T.

For X = (T, T′) ∈ Xn, the canonical drawing (resp. smooth drawing) of X is the su-
perimposition of the canonical (resp. smooth) drawing of T′ with the mirror canonical
(resp. smooth) drawing of T, see Figure 4. In this case, the upper diagram-drawing of X is
the diagram-drawing of T′, while the lower diagram-drawing of X is the diagram-drawing
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,

T T ′

Figure 4: A pair (T, T′) of binary trees of the same size, its canonical drawing, and its
smooth drawing.

of mir(T) rotated by a half-turn. The diagram-drawing of X is the superimposition of the
upper and lower diagram-drawings of X. As a convention, in each of the 3 represen-
tations of X, the arcs are blue (resp. red) in the upper (resp. lower) part. Let ϕ be the
mapping that sends X ∈ Xn to its diagram-drawing, see Figure 5.

Definition 2.2. A meandering diagram of size n is a non-crossing arc-diagram M with
2n + 1 points, at 0, 1

2 , 1, . . . , n − 1
2 , n on the x-axis, colored black for integral points and

white for half-integral ones, with all upper (resp. lower) arcs having a black (resp. white)
left end and a white (resp. black) right end, such that each white point is incident to
exactly one upper (resp. lower) arc. The underlying graph of M is the graph with black
points as vertices, where each white point yields an edge connecting the black endpoints
of its incident upper and lower arcs. A meandering tree is a meandering diagram whose
underlying graph is a tree. Let MDn (resp. MT n) be the set of meandering diagrams
(resp. meandering trees) of size n.

Proposition 2.3. For n ≥ 1, the mapping ϕ is a bijection between Xn and MDn. It specializes
to a bijection between In and MT n.

Sketch of proof. For the first statement, the inverse ψ of ϕ is obtained by the equivalence
between the representations of binary trees discussed above. For M ∈ MDn, we con-
sider the upper part of M as an upper diagram-drawing, from which we compute the
corresponding smooth drawing, and turn it into the canonical drawing of a binary tree
T′. We do the same for the half-turn of the lower diagram-drawing, yielding a binary
tree, with T its mirror. Then we take ψ(M) = (T, T′).

For the second statement, we use the fact that X ∈ Xn is in In if and only if its smooth
drawing has no pair of arcs as on the left side of Figure 6, which follows from the bracket-
vector characterization of Tamari intervals, and is closely related to the Tamari diagrams
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. . . . . .. . . . . . . . . . . .. . . . . .

Figure 5: Left: The action of ϕ on each segment of consecutive points on the x-axis
of the smooth drawing of X ∈ Xn (the shorter blue and red arcs in the left drawing
may be reduced to a point). Right: the diagram-drawing M = ϕ(X) for the pair X in
Figure 4, which is a meandering tree, meaning X ∈ In by Proposition 2.3.

. . . . . . . . .

x′
` x` x′

r xr< ≤ <

a′

a

. . . . . . . . .

x′
`

x`− 1
2

xr< << x′
r+

1
2

Figure 6: The forbidden pattern for X ∈ Xn to be in In (left) corresponds via ϕ to the
forbidden pattern for M ∈ MDn to be in MT n (right).

in [8]. We then show that M ∈ MDn is in MT n if and only if it has no pair of arcs as
on the right side of Figure 6, and that these patterns are in correspondence via ϕ.

Remark 2.4. Each diagram M ∈ MDn yields a relation R on integers in [n] where i R j if
the edge {aj, bj} of the underlying graph in Definition 2.2 associated to the white point
j − 1

2 satisfies [i − 1, i] ⊆ [aj, bj]. It can be shown that R defines a poset if and only if
M ∈ MT n. In this case, by construction, ([n], R) is an interval-poset defined in [7].
Let I = ψ(M), by Proposition 2.3, we have I ∈ In. We checked that ([n], R) is the
interval-poset of I under the bijection in [7].

Recalling Remark 2.1, the mapping ϕ can be formulated simply in terms of the
bracket-vector of T and dual bracket-vector of T′.

Proposition 2.5. Let (T, T′) ∈ Xn, V(T) = (a1, . . . , an), and V′(T′) = (b1, . . . , bn). Then
ϕ(X) is given by its lower arcs (t − 1

2 , t + at) and upper arcs (t − 1
2 , t − bt − 1) for all t ∈ [n].



Tamari intervals and blossoming trees 7

3 Blossoming trees and their meandering representation

We consider the following trees, which are in bijection with simple triangulations [15].

Definition 3.1. A blossoming tree B is an unrooted plane tree such that each node, that is,
vertex of degree at least 2, has exactly two neighbors that are leaves, which are vertices of
degree 1. We only consider such trees with at least two nodes. Edges incident to leaves
are called buds, drawn as an outgoing arrow, and all other edges are called plain edges.
The size of B is its number of plain edges, which is also its number of nodes minus 1.

A blossoming tree is bicolored if each plain edge has one half-edge colored red and
the other blue, such that the half-edges at each node are separated by the two incident
buds into a group of blue and a group of red, one of the groups being possibly empty.
See Figure 8(a) for an example. We note that a blossoming tree yields at most two
bicolored blossoming trees, since the bicoloring is uniquely determined once the color
of a half-edge is fixed. It yields just one if and only if it possesses the half-turn symmetry.
We denote by Bn the set of bicolored blossoming trees of size n.

Figure 7: A meandering tree and the corresponding bicolored blossoming tree.

For M ∈ MT n, we construct B ∈ Bn by adding a “left” and a “right” bud at each
black point along the x-axis, while keeping the colors of arcs, which are turned into
half-edges of plain edges in B, see Figure 7. Let γ be the mapping sending M to B.

Conversely, given a bicolored blossoming tree B, its closure, denoted by B, is con-
structed as follows, see Figure 8. For each plain edge e, we insert an edge-vertex ve in its
middle, and we attach to ve two unmatched half-edges called legs, one on each side of e.
The counterclockwise-contour of B yields a cyclic word of parentheses, whose opening
(resp. closing) ones are given by buds (resp. legs). We then match buds and legs in
a planar way, see Figure 8(b). Since B has 2n + 2 buds and 2n legs, two buds are left
unmatched. It is easily checked that the two unmatched buds of the closure B are at
distinct vertices, which are called the extremal vertices of B.

Lemma 3.2. For B ∈ Bn, let B be the closure of B, and π the subgraph of B induced by all
closure-edges, that is, those obtained by matching a bud with a leg. Then

• π is a Hamiltonian path of B whose ends are the two extremal vertices;
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(a) (b)

(c) (d)

Figure 8: (a) A bicolored blossoming tree B; (b) the matching of buds with legs; (c)
the closure B of B, where the meandric path is shown in bold; (d) the meandering tree
M = δ(B) obtained by stretching the meandric path.

• π splits half-edges of B by color;

• For any edge e = {u, v} of B corresponding to a half-edge of plain edge of B, with v the
edge-vertex end, let πe be the unique subpath of π from u to v, and σe = πe ∪ {e}, which
is a cycle. Then, the interior of σe is on the right of e traversed from u to v.

The Hamiltonian path π of B in Lemma 3.2 is called the meandric path of B. From the
first statement of Lemma 3.2, for B ∈ Bn, we may stretch the meandric path of B into
the horizontal segment {0 ≤ x ≤ n, y = 0} with 2n + 1 equally-spaced vertices, along
with arcs as semi-circles. By the second statement of Lemma 3.2, this can be done in a
unique way with the blue (resp. red) half-edges of B turned into the arcs above (resp.
below) the segment. Let M be the arc-diagram thus obtained, then the third statement
of Lemma 3.2 ensures that M ∈ MT n. We define δ as the mapping that sends B to M.

Proposition 3.3. For n ≥ 1, the mapping γ is a bijection from MT n to Bn, with δ its inverse.

4 The main bijection: properties and enumeration results

Combining Propositions 2.3 and 3.3, we obtain the following.
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Theorem 4.1. The mapping Φ := γ ◦ ϕ is a bijection from In to Bn. Its inverse is Ψ := ψ ◦ δ.

It is possible to track several parameters via the bijection. For X = (T, T′) ∈ Xn given
as it canonical drawing, and for 0 ≤ i ≤ n, the bi-degree of X at i is the pair (d, d′) such
that the right branch of T (resp. left branch of T′) ending at i on the horizontal axis has
d (resp. d′) nodes. In other words, Deg↗(T′)i = d′ and Deg↗(mir(T))n−i = d. The
canopy-type of X at i is [sr], where s = 1d′>0 and r = 1d=0 are given by indicator functions.
We note that, if X ∈ In, then the canopy-type [01] can not occur. For B ∈ Bn, the bi-degree
of a node v ∈ B is the pair (d, d′) such that d (resp. d′) is the number of red (resp. blue)
half-edges at v, and the canopy-type of v is [sr] where s = 1d′>0 and r = 1d=0.

Proposition 4.2. For X ∈ In and B = Φ(X), each index 0 ≤ i ≤ n corresponds to a node
v ∈ B of same bi-degree, and thus same canopy-type.

Remark 4.3. It seems harder to read the lengths of left branches of T and right branches of
T′. A clear way to read these lengths could yield bijective proofs of the counting formulas
for m-Tamari intervals [5] (via [14, Prop.72]) and for labeled Tamari intervals [4].

The number of entries of each canopy-type is then easy to track in bicolored blos-
soming trees using a root-decomposition, yielding the following counting formulas.

Corollary 4.4. We denote by Ji,j(n) the number of Tamari intervals of size n with i + 1 canopy-
entries [11] and j + 1 canopy-entries [00], and thus n − 1 − i − j canopy-entries [10]. Let A ≡
A(t; x, y) and B ≡ B(t; x, y) be the trivariate series specified by

A =
t

(1 − B)2

(
y +

A
1 − A

)
, B =

t
(1 − A)2

(
x +

B
1 − B

)
. (4.1)

Then we have
Ji,j(n) =

1
n
[tn+1xi+1yj+1]AB. (4.2)

In particular, using Lagrange inversion, the coefficients Si,j := Ji,j(i + j + 1) and Jk(n) :=
∑i+j=k Ji,j(n) are given by

Si,j =
1

(i + 1)(j + 1)

(
2i + j + 1

j

)(
2j + i + 1

i

)
, Jk(n) =

2
n(n + 1)

(
3n

k − 2

)(
n + 1

k

)
, (4.3)

where Si,j counts synchronized Tamari intervals, i.e., those with no canopy-entry of type [10]
(cf. [10, Section 2]).

The expression of Si,j in Equation (4.3) can be obtained using bijections in [10] or
in [11] to planar non-separable maps counted by vertices and faces. On the other hand,
the coefficients Jk(n) count Tamari intervals by size and number of synchronized entries
(type [11] or [00]), and it has been recently computed in [3] by solving functional equations,
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and via the Bernardi-Bonichon bijection building upon [11]. The derivation with our
bijection is however more direct.

Besides synchronized intervals, the bijection Φ can also be specialized to other known
families of Tamari intervals, as listed in Table 1, namely:

• modern intervals [16], i.e., intervals I = (T, T′) whose “rise” ((T, ϵ), (ϵ, T′)) is also
a Tamari interval. In this case, the rise is a “new” Tamari interval defined in [6],

• infinitely modern intervals [16], i.e., intervals such that all iterated rises are also
Tamari intervals,

• Tamari intervals corresponding to Kreweras intervals (cf. [2] and references therein)
under the standard bijection from binary trees to non-crossing partitions: the parts
are given by right branches of the binary tree with nodes labeled by infix order.

Theorem 4.5. For each of the following families of Tamari intervals, the associated bicolored
blossoming trees given by Φ are characterized by the following conditions:

• Synchronized: for each node, its two incident buds are consecutive in cyclic order.

• Modern: for every plain edge, at least one end is followed by a bud in clockwise order.

• Infinitely modern: for every path of plain edges, at least one end is followed by a bud in
clockwise-order.

• Kreweras: for every path of plain edges, at least one end is followed by a bud in counter-
clockwise order.

These conditions amount to forbidding in bicolored blossoming trees the patterns illustrated in
Figure 9. In each case, a decomposition of the corresponding trees yields a combinatorial proof of
the known counting formula, given by the first column in Table 1.

∅

∅

∅

∅

Synchronized Modern Infinitely modern Kreweras

∅

∅

. . .

. . .

Figure 9: Forbidden patterns of blossoming trees for subfamilies of Tamari intervals.

We define mir(X) for X = (T, T′) ∈ Xn as mir(X) = (mir(T′), mir(T)). We call mir
the duality on Xn, it is an involution on Xn and on In. Its name comes from the fact that
mir on binary trees is the duality map for Tamn.
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Types All, size n Self-dual, size 2m Self-dual, size 2m + 1

General
2

n(n + 1)

(
4n + 1
n − 1

)
1

3m + 1

(
4m
m

)
1

m + 1

(
4m + 2

m

)
Synchronized

2
n(n + 1)

(
3n

n − 1

)
0

1
m + 1

(
3m + 1

m

)
Modern

/ New (for size-1)
3 · 2n−1

(n + 1)(n + 2)

(
2n
n

)
2m−1

m + 1

(
2m
m

)
2m

m + 1

(
2m
m

)
Modern and
synchronized

1
n + 1

(
2n
n

)
0

1
m + 1

(
2m
m

)
Inf. modern
/ Kreweras

1
2n + 1

(
3n
n

)
1

2m + 1

(
3m
m

)
1

m + 1

(
3m + 1

m

)
Table 1: Counting formulas for Tamari intervals and self-dual ones.

Proposition 4.6. For I ∈ In, we obtain Φ(mir(I)) by switching colors of half-edges in Φ(I).
Hence, self-dual intervals are mapped by Φ to blossoming trees with half-turn symmetry.

For each of the families in Table 1, one can easily count the corresponding blossoming
trees that are half-turn symmetric. This yields the formulas shown in the second and the
third column in Table 1, which are new to our knowledge, except for Kreweras.
Remark 4.7. We define the reflection of a blossoming tree to be its mirror image. It is clear
that reflection commutes with color switch on blossoming trees, and it is transferred by
Ψ to an involution on Tamari intervals. Combined with Theorem 4.5, with forbidden
patterns illustrated in Figure 9, we see that synchronized intervals are stable by this new
involution, while infinitely modern intervals are matched with Kreweras intervals.

It was previously known that both infinitely modern intervals and Kreweras intervals
are equinumerous to ternary trees [16], but they seem to have very different structures.
Our involution somehow relates these two families. We plan to further explore proper-
ties of this new involution.
Remark 4.8. Regarding the counting formulas for self-dual intervals in Table 1, one ob-
serves that, in the cases of general and synchronized intervals, they are given by a simple
q-analogue of the formula for all intervals taken at q = −1. It would be nice to have a
natural explanation of this fact. This may come from a combinatorial analysis of blos-
soming trees.
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Eulerian Polynomials for Digraphs
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Abstract. Given an n-vertex digraph D and a labeling σ : V(D) → [n], we say that
an arc u → v of D is a descent of σ if σ(u) > σ(v). Foata and Zeilberger introduced a
generating function AD(t) for labelings of D weighted by descents, which simultane-
ously generalizes both Eulerian polynomials and Mahonian polynomials. Motivated
by work of Kalai, we look at problems related to −1 evaluations of AD(t). In par-
ticular, we give a combinatorial interpretation of |AD(−1)| in terms of “generalized
alternating permutations” whenever the underlying graph of D is bipartite.

Keywords: Eulerian polynomial, alternating permutations, combinatorial reciprocity

1 Introduction

Descents and inversions are two of the oldest and most well-studied permutation statistics
dating back to work of MacMahon [15, 14]. A descent of a permutation σ ∈ Sn on the set
[n] := {1, 2, . . . , n} is an index i ∈ [n − 1] such that σ(i) > σ(i + 1), and an inversion is a
pair of integers (i, j) with 1 ≤ i < j ≤ n such that σ(i) > σ(j). The number of descents
and inversions of σ are denoted by des(σ) and inv(σ), respectively.

The generating functions

An(t) = ∑
σ∈Sn

tdes(σ) Mn(t) = ∑
σ∈Sn

tinv(σ)

are called the Eulerian and Mahonian polynomials respectively. Both of these polynomials
are important objects of study in many branches of combinatorics and have been gen-
eralized in many different ways. In this paper, we consider a polynomial due to Foata
and Zeilberger [9] which generalizes both the Eulerian and Mahonian polynomials via
directed graphs.

A permutation of an n-vertex digraph D = (V, E) is a bijection σ : V → [n]. We will
use the notation SD, SV , or Sn to denote the set of permutations of D. For a given
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‡sas703@scarletmail.rutgers.edu. This material is based upon work supported by the National Science

Foundation Mathematical Sciences Postdoctoral Research Fellowship under Grant No. DMS-2202730.
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directed graph D = (V, E) and a permutation σ of D, a D-descent (or just descent when
D is understood) is an arc u → v such that σ(u) > σ(v). The total number of D-descents
of a permutation σ is denoted by desD(σ); see Figure 1 for an example.

3

4

1

5

2

5

1

2

3

4

Figure 1: Two labelings π : V(D) → [5] where descent arcs are marked by red dashed
lines.

These statistics generalize both of des and inv as Figure 2 shows.

2 3 1 5 4

(a) des(23154) = 2

2 3 1 5 4

(b) inv(23154) = 3

Figure 2: The Eulerian polynomial AD(t) generalizes both descents and inversions.

With all this in mind, we can now define the central object of study for this paper:
the Eulerian polynomial of a digraph D = (V, E) is the generating function

AD(t) = ∑
σ∈SD

tdesD(σ). (1.1)

In particular, we have A−→
Pn
(t) = An(t) and A−→

Kn
(t) = Mn(t).

This polynomial can be seen in other work: as a weighted-inversion generating function
as in [11, 5]; as an Eulerian polynomial for a (particular) family Bn of digraphs [1]; as a
specialization of the chromatic quasisymmetric function for digraph [6] and B-polynomial [2].
There are also a myriad of other objects generalizing Eulerian polynomials which are
related by varying degrees to ours.

The primary objective of this extended abstract is to study evaluations of AD(t) at −1.
See [4] for the full paper. This is a problem in the area of combinatorial reciprocity, which
studies combinatorial polynomials evaluated at negative integers. For example, the clas-
sical Eulerian and Mahonian polynomials both have good combinatorial interpretations
for their evaluation at −1: the former being the number of alternating permutations [8]
and the latter being the number of correct proofs of the Riemann hypothesis1. Many more
results on combinatorial reciprocity can be found in the book by Beck and Sanyal [3].

1As of the time of writing.
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Kalai [12, Section 8.1] makes a critical observation about AD(−1).

Proposition 1.1. If D, D′ are orientations of the same graph G, then |AD(−1)| = |AD′(−1)|.

With Proposition 1.1 in mind, for any graph G we can define

ν(G) := |AD(−1)|,

where D is any orientation of G. The problem of studying ν(G) was first introduced by
Kalai [12] due to its relation with the Condorcet paradox in social choice theory, and a
few basic properties of ν(G) were established by Even-Zohar [7]. Outside of this, nothing
seems to be known about ν(G) despite Kalai raising the problem over 20 years ago.

In this extended abstract, we prove three types of results related to ν(G): we give
combinatorial interpretations for ν(G) for a large class of graphs G, we determine the
maximum and minimum values achieved by ν(G) amongst n vertex trees, and we con-
sider the refined problem of determining the multiplicity of −1 as a root of AD(t).

2 Combinatorial Interpretations for ν(G)

A classical result of Foata and Schützenberger [8] (see also [16, Exercise 135]) states that
for odd n the Eulerian polynomial An(t) evaluated at t = −1 is equal (up to sign) to
the number of alternating permutations of length n, i.e. the number of permutations σ and
σ(1) < σ(2) > σ(3) < · · · > σ(n). Because An(t) = A−→

P n
(t) for

−→
P n the directed path,

this result implies ν(Pn) is equal to the number of alternating permutations of size n.
Given this observation, it is natural to expect ν(G) to count “alternating permutations

for graphs” for some generalized notion of alternating permutations. There are many
such generalizations one could consider, for example, one could force every maximal
path of G to be an alternating permutation. However, it turns out that the definition we
will want to consider is the following (non-obvious) generalization.

Definition 2.1. Given an n-vertex graph G, we say that an ordering π = (π1, . . . , πn) of
the vertex set V(G) is an even sequence if each of the subgraphs G[π1, . . . , πi] induced by
the first i vertices of π have an even number of edges for all 1 ≤ i ≤ n. We let η(G)
denote the number of even sequences of G.

Lemma 2.2. For any graph G,

(a) ν(G) ≤ ∑v∈V(G) ν(G − v).

(b) If G has an odd number of edges, η(G) = 0. Otherwise, η(G) = ∑v∈V(G) η(G − v).

(c) ν(G) ≤ η(G).
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3

P5[3]

31

P5[3, 1]

31 2

P5[3, 1, 2]

31 2 5

P5[3, 1, 2, 5]

31 2 4 5

P5[3, 1, 2, 5, 4]

Figure 3: A depiction of the induced subgraphs P5[π1, . . . , πi] for the ordering
π = (3, 1, 2, 5, 4) of the path graph P5. Note that π is an even sequence since each
of these induced subgraphs have an even number of edges. We also observe that
π−1 = (2, 3, 1, 5, 4) is an alternating permutation.

One can verify that even sequences for the path graph Pn with vertex set [n] are
exactly inverses of alternating permutations of size n, so ν(Pn) = η(Pn) in this case. Our
main result shows that this equality holds for a substantially larger class of graphs.

To state this result, we remind the reader that a graph is complete multipartite if one
can partition its vertices into sets V1, . . . , Vr such that u and v are adjacent if and only if
u ∈ Vi, v ∈ Vj for some i ̸= j. We say that a graph is a blowup of a cycle if one can partition
its vertices into sets V1, . . . , Vr such that u and v are adjacent if and only if u ∈ Vi and
v ∈ Vi+1 for some i (with the indices written mod r).

Theorem 2.3. If G is a graph which is either bipartite, complete multipartite, or a blowup of a
cycle, then ν(G) = η(G).

The proofs for each of these cases follows the same basic strategy: We first show
that for some “natural” orientation D of G, we can easily predict the sign of AD(−1).
From this we deduce ν(G) = ∑ ν(G − v), and hence that ν(G) = η(G) since the statistics
ν, η satisfy the same recurrence relation. Accordingly, we will only discuss the proof for
bipartite graphs in this extended abstract, leaving the other classes of graphs for the full
paper.

Lemma 2.4. Let D be a digraph such that one can partition its vertex set into U ∪ V such that
every arc u → v of D has u ∈ U and v ∈ V. Then

AD(−1) ≥ 0,

and if D has an even number of arcs, then

AD(−1) = ∑
v∈V(D)

AD−v(−1).
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Corollary 2.5. If G is a bipartite graph with an odd number of edges, then ν(G) = 0, and
otherwise ν(G) = ∑v ν(G − v).

Proof of Theorem 2.3. We aim to show that ν(G) = η(G) whenever G is bipartite, complete
multipartite, or a blowup of a cycle. We first consider the case that G is bipartite. We
prove this result by induction on |V(G)|, the base case ν(K1) = η(K1) = 1 being trivial.
By Corollary 2.5 and Lemma 2.2, if G has an odd number of edges then ν(G) = η(G) = 0,
and otherwise

ν(G) = ∑
v∈V(G)

ν(G − v) = ∑
v∈V(G)

η(G − v) = η(G),

where the middle equality used the inductive hypothesis (and that G − v is bipartite
whenever G is).

It is tempting to try to generalize this approach by finding “natural” orientations
of other graphs in order to show ν(G) = ∑ ν(G − v); see for example Conjecture 5.2.
However, the following theorem shows that the inductive proof of Theorem 2.3 can not
be extended beyond the class of graphs which are bipartite, complete multipartite, or
blowups of cycles.

Theorem 2.6. If G is a connected graph such that ν(G′) = η(G′) for all induced subgraphs
G′ ⊆ G, then G is either bipartite, complete multipartite, or a blowup of a cycle.

Our proof of Theorem 2.6 relies on a structural graph theory result which may be
of independent interest. The odd pan graph C∗

2k+1 is defined to be the graph obtained by
taking the odd cycle C2k+1 and then adding a new vertex u adjacent to exactly one vertex
of C2k+1. We say that a graph G is odd pan-free if it contains no induced subgraph which
is isomorphic to C∗

2k+1 for any k ≥ 1.

Proposition 2.7. If G is a connected graph, then G is odd pan-free if and only if it is either
bipartite, complete multipartite, or a blowup of a cycle.

While we do not have a full understanding of ν(G) for arbitrary graphs, we are able
to prove several other results regarding ν(G), such as the general bound ν(G) ≤ η(G) in
the full paper.

3 Upper and lower bounds of ν(G) and η(G)

We next turn to the extremal problem of studying the largest and smallest possible values
of ν(G) and η(G). For arbitrary n-vertex graphs this is an uninteresting problem, since
ν(Kn) = η(Kn) = n! and ν(Kn) = η(Kn) = 0 for n ≥ 2 are easily seen to achieve the
maximum and minimum possible values. However, this problem becomes non-trivial
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when one looks at smaller classes of graphs. To this end, we consider these extremal
problems for trees.

To state our result, we recall that a tree is a star K1,n if there is a single-non leaf vertex;
see Figure 4a. We say that a tree is a hairbrush if it consists of a path v0v1 · · · vn such that
each vertex vi with i ≥ 1 is adjacent to a leaf ui; see Figure 4b.

v0

v1 v2 v3 v4 v5 v6

(a) The star K1,6

v0 v1 v2 v3

u1 u2 u3

(b) The hairbrush H3

Theorem 3.1. If T is a tree on 2n + 1 vertices, then

n!2n ≤ ν(T) = η(T) ≤ (2n)!

Moreover, equality holds in the lower bound if and only if T is a hairbrush, and equality holds in
the upper bound if and only if T is a star.

To aid with our proofs, given a tree T, we define

X̃(T) = {x ∈ V(T) : each component of T − x has an even number of edges},

and we will denote this simply by X̃ whenever T is understood. Our motivation for this
definition is the following.

Lemma 3.2. If T is a tree with an even number of edges, then

ν(T) = ∑
x∈X̃

ν(T − x).

With this lemma in mind, the idea for the proofs of the upper and lower bounds is
as follows: we first apply Lemma 3.2 and then use induction to bound each of the terms
ν(T − x) in the sum. Finally, we bound our total sum in terms of |X̃| and show that
equality can only occur when |X̃| = 1. In particular, we can show that

n!2n ≤ ν(T − x) ≤ 1
2|X̃| − 1

(2n)! (3.1)

for all trees with an even number of edges and x ∈ X̃ and so the result follows.

Remark 3.3. Our proofs yield slightly stronger bounds on ν(T) whenever X̃ is large.
For example, (3.1) gives the lower bound ν(T) ≥ |X̃|n!2n. Bounds of this form are
known as stability results in extremal graph theory, which roughly are results saying that
bounds for a graph T can be substantially improved if T is “far” from a unique extremal
construction. Here, T being “far” from Hn and K1,2n is measured by having |X̃| large.
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4 Multiplicity of Roots

Lastly, we consider the problem of determining the multiplicity of −1 as a root of AD(t),
and we denote this quantity by mult(AD(t),−1).

One of the first questions one might ask in this setting is how large mult(AD(t),−1)
can be amongst all n-vertex digraphs? Trivially, mult(AD(t),−1) ≤ e(D) (since the
degree of AD(t) is at most e(D)), which implies mult(AD(t),−1) ≤ (n

2) if D has n
vertices. We prove a substantially stronger upper bound which turns out to be sharp.

Theorem 4.1. If D is an n-vertex digraph, then

mult(AD(t),−1) ≤ n − s2(n),

where s2(n) denotes the number of 1’s in the binary expansion of n. Moreover, for all n, there
exist n-vertex digraphs D with mult(AD(t),−1) = n − s2(n).

The upper bound can be achieved with the following construction. Given digraphs
D1, D2, and a root vertex v ∈ D2, the rooted product digraph, denoted D1 ◦v D2, is obtained
by gluing a copy of D2 at v to each vertex of D1, see Figure 5 for an example.

−→
P4

−→
K3

−→
P4 ◦v

−→
K3

v

Figure 5: The rooted product digraph
−→
P4 ◦v

−→
K3 with the vertex v highlighted in black.

This product was first defined by Godsil and McKay [10], and it turns out that this
operation plays very nicely with the Eulerian polynomial.

Proposition 4.2. Let D1 and D2 be two digraphs on m and n vertices respectively. If v ∈ D2,
then

AD1◦vD2(t) =
1

m!

(
mn

n, . . . , n

)
AD1(t)AD2(t)

m.

In particular, the polynomial is the same for any choice of root v ∈ D2.

Remark 4.3. The last line of the statement implies that there are non-isomorphic di-
graphs with the same Eulerian polynomial.
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With this, we first consider the case when n = 2m for some m ≥ 1. Let P2 be the graph
on vertices v1, v2 with a single arc v1 → v2. Define a sequence of digraphs {Lm}m∈N by

L1 = P2 and Lm+1 = Lm ◦v1 P2.

We observe that Lm has 2m vertices and 2m − 1 arcs. Then from Proposition 4.2, we have

ALm(t) = (2m)!
(

1 + t
2

)2m−1

.

Since s2(2m) = 1, this gives the desired construction when n is a power of two. For
arbitrary n, we let a1, . . . , aℓ be the indices of nonzero powers of 2 in the binary expansion
of n and then define D to be the disjoint union of the digraphs La1 , . . . , Laℓ . Then AD(t)
gives the desired upper bound.

We also obtain a general lower bound on mult(AD(t),−1).

Proposition 4.4. Let D be an orientation of an n-vertex graph G. If every matching in the
complement of G has size at most m, then mult(AD(t),−1) ≥ ⌊n

2 ⌋ − m.

Roughly speaking, Proposition 4.4 says that if G is “dense” (i.e. if the complement
of G contains small only matchings), then mult(AD(t),−1) will be large. While Propo-
sition 4.4 is not tight in general, it turns out to be tight if D is an orientation of the
complete graph as we show now.

Let OP(α) denote the set of all ordered set partitions of type α, and let SP(λ) denote
the set of all unordered set partitions with type λ. For two sets S, T of vertices in a
digraph D, let eD(S, T) be the number of edges which start in S and end in T. For a
digraph D and an ordered set partition P = (P1, . . . , Pk) of the vertices of D of length k
and i ∈ [k], define the i-th forward sequence number of P to be

FSD,P(i) =
k

∑
j=i+1

eD(Pi, Pj)

and the i-th reverse sequence number of P to be

RSD,P(i) =
k

∑
j=i+1

eD(Pj, Pi)

where we set FSD,P(k) = 0 and RSD,P(1) = 0.
With this notation in hand, we can factor the Eulerian polynomial.

Lemma 4.5. If D is a tournament on the vertex set [n] and α is the integer composition (2k) of n
if n is even and (1, 2k) if n is odd, then

AD(t) = (1 + t)k 1
2k ∑

P∈OP(α)

k

∏
i=1

tFSD,P(i) + tRSD,P(i).
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A parity argument shows that the sum in the lemma does not have -1 as a root.
Therefore, we obtain the following.

Theorem 4.6. If D is a tournament on n vertices, then mult(AD(t),−1) = ⌊n
2 ⌋.

More generally, we suspect that Proposition 4.4 is tight for orientations of complete
multipartite graphs; see Conjecture 5.4 for more.

Given Theorem 4.6 and the fact that |AD(−1)| = |AD′(−1)| whenever D, D′ are ori-
entations of the same graph, it is perhaps natural to guess that mult(AD(t),−1) depends
only on the underlying graph of D. This turns out to be false; see Figure 6 for a coun-
terexample.

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

Figure 6: Two orientations of the same graph with different −1 multiplicities. The
digraph on the left has AD1(t) = (1 + t)3(1 + t + 11t2 + t3 + t4) while the one on the
right has AD2(t) = (1 + t)(1 + 5t + 16t2 + 16t3 + 16t4 + 5t5 + t6).

5 Concluding Remarks and Open Problems

In this extended abstract, we studied a notion of Eulerian polynomials AD(t) for di-
graphs D and proved a number of results related to evaluations at t = −1. We conclude
by listing a number of remaining open problems themed around interpreting ν(G) and
multiplicities of −1 as a root of AD(t).

Interpretations for ν(G). Recall that for any graph G we define ν(G) = |AD(−1)|
where D is any orientation of G. While Theorem 2.3 provides a combinatorial interpre-
tation for ν(G) when G is bipartite, complete bipartite, or a blowup of a cycle, we are
still far from understanding this quantity for general graphs, which we leave as the main
open problem for this paper.

Question 5.1. Can one give a combinatorial interpretation for ν(G) for arbitrary graphs G?
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In view of Theorem 2.3 and the bound ν(G) ≤ η(G) from Lemma 2.2(a), we suspect
that in general ν(G) should count even sequences of G with some special properties, but
what these properties should be remains a mystery.

To answer Question 5.1, it might be useful to establish which graphs G satisfy ν(G) =

∑v ν(G − v), as recurrences of this form were a key step in proving Theorem 2.3. In
particular, computational evidence suggests that the following could hold, where here
we recall that a graph is Eulerian if all of its degrees are even.

Conjecture 5.2. If G is an Eulerian graph, then ν(G) = ∑v ν(G − v).

We note that an Eulerian graph has a “natural” orientation via orienting each edge ac-
cording to an Eulerian tour. Given that e.g. our proof of Corollary 2.5 relied on “natural”
orientations of bipartite graphs, it is plausible that this natural orientation for Eulerian
graphs could be used to prove Conjecture 5.2.

Our proof of Theorem 2.3 is non-combinatorial, and it would be interesting to have a
more direct combinatorial proof of this fact, say for bipartite graphs.

Problem 5.3. For any bipartite graph G = ([n], E) and orientation D of G, construct an explicit
involution φ : Sn → Sn such that

(a) The set of fixed points Fφ of φ is the set of (inverses of) even sequences of G, and

(b) (−1)desD(σ) = −(−1)desD(φ(σ)) for all σ /∈ Fφ.

Such an involution is known to exist when G = Pn (i.e. when inverses of even se-
quences are exactly alternating permutations), but this involution is somewhat complex;
see [16, Exercise 135] for more.

Multiplicity of Roots. In Theorem 4.6 we showed every n vertex tournament D has
−1 as a root of AD(t) with multiplicity exactly ⌊n

2 ⌋. A natural generalization of this
result would be the following.

Conjecture 5.4. If D is the orientation of a complete multipartite graph which has r parts of odd
size, then mult(AD(t),−1) = ⌊ r

2⌋.

Observe that the bound mult(AD(t),−1) ≥ ⌊ r
2⌋ follows from Proposition 4.4, so the

difficulty lies in proving the upper bound.
Another direction is to look at the more general quantity mult(AD(t), α), which is

defined to be the multiplicity of α as a root of AD(t). For example, it is not difficult to
see that mult(AD(t), 0) is equal to the minimum number of arcs that one must remove
in D to obtain an acyclic digraph. Such a set of arcs is known as a minimum feedback arc
set, and determining the size of such a set is well known to be an NP-Complete problem
[13].

This connection to feedback arc sets, together with the results of this paper, estab-
lishes a number of results for mult(AD(t), α) when α ∈ {0,−1}, and it is natural to ask
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what can be said about other integral values of α. An immediate obstacle to this is the
following.

Question 5.5. Does there exist a digraph D such that AD(t) has an integral root which is not
equal to either 0 or −1?

We have verified that no such digraph exists on at most 5 vertices. We also note that
there exist digraphs with real roots of magnitude larger than 2, so the obstruction to
finding these integral roots is not that their magnitudes are too large.
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Abstract. Pasting diagrams form an important special class of higher categories.
In 1991, Kapranov and Voevodsky announced that any d-polytope in Rd, when equipped
with a generic frame of Rd, naturally defines a d-dimensional pasting diagram. Our
main result is a counterexample to this claim.

After translating this category-theoretic statement into a purely convex-geometric one,
we were led to the study of globular structures and higher cellular strings on poly-
topes. Specifically, the absence of cellular loops is a necessary condition for the claim.
We strongly disprove it by constructing polytopes for which every frame leads to a
cellular loop.

An important infinite family of framed polytopes without cellular loops is defined by
the canonically framed cyclic simplices. These happen to be exceptional since we show
that, as the dimension of a canonically framed random simplex grows, the probability
that it has a cellular loop tends to 1.

We conclude this work relating globular structures on simplices to oriented flag ma-
troids, and use this connection to prove a universality theorem showing how compli-
cated the moduli space of frames can be.

Keywords: Framed polytopes, n-categories, pasting diagrams, cellular strings, globu-
lar structures, random polytopes, oriented flag matroids, Mnëv’s universality theorem

1 Introduction

Higher categories offer a powerful framework for systematizing complex hierarchies.
Polytopes were first introduced into higher category theory to organize coherence rela-
tions. Kapranov and Voevodsky significantly expanded the connection between convex
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geometry and higher category theory announcing several intriguing results in [7], in-
cluding the following insightful idea. Consider a convex d-polytope P ⊆ Rd and a
generic ordered basis B of Rd, which we refer to as a frame. Using the frame we de-
fine, for each face F, two distinct subsets of its k-faces: its k-source sk(F) and k-target
tk(F). Kapranov and Voevodsky conjectured [7, Thm. 2.3] that the data consisting of all
sources and targets, referred to as the globular structure of (P, B), defines a d-dimensional
pasting diagram, a special and important type of d-dimensional categories. Using ideas of
Steiner [10], we show in the full version of this article that this claim holds if and only if
the framed polytope has no cellular loops, a notion we now define. A cellular k-string in
a framed polytope is a sequence F1, . . . , Fℓ of faces such that two consecutive faces Fi and
Fi+1 share a k-face G with tk(Fi) ∩ sk(Fi+1) = G. We say it is a cellular loop if and Fi = Fj
for some i ̸= j.

The first contribution we discuss in this paper are counterexamples to [7, Thm. 2.3].
More precisely, in Section 3 we provide examples showing the following.

Theorem 1.1. Starting in dimension 4 there exist framed polytopes with cellular loops.

We also considered whether the following weaker version of their claim could be
true: For any polytope there is a frame making it into a pasting diagram. However, this
weaker version also fails since we provide in Section 4 a construction establishing the
following.

Theorem 1.2. Starting in dimension 4 there exist polytopes for which all frames lead to cellular
loops.

An important infinite family of framed polytopes, which was studied by Kapranov–
Voevodsky, is given by the canonically framed cyclic simplices (C(d), {e1, . . . , ed}), where
{e1, . . . , ed} is the canonical frame of Rd and C(d) is the convex closure of d + 1 distinct
points in the moment curve t 7→ (t, t2, . . . , td). In an insightful observation [7, Thm.
2.5], they announced that (C(d), {ek}) has no cellular loops and recover Street’s free
d-category on the d-simplex, a fundamental object in higher category theory [11]. We
were able to verify this claim after replacing the canonical frame by {e1,−e2, e3,−e4, . . .}.
These framed polytopes are rare and special in the following probabilistic sense.

A Gaussian d-simplex is the convex hull of d + 1 independent random points in Rd,
each chosen according to a d-dimensional standard normal distribution. In Section 6 we
prove the following.

Theorem 1.3. The probability that a canonically framed Gaussian d-simplex has a cellular loop
tends to 1 as d tends to ∞.

We next turn our attention to the moduli of frames of a simplex ∆d under the equiv-
alence relation induced by globular structures. Our aim is to quantify the complexity
of the realization space of a globular structure on ∆d, that is, the set of all frames of
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∆d inducing it. Using a celebrated result of N. E. Mnëv [8], in Section 8 we show the
following.

Theorem 1.4. For every open primary basic semi-algebraic set S defined over Z there is a globular
structure on some simplex ∆d whose realization space is stably equivalent to S.

A key step in the proof of this result is the following theorem–presented in Section 7–
which we consider noteworthy in its own right.

Theorem 1.5. Globular structures of framed simplices are in bijection with uniform acyclic
realizable full flag chirotopes.

For reasons of scope and extension, we do not discuss our formalization of the
Kapranov–Voevodsky idea, nor the applications within higher category theory of this
connection with convex geometry, simply mentioning that the resulting d-categories are
gaunt, an important type of higher categories that fully-faithfully embed into any model
of (∞, d)-categories. Our focus here will remain primarily with polytopes. For fur-
ther details, including proofs and discussions of the aforementioned topics, we invite
the interested reader to consult the full version of this article, which will become avail-
able soon. We believe that, beyond our initial motivation, the results presented herein
hold intrinsic value from a combinatorial-geometric standpoint. Indeed, some important
research topics in combinatorial polytope theory, such as the Baues problem, were orig-
inally motivated by questions in algebraic topology and category theory, with our work
extending these connections to higher category theory.

2 Definitions and preliminaries

A polytope P is a subset of Rd for some d ∈ N obtained as the convex hull of a finite
set of points. A face F of P is a subset of P maximizing some linear functional. Its
dimension is that of its affine span. A d-dimensional polytope is called a d-polytope and a
k-dimensional face is called a k-face. We denote the set of k-faces of P by Lk(P) and the
set of all faces by L(P). As usual, if P is a d-polytope, its (d − 1)-faces are called facets,
and the outer-pointing normal vector of a facet F is denoted nP

F .
A frame B is an ordered basis (v1, . . . , vd) of Rd. The canonical frame (e1, . . . , ed) consists

of the standard basis vectors. The system of projections of a frame is the collection {πk}k∈N

with

πk : Rd → Vk
def
= Span (v1, . . . , vk) ; πk(vi) =

{
vi if i ≤ k,
0 if i > k.

A frame is said to be P-admissible if for any k-face F of P the restriction πk : Lin F → Vk
is a linear isomorphism. We remark that the property of being P-admissible is stable
under small perturbations.
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A framed polytope is a pair (P, B) consisting of a polytope P and a P-admissible frame
B. We will typically omit the frame from the notation. We remark that B is πk(P)-
admissible, so πk(P) is canonically framed for any k ∈ N.

v1 v2

v3

v1

v2

v1

P = π3(P) π2(P) π1(P)

v1

v2

Figure 1: A globular structure on a 3-cube P given by a frame (v1, v2, v3) of R3. The
first row depicts P and its projections π2(P) and π1(P). The faces in s0(P), s1(P) and
s2(P), and their projections, are in red, while the faces in t0(P), t1(P) and t2(P), and
their projections, are in blue. The second row shows the 0- and 1-sources and targets
of the 2-faces, projected onto the ⟨v1, v2⟩ plane. The 0-sources and targets of the 1-faces
are computed similarly.

Let (P, B) be a framed polytope. Its k-boundary ∂(k)P is the subset of k-faces of P
consisting of the faces F such that πk+1(F) is in the boundary of the polytope πk+1(P).
The k-source sk(P) (resp. k-target tk(P)) of a framed polytope (P, {vk}) is the subset of
∂(k)P containing one such F if〈

nπk+1(P)
πk+1(F) , vk+1

〉
< 0 (resp. > 0).

See an example in Figure 1. Similar definitions apply to all faces of P using the induced
frame.

The data of all sources and targets of faces of P is called the globular structure on P
induced by B. Two P-admissible frames are said to be P-equivalent if they induce the
same globular structure on P.

Lemma 2.1. If a frame {v′1, v′2, . . .} is obtained from a P-admissible frame {v1, v2, . . .} via a
positive lower triangular transformation, meaning that there exist λpq ∈ R for p > q and
λi ∈ R+ such that v′q = λqvq + ∑p>q λpqvp , then these frames are P-equivalent.

Corollary 2.2. Every P-admissible frame is P-equivalent to an orthonormal frame.
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3 Cellular loops

Let (P, B) be a framed polytope. A cellular k-string in P is a sequence F1, . . . , Fm of faces
of P satisfying tk(Fi) ∩ sk(Fi+1) ̸= ∅ for every i ∈ {1, . . . , m − 1}. We remark that this
intersection is precisely a single k-face. Figure 2 depicts two examples of cellular strings.
Note that cellular 0-strings starting at s0(P) and ending at t0(P) are precisely the cellular
strings defined in [1].

v1

v2

Figure 2: A cellular 1-string and a cellular 0-string on the example of Figure 1

A cellular k-loop is a cellular k-string F1, . . . , Fm with Fi = Fj for some i ̸= j.

3.1 A cellular 1-loop in the 5-simplex

We describe a 5-simplex P5 for which the canonical frame is admissible and induces a
1-loop. Consider the 6 points p1, . . . , p6 in R5 whose coordinates are the columns of
matrix 

−3 −2 −1 1 2 3
−1 1 0 0 1 −1
−1 1 0 0 −1 1
0 0 1 1 0 0
1 1 1 0 0 0

 .

Since these are affinely independent, their convex hull P5 is a 5-simplex, and one can
easily see that the canonical frame of R5 is P5-admissible. This framed polytope contains
the following cellular 1-loop of 2-faces:

[p1p2p3], [p2p3p6], [p2p6p4], [p4p5p6], [p1p4p5], [p1p3p5], [p1p2p3]. (3.1)

Consulting Figure 3, it is straightforward to check that for each of the triangles ti, the
edge ti ∩ ti+1 lies in the 1-target t1(ti) of ti and in the 1-source s1(ti+1) of ti+1.

Remark 3.1. All 2-faces involved in (3.1) are also faces of the 4-dimensional polytope
P4 = π4(P5), which is a cyclic 4-polytope with 5 vertices. Therefore, the 4-polytope P4
together with the canonical frame also has a cellular 1-loop. This example is minimal
in dimension since we can prove that all framed n-polytopes for n < 4 have no cellular
loops. (We prove that there cannot be 0-loops nor (n − 2)-loops.)
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p1

p2

p3 p4

p5

p6
e1

e2

Figure 3: A cellular 1-loop in P5 formed by 2-faces. It represents the image of the
vertices of P5 and some of its edges under the projection π2 : R5 → R2.

3.2 A cellular 2-loop in the 6-simplex

We now present a cellular 2-loop on a framed 6-simplex. It is a relative of the so-called
mother of all examples [5, Sec. 7.1]. In contrast with our previous example, the projections
of the simplices involved in the loop do not overlap and all the vertices are preserved
under the projection.

Consider the 7 points q0, q1, . . . , q6 in R6 whose coordinates are given by the columns
of the matrix Q and the frame B of R6 given by the columns v1, . . . , v6 of the matrix V
below

Q =



0 10 0 0 7 2 3
0 0 10 0 3 7 2
0 0 0 10 2 3 7
1 1 1 0 1 0 0
0 0 0 1 1 0 1
0 0 1 0 0 1 0

 , V =



−1 2 1 0 0 0
1 4 1 0 0 0
−1 −1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 1 1

 .

The columns of Q are affinely independent, and therefore form the vertex set of a sim-
plex Q6. The frame B is Q6-admissible, as it can be easily checked by computer, and the
resulting framed 6-simplex (Q6, B) has the following 2-loop of 4-faces:

[q0q1q4q5], [q0q1q3q4], [q0q3q4q6], [q0q2q3q6], [q0q2q5q6], [q0q1q2q5], [q0q1q4q5]. (3.2)

Although checking that this is indeed a cellular loop can be done using a computer, it is
instructive to understand the geometry of this example. Please refer to Figure 4 as we
proceed to present it.

Since Span(v1, v2, v3) = Span(e1, e2, e3) and Span(v4, v5, v6) = Span(e4, e5, e6), the pro-
jection π3 is given by forgetting the last three coordinates. The 2-loop (3.2) is apparent
on π3(Q6), depicted on the left of our figure. The vector v3 that determines the 2-sources
and 2-targets goes in the direction from q0 to the center of the equilateral triangles there.

As the points q1, . . . , q6 are very close to being coplanar, it is somehow easier to
understand the loop in the 2-dimensional picture on the right. Here, q0 has to be thought
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q5

q3

q2

q6

q0

q1

q4

v3

q0
q1

q2

q3

q4

q5

q6

Figure 4: A cellular 2-loop on Q6. The convex hull of π3(Q6) is depicted on the left.
On the right we see π2(Q6) and the edges more relevant in the loop (note that they are
not the same as in the convex hull).

as being behind the plane spanned by the other points, and v3 is perpendicular to this
plane.

The loop consists of the six tetrahedra arising as the cone over q0 of each of the shaded
triangles in the picture in the right. Topologically, they form a “pinched” solid torus
where the interior circle has been collapsed to a point. For each tetrahedron, the facets
pointing “downwards” towards q0 are in the source, and those pointing “upwards” away
from q0 are in the target. For example, for the tetrahedron [q0, q1, q4, q5], the source is
the triangle [q0, q1, q5], and the target is formed by the triangles [q1, q4, q5], [q0, q1, q4],
and [q0, q4, q5]. Similarly, for the tetrahedron [q0, q1, q3, q4], the source are the triangles
[q0, q1, q4] and [q0, q1, q3], and the target are the triangles [q0, q3, q4] and [q1, q3, q4]. The
other tetrahedra behave analogously.

To check the loop, notice that the triangle [q0, q1, q4] is in the target of [q0, q1, q4, q5]
and in the source of [q0, q1, q3, q4]. The triangle [q0, q3, q4] is in the target of [q0, q1, q3, q4]
and in the source of [q0, q3, q4, q6]. And so on.

Remark 3.2. It is not hard to prove that if a face or a vertex figure of a polytope P has
a frame inducing a loop, then so does P. Combining our counterexamples with these
observations we see that every simple or simplicial polytope of dimension ≥ 6 admits a
frame inducing a loop.
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4 Loop inevitability

The goal of this section is to construct polytopes for which every admissible frame in-
duces a cellular loop. The construction is too technical and involved to fit in here, but
we will give some indications on the key steps of the proof.

Our main idea is to transform our polytopes via an operation called flattening that
enlarges the space of loop-inducing frames. And then combine several reflected copies
of a flattened polytope, via an operation called squashing, to cover the full space of
admissible frames.

Let P be a polytope and B a frame inducing a loop on P. Then there is an open
neighborhood of B in the space of frames that contains P-equivalent frames to B. The
flattening operation edits P so that B still induces a loop, but makes the set of equivalent
frames become arbitrarily large.

Lemma 4.1. Let P be a framed polytope in Rd with orthonormal frame B = {v1, . . . , vd}. For

any ε
def
= (ε1, . . . , εd) ∈ Rd, let Φε : vi 7→ εivi be the map that scales the vi coordinate by εi.

For every 0 < δ < 1 there is a positive ε ∈ Rd
>0 such that if B′ = {v′1, . . . , v′d} is an

orthonormal frame of Rd with
〈
vi , ṽ′i

〉
> δ for all 1 ≤ i ≤ d, where ṽ′i is the projection of v′i

to Vi = Span(v1, . . . , vi) along Span(v′i+1, . . . , v′d) rescaled so that it is a unit vector1, then the
frames B and B′ are Φε(P)-equivalent.

Figure 5 represents a regular hexagon P, for which the canonical basis (v1, v2) and the
basis (v1, v′2 := (1, 1)) induce distinct globular structures. However, for ε := (1, 1

4) ∈ R2

both bases are Φε(P)-equivalent.

v1

v2
v′2

Figure 5: A regular hexagon P for which the bases (v1, v2) and (v1, v′2) are not equiva-
lent, and a flattened version Φε(P) for which they are. The set of vectors w for which
(v1, w) is P-equivalent to (v1, v2) is depicted with a blue cone, and the set of those that
are Φε(P)-equivalent is depicted by a larger red cone.

The observation now is that, if we take ε conveniently, then every frame B will induce
a loop in some reflection of Φε(P) by the coordinate hyperplanes. The idea is to take
a copy of each possible reflection of Φε(P) to construct the desired polytope P̃. This
does not work directly, because we need the faces of the reflections of Φε(P) involved

1The fact that this projection is well defined follows inductively from the condition
〈
vi , ṽ′i

〉
> δ.
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in the loops to be also faces of the convex hull of all these reflected copies. Thus, one
has to be careful on where and how to place the reflected copies. In our proof we do
so by introducing a new operation on polytopes that we call squashing, which is closely
related to connected sums (see, for example, [9]). And then squashing on top of faces of a
barycentric subdivision of a simplex.

Lemma 4.2. Let P ⊂ Rd be a framed d-polytope with a cellular k-loop for some k ≤ d − 2. If
all the faces in this loop are faces of faces in td−1(P), then there is a d-polytope P̃ such that every
P̃-admissible frame induces a k-loop on P̃.

We conclude by noting that the framed polytope P4 defined in Remark 3.1 together
with the loop (3.1) satisfy the condition of this lemma, from which we conclude the
following.

Theorem 4.3. There is a 4-polytope for which every admissible frame induces a cellular loop.

5 Canonically framed cyclic simplices

We now turn to an infinite family of framed polytopes with no loops. Consider the
moment curve R → Rd given by vt = (t, t2, . . . , td). A cyclic simplex C(d) is the convex
hull of d + 1 distinct points in the moment curve.

A polytope P ⊂ Rd is said to be canonically framed if it is considered with the canonical
frame {e1, . . . , ed} which is assumed P-admissible.

It was announced by Kapranov and Voevodsky [7, Thm. 2.5] that the canonically
framed cyclic simplices recover Street’s pasting diagram structure on standard sim-
plices [11]. We were able to verify this claim after replacing the canonical frame with
{e1,−e2, e3,−e4, . . .}.

We can extend the absence of cellular loops to all canonically framed cyclic polytopes.
A cyclic polytope C(n, d) is the convex hull of n distinct points in the image of the the
moment curve in Rd, and we have the following.

Theorem 5.1. All canonically framed cyclic polytopes have no cellular loops.

6 Canonically framed Gaussian simplices

We now measure how special the absence of cellular loops is on cyclic simplices com-
pared to random embeddings. A Gaussian d-simplex is the convex hull of d + 1 indepen-
dent random points in Rd, each chosen according to a d-dimensional standard normal
distribution.

Theorem 6.1. For every k ≥ 1, the probability that the canonically framed Gaussian d-simplex
has a k-loop tends to 1 as d tends to ∞.
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Our proof uses very few hypothesis on the distribution, which could be further re-
laxed. Mainly that it is supported on Rd and that the vertices are independently sam-
pled. Therefore, for most usual distributions of random simplices the same kind of result
should hold.

We obtain similar results if instead of fixing the frame and choosing the simplex, we
fix the simplex and chose the frame. In view of Corollary 2.2, a reasonable approach is
to consider a random orthonormal frame chosen with respect to the Haar measure. Let
the standard d-simplex be the convex hull of the canonical basis of Rd+1.

Theorem 6.2. For every k ≥ 1, the probability that a uniform random orthonormal frame induces
a k-loop on the standard d-simplex tends to 1 as d tends to ∞.

7 Framed simplices and oriented matroids

A chirotope is a non-zero alternating map χ : {1, . . . , n}d → {+,−, 0} satisfying the chiro-
tope axioms [2, Def. 3.5.3]. We will consider those that are realizable, meaning that they are
associated to a vector configuration, and hence omit the general combinatorial definition.
We refer to [2] for a comprehensive reference on the topic. The chirotope associated to a
vector configuration V = (v1, . . . , vn) ∈ Rd×n is the map

χV : {1, . . . , n}d → {+,−, 0}
(i1, . . . , id) 7→ sign(det(vi1 , . . . , vid)).

A realizable chirotope is called acyclic if all the vectors of the configuration lie in a
common half-space; and uniform if χ(i1, . . . , id) ̸= 0 whenever i1, . . . , id are pairwise
distinct.

A realizable chirotope depends on a frame for the ground vector space, as an orien-
tation reversing change of basis results in a global sign change for the chirotope. An
oriented matroid can be defined as an equivalence class ±χ = {χ,−χ} of chirotopes up
to global reorientation [2, Prop. 3.5.2 and Thm. 3.5.5], where −χ denotes the chirotope
obtained from χ by reversing all the signs. Despite this subtle difference, the two terms
chirotope and oriented matroid are often used interchangeably in the literature.

When we restrict to framed simplices (∆d, B), the relation between globular structures
and chirotopes is quite satisfying as the next statement shows.

Lemma 7.1. Let (∆d, B) be a framed simplex with vertex set P = {p0, . . . , pd}. The globu-
lar structure on ∆d induced by B determines and is determined by the chirotopes of the point
configurations πk(P) = (πk(p0), . . . , πk(pd)) ∈ Rk×(d+1) for all 0 ≤ k ≤ d.

The core of this correspondence lies in the fact that the orientation of a facet F of a
simplex S in a codimension 1 projection can be deduced from the orientation of S and
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knowing whether F belongs to the source or the target of S. We can therefore compute
the chirotope of πk(∆d) from the globular structure and the chirotope of πk+1(∆d); and
conversely, the k-sources and k-targets can be found by comparing the chirotopes of
πk(∆d) and πk+1(∆d).

Flag matroids were introduced in [4], and also admit an oriented version. A flag
chirotope2 is defined as a sequence (χ1, . . . , χs) of chirotopes related by strong maps (also
called quotients), see [6, Example above Thm. D] and [3, Def. 4.1], and also [2, Def. 3.5.3,
Thms 3.5.5 and 3.6.2, and Def. 7.7.2] for more details on the definition and the relation
with ordinary oriented matroids.

A realizable full flag chirotope is a sequence of chirotopes (χ0, . . . , χd), where χk is the
chirotope of the vector configuration {πk(e1), . . . , πk(ed)}, {e1, . . . , ed} is the canonical
frame of Rd, and πk : Rd → Vk is the associated system of projections of another frame B
of Rd (see [4, Sec 1.7.5]). We will say that a flag chirotope (χ0, . . . , χd) is uniform (resp.
acyclic) if χk is uniform (resp. acyclic) for 0 ≤ k ≤ d.

Theorem 7.2. Globular structures of framed simplices are in bijection with uniform acyclic
realizable full flag chirotopes.

8 Universality

We now study the moduli space of frames under the equivalence relation defined by
globular structures. The realization space of a globular structure on a polytope P induced
by a frame B is the set of P-admissible frames that are P-equivalent to B. Our main
result in this section is that ∆d-equivalence classes of ∆d-admissible frames are universal
in the sense of [8]. To explain this statement we introduce the following notions. A
primary basic semi-algebraic set is a subset of Rd defined by integer polynomial equations
and strict inequalities. Two semi-algebraic sets S, S′ are called stably equivalent if they lie
in the same equivalence class generated by stable projections and rational equivalence.
Here, a projection π : S → S′ is called stable if its fibers are relative interiors of non-
empty polyhedra of the same dimension defined by polynomial functions on S′ (see [9,
Section 2.5] for details, and [12] for the constant dimension constraint).

Theorem 8.1. For every open primary basic semi-algebraic set S defined over Z there is a globular
structure on some ∆d whose realization space is stably equivalent to S.

2In the literature, they are usually called oriented flag matroids. However, we think that the name flag
chirotopes is more precise, in view of the (subtle) difference between the classical definitions.
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Poset polytopes and pipe dreams: toric
degenerations and beyond
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Abstract. We demonstrate how pipe dreams can be applied to the theory of poset
polytopes to produce toric degenerations of flag varieties. Specifically, we present
such constructions for marked chain-order polytopes of Dynkin types A and C. These
toric degenerations also give rise to further algebraic and geometric objects such as
PBW-monomial bases and Newton–Okounkov bodies. We discuss a construction of
the former in the type A case and of the latter in type C.

1 Introduction

Recent decades have seen a wide range of new methods for constructing toric degener-
ations of flag varieties. These methods commonly proceed by attaching a degeneration
to every combinatorial or algebraic object of a certain form. Examples of such objects
include adapted decompositions in the Weyl group, certain valuations on the function
field and certain birational sequences (see [6] for details concerning these results and a
partial history of the subject). These correspondences are of great interest for a number
of reasons, however, not many explicit constructions are known for the attached objects.
This leads to a shortage of concrete recipes that would work in a general situation.

Until recently, the only explicit constructions known to work in the generality of all
type A flag varieties were the Gelfand–Tsetlin (GT) degeneration due to [14] and the
Feigin–Fourier–Littelmann-Vinberg (FFLV) degeneration due to [10] (as well as slight
variations of these two). An important step was made by Fujita in [12] where it is
proved that each marked chain-order polytope (MCOP) of the GT poset provides a toric
degeneration of a type A flag variety. Each such MCOP QO(λ) is given by a subset O
of the GT poset P and an integral dominant sln-weight λ. The GT and FFLV polytopes
appear as special cases. General MCOPs were defined by Fang and Fourier in [5] and
present a far-reaching generalization of the poset polytopes considered by Stanley in [23].

Now, it must be noted that the main objects of study in [12] are Newton–Okounkov
bodies, toric degenerations are obtained somewhat indirectly via a general result of [1]

*iymakhlin@gmail.com
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relating the two notions. This project was initiated with the goal of finding a more direct
approach in terms of explicit initial degenerations similar to the classical construction
in [14]. Recall that F, the variety of complete flags in Cn, is realized by the Plücker ideal I
in the polynomial ring in Plücker variables Xi1,...,ik . Meanwhile, the toric variety of QO(λ)
is realized by a toric ideal IO in the polynomial ring in variables XJ labeled by order
ideals J in P. To obtain a toric initial degeneration of F we may find an isomorphism
between the two polynomial rings which would map IO to an initial ideal of I. The key
challenge is then to define this isomorphism, the solution is provided by pipe dreams: a
combinatorial rule for associating a permutation wM with every subset M ⊂ P.

Theorem 0 (cf. Theorem 1). Fix O ⊂ P. For every order ideal J one can choose MJ ⊂ P and
k J ∈ N so that the map ψ : XJ 7→ XwMJ (1),...,wMJ (k J) is an isomorphism and ψ(IO) is an initial

ideal of I. Consequently, the toric variety of QO(λ) is a flat degeneration of F.

One reason for the popularity of toric degenerations is that they are accompanied by
a collection of other interesting objects: standard monomial theories, Newton–Okounkov
bodies, PBW-monomial bases, etc. All of these can also be obtained from our construc-
tion, in particular, we explain how PBW-monomial bases are obtained in type A. Con-
sider the irreducible sln-representation Vλ with highest-weight vector vλ, let fi,j denote
the negative root vectors. A basis in Vλ is formed by the vectors ∏ f

xi,j
i,j vλ with x ranging

over the lattice points in ξ(QO(λ)) for a unimodular transformation ξ (see Theorem 2).
We then discuss an extension of our approach to type C. Every integral dominant

sp2n-weight λ and every subset O of the type C GT poset also define an MCOP QO(λ).
Using a notion of type C pipe dreams (not to be confused with other known symplectic
pipe-dream analogs) we state a type C counterpart of Theorem 0, see Theorem 4. A
notable new feature of this case is the intermediate degeneration F̃ of the symplectic flag
variety which happens to be a type A Schubert variety (Theorem 3, compare also [3]).
All of our toric degenerations are obtained as further degenerations of F̃.

We also use type C to showcase another aspect of the theory: Newton–Okounkov
bodies. Namely, we show how every QO(λ) can be realized as a Newton–Okounkov
body of the symplectic flag variety (Theorem 5). To us this result is of particular interest
because the paper [12] explains in detail why its methods do not extend to type C.

Proofs and further context for the results in type A can be found in [20] (which
discusses an extension to semi-infinite Grassmannians); [19] covers types B and C.

2 Type A

2.1 Poset polytopes

Choose an integer n ≥ 2 and consider the set of pairs P = {(i, j)}1≤i≤j≤n. We define
a partial order ≺ on P by setting (i, j) ⪯ (i′, j′) if and only if i ≤ i′ and j ≤ j′. The
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poset (P,≺) is sometimes referred to as the Gelfand–Tsetlin (or GT) poset. We denote
A = {(i, i)}i∈[1,n] ⊂ P. Let J be the set of order ideals (lower sets) in (P,≺). For
k ∈ [0, n] let Jk ⊂ J consist of J such that |J ∩ A| = k, i.e. J contains (1, 1), . . . , (k, k) but
not (k + 1, k + 1).

We now associate a family of polytopes with this poset. Each polytope is determined
by a subset of P and a vector in Zn−1

≥0 . For k ∈ [1, n − 1] we let ωk denote the kth basis
vector in Zn−1

≥0 .

Definition 1. Consider a subset O ⊂ P such that A ⊂ O. For J ∈ J consider the set

MO(J) = (J ∩ O) ∪ max≺(J)

(max≺ denotes the subset of ≺-maximal elements). Let xO(J) ∈ RP denote the indicator vector
1MO(J). The marked chain-order polytope (MCOP) QO(ωk) is the convex hull of {xO(J)}J∈Jk .
For λ = (a1, . . . , an−1) ∈ Zn−1

≥0 the MCOP QO(λ) is the Minkowski sum

a1QO(ω1) + · · ·+ an−1QO(ωn−1) ⊂ RP.

MCOPs were introduced in [5, 7] in the generality of arbitrary finite posets. The
original definition describes the polytope in terms of linear inequalities. The equivalence
of the above approach is proved in [11, Subsection 3.5].

The first thing to note is that for λ = (a1, . . . , an) and any x ∈ QO(λ) one has xi,i =
ai + · · · + an−1. When O = P one has MO(J) = J. It follows that QP(λ) consists of
points x with xi,j ≥ xi′,j′ whenever (i, j) ⪯ (i′, j′). Now, identify Zn−1 with the lattice
of integral sln-weights by letting ωk be the kth fundamental weight. Then QP(λ) is the
GT polytope of [13] corresponding to the integral dominant weight λ (i.e. λ ∈ Zn−1

≥0 ). If
O = A, then MO(J) is the union of J ∩ A and the antichain max≺ J. One can check that
QA(λ) consists of points x with all xi,j ≥ 0 and ∑(i,j)∈K xi,j ≤ al + · · ·+ ar for any chain
K ⊂ P\A starting in (l, l + 1) and ending in (r, r + 1). This is the FFLV polytope ([9]) of
λ. Other MCOPs can be said to interpolate between these two cases.

Note that |Jk| = (n
k) and, since QO(ωk) is a 0/1-polytope, it has (n

k) lattice points.
More generally, a key property of MCOPs is that the number of lattice points in QO(λ)
does not depend on O and, moreover, the polytopes with a given λ are pairwise Ehrhart-
equivalent ([7, Corollary 2.5]). Now, it is well known that the number of lattice points
in the GT or FFLV polytope of λ is dim Vλ where Vλ denotes the irreducible sln(C)-
representation with highest weight λ. This immediately provides the following.

Proposition 1. For any O and λ we have |QO(λ) ∩ ZP| = dim Vλ.

The polytope QO(ωk) is normal which means that the associated toric variety is em-
bedded into P(CJk). It is cut out by the kernel of the homomorphism from C[XJ ]J∈Jk to

C[P] = C[zi,j](i,j)∈P mapping XJ to zxO(J) = ∏(i,j)∈P z
xO(J)i,j
i,j . For general λ = (a1, . . . , an)
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the definition of QO(λ) implies that its normal fan and its toric variety (up to isomor-
phism) depend only on the set of i for which ai > 0. Hence, for regular λ (all ai > 0)
the toric variety coincides with that of QO(ω1) + · · ·+QO(ωn−1). The toric variety of a
Minkowski sum has a standard multiprojective embedding. Consider the product

PJ = P(CJ1)× · · · × P(CJn−1)

and its multihomogeneous coordinate ring C[J ] = C[XJ ]J∈J1∪···∪Jn−1 . Let IO denote the
kernel of the homomorphism XJ 7→ zxO(J) from C[J ] to C[P].

Proposition 2. For regular λ the toric variety of QO(λ) is isomorphic to the zero set of IO in PJ .

2.2 Pipe dreams

Consider the permutation group Sn and for (i, j) ∈ P let si,j denote the transposition
(i, j) ∈ Sn. In particular, si,i is always the identity.

Definition 2. For any subset M ⊂ P let wM ∈ Sn denote the product of all si,j with (i, j) ∈ M
ordered first by i increasing from left to right and then by j increasing from left to right.

Note that wM is determined by M\A but it is convenient for us to consider subsets of
P rather than P\A. The term pipe dream is due to [17] and refers to a certain diagrammatic
interpretation of this correspondence between subsets of P and permutations. The poset
P can be visualized as a triangle as shown in (2.1) for n = 4. In these terms the pipe
dream corresponding to M consists of n polygonal curves or pipes described as follows.
The ith pipe enters the element (i, n) from the bottom-right, continues in this direction
until it reaches an element of M ∪ A, after which it turns left and continues going to
the bottom-left until it reaches an element of M, after which it turns right and again
continues to the top-right until it reaches an element of M ∪ A, etc. The last element
passed by the pipe will then be (1, wM(i)).

The pipe dream of the set M = {(1, 1), (2, 2), (1, 2), (2, 3), (1, 4)} is shown below, here
each pipe is shown in its own colour. Indeed, s1,1s1,2s1,4s2,2s2,3 = (4, 3, 1, 2).

(1, 1) (2, 2) (3, 3) (4, 4)

(1, 2) (2, 3) (3, 4)

(1, 3) (2, 4)

(1, 4)

(2.1)
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We will use a “twisted” version of the correspondence depending on O ⊂ P. For
M ⊂ P we denote wO

M = w−1
O wM. Diagrammatically, wO

M(i) = j if the ith pipe of the pipe
dream of M ends in the same element as the jth pipe of the pipe dream of O.

2.3 Toric degenerations

For a polynomial ring C[xa]a∈A a monomial order < on C[xa]a∈A is a partial order on the
set of monomials that is multiplicative (M1 < M2 if and only if M1xa < M2xa) and
weak (incomparability is an equivalence relation). For such an order and a polynomial
p ∈ C[xa]a∈A its initial part in< p is equal to the sum of those monomials occurring in
p which are maximal with respect to <, taken with the same coefficients as in p. For
a subspace U ⊂ C[xa]a∈A its initial subspace in< U is the linear span of all in< p with
p ∈ U. The initial subspace of an ideal is an ideal (the initial ideal), the initial subspace of
a subalgebra is a subalgebra (the initial subalgebra). One key property of initial ideals and
initial subalgebras is that they define flat degenerations, we explain this phenomenon in
the context of flag varieties.

For n ≥ 2 let F be the variety of complete flags in Cn. The Plücker embedding realizes
F as a subvariety in

P = P(∧1Cn)× · · · × P(∧n−1Cn).

The multihomogeneous coordinate ring of P is S = C[Xi1,...,ik ]k∈[1,n−1],1≤i1<···<ik≤n and
F is cut out in P by the Plücker ideal I ⊂ S which can be defined as follows. Consider
the n × n matrix Z with Zi,j = zi,j if i ≤ j and Zi,j = 0 otherwise. Denote by Di1,...,ik
the minor of Z spanned by rows 1, . . . , k and columns i1, . . . , ik. Then I is the kernel of
the homomorphism φ : Xi1,...,ik 7→ Di1,...,ik from S to C[P]. One can also equip S with
a Zn−1-grading grad with grad Xi1,...,ik = ωk and characterize F as MultiProj S/I with
respect to the induced Zn−1-grading. The following fact is essentially classical, for the
context of partial monomial orders see [16] (where an algebraic wording is given).

Proposition 3. For a monomial order < on S the scheme MultiProj S/ in< I (i.e. the zero set of
in< I in P if the scheme is reduced) is a flat degeneration of F: there exists a flat family F → A1

with fiber over 0 isomorphic to MultiProj S/ in< I and all other fibers isomorphic to F.

Now fix O ⊂ P containing A. For J ∈ J denote wO
MO(J) = wJ . The key ingredient of

our first main result is a homomorphism ψ : C[J ] → S. To define ψ for J ∈ Jk we set

ψ(XJ) = XwJ(1),...,wJ(k)

where we use the convention Xi1,...,ik = (−1)σXiσ(1),...,iσ(k) for σ ∈ Sk. The map ψ encodes
a correspondence J 7→ (wJ(1), . . . , wJ(k)) between order ideals and tuples. When O = P
the tuples obtained in this way are precisely the increasing tuples. When O = A one
obtains the PBW tuples defined in [8]. In general, every subset of [1, n] is represented by
exactly one of the obtained tuples, this means that ψ is an isomorphism.
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Theorem 1. The map ψ is an isomorphism and there exists a monomial order < on S such that
ψ(IO) = in< I. In particular, for regular λ the toric variety of QO(λ) is a flat degeneration of F.

Sketch of proof. It can be checked that wJ(i) ≥ i for J ∈ Jk and i ∈ [1, k]. Furthermore,
there exists a unimodular transformation ξ ∈ SL(ZP) such that for any J ∈ Jk one has

ξ(xO(J)) = 1{(1,wJ(1)),...,(k,wJ(k))}.

This means that IO is the kernel of the homomorphism XJ 7→ z1,wJ(1) . . . zk,wJ(k).
Using pipe dreams one can define a lexicographic monomial order ≪ on C[P] so that

in≪ DwJ(1),...,wJ(k) = z1,wJ(1) . . . zk,wJ(k)

for J ∈ Jk. Since ξ is bijective, the right-hand sides are distinct monomials for distinct
J, hence the sets {wJ(1), . . . , wJ(k)} are also pairwise distinct. This provides the iso-
morphism claim. Note that ψ(IO) is the kernel of Xi1,...,ik 7→ in≪ Di1,...,ik . Moreover, the
in≪ Di1,...,ik generate the initial subalgebra in≪ φ(S) (i.e. the determinants form a sagbi
basis). By general properties of initial degenerations, ≪ can now be pulled back to a
monomial order < on S with the desired property.

In fact, we could define ψ using the “untwisted” permutation wM(J) and Theorem 1
would still hold since I is invariant under Sn. However, we consider wJ the natural choice
because of the property wJ(i) ≥ i, i ∈ [1, k] which is also crucial in the next subsection.

2.4 PBW-monomial bases

The map ξ considered in the proof sketch of Theorem 1 maps QO(ωk) to ΠO(ωk): the
convex hull of all 1{(1,wJ(1)),...,(k,wJ(k))} with J ∈ Jk. For λ = (a1, . . . , an) let ΠO(λ) denote
the image ξ(QO(λ)). It equals the Minkowski sum a1ΠO(ω1) + · · ·+ an−1ΠO(ωn−1).

Next, let us recall some standard Lie-theoretic notation. We have identified Zn−1

with the lattice of integral sln-weights, let α1, . . . , αn−1 ∈ Zn−1 denote the simple roots,
i.e. αi = 2ωi − ωi−1 − ωi+1 where ω0 = ωn = 0. The positive roots are then αi,j =
αi + · · ·+ αj−1 with 1 ≤ i < j ≤ n. Let fi,j ∈ sln(C) denote the negative root vector of
weight −αi,j. For x ∈ ZP

≥0 we write f x to denote the PBW monomial ∏(i,j)∈P\A f
xi,j
i,j in

U (sln(C)) ordered first by i increasing from left to right and then by j increasing from
left to right. Finally, let vλ denote a chosen highest-weight vector in Vλ. Another of our
main results is as follows.

Theorem 2. The vectors f xvλ with x ∈ ΠO(λ) ∩ ZP form a basis in Vλ.

When O = A the transformation ξ is almost the identity: one has ξ(x)i,j = xi,j for all
i < j so that f ξ(x) = f x. Since OA(λ) is the FFLV polytope, one sees that the obtained
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basis is the FFLV basis of [9]. For O = P the corresponding basis is also known, see,
for instance, [22, 21]. Since in this case the tuples (wJ(1), . . . , wJ(k)) are increasing, the
definition of ΠP(λ) is particularly simple. The observation that such a polytope ΠP(λ)
is unimodularly equivalent to the GT polytope QO(λ) is due to [18].

3 Type C

3.1 Type C poset polytopes

For n ≥ 2 consider the totally ordered set (N,⋖) = {1 ⋖ · · ·⋖ n ⋖−n ⋖ · · ·⋖−1}.

Definition 3. The type C GT poset (P,≺) consist of pairs of integers (i, j) such that i ∈ [1, n]
and j ∈ [i, n] ∪ [−n,−i]. The order relation is given by (i1, j1) ⪯ (i2, j2) if and only if i1 ≤ i2
and j1 ⋖− j2.

(P,<) has length 2n, below is its Hasse diagram for n = 2.

(1, 1) (2, 2)

(1, 2) (2,−2)

(1,−2)

(1,−1)

(3.1)

We use notation similar to type A. Let A ⊂ P be the set of all (i, i). Let J denote
the set of order ideals in (P,≺). For k ∈ [1, n] let Jk consist of J such that |J ∩ A| = k.
We also consider the lattice Zn with ωk denoting the kth basis vector. The definition of
MCOPs is almost identical.

Definition 4. Consider a subset O ⊂ P such that A ⊂ O. For J ∈ J consider the set

MO(J) = (J ∩ O) ∪ max≺(J).

Let xO(J) ∈ RP denote the indicator vector 1MO(J). The MCOP QO(ωk) is the convex hull of
{xO(J)}J∈Jk . For λ = (a1, . . . , an) ∈ Zn

≥0 the MCOP QO(λ) is the Minkowski sum

a1QO(ω1) + · · ·+ anQO(ωn) ⊂ RP.

We identify Zn with the lattice of integral sp2n-weights with ωk being the kth fun-
damental weight. Then for an integral dominant weight λ ∈ Zn

≥0 one sees that QP(λ)
is the type C Gelfand-Tsetlin polytope defined in [2] while QA(λ) is the type C FFLV
polytope defined in [10]. Both of these polytopes are known to parametrize bases in Vλ,
the irreducible sp2n(C)-representation with highest weight λ. This again provides



8 Ievgen Makedonskyi and Igor Makhlin

Proposition 4. For any O and λ we have |QO(λ) ∩ ZP| = dim Vλ.

We also have multiprojective embeddings for toric varieties. Consider the product

PJ = P(CJ1)× · · · × P(CJn)

and its multihomogeneous coordinate ring C[J ] = C[XJ ]J∈J1∪···∪Jn . Let IO denote the
kernel of the homomorphism φO : XJ 7→ zxO(J) from C[J ] to C[P] = C[zi,j](i,j)∈P.

Proposition 5. For regular λ the toric variety of QO(λ) is isomorphic to the zero set of IO in PJ .

3.2 Type C pipe dreams

Let SN denote the group of all permutations of the set N. For (i, j) ∈ P let si,j ∈ SN
denote the transposition which exchanges i and j and fixes all other elements (si,i = id).

Definition 5. For M ⊂ P let wM ∈ SN be the product of all si,j with (i, j) ∈ M ordered first by
i increasing from left to right and then by j increasing with respect to ⋖ from left to right.

In this case the pipe dream consists of 2n pipes enumerated by N. In terms of the
visualization in (3.1) the ith pipe with i ∈ [1, n] enters the element (i,−i) from the
bottom-right and turns at elements of M ∪ A while the ith pipe with i ∈ [−n,−1] enters
the element (i,−i) from the top-right and then also turns at elements of M ∪ A.

(1, 1) (2, 2) (3, 3)

(1, 2) (2, 3) (3,−3)

(1, 3) (2,−3)

(1,−3) (2,−2)

(1,−2)

(1,−1)

The pipe dream for the set M = {(1, 1), (1, 3), (1,−2), (2, 2), (2, 3), (3,−3)} is shown
above with each pipe in its own colour. One obtains

wM(1, 2, 3,−3,−2,−1) = (−2, 1,−3, 2, 3,−1)

which agrees with wM = s1,1s1,3s1,−2s2,2s2,3s3,−3.
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In fact, pipe dreams for type Cn can be viewed as a special case of pipe dreams for
type A2n−1, i.e. for sl2n. Indeed, one may identify the type Cn GT poset with the “left
half” of the type A2n−1 GT poset. Then the 2n pipes in the type C pipe dream of M will
just be end parts of the 2n pipes in the type A pipe dream of the same set M.

We again introduce a “twisted” version of the correspondence determined by the
choice of O ⊂ P: set wO

M = w−1
O wM.

3.3 The intermediate Schubert degeneration

We now construct a degeneration F̃ of the symplectic flag variety which will be used as
an intermediate step: toric degenerations will be obtained as further degenerations of F̃.

Definition 6. A tuple (i1, . . . , ik) of elements of N is admissible if for every l ∈ [1, n] the number
of elements with |ij| ≤ l does not exceed l. Let Θ denote the set of all admissible tuples of the
form (i1 ⋖ · · ·⋖ ik) and Θk ⊂ Θ denote the subset of k-tuples.

Consider the space CN ≃ C2n with basis {ei}i∈N. One has a standard embedding
Vωk ⊂ ∧kCN. Let {Xi1,...,ik}i1⋖···⋖ik be the basis in (∧kCN)∗ dual to {ei1 ∧ · · · ∧ eik}i1⋖···⋖ik .
It is known ([4]) that the set {Xi1,...,ik}(i1,...,ik)∈Θk

projects to a basis in V∗
ωk

.This allows us
to identify V∗

ωk
with CΘk . The multihomogeneous coordinate ring of

P = P(Vω1)× · · · × P(Vωn)

is then identified with C[Θ] = C[Xi1,...,ik ](i1,...,ik)∈Θ. The Plücker embedding of the com-
plete symplectic flag variety F ↪→ P is defined by the symplectic Plücker ideal I ⊂ C[Θ].

Next, consider the variety FA of type A partial flags in CN of signature (1, . . . , n). It
is embedded into

PA = P(∧1CN)× · · · × P(∧nCN)

where it is cut out by the Plücker ideal IA in the multihomogeneous coordinate ring
S = C[Xi1,...,ik ]k∈[1,n],{i1⋖···⋖ik}⊂N. Consider the surjection π : S → C[Θ] mapping all
Xi1,...,ik /∈ C[Θ] to 0 and fixing C[Θ]. Set Ĩ = π(IA).

Theorem 3. There exists a monomial order <̃ on C[Θ] such that in<̃ I = Ĩ.

This means that F̃, the zero set of Ĩ in P, is a flat degeneration of F. Also, importantly
to us, every initial ideal of Ĩ is an initial ideal of I. The advantage of working with Ĩ
instead of degenerating I directly is that the former is more simply expressed as a ho-
momorphism kernel, allowing us to use the technique of sagbi degenerations. Consider
Z, the n × 2n matrix with rows indexed by [1, n] and columns indexed by N such that
Zi,j = zi,j if (i, j) ∈ P and Zi,j = 0 otherwise. Denote by Di1,...,ik the minor of Z spanned
by rows 1, . . . , k and columns i1, . . . , ik.
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Proposition 6. Ĩ is the kernel of the homomorphism Xi1,...,ik 7→ Di1,...,ik from C[Θ] to C[P].

A noteworthy property of F̃ is that it is a type A Schubert variety in FA. Indeed,
π−1( Ĩ) cuts out F̃ in PA and π−1( Ĩ) is generated by IA and all Xi1,...,ik /∈ C[Θ]. Consider
the alternative order −1 ⋖′ 1 ⋖′ · · ·⋖′ −n ⋖ n on N. One sees that Xi1,...,ik /∈ C[Θ] if and
only if (i1, . . . , ik) has a reordering (j1 ⋖′ · · ·⋖′ jk) such that jl ⋖′ −l for some l. Now one
sees that π−1( Ĩ) is indeed the defining ideal of a Schubert variety in FA. Namely, the
Schubert variety corresponding to the Borel subgroup in SL(CN) given by the ordering
⋖′ and the torus-fixed point y ∈ FA with all multihomogeneous coordinates zero except
for y−1,...,−k with k ∈ [1, n].

3.4 Toric degenerations

Fix O ⊂ P containing A. We can now realize the toric variety of QO(λ) as a degeneration
of F by identifying IO with an initial ideal of Ĩ. This is again done via an isomorphism
between C[J ] and C[Θ]. For J ∈ J denote wO

MO(J) = wJ .

Lemma 1. For every J ∈ Jk and i ∈ [1, k] one has |wJ(i)| ≥ i. In particular, (wJ(1), . . . , wJ(k))
is admissible.

The lemma lets us define a homomorphism ψ : C[J ] → C[Θ], for J ∈ Jk we set

ψ(XJ) = XwJ(1),...,wJ(k).

Theorem 4. The map ψ is an isomorphism and for a certain (explicitly defined) monomial order
< on S one has ψ(IO) = in< Ĩ. In particular, for regular λ the toric variety of QO(λ) is a flat
degeneration of F̃ and, subsequently, of F.

3.5 Newton–Okounkov bodies

Following [15] we associate a Newton–Okounkov body of F with a line bundle L, a
global section τ of L and a valuation ν on the function field C(F). We choose an in-
tegral dominant λ = (a1, . . . , an) and let L be the Sp2n(C)-equivariant line bundle on
F associated with the weight λ. In terms of the multiprojective embedding F ⊂ P

this is the restriction of O(a1, . . . , an) to F. Consider the ZN-grading on C[Θ] given by
grad Xi1,...,ik = ωk and the induced grading on the Plücker algebra R = C[Θ]/I. Then
H0(F,L) is identified with the homogeneous component of grading λ in R. No we
choose τ ∈ H0(F,L) as the image of ∏k Xak

1,...,k in R.
To define the valuation ν we first define a valuation on R. Theorems 3 and 4 provide a

monomial order <0 on C[Θ] such that in<0 I = ψ(IO). The proofs of the theorems show
that <0 arises from a total monomial order ≪ on C[P] in the following sense. Consider
the homomorphism ρ : C[Θ] → C[P] mapping the variable ψ(XJ) to zxO(J), note that
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ρ = φOψ−1 and ker ρ = ψ(IO). Then for two monomials one has M1 <0 M2 if and only
if ρ(M1) ≪ ρ(M2). The monomial order ≪ corresponds to a semigroup order on ZP

≥0
which we also denote by ≪. We have a (ZP

≥0,≪)-filtration on R with component Rx,
x ∈ ZP

≥0 spanned by the images of monomials M ∈ C[Θ] such that ρ(M) ≪ zx. By
general properties of initial degenerations we then have gr R ≃ C[Θ]/ in<0 I (which is
the toric ring of QO(λ)). For nonzero p ∈ R we now define ν(p) as the ≪-minimal x
such that p ∈ Rx: by definition, such a map is a valuation if and only if gr R is an integral
domain. One sees that ν maps the (image in R of) ψ(XJ) to xO(J) and, consequently,

ν(H0(F,L)\{0}) = QO(λ) ∩ ZP.

Since C(F) consists of fractions p/q where grad-homogeneous p, q ∈ R satisfy grad p =
grad q, we can now extend the valuation to C(F) by ν(p/q) = ν(p)− ν(q).

Definition 7. The Newton–Okounkov body of F defined by L, τ and ν is the convex hull closure

∆ = conv
{

ν(σ/τm)

m

∣∣∣∣ m ∈ Z>0, σ ∈ H0(F,L⊗m)\{0}
}

⊂ RP.

For every k ∈ [1, n] we have a unique J ∈ Jk such that wJ({1, . . . , k}) = {1, . . . , k},
denote xk = xO(J). For λ = (a1, . . . , an) denote xλ = a1x1 + · · · + anxn. We have
ν(τ) = xλ and it is now straightforward to deduce

Theorem 5. ∆ = QO(λ)− xλ.
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On the f -vectors of poset associahedra
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Abstract. For any finite connected poset P, Galashin introduced a simple convex (|P| −
2)-dimensional polytope A (P) called the poset associahedron. First, we show that the
f -vector of A (P) only depends on the comparability graph of P. Additionally, for a
family of posets called broom posets, whose poset associahedra interpolate between
permutohedra and associahedra, we give a simple combinatorial interpretation of the
h-vector. The interpretation relates to the theory of stack-sorting and allows us to prove
the real-rootedness of some of their h-polynomials.

Keywords: poset associahedra, stack-sorting, real-rootedness

1 Introduction

For a finite connected poset P, Galashin introduced the poset associahedron A (P) (see [4]).
The faces of A (P) correspond to tubings of P, and the vertices of A (P) correspond to
maximal tubings of P; see Section 2.2 for the definitions. A (P) can also be described as a
compactification of the configuration space of order-preserving maps P → R.

The comparability graph of a poset P is a graph C (P) whose vertices are the elements of
P and where i and j are connected by an edge if i and j are comparable. A property of P
is said to be comparability invariant if it only depends on C (P). Properties of finite posets
known to be comparability invariant include the order polynomial and number of linear
extensions [10], the fixed point property [3], and the Dushnik–Miller dimension [11].
Our first main result is the following.

Theorem 3.6. The f -vector of A (P) is a comparability invariant.

In our study of the f -vectors of poset associahedra, we also consider a rich class of ex-
amples whose poset associahedra interpolate between associahedra and permutohedra.
A broom poset is a poset of the form An,k := Cn+1 ⊕ Ak where Cn is a chain of n elements,
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Ak is an antichain of k elements, and ⊕ denotes ordinal sum. In particular, A0,k is a claw
poset where A (A0,k) is a permutohedron, and An,0 is a chain where A (An,0) is an associ-
ahedron. Our second main result is to give a combinatorial interpretation of the h-vector
of An,k, giving a common interpretation for both permutohedra and associahedra. Our
interpretation involves the theory of stack-sorting.

West’s stack-sorting map is a function s : Sn → Sn which attempts to sort the
permutations w in Sn in linear time, not always sorting them completely (see Definition
4.1). It is well-known that for the associahedron, hi counts the number of permutations in
s−1(1 . . . n) with exactly i descents. We give a generalization of this result for all broom
poset associahedra. Define

Sn,k := {w | w ∈ Sn+k, wi = i for all i > k}.

We prove the following:

Theorem 4.2. Let h = (h0, h1, . . . , hn+k−1) be the h-vector of A (An,k). Then hi counts the
number of permutations in s−1(Sn,k) with exactly i descents.

An immediate corollary of Theorem 4.2 is γ-nonnegativity of A (An,k). In particular,
we recall the following result of Bränden.

Theorem 4.4 ([2]). For A ⊆ Sn, we have

∑
σ∈s−1(A)

tdes(σ) =
⌊ n−1

2 ⌋
∑

m=0

|{σ ∈ s−1(A) : peak(σ) = m}|
2n−1−2m tm(1 + t)n−1−2m,

where peak(σ) is the number of index i such that σi−1 < σi > σi+1.

Thus, we have the following corollary.

Corollary 4.5. The γ-vector of A (An,k) is nonnegative.

In addition, in the process of proving Theorem 4.2, we find the size of s−1(Sn,k) in
terms of k! and the Catalan convolution C(k)

n , which will be introduced in Section 4.2.

Corollary 4.3. For all n, k ≥ 0, we have

|s−1(Sn,k)| = k! · C(k)
n .

Finally, in Section 4.4, we prove the following strengthening of Corollary 4.5:

Theorem 4.10. Let Hn(t) be the h-polynomial of A (An,2). Then, Hn(t) is real-rooted.

This paper is an extended abstract to [5] and [6].
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2 Background

2.1 Face numbers

For a d-dimensional polytope P, the sequence ( f0(P), . . . , fd(P)) is called the f -vector of
P, where fi(P) is the number of i-dimensional faces of P and

fP(t) =
d

∑
i=0

fi(P)ti

is called the f -polynomial of P. When P is simple, recall that the h-polynomial and γ-
polynomial are defined by

fP(t) = hP(t + 1),

hP(t) = (1 + t)dγ

(
t

(1 + t)2

)
.

2.2 Poset associahedra

We recall the following definitions.

Definition 2.1. Let (P,⪯) be a finite poset and let σ, τ ⊆ P.

• τ is connected if it is connected as an induced subgraph of the Hasse diagram of P.

• τ is convex if whenever x, z ∈ τ and y ∈ P such that x ⪯ y ⪯ z, then y ∈ τ.

• τ is a tube of P if it is connected, convex, and |τ| > 1. We say τ is a proper tube if
additionally |τ| < |P|.

• τ and σ are nested if τ ⊆ σ or σ ⊆ τ and they are disjoint if τ ∩ σ = ∅.

• We say σ ≺ τ if σ ∩ τ = ∅ and there exists x ∈ σ and y ∈ τ such that x ⪯ y.

• A tubing T of P is a set of proper tubes such that any pair of tubes in T is either
nested or disjoint and there is no subset {τ1, τ2, . . . , τk} ⊆ T such that τ1 ≺ τ2 ≺
. . . ≺ τk ≺ τ1.

• A tubing T is maximal if it is maximal under inclusion, i.e. T is not a proper subset
of any other tubing.

Definition 2.2 ([4, Theorem 1.2]). For a finite, connected poset P, there exists a simple,
convex polytope A (P) of dimension |P| − 2 whose face lattice is isomorphic to the set
of tubings ordered by reverse inclusion. The faces of A (P) correspond to tubings of P,
and the vertices of A (P) correspond to maximal tubings of P. This polytope is called
the poset associahedron of P.
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3 Comparability invariance

The comparability graph of a poset P is the graph C (P) whose vertices are the elements
of P and where i and j are connected by an edge if i and j are comparable. A prop-
erty of a poset is said to be comparability invariant if it only depends on C (P). In [3],
Dreesen, Poguntke, and Winkler give a powerful characterization of comparability in-
variance which we recall in this section.

Definition 3.1. Let P and S be posets and let a ∈ P. The substitution of a for S is the
poset P(a → S) on the set (P − {a}) ⊔ S formed by replacing a with S.

More formally, x ⪯P(a→S) y if and only if one of the following holds:

• x, y ∈ P − {a} and x ⪯P y;

• x, y ∈ S and x ⪯S y;

• x ∈ S, y ∈ P − {a} and a ⪯P y;

• y ∈ S, x ∈ P − {a} and y ⪯P a.

Definition 3.2. Let P be a poset and let S ⊆ P. S is called autonomous if there exists a
poset Q and a ∈ Q such that P = Q(a → S).

Equivalently, S is autonomous if for all x, y ∈ S and z ∈ P − S, we have

(x ⪯ z ⇔ y ⪯ z) and (z ⪯ x ⇔ z ⪯ y).

Definition 3.3. For a poset S, the dual poset Sop is defined on the same ground set where
x ⪯S y if and only if y ⪯Sop x. A flip of S in P = Q(a → S) is the replacement of P by
Q(a → Sop).

1

2 3
4

5 6 7

8 9

10 11 12
13

14 15

16 17

18

(a) An autonomous subset S of a poset P.

1

2 3
4

5 6 7

8 9

10 11 12

13
14 15

16 17

18

(b) A flip of S.

Figure 1
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See Figure 1a for an example of an autonomous subset and Figure 1b for an example
of a flip.

Lemma 3.4 ([3, Theorem 1]). If P and P′ are finite posets such that C (P) = C (P′) then
P and P′ are connected by a sequence of flips of autonomous subsets.

Our main technical lemma is the following.

Lemma 3.5. Let P be a poset and let S ⊆ P be autonomous, and let P′ be the poset obtained by
flipping S in P. Then A (P) and A (P′) have the same f -vector.

Lemma 3.5 immediately gives our first theorem.

Theorem 3.6. The f -vector of A (P) is a comparability invariant.

Theorem 3.6 may lead one to ask if C(P) ≃ C(P′), then are A (P) and A (P′) nec-
essarily combinatorially equivalent? We answer this in the negative with the following
example:

3

1 2

4 5

P A (P)

1 2

3

4 5

P′ A (P′)

Figure 2: A (P) has an octagonal face, but A (P′) does not.

3.1 Proof sketch of Lemma 3.5

Let P = Q(a → S) and P′ = Q(a → Sop). By an abuse of notation, we let A (P) also
refer to the set of tubings of P. Our goal is to build a bijection ΦP,S : A (P) → A (P′)
such that for any tubing T ∈ A (P), we have |T| = |ΦP,S(T)|. Let T ∈ A (P). We will
describe how to construct T′ := ΦP,S(T).
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Definition 3.7. A tube τ ∈ T is good if τ ⊆ P − S, τ ⊆ S, or S ⊆ τ and is bad otherwise.
We denote the set of good tubes by Tgood and the set of bad tubes by Tbad.

The key idea of defining ΦP,S is to decompose Tbad into a triple (L,M,U ) where L
and U are nested sequences of sets, some of which may be marked, contained in P − S
and M is an ordered set partition of S. We build the decomposition in such a way so that
we can uniquely recover Tbad from (L,M,U ). Then, we construct T′ by keeping Tgood

and replacing Tbad by T′
bad, which is obtained from (L,M,U ) where M is the reverse of

M. We decompose Tbad as follows.

Definition 3.8. A tube τ ∈ Tbad is called lower (resp. upper) if there exist x ∈ τ − S and
y ∈ τ ∩ S such that x ⪯ y (resp. y ⪯ x). We denote the set of lower tubes by TL and the
set of upper tubes by TU.

Lemma 3.9 (Structure Lemma). Tbad is the disjoint union of TL and TU. Furthermore, TL and TU
each form a nested sequence.

Definition 3.10 (Tubing decomposition). Let TL = {τ1, τ2, . . .} where τi ⊂ τi+1 for all i.
For convenience, we define τ0 = ∅. We define a nested sequence L = (L1, L2, . . .) and a
sequence of disjoint sets ML = (M1

L, M2
L, . . .) as follows.

• For each i ≥ 1, let Li = τi − S, and mark Li with a star if (τi − τi−1) ∩ S ̸= ∅.

• If Li is the j-th starred set, let Mj
L = (τi − τi−1) ∩ S.

We define the sequences U and MU analogously. We make the following definitions.

• Let M̂ := S − ⋃
τ∈Tbad

τ.

• For sequences a and b, let the sequence a · b be b appended to a, and let a be the
reverse of a.

• We define

M :=

{
ML ·MU if M̂ = ∅
ML · (M̂) ·MU if M̂ ̸= ∅

where (M̂) is the sequence containing M̂.

• The decomposition of Tbad is the triple (L,M,U ).

Figure 3 gives an example of a decomposition.

Lemma 3.11 (Reconstruction algorithm). Tbad can be reconstructed from its decomposition.
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1

2 3
4

5 6 7

8 9

10 11 12
13

14 15

16 17

18

TL

TU

(a) TL is blue and TU is red.

1

2 3
4

5 6 7

8 9

10 11 12
13

14 15

16 17

18

U = ({13, 15}∗, {13, 14, 15})

M = ({6}, {5}, {7}, {8, 9, 10, 11}, {12})

L = ({3}∗, {3}∗, {1, 2, 3}∗, {1, 2, 3, 4})

(b) L is blue, M is purple, and U is red.

Figure 3: The decomposition of Tbad.

Proof. Let M = (M1, . . . , Mn). To reconstruct TL, we set τ1 = L1 ∪ M1 and take

τi =

{
τi−1 ∪ Li if Li is not starred
τi−1 ∪ Li ∪ Mj if Li is marked with the j-th star.

For TU, we set τ1 = U1 ∪ Mn and

τi =

{
τi−1 ∪ Ui if Ui is not starred
τi−1 ∪ Ui ∪ Mn−j+1 if Ui is marked with the j-th star.

Lemma 3.12. Applying the reconstruction algorithm to (L,M,U ) yields a proper tubing T′
bad

of P′ with exactly |Tbad| tubes.

We define T′ := T′
bad ⊔ Tgood and take ΦP,S(T) := T′.

Lemma 3.13. T′ is a proper tubing of P′. Furthermore, ΦP′,S(T′) = T and |ΦP,S(T)| = |T|.

4 Broom posets

Recall that the ordinal sum of two posets (P,<P) and (Q,<Q) is the poset (R,<R) whose
elements are those in P ∪ Q, and a ≤R b if and only if

• a, b ∈ P and a ≤P b or
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• a, b ∈ Q and a ≤Q b or

• a ∈ P and b ∈ Q.

We denote the ordinal sum of P and Q as P ⊕ Q. Let Cn be the chain poset of size n and
Ak be the antichain of size k. In this section, we study the broom posets An,k = Cn+1 ⊕ Ak.
In particular, An,0 is the chain poset Cn+1, and A0,k is the claw poset C1 ⊕ Ak. Recall that
A (An,0) is the associahedron and A (A0,k) is the permutohedron. We show that the h-
vectors of broom posets have a simple combinatorial interpretation in terms of descents
of stack-sorting preimages.

4.1 Stack-sorting

In [12], West defined a deterministic version of Knuth’s stack-sorting algorithm, which
we call the stack-sorting map and denote by s. The stack-sorting map is defined as follows.

Definition 4.1 (Stack-sorting). Given a permutation π ∈ Sn, s(π) is obtained through
the following procedure. Iterate through the entries of π. In each iteration,

• if the stack is empty or the next entry is smaller than the entry at the top of the
stack, push the next entry to the top of the stack;

• otherwise, pop the entry at the top of the stack to the end of the output permuta-
tion.

Figure 4 illustrates the stack-sorting process on π = 3142.

stack

3 1 4 2

3

stack

1 4 2

3

1

stack

4 2

3

stack

4 21

stack

4 21 3

4

stack

21 3

4

2

stack

1 3

4

stack

1 3 2

stack

1 3 2 4

Figure 4: Example of s(3142)
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4.2 Catalan convolution

Recall that the Catalan numbers Cn = 1
n+1(

2n
n ) have generating function C(t) = 1−

√
1−4t

2t .
The k-th Catalan convolution is the sequence with generating function C(t)k. For conve-
nience, we denote [tn]C(t)k by C(k)

n .
The explicit formula for C(k)

n is

C(k)
n =

k + 1
n + k + 1

(
2n + k

n

)
.

4.3 h-vector

Recall that we defined Sn,k = {w | w ∈ Sn+k, wi = i for all i > k}. In this section, our
main theorem is:

Theorem 4.2. Let h = (h0, h1, . . . , hn+k−1) be the h-vector of A (An,k). Then hi counts the
number of permutations in s−1(Sn,k) with exactly i descents.

As a corollary, we obtain the following result.

Corollary 4.3. For all n, k ≥ 0, we have

|s−1(Sn,k)| = k! · C(k)
n .

Recall also the following result by Brändén.

Theorem 4.4 ([2]). For A ⊆ Sn, we have

∑
σ∈s−1(A)

tdes(σ) =
⌊ n−1

2 ⌋
∑

m=0

|{σ ∈ s−1(A) : peak(σ) = m}|
2n−1−2m tm(1 + t)n−1−2m,

where peak(σ) is the number of index i such that σi−1 < σi > σi+1.

This gives the following corollary.

Corollary 4.5. The γ-vector of A (An,k) is nonnegative.

Remark 4.6. Corollary 4.5 also follows from the fact that A (An,k) is isomorphic to the
graph associahedra of lollipop graphs, which are chordal. It was shown in [7] that graph
associahedra of chordal graphs are γ-nonnegative.
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4.4 Real-rootedness

In this section, we will sketch the proof of real-rootedness of the h-polynomial of A (An,2).
We say a polynomial a0 + a1t + . . . + antn is real-rooted if all of its zeros are real. We say
a sequence (a0, a1, . . . , an) is real-rooted if the polynomial a0 + a1t + . . . + antn is real-
rooted.

Let f and g be real-rooted polynomials with positive leading coefficients and real
roots { fi} and {gi}, respectively. We say that f interlaces g if

g1 ≤ f1 ≤ g2 ≤ f2 ≤ . . . ≤ fd−1 ≤ gd

where d = deg g = deg f + 1. We say that f alternates left of g if

f1 ≤ g1 ≤ f2 ≤ g2 ≤ . . . ≤ fd ≤ gd

where d = deg g = deg f . Finally, we say f interleaves g, denoted f ≪ g, if f either
interlaces or alternates left of g.

Recall that the Narayana polynomial Nn(t) is defined by

Nn(t) =
n−1

∑
i=0

aiti

where ai counts the number of permutations in s−1(1 . . . n) with exactly i descents. In
other words, Nn(t) is the h-polynomial of A (An,0) and A (An−1,1). We have the follow-
ing result.

Theorem 4.7 ([1]). For all n, Nn(t) is real-rooted. Furthermore, Nn−1(t) ≪ Nn(t).

To prove real-rootedness of the h-polynomial of A (An,2), we will need the following
“happy coincidence”.

Proposition 4.8. The number of permutations in s−1(2134 . . . n) with exactly i descents is
the same as the number of permutations w in s−1(1 . . . n) with exactly i descents such that
w1, wn < n.

Proposition 4.8 leads to the following important recurrence.

Proposition 4.9. Let Hn(t) be the h-polynomial of A (An,2), and recall that Nn+2(t) and
Nn+1(t) are the h-polynomials of A (An+2,0) and A (An+1,0), respectively. We have

Hn(t) = 2Nn+2(t)− (1 + t)Nn+1(t).

This recurrence and Theorem 4.7 allows us to prove the following theorem.

Theorem 4.10. Let Hn(t) be the h-polynomial of A (An,2). Then, Hn(t) is real-rooted.
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5 Open Questions

Question 5.1. Can we define fA (P)(z) purely in terms of C(P)? It would also be interest-
ing to answer this question even for f0.

Question 5.2. It remains open to find an interpretation of the h-vector of A (P) in terms
of the combinatorics of P. Can h(z) be defined purely in terms of C(P)?

Question 5.3. The map ΦP,S can be analogously defined for affine poset cyclohedra [4],
where an autonomous subset S has at most one representative from each residue class.
Again, it preserves the f -vector of the affine poset cyclohedron. Does Lemma 3.4 (and
hence Theorem 3.6) hold for affine posets?

We have the following conjectured generalization of Proposition 4.9.

Conjecture 5.4. Let P be a poset with an autonomous subposet S that is a chain of size 2, i.e.
S = C2. Let P1 be the poset obtained from P by replacing S by a singleton. Let P2 be the poset
obtained from P by replacing S by an antichain of size 2, i.e. A2. Let hP(t), hP1(t), hP2(t) be the
h-polynomials of A (P), A (P1), A (P2), respectively. Then,

2hP(t) = hP2(t) + (1 + t)hP1(t).

As a result, let γP(t), γP1(t), γP2(t) be the γ-polynomials of A (P), A (P1), A (P2), respectively.
Then,

2γP(t) = γP2(t) + γP1(t).

Conjecture 5.4 is useful in proving real-rootedness of the h-polynomials, as shown in
Theorem 4.10. Furthermore, the resulting recurrence of the γ-polynomial would also be
useful in proving γ-positivity. More generally, we have the following recurrence when S
is an antichain of size n.

Conjecture 5.5. Let P be a poset with an autonomous subposet S that is a chain of size n, i.e.
S = Cn. For 1 ≤ i ≤ n, let Pi be the poset obtained from P by replacing S by an antichain of
size i, i.e. Ai. Let hP(t), hP1(t), . . ., hPn(t) be the h-polynomials of A (P), A (P1), . . ., A (Pn),
respectively. Then,

hP(t) =
1
n! ∑

w∈Sn

B1(t)c1(w) . . . Bn(t)cn(w)hPℓ(λ(w))
(t) (5.1)

where

Bk(t) =
k−1

∑
i=0

(
k − 1

i

)2

ti

are type B Narayana polynomials, ci(w) is the number of cycles of size i in w, and ℓ(λ(w)) is
the length of the cycle type λ(w) of w.
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The type B Narayana polynomials above also show up as the rank-generating func-
tion of the type B analogue NCB

n of the lattice of non-crossing partitions (see [8]) and the
h-polynomials of type B associahedra (see [9]).

Equation 5.1 bears resemblance to the Frobenius characteristic map. Thus, it is a
natural question to ask if there is a representation theory story behind this equation.
This is an interesting question for future research.
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Rational Catalan Numbers for Complex Reflection
Groups
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Abstract. Assuming standard conjectures, we show that the canonical symmetrizing
trace evaluated at powers of a Coxeter element produces rational Catalan numbers
for irreducible spetsial complex reflection groups. This extends a technique used by
Galashin, Lam, Trinh, and Williams to uniformly prove the enumeration of their non-
crossing Catalan objects for finite Coxeter groups.

Keywords: reflection groups, Hecke algebra, parking

1 Introduction

1.1 Catalan combinatorics

This is an extended abstract of [15]. The prototypical noncrossing Coxeter-Catalan
objects are the noncrossing partitions. In type A with the usual Coxeter element c =
(1, 2, . . . , n), these correspond to partitions {B1, . . . , Bk} of the set {1, 2, . . . , n} such that
there do not exist a < b < c < d such that a, c ∈ Bi and b, d ∈ Bj with i ̸= j. These type
A noncrossing partitions are counted by Catn := 1

n+1(
2n
n ).

In [8], the authors define rational noncrossing Coxeter-Catalan objects called maximal
cp-Deograms, counted by the rational Coxeter-Catalan numbers

Catp(W) :=
n

∏
i=1

p + (pei mod h)
di

,

where h = dn is the Coxeter number of W, p is coprime to h, d1 ≤ · · · ≤ dn are the
degrees of a set of algebraically independent homogeneous polynomials which generate
the algebra of invariants Sym(V∗)W , and ei = di − 1. These objects are defined for finite
Coxeter groups. As part of the type-uniform proof of this enumeration, the authors of
[8] use Hecke algebra traces to compute the point count of braid Richardson varieties
over a finite field, producing q-deformed rational Catalan numbers:

Catp(W; q) :=
n

∏
i=1

[p + (pei mod h)]q
[di]q

.

*weston.miller@utdallas.edu. Supported in part by the National Science Foundation under grant DMS-
2246877.
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Many of the objects used in their proof can also be defined for the well-generated
complex reflection groups, so it is natural to try to compute these traces in the complex
case. It turns out that the well-generated condition is too weak for certain representation-
theoretic techniques to work—the necessary condition is for the group to be spetsial.
These spetsial complex reflection groups (see Definition 3.2) are well-generated com-
plex reflection groups that behave as if they were the Weyl group for some connected
reductive algebraic group.

Analogs of unipotent characters, Harish-Chandra theory, and Lusztig’s Fourier trans-
form can be defined combinatorially for these groups, which allows techniques from the
representation theory of finite groups of Lie type to be extended to spetsial complex
reflection groups.

As the main result of our paper, Theorem 8.1, we show that for irreducible spetsial
complex reflection groups the trace of a power of a Coxeter element still produces a
rational Catalan number even though there are not braid Richardson varieties in this
context. Precisely, we prove the following result:

Theorem 1.1. Let W be an irreducible spetsial complex reflection group with Coxeter number h,
and let c be a ζh-regular element of W. Let c ∈ B(W) be a lift of c such that ch = π. Then

τq(T
−p
c ) = q−np(1 − q)n Catp(W; q).

1.2 Parking combinatorics

The noncrossing parking functions in type A are sets of tuples {(B1, L1), . . . , (Bk, Lk)},
where Bi, Li ⊆ {1, . . . , n} and

• {B1, . . . , Bk} is a noncrossing partition of {1, . . . , n},

• {L1, . . . , Lk} is a set partition of {1, . . . , n}, and

• |Bi| = |Li| for i = 1, . . . , k.

The number of these noncrossing parking functions is (n + 1)n−1.
In [8], the authors uniformly defined rational noncrossing parking objects for finite

Coxeter groups. These parking objects correspond to certain walks in the Hasse digram
of the weak Bruhat order and are counted by pn. As a corollary of our main result, we
prove the following (see Corollary 8.2):

Corollary 1.2. For W an irreducible spetsial complex reflection group, let B be a basis of the
spetsial Hecke algebra Hq(W) (adapted to the Wedderburn decomposition), and let c be a lift of a
ζh-regular element such that ch = π. Then

∑
b∈B

τq(b∨Tcp b) = (q − 1)n[p]nq .
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In the real case, this is a key algebraic step in the proof of the enumeration of ra-
tional noncrossing parking functions [8]. Finding a combinatorial interpretation of the
left-hand-side of this equation, e.g. rational noncrossing parking functions for spetsial
complex reflection groups, is an open problem.

2 Complex reflection groups

Let V be an n-dimensional complex vector space. A linear transformation g ∈ GL(V) is
a reflection if the order of g is finite and the subspace Fix(g) := {v ∈ V : gv = v} has
codimension 1. In this case, Fix(g) will be called the reflection hyperplane of g. A (finite)
complex reflection group is a finite subgroup of GL(V) that is generated by reflections. It is
said to be well-generated if it can be generated by n reflections. For a complex reflection
group W, we will use R to denote the set of reflections in W, and A will denote the
corresponding set of reflecting hyperplanes (for Coxeter groups, |R| = |A|).

A complex reflection group is irreducible if V is an irreducible W-module. By the
classification of Shephard and Todd, an irreducible complex reflection group is either
in the infinite family G(m, p, n), for p a divisor of m, or is one of 34 exceptional groups
labeled 4 to 37.

For an orbit of hyperplanes C ∈ A/W, we will let eC denote the order of the pointwise
stabilizer WH = {w ∈ W : wh = h, ∀h ∈ H} for any H ∈ C (the order does not depend
on the choice of H). For any H ∈ C, the group WH is cyclic with order eC , and there is
a reflection sH ∈ W with reflecting hyperplane H and determinant ζeC = exp(2πi/eC).
Such reflections are called distinguished reflections.

The field of definition kW of a complex reflection group W is the field generated by the
traces of the elements of W on the reflection representation. The field of definition is a
subfield of R when W is a finite Coxeter group and equals Q when W is a Weyl group.

The degrees of W are defined to be the degrees d1 ≤ · · · ≤ dn of a collection of alge-
braically independent homogeneous polynomials that generate the algebra of invariants
Sym(V∗)W . The Poincaré polynomial PW is defined by

PW :=
n

∏
j=1

[dj]q,

where [n]q denotes the q-analog [n]q := (qn − 1)/(q − 1) for n ∈ Z.
Let SW

+ be the ideal of S := Sym(V∗) generated by the positive degree elements of
SW . Then the action of W on the coinvariant algebra S/SW

+ is the regular representation, so
S/SW

+ contains exactly r copies of any irreducible representation M of W of dimension
r. The exponents of M are defined to be the degrees e1(M) ≤ · · · ≤ er(M) of the homo-
geneous components of S/SW

+ containing a copy of M. If χ is the irreducible character
corresponding to M, we will also denote ei(χ) := ei(M) and ei := ei(V).
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Definition 2.1. The fake degree Fegχ(q) of an irreducible character χ of W is the graded
multiplicity of the irreducible representation with character χ in S/SW

+ :

Fegχ(q) =
r

∑
i=1

qei(χ).

3 Hecke algebras

Let Vreg := V \ ⋃
H∈A H denote the hyperplane complement. The pure braid group for a

complex reflection group W is P(W) := π1(Vreg). Its braid group is B(W) := π1(Vreg/W).
The quotient ρ : Vreg → Vreg/W induces a surjection φ : B(W) → W, giving a short exact
sequence

1 → P(W)
ρ∗−→ B(W)

φ−→ W → 1,

where W can be interpreted as the group of deck transformations of the covering.
The braid group B(W) has a set of generators {sH,γ} called generators of the monodromy

or braid reflections [4], such that φ(sH,γ) = sH is a distinguished reflection. Moreover,
the pure braid group P(W) is generated by the {seC

H,γ} (where H ∈ C), and so W ∼=
B(W)/⟨seC

H,γ⟩.
The full twist π ∈ P(W) is given by t 7→ v exp(2πit), where the basepoint v ∈ Vreg

is suppressed. The image ρ∗(π) ∈ B(W) is a central element of B(W) and will also be
called the full twist and be denoted by π.

Define u := (uC,j)(C∈A/W),(0≤j≤eC−1), and let Z[u±1] be the ring of Laurent polynomi-
als. Let J be the ideal of the group algebra Z[u±]B(W) generated by the elements

(sH − uC,0)(sH − uC,1) · · · (sH − uC,eC−1),

where C ∈ A/W, H ∈ C, and sH is a braid reflection (since generators sH,γ and sH,γ′

of the monodromy around H are conjugate in B(W) [4], it suffices to use only one such
braid reflection for each H in the above relations to generate J). The generic Hecke algebra
H(W) is the quotient Z[u±]B(W)/J. For g ∈ B(W), we’ll denote by Tg the corresponding
element in the Hecke algebra.

The spetsial Hecke algebra Hq(W) is the admissible cyclotomic Hecke algebra induced
by the map

θq : uC,j 7→
{

q if j = 0

ζ
j
eC if j > 0.

This is a generalization of the 1-parameter Iwahori-Hecke algebra of Coxeter groups.
The spetsial Hecke algebra Hq(W) has splitting field kW(y), where y|µ(kW)| = q for

µ(kW) the group of roots of unity in kW . By Tits’ deformation theorem, there is a bijection
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between the irreducible characters of Hq(W) and those of W. We will denote by χq the
character of Hq(W) coresponding to χ ∈ Irr(W).

We will make the following assumption, called the BMM symmetrizing trace conjec-
ture:

Assumption 3.1 ([2]). There exists a Z[u±]-linear map τ : H(W) → Z[u±] such that:

1. τ is a symmetrizing trace; that is, τ is the bilinear form H(W)×H(W) → Z[u±] given
by (h, h′) 7→ τ(hh′) is symmetric and non-degenerate.

2. Through the specialization uC,j 7→ ζ
j
eC , the form τ becomes the canonical symmetrizing

trace on the group algebra: w 7→ δ1w.

3. For all b ∈ B(W),

τ(Tb−1)∨ =
τ(Tbπ)

τ(Tπ)
,

where α 7→ α∨ is the automorphism on Z[u±] consisting of simultaneous inversion of the
indeterminates.

If such a symmetrizing trace exists, it is unique. We will call τ the canonical sym-
metrizing trace on H(W), and denote by τq the specialization to the spetsial Hecke
algebra. The BMM symmetrizing trace conjecture has been proven for the infinite family
G(m, p, n) and the finite Coxeter groups, but remains open for some of the exceptional
groups.

There exist weights Sχ(q) ∈ ZkW [y
±] for χ ∈ Irr(W), called Schur elements, such that

τq = ∑
χ∈Irr(W)

1
Sχ(q)

χq,

where ZkW is the ring of integers of kW [2]. The Schur elements have been computed
even in the cases for which Assumption 3.1 is still open [12].

Using these Schur elements, we can now define the class of spetisal complex reflection
groups, which form a subset of the well-generated complex reflection groups.

Definition 3.2. An complex reflection group is called spetsial if all of its irreducible com-
ponents W satisfy any of the following equivalent conditions (equivalence of the condi-
tions is shown in [12]):

1. S1(q) = PW , where 1 denotes the trivial representation of W

2. PW/Sχ(q) ∈ kW(q) for all χ ∈ Irr(W)

3. W is one of the following groups:

G(m, 1, n), G(m, m, n), Gi where i ∈ {4, 6, 8, 14, 23, . . . , 30, 32, . . . , 37}.

If W is an irreducible spetsial complex reflection group, define the generic degree of an
irreducible character χ by Degχ(q) := PW/Sχ(q) ∈ kW(q).
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4 Coxeter elements

The Coxeter number of a complex reflection group W is h := (|R| + |A|)/n. If W is
well-generated, then h = dn. More generally, define the generalized Coxeter number hχ

associated to a character χ to be the normalized trace of the central element ∑r∈R(1− r).
That is,

hχ = |R| − 1
χ(1) ∑

r∈R
χ(r).

These generalized Coxeter numbers are integers, and hϕ = h when ϕ is the character of
the reflection representation.

A vector v ∈ V is regular if it is not contained in any reflection hyperplane. An
element c ∈ W is regular if it has a regular eigenvector. Moreover, c is ζ-regular if this
eigenvector may be chosen to have eigenvalue ζ. In this case, the multiplicative order d
of ζ is a regular number for W.

If W is well-generated, then there exists a ζ-regular element for every h-th root of
unity ζ. For ζ a primitive h-th root of unity, the ζ-regular elements of W are called
Coxeter elements.

Remark 4.1. Some authors define the Coxeter elements to be only the ζh-regular elements.
In several cases, we will find it useful to restrict our attention to this subset of the Coxeter
elements. It follows easily from the definition that each Coxeter element is a power of
some ζh-regular element.

Proposition 4.2. Suppose W is an irreducible spetsial complex reflection group with Coxeter
number h, and let c be a ζh-regular element of W. Then there exists a lift c ∈ B(W) of c such
that ch = π, and

τq(T
−p
c ) =

1
PW

∑
χ∈Irr(W)

q(hχ−nh)p/h Fegχ(e
2πip/h)Degχ(q).

Proof. It is shown in [1] that the lift c exists. The trace formula then follows from [5,
18].

5 Exterior powers of Galois twists

Let W be a well-generated irreducible complex reflection group with Coxeter number
h and reflection representation V of dimension n. The Galois twist Vσp of V is the ir-
reducible representation of W obtained by applying σp to the matrices representing the
elements w ∈ W as linear operators on V, where σp ∈ Gal(Q(ζh)/Q) is defined by
σp : ζh 7→ ζ

p
h for some p coprime to h.

Lemma 5.1. The generalized Coxeter number of ΛkVσp is kh.
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Proof. This is a straightforward computation.

Lemma 5.2. The fake degree of ΛkVσp is

∑
i1<···<ik

qei1
(Vσp )+···+eik

(Vσp ),

and the sets {e1(Vσp), . . . , en(Vσp)} and {pe1 mod h, . . . , pen mod h} coincide.

Proof. The first part is shown in [17]. For the second part, the result can be checked
by computer [16] for the exceptional groups. For the groups G(m, 1, n) and G(m, m, n),
we use Malle’s [11] formulas for the fake degrees of irreducible characters in terms of
corresponding m-symbols.

Theorem 5.3. Suppose W is an irreducible well-generated complex reflection group with Coxeter
number h. Then for p relatively prime to h and χ an irreducible character of W,

[S1/Sχ](e2πip/h) =

{
(−1)k if χ = χk,p,
0 otherwise,

where χk,p is the character corresponding to ΛkVσp .

Proof. For the symmetric groups (in fact, all real groups), the proof is sketched in [8].
For the exceptional irreducible well-generated groups, this is checked by computer [16].
The proof for the groups G(m, 1, n) and G(m, m, n) follows the proof of the “untwisted
case” in [14], and we will now outline it.

The group G(m, 1, n) is generated by the n elements {t, s1, s2, . . . , sn−1}, where t is
given by the matrix Diag(ζm, 1, . . . , 1) and si is given by the permutation matrix cor-
responding to the transposition (i, i + 1). The irreducible representations of G(m, 1, n)
can be parametrized by m-partitions of n, that is, tuples λ = (λ(0), λ(1), . . . , λ(m−1)) of
partitions such that |λ(0)|+ · · ·+ |λ(m−1)| = n. The correspondence is then

λ ↔ χλ = IndG(m,1,n)
G(m,1,|λ(0)|)×···×G(m,1,|λ(m−1)|) ((χ0 ⊗ γ0)⊠ · · ·⊠ (χm−1 ⊗ γm−1)) ,

where

• γk is the linear character of G(m, 1, |λ(k)|) defined by t 7→ ζk
m and si 7→ 1 for

i = 1, . . . , |λ(k)| − 1.

• χk is the character of the symmetric group S|λ(k)| corresponding to λ(k) considered

as a character of G(m, 1, |λ(k)|) via the surjection G(m, 1, |λ(k)|) → S|λ(k)|.
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There are explicit combinatorial models for these representations [13] which can be used
to show that the m-partition of n corresponding to ΛkVσp is (n− k,∅, . . . ,∅, 1k,∅, . . . ,∅),
where the 1k is in the pth slot (mod m; indexing starts with 0).

In [11], Malle gives a combinatorial construction of unipotent characters and generic
degrees for the groups G(m, 1, n) and G(m, m, n) which enjoy many of the same prop-
erties as the corresponding objects for Weyl groups. Using a simplified formula for the
Schur elements [7], we show that evaluating Degχ at the root of unity for χ an exterior
power of a Galois twist produces (−1)k. We then use a case-by-case argument to show
that the evaluation of Degχ is zero otherwise.

Using Clifford theory, one can describe a relationship between the irreducible char-
acters of G(m, 1, n) and those of G(m, m, n): For an m-partition λ = (λ(0), . . . , λ(m−1)) of
n, denote by ω(λ) the cyclic permutation (λ(m−1), λ(0), . . . , λ(m−2)). Let ⟨ω⟩ denote the
cyclic group of order m, and let s(λ) be the size of the subgroup of ⟨ω⟩ fixing λ. Then
there is a correspondence:

{χλ, χω(λ), . . . , χωm/s(λ)−1(λ)} ∈ Irr(G(m, 1, n)) ↔
{

ψ, ψt, . . . , ψts(λ)−1
}
∈ Irr(G(m, m, n))

(χω j(λ))G(m,m,n) = ψ + ψt + · · ·+ ψts(λ)−1

χλ + χω(λ) + · · ·+ χωm/s(λ)−1(λ) = IndG(m,1,n)
G(m,m,n) ψtj

.

Again, Malle has combinatorial constructions for the unipotent characters and generic
degrees [11, 10] which we use to evaluate Degχ at the root of unity for χ an exterior
power of a Galois twist. We again use a case-by-case argument to show that the evalua-
tion of Degχ is zero otherwise.

6 Families of unipotent characters

Let W be an irreducible spetsial complex reflection group. Define the Rouquier ring
RW(y) to be the ZkW -subalgebra of kW(y) given by

RW(y) := ZkW [y, y−1, (yn − 1)−1
n≥1].

To each χ ∈ Irr(W) we can associate a central primitive idempotent eχ in kW(y)Hq(W)
given by

eχ :=
1

Sχ(q)
∑
b∈B

χq(b)b∨,

where B is a basis of Hq(W) adapted to the Wedderburn decomposition, and the b∨

form the dual basis with respect to τq [6].
There exists a unique partition RB(W) of Irr(W) such that
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• for each B ∈ RB(W), the element eB := ∑χ∈B eχ is a central primitive idempotent
in RW(y)Hq(W),

• 1 = ∑B∈RB(W) eB and for every central idempotent e of RW(y)Hq(W) there exists a
subset RB(W, e) of RB(W) such that e = ∑B∈RB(W,e) eB.

We then say that two characters χ, ϕ ∈ Irr(W) belong to the same Rouquier block of
Hq(W) if they belong to the same element of RB(W). We then have

Proposition 6.1. If χ and ψ belong to the same Rouquier block of the spetsial Hecke algebra,
then hχ = hϕ.

Proof. The proof that the statistics aχ and Aχ are constant on Rouquier blocks is de-
scribed in [6]. It is shown in [2] that hχ = aχ + Aχ, so the result follows.

For W be an irreducible Weyl group and q a power of a prime p, let G be a simple
connected reductive group over Fp with connected center which has Weyl group W, and
let F : G → G be a Frobenius map with respect to some Fq-rational structure which acts
trivially on W. We denote by GF the corresponding finite group of Lie type and fix a
maximally split torus T0.

A character ρ ∈ Irr(GF) is called a unipotent character if ⟨RG
T (1T), ρ⟩ ̸= 0 for some

F-stable maximal torus T ⊆ G. Here 1T is the trivial character of TF and RG
T (1T) is the

induced Deligne-Lusztig character of GF. We denote by Uch(GF) the set of all unipotent
characters of GF.

There are two important subsets of the unipotent characters of GF:

1. For each χ ∈ Irr(W), there is a unipotent uniform almost character Rχ which satisfies
Rχ(1) = Fegχ(q)

2. For each χ ∈ Irr(W), there is a unipotent principal series character ρχ which satisfies
ρχ(1) = Degχ(q).

Define a graph on the set of vertices Uch(GF) as follows: two unipotent characters
ρ1, ρ2 ∈ Uch(GF) are joined if and only if there is an irreducible character χ ∈ Irr(W)
such that ⟨Rχ, ρi⟩ ̸= 0 for i = 1, 2. The sets of vertices corresponding to the connected
components of the graph are called the families in Uch(GF).

These families recover the Rouquier blocks of Irr(W) via the inclusion χ 7→ ρχ. For
the spetsial groups G(m, 1, n) and G(m, m, n), Malle has defined families of his unipo-
tent characters Uch(W) which recover the Rouquier blocks via an inclusion Irr(W) ↪→
Uch(W).

For W an exceptional irreducible spetsial complex reflection group, there is a set
Uch(G) defined in [3] for the corresponding split spets. There is also a principal series
Uch(G, 1) with bijection Irr(W) → Uch(G, 1). Moreover, there is a partition of Uch(G)
into families which recovers the Rouquier blocks of Hq(W) when restricted to the princi-
pal series.
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7 Lusztig’s Fourier transform

Lemma 7.1. Suppose that there exists a pairing {−,−}W : Irr(W)× Irr(W) → C satisfying

(T1) For all χ ∈ Irr(W), we have

Degχ(q) = ∑
ϕ∈Irr(W)

{χ, ϕ}W Fegϕ(q).

(T2) For all χ, ϕ ∈ Irr(W), we have {χ, ϕ}W = {ϕ, χ}W .

(T3) For all χ, ϕ ∈ Irr(W) with {χ, ϕ}W ̸= 0, we have hχ = hϕ.

Then

∑
χ∈Irr(W)

q f (χ)
1 Fegχ(q2)Degχ(q3) = ∑

χ∈Irr(W)

q f (χ)
1 Fegχ(q3)Degχ(q2),

if f satisfies (hχ = hϕ =⇒ f (χ) = f (ϕ)).

Proof. This follows from a double-summation argument.

These conditions can be interpreted as saying that the pairing transforms fake de-
grees to generic degrees, is symmetric, and is block diagonal on families. The following
conjecture has been proven for W a finite Coxeter group and W = G(m, 1, n).

Conjecture 7.2. For all irreducible spetsial complex reflection groups W, there exists a pairing
{−,−}W satisfying (T1), (T2), and (T3), which we will call the truncated Lusztig Fourier
transform.

For W a Weyl group, the transform is given by the inner product of characters
⟨ρχ, Rϕ⟩. For non-Weyl Coxeter groups, the pairing is described in [9]. Malle constructs
a Fourier transform in [11] for G(m, 1, n), and it is shown in [10] that it satisfies (T1),
(T2), and (T3).

In [10], Lasy conjectures the existence of a Fourier transform for G(m, m, n) and de-
scribes its relation to a “pre-Fourier” transform which is a slight modification of the
construction in [11]. This conjectured transform will satisfy (T1), (T2), and (T3).

The Fourier transforms for the exceptional groups (and for the families G(m, 1, n)
and G(m, m, n)) are contained in the data for GAP3, but their properties have not yet
appeared in publication. See [3].
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8 Rational Catalan numbers

Theorem 8.1. Let W be an irreducible spetsial complex reflection group with Coxeter number h,
and let c be a ζh-regular element of W. Let c ∈ B(W) be a lift of c such that ch = π. Then

τq(T
−p
c ) = q−np(1 − q)n Catp(W; q).

Proof. Assuming Conjecture 7.2,

τq(T
−p
c ) =

1
PW

∑
χ∈Irr(W)

q(hχ−nh)p/h Fegχ(e
2πip/h)Degχ(q)

=
1

PW
∑

χ∈Irr(W)

q(hχ−nh)p/h Fegχ(q)Degχ(e
2πip/h)

=
1

PW

n

∑
k=0

(−1)kq(k−n)p ∑
i1<···<ik

qei1
(Vσp )+···+eik

(Vσp )

=
1

PW
q−np

n

∏
i=1

(
1 − qp+ei(V

σp )
)
= q−np(1 − q)n

n

∏
i=1

[p + ei(Vσp)]q
[di]q

= q−np(1 − q)n Catp(W; q).

These “trace techniques” also allow us to extend a result from [8] related to the
enumeration of rational parking functions.

Corollary 8.2. For W an irreducible spetsial complex reflection group, let B be a basis of the
spetsial Hecke algebra Hq(W) (adapted to the Wedderburn decomposition), and let c be a lift of a
ζh-regular element such that ch = π. Then

∑
b∈B

τq(b∨Tcp b) = (q − 1)n[p]nq .

This corollary motivates future work: Are there noncrossing parking objects for spet-
sial complex reflection groups analogous to those in [8] whose enumeration is related to
the sum ∑b∈B τq(b∨Tcp b)?
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Abstract. The Bruhat order on permutations arises out of the study of Schubert
varieties in Grassmannians and flag varieties, which have been important for over
100 years [3, 5, 8, 13, 14]. The purpose of this paper is to study variations on this
theme related to subvarieties of the spanning line configurations Xn,k as defined by
Pawlowski and Rhoades [16]. These subvarieties are indexed by Fubini words, or
equivalently by ordered set partitions. Three natural partial orders arise in this context;
we refer to them as the decaf, medium roast, and espresso orders. The decaf order
is a generalization of the weak order on permutations defined by covering relations
using simple transpositions. The medium roast order is a generalization of the (strong)
Bruhat order defined by the closure relationship on the subvarieties. The espresso
order is the transitive closure of a relation based on intersecting subvarieties. Many
properties of Schubert varieties and Bruhat order extend to one or more of the three
Fubini-Bruhat orders. We examine some of the many possibilities in this work.

Keywords: Fubini words, ordered set partitions, Schubert varieties, permutations

1 Introduction

For positive integers k ≤ n, a Fubini word w = w1 · · · wn represents a surjective map
w : [n] → [k]. We denote a Fubini word by its one-line notation, an ordered list w =
w1w2 · · · wn, where wi = w(i). We denote by Wn,k the Fubini words of length n on
the alphabet [k]. For k = n, a Fubini word w ∈ Wn,n is exactly a permutation in Sn,
and the one-line notation for w is the same whether w is viewed as a Fubini word or
a permutation. The bijection between Fubini words and ordered set partitions maps
w ∈ Wn,k to B(w) = B1 |B2 | . . . |Bk where Bi = {j ∈ [n] |wj = i}. Hence the number of
Fubini words in Wn,k is k!S(n, k) where S(n, k) is the Stirling number of the second kind
[15, A000670, A019538].

Let Fk×n(C) be the set of full rank k×n matrices with no zero columns. Such matrices
have a Bruhat decomposition into orbits
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Fk×n(C) =
⊔

w∈Wn,k

B(k)
− MwB+(w) (1.1)

where Mw is the analog of a permutation matrix with a 1 in position (wj, j) and 0’s
elsewhere, B− and B+ are the set of invertible lower and upper triangular matrices
respectively and the superscript indicates their size, and B+(w) is the subgroup of the
n × n invertible upper triangular matrices A such that Mw A ∈ Fk×n(C). Every matrix
in the double orbit B(k)

− MwB+(w) can be written in many ways as a triple product, thus

it can be useful to chose canonical representatives. Let U = U(k)
− be the set of lower

unitriangular matrices in GLk(C), and let T = T(n) be the set of diagonal matrices in
GLn(C). Pawlowski and Rhoades [16] defined the pattern matrices Pw indexed by words
w ∈ Wn,k to be a specific set of orbit representatives such that each M ∈ B(k)

− MwB+(w)
can be written uniquely as a product M = XYZ with X ∈ U, Y ∈ Pw, and Z ∈ T [16,
Lem. 3.1 and Prop. 3.2]. See Section 2 for more details. Thus, we have an efficient
Bruhat decomposition

Fk×n(C) =
⊔

w∈Wn,k

UPwT. (1.2)

Under right multiplication, every T-orbit of Fk×n(C) determines an ordered list of n
1-dimensional subspaces whose vector space sum is Ck via its ordered list of columns.
The set of such “lines” in Ck is the (k − 1)-dimensional complex projective space Pk−1.

Definition 1.1. [16, Def. 1.3] A spanning line configuration l• = (l1, . . . , ln) is an ordered
n-tuple in the product of projective spaces (Pk−1)n whose vector space sum is Ck. Let

Xn,k = Fk×n(C)/T = {l• = (l1, . . . , ln) ∈ (Pk−1)n | l1 + · · ·+ ln = Ck} (1.3)

be the space of spanning line configurations for 1 ≤ k ≤ n.

In 2017, Pawlowski and Rhodes initiated the study of the space of spanning line
configurations [16]. They observed and proved the following remarkable properties.
The projection of Xn,n = GLn/T to the flag variety GLn/B(n)

+ is a homotopy equivalence,
so they have isomorphic cohomology rings. More generally, Xn,k is an open subvariety of
(Pk−1)n, hence it is a smooth complex manifold of dimension n(k − 1). The cohomology
ring of Xn,k may be presented as the ring

Rn,k = Z[x1, . . . , xn]/⟨xk
1, . . . , xk

n, en−k+1, . . . , en⟩

defined by Haglund-Rhoades-Shimozono [12], generalizing the coinvariant algebra and
Borel’s theorem H∗(GLn/B) ∼= Rn,n. Here, ei is the ith elementary symmetric function
in x1, . . . , xn. Furthermore, there is a natural Sn action on n-tuples of lines inducing an
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Sn action on the cohomology ring of Xn,k, which is isomorphic to Rn,k as a graded Sn-
module. See also [11] for another geometric interpretation of Rn,k. The efficient Bruhat
decomposition gives rise to a cellular decomposition

Xn,k =
⊔

w∈Wn,k

UPw.

Let Cw = UPw for w ∈ Wn,k. Let Cw be the closure of the cell Cw in Zariski topology on
on Xn,k. Then the cohomology classes [Cw] can be represented by variations on Schubert
polynomials and these polynomials descend to a basis of Rn,k over Z [16, Sec. 1, Prop
3.4]. The Poincaré polynomial for H∗(Xn,k, Z) is determined by

∑
w∈Wn,k

qcodim(Cw) = [k]!q · rev-Stirq(n, k), (1.4)

where rev-Stirq(n, k) is the polynomial obtained by reversing the coefficients of a well-
known q-analog of the Stirling numbers of the second kind [4, 17, 19].

Given the impressive results due to Pawlowski and Rhoades, we call Cw = UPw the
Pawlowski-Rhoades cell or PR cell indexed by w ∈ Wn,k. Similarly, the PR variety
is denoted Cw. The PR cells and PR varieties are natural variations on the theory of
Schubert cells/varieties extending to k × n matrices, hence we believe they merit careful
study of their own. We have used known theorems for Schubert varieties as inspiration
for conjectures and results on PR varieties.

It follows from [16, Sec. 5] that the PR variety Cw is defined by certain bounded
rank conditions. The rank conditions give rise to the ideal Iw generated by the minor
determinants ∆I,J ∈ C[x11, . . . , xkn] for I, J ∈ ([n]h ) with h ∈ [k] which vanish on every
matrix in Cw = UPw. The zero set of these minors is well defined on the orbits in
Fk×n(C)/T since the right action of the diagonal matrices just rescales each such minor.
Therefore, the spanning line configurations in Cw can be represented by matrices in
Fk×n(C) that vanish for every minor generating Iw.

Definition 1.2. [16, Sec. 9] The medium roast Fubini-Bruhat order (Wn,k,≤) is defined on
Fubini words by v ≤ w if and only if one of the following equivalent statements is true:

1. Iv ⊂ Iw,

2. Cv ⊇ Cw,

3. {(I, J) |∆I,J(M) = 0 ∀M ∈ Cv} ⊂ {(I, J) |∆I,J(M) = 0 ∀M ∈ Cw}.

One can observe that medium roast order on Fubini words is equivalent to Bruhat
order on permutations when n = k. As with Bruhat order, it follows by definition that
v < w implies codim(Cv) < codim(Cw). However, some of the properties for Bruhat
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order on Sn = Wn,n do not extend to all Wn,k. Specifically, if v ≤ w in Wn,k, then
Cv ∩ Cw ̸= ∅, but the converse does not necessarily hold. For example, using the third
condition above and the definition of pattern matrices in Definition 2.4, one can observe
that C1323 contains the matrix M1123 ∈ C1123, but C1323 and C1123 are cells of the same
dimension so 1323 and 1123 are unrelated in medium roast order. Since Cv ∩ Cw ̸= ∅
is a weaker condition than Cw ⊆ Cv, this suggests a refinement of the medium roast
Fubini-Bruhat order, which we will denote by ⪯. Note that our notation for ⪯ is ≤′ in
Pawlowski and Rhoades’ notation. They use ⪯ for the dual order to ≤.

Definition 1.3. For v, w ∈ Wn,k, we say Cv touches Cw if Cv ∩ Cw ̸= ∅, denoted v ⇀ w.

Pawlowski and Rhoades observe in [16, Sec. 9] that unlike the medium roast order
relations, the touching relation on Fubini words is not transitive. However, they showed
that the transitive closure of the touching relations is acyclic [16, Prop. 9.2], so the
touching relations give rise to a poset on Wn,k first studied but not named in [16].

Definition 1.4. [16, Sec. 9] The espresso Fubini-Bruhat order (Wn,k,⪯) is defined by taking
the transitive closure of the relations of the form v ⇀ w if v touches w.

Observe that for Fubini words v, w ∈ Wn,k, v ≤ w implies v ⪯ w. Thus, the medium
roast order is a subposet of the espresso order on the same set of elements.

Pawlowski and Rhoades asked for a combinatorial description of the espresso and
medium roast Fubini-Bruhat orders [16, Prob. 9.5]. We address this problem by giving
two more sets of defining equations for PR varieties Cw inside Xn,k, see Theorem 1.5 and
Theorem 5.4 below. Each set is typically properly contained in the set of all minors that
vanish on the PR cell Cw, and hence “more efficient”.

Let ∆J be the flag minor associated to columns in J and rows 1, 2, . . . , |J|. Such minors
are used historically for the Plücker embedding of the flag variety into projective space
[8]. Note that the flag minors are invariant under the left action of the unitriangular ma-
trices. Hence, to determine the vanishing/non-vanishing flag minors of M ∈ Cw = UPw,
it suffices to consider the unique U-orbit representative of M in Pw. We can partition the
set of all flag minors on k × n matrices into the sometimes, truly, and unvanishing flag
minors for w, by defining the indexing sets

Sw = {J ∈
(
[n]
[k]

)
| ∃ A, B ∈ Cw s.t. ∆J(A) = 0, ∆J(B) ̸= 0},

Tw = {J ∈
(
[n]
[k]

)
|∆J(M) = 0 ∀ M ∈ Cw}, and

Uw = {J ∈
(
[n]
[k]

)
|∆J(M) ̸= 0 ∀ M ∈ Cw}.
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Theorem 1.5. For any Fubini word w ∈ Wn,k, the PR variety Cw is the set of spanning line
configurations in Xn,k represented by matrices such that all flag minors indexed by Tw vanish, so

Cw = {A ∈ Xn,k |∆J(A) = 0 ∀ J ∈ Tw}.

Note, the ideal Jw generated by the flag minors {∆J | J ∈ Tw} is in general not the
same as Iw generated by all vanishing minors for Cw. For example, using the definition
and example of Pw in Section 2, one can observe that the minor ∆{2},{1} = x21 is not in
the ideal Jw for w = 31123, but it does vanish on all of Cw. Note, both Iw and Jw are
radical ideals since determinants don’t factor, so they determine different affine varieties
in Cnk, which agree on Xn,k.

Corollary 1.6. For any two Fubini words v, w ∈ Wn,k, we have

1. v ≤ w in medium roast Fubini-Bruhat order if and only if Tv ⊆ Tw, and

2. v ⇀ w if and only if Tv ⊆ (Sw ∪ Tw).

Identifying vanishing flag minors of Cw is more efficient than calculating all van-
ishing minors of Cw, but still cumbersome directly from the definition. In fact, we can
characterize the sometimes, truly, and unvanishing flag minors via the Gale partial order
on certain multisets αJ(w) defined below. We refer to this as the Alpha Test. These tests
generalize Ehresmann’s Criteria for Bruhat order in Sn using the Gale partial order on
multisets denoted A ⊴ B. See Section 2 for more details.

Definition 1.7. For any Fubini word w ∈ Wn,k, let αi = αi(w) denote the position of the initial
i in w for each i ∈ [k]. Call α(w) = (α1, . . . , αk) the alpha vector of w. We will sometimes drop
the (w) when it is clear from context. Observe that when k = n, the alpha vector coincides with
the notion of w−1 ∈ Sn = Wn,n. For J ⊂ [n], define the multiset

αJ(w) = {αw(j) | j ∈ J}. (1.5)

Theorem 1.8. (The Alpha Test) Suppose w ∈ Wn,k and J ∈ ([n]
[k]) with |J| = h. Then

1. J ∈ Sw if and only if {α1, . . . , αh} ◁
̸=

αJ(w),

2. J ∈ Tw if and only if {α1, . . . , αh} ̸⊴ αJ(w), and

3. J ∈ Uw if and only if {α1, . . . , αh} = αJ(w).

For example, let w = 21231231 ∈ W8,3 and J = {2, 6, 8}. Then α(w) = (α1, α2, α3) =
(2, 1, 4), and αJ = {αw(2), αw(6), αw(8)} = {2, 1, 2}. Since {α1, α2, α3} = {1, 2, 4} ̸⊴ {1, 2, 2} =
αJ(w) in Gale order, we know J ∈ Tw.
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Corollary 1.9. Let v, w ∈ Wn,k. Then, v ≤ w in medium roast Fubini-Bruhat order if and only
if for each J ∈ ([n]

[k]) with |J| = h ≤ k such that

{α1(w), . . . , αh(w)} ⊴ αJ(w) (1.6)

we also have
{α1(v), . . . , αh(v)} ⊴ αJ(v). (1.7)

A similar test for v ⇀ w holds as well based on testing each J such that {α1(w), . . . , αh(w)} =
αJ(w). Therefore, if v ≤ w or v ⇀ w, we have {α1(v), . . . , αh(v)} ⊴ {α1(w), . . . , αh(w)} for
all 1 ≤ h ≤ k, generalizing the Ehresmann Criterion.

In Section 2, we briefly review our notation and key concepts from the literature.
In Section 3, we indicate some of the lemmas needed to prove Theorem 1.5 and its
corollaries. In Section 4, we identify certain families of covering relations and use them
to define the decaf Fubini-Bruhat order. We also state an analog of the Lifting Property
of Bruhat order. In Section 5, we generalize Fulton’s essential set for permutations to
Fubini words and show this set gives the unique minimal set of rank conditions defining
a PR variety, see Corollary 5.5.

2 Background

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. Generalizing the notation for
binomial coefficients, we let ([n]k ) denote all size k subsets of [n] and ([n]

[k]) =
⋃k

h=1 (
[n]
h ).

The Gale order on ([n]k ) is given by {a1 < · · · < ak} ⊴ {b1 < · · · < bk} if and only
if ai ≤ bi for all i ∈ [k] [9]. Gale order can easily be extended to multisets of positive
integers of the same size.

Let Sn denote the symmetric group on [n] thought of as bijections w : [n] → [n]. As
usual, write a permutation w in one-line notation as w = w1 · · · wn. Let tij be the trans-
position interchanging i and j, and let si denote the simple transposition interchanging
i and i + 1. The permutation tijw is obtained from the one-line notation for w by inter-
changing the values i and j, while right multiplication wtij interchanges the values wi
and wj. The permutation matrix Mw for w ∈ Sn is the n × n matrix with a 1 in position
(wj, j) for all j ∈ [n] and 0’s elsewhere. Permutation multiplication agrees with matrix
multiplication: u = vw if and only if Mu = MvMw. Permutation multiplication extends
to Fubini words if the corresponding matrices have the correct size.

Schubert varieties Xw for w ∈ Sn in the flag variety GLn/B(n)
+ are defined via bounded

rank conditions on matrices coming from the associated permutation matrices [8]. The
Bruhat order on Sn is defined by reverse inclusion on Schubert varieties: v ≤ w ⇐⇒
Xw ⊂ Xv. This poset can be characterized as the transitive closure of the relation w ≤ tijw
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provided i < j and i appears to the left of j in the online notation for w [3]. The covering
relations are given by the set of edges w ≤ tijw such that tijw has exactly one more
inversion than w. Ehresmann characterized Bruhat order on Sn in terms of Gale order,
decades prior to Gale or Bruhat’s work, by the Ehresmann Criterion [5]

v ≤ w ⇐⇒ {v1, v2, . . . , vi} ⊴ {w1, w2, . . . , wi} ∀i ∈ [n]. (2.1)

Suppose v ≤ w in Bruhat order on Sn, i ∈ [n − 1] and i + 1 precedes i in both v and w.
Then, the Lifting Property of Bruhat order [3, Prop. 2.2.7] implies that siv ≤ siw.

Definition 2.1. The Rothe diagram of a permutation w ∈ Sn is the subset of [n] × [n] in
matrix coordinates given by D(w) = {(wj, i) | i < j and wi > wj}. Define the essential set of
w, denoted Ess(w), to include all (i, j) ∈ D(w) such that (i + 1, j), (i, j + 1) ̸∈ D(w).

The Rothe diagrams are used extensively in the theory of Schubert varieties. In partic-
ular, Fulton showed that the rank conditions coming from the coordinates (i, j) ∈ Ess(w)
determine the unique minimal set of bounded rank equations defining the Schubert va-
riety Xw [7]. Eriksson-Linusson showed that the average size of the essential set is n2/36
for w ∈ Sn [6].

Much of the notation for permutations defined above has an analog for Fubini words.
For w = w1 · · · wn ∈ Wn,k, let Mw be the matrix obtained from the k × n all zeros matrix
by setting the (wj, j) entry to be 1 for all j ∈ [n]. Note that Mw has exactly one 1 in each
column and at least one 1 in each row, but it may have many 1’s in any row. Recall from
Definition 1.7 that αi(w) = αi is the position of the first letter i in w for i ∈ [k].

Definition 2.2. [16, §3] For a word w ∈ Wn,k, the initial positions of w are the set in(w) =
{α1, . . . , αk}. A redundant position of w is any position that is not initial. An initial letter
is a letter appearing in an initial position, and a redundant letter is a letter appearing in a
redundant position.

Definition 2.3. [16, §3] For w ∈ Wn,k, the initial permutation, π(w) ∈ Sk, is obtained from
w by deleting the redundant letters from the one-line notation.

Definition 2.4. [16, §3] For w = w1 · · · wn ∈ Wn,k, the pattern matrix Pw is a k × n matrix
with entries 0, 1, or ⋆. Obtain Pw by starting with Mw and replacing the 0 by a ⋆ in each
position (wi, j) such that i ∈ in(w), i < αw(j), 1 ≤ j ≤ n, and either j ∈ in(w) and wi < wj, or
j ̸∈ in(w).

A matrix is said to fit the pattern of w if that matrix can be obtained by replacing the ⋆’s in
the pattern matrix of w with complex numbers. We will abuse notation and consider Pw both as
a k × n matrix with entries in {0, 1, ⋆} and as the set of all matrices fitting the pattern of w.

Definition 2.5. [16, Eq. (3.6)] The dimension of w ∈ Wn,k, denoted dim(w), is the number ⋆’s
in its pattern matrix Pw.
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Example 2.6. The pattern matrices of v = 31422 and w = 31424 in W5,4 are

P31422 =


0 1 ⋆ ⋆ ⋆
0 0 0 1 1
1 0 ⋆ 0 ⋆
0 0 1 0 ⋆

 and P31424 =


0 1 ⋆ ⋆ ⋆
0 0 0 1 0
1 0 ⋆ 0 ⋆
0 0 1 0 1

 .

Therefore, dim(31422) = 6 and dim(31424) = 5.

If w ∈ Wn,k, then the dimension of the PR cell Cw is dim(w) + (k
2). The unique largest

dimensional cell in Xn,k is C123···kkn−k and dim(12 · · · kkn−k) = (k
2)+ (n− 1)(k− 1). Hence,

Xn,k = C12···kkn−k has dimension n(k − 1) = 2(k
2) + (n − 1)(k − 1) and 12 · · · kkn−k is the

unique minimal element in all three Fubini-Bruhat orders. Since Fubini words are in
bijection with ordered set partitions, the dimension generating function gives a natural
q-analog of the Stirling numbers of the second kind ∑w∈Wn,k

qdim(w) = [k]!q · Stirq(n, k).
Reversing the coefficients in this generating function gives (1.4).

3 Outlines of Proofs

We outline the proofs of Theorem 1.5 and Theorem 1.8. These statements form the
basis from which the covering relations and other Fubini-Bruhat order properties can be
proved.

Lemma 3.1. Given A ∈ Fk×n(C), the projective coordinates P(A) = (∆J(A) | J ∈ ([n]
[k]))

determine both the unique w ∈ Wn,k such that A ∈ UPwT(n) and A′ ∈ Pw such that A ∈ UA′.

Corollary 3.2. The set Tw of truly vanishing flag minors on the PR cell Cw determines w ∈ Wn,k,
and therefore the rank conditions defining Cw as a subset of Xn,k.

Corollary 3.2 says there is enough information in the set Tw to recover w. To make
the relationship between Tw and Cw precise, we observe several relations among minors
that hold specifically on PR cells and spanning line configurations.

Lemma 3.3. Suppose w ∈ Wn,k is a Fubini word, J ⊂ [n], and 1 ≤ h ≤ k. Let rank(h)w (J) be
the largest value r such that there exist subsets I ⊂ [h] and J′ ⊂ J such that r = |I| = |J′| and
∆I,J′(A) ̸= 0 for some A ∈ Cw. The following conditions are equivalent.

1. We have rank(h)w (J) < |J|.

2. For every I ⊆ [h] such that |I| = |J|, the (I, J)-minor vanishes on Cw.

3. For all subsets K ∈ ([n]h ) such that J ⊂ K, we have K ∈ Tw.
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Corollary 3.4. Suppose w ∈ Wn,k is a Fubini word, I ⊆ [k] and J ⊆ [n] are sets of the same
size, and h = max(I). If the (I, J)-minor vanishes on Cw, then at least one of the following hold.

1. For every j ∈ J, the (I \ {h}, J \ {j})-minor vanishes on Cw.

2. For all subsets K such that J ⊆ K ∈ ([n]h ), we have K ∈ Tw.

Corollary 3.4 follows from Lemma 3.3. Theorem 1.5 follows by induction on the
number of rows of a minor of Cw using Corollary 3.4, and by Lemma 3.3.

Lemma 3.5. Suppose w ∈ Wn,k is a Fubini word and J ∈ ([n]
[k]) with h = |J|. Then, J ∈ Uw if

and only if the submatrix Mw[[h], J] is a permutation matrix.

Lemma 3.6. Let w ∈ Wn,k, I ⊆ [k] and J ∈ ([n]
[k]) such that |I| = |J| and ∆I,J(A) = 0 for all A

in the PR cell Cw. Then (H, J) indexes a vanishing minor on Cw for any H such that |H| = |I|
and H ≤L I in lex order. In particular, ∆[|I|],J is a vanishing flag minor on Cw, so J ∈ Tw.

Lemmas 3.5 and 3.6, together with the earlier lemmas can be used to prove Corollary
1.6. Corollary 1.6 and Lemma 3.5 imply Theorem 1.8.

4 Covering Relations and the Decaf Order

The following rules describe some families of covering relations for the medium roast
and espresso Fubini-Bruhat orders, giving a partial answer to Problem 9.5 in [16]. The
Transposition Rule and the Pushback Rule allow us to define the decaf Fubini-Bruhat
order, the only ranked Fubini-Bruhat order. We also discuss a generalization of the
Lifting Property from Bruhat order.

We start with two observations on covering relations that follow from the definition
of medium roast order, pattern matrices, and Corollary 1.6. Let w = w1 · · · wn ∈ Wn,k
with initial permutation π(w) = π1 · · · πk.

1. The Transposition Rule. For 1 ≤ i < j ≤ k, we have w < tijw in medium roast
Fubini-Bruhat order if and only if αi(w) < αj(w). In particular, tijw covers w in
medium roast Fubini-Bruhat order if and only if π(tijw) covers π(w) in Bruhat
order on Sk.

2. The Pushback Rule. Suppose wj = πi is a redundant letter in w for i ∈ [k − 1] and
j ∈ [n]. Let v be the Fubini word obtained from w by replacing wj by πi+1. Then,
w covers v in medium roast Fubini-Bruhat order. See Example 2.6 for an example
of v < w satisfying the pushback covering relation.

Definition 4.1. The decaf Fubini-Bruhat order on Wn,k is the transitive closure of the covering
relations given by the Transposition Rule and the Pushback Rule.
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The decaf order has many nice properties. It is the product of Bruhat order for Sk
and the poset determined by pushbacks on the subset {w ∈ Wn,k |π(w) = id}. The
decaf order is a ranked poset on Wn,k, and its rank generating function is the same as
the Poincaré polynomial in (1.4). The medium roast and espresso orders are not ranked
posets in general. For n ≥ 5 and most values of k, there are covering relations in the
medium roast Fubini-Bruhat order (Wn,k,≤) with a dimension difference of 2 or more,
causing the medium roast Fubini-Bruhat order to be unranked in general. For example,
in W5,4, 44312 covers 41321, but 44312 has dimension 1, and 41321 has dimension 3.

Theorem 4.2. The Superpushback Rule. Suppose w ∈ Wn,k, i ∈ [k − 1], and j ∈ [n] such
that wj = πi is a redundant letter in w. If i + p ≤ k and v is obtained from w by replacing wj by
πi+p(w), then v ⇀ w and this is a covering relation in both espresso and medium roast orders.

Theorem 4.3. The Lifting Property. Suppose v, w ∈ Wn,k, i ∈ [k − 1], αi+1(v) < αi(v), and
αi+1(w) < αi(w). If v ≤ w in medium roast Fubini-Bruhat order, then siv ≤ siw. Furthermore,
if v ⇀ w, then siv ⇀ siw.

5 Essential Sets

We extend the notion of a Rothe diagram from Definition 2.1 to Fubini words. This
allows us to define the essential set for a Fubini word. We then show the essential set
determines a minimal set of rank equations on the corresponding PR variety, generaliz-
ing Fulton’s essential set for permutations and Schubert varieties [7]. This leads to an
essential set characterization of v ≤ w in medium roast order.

Definition 5.1. [16] A Fubini word w ∈ Wn,k is called convex if h < j and wh = wj implies
that wi = wj for every i such that h < i < j. Then the convexification of w, denoted by
conv(w), is the unique convex word such that π(conv(w)) = π(w) and the content of w and
conv(w) are the same as multisets. The standardization of w, denoted std(w) ∈ Sn, is obtained
by replacing the n − k redundant letters of w with k + 1, k + 2, . . . , n from left to right.

Deduce from Definition 5.1 that two Fubini words v, w ∈ Wn,k have the same con-
vexification, conv(v) = conv(w), if and only if π(v) = π(w) and they have the same
multiset of letters.

Definition 5.2. Given Fubini word w ∈ Wn,k, define the diagram of w to be D(std(conv(w))).

One can observe that D(std(conv(w))) ⊂ [k]× [n], as none of the bottom n − k rows
will contribute any elements to D(std(conv(w))). Thus, the diagram of a Fubini word
in Wn,k can be drawn as a k × n grid of dots. For example, the convexification of w =
44253136541 ∈ W11,6 is 44425533116, and std(44425533116) = [4, 7, 8, 2, 5, 9, 3, 10, 1, 11, 6].
So the diagram for w is D([4, 7, 8, 2, 5, 9, 3, 10, 1, 11, 6]). See Figure 1.
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Figure 1: Diagram of 44253136541 with cells in the essential set boxed.

In analogy with the alpha vector, define the beta vector β(w) = (β1(w), . . . , βk(w)) for
w ∈ Wn,k by βi(w) = βi = {j ∈ [n] |wj ∈ {π1, . . . , πi}} where π(w) = (π1, . . . , πk) ∈ Sk
is the initial permutation. Note that β1 ⊂ · · · ⊂ βk. For example, if w = 12123123 ∈ W8,3,
we observe β1 = {1, 3, 6}, β2 = {1, 2, 3, 4, 6, 7}, and β3 = [8].

Given any Fubini word w ∈ Wn,k, define its rank function to be the map rw : [k]×
[k] → Z≥0 that sends (h, i) to the maximum value of the rank of the submatrix A[[h], βi]
over all A ∈ Cw. This function can be determined directly from the Fubini word w
as with permutations, but the statement is more complicated so we have omitted it for
brevity. From the pattern matrix definition, one can observe that the jumps in the rank
functions of matrices in a PR variety are determined by the sets in the beta vector.

Definition 5.3. Given any Fubini word w ∈ Wn,k, define the ranked essential set of w to be

Ess∗(w) = {(h, βi, r) | (h, |βi|) ∈ Ess(std(conv(w))), r = rw(h, i)}.

Theorem 5.4. A matrix A ∈ Fk×n(C) is in the PR variety Cw if and only if the rank of the top
h rows of A in the columns βi(w) is at most r for each (h, βi(w), r) ∈ Ess∗(w), and no smaller
set of rank conditions will suffice.

Corollary 5.5. Let v, w ∈ Wn,k. Then v ≤ w if and only if for every (m, β j(v), s) ∈ Ess∗(v),
there exists an (h, βi(w), r) ∈ Ess∗(w) such that max(0, m − h) + |β j(v) \ βi(w)| ≤ s − r.

Björner-Brenti gave an improvement on the Ehresmann Criterion for Bruhat order on
permutations in [2]. Similar improvements on the Alpha Test for medium and espresso
orders exist as well. Such improvements also lead to a reduction in the number of
equations necessary to define a PR variety. In recent work, Gao-Yong found a minimal
number of equations defining a Schubert variety in the flag variety [10]. Thus, it would
be interesting to consider the following problem.

Open Problem 5.6. Identify a minimal set of equations defining a PR variety.
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From geometry to generating functions:
rectangulations and permutations

Andrei Asinowski*1 and Cyril Banderier2

1Institut für Mathematik, Universität Klagenfurt, Austria
2LIPN, CNRS & Université Sorbonne Paris Nord, France

Abstract. We enumerate several classes of pattern-avoiding rectangulations. We estab-
lish new bijective links with pattern-avoiding permutations, prove that their generating
functions are algebraic, and confirm several conjectures by Merino and Mütze. We also
analyse a new class of rectangulations, called whirls, using a generating tree.

Keywords: Rectangulations, permutations, pattern avoidance, generating functions

1 Introduction

A rectangulation of size n is a tiling of a rectangle by n rectangles such that no four
rectangles meet in a point. In the literature, rectangulations are also called floorplans or
rectangular dissections. See Section 2 and [3, 9, 15] for basic definitions and results.

Such structures appear naturally for architectural building plans, integrated circuits
(see Figure 1), and were investigated since the 70s with some graph theory, computational
geometry, and combinatorial optimization point of views [16, 18]. Then, in the 2000s,
rectangulations began to be investigated with more combinatorial approaches [1, 2, 4,
13, 17]: it was shown that some important families of rectangulations are enumerated by
famous integer sequences (e.g., Baxter, Schröder, Catalan numbers) and that they have
strong links with pattern-avoiding permutations (as studied in the seminal article [11]).

Figure 1: (a) VLSI are rectangulations playing an important role for integrated circuits.
(b) The artwork Composition décentralisée, 1924, by Theo van Doesburg (1883–1931).
(c) A book on the geometry of building plans [18]. Its cover is not a rectangulation,
since it contains instances of 4 rectangles meeting in a point.
(d) The minimal solution of Tutte’s "Squaring the square" is a rectangulation [12].

*andrei.asinowski@aau.at. Supported by FWF — Austrian Science Fund, Grant P32731.
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2 Patterns in rectangulations and summary of our results

Two rectangulations are equivalent (“strongly equivalent” in [3]) if one
can translate (horizontally or vertically) some of their segments (without
meeting an endpoint of any other segment) so that they coincide. In the
drawings on the right, only the first two rectangulations are equivalent.

In this article we deal with patterns in rectangulations. In each drawing,
we highlight an occurrence of the pattern (in green), (in blue),

(in red). A rectangulation contains if there is a (possibly further
partitioned) rectangle (here in gray) such that the segment containing its
left side has an adjacent horizontal segment on the left, and the segment
containing its right side has an adjacent horizontal segment on its right.

We are interested in the enumeration of different natural classes of rectangulations,
where the goal is to count the number of non-equivalent rectangulations of size n. E.g.,

-avoiding rectangulations are enumerated by Baxter numbers [1, 11].
Recently, Arturo Merino and Torsten Mütze tackled the question of the exhaustive

generation of rectangulations avoiding any subset of t , , , , , , , u.
In [15], they present an efficient algorithm to generate such rectangulations1. This led to
a surprising observation: many sequences coincide (at least up to size 12) with integer
sequences which already appeared in the literature, for apparently unrelated problems.

In Theorem 1, we solve all the cases related to rectangulations avoiding .
These are guillotine diagonal rectangulations, that correspond to separable permutations. When
they avoid further patterns among , we obtain the following table2, and
provide generating functions for these cases. (See [6] for the notion of vincular patterns.)

Entry in
[15, Table 3]

Guillotine diagonal
rectangulations avoiding. . .

Separable permu-
tations avoiding. . .

G.f. OEIS

1234 H H alg. A006318
12345 2143 alg. A106228
12347 21354 alg. A363809

123456 2143, 3412 alg. A078482
123457 2143 alg. A033321
123458 2143, 45312 alg. A363810
123478 21354, 45312 rat. A363811

1234567 2143, 3412 alg. A363812
1234578 2143, 45312 rat. A363813
12345678 2143, 3412 rat. A006012

In Section 4, we additionally prove algebraicity of some non-guillotine models, such
as vortex rectangulations (A026029, case 1345678 in [15]) and whirls (A002057).

1Let us here advertise the section dedicated to rectangulations in the nice Combinatorial Object Server,
created by Frank Ruskey, and now handled by Torsten Mütze, Joe Sawada, and Aaron Williams.

2All other cases are equivalent to those presented here via straightforward symmetries.

https://oeis.org/A006318
https://oeis.org/A106228
https://oeis.org/A363809
https://oeis.org/A078482
https://oeis.org/A033321
https://oeis.org/A363810
https://oeis.org/A363811
https://oeis.org/A363812
https://oeis.org/A363813
https://oeis.org/A006012
https://oeis.org/A026029
https://oeis.org/A002057
http://www.combos.org/rect
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3 Guillotine diagonal rectangulations

The patterns P1 “ , P2 “ , P3 “ , P4 “ were considered in some earlier
work (for example [1, 9]) since they characterize some special kinds of rectangulations.

A rectangulation R is guillotine if it is of size 1, or if it has a cut
(a segment whose endpoints lie on opposite sides of R) that splits
it into two guillotine rectangulations. It is well known [1] that a
rectangulation is guillotine if and only if it avoids P1 “ and
P2 “ (these two patterns are called windmills).

A rectangulation R is called diagonal if it avoids P3 “ and P4 “ .
This notion is due to the fact that such a rectangulation can be drawn
so that the NW–SE diagonal of R intersects all the rectangles. At the
same time, diagonal rectangulations are frequently seen as canonical
representatives of rectangulations up to the “weak equivalence” [3, 9].

These two classes have — in different ways — stronger structural properties than the
general case. Therefore we expected that families that avoid these four patterns and any
other subset of patterns of t , , , u will yield noteworthy results. There are
essentially ten different such models, all listed in [15, Table 3]. Amongst these 10 cases,
3 of them can be solved by ad-hoc bijections with trees (see [2, 4]), 2 are conjectured by
Merino and Mütze to lead to algebraic generating functions, and for the remaining 5 no
conjectures were provided. Below we present a unified framework which allows us to
solve these 10 cases (confirming en passant the conjectures of Merino and Mütze). The
main result of this section is Theorem 1, which, in particular, states that all these cases
are in fact algebraic!

Theorem 1. The generating functions for the ten guillotine cases are algebraic.

1. The generating function of rectangulations avoiding is

Fptq “
1 ´ t ´

?
1 ´ 6t ` t2

2
.

2. The generating function of rectangulations avoiding satisfies

tF3
` 2tF2

` p2t ´ 1qF ` t “ 0.

3. The generating function of rectangulations avoiding ) satisfies
t4pt´2q2F4`tpt´2qp4t3´7t2`6t´1qF3`p2t4´t3´2t2`5t´1qF2´p4t3´7t2`6t´1qF`t2“0.

4. The generating function of rectangulations avoiding is

Fptq “
1 ´ 3t ` t2 ´

?
1 ´ 6t ` 7t2 ´ 2t3 ` t4

2t
.
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5. The generating function of rectangulations avoiding is

Fptq “
p1 ´ tqp1 ´ 2tq ´

a

p1 ´ tqp1 ´ 5tq
2tp2 ´ tq

.

6. The generating function of rectangulations avoiding satisfies

t8pt´2q2F4´t3pt2´3t`2qpt5´7t4`4t3´6t2`5t´1qF3´tpt´1qp4t7´22t6`37t5´42t4`53t3´35t2`

10t´1qF2 ´p5t6´16t5`15t4´28t3`23t2´8t`1qpt´1q2F´p2t5´5t4`4t3´10t2`6t´1qpt´1q2“0.

7. The generating function of rectangulations avoiding is

Fptq “
tp1 ´ 16t ` 11t2 ´ 434t3 ` 1045t4 ´ 1590t5 ` 1508t6 ´ 846t7 ` 252t8 ´ 30t9q

p1 ´ 2tq4p1 ´ 3t ` t2q2p1 ´ 4t ` 2t2q
.

8. The generating function of rectangulations avoiding is

Fptq “
1 ´ 3t ´ t2 ` 2t3 ´

?
1 ´ 6t ` 7t2 ` 2t3 ` t4

2t2p2 ´ tq
.

9. The generating function of rectangulations avoiding is

Fptq “
tp1 ´ tqp1 ´ 7t ` 16t2 ´ 11t3 ` 2t4q

p1 ´ 4t ` 2t2qp1 ´ 3t ` t2q2 .

10. The generating function of rectangulations avoiding is

Fptq “
tp1 ´ 2tq

1 ´ 4t ` 2t2 .

We now present separable permutations — a fundamental class which will be used in
the proof of this theorem. This notion was coined in [7].

3.1 Separable permutations and rectangulations avoiding

A permutation π is separable if it is either of size 1 (a singleton), or if it is (recursively) a
direct sum of separable permutations (in this case π is called ascending separable) or a skew
sum of separable permutations (in this case π is called descending separable). We refer
to [6] for these notions. Accordingly, separable permutations are precisely the non-empty
p2413, 3142q-avoiding permutations [7].

The first key step in the proof of Theorem 1 is “translating” (sets of) geometric patterns
into (sets of) permutation patterns. In all 10 cases we obtain a bijection between a subclass
of guillotine rectangulations and a subclass of separable permutations. We provide details
for the first three cases, and just give the key decompositions for the other cases.
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Case 1: Guillotine diagonal rectangulations. They are in bijection with separable
permutations (see, e.g., [1, 4]). Here is a natural recursive bijection: the rectangulation of
size 1 is mapped to the permutation of size 1, and the recursive steps are illustrated in
the following drawing. The left and the middle illustrations describe the transformation
for horizontal and vertical cuts, and the right illustration is an example of size 11.

G1

δ(G1)

G2 Gk
δ(G2)

δ(Gk) G1

G2

Gk

δ(G1)

δ(G2)

δ(Gk)

δ δ δ

The recursive definition of separable permutations translates directly to a system
of equations that binds Aptq, Dptq, and Fptq “ t ` Aptq ` Dptq, the generating func-
tions for ascending, descending, and all separable permutations. Since an ascending
(resp. descending) separable permutation can be seen as a sequence of singletons and
descending (resp. ascending) separable permutations (“blocks”), we obtain the system
!

A “
pt`Dq2

1´pt`Dq
, D “

pt`Aq2

1´pt`Aq

)

. Due to the symmetry Aptq “ Dptq, we have A “
pt`Aq2

1´pt`Aq
.

This yields Fptq “ 1´t´
?

1´6t`t2

2 , the generating function of Schröder numbers (A006318).

Case 2: -avoiding guillotine diagonal rectangulations.

Lemma 2. A guillotine diagonal rectangulation R avoids if and only if δpRq avoids 2143.

Proof (sketch). This result follows from the bijec-
tion δ described above. An occurrence of in
R means that there are four rectangles a, b, c, d as
in the drawing, where the segment that separates
a and b from c and d is a cut at some step of the
recursive decomposition of R. It follows that in

a

b

c

d
a b c d

δ

δpRq we have four indices a ă b ă c ă d such that a and b belong to a descending block,
and c and d belong to the next descending block. This yields an occurrence of 2143 in
δpRq. The converse direction is based on similar considerations.

Now we enumerate 2143-avoiding separable permutations. Let π

be such a permutation. If π is ascending, then it either consists of
at least two singletons, or it has one or several descending blocks,
which are separated by at least one singleton (see the drawing).
For descending permutations, the decomposition is identical to
Case 1, since the skew sum of 2143-avoiding ascending blocks
cannot create a new occurrence of 2143. This leads to the system
"

A “ t2

1´t `

ˆ

1
p1´tq2

1
1´ tD

1´t
´ 1

˙

D, D “
pt`Aq2

1´pt`Aq

*

. Solving this system (for example by

computer algebra) yields Theorem 1(2).

https://oeis.org/A006318
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Case 3: -avoiding guillotine diagonal rectangulations.
First we show that a guillotine diagonal rectangulation R avoids if and only if

δpRq avoids 21354. As in Lemma 2, the result directly follows from the definition of δ.
Thus, we need to enumerate 21354-avoiding separable permutations. Let π be an

ascending separable permutation. If π has just one descending block, then π avoids
21354 if and only if this block avoids 21354. If π has at least three descending blocks,
then it contains 21354. If π has precisely two descending blocks, then π is 21354-avoiding
if and only if they are adjacent, the first one is 213-avoiding, and the second is 132-
avoiding. An ascending 213-avoiding permutation is either the identity permutation
of size ě 2, or has at least one singleton and precisely one 213-avoiding descending
block (the last one). For descending permutations, an occurrence of 21354 implies its
occurrence in one of its ascending blocks: hence, the decomposition is again identical
to Case 1. Let SA and SD be generating functions for ascending and, respectively,
descending 213-avoiding (and, equivalently, 132-avoiding) permutations. Then, we
have

!

SA “ t2

1´t `
tSD
1´t , SD “

pt`SAq
2

1´pt`SAq

)

, and for 21354-avoiding separable permutations
!

A “ t2

1´t `
´

1
p1´tq2 ´ 1

¯

D `
S2

D
p1´tq2 , D “

pt`Aq2

1´pt`Aq

)

. These systems yield Theorem 1(3).

The treatment of other cases in Theorem 1 is similar. We first translate geometric
patterns into permutation patterns, obtaining some subclass of separable permutations.
Then its combinatorial specification yields a system of equations that binds Aptq, the
generating functions for ascending permutations in this class, and Dptq for descending
permutations. In some cases we use an auxiliary family (as in Case 3 above). Here we
omit the details and only list permutation patterns, systems that bind Aptq and Dptq, and,
when relevant, auxiliary families and systems for their generating functions SA and SD.

Case 4: t , u-avoiding guillotine diagonal rectangulations. Such rectangulations
are called one-sided guillotine rectangulations [14]. This family corresponds to p2143, 3412q-
avoiding separable permutations. Due to the symmetry of the model, we have Aptq “ Dptq,

and, therefore, just one equation: A “ t2

1´t `

ˆ

1
p1´tq2

1
1´ tA

1´t
´ 1

˙

A.

Case 5: t , u-avoiding guillotine diagonal rectangulations. They correspond to 2143-

avoiding separable permutations, the system is
!

A “ t2

1´t `
´

1
p1´tq2 ´ 1

¯

D, D “
pt`Aq2

1´pt`Aq

)

.

Case 6: t , u-avoiding guillotine diagonal rectangulations. They correspond to
p2143, 45312q-avoiding separable permutations. The auxiliary class is p2143, 231q-avoiding

permutations. The system for the auxiliary class is
"

SA “ t2

1´t `

ˆ

1
1´ tSD

1´t

1
p1´tq2 ´ 1

˙

SD,

SD “ t2

1´t `
tSA
1´t

)

. The system for p2143, 45312q-avoiding separable permutations is
"

A “ t2

1´t `

ˆ

1
p1´tq2

1
1´ tD

1´t
´ 1

˙

D, D “ t2

1´t `
´

1
p1´tq2 ´ 1

¯

A `
S2

A
p1´tq2

*

.



From geometry to generating functions: rectangulations and permutations 7

Case 7: t , , u-avoiding guillotine diagonal rectangulations. They correspond
to p21354, 45312q-avoiding separable permutations. The auxiliary class is p45312, 213q-
avoiding permutations. The system for the auxiliary class is

!

SA “ t2

1´t `
SD
1´t , SD “ t2

1´t`
´

1
p1´tq2 ´ 1

¯

SA `

´

1
1´t

t2

1´2t

¯2
*

. The equation for p21354, 45312q-avoiding separable per-

mutations is A “ t2

1´t `
´

1
p1´tq2 ´ 1

¯

A `
S2

D
p1´tq2 .

Case 8: t , , u-avoiding guillotine diagonal rectangulations. They correspond
to p2143, 3412q-avoiding separable permutations. This leads to the following system
!

A “ t2

1´t `
´

1
p1´tq2 ´ 1

¯

D, D “ t2

1´t `

ˆ

1
p1´tq2

1
1´ tA

1´t
´ 1

˙

A
*

.

Case 9: t , , u-avoiding guillotine diagonal rectangulations. They correspond to
p2143, 45312q-avoiding separable permutations. The auxiliary class is p2143, 231q-avoiding
permutations. The system for the auxiliary class is

!

SA “ t2

1´t `
´

1
p1´tq2 ´ 1

¯

SD, SD “

t2

1´t `
tSA
1´t

)

. The system for p2143, 45312q-avoiding separable permutations is
!

A “ t2

1´t`
´

1
p1´tq2 ´ 1

¯

D, D “ t2

1´t `
´

1
p1´tq2 ´ 1

¯

A `
S2

A
p1´tq2

)

.

Case 10: t , , , u-avoiding guillotine diagonal rectangulations. They corre-
spond to p2143, 3412q-avoiding separable permutations. The equation for this symmetric
model is A “ t2

1´t `
´

1
p1´tq2 ´ 1

¯

A.

4 Vortex rectangulations and whirls

In this section we consider a class harder to enumerate, as it is not a guillotine case:
rectangulations that avoid t u (that is, we forbid all our
patterns except P2 “ ). We denote this class of rectangulations by V , and call them
vortex rectangulations. Our goal is to prove the conjecture of Merino and Mütze [15].

Theorem 3. The generating function of V is Vptq “ tC2ptq
`

1` t2C4ptq
˘

, where Cptq “ 1´
?

1´4t
2t

is the generating function of Catalan numbers. The enumerating sequence of V is A026029.

A vortex either avoids or contains the pattern P2 “ . Vortices that avoid
constitute Case 10 from Theorem 1. It remains to enumerate vortices with at least one

: such rectangulations will be called whirls. The interior of a windmill is the (possibly
further partitioned) rectangular area bounded by its segments. The entire rectangle being
partitioned by a given rectangulation will be denoted by R.

Lemma 4. If a whirl contains several windmills, then they are all nested. In other words: for any
two windmills, one of them entirely lies in the interior of the other.

https://oeis.org/A026029
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(a) (b) (c)

Figure 2: Three whirls: (a) is peelable, (b) is non-peelable, (c) is simple.

Proof (sketch). Let W be a whirl, and consider some specific occurrence of . Starting
from the right vertical segment of this windmill, we alternately go along the segments
downwards to their lower endpoint and rightwards to their right endpoint, until we reach
the SE corner of R. Similarly we define four alternating paths: see Figure 2 where they are
shown by red.

These alternating paths partition R into five regions: R1, R2, R3, R4, and the interior
of the windmill. In our drawings we colour these regions by blue, red, yellow, green, and
grey. Then every rectangle in R1 and in R3 has its top and bottom sides on the alternating
paths, and every rectangle in R2 and in R4 has its left and right sides on the alternating
paths (see Figure 2). To prove this, for example for R1, one scans this region from the left
to the right: then the assumption that some rectangle in R1 violates this condition leads to
an occurrence of , or . Moreover, for every rectangle in R1 its NW corner has the
shape and its SW corner has the shape . It follows that if another windmill — not in
the interior of the given one — exists, then its segments belong to four different regions
R1, R2, R3, R4. Hence, the given windmill is entirely included in this another one.

A whirl with an empty interior can be drawn so that all the rectangles in R1 and R3
have width 1, and all the rectangles in R2 and R4 have height 1, and such a representation
is unique. To see that, we modify the whirl so that its segments belong to consecutive
vertical and horizontal grid lines. See Figure 2(a) for an example of a whirl which has
two nested windmills (the corners of their interiors are shown by small dots).

A whirl is peelable if it has a rectangle that extends from the top to the bottom or from
the left to the right side of R. From every peelable whirl it is possible to obtain a unique
non-peelable whirl by peeling (i.e., successively deleting such rectangles). Figure 2(b)
shows a non-peelable whirl which is obtained from 2(a) by peeling.

Finally, a simple whirl is a non-peelable whirl with precisely one windmill whose
interior is not further partitioned. See Figure 2(c) for an example of a simple whirl.

4.1 Enumeration of simple whirls

In this section we prove the following remarkable result: simple whirls are enumerated
by t5C4ptq. Our proof combines geometric-structural considerations, the generating tree
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method [5], and solving a functional equation with catalytic variables. It would be
interesting to find an independent bijective proof.

4.1.1 Generating tree for simple whirls

Denote by S1, S2, S3, S4 the eastern, southern, western, northern sides of R. A signature of a
simple whirl is the quadruple ps1, s2, s3, s4q, where si is the number of rectangles from Ri´1
that touch Si. (The addition of indices of Ri’s and Si’s is mod 4.) For example, the
signature of the simple whirl from Figure 2(c) is p3, 2, 1, 2q.

Given a simple whirl W, it has exactly four corner rectangles touching one corner of W.
Since W avoids and is not peelable, the corner rectangle touching the sides Si and Si`1
has the same colour as the region Ri. Then, as illustrated in the figure at the bottom of this
page, from a simple whirl W of size n, we can construct a simple whirl W1 of size n` 1, by
adding a new corner rectangle to Ri of length larger or equal to the length of the former
corner rectangle (and not touching the side Si´1, to avoid creating a peelable whirl). Some
rectangles of Ri´1 are then extended to reach the modified Si. In W1, si`1 thus increases
by 1, and si can assume all the values from 1 to the (original) si. This generation algorithm
has the drawback that some simple whirls are generated several times.

To generate every simple whirl precisely once, we consider only those possibilities in
which the added corner rectangle of W1 belongs to Ri with the largest possible i (that is,
the largest i such that in W1 we have si`1 ą 1). The new generation algorithm thus starts
from the initial configuration p1, 1, 1, 1q (only the unique simple whirl of size 5 has this
signature), and applies the following rewriting rules

1. pa, b, 1, 1q ÝÑ p1, b ` 1, 1, 1q, 3. p1, b, c, dq ÝÑ p1, b, r1..cs, d ` 1q,
2. p1, b, c, 1q ÝÑ p1, r1..bs, c ` 1, 1q, 4. pa, b, c, dq ÝÑ pa ` 1, b, c, r1..dsq.

The notation r1..bs means that we generate b signatures where this component takes the
values 1, 2, . . . , b. The rules are not mutually exclusive: for example, all four rules can be
applied on quadruples of the form p1, b, 1, 1q. The figure below shows all the descendants
of a simple whirl W with signature p1, 2, 3, 1q on which the second, the third, and the fourth
rules can be applied. The first rule does not apply since the resulting whirl W1 is obtained
from a whirl different from W. New corner rectangles are shown by bold boundary.

(1, 2, 3, 1) (1, 1, 4, 1) (1, 2, 4, 1) (1, 2, 1, 2) (1, 2, 2, 2) (1, 2, 3, 2) (2, 2, 3, 1)

1

2

1

3

Rule 2 Rule 3 Rule 4
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4.1.2 An intriguing functional equation

Theorem 5 (Algebraicity of simple whirls). Let Fpt, x1, x2, x3, x4q be the multivariate gen-
erating function of simple whirls, where z counts their size, and each xi counts the number of
rectangles of colour i touching their border. This generating function is algebraic and given by

Fpt, x1, x2, x3, x4q “ t5 1
2α

ˆ

β ´

b

β2 ´ 4αe2
4

˙

(4.1)

with α :“
ś4

i“1p1 ´ xi ` tx2
i q and β :“ p2e4t2 ´ tp4e4 ´ 3e3 ` 2e2q ` e4 ´ e3 ` e2 ´ e1 ` 2qe4,

where em :“ rtms
ś4

i“1p1 ` txiq is the elementary symmetric polynomial of total degree m.
In particular, the generating function of simple whirls is Fptq “ Fpt, 1, 1, 1, 1q “ t5Cptq4,

where Cptq is the generating function of Catalan numbers.

Proof. The generating tree from Section 4.1.1 translates to the functional equation

Fpt, x1, x2, x3, x4q “ t5x1x2x3x4 ` tx1x2x3x4rx3x4sFpt, 1, x2, x3, x4q

` tx1x2x3x4
rx1x4sFpt, x1, x2, x3, x4q ´ rx1x4sFpt, x1, 1, x3, x4q

x2 ´ 1

` tx1x3x4
rx1sFpt, x1, x2, x3, x4q ´ rx1sFpt, x1, x2, 1, x4q

x3 ´ 1

` tx1x4
Fpt, x1, x2, x3, x4q ´ Fpt, x1, x2, x3, 1q

x4 ´ 1
.

(4.2)

Unfortunately, there are currently no generic methods to solve this type of catalytic
functional equation. Luckily, in our case, we were able to solve this equation. First,
recall that the valuation of a series f ptq “

ř

ně0 fntn is the smallest integer n such that
fn ‰ 0 (and valp f ptqq “ `8 if f ptq “ 0). Thus, Equation (4.2) is a contraction in the metric
space of formal power series (equipped with the distance dp f ptq, gptqq “ 2´valp f ptq´gptqq).
Therefore, the Brouwer fixed-point theorem ensures that there is a unique series F
satisfying Equation (4.2). Now, it can be checked (by substitution) that the closed
form (4.1) satisfies the functional equation (4.2); this proves the theorem.

Let us also explain how we guessed this closed form, as it offers a useful heuristic for
dealing with similar equations. The classical guessing technique using Padé approximants
is too costly, so, instead, we used linear algebra to identify an algebraic equation of degree
2 (in F) and degree 2 (in x1) for Fpt, x1, 11, 31, 71q. It is not obvious from the functional
equation that Fpt, x1, x2, x3, x4q is a symmetric function in the xi’s — yet, this follows from
the fact that any rotation of a whirl is still a whirl. Therefore, its minimal polynomial
should also have symmetric coefficients in the xi’s. Then, when one obtains a monomial
like 532642x1 “ 2x1 ˆ 112 ˆ 31 ˆ 71, it makes sense to rewrite it as 2x1x2

2x3x4, and all the
symmetric versions of this monomial will also appear as coefficients. This leads to the
minimal polynomial αG2 ´ βG ` e4

2 (for G “ F{t5) , and thus to the closed form (4.1).
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4.2 Enumeration of whirls and vortices

We go back from simple whirls to possibly peelable whirls with empty interior by
alternately adding sequences of rectangles on the two horizontal and the two vertical

sides. This yields the generating function Pptq “ t5C4ptq
ˆ

2

1´
ˆ

1
p1´tq2 ´1

˙ ´ 1
˙

. Such whirls

can be transformed into a whirl with ą 1 windmills by substituting the interior by another
whirl (see Figure 2). Thus whirls W with empty interior of the innermost windmill are
enumerated as a sequence of Pptq{t. So we obtain the generating function Wptq “ 1

1´Pptq{t .

Finally, to get the family V of vortices (i.e., the rectangulations that avoid , , ,
, , , ), we replace the innermost windmill by a rectangulation that avoids all

eight patterns (i.e., Case 10 from Theorem 1, counted by Zptq “ tp1´2tq
1´4t`2t2 ). This leads to

Vptq “ WptqZptq “ p1 ´ 2tq
`

1 ´ 4t ` 2t2
` p1 ´ 2tq

?
1 ´ 4t

˘

{p2t3
q “ tC2

ptqp1 ` t2C4
ptqq,

which is exactly the generating function of the sequence A026029, as conjectured in [15,
Table 3, entry 1345678]. This concludes the proof of Theorem 3.

As for any algebraic generating function, the corresponding sequence satisfies a linear
recurrence, pn`4qvn´6pn`2qvn´1`4p2n´1qvn´2“0, from which one can compute vn in
time Op

?
n ln nq and singularity analysis gives vn „ 4n`2{

?
πn´3{2.

5 Conclusion

In this article, we solved several conjectures related to families of pattern-avoiding
rectangulations and permutations. We proved that all our generating functions are N-
algebraic3, and we provide an interesting example of N-algebraic structure (the simple
whirls, counted by t5C4ptq) for which no context-free grammar is known.

Merino and Mütze [15, Table 3] mention a few more families of rectangulations for
which enumeration is still open. Some are in fact tractable with variants of methods
presented here. These results will be included in the full version. It would also be of
interest to consider further forbidden patterns, e.g., to determine which patterns lead to
algebraic, D-finite, D-algebraic generating functions. Is it the case that they all lead to a
Stanley–Wilf-like conjecture: is the number of such rectangulations bounded by An, for
some constant A? In conclusion, rectangulations, while having a very simple definition,
are an inexhaustible source of challenging problems for generating function lovers!

3This is the class of generating functions counting words of length n generated by unambiguous
context-free grammars. It has many noteworthy structural and asymptotic properties [8, 10].

https://oeis.org/A026029
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Growth Diagrams for Schubert RSK

Daoji Huang*1 and Son Nguyen†1

1School of Mathematics, University of Minnesota, Minneapolis MN, USA

Abstract. Motivated by classical combinatorial Schubert calculus on the Grassmannian,
Huang–Pylyavskyy introduced a generalized theory of Robinson–Schensted–Knuth
(RSK) correspondence for studying Schubert calculus on the complete flag variety,
via insertion algorithms. The inputs of the correspondence are certain biwords, the in-
sertion objects are bumpless pipe dreams, and the recording objects are certain chains
in Bruhat order. In particular, they defined plactic biwords and showed that classi-
cal Knuth relations can be generalized to these. In this extended abstract, we give
an analogue of Fomin’s growth diagrams for this generalized RSK correspondence on
plactic biwords. We show that this growth diagram recovers the bijection between pipe
dreams and bumpless pipe dreams of Gao–Huang.

The general philosophy of a growth diagram can be thought of as translating a temporal
object, i.e., an algorithm, to a spatial object, i.e., a diagrammatic encoding of the algo-
rithm, so as to provide a powerful tool to study the algorithm, as well as an interface
between combinatorial algorithms and algebraic or geometric phenomena.1 The most
classical example of a growth diagram is of the classical Robinson-Schensted (RS) cor-
respondence, a bijection between a permutation and a pair of standard Young tableaux.
The Robinson-Schensted-Knuth (RSK) correspondence is a generalization of the RS cor-
respondence and is of central importance in symmetric function theory. Each variation
of these correspondences has its corresponding growth diagram version. The RS corre-
spondence is originally defined as an insertion algorithm on pairs of standard tableaux.
The algorithm iteratively scans the permutation, inserting each time a number to the
insertion tableaux, and records the position of the new entry in the recording tableaux.
The growth diagram first introduced by Fomin [2, 3], however, is a two dimensional
grid that can be roughly thought of as an “enriched” permutation matrix, with the extra
information determined by certain local “growth rules.” Although far from apparent at
a first glance, the growth diagram is a lossless encoding of the insertion algorithm. Fur-
thermore, the growth diagram manifests many non-obvious properties of the insertion

algorithm. For example, the property w RS←→ (P, Q) implies w−1 RS←→ (Q, P) can be easily
seen by transposing the growth diagram.
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It is possible to give the RSK correspondence an operator theoretic interpretation
through growth diagrams, and as a consequence obtain a noncommutative version of
Cauchy’s identity [4]. Furthermore, growth diagrams for the RS correspondence has
beautiful geometric and representation-theoretic interpretations [11, 14, 15].

Beyond classical RSK, there are many examples in the literature of expressing com-
binatorial algorithms using growth diagrams, see, e.g., [9, 12, 13, 16].

In [7] and [8], the first author and Pylyavskyy introduced a generalization of the
classical RSK correspondence for Schubert polynomials, called bumpless pipe dream
(BPD) RSK. As in the classical case, this generalization of RSK is defined via insertion
algorithms. The algorithm takes as input a certain biword, iteratively inserts it into a
bumpless pipe dream, and records the insertion via chains in mixed k-Bruhat order. An
analogue of Knuth moves was discovered for a more restrictive set of biwords, called
plactic biwords. It is then natural to pursue a growth diagram version of his generalized
RSK correspondence on plactic biwords. In this extended abstract, we describe these new
growth diagrams for the RSK correspondence for plactic biwords. As an application, our
growth diagram manifests the canonical bijection between pipe dreams and bumpless
pipedreams of the first author and Gao [5]. We also hope that this opens up a venue
for connecting the combinatorics of this generalized RSK to its algebraic or geometric
interpretations.

1 Plactic biwords and growth rules

1.1 Bumpless pipe dreams

In this subsection we recall the basic definition of bumpless pipe dreams [10]. A (re-
duced) bumpless pipe dream for a permutation π ∈ Sn is a tiling of an n × n grid
with allowable tiles , , , , , and , such that n “pipes” traveling from the bottom
of the grid to the right of the grid form, and no two pipes cross twice. The bottom of
the grid is labeled with 1, · · · , n, and a permutation read from the pipe labels from the
top to bottom on the right edge of the grid is π. We denote the set of bumpless pipe
dreams for π ∈ Sn with BPD(π). For example, Figure 1 shows a bumpless pipe dream in
BPD(14253). The natural embedding of permutations Sn ↪→ Sn+1 gives rise to a natural
embedding of bumpless pipe dreams in the n× n grid to those in the (n + 1)× (n + 1)
grid.

1.2 Generalized Knuth relations on plactic biwords

Definition 1.1 ([8]). A biletter is a pair of positive integers (a
k) where a ≤ k. A plactic

biword is a word of biletters (a
k) =

(
a1 ··· aℓ
k1 ··· kℓ

)
, where ki ≥ ki+1 for each i.
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Figure 1: A bumpless pipe dream in BPD(14253)

Definition 1.2 ([8]). We define the generalized Knuth relations on plactic biwords as
follows:

(1)
( ··· b a c ···
··· k k k ···

)
∼

( ··· b c a ···
··· k k k ···

)
if a < b ≤ c

(2)
( ··· a c b ···
··· k k k ···

)
∼

( ··· c a b ···
··· k k k ···

)
if a ≤ b < c

(3)
( ··· a b ···
··· k k ···

)
∼

( ··· a b ···
··· k+1 k ···

)
if a ≤ b

(4)
( ··· b a ···
··· k+1 k+1 ···

)
∼

( ··· b a ···
··· k+1 k ···

)
if a < b.

Notice that these relations are only defined on plactic biwords. We do not apply the
relation (3) or (4) if the resulting word is no longer plactic.

Given a biword Q =
(

b1 b2 ... bℓ
k1 k2 ... kℓ

)
, [7] defines a map L(Q) = (φL(Q), chL(Q)) where

φL(Q) is the BPD obtained by reading Q from right to left and successively performing
left insertion, and chL(Q) is the recording chain in mixed k-Bruhat order with edge labels
kℓ, · · · , k1, as well as a map R(Q) = (φR(Q), chR(Q)) where φR(Q) is the BPD obtained
by reading Q from left to right and successively performing right insertion, and chR(Q)
is the recording chain in mixed k-Bruhat order with edge labels k1, · · · , kℓ. For details
of these insertion algorithms see [7, Section 3]. Furthermore, by [8, Proposition 1.2],
the insertion BPD is well-defined regardless of the choice of insertion algorithms, so we
write φ(D) := φR(D) = φL(D). For the analysis of the insertion algorithm in this paper
we use R, the right insertion algorithm.

Theorem 1.3 ([8]). For any D ∈ BPD(π), the set of plactic biwords

words(D) := {Q : φ(Q) = D}

is connected by the generalized Knuth relations.

For a biword Q, we define Q>i to be the biword obtained from Q by removing all
biletters (

aj
kj
) with aj ≤ i. In particular, Q>0 is Q. We have the following lemma.

Lemma 1.4. Suppose Q and Q′ are connected by the generalized Knuth relations, then
for all i, Q>i and Q′>i are connected by the generalized Knuth relations.
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Proof. It suffices to consider the case where Q and Q′ are connected by one generalized
Knuth relation. Observe that in all relations, if we remove the biletters (a

k) and ( a
k+1),

then the remaining biwords are the same. Thus, we can iteratively remove all biletters
(1
∗), (

2
∗), . . . , ( i

∗), and after each step, either the remaining biwords are connected by the
same generalized Knuth relation or they are the same biword.

As a result of Lemma 1.4, for any D ∈ BPD(π) and any i, the set of plactic words
{Q>i | Q ∈ words(D)} is also connected by the generalized Knuth relations. Therefore,
for any Q ∈ words(D), φ(Q>i) is the same BPD.

Remark 1.5. One could similarly define Q<i to be the biword obtained from Q by re-
moving all biletters (

aj
kj
) with aj ≥ i and ask if Q ∼ Q′ implies Q<i ∼ Q′<i for all i.

The answer is unfortunately no. One small example is
(

1 3 2
3 3 3

)
∼

(
1 3 2
3 3 2

)
but

(
1 2
3 3

)
and(

1 2
3 2

)
are not connected by generalized Knuth relations. The reason is that if Q and Q′

are connected by the generalized Knuth relation (3) or (4), then removing (b
∗) yields two

different biwords.

1.3 Jeu de taquin on BPDs

Given D ∈ BPD(π) with ℓ(π) > 0, [5, Definition 3.1] produces another bumpless pipe
dream ∇D ∈ BPD(π′) where ℓ(π′) = ℓ(π)− 1. We call the ∇ operator jeu de taquin
on BPDs. The justification of this name is that, after applying a direct bijection between
(skew) semistandard tableaux and BPDs for Grassmaninan permutations, the jeu de
taquin algorithm on tableaux can be realized as a corresponding algorithm on BPDs.
See [6] for a detailed description. We will sometimes use the notation jdt(b, r) instead
of ∇ to emphasize that jeu de taquin starts from position (b, r). See Figure 4 for an
illustration.

For each BPD D, let b be the smallest row with an empty square , define D′ =
rect(D) be the BPD obtained from D by performing jdt on all empty squares on row b
from right to left. Suppose π and µ are the permutations of D′ and D, respectively, then
by [5], we have µ = sij . . . si1π, where ij > . . . > i1.

Theorem 1.6. Let D be the BPD corresponding to a biword w =
(

b1 b2 ... bℓ
k1 k2 ... kℓ

)
and b =

min{b1, . . . , bℓ}, and let D′ be the BPD corresponding to w′ obtained by removing all
biletter ( b

ki
) from w. Then D′ = rect(D).

The following corollary is immediate from Theorem 1.6 by [5].

Corollary 1.7. With the same notation as in Theorem 1.6, let π and µ be the permutations
of D′ and D, respectively, then

µ = sij . . . si1π

where ij > . . . > i1.
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1.4 Growth diagrams

1.4.1 Defining growth diagrams

Given a plactic biword
(

b1 b2 ... bℓ
k1 k2 ... kℓ

)
and let a = max{bi | 1 ≤ i ≤ ℓ}. We define a growth

diagram to be a matrix of permutations πi,j with 0 ≤ i ≤ a and 0 ≤ j ≤ ℓ. The initial
condition is πi,0 = id for all i and πa,j = id for all j. The figure below shows a generic
square of the growth diagram.

πi,j−1 πi,j

πi−1,j−1 πi−1,j

We fill the squares of the growth diagram as follows. For each biletter (bi
ki
), we put an ×ki

in the square whose corners are πbi,i−1, πbi,i, πbi−1,i−1, πbi−1,i. In addition, in every other
square between columns i− 1 and i, we put a subscript ki. The following figure shows
an example where the biword is

(
1 3 1 2 1
3 3 2 2 1

)
.

π3,0 π3,1 π3,2 π3,3 π3,4 π3,5

3 ×3 2 2 1

π2,0 π2,1 π2,2 π2,3 π2,4 π2,5

3 3 2 ×2 1

π1,0 π1,1 π1,2 π1,3 π1,4 π1,5

×3 3 ×2 2 ×1

π0,0 π0,1 π0,2 π0,3 π0,4 π0,5

For each point (i, j) in the growth diagram, let w(i, j) be the biword obtained from
reading from left to right the X’s to the NW of (i, j). Formally speaking, w(i, j) is obtained
from

(
b1 b2 ... bℓ
k1 k2 ... kℓ

)
by removing all biletter (bs

ks
) with bs ≤ i or s > j. For example, in the

above growth diagram, w(1, 4) =
(

3 2
3 2

)
. Define πi,j to be the permutation of φ(w(i, j)),

the bumpless pipe dream obtained by inserting w(i, j).

Remark 1.8. When k1 = · · · = kℓ = k, we recover a version of classical growth diagrams
for the RSK correspondence, where the input is a word with letters in positive numbers,
the insertion object is a semistandard tableau, and the recording object is a standard
tableau. However for classical Knuth relations, deleting either all of the smallest letter
in a word, or all of the largest letter in a word, preserves Knuth classes. However in
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our generalized RSK, we may only delete the biletters with the smallest bi, as stated in
Lemma 1.4.

1.4.2 Local rules

Theorem 1.9. Given a square with subscript k as follows:

π σ

µ ρ

Then one can get ρ from π, µ, and σ by the following rules:

1. If there is no ×:

(a) If π = σ then ρ = µ.

(b) If π = µ then ρ = σ.

(c) If π ̸= σ, µ, then µ = sij . . . si1π where I = {ij > . . . > i1}, and σ = tαβπ such
that π−1(α) ≤ k < π−1(β) for some α < β. Let x := min(IC ∩ [α, β)), and
A := (IC ∩ [β, ∞)) ∪ {x} = {j1 < j2 < . . .}. Then ρ = tjℓ,jℓ+1µ where ℓ is the
smallest index such that µ−1(jℓ) ≤ k < µ−1(jℓ+1).

2. If there is an ×, then π = σ and µ = sij . . . si1π where I = {ij > . . . > i1}. Let
IC = {j1 < j2 < . . .}, then ρ = tjℓ,jℓ+1µ where ℓ is the smallest index such that
µ−1(jℓ) ≤ k < µ−1(jℓ+1).

Example 1.10. Let the biword be
(

1 3 1 2 1
3 3 2 2 1

)
, using the rules in Theorem 1.9, we have the

following growth diagram.

12345 12345 12345 12345 12345 12345

3 ×3 2 2 1

12345 12345 12435 12435 12435 12435

3 3 2 ×2 1

12345 12345 12435 12435 13425 13425

×3 3 ×2 2 ×1

12345 12435 12534 13524 15324 25314
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Notice that in the square

π = 12435 σ = 13425

2

µ = 13524 ρ = 15324

we use rule (1c) of Theorem 1.9. In particular, we have π ̸= σ, µ and µ = s4s2π. Thus,
I = {2, 4}. Also, σ = t23π, so A = {3, 5, 6, . . .}. Since µ−1(3) ≤ k = 2 < µ−1(5), we have
ρ = t35µ = 15324. On the other hand, in the square

π = 13425 σ = 13425

×1

µ = 15324 ρ = 25314

we use rule (2) of Theorem 1.9. We have µ = s4s3π, so I = {3, 4}. Thus, IC =
{1, 2, 5, 6, . . .}. We have µ−1(1) ≤ k = 1 < µ−1(2), so ρ = t12µ = 25314.

To check that the above growth diagram is correct, we can go through the insertion
process. Figure 2 shows the insertion process of this biword. One can check that the
permutations we obtain along the way are exactly the permutations on the bottom row
of the growth diagram.

(

1

3

) (

3

3

)

(

2

2

)(

1

1

)

(

1

2

)

Figure 2: Insertion of
(

1 3 1 2 1
3 3 2 2 1

)
On the other hand, removing all biletters (1

k) in the original biword, we obtain the
biword

(
3 2
3 2

)
. The BPD of this biword is shown in Figure 3.
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(

3

3

) (

2

2

)

Figure 3: Insertion of
(

3 2
3 2

)
Let D be the BPD corresponding to the original biword

(
1 3 1 2 1
3 3 2 2 1

)
(in Figure 2), and

D′ be the BPD corresponding to the new biword
(

3 2
3 2

)
(in Figure 3). Theorem 1.6 says

that D′ = rect(D). This is indeed the case as shown in Figure 4.

jdt(1, 3) jdt(1, 2) jdt(1, 1)

Figure 4

Definition 1.11 ([1]). For a permutation π with ℓ(π) = ℓ, a pair of integer sequences(
a = (a1, . . . , aℓ), r = (r1, . . . , rℓ)

)
is a bounded reduced compatible sequence of π

if sa1 · · · saℓ is a reduced word of π, r1 ≤ · · · ≤ rℓ is weakly increasing, rj ≤ aj for
j = 1, . . . , ℓ, and rj < rj+1 if aj < aj+1.

Theorem 1.12. Let Q :=
(

b1 b2 ... bℓ
k1 k2 ... kℓ

)
and let a = max{bi | 1 ≤ i ≤ ℓ}, and (πi,j)0≤i≤a,0≤j≤ℓ

be the growth diagram of Q. Then the rightmost vertical chain

id = πa,ℓ ⋖ · · ·⋖ π0,ℓ

uniquely recovers a bounded reduced compatible sequence, and this bijects to φ(Q)
under the bijection in [5].

Explicitly, by Corollary 1.7, for each 1 ≤ i ≤ a, we have si,mi , · · · si,1πi,ℓ = πi−1,ℓ.,
where si,1 > · · · > si,mi . Then the compatible sequence that corresponds to Q is(

a
r

)
=

(
s0,1 · · · s0,m1 s1,1 · · · s1,m1 · · · sa−1,1 · · · sa−1,ma−1

1 · · · 1 2 · · · 2 · · · a · · · a

)
.

Example 1.13. Continuing Example 1.10, the compatible sequence that corresponds to
the chain

12345 ⋖ 12435 ⋖ 13425 ⋖ 25314
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is (
a
r

)
=

(
s4 s3 s1 s2 s3
1 1 1 2 3

)
.

2 Summary of proofs

Theorem 1.6 follows from the following lemma, which can be proven by a technical
analysis of the algorithms.

Lemma 2.1. Let D ∈ BPD(π) and D′ = ∇(D). Let c be the smallest such that row c
contains a blank tile in D. Given b ≥ c and k such that the smallest descent in π is at
least k. Then

∇
(

D ←
(

b
k

))
= D′ ←

(
b
k

)
.

For Theorem 1.9, cases (1a) and (1b) follow directly from the definition of the growth
diagram. It remains to prove cases (1c) and (2). The key lemma to prove these two cases
is the following. We use a notion of “insertion path” and do a careful analysis of how
the insertion algorithms interact with the pipes in D and D′.

Lemma 2.2. Let D ∈ BPD(π), and D′ = ∇(D). Suppose pop(D) = (i, c), then by
definition D′ ∈ BPD(σ) where σ = siπ. Given b ≥ c and k such that the smallest
descent in π is at least k. Suppose the insertion path of D′ ← (b

k) goes through pipes
p1 < p2 < . . . < pℓ. Let P := {p1, p2, . . . , pℓ}, then

1. if i = pj and i + 1 ̸= pj+1 for some 1 ≤ j ≤ ℓ− 1, then D ← (b
k) goes through pipes

p1, . . . , pj−1, pj + 1, pj+1, . . . , pℓ;

2. if i = pℓ−1 and i + 1 = pℓ, then D ← (b
k) goes through pipes p1, . . . , pℓ−2, pℓ, pℓ +

1, pℓ + 2, . . . until it terminates;

3. if i = pℓ then D ← (b
k) goes through pipes p1, . . . , pℓ−1, pℓ + 1;

4. otherwise, D ← (b
k) goes through pipes p1, . . . , pℓ.

In particular, unless i = pℓ−1 or i = pℓ, the last two pipes of D ← (b
k) are still pℓ−1 and

pℓ.

Let us give some examples of Lemma 2.2. In Figure 5, we have a BPD D with
pop(D) = (3, 1). In D′ = ∇(D), the insertion path of D′ ← (2

5) goes through pipes
2, 3, 5, 6, 7. Since i = 3 is one of the pipes, but i + 1 = 4 is not, the insertion path of
D ← (2

5) goes through pipes 2, 4, 5, 6, 7. This is case (1) of Lemma 2.2. On the other hand,
the insertion path of D′ ← (1

5) goes through pipes 1, 2, 3, 4. Since i and i + 1 are the last



10 Daoji Huang and Son Nguyen

D D
′

Figure 5

two pipes, the insertion path of D ← (1
5) goes through pipes 1, 2, 4, 5, 6, 7. This is case (2)

in Lemma 2.2. Finally, the insertion path of D′ ← (2
2) goes through pipes 2 and 3. Thus,

the insertion path of D ← (2
2) goes through pipes 2 and 4. This is case (3) in Lemma 2.2.
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A signed e-expansion of the chromatic symmetric
function and some new e-positive graphs
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Abstract. We prove a new signed elementary symmetric function expansion of the
chromatic symmetric function of any unit interval graph. We then use sign-reversing
involutions to prove new combinatorial formulas for many families of graphs, includ-
ing the K-chains studied by Gebhard and Sagan, formed by joining cliques at single
vertices, and for graphs obtained from them by removing any number of edges from
any of the cut vertices. We also introduce a version for the quasisymmetric refinement
of Shareshian and Wachs.

Keywords: chromatic symmetric function, elementary symmetric function, Stanley–
Stembridge conjecture, unit interval graph

The Stanley–Stembridge conjecture [26, 27] is one of the most actively researched
open problems in algebraic combinatorics today. It asserts that if G is the incompa-
rability graph of a (3 + 1)-free poset, then G is e-positive, meaning that the chromatic
symmetric function XG(x) defined by Stanley [26] is a nonnegative linear combination
of elementary symmetric functions. Several authors have proven that certain graphs
are e-positive [3, 6, 9, 11, 14, 16, 21, 29, 30, 31], studied other positivity properties of
XG(x), [4, 12, 13, 15, 17, 19, 22], defined generalizations of the chromatic symmetric
function, [10, 18, 25], and explored implications of the Stanley–Stembridge conjecture to
immanants of Jacobi–Trudi matrices [27], cohomology of Hessenberg varieties [1, 5, 7,
20, 24], and characters of Hecke algebras [8].

In this extended abstract, we give a signed elementary function expansion of XG(x)
for any unit interval graph G, in terms of objects called forest triples. We then show how
sign-reversing involutions on forest triples can be used to prove combinatorial formulas
for many classes of unit interval graphs, including the K-chains proven to be e-positive
by Gebhard and Sagan [18] and melting K-chains obtained from them by removing any
number of edges from any of the cut vertices. Melting K-chains were not previously
known to be e-positive. We also present a generalization of our forest triple formula for
the chromatic quasisymmetric function of Shareshian and Wachs [25].
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Figure 1: The claw graph G, five proper colourings of G, the corresponding monomi-
als, the chromatic symmetric function XG(x), the bowtie graph H, and the chromatic
symmetric function XH(x)

G =

3

3

7 3

7

7

3 7

2

2

7 4

4

4

2 7

7

7

4 2

XG(x) = · · ·+ x3
3x7 + x3x3

7 + · · ·+ x2
2x4x7 + x2x2

4x7 + x2x4x2
7 + · · · (1.3)

= e211 − 2e22 + 5e31 + 4e4 (1.4)

H =

XH(x) = 4e32 + 12e41 + 20e5 (1.5)

1 Background

Let G = (V, E) be a graph. A colouring of G is a function κ : V → P = {1, 2, 3, . . .} and
we say that κ is proper if κ(i) ̸= κ(j) whenever (i, j) ∈ E. The chromatic symmetric function
of G is the formal power series in infinitely many variables x = (x1, x2, x3, . . .) given by
[26, Definition 2.1]

XG(x) = ∑
κ:V→P proper

xκ, where xκ = ∏
v∈V

xκ(v). (1.1)

We are interested in expanding the symmetric function XG(x) in the basis {eλ} of ele-
mentary symmetric functions indexed by integer partitions λ = λ1 · · · λℓ, defined by

eλ = eλ1 · · · eλℓ
, where en = ∑

i1<···<in

xi1 · · · xin . (1.2)

We say that G is e-positive if the chromatic symmetric function XG(x) is a nonnegative
linear combination of elementary symmetric functions.

Example 1. Figure 1 shows the claw graph G. Some proper colourings of G, the corresponding
monomials of XG(x), and the e-expansion of XG(x) are given. Because of the negative coefficient
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on the term −2e22, the graph G is not e-positive. By contrast, the bowtie graph H is e-positive.
For the complete graph Kn, proper colourings must use n distinct colours and given n distinct
colours there are n! proper colourings, so XKn(x) = n!en and Kn is e-positive.

There has been considerable interest in characterizing e-positive graphs. The most
prominent open problem in this direction is the Stanley–Stembridge conjecture [26,
Corollary 5.1], equivalently [27, Corollary 5.5], which by a result of Guay-Paquet [19,
Theorem 5.1] can be equivalently stated for unit interval graphs G, which are graphs
whose vertices can be labelled 1 through n so that

for i < j < k, if (i, k) ∈ E(G), then (i, j) ∈ E(G) and (j, k) ∈ E(G). (1.6)

Conjecture 1. (Stanley–Stembridge conjecture) All unit interval graphs are e-positive.

2 A signed formula

Let G = ([n], E) be a natural unit interval graph, meaning it satisfies (1.6). We give a signed
combinatorial formula for the elementary symmetric function expansion of XG(x).

Definition 1. A subtree T of G is decreasing if every vertex v ∈ V(T) has at most one larger
neighbour. A subforest F of G is decreasing if all of its trees are decreasing.

Definition 2. A tree triple of G is an object T = (T, α, r) consisting of the following data.

• T is a decreasing subtree of G.

• α is an integer composition with size |α| = |V(T)|.

• r is a positive integer with 1 ≤ r ≤ α1, the first part of α.

A forest triple of G is a set of tree triples F = {Ti = (Ti, α(i), ri)}m
i=1 with ⊔m

i=1V(Ti) = [n],
so the set of trees is a decreasing spanning forest of G. The type of F is the integer partition

type(F ) = sort(α(1) · · · α(m)) (2.1)

formed by concatenating the compositions and then sorting to form a partition. The sign of F is
the integer

sign(F ) = (−1)∑m
i=1(ℓ(α

(i))−1) = (−1)ℓ(type(F ))−m, (2.2)

where ℓ(α) is the length of a composition α. We denote by FT(G) the set of forest triples of G and
by FTµ(G) the set of forest triples of G of type µ.

We now state our combinatorial formula. It was proven by first expanding XG(x) in
the power sum basis and then applying a change-of-basis to the elementary symmetric
function basis. The technique of studying properties of XG(x) by converting between
different bases is explored in upcoming work of Sagan and the author [23].
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Figure 2: The bowtie graph G and the forest triples of G of type 32
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Theorem 1. [28, Theorem 4.3] Let G be a natural unit interval graph. The chromatic symmetric
function XG(x) satisfies

XG(x) = ∑
F∈FT(G)

sign(F )etype(F ) = ∑
µ

 ∑
F∈FTµ(G)

sign(F )

 eµ. (2.3)

Example 2. Figure 2 shows the forest triples of type 32 for the bowtie graph. We can have a single
tree triple T = (T, α, r), in which case α is either 32 or 23 and there are either 3 or 2 choices
for r. Alternatively, we can have two tree triples T1 = (T1, α(1), r1) and T2 = (T2, α(2), r2) with
α(1) = 3 = |V(T1)| and α(2) = 2 = |V(T2)|, and there are 3 choices of r1 and 2 choices of r2.

Example 3. For the case of µ = n, forest triples F ∈ FTn(G) consist of a single tree triple
T = (T, α, r), where T is a decreasing spanning tree, we must have α = n so sign(F ) = 1, and
we can have any value of 1 ≤ r ≤ n. Because a decreasing spanning tree can be identified by
specifying the unique larger neighbour of each vertex 1 ≤ i ≤ n − 1, we have that the coefficient
of en in XG(x) is nd1 · · · dn−1, where di is the number of larger neighbours of vertex i in G.

Now our goal is to find a sign-reversing involution on forest triples of G to combina-
torially prove that G is e-positive. The structure of forest triples suggests the following
approach. Let us say that a tree triple T = (T, α, r) is breakable if ℓ(α) ≥ 2. In this case,
we would like to somehow define a pair of forest triples break(T ) = (S1,S2) of the form

S1 = (S1, α \ αℓ, r) and S2 = (S2, αℓ, r2) (2.4)
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for some decreasing trees S1 and S2 with V(S1) ⊔ V(S2) = V(T) and some integer
1 ≤ r2 ≤ αℓ, where αℓ is the last part of α and α \ αℓ denotes the composition with
αℓ removed. Let us say that the pair (S1,S2) is joinable if it is of the form break(T ) for
some unique T , which we will denote join(S1,S2). Then we would like to somehow
define a map φ on FT(G) by either replacing some breakable tree triple T by break(T )
or by replacing some joinable pair of tree triples (S1,S2) by join(S1,S2), if one exists.

If we can systematically choose which tree triples to replace so that φ is an involu-
tion, then it would reverse sign because it changes the total number of tree triples by
one, it would preserve type by construction, and fixed points F must have no breakable
tree triples or joinable pairs of tree triples so in particular sign(F ) = (−1)∑m

i=1(1−1) = 1.
Therefore, we would prove that G is e-positive, and we would also get a combinatorial
formula for the chromatic symmetric function XG(x) in terms of the fixed points of φ.

We now demonstrate this method in the case of paths. More general results are
known [25, Section 5], [26, Proposition 5.3] but this proof technique is new.

Proposition 1. The chromatic symmetric function of a path Pn is given by

XPn(x) = ∑
α⊨n

α1(α2 − 1) · · · (αℓ − 1)esort(α), (2.5)

where the notation α ⊨ n means that α is a composition with size n. In particular, Pn is e-positive.

Proof. We label the vertices of Pn so that its edges are of the form (i, i + 1), so decreasing
subtrees of Pn are paths from some i to some j > i, which we will denote Pi→j. For a
breakable tree triple T = (Pi→j, α, r) of Pn, we define break(T ) = (S1,S2), where

S1 = (Pi→j−αℓ , α \ αℓ, r) and S2 = (Pj−αℓ+1→j, αℓ, 1), (2.6)

and we define a pair of tree triples (S1 = (Pi→j, α(1), r1),S2 = (Pi′→j′ , α(2), r2)) to be
joinable if ℓ(α(2)) = 1, i′ = j + 1, and r2 = 1, in which case we define the tree triple

join(S1,S2) = (Pi→j′ , α(1) · α(2), r1). (2.7)

Note that T is breakable with break(T ) = (S1,S2) if and only if (S1,S2) is joinable with
join(S1,S2) = T . Now given a forest triple

F = {T1 = (Pi1→i2−1, α(1), r1), T2 = (Pi2→i3−1, α(2), r2), . . . , Tℓ = (Piℓ→n, α(ℓ), rℓ)}, (2.8)

we let j be maximal so that either Tj is breakable or the pair (Tj−1, Tj) is joinable, if such
a j exists, and we define φ(F ) by either breaking Tj, joining (Tj−1, Tj), or doing nothing
if no such j exists. We can check that φ is a sign-reversing involution, the fixed points
can be associated with a composition α ⊨ n by reading the tree sizes from left to right,
they have type sort(α), and in order for no pair to be joinable, we must have ri ≥ 2 for
every i ≥ 2, so there are α1(α2 − 1) · · · (αℓ − 1) choices of the ri.
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Figure 3: The forest triples of P6 of type 222 paired under our sign-reversing involu-
tion φ

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

FIXED

FIXED

1 2 3 4 5 6

1 2 3 4 5 6

Example 4. Figure 3 shows all of the forest triples of P6 of type 222 paired under our sign-
reversing involution φ. The compositions are not written but they are 2, 22, or 222. We have
indicated whether each ri is 1 or 2 by circling the ri-th smallest vertex of the corresponding tree.
There are 2(2 − 1)(2 − 1) = 2 fixed points, so the coefficient of e222 in XP6(x) is 2.

3 Positive formulas

We are able to use sign-reversing involutions on forest triples to prove several combina-
torial e-positive expansions of unit interval graphs.

Definition 3. Let L(t)
a,b denote the unit interval graph where a path of length b is joined to a clique

of size a, and then t edges incident to the joined vertex are removed from the clique. An example
is given in Figure 4. Such graphs are called melting lollipops.

Huh, Nam, and Yoo showed that melting lollipops are e-positive [21, Theorem 4.9].
A result of Aliniaeifard, Wang, and van Willigenburg [3, Proposition 3.1] implies that
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Figure 4: The melting lollipop graph L(3)
6,3

L(3)
6,3 =

1 2 3 4

5

6

7

8

9

the sequence (X
L(t)

a,b
(x))a−1

t=0 forms an arithmetic progression. We were able to use forest

triples to get a new explicit formula and see this arithmetic progression directly.

Theorem 2. [28, Theorem 5.2] The chromatic symmetric function of a melting lollipop L(t)
a,b is

given by

X
L(t)

a,b
(x) = t(a − 2)! ∑

α⊨n
αℓ=a−1

α1(α2 − 1) · · · (αℓ−1 − 1)esort(α) (3.1)

+ (a − t − 1)(a − 2)! ∑
α⊨n

αℓ≥a

α1(α2 − 1) · · · (αℓ − 1)esort(α).

In particular, L(t)
a,b is e-positive.

Definition 4. For a composition γ with all parts at least 2, let Kγ denote the unit interval graph
where cliques of sizes γ1, . . . , γℓ are successively joined end to end at single vertices. An example
is given in Figure 5. Such graphs are called K-chains.

Gebhard and Sagan showed that K-chains are e-positive [18, Corollary 7.7] by using
a generalization of the chromatic symmetric function in noncommuting variables. We
were able to use forest triples to get a new explicit formula as a sum over a certain set
Aγ of weak compositions.

Theorem 3. [28, Theorem 6.13] The chromatic symmetric function of a K-chain Kγ is given by

XKγ(x) = (γ1 − 2)! · · · (γℓ−1 − 2)!(γℓ − 1)! ∑
α∈Aγ

(
α1

ℓ(γ)

∏
i=2

|αi − (γi−1 − 1)|
)

esort(α) (3.2)

In particular, Kγ is e-positive.

Example 5. If γ = ab has length 2, we get that

XKab(x) = (a − 1)!(b − 1)!
n

∑
k=max{a,b}

(2k − n)ek,n−k. (3.3)
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Figure 5: The K-chain K466 and the melting K-chain K(032,032)
466

1

2

3

4

5

6

7

8

9

10

11

12

13

14 1

2

3

4

5

6

7

8

9

10

11

12

13

14

Definition 5. Let γ be a composition with all parts at least 2, and let ϵ and ζ be weak composi-
tions with ℓ(ϵ) = ℓ(ζ) = ℓ(γ) such that 0 ≤ ϵt, ζt ≤ γt − 2 for all t and ϵt = 0 if and only
if ζt = 0. Let K(ϵ,ζ)

γ denote the unit interval graph formed by removing edges from the K-chain
Kγ so that for all t, the t-th clique has ϵt edges absent from the smallest vertex and ζt edges
absent from the largest vertex. An example is given in Figure 5. Such graphs are called melting
K-chains, and if every ϵt, ζt ∈ {0, 1} (so ϵ = ζ), they are called slightly melting K-chains.

Aliniaeifard, Wang, and van Willigenburg showed that slightly melting K-chains are
e-positive [3, Proposition 5.5]. We were able to use forest triples to get a new explicit
formula as a sum over a certain set A(ϵ)

γ of weak compositions.

Theorem 4. [28, Theorem 7.9] The chromatic symmetric function of a slightly melting K-chain
K(ϵ,ϵ)

γ (x) is given by

X
K(ϵ,ϵ)

γ
(x) = (γ1 − 2)! · · · (γℓ − 2)! ∑

α∈Aϵ
γ

(
α1

ℓ(γ)

∏
i=1

|αi+1 − (γi − 1 − ϵi)|
)

esort(α). (3.4)

In particular, K(ϵ,ϵ)
γ is e-positive.

We also proved the new result that all melting K-chains are e-positive. We have a
combinatorial description of the fixed points but they are much more complicated to
describe and enumerate.

Theorem 5. [28, Theorem 8.3] All melting K-chains K(ϵ,ζ)
γ are e-positive.

It would be interesting to see whether sign-reversing involutions on forest triples
could be used to show e-positivity of other unit interval graphs. Alternatively, we could
take a dual approach where we fix µ and show that the coefficient of eµ is nonnegative
for every unit interval graph. This is done by Hwang [22, Theorem 5.13] if µ2 = 1, by
Abreu and Nigro [1, Corollary 1.10] if ℓ(µ) = 2, and in upcoming work by Sagan and the
author [23] if µ1 ≤ 3. If we can prove the following inequality, the forest triple formula
would give another proof of nonnegativity for all two-part partitions.



A signed e-expansion and some new e-positive graphs 9

Problem 1. Let G = ([n], E) be a natural unit interval graph and let 1 ≤ k ≤ n − 1. Let sk(G)
be the number of decreasing spanning forests (T1, T2) of G, where |V(T2)| = k and 1 ∈ V(T1).
Let s(G) be the number of decreasing spanning trees of G. Prove that ksk(G) ≥ s(G).

The author checked by computer that this inequality holds for all unit interval graphs
G with n ≤ 10 vertices.

4 A quasisymmetric generalization

We also generalize our forest triple formula for the chromatic quasisymmetric function
defined by Shareshian and Wachs [25, Definition 1.2].

Definition 6. The chromatic quasisymmetric function of a labelled graph G = ([n], E) is the
formal power series

XG(x; q) = ∑
κ:[n]→P
κ proper

qasc(κ)xκ, (4.1)

where asc(κ) = |{(i, j) ∈ E(G) : i < j, κ(i) < κ(j)}|.

Alexandersson used the following idea to study e-positivity of LLT polynomials [2].

Definition 7. Let θ ⊆ E(G). For a vertex u ∈ [n], let hrvθ(u) be the highest v ∈ [n] reachable
from u by an increasing path in ([n], θ) and let {[u1]θ, . . . , [um]θ} be the set of equivalence classes
of [n] under the relation u ∼θ u′ if hrvθ(u) = hrvθ(u′). Let θ′ ⊆ θ be the subset of edges used
by the increasing paths from every u to hrvθ(u) that go to the largest possible vertex at each step.
We let U(θ) = θ \ θ′ and the elements of U(θ) are called unnecessary edges.

Definition 8. A subgraph quadruple of G is an object S = (θ, f , α, r) consisting of the
following data.

• θ ⊆ E(G) is a subset of the edges of G.

• f : U(θ) → {q,−1} is a function that assigns either a q or a (−1) to each unnecessary
edge.

• α = (α(1), . . . , α(m)) is a sequence of compositions such that each |α(i)| = |[ui]θ|.

• r = (r1, . . . , rm) is a sequence of positive integers such that each 1 ≤ ri ≤ α
(i)
1 .

The type of S is the partition

type(S) = sort(α(1) · · · α(m)), (4.2)
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Figure 6: The edges of the subgraph quadruples of type 32 for the bowtie graph G

−(4 + 4(q − 1) + (q − 1)2)(1 + q + q2 + 1 + q)e32 (4 + 2(q − 1))(1 + q + q2)(1 + q)e32
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the sign of S is the integer

sign(S) = (−1)∑m
i=1(ℓ(α

(i))−1)(−1)|{e∈U(θ): f (e)=−1}|, (4.3)

and the weight of S is the integer

weight(S) =
m

∑
i=1

(ri − 1) + |{e ∈ U(θ) : f (e) = q}|. (4.4)

We denote by SQ(G) the set of subgraph quadruples of G.

Theorem 6. [28, Theorem 9.5] The chromatic quasisymmetric function XG(x; q) of a natural
unit interval graph G satisfies

XG(x; q) = ∑
S∈SQ(G)

sign(S)qweight(S)etype(S). (4.5)

Example 6. Figure 6 shows the edges of the subgraph quadruples of type 32 for the bowtie graph,
where the unnecessary edges are shown by dotted lines and would each be assigned a q or a (−1).
If we have a single equivalence class, then α is either 32 or 23 and there are either 3 or 2 choices
for r. If we have two, then α(1) = 3, α(2) = 2, there are 3 choices of r1, and 2 choices of r2. We
have written the contributions to the coefficient of e32, taking into account the choices of f and r.
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We can apply the earlier sign-reversing involution to subgraph quadruples to prove
the following combinatorial e-expansion of Shareshian and Wachs [25, Section 5].

Proposition 2. The chromatic quasisymmetric function of the path Pn is given by

XPn(x; q) = ∑
α⊨n

qℓ(α)−1[α1]q[α2 − 1]q · · · [αℓ − 1]qesort(α), (4.6)

where the vertices of Pn are labelled so that (1.6) holds and we define [k]q = 1 + q + · · ·+ qk−1.

We could try to adapt our other sign-reversing involutions to subgraph quadruples.

Problem 2. Use subgraph quadruples to prove combinatorial e-positive expansions for the chro-
matic quasisymmetric functions XKγ(x; q) and X

K(ϵ,ζ)
γ

(x; q).
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Abstract. We settle the question of where exactly do the reduced Kronecker coef-
ficients lie on the spectrum between the Littlewood-Richardson and Kronecker coeffi-
cients by showing that every Kronecker coefficient of the symmetric group is equal to a
reduced Kronecker coefficient by an explicit construction. This implies the equivalence
of a question by Stanley from 2000 and a question by Kirillov from 2004 about combi-
natorial interpretations of these two families of coefficients. Moreover, as a corollary,
we deduce that deciding the positivity of reduced Kronecker coefficients is NP-hard,
and computing them is #P-hard under parsimonious many-one reductions.

Keywords: Kronecker coefficients, reduced Kronecker coefficients, representation the-
ory, symmetric group, general linear group

1 Introduction

The Kronecker coefficients k(λ, µ, ν) of the symmetric group Sn are some of the most clas-
sical, yet largely mysterious, quantities in Algebraic Combinatorics and Representation
Theory. The Kronecker coefficient is the multiplicity of the irreducible Sn representation
Sν in the tensor product Sλ ⊗ Sµ of two other irreducible Sn representations. Murnaghan
defined them in 1938 as an analogue of the Littlewood-Richardson coefficients cλ

µν of the
general linear group GLN, which are the multiplicities of the irreducible Weyl modules
Vλ in the tensor products Vµ ⊗ Vν. Yet, the analogy has not translated far into their
properties. The Littlewood-Richardson coefficients have a beautiful positive combinato-
rial interpretation and their positivity is “easy” to decide, formally it is in P. However,
positive combinatorial formulas for the Kronecker coefficients have eluded us so far, see
Section 1.2, and their positivity is hard to decide.

*christian.ikenmeyer@warwick.ac.uk. Supported by EPSRC grant EP/W014882/1.
†gpanova@usc.edu. Partially supported by NSF CCF:AF grant 2007652.
For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY)

license to any Author Accepted Manuscript version arising from this submission.

mailto: christian.ikenmeyer@warwick.ac.uk
 gpanova$@$usc.edu


2 Christian Ikenmeyer and Greta Panova

The reduced Kronecker coefficients k(α, β, γ) are defined as the stable limit of the ordi-
nary Kronecker coefficients

k(α, β, γ) := lim
n→∞

k( (n − |α|, α), (n − |β|, β), (n − |γ|, γ) ).

These coefficients are called extended Littlewood-Richardson numbers in [13], since in the
special case when |α| = |β|+ |γ| we have k(α, β, γ) = cα

β,γ, the Littlewood-Richardson
coefficient. Problem 2.32 in [13] asks for a combinatorial interpretation of k(α, β, γ).
As such they have been considered as an intermediate, an interpolation, between the
Littlewood-Richardson and Kronecker coefficients. They have been an object of inde-
pendent interest, see [16, 17, 4, 27, 13, 3, 2, 5, 15, 24, 10, 21, 18, 19], and considered better
behaved than the ordinary Kronecker coefficients.

This is, however, not the case. As we show, every Kronecker coefficient is equal to an
explicit reduced Kronecker coefficient of not much larger partitions, and in particular:

Theorem 1. For all partitions λ, µ, ν of equal sizes, we have

k(λ, µ, ν) = k
(

ν
ℓ(λ)
1 + λ, ν

ℓ(µ)
1 + µ, (νℓ(λ)+ℓ(µ)

1 , ν)
)
.

Here ab := (a, . . . , a︸ ︷︷ ︸
b many

) and (νb
1 , ν) := (ν1, . . . , ν1︸ ︷︷ ︸

b many

, ν1, ν2, ν3, . . .).

This implies that in a very strong sense, on the spectrum between Littlewood-
Richardson and Kronecker coefficients, the reduced Kronecker coefficients are at the
same point as the ordinary Kronecker coefficients. In particular, Theorem 1 implies that
Problem 2.32 in [13] is equivalent to Problem 10 in [26]: Finding a combinatorial inter-
pretation for the Kronecker coefficient or for the reduced Kronecker coefficient are the
same problem. Formally, Conjecture 9.1 and 9.4 in [20] are the same. Our result can be
interpreted in a positive or in a negative way. On the one hand, the reduced Kronecker
coefficients cannot be easier to understand than the ordinary Kronecker coefficients. On
the other hand, understanding the reduced Kronecker coefficients is sufficient to under-
stand all ordinary Kronecker coefficients.

We thus settle the conjecture from [21, §4.4] on the hardness of deciding positivity:

Corollary 1. Given α, β, γ in unary, deciding if k(α, β, γ) > 0 is NP-hard.

Moreover, by the same immediate argument it is now clear that computing the re-
duced Kronecker coefficient is strongly #P-hard under parsimonious many-one reduc-
tions (the argument in [21] gives only the #P-hardness under Turing reductions).

1.1 Background and definitions

We refer to [12, 25, 23] for basic definitions and properties from algebraic combina-
torics and representation theory, and employ the following notation. For a partition
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λ = (λ1, λ2, . . .) of n, denoted λ ⊢ n, its size is denoted |λ| := ∑i λi and length
ℓ(λ) = max{i | λi > 0}. We write λ′ do denote the transpose partition, i.e., the par-
tition that arises from reflecting the Young diagram at the main diagonal. Formally,
λ′

j := max{i | λi ≥ j}. We add partitions row-wise: (λ + µ)i = λi + µi. We define
λ ⋄ µ := (λ′ + µ′)′, adding partitions column-wise as Young diagrams. The Specht mod-
ules Sλ for λ ⊢ n are the irreducible representation of the symmetric group Sn, see [12,
25, 23].

The Kronecker coefficient k(λ, µ, ν) is the structure constant1 defined as

Sν ⊗ Sµ =
⊕

λ S
⊕k(λ,µ,ν)
λ

via Specht modules, giving that k(λ, µ, ν) is a nonnegative integer. Yet the problem of
finding a combinatorial interpretation of k(λ, µ, ν) is wide open [26, 9, 22]. The Kro-
necker coefficients were defined by Murnaghan [16] in 1938 as the analogues of the
Littlewood-Richardson coefficients cλ

µν, which are the structure constants in the ring of irre-

ducible GLN representations, the Weyl modules Vλ, given as Vµ ⊗ Vν =
⊕

λ V
⊕cλ

µν

λ . Some
simple properties, see [12, 23] include the transposition invariance k(λ, µ, ν) = k(λ′, µ′, ν)
and permutation of the terms. We define k′(λ, µ, ν) := k(λ′, µ′, ν′) = k(λ′, µ, ν) =
k(λ, µ′, ν) = k(λ, µ, ν′). It is known that k(λ, µ, ν) = 0 if ℓ(λ) > ℓ(µ) · ℓ(ν) [6], which
also follows by combining k(λ, µ, ν) = k(λ, µ′, ν′) with Lemma 3. We define the stable
range as the set of triples (λ, µ, ν) that satisfy k(λ, µ, ν) = k

(
λ + (i), µ + (i), ν + (i)

)
for all i ≥ 0. The reduced Kronecker coefficient is defined as this limit value:

k(α, β, γ) := lim
n→∞

k( (n − |α|, α), (n − |β|, β), (n − |γ|, γ) )

for arbitrary partitions α, β, γ (in particular, we do not require |α| = |β| = |γ|). When
|α| = |β|+ |γ|, then k(α, β, γ) = cα

β,γ. For a full list of definitions and properties we refer
to the full version of this paper [11].

1.2 Related work

The Littlewood-Richardson (LR) coefficients can be computed by the Littlewood-
Richardson rule, stated in 1934 and proven formally about 40 years later. It says that
cλ

µν is equal to the number of LR tableaux of shape λ/µ and content ν. The apparent
analogy in definitions motivates the community to search for such interpretations for
the Kronecker coefficients. Interest in efficient ways to compute k(λ, µ, ν) and k(α, βγ)
dates back at least to Murnaghan [16]. Specific interest in nonnegative combinatorial
interpretations of k(λ, µ, ν) can be found in [Lascoux 1979, Garsia-Remmel 1985] and

1In the combinatorics literature these coefficients have usually been denoted by g, e.g. g(λ, µ, ν), but
here we use k to avoid overlap with the notation used for the representation theory of GLN .
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was formulated clearly again by Stanley as Problem 10 in his list “Open Problems in
Algebraic Combinatorics” [26]. See also [22] for a detailed discussion on this topic.

Despite its natural and fundamental nature and the variety of efforts, this question
has seen relatively little progress. The state of the art is combinatorial interpretations
for specific classes of partitions (ν being a hook, or µ, ν being two-row partitions, etc).
It was shown by Murnaghan [17] that the reduced Kronecker coefficients generalize the
Littlewood-Richardson coefficients as

k(α, β, γ) = cα
βγ for |α| = |β|+ |γ|,

which motivates Kirillov’s naming of k as “extended Littlewood-Richardson numbers”.
This relationship and other properties have motivated an independent interest in the
reduced Kronecker coefficients as intermediates between Littlewood-Richardson and or-
dinary Kronecker coefficients. Some special cases of combinatorial interpretations can
be derived from the existing ones for the ordinary Kronecker coefficients. In [5] a com-
binatorial interpretation was given when µ, ν are rectangles and λ is one row. A com-
binatorial interpretation of k(α, β, γ) in the subcase where ℓ(α) = 1 was obtained in [1].
Methods to compute them have been discussed in [16, 17] and have been developed in a
series of papers, see [3, 2, 18, 19]. As observed in [2] the reduced Kronecker coefficients
are also the structure constants for the ring of so called character polynomials. The re-
duced Kronecker coefficients are a special case of a more general stability phenomenon
that if k(iα, iβ, iγ) = 1 for all i, then k(λ + Nα, µ + Nβ, ν + Nγ) stabilizes as N → ∞ as
seen in [24, 27].

The Kronecker coefficients can be expressed as a small alternating sum of reduced
Kronecker coefficients, and reduced Kronecker coefficients are certain sums of ordinary
Kronecker coefficients for smaller partitions, see [3]. These relationships showed that
reduced Kronecker coefficients are also #P-hard to compute, see [21]. However, these
relations did not imply that deciding positivity of reduced Kronecker coefficients is NP-
hard.

It is important to note that deciding if cλ
µν > 0 is in P, since they count integer points

in a polytope that has an integral vertex whenever it is nonempty, a consequence of
Knutson-Tao’s proof of the saturation property: cNλ

Nµ,Nν > 0 ⇐⇒ cλ
µν > 0. The Kro-

necker coefficients do not satisfy the saturation property, because k(22, 22, 22) = 1, but
k(12, 12, 12) = 0. Until recently it was believed that the reduced Kronecker coefficients
have the saturation property: It was conjectured in [13, 14] that if k(Nα, Nβ, Nγ) > 0
for some N > 0, then k(α, β, γ) > 0. This was disproved in [21] in 2020 and moved the
reduced Kronecker coefficients away from the Littlewood-Richardson coefficients on that
spectrum.
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2 Setting up the proof of Theorem 1

We discovered Theorem 1 using the natural interpretation of k(λ, µ, ν) via the general
linear group, see §3, and the relationship with 3-dimensional binary contingency arrays.
We set the proof up in this section, reducing to a more general Theorem 2, which has a
short proof via GLN and two short, self-contained proofs using basic symmetric function
techniques. The complete proofs are available in [11].

Lemma 1. Let λ, µ, ν be partitions with ℓ(λ) ≤ l, ℓ(µ) ≤ m. Then

k(λ, µ, ν) = k(ml + λ, lm + µ, 1lm + ν ).

The following Lemma 2 is proved by applying Lemma 1 twice, in different directions.

Lemma 2. Let λ, µ, ν be partitions of the same size, and let l ≥ ℓ(λ), m ≥ ℓ(µ) and c ≥ ν1.
Let d = (m + 1)c, e = (l + 1)c. Then

k(λ, µ, ν) = k
(
(d) ⋄ (cl + λ), (e) ⋄ (cm + µ), cl+m+1 ⋄ ν

)
.

In lieu of a proof we illustrate this by example with λ = (5, 2), µ = (3, 3, 1) and
ν = (4, 3), with l = 2, m = 3 and c = 4. The red boxes are the addition from the first
application of Lemma 1 and the blue boxes are the second application.

, ,

Theorem 2. Let λ, µ, ν be partitions of the same size, such that λ1 ≥ ℓ(µ) · ν1 and µ1 ≥
ℓ(λ) · ν1. Then for every h ≥ 0 we have

k(λ, µ, ν) = k( λ + h, µ + h, ν + h ).

Our proofs use an observation on 3-dimensional contingency arrays Q with zeros
and ones as entries (Lemma 4), applied differently. We identify subsets Q ⊆ N3

with their characteristic functions Q : N3 → {0, 1}, and we call Q a binary or {0, 1}-
contingency array. This means, we interpret Q as a function to {0, 1}, and as the point
set of its support. The interpretation will always be clear from the context. The 2-
dimensional marginals of Q are defined as Qi∗∗ := ∑j,k Qi,j,k = |Q ∩ ({i} × N × N)|,
Q∗i∗ := ∑j,k Qj,i,k = |Q ∩ (N × {i} × N)|, Q∗∗i := ∑j,k Qj,k,i = |Q ∩ (N × N × {i})|. For
α ∈ NN, β ∈ NN, γ ∈ NN, |α| = |β| = |γ| < ∞, we denote by

C(α, β, γ) := {Q ⊆ N3 | Qi∗∗ = αi, Q∗i∗ = βi, Q∗∗i = γi for every i}.

There is a close connection to the Kronecker coefficients via the following (see e.g. §4):
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Lemma 3. For partitions α, β, γ of equal size, we have k′(α, β, γ) ≤ |C(α, β, γ)|.

Restrictions on the marginals can result in strong restrictions on the sets Q:

Lemma 4. Let α, β, γ be compositions with |α| = |β| = |γ|. Let a ≥ ℓ(α), b ≥ ℓ(β), and let
the integers c, h be such that c + h ≥ ℓ(γ) and ∑i>c γi ≤ h. Furthermore, let α1 ≥ bc + h,
β1 ≥ ac + h. Then, for every Q ∈ C(α, β, γ) we have

{1} × [b]× [c] ⊆ Q, [a]× {1} × [c] ⊆ Q, {1} × {1} × [c + h] ⊆ Q, and
Q ∩ (N × N × [c + 1, c + h]) = {1} × {1} × [c + 1, c + h].

In particular, if C(α, β, γ) is non-empty, then a = ℓ(α), b = ℓ(β), γi = 1 for all c + 1 ≤ i ≤
c + h, and α1 = bc + h, β1 = ac + h, α2 ≤ bc, and β2 ≤ ac.

In other words, if we have 3d point configurations with such marginals, then the
walls consist of two rectangles and a long column as depicted in the figure below.
Proof: Assume that there exists a binary contin-
gency array Q ∈ C(α, β, γ). Let B∪ := {1}× [b]×
[c + h] ∪ [a]× {1} × [c + h] be the set of points
in the planes x = 1 and y = 1, and let B∩ :=
{1}× {1}× [c+ h] be the set of points on the line
x = y = 1. Let Hi := Q ∩ (N × N × {i}) ∩ B∪
be the entries of Q in B∪ at the section with the

plane z = i. In particular,
c+h

∑
i=1

|Hi| = |Q ∩ B∪|.

We have ∑c+h
i=c+1 |Hi| ≤ ∑c+h

i=c+1 γi ≤ h, |Hi| ≤
a + b − 1 for all 0 < i ≤ c and |Q ∩ B∩| ≤ c + h.
All these inequalities must be met with equality,
because

1st coord.

3rd coord.

2nd coord.

α1 + β1 = |Q ∩ B∩|+ |Q ∩ B∪| = |Q ∩ B∩|+ ∑c+h
i=1 |Hi|

= |Q ∩ B∩|+ ∑c
i=1 |Hi|+ ∑c+h

i=c+1 |Hi|
≤ (c + h) + (a + b − 1)c + h = (a + b)c + 2h ≤ α1 + β1.

We thus have the following equalities: |Q ∩ B∩| = c + h = |B∩| and ∀i ∈ [c] we have
|Hi| = a + b − 1 = |(N ×N ×{i})∩ B∪|. Thus we have B∩ ⊆ Q, and {1}× [b]× [c] ⊆ Q,
and [a]× {1} × [c] ⊆ Q, and Q ∩ (N × N × [c + 1, c + h]) = {1} × {1} × [c + 1, c + h].
This gives the desired marginals and the claim follows.

Proof of Theorem 1. Let ℓ(λ) = l, ℓ(µ) = m and ν1 = c and set d = mc + c, e = lc + c.
Suppose first that λ1 ≤ mc and µ1 ≤ lc. We apply Lemma 2, and obtain

k(λ, µ, ν) = k
(
(d) ⋄ (cl + λ)︸ ︷︷ ︸

=: λ̂

, (e) ⋄ (cm + µ)︸ ︷︷ ︸
=: µ̂

, cl+m+1 ⋄ ν︸ ︷︷ ︸
=: ν̂

)
.
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The top rows of λ̂, µ̂, ν̂ are d, e, c respectively and thus Theorem 2 gives that for all
h ∈ N we have k(λ̂, µ̂, ν̂) = k(λ̂ + h, µ̂ + h, ν̂ + h) =

= k( (d + h) ⋄ (cl + λ), (e + h) ⋄ (cm + µ), (c + h) ⋄ cl+m ⋄ ν ) = k(cl + λ, cm + µ, cl+m ⋄ ν),

where the last identity follows by letting h → ∞. This proves Theorem 1 in the first case.
Suppose now that λ1 > mc, the case µ1 > lc is completely analogous. Set b := m + 1.

Then we have k(λ, µ, ν) = k(λ′, µ, ν′) = 0 since ℓ(λ′) = λ1 > mc = ℓ(µ)ℓ(ν′). On the
other hand, the reduced Kronecker coefficient is obtained by adding long first rows,
cm + c + h, cl + c + h, c + h respectively, so k(cl + λ, cm + µ, cl+m ⋄ ν) =

= k
(
(cm + c + h) ⋄ (cl + λ), (lc + c + h) ⋄ (cm + µ), (c + h) ⋄ cl+m ⋄ ν)

)
= k′

(
(cm + c + h) ⋄ (cl + λ)︸ ︷︷ ︸

=: α

, (lc + c + h) ⋄ (cm + µ)︸ ︷︷ ︸
=: β

, ((l + b)c + ν′) ⋄ (1h)︸ ︷︷ ︸
=: γ

)
for sufficiently large h. Let γ̂ = (l + b)c + ν′ be γ without the h many trailing 1s. We
observe that α2 = λ1 + c, ℓ(β) = b, and ℓ(γ̂) = c. From λ1 > mc we conclude α2 > bc.
Lemma 4 shows that C(α, β, γ) = ∅. Hence k′(α, β, γ) = 0 by Lemma 3.

3 Proofs via the general linear group

We refer to [7, §8] for the basic properties of the irreducible representations of the gen-
eral linear group. The Kronecker coefficients have an interpretation as the structure
coefficients arising when decomposing irreducible GLab representations as GLa × GLb
representations, which can be seen directly from Schur-Weyl duality:

Vν(C
ab) ≃

⊕
λ⊢a|ν|, µ⊢b|ν|

(
Vλ(C

a)⊗ Vµ(C
b)
)⊕k(λ,µ,ν)

.

Another formulation is via the multiplicity of the irreducible G := GLa × GLb × GLc
representation Vα(Ca)⊗ Vβ(C

b)⊗ Vγ(Cc) in the D-th wedge power of Ca ⊗ Cb ⊗ Cc, see
[8]. Formally for partitions α, β, γ ⊢ D we have

k′(α, β, γ) := k(α, β, γ′) = multα,β,γ
(∧D

(Ca ⊗ Cb ⊗ Cc)
)
.

A vector v for which
(
diag(r1, . . . , ra), diag(s1, . . . , sb), diag(t1, . . . , tc)

)
v = rλ1

1 · · · rλa
a ·

sµ1
1 · · · sµb

b · tν1
1 · · · tνc

c v is called a weight vector of weight (λ, µ, ν).
For (A, B, C) ∈ Ca×a × Cb×b × Cc×c, the Lie algebra action on

∧D(Ca ⊗ Cb ⊗ Cc) is
defined as (A, B, C).v := limε→0 ε−1((ε(A, B, C) + (ida, idb, idc))v − v). A raising oper-
ator is the Lie algebra action of (Ei−1,i, 0, 0), where Ei,j is the matrix with a 1 at posi-
tion (i, j) and zeros everywhere else. The other raising operators are (0, Ei−1,i, 0) and
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(0, 0, Ei−1,i). Let ei := (0, . . . , 0, 1, 0, . . . , 0)T and let ei,j,k := ei ⊗ ej ⊗ ek. Then, for example,
(Ei,j, 0, 0)er,1,1 = ei,1,1 iff r = j and 0 otherwise. A highest weight vector (HWV) of weight
(α, β, γ) is a nonzero weight vector of weight (α, β, γ) that is mapped to zero by all rais-
ing operators. The irreducible GLa × GLb × GLc representation Vα ⊗ Vβ ⊗ Vγ contains
exactly one HWV (up to scale), and that is of weight (α, β, γ). Hence ([8, Lemma 2.1]),

k′(α, β, γ) = dim
(

HWVα,β,γ
∧D

(Ca ⊗ Cb ⊗ Cc)
)

,

where HWVα,β,γ denotes the space of HWVs of weight (α, β, γ). Note that each standard
basis vector in

∧D(Ca ⊗ Cb ⊗ Cc) is a weight vector, and hence for each weight vector
space of weight w we have a basis given by the set of standard basis vectors of weight w.
Let ei,j,k := ei ⊗ ej ⊗ ek, and for a list of points Q ∈ (N3)D we define ψQ := eQ1 ∧ eQ2 ∧
· · · ∧ eQD . If Q has marginals (α, β, γ), then ψQ has weight (α, β, γ). This immediately
implies the result of Lemma 3.

Proof of Theorem 2 via contingeny arrays and highest weight vectors. Let a := ℓ(λ), b :=
ℓ(µ), c := ν1. Let γ := ν′, so ℓ(γ) = c. We have λ1 ≥ bc and µ1 ≥ ac. Observe
that k(λ, µ, ν) = k′(λ, µ, γ). Let λ̃ = λ + (h), µ̃ = µ + (h), γ̃ = γ ⋄ (1h). We define an
injective linear map φ as follows.

φ :
∧D

(Ca ⊗ Cb ⊗ Cc) →
∧D+h

(Ca ⊗ Cb ⊗ Cc+h)

v 7→ v ∧ e1,1,c+1 ∧ e1,1,c+2 ∧ · · · ∧ e1,1,c+h

Note that φ maps vectors of weight (λ, µ, γ) to vectors of weight (λ̃, µ̃, γ̃). It remains
to show that φ maps HWVs to HWVs, and that every HWV of weight (λ̃, µ̃, γ̃) has a
preimage under φ.

We first prove that φ sends HWVs to HWVs. By construction of φ, we observe that
for 1 ≤ i < i′ ≤ a, we have

(Ei,i′ , 0, 0)φ(u) = φ((Ei,i′ , 0, 0)u) = φ(0) = 0.

Analogously, (0, Ej,j′ , 0)φ(u) = 0 for 1 ≤ j < j′ ≤ b, and (0, 0, Ek,k′)φ(u) = 0 for 1 ≤ k <
k′ ≤ c. The remaining raising operators also vanish by construction of φ, because

(0, 0, Ek,k′)(v ∧ e1,1,c+1 ∧ · · · ∧ e1,1,c+h)

= v ∧ e1,1,c+1 ∧ · · · ∧ ê1,1,c+k ∧ e1,1,c+k′ ∧ e1,1,c+k′ ∧ · · · ∧ e1,1,c+h = 0

because of the repeated factor e1,1,c+k′ . Here the ê1,1,c+k means omission of that factor.
We now show that every weight vector of weight (λ̃, µ̃, γ̃) has a preimage under φ,

which finishes the proof. It is sufficient to show this for basis vectors. Let u = ψP be a
basis weight vector of weight (λ̃, µ̃, γ̃), i.e., Q ⊆ N3 with marginals (λ̃, µ̃, γ̃). We apply
Lemma 4 to see that {1} × {1} × [c + 1, c + h] ⊂ Q and Q ∩ (N × N × {i}) = {(1, 1, i)}
for all c + 1 ≤ i ≤ c + h. Therefore, ψQ has a preimage under φ, namely ψP, where P
arises from Q by deleting all points with 3rd coordinate > c.
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4 Proofs via symmetric functions

Here we use basic definitions and facts from symmetric function theory, see [25, 23] and
will skip the definitions of SSYTs, Schur function etc.. The multi-LR coefficients cλ

α1···αk are
defined as

cλ
α1···αk := ⟨sλ, sα1sα2 · · · sαk⟩ = ∑

β1,β2,...

cλ
α1β1cβ1

α2β2 · · · cβk−1

αk−1αk (4.1)

from where it is easy to see that they count SSYTs T of shape λ and type (α1 ⋄ α2 ⋄
· · · ), such that the reading word of each skew subtableau corresponding to the entries
with values between 1 + ∑r

i=1 ℓ(α
i) and ∑r+1

i=1 ℓ(α
i) is a lattice permutation for every

r = 1, . . . , k − 1. For example, 1 1 1 1 4 4 6
2 2 2 4 5 7
3 5 5 6 6

and 1 1 1 1 4 4 6
2 2 2 4 6 6
3 5 5 5 7

are two

multi-LR tableaux of shape λ = (7, 6, 5) and types α1 = (4, 3, 1), α2 = (3, 3), α3 = (3, 1).

The Kronecker coefficient can be studied via the following two [equivalent] identities

sλ[x · y] = ∑µ,ν k(λ, µ, ν)sµ(x)sν(y), ∑λ,µ,ν k(λ, µ, ν)sλ(x)sµ(y)sν′(z) = ∏i,j,k(1 + xiyjzk).

Extracting coefficients in both gives us the following formulas via multi-LRs:

k(λ, µ, ν) = ∑
σ∈Sℓ

sgn(σ) ∑
αi⊢λi−i+σi

cµ

α1···αk cν
α1···αk . (4.2)

and via 3d point configurations with given marginals:

∑λ,µ,ν k(λ, µ, ν)sλ(x)sµ(y)sν′(z) = ∑α,β,γ C(α, β, γ)xαyβzγ (4.3)

Note that this identity immediately gives the upper bound in Lemma 3 by comparing co-
efficients at xλyµzν′ on both sides. Replacing the Schurs by Weyl determinantal formula
and extracting monomials gives

k(λ, µ, ν) = ∑
σ∈Sa, π∈Sb, ρ∈Sc

sgn(σ) sgn(π) sgn(ρ)C(λ + σ − id, µ + π − id, ν′ + ρ − id). (4.4)

where a permutation σ is interpreted as the vector (σ(1), . . . , σ(a)) and id = (1, 2, . . .).

Proof of Theorem 2 via contingency arrays and symmetric functions. From now on we will
use formula (4.4) and Lemma 4 to show that the only possible contingency arrays are
the ones depicted there. Consider now k(λ + h, µ + h, ν + h) as in the problem, and
let α = (λ + h), β = (µ + h), γ = (ν + h)′ so that k(α, β, γ′) = k(λ + h, µ + h, ν + h).
Let ν1 = c, ℓ(λ) = a and ℓ(µ) = b, so we have α1 ≥ bc + h, β1 ≥ ac + h, γi = 1 for
i = c + 1, . . . , c + h and

k(α, β, γ′) = ∑
σ∈Sa, π∈Sb, ρ∈Sc+h

sgn(σ) sgn(π) sgn(ρ)C(α + σ − id, β + π − id, γ + ρ − id). (4.5)
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In formula (4.5) we then consider {0, 1}-contingency arrays Q with marginals

Q1∗∗ := ∑
j,k

Q1,j,k = λ1 + σ1 − 1 ≥ bc + h, Q∗1∗ := ∑
i,k

Qi,1,k = µ1 + π1 − 1 ≥ ac + h,

Q∗∗k := ∑
i,j

Qi,j,k = 1 + ρk − k, for k = c + 1, . . . , c + h.

Note that then we have ∑
k>c

Q∗∗k = h +
c+h

∑
k=c+1

ρk −
c+h

∑
k=c+1

k ≤ h, and the support of the

array is in [1, a]× [1, b]× [1, c + h], so we can apply Lemma 4 and conclude that Q1,j,k =
0 iff (j, k) ∈ [2, b] × [c + 1, c + h] and Qi,1,k = 0 iff (i, k) ∈ [2, a] × [c + 1, c + h]. Thus,
we must have Q1∗∗ = bc + h, Q∗1∗ = ac + h and so σ1 = π1 = 1, {ρc+1, . . . , ρc+h} =
{c + 1, . . . , c + h} and for k ∈ [c + 1, c + h] we must have Qi,j,k = 0 unless i = j = 1. This
also forces us to have Q1,1,k = 1 for all these k, and so ρk = k for k = c + 1, . . . , c + h.

This completely determines Qi,j,k for k > c, as well as ρk for k > c, and ρ = ρ̄, (c +
1), . . . , (c + h) for ρ̄ ∈ Sc. We can thus write formula (4.5) as
k(λ + h, µ + h, ν + h)

= ∑
σ∈Sa, π∈Sb, ρ∈Sc+h

sgn(σ) sgn(π) sgn(ρ)C(α + σ − id, β + π − id, γ + ρ − id)

= ∑
σ∈Sa, π∈Sb, η∈Sc

sgn(σ) sgn(π) sgn(η)C(ᾱ + σ − id, β̄ + π − id, γ̄ + η − id),

where ᾱ = α − (h) = λ, β̄ = β − (h) = µ and γ̄ = (γ1 . . . , γc) = ν′. As the last part
coincides with the expression for k(λ, µ, ν) in (4.4), we get the desired identity.

Proof of Theorem 2 via Littlewood-Richardson coefficients.
Let again ℓ(λ) = a, ℓ(µ) = b and ν1 = c.

We have that k(λ + h, µ + h, ν + h) = k(ν′ ⋄ (1h), λ′ ⋄ (1h), µ + h) and we are going to
apply formula (4.2) with that triple of partitions. Set µ̂ = µ + h, λ̂ = λ′ ⋄ (1h) = (λ + h)′

and ν̂ = ν′ ⋄ (1h)(ν + h)′. Here ℓ(ν′ ⋄ (1h)) = c + h, so

k(λ + h, µ + h, ν + h) = ∑
σ∈Sc+h

sgn(σ) ∑
αi⊢ν̂i−i+σi

cλ̂
α1α2···c

µ̂

α1α2···

From the iterated definition of the multi-LR coefficients (4.1) we see that in order for the
coefficients to be nonzero, we must have αi ⊂ µ̂ and αi ⊂ λ̂. Tthen ℓ(αi) ≤ ℓ(µ) = b and
αi

1 ≤ λ̂1 = a. Note that multi-LR coefficients count certain SSYTs of type (α1 ⋄ α2 ⋄ . . . ⋄
αc ⋄ . . .) and thus in the shape λ̂ the first column will have at most ℓ(α1)+ · · ·+ ℓ(αc) ≤ bc
many entries from the first c partitions. So there are at least h boxes in the first column
which need to be covered by the partitions αc+1, . . . , αc+h. We then have

h ≤ ℓ(αc+1) + · · ·+ ℓ(αc+h) ≤ |αc+1|+ · · ·+ |αc+h| =
c+h

∑
i=c+1

1 − i + σi ≤ h,
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as σc+1 + · · ·+ σc+h ≤ c + 1 + · · · c + h. Thus we need to have equalities, and so

|αc+1|+ · · ·+ |αc+h| = h, ℓ(αi) = |αi|,

so αi are single column partitions, possibly empty. Further, we have αi ≤ a, αi ⊂ µ̂.
As there is a multi-LR of type (α1 ⋄ α2 · · · ), the first row of that tableaux can only be
occupied by the smallest entries of each type. So we must have

ac + h = µ̂1 ≤ ∑
i

αi
1 ≤

c

∑
i=1

a +
c+h

∑
i=c+1

αi
1.

Thus αc+1
1 + · · · + αc+h

1 ≥ h. Since αi
1 ≤ 1 by the above consideration, we must have

αi = (1) for all i > c. So σi = i for i = c + 1, . . . , c + h. Then

cλ̂
α1α2···αc+h = cλ′

α1···αc and cµ̂

α1α2···αc+h = cµ

α1···αc .

We thus get that k(λ + h, µ + h, ν + h) = ∑
σ∈Sc+h

sgn(σ) ∑
αi⊢ν̂i−i+σi

cλ̂
α1α2···c

µ̂

α1α2···

= ∑
σ∈Sc

sgn(σ) ∑
αi⊢ν′i−i+σi

cλ′

α1α2···c
µ

α1α2··· = k(ν′, λ′, µ) = k(λ, µ, ν).
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Abstract. The quasi-partition algebras were introduced by Daugherty and the first
author in 2014, as centralizers of the symmetric group. Here we provide a more gen-
eral construction using idempotents which allows us to define the half quasi-partition
algebra. Our construction allows us to describe the planar analogues of these quasi-
partition algebras. In this case the planar subalgebras are centralizer algebras of the
quantum group Uq(sl2) and of dimensions equal to Motzkin and Riordan numbers.
We use a Bratteli-like diagram to describe how the representation theories of these
algebras are related.

Keywords: diagram algebras, representation theory, Motzkin and Riordan numbers

1 Introduction

The partition algebra was defined independently in the work of Martin and his coau-
thors [10, 11] and Jones [9] in the early 1990s as a natural generalization of centralizer
algebras such as the Brauer and Temperley-Lieb algebras. It is of interest for combina-
torial representation theory because it provides a dual approach to resolving some of
the open combinatorial problems related to the representation theory of the symmetric
group. The partition algebras are related to the Kronecker coefficients [3] and to the
restriction and plethysm coefficients [12].

For integers k and n with n ≥ 2k and Vn = Cn, then V⊗k
n is an Sn module with the

diagonal action of a permutation on the k tensors. The centralizer of this action is iso-
morphic to the partition algebra Pk(n). It is possible to understand the tensor products
of permutation modules as sequences of restriction and induction [4] of the trivial Sn-
module, S(n), since we have V⊗k

n
∼= (IndSn

Sn−1
ResSn

Sn−1
)kS(n) . Following [8], we denote the

half-partition algebras as Pk+ 1
2
(n). These algebras lie in between two partition algebras

and are isomorphic to centralizers of the symmetric group Sn−1 acting on ResSn
Sn−1

V⊗k
n .

This defines a structure of embeddings and inclusions as

P0(n) ↪→ P 1
2
(n) ⊆ P1(n) ↪→ P 3

2
(n) ⊆ P2(n) ↪→ · · ·

*nwallace@yorku.ca. Rosa Orellana was partially supported by NSF Grant DMS-2153998. Nancy Wal-
lace and Mike Zabrocki are partially supported by NSERC.

mailto:nwallace@yorku.ca
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that makes it possible to construct the irreducible representations using what is known
as the “basic construction” (see Section 4 of [8]).

The quasi-partition algebra was introduced by Daugherty and the first author [5] by
considering the centralizer of the symmetric groups when they act instead on (S(n−1,1))⊗k

where S(n−1,1) is the simple Sn-module indexed by (n − 1, 1). It is well known that
Vn ∼= S(n−1,1) ⊕ S(n). Let proj denote the projection that maps Vn to S(n−1,1). We have that

(S(n−1,1))⊗k ∼= (proj ◦ IndSn
Sn−1

ResSn
Sn−1

)kS(n) .

This decomposition into three operations gives rise to three families of quasi-partition
algebras. Notably there is a half quasi-partition algebra that is the centralizer of the
symmetric group Sn−1 when it acts on ResSn

Sn−1
(S(n−1,1))⊗k and another algebra that is the

centralizer when Sn acts diagonally on IndSn
Sn−1

ResSn
Sn−1

(S(n−1,1))⊗k ∼= (S(n−1,1))⊗k ⊗Vn.
This paper develops the quasi-partition algebras both as centralizer algebras (Theo-

rem 3.9) and as projections of the partition algebra multiplied on the left and right by an
idempotent (Equation (3.4)). The main results are the construction of a tower of quasi-
partition algebras (Subsection 3.3) and an explicit description of bases of the simple
modules of QPk(n) (Section 3.1). The tower of algebras is used to relate the dimensions
of the irreducibles of these families using the inclusions and projections (Theorem 3.10).

A motivation for introducing these algebras is to gain a better understanding of the
representation theory of the symmetric group. An important insight from the reference
[3] is that reduced Kronecker coefficients arise as multiplicities in the restriction and
induction of simple partition algebra modules. In analogy, it can be shown that the
coefficients occurring in the restriction/induction of simple quasi-partition algebras are
also the reduced Kronecker coefficients. This is because there is a see-saw pair which
relates these coefficients:

(
S(n−1,1)

)⊗k+ℓ

Sn

Sn × Sn

QPk(n)⊗QPℓ(n)

QPk+ℓ(n)

.

This relationship implies that the reduced Kronecker coefficients, which are multiplici-
ties of the restriction of an Sn × Sn module to Sn, are also the multiplicities of a simple
QPk(n)⊗QPℓ(n) module in the restriction of a simple QPk+ℓ(n) module.

We conclude by describing the planar quasi-partition and half quasi-partition alge-
bras. These algebras are isomorphic to centralizer algebras of the quantum group Uq(sl2)
and have dimensions which are given by the Motzkin and Riordan numbers.
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2 Preliminaries

The partition algebra was originally defined by Martin in [11]. All the results in this
section are due to Martin and his collaborators, see [10] and references therein. For a
nice survey on the partition algebra see [8].

For k ∈ Z>0, x ∈ C, we let Pk(x) denote the complex vector space with bases given
by all set partitions of [k]∪ [k] := {1, 2, . . . , k, 1, 2, . . . , k}. A part of a set partition is called
a block. For a given block B, the set B ∩ [k] denotes the subset of all barred elements of
B are referred to as the bottom of B and the set B ∩ [k] denotes the subset of all unbarred
elements of B and is referred to as the top of B. Notice that for a given set partition d
on 2k elements, then d ∩ [k] and d ∩ [k] are set partitions on k elements. We will let P̂k
denote the set of all set partitions of {1, 2, . . . , k, 1, 2, . . . , k}.

Blocks with a single element will be referred to as singletons. Blocks containing at
least one element from [k] and one element from [k] will be called propagating blocks; all
other blocks will be called non-propagating blocks.

For example,

d = {{1, 2, 4, 2, 5}, {3}, {5, 6, 7, 3, 4, 6, 7}, {8, 8}, {1}},

is a set partition (for k = 8) with 5 blocks. The block B = {1, 2, 4, 2, 5} is propagating.
The block {3} is a singleton.

A set partition in P̂k can be represented by a partition diagram consisting of a frame
with k distinguished points on the top and bottom boundaries, which we call vertices.
We number the top vertices from left to right by 1, 2, . . . , k and the bottom vertices simi-
larly by 1, 2, . . . , k. We create a graph with connected components corresponding to the
blocks of the set partition such that there is a path of edges between two vertices if they
belong to the same block. A partition diagram is an equivalence class of graphs, where
the equivalence is given by having the same connected components. In displaying the
diagrams, we often omit the numbering on the vertices in the interest of keeping the
diagrams less cluttered.

We will use the word diagram to refer to any element of P̂k or equivalently its partition
diagram. Examples of set partitions represented as diagrams are given in Example 2.1.

We define an internal product, d1 · d2, of two diagrams d1 and d2 using the concate-
nation of d1 above d2, where we identify the bottom vertices of d1 with the top vertices
of d2. If there are m connected components consisting only of middle vertices, then

d1 · d2 = xmd3

where d3 is the diagram with the middle vertices components removed.

Example 2.1. Consider the set partitions d1 = {{1, 3, 4}, {2, 1}, {4, 5, 6, 5}, {2, 3}, {6}}
and d2 = {{1}, {2, 3}, {4, 1, 2, 4}, {5, 6}, {6}, {3, 5}} in P6(x). Which have the diagram
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representation given below. When we stack d1 on top of d2, there are two components
containing only middle vertices, hence the coefficient x2 in the product.

d1 = and d2 = then d1d2 = x2
.

Extending this by linearity defines a multiplication on Pk(x). With this product, Pk(x)
becomes an associative algebra with unit of dimension B(2k), the Bell number which
enumerates the number of set partitions of a set with 2k elements.

A diagram is planar if the blocks of the diagram can be drawn so they do not intersect
(to be clear, the blocks are not permitted to leave the bounding box). The span of the
planar diagrams of size k is a subalgebra of the partition algebra Pk(x) which we denote
PPk(x). This subalgebra is of dimension equal to the Catalan number C2k.

Both Pk+1(x) and PPk+1(x) have a subalgebra spanned by the diagrams with k +
1 and k + 1 are in the same block. These subalgebras will be denoted Pk+ 1

2
(x) and

PPk+ 1
2
(x) and have dimensions equal to B(2k + 1) and C2k+1 respectively. The planar

partition algebras PPk(x) and PPk+ 1
2
(x) are known to be isomorphic to the Temperley-

Lieb algebras TL2k(
√

x) and TL2k+1(
√

x) respectively.
Given diagrams d1 ∈ P̂k1 and d2 ∈ P̂k2 , we denote by d1 ⊗ d2 the diagram in P̂k1+k2

obtained by placing d2 to the right of d1. Alternatively, in terms of set partition notation

d1 ⊗ d2 = d1 ∪ {{b + k1 : b ∈ B} : B ∈ d2} .

This external product is extended linearly to a product of elements from Pk1(x) and
Pk2(x) with the result being an element in Pk1+k2(x).

Let 1 := {{1, 1}} and p := {{1}, {1}} denote special elements of P̂1. For a fixed k, we
denote the identity element of Pk(x) by 1⊗k and the elements pj := 1⊗j−1⊗ p⊗ 1⊗k−j ∈ P̂k
for 1 ≤ j ≤ k. For a complete presentation of the partition algebra see Theorem 1.11 in
[8].

Let Vn = Cn, the symmetric group acts on Vn via the permutation matrices

σ · vi = vσ(i), for σ ∈ Sn.

Thus, Sn acts diagonally on a basis of simple tensors of V⊗k
n ,

σ · (vi1 ⊗ · · · ⊗ vik) = vσ(i1) ⊗ · · · ⊗ vσ(ik) .

There is an action of Pr(x) on an element of V⊗k
n which we do not explicitly use

and so we do not state it here. Using this action, we have that for n ≥ 2k, k ∈ Z≥0,
Pk(n) ∼= EndSn(V

⊗k
n ) and for n ≥ 2k + 1 and k ∈ Z≥0, Pk+ 1

2
(n) ∼= EndSn−1(ResSn

Sn−1
V⊗k

n ) .
For details and proofs see [4, 8, 9].

The planar partition algebras (through the isomorphism with the Temperley-Lieb
algebra) have a similar interpretation as centralizer of the quantized universal enveloping
algebra when acting on the 2k-fold tensor of the defining representation V(1)⊗2k [6].
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3 Quasi-partition algebras

For k ∈ Z>0, the quasi-partition algebra QPk(n) was introduced in [5] as the centralizer
algebra EndSn((S

(n−1,1))⊗k), where S(n−1,1) is the irreducible representation of the sym-
metric group, Sn. In this section, we give a more general definition and introduce the
half quasi-partition algebras, QPk+ 1

2
(x).

Let k ∈ Z≥0 and let J be any subset of [k] = {1, 2, . . . , k}, we set p∅ := 1⊗k and
pJ := ∏j∈J pj. We define π := 1− 1

xp and using tensor notation we define an idempotent
π⊗k in Pk(x) as follows

π⊗k :=
(

1⊗k − 1
x
p1

)(
1⊗k − 1

x
p2

)
· · ·

(
1⊗k − 1

x
pk

)
= ∑

J⊆[k]

1
(−x)|J|

pJ . (3.1)

The corresponding idempotent in Pk+ 1
2
(x) ⊆ Pk+1(x) will be denoted by π⊗k

k+1 :=

π⊗k ⊗ 1 to indicate that it is contained in the larger algebra. For k ∈ Z≥0 and any
diagram d ∈ P̂k, we define

d = π⊗kdπ⊗k.

And similarly, for d ∈ P̂k+ 1
2
, we define d = π⊗k

k+1dπ⊗k
k+1. For integers k ≥ 0, and d ∈

Pk+1(x), we define
d̃ = π⊗k

k+1dπ⊗k
k+1 .

Example 3.1. The idempotent in P3(x) is π⊗3 = 1⊗3 − 1
xp1 − 1

xp2 − 1
xp3 +

1
x2p1p2 +

1
x2p1p3 +

1
x2p2p3 − 1

x3p1p2p3. This element expressed using diagrams is

π⊗3 = − 1
x

− 1
x

− 1
x

+
1
x2 +

1
x2

+
1
x2 − 1

x3 .

The idempotent in P2+ 1
2
(x) is π⊗2

3 = 1⊗3 − 1
xp1 − 1

xp2 +
1
x2p1p2 and this expression in

terms of diagrams is

π⊗2
3 = − 1

x
− 1

x
+

1
x2 .

Lemma 3.2. For r ∈ 1
2Z≥0 if d ∈ P̂r is a diagram with one or more singletons, then d = 0.

Let d be a diagram without singletons, we note that d is equal to a sum of elements d
plus other terms with at least one singleton.
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Example 3.3. For d = {{1, 2, 1}, {3, 2, 3}} a diagram in P2+ 1
2
(x), we compute directly:

d = − 1
x

− 1
x

− 1
x

− 1
x

+
1
x2

+
1
x2 +

1
x2 +

2
x2 − 2

x3 .

For r ∈ 1
2Z≥0, we set D̂r = {d : d ∈ P̂r without singletons}, and define

QPr(x) = C(x)-Span{d | d ∈ D̂r}. (3.2)

If r is an integer, we call QPr(x) the quasi-partition algebra and if r is half an integer, the
half quasi-partition algebra.

Now consider the subalgebra of Pk+1(x),

Q̃Pk+1(x) = C(x)-Span{d̃ | d ∈ Pk+1(x)} .

We note that the basis of Q̃Pk+1(x) is:

{d̃ : d ∈ P̂k+1 has no singletons in [k] ∪ [k]} . (3.3)

The index set are the diagrams which have no singletons in the first k positions but that
may have singletons in the last position.

Hence, the first step is the natural inclusion of QPk+ 1
2
(x) in Q̃Pk+1(x). It should be

made clear that Q̃Pk+1(x) is larger than both QPk+ 1
2
(x) and QPk+1(x) since, for instance,

π⊗k
k+1pk+1 ∈ Q̃Pk+1(x) but it is not an element of either QPk+ 1

2
(x) or QPk+1(x).

Thus far we have introduced algebras in our tower so that for each k ∈ Z≥0,

QPk(x) = π⊗kPk(x)π⊗k ,

QPk+ 1
2
(x) = π⊗k

k+1Pk+ 1
2
(x)π⊗k

k+1 , (3.4)

Q̃Pk+1(x) = π⊗k
k+1Pk+1(x)π⊗k

k+1 .

The second step is to explain how they are related. There is a projection from
Q̃Pk+1(x) to QPk+1(x) which, for each d ∈ P̂k+1, d̃ ∈ Q̃Pk+1(x) is sent to d = (1⊗k+1 −
1
xpk+1)d̃(1⊗k+1 − 1

xpk+1) ∈ QPk+1(x).
Therefore we have the following chain of inclusions and projections:

QP0(x) ↪→ QP 1
2
(x)⊆ Q̃P1(x)↠ QP1(x) ↪→ QP1+ 1

2
(x)⊆ Q̃P2(x)↠ QP2(x) ↪→ · · · . (3.5)

The dimensions of these algebras are determined by counting the elements in Equa-
tions (3.2) and (3.3). The dimension of QPk(x), dim(QPk(x)), is equal to the number of
set partitions of [k] ∪ [k] without blocks of size one and is equal to (see [5])

dim(QPk(x)) =
2k

∑
j=1

(−1)j−1B(2k− j) + 1
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and are every other term in [15] sequence A000296, while dim(QPk+ 1
2
(x)) = B(2k) and

is every other term in [15] sequence A000110. The sequence of dimensions of Q̃Pk+1(x)
is given by [15] sequence A207978. Using the standard counting technique of inclusion-
exclusion we deduce that

dim(Q̃Pk+1(x)) =
2k

∑
s=0

(−1)s
(

2k
s

)
B(2k + 2− s) .

Example 3.4. The sequence of dimensions of the algebras for 0 ≤ k ≤ 6 is given in the
table below.

k 0 1 2 3 4 5 6
dim(QPk(x)) 1 1 4 41 715 17722 580317

dim(QPk+ 1
2
(x)) 1 2 15 203 4140 115975 4213597

dim(Q̃Pk+1(x)) 2 7 67 1080 25287 794545 31858034

3.1 Representations of quasi-partition algebras

For this section, let x = n ∈ Z≥0 with n ≥ 2k.
Recall that a block B is called propagating if it contains at least one element from

each [k] and [k]. Define V(k, m) to be the vector space spanned by the diagrams corre-
sponding to set partitions of [k] ∪ [k] with m + 1, . . . , k in singleton blocks, and all other
j are in propagating blocks where j is the only barred element in its block. We call
these (k, m)-diagrams. For a diagram d ∈ P̂k, let p(d) denote the number of propagating
blocks. A (k, m)-diagram is called (k, m)-standard if its propagating blocks B1, . . . , Bm
satisfy max(Bj−1 ∩ [k]) < max(Bj ∩ [k]) for all 1 ≤ j ≤ m.

For 0 ≤ m ≤ k and ν ⊢ m, a basis of the simple Pk(x) module ∆k(ν) is defined by

Bk(ν) = {d⊗ T | d is a (k, m)-standard and T is a standard tableau of shape ν}. (3.6)

A diagram d ∈ Pk(x) acts on a basis element d′ ⊗ T of ∆k(ν) by left multiplication,

d · d′ ⊗ T =

{
dd′ ⊗ T if p(dd′) = m
0 otherwise

, (3.7)

in the case that p(dd′) = m, we may factor dd′ = xad1τ where d1 is a (k, m)-standard
diagram and τ ∈ Sm. Hence, dd′ ⊗ T = xad1 ⊗ τ · T, where τ acts on T by permuting
the entries of the tableau and τ · T might not be standard, but can be written as a linear
combination of standard tableaux using the Garnir straightening algorithm for Specht
modules (see for instance [14]).

Following [7] the elements of Bk(ν) can be combined into a single object that is
represented by a set valued tableau.

https://oeis.org/A000296
https://oeis.org/A000110
https://oeis.org/A207978
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Definition 3.5. For k ∈ Z≥0, n ≥ 2k and 0 ≤ i ≤ k, let λ be a partition of n, a [k]-set
valued tableau T of shape λ satisfies the following conditions:

1. The sets filling the boxes of the Young diagram of λ form a set partition α of [k],
the sets in α are called blocks.

2. Every box in rows λ2, . . . , λℓ is filled with a block in α.

3. Boxes at the end of the first row of λ could contain blocks of α and, because of
the condition that n ≥ 2k, there are at least k empty boxes preceding the boxes
containing sets.

Let Tk(λ) denote the set of all [k]-set valued tableaux of shape λ.

Example 3.6. Correspondence between a basis element d⊗ T ∈ ∆9((2, 1)) and a [9]-set
valued tableau of shape (n− 3, 2, 1).

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

1 3
2⊗ ρ7−→

13
2 459

· · · 67 8︸ ︷︷ ︸
n−3 boxes

We define Qk(ν) to be the set of nonzero π⊗kd⊗ T (that is, d has no singletons in the
top row), for d⊗ T ∈ Bk(ν). Define QPν

k to be the C(x)-Span of the elements in Qk(ν)
for every ν ⊢ m and 0 ≤ m ≤ k.

Theorem 3.7. Let k ∈ Z≥0, the set {QPν
k | ν ⊢ m where 0 ≤ m ≤ k} forms a complete set of

mutually non-isomorphic simple modules for QPk(x).

Example 3.8. For k = 2 there are four simple modules of QP2(n) and all are of dimension
one and we display them using the correspondence with set valued tableaux:

QP∅
2 = C-Span

{
. . . 12 − 1

n
. . . 1 2

}

QP
(1)
2 = C-Span

{
12

. . . − 1
n

1
. . . 2 −

1
n

2
. . . 1

}
QP

(2)
2 = C-Span

{
1 2

. . .

}
QP

(1,1)
2 = C-Span

{
2
1

. . .

}
.

In [13] we give a similar description of the simple modules of the half partition
algebras. From that construction, it is possible to give a similar description of the simple
modules of QPk+ 1

2
(x). However we will see in the next section that QPk+ 1

2
(n) ∼= Pk(n−

1).
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3.2 Quasi-partition algebras as centralizers

Let Vn = C-Span{v1, v2, . . . , vn}, then it is well known that S
(n−1,1)
Sn

∼= C-Span{v1 −
vn, v2− vn, . . . , vn−1− vn} and S

(n)
Sn
∼= C-Span{v1 + v2 + · · ·+ vn} and that Vn ∼= S

(n−1,1)
Sn

⊕
S
(n)
Sn

as an Sn-module.
We refer the reader to [1, 2, 4] for the action of the elements Pk(n) when it acts on V⊗k

n .
This action realizes the partition algebra as a centralizer algebra Pk(n) ∼= EndSn(V

⊗k
n ).

In this section we state the corresponding realizations of the quasi-partition algebras as
centralizer algebras.

Theorem 3.9. For n, k ∈ Z>0, if n ≥ 2k, then

QPk(n) ∼= EndSn

((
S
(n−1,1)
Sn

)⊗k
)

, QPk+ 1
2
(n) ∼= EndSn−1

(
ResSn

Sn−1

(
S
(n−1,1)
Sn

)⊗k
)

,

and Q̃Pk+1(n) ∼= EndSn

((
S
(n−1,1)
Sn

)⊗k
⊗Vn

)
.

Since we have that

ResSn
Sn−1

S
(n−1,1)
Sn

∼= S
(n−2,1)
Sn−1

⊕ S
(n−1)
Sn−1

∼= Vn−1

it follows that QPk+ 1
2
(n) ∼= Pk(n− 1).

3.3 Dimensions of irreducible modules and a Bratteli diagram

The interpretation of the quasi-partition algebras as centralizer algebras allows us to
relate the dimensions of the irreducibles in the following recursive formulae.

Theorem 3.10. Let n ≥ 2k + 1, then for µ ⊢ n− 1 such that |µ| < k, then

dim
(
QP

µ

k+ 1
2
(n)

)
= ∑

λ←µ

dim(QPλ
k (n)) , dim(Q̃P

λ
k (n)) = ∑

µ→λ

dim
(
QP

µ

k+ 1
2
(n)

)
, (3.8)

dim(QPλ
k (n)) = dim(Q̃P

λ
k (n))− dim(QPλ

k−1(n)) . (3.9)

Each row of the diagram on the left in Figure 1 displays partitions λ where λ is in
the index set of the irreducible representations of the chain algebras from Theorem 3.10.
The irreducible representations of QPk(n) are displayed in red, QPk+ 1

2
(n) are displayed

in blue, Q̃Pk+1(n) are displayed in green.
Let λ → µ represent the relation that λ is obtained from µ by removing a cell. The

relations between the irreducibles in the rows of the diagram are summarized as follows:
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• (Equation (3.8)) Between the QPk(n) and QPk+ 1
2
(n) rows there is an edge from λ to

µ if µ = λ or µ → λ (alternatively, if µ → λ).

• (Equation (3.8)) Between the QPk+ 1
2
(n) and Q̃Pk+1(n) rows there is an edge from µ

to λ if λ = µ or λ← µ (alternatively, these two conditions may be stated as ‘if λ←
µ’).

• (Equation (3.9)) Between the Q̃Pk+1(n) and QPk(n) rows there is an edge from λ to
λ but the dimension of the irreducible λ is equal to the dimension of the irreducible
λ minus the dimension of the irreducible λ at k− 1.

Figure 1: On the left, a Bratteli like-diagram showing the relations of the tower of
algebras in Equation (3.5); and on the right the corresponding diagram for the planar
counterpart. The subscripts within the colored boxes indicate the dimensions of the
irreducibles.

The diagram is similar to a Bratteli diagram except that, because of the projection
operation from Q̃Pk+1(n) to QPk+1(n), the dimension is no longer the number of paths
in the diagram and is instead something slightly more complex.
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4 Planar quasi-partition algebras

We now proceed to develop a similar construction to the quasi-partition algebra by con-
sidering a subalgebra of the planar partition algebra. Due to space considerations and
that we have provided details on the quasi-partition algebras already, our presentation
of these algebras here will be briefer, but analogues of the results for the quasi-partition
algebras in this setting can be shown using similar methods.

We define three subalgebras of PPr(x) for r ∈ 1
2Z≥0 by

PQPk(x) = π⊗kPPk(x)π⊗k ,

PQPk+ 1
2
(x) = π⊗k

k+1PPk+ 1
2
(x)π⊗k

k+1 , (4.1)

P̃QPk+1(x) = π⊗k
k+1PPk+1(x)π⊗k

k+1 .

Example 4.1. The sequence of dimensions of PQPk(x), PQPk+ 1
2
(x) and P̃QPk+1(x) for

0 ≤ k ≤ 13 is

k 0 1 2 3 4 5 6
dim(PQPk(x)) 1 1 3 15 91 603 4213

dim(PQPk+ 1
2
(x)) 1 2 9 51 323 2188 15511

dim(P̃QPk+1(x)) 2 6 30 178 1158 7986 57346

The first row of this table is given by [15] sequence A099251 and is every other term of
the Riordan numbers (A005043). The second row of this table is given by [15] sequence
A026945 which is every other term of the Motzkin numbers (A001006). The third row
of this table is every other term in the [15] sequence A005554 which are a sum of two
successive Motzkin numbers.

The planar partition algebra PPk(x) is isomorphic to the Temperley-Lieb algebra
TL2k(

√
x). For q ∈ C, let Uq(sl2) denote the quantum group of the Lie algebra sl2

and recall that its simple modules are classically denoted by V(i), where i is a nonneg-
ative integer. For example, V(0) is the trivial representation, V(1) ∼= C2 and V(2) is the
adjoint representation. It is well known that TLk

∼= EndUq(sl2)(V(1)⊗k) see [6] for more
details. Using well known tensor rules, we have that V := V(1)⊗2 ∼= V(0)⊕V(2).

Theorem 4.2. Let r be a nonzero integer and 0 ̸= q ∈ C is not a root of unity, and set
V = V(0)⊕V(2), then we have the following

PQPr((q + q−1)2) ∼= EndUq(sl2)(V(2)⊗r),

PQPr+ 1
2
((q + q−1)2) ∼= EndUq(sl2)(V(2)⊗r ⊗V(1)),

and
P̃QPr+1((q + q−1)2) ∼= EndUq(sl2)(V(2)⊗r ⊗V).

https://oeis.org/A099251
https://oeis.org/A005043
https://oeis.org/A026945
https://oeis.org/A001006
https://oeis.org/A005554
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Invariant theory for the face algebra of the braid
arrangement

Patricia Commins∗1

1School of Mathematics, University of Minnesota Twin Cities

Abstract. The faces of the braid arrangement form a monoid. The associated monoid
algebra – the face algebra– is well-studied, especially in relation to card shuffling and
other Markov chains. In this abstract, we explore the action of the symmetric group on
the face algebra from the perspective of invariant theory. Bidigare proved the invari-
ant subalgebra of the face algebra is (anti)isomorphic to Solomon’s descent algebra.
We answer the more general question: what is the structure of the face algebra as a
simultaneous representation of the symmetric group and Solomon’s descent algebra?

Special cases of our main theorem recover the Cartan invariants of Solomon’s descent
algebra discovered by Garsia–Reutenauer and work of Uyemura-Reyes on certain shuf-
fling representations. Our proof techniques involve the homology of intervals in the
lattice of set partitions.

Keywords: descent algebra, higher Lie characters, plethysm, finite dimensional alge-
bras, poset topology, reflection arrangements

1 Background

1.1 The braid arrangement and its face algebra

Write x := (x1, x2, · · · , xn) to denote an element of the vector space Rn. The braid arrange-
ment Bn is the hyperplane arrangement in Rn consisting of the hyperplanes {x : xi = xj}
for all 1 ≤ i < j ≤ n. Each hyperplane {x : xi = xj} partitions Rn into three subsets: the
halfspace H+

ij = {x : xi > xj}, the halfspace H−ij = {x : xi < xj}, and the hyperplane
itself H0

ij. The faces of Bn are the nonempty intersections of the form

⋂
1≤i<j≤n

H
sgnij
ij

for some set of choices sgnij ∈ {+,−, 0}.
The faces of Bn naturally correspond to strings of inequalities relating all coordinates.

For example, one face F of B7 corresponds to the string x4 < x1 = x5 < x7 < x2 = x3 =

∗commi010@umn.edu. Commins is supported by an NSF Graduate Research Fellowship.

mailto:hello@world.c
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x6. Combinatorially, these strings (and their corresponding faces) are ordered set partitions
of the set [n] := {1, 2, · · · , n}. For example, F is labelled by the ordered set partition
({4}, {1, 5}, {7}, {2, 3, 6}) , which we write as (4, 15, 7, 236). The symmetric group Sn acts
on the faces of Bn by π (P1, P2, · · · , Pk) := (π(P1), π(P2), · · · , π(Pk)) .

Example 1. The braid arrangement B3 (intersected with the plane x1 + x2 + x3 = 0) is shown
below. The colors point out the four S3-orbits of faces.

(3, 12)

(12, 3)(2, 13)

(13, 2)

(23, 1) (1, 23)
(123)

(1, 2, 3)
(2, 1, 3)

(1, 3, 2)

(2, 3, 1)

(3, 2, 1)

(3, 1, 2)

The faces of Bn have an associative multiplicative structure. This product was first
considered by Tits in [22]. In terms of ordered set partitions,

(P1, P2, · · · , Pk) · (Q1, Q2, · · · , Q`) := (P1 ∩Q1, P1 ∩Q2, · · · , P1 ∩Q`, P2 ∩Q1, · · · Pk ∩Q`)
∧ ,

where ∧ indicates the removal of empty sets. For example, in B7,

(4, 15, 7, 236) · (245, 367, 1) = (4, 5, 1, 7, 2, 36).

The ordered set partition with a single block (12 · · · n) is an identity element, so the
faces form a monoid, which we denote by Fn. We are primarily interested in the face
algebra CFn which is the free C−module with basis Fn and multiplication(

∑
F∈Fn

cFF

)
·
(

∑
G∈Fn

dGG

)
:= ∑

F,G∈Fn

cFdGF · G.

It is straightforward to check the symmetric group action on Fn is by monoid ho-
momorphisms. Hence, Sn acts on CFn by algebra homomorphisms. The structure of
CFn as an Sn−representation is also simple to check. Throughout this abstract, let ch
denote the Frobenius characteristic map from characters of symmetric groups to the ring
of symmetric functions. We write α � n if α = (α1, α2, · · · , αk) is an integer composition
of n (a sequence of positive integers summing to n). Using hα := hα1 hα2 · · · hαk for hi the
complete homogeneous symmetric function of degree i, we have ch (CFn) = ∑

α�n
hα.
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In [5], Bidigare–Hanlon–Rockmore discovered that the face algebra has rich connec-
tions to card shuffling and other Markov chains. These connections were studied further
by many others, including Uyemura-Reyes in [23] and Reiner–Saliola–Welker in [13]. In
addition, the face algebra has been studied as an interesting algebra in its own right;
for instance, see work of Bidigare in [6], Saliola in [14, 15], Aguiar–Mahajan in [1], and
Schocker in [16].

1.2 Solomon’s descent algebra and Bidigare’s theorem

Each permutation π ∈ Sn has an associated (right) descent set Des(π) := {i : π(i) >
π(i + 1)} ⊆ [n − 1]. For each subset J ⊆ [n − 1], define an element xJ in the group
algebra CSn by

xJ := ∑
π:Des(π)⊆J

π.

In [17], Solomon proved that the C- span of the elements
{

xJ : J ⊆ [n− 1]
}

is closed
under multiplication, so it is a subalgebra of CSn. This subalgebra is known as Solomon’s
descent algebra, which we will denote by Σn. The descent algebra is intimately linked to
the face algebra. For a subset J = {a1 < a2 < · · · < ak} ⊆ [n − 1], write α(J) to be
the integer composition (a1, a2 − a1, a3 − a2, · · · , ak − ak−1, n − ak). Bidigare proved the
following connection in [6, Theorem 3.8.1].

Theorem 2. (Bidigare) The Sn-invariant subalgebra of the face algebra is antiisomorphic to
Solomon’s descent algebra via the map

Φ : xJ 7→ ∑
Faces F

with block
sizes α(J)

F.

Example 3. Using one-line notation, the element x{1} = 1 + 21 + 312 ∈ Σ3 is mapped under
Bidigare’s antiisomorphism to the sum of the three rays colored blue in Example 1.

2 Our question

By Maschke’s theorem, the face algebra CFn decomposes into a direct sum of irreducible
Sn−representations. Although this decomposition is not unique, the sums of irreducibles
of the same isomorphism type, called the isotypic subspaces, are. The irreducible repre-
sentations of Sn are indexed by partitions ν of n, written ν ` n. Hence, there is an
Sn−representation decomposition

CFn =
⊕
ν`n

(CFn)
ν ,
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where (CFn)
ν is the Sn−isotypic subspace associated to the irreducible labelled by ν.

The trivial isotypic subspace (CFn)
(n) is precisely the invariant subalgebra (CFn)

Sn .
So, it is a natural extension of Bidigare’s theorem to consider what the other Sn−isotypic
subspaces look like. In fact, in [6, §3.5.3], Bidigare studied the sign isotypic subspace
(CFn)

1n
, which he proved is a one-dimensional nilpotent subalgebra of CFn.

Moreover, the isotypic subspaces are not only Sn−representations; each carries an
additional, rich structure as a left module over (CFn)

Sn . Hence, by Theorem 2, each
isotypic subspace is actually a (right) module over the descent algebra Σn by the action

f · x := Φ(x) f for f ∈ (CFn)
ν , x ∈ Σn.

This brings us to our main question.

Question 4. What is the structure of each Sn-isotypic subspace (CFn)
ν as a Σn−module?

We will answer Question 4 with Theorem 7. Specifically, we will reduce Question 4
to understanding specific symmetric group representations, which we analyze up to
longstanding open problems. To explain this problem conversion and our answer, we
must first say a bit about the representation theory of the descent algebra.

2.1 Representation theory of Solomon’s descent algebra

The (right) representation theory of the descent algebra has been studied in great depth
by Garsia and Reutenauer in [9]. Although Σn is not semisimple, its representation the-
ory is still quite nice. The simple Σn−modules are all one-dimensional and are indexed
by integer partitions of n. Let Mλ denote the Σn−simple associated to the partition λ.
From the theory of finite dimensional algebras, we have that as Σn−modules,

Σn ∼=
⊕
λ`n

Pλ,

where Pλ is the projective indecomposable Σn−module with top Mλ.
Any complete family of primitive orthogonal idempotents (cfpoi) for the descent alge-

bra Σn is necessarily indexed by integer partitions of n too. For notational convenience,
we write {Eλ : λ ` n} to denote the images of such idempotents under the Bidigare an-
tiisomorphism Φ (so in (CFn)

Sn rather than Σn). We choose the indexing appropriately
so that Pλ

∼= Φ−1 (Eλ)Σn ∼= (CFn)
Sn Eλ as right Σn−modules.

In a similar fashion, any cfpoi for the face algebra CFn is indexed by (unordered) set
partitions of [n]. We write Πn to denote the set partition lattice ordered under refinement
and say a set partition X ∈ λ if it has block sizes λ. In [14], Saliola constructed cfpois
{EX : X ∈ Πn} for CFn for which π (EX) = Eπ(X) for π ∈ Sn. He proved the orbit sums
of such families, {∑X∈λ EX : λ ` n}, form cfpois for (CFn)

Sn .
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Any two cfpois for the invariant subalgebra (CFn)
Sn are conjugate by an invertible

element of (CFn)
Sn (see [1, Lemma D.26]). By conjugating Saliola’s idempotents1, any

cfpoi for (CFn)
Sn can be written as the Sn−orbit sums of some cfpoi for CFn permuted

by Sn. For these reasons, our choice of a cfpoi for (CFn)
Sn turns out to not matter. For the

remainder of this abstract, let {Eλ : λ ` n} be a cfpoi for (CFn)
Sn and let {EX : X ∈ Πn}

be a cfpoi for CFn which is permuted by Sn and has orbit sums {Eλ}.

2.2 Problem conversion

As a first step towards answering Question 4, we decompose each Sn−isotypic subspace
(CFn)

ν into a direct sum of smaller Σn-modules. Write f ν to denote the number of
standard Young tableaux of shape ν, write α ∼ µ if a composition α rearranges to a
partition µ, and write Kν,µ to denote the Kostka number which counts the number of
semistandard Young tableaux of shape ν and content µ.

Proposition 1. As (right) Σn−modules,

(CFn)
ν =

⊕
µ`n

(CFnEµ)
ν, and

dimC(CFnEµ)
ν = f ν · #{α � n | α ∼ µ} · Kν,µ.

Proposition 1 reduces Question 4 to understanding each Σn−module
(
CFnEµ

)ν for
any two partitions µ, ν of n. Since Σn is not semisimple, we are unable in general to
decompose each Σn−module

(
CFnEµ

)ν into a direct sum of simples. However, by the
Jordan-Hölder theorem, we can take the alternative approach of understanding the Σn-
composition factors of each Σn−module

(
CFnEµ

)ν. The number of times a Σn-simple Mλ

appears as a composition factor of a Σn−module V is the composition multiplicity of Mλ

in V, written [V : Mλ]. Thus, we have converted Question 4 to the following question.

Question 5. For partitions µ, ν, λ of n, what is the composition multiplicity [(CFnEµ)ν : Mλ]?

The proposition below follows from the theory of finite dimensional algebras.

Proposition 2. The composition multiplicity of the Σn− simple Mλ in
(
CFnEµ

)ν is[
(CFnEµ)

ν : Mλ

]
= f ν ·

〈
sν, ch

(
EλCFnEµ

)〉
,

where sν is the Schur function associated to the partition ν and 〈·, ·〉 is the Hall inner product.

Hence, our final conversion of Question 4 is the question below.

Question 6. What is the Sn-representation theoretic structure of EλCFnEµ?
1Aguiar and Mahajan further study and characterize such idempotents very thoroughly in [1, §16.8].
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3 Our answer

Thrall studied a collection of Sn-representations in [21] which are (also) indexed by
partitions of n and often called the higher Lie representations. We write Lλ to denote the
Frobenius image of the higher Lie representation associated to λ. These representations
have many interpretations and are closely tied to the free Lie algebra. For our purposes,
it is most revealing to define Ln as the Frobenius image of the Sn-representation carried
by the top homology of (the proper part of) the set partition lattice Πn tensored with the
sign representation2. More generally, for a partition λ = 1m12m2 · · · kmk , let

Lλ :=
k

∏
i=1

hmi [Li],

where the brackets denote plethysm. Positively expanding Lλ into Schur functions is a
longstanding open problem, known as Thrall’s problem.

A Lyndon word is a nonempty finite word on {1, 2, · · · } that is lexicographically
strictly smaller than all of its cyclic rearrangements. For an integer composition, par-
tition, or word α = (α1, α2, · · · , αk) on {1, 2, · · · }, we write |α| to denote the sum α1 +
α2 + · · · + αk. For any infinite variable set y = {y1, y2, · · · }, let yα denote the product
yα := yα1yα2 · · · yαk . The scaling of α by an integer m is α ·m := (α1 ·m, α2 ·m, · · · , αk ·m)
and raising α to an integer, αm, means repeated concatenation of α.

We now have the necessary definitions to state our main theorem.

Theorem 7. There is an equality of generating functions

∑
n≥0

∑
λ`n
µ`n

yλzµ · ch(EλCFnEµ) = ∏
Lyndon

w

∑
partition

ρ

yρ·|w|zw|ρ|Lρ[hw]. (3.1)

Let F be the generating function on the right side of Equation (3.1). Theorem 7
explains the structure of CFn as a module over Sn and Σn simultaneously, answering
Question 4. Indeed, Proposition 2 and Theorem 7 combine to give[(

CFnEµ

)ν : Mλ

]
= f ν ·

〈
sν, coefficient of yλzµ in F

〉
. (3.2)

Since Thrall’s problem and understanding plethysm coefficients are longstanding open
problems, this is as far as we are able to simplify our answer for now.

3.1 Example

As an example of Theorem 7, we analyze the case n = 4 in the table below. The box in
row ν and column µ is filled with [

(
CF4Eµ

)ν : Mλ] copies of λ, where the numbers in
parentheses indicate multiplicities.

2This is equivalent to the standard definition by work of Stanley [18], Hanlon [11], and Klyachko [12].
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µ

ν

4 3, 1 2, 2 2, 1, 1 1, 1, 1, 1
1, 1, 1, 1

2, 1, 1 (3) (3) (3) (3)

(3) (3)

2, 2 (2) (2) (2) (2) (2)

(2)

3, 1 (3) (3) (3) (6) (6) (3) (3)

(3) (3) (3)

4

Each term in the expansion of F is formed by choosing one (potentially empty)
partition ρ for each Lyndon word factor w and multiplying the corresponding terms
yρ·|w|zw|ρ|Lρ[hw]. To obtain terms with z−weight z211 = z2z2

1, the only Lyndon words w
for which one can choose a nonempty partition ρ are w = 1, w = 2, w = 12, and w = 112.
With these relevant factors first, the generating function F is:(

∑
ρ

yρz|ρ|1 Lρ[h1]

)
︸ ︷︷ ︸

w=1

(
∑
ρ

yρ·2z|ρ|2 Lρ[h2]

)
︸ ︷︷ ︸

w=2

(
∑
ρ

yρ·3z|ρ|12 Lρ[h12]

)
︸ ︷︷ ︸

w=12

(
∑
ρ

yρ·4z|ρ|112Lρ[h112]

)
︸ ︷︷ ︸

w=112

· · · .

Labelling by the w for which a nonempty ρ was chosen, the coefficient of z211 is

y2L2[h1]︸ ︷︷ ︸
w=1
ρ=2

· y2L1[h2]︸ ︷︷ ︸
w=2
ρ=1

+ y11L11[h1]︸ ︷︷ ︸
w=1
ρ=11

· y2L1[h2]︸ ︷︷ ︸
w=2
ρ=1

+ y1L1[h1]︸ ︷︷ ︸
w=1
ρ=1

· y3L1[h12]︸ ︷︷ ︸
w=12
ρ=1

+ y4L1[h112]︸ ︷︷ ︸
w=112

ρ=1

= y22 (L2[h1]L1[h2]) + y211 (L11[h1]L1[h2]) + y31 (L1[h1]L1[h12]) + y4 (L1[h112])

= y22 (s211 + s31) + y211 (s4 + s22 + s31) + y31 (s4 + 2s31 + s22 + s211)

+ y4 (s4 + 2s31 + s22 + s211) ,

where the final equality can be computed with SageMath. This process reveals how
to fill each box of the pink column. For instance, the composition multiplicity of M4

in (CF4E211)
31 is 6 = 3 · 2 because f (3,1) = 3 and the coefficient of y4s31 in the above

equation is 2, as indicated by the coloring.
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3.2 Recovering results of Garsia–Reutenauer and Uyemura-Reyes

As further examples, we explain how Theorem 7 specializes to recover results of Garsia–
Reutenauer in [9] and Uyemura-Reyes in [23].

3.2.1 The bottom row (ν = (n)): Garsia–Reutenauer’s Cartan invariants of Σn

In [9, Theorem 5.4], Garsia and Reutenauer discovered the Cartan invariants3 of the
descent algebra. To state their result, let type(α) for a composition α be the partition
obtained by reordering |w1|, |w2|, · · · , |wk| where w1w2 · · ·wk is the unique factorization
of α into weakly decreasing (lexicographically) Lyndon words (see [9, Proposition 5.3]).

Theorem 8 (Garsia–Reutenauer). The composition multiplicity

[Pµ : Mλ] = #{α ∼ µ : type(α) = λ}.

Example 9. The compositions rearranging to (2, 1, 1) are (2, 1, 1), (1, 2, 1), and (1, 1, 2). As the
table below illustrates, the composition factors of P211 are one copy each of M211, M31, and M4.
Compare this to the box in row (4) and column (2, 1, 1) of the table in Section 3.1.

α Lyndon Factorization type(α)

(2, 1, 1) (2)(1)(1) (2, 1, 1)

(1, 2, 1) (1, 2)(1) (3, 1)

(1, 1, 2) (1, 1, 2) (4)

As descent algebra modules, Pµ
∼=
(
CFnEµ

)(n) . So, by Equation (3.2), the following
proposition recovers Garsia–Reutenauer’s discovery.

Proposition 3. For λ, µ partitions of n,〈
sn, [yλzµ] ∏

Lyndon
w

∑
partition

ρ

yρ·|w|zw|ρ|Lρ[hw]

〉
= #{α ∼ µ : type(α) = λ}.

Proof Sketch. From properties of plethysm and higher Lie representations, one can show〈
sn, ∏

w
Lνw [hw]

〉
= 0

unless each partition νw is of the form 1mw for some integer mw with ∑w |w|mw = n, in
which case it is one. Hence, the left side of the proposition statement simplifies to

[yλzµ] ∏
Lyndon

w

∑
m≥0

y|w|m zwm .

3They actually proved a stronger result by finding bases for the spaces Φ−1(Eµ)ΣnΦ−1(Eλ).
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A straightforward combinatorial argument using Lyndon factorization recovers that

∏
Lyndon

w

∑
m≥0

y|w|m zwm = ∑
partitions

λ,µ

#{α ∼ µ : type(α) = λ}yλzµ.

3.2.2 The rightmost column (µ = 1n): Uyemura-Reyes’s shuffling representations

In his PhD thesis (see [23, Theorem 4.1]), Uyemura-Reyes studied certain shuffling
eigenspaces indexed by partitions λ ` n, which turn out to be the spaces EλCFnE1n .
He proved the λ-eigenspace has Frobenius characteristic Lλ. Theorem 7 recovers this
result, since it is simple to check that the coefficient of z1n in Equation (3.1) is

∑
λ`n

yλLλ[h1] = ∑
λ`n

yλLλ.

3.3 More explicit answer for the sign isotypic subspace

Recall from Section 2 that the sign isotypic subspace (CFn)
1n

is always a one-dimensional
subspace. Hence, it must be a simple Σn−module.

Proposition 4. As Σn-modules, the sign isotypic subspace (CFn)
1n

of the face algebra is iso-
morphic to Mλ where λ =

(
2

n
2

)
if n is even and λ =

(
2

n−1
2 , 1

)
if n is odd.

This follows from a result of Gessel–Reutenauer [10, Theorem 2.1] which (as a special
case) shows 〈Lλ, s1n〉 counts permutations in Sn with cycle type λ and descent set [n− 1].
Hence, the scalar product is zero except for when λ is the cycle type of the longest word.

3.4 Outline of the proof of Theorem 7

Although the complete proof of Theorem 7 is quite long, a nice range of combinatorics
is involved. So, we briefly outline the important ideas for the curious reader. For the
details, see the full version of this abstract in [8].

3.4.1 Reduction to homology of intervals in the set partition lattice Πn

The proposition below relies on special properties holding for any cfpoi of CFn. Let
StabSn(X) denote the Sn-stabilizer subgroup of the set partition X.

Proposition 5. If µ does not refine λ, then EλCFnEµ = 0. Otherwise, as Sn−representations,

EλCFnEµ
∼=

⊕
[X≤Y]

EYCFnEX

xSn

StabSn (X)∩StabSn (Y)

where the direct sum is over Sn−orbits of pairs X ≤ Y in Πn with X ∈ µ, Y ∈ λ.
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A twisting character appears when studying the spaces EYCFnEX. The set partition
lattice is (Sn−equivariantly) isomorphic to the lattice of intersections of the hyperplanes
of Bn. Let det(Y) be the StabSn(Y)−character sending g to +1 if it preserves orientation
on the intersection associated to Y and −1 otherwise.

Saliola proves the non-equivariant version of the following proposition in [15, §10.2].
The twists making it equivariant appear implicitly in his work in [14, Theorem 6.2].
Aguiar and Mahajan also explain it in [1, Proposition 14.44].

Proposition 6. Assume X, Y ∈ Πn with X refining Y. As representations of StabSn(X) ∩
StabSn(Y),

EYCFnEX
∼= H̃top (X, Y)⊗ det(Y)⊗ det(X),

with H̃(X, Y) the poset cohomology of the open interval in Πn, using the convention that
H̃top (X, X) is the trivial representation.

By properties of dual representations and induction, we are able to consider the ho-
mology of intervals H̃top (X, Y) instead when combining Proposition 5 and Proposition 6.

3.4.2 Base case: the spaces EnCFnEµ

A key step in proving Theorem 7 is to understand the case λ = n. If {Xµ} are set parti-
tions with block sizes µ and 1̂ denotes the maximal element of Πn, then by Section 3.4.1,

∑
µ 6=∅

zµ · ch(E|µ|CF|µ|Eµ) = ∑
µ 6=∅

zµ · ch

(
H̃top

(
Xµ, 1̂

)
⊗ det

(
Xµ

) xS|µ|

StabS|µ|(Xµ)

)
. (3.3)

Sundaram studied the homology of the partition lattice in great depth. In [20, proof
of Thm 1.4], she studies the StabS|µ|

(
Xµ

)
−representations H̃top

(
Xµ, 1̂

)
. Adjusting her

work with the det(Xµ) twists reframes Equation (3.3) as

∑
r≥1

Lr[z1h1 + z2h2 + · · · ]. (3.4)

In [10, Equation 2.1], Gessel–Reutenauer interpret the symmetric functions Lr with neck-
laces. Using their interpretation, we construct a necklace bijection to rewrite (3.4) as

∑
Lyndon

w

∑
m≥1

zwm Lm[hw].

3.4.3 General case: the spaces EλCFnEµ

The general case comes down to understanding the action of the subgroups StabSn(X)∩
StabSn(Y) on H̃top (X, Y)⊗det(X)⊗det(Y). By identifying the intersections of these sta-
bilizer subgroups, we recast this action as the action of (wreath) products of smaller sub-
groups on products of smaller partition lattices (with appropriate twists). Sundaram’s
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work in [19, Prop 2.1, 2.3] is helpful in reducing these representations to our base case.
Then, a generating function argument comes into play.

4 A note on other Coxeter types

Much of this work holds in all Coxeter types. The face algebra, the descent algebra,
and Bidigare’s theorem were each originally defined or proved in all types. The repre-
sentation theory of the descent algebra has been studied in other types thoroughly in
[2, 3, 4]. Saliola’s work in [14] is also for general type, so analogues of Proposition 5
and Proposition 6 hold. In fact, an analogue of Proposition 4 holds for all types. In [7,
Thm 1.1], Blessenohl–Hohlweg–Schocker generalize Gessel–Reutenauer’s result to gen-
eral type. Their work helps us prove that as a descent algebra module, the sign isotypic
subspace of the face algebra is the simple indexed by the cycle type4 of the longest word.
Unfortunately, we do not have analogues of Theorem 7 since our proof relies heavily on
the structure of the partition lattice and symmetric functions.
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The Newton polytope of the Kronecker product

Greta Panova∗1 and Chenchen Zhao†1

1Department of Mathematics, University of Southern California, Los Angeles, CA 90089

Abstract. We study the Kronecker product of two Schur functions sλ ∗ sµ, whose Schur
expansion is given by the Kronecker coefficients g(λ, µ, ν) of the symmetric group.
We prove special cases of a conjecture of Monical–Tokcan–Yong that its monomial
expansion has a saturated Newton polytope. Our proofs employ the Horn inequalities
for positivity of Littlewood–Richardson coefficients and imply necessary conditions for
the positivity of Kronecker coefficients.

Keywords: Kronecker coefficients, saturated Newton polytope, Symmetric group rep-
resentations

1 Introduction

The Kronecker coefficients g(λ, µ, ν) of the symmetric group present an 85 year old
mystery in Algebraic Combinatorics and Representation Theory. They are defined as
the multiplicities of an irreducible Sn-module Sν in the tensor product of two other
irreducibles: Sλ⊗ Sµ. Originally introduced by Murnaghan in 1938 [10, 11], the question
for their computation has been reiterated many times since the 1980s. Stanley’s 10th open
problem in Algebraic Combinatorics [18] is to find a manifestly positive combinatorial
interpretation for the Kronecker coefficients. Yet, over the years, very little progress
has been made and only for special cases, see [13] for an overview. Their importance
has been reinforced by their role in Geometric Complexity Theory, a program aimed at
establishing computational lower bounds and ultimately separating complexity classes
like P vs NP, see [14] and references therein. While no positive combinatorial formula
exists, we also lack understanding for when such coefficients would be positive. The
possibility of answering these questions in a “nice” way is explored using computational
complexity theory, see [12, 14].

In a different direction, [8] initiated the study of the Newton polytopes of important
polynomials in Algebraic Combinatorics. It has since been established that some of the
main polynomials of interest have the saturated Newton polytope (SNP) property.

Definition 1.1. A multivariate polynomial with nonnegative coefficients f (x1, . . . , xk) = ∑α cαxα

has a saturated Newton polytope (SNP) if the set of points Mk( f ) := {(α1, · · · , αk) : cα > 0}
coincides with its convex hull in Zk.
∗gpanova@usc.edu. The author was partially supported by the NSF.
†zhao109@usc.edu
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Given a symmetric function f , let f (x1, . . . , xk) denote the specialization of f to the
variables x1, . . . , xk that sets xm = 0 for all m ≥ k + 1.

Definition 1.2. A symmetric function f has a saturated Newton polytope (SNP) if f (x1, . . . , xk)
has a SNP for all k ≥ 1.

1.1 SNP for the Kronecker product

The Kronecker coefficients of Sn, denoted by g(λ, µ, ν), give the multiplicities of one
Specht module in the tensor product of the other two, namely

Sλ ⊗ Sµ = ⊕ν`nS
⊕g(λ,µ,ν)
ν .

The Kronecker product ∗ of symmetric functions is defined on the Schur basis as

sλ ∗ sµ := ∑
ν

g(λ, µ, ν)sν,

and extended by linearity. It is equivalent to the inner product of Sn characters under
the characteristic map.

Conjecture 1.3 ([8]). The Kronecker product sλ ∗ sµ has a saturated Newton polytope.

We prove this conjecture for partitions of lengths 2 and 3 and various truncations.

Theorem 1.4. Let λ, µ ` n with `(λ) ≤ 2, `(µ) ≤ 3, and µ1 ≥ λ1 then sλ ∗ sµ(x1, . . . , xk) has
a saturated Newton polytope for every k ∈ N.

This theorem follows from the Kronecker product containing a term sν, where ν dom-
inates all other partitions in the product. As a result, the degree vectors of the mono-
mials are the integer points (a1, . . . , ak) that, when sorted, satisfy sort(a1, . . . , ak) � ν in
the dominance order, ensuring the polytope is saturated. However, it is not always the
case that there is a unique maximal term with respect to the dominance order. The first
instance where no such dominant partition exists is covered in the following theorem.

Theorem 1.5. Let λ, µ ` n with `(λ) ≤ 3 and `(µ) ≤ 2. Then sλ ∗ sµ(x1, x2, x3) has a
saturated Newton polytope.

The difficulty with this problem in the general case is the lack of any criterion for
the positivity of the Kronecker coefficients. We express the Kronecker product in the
monomial basis as sums of products of multi-Littlewood–Richardson coefficients. Using
the Horn inequalities, which determine when a Littlewood–Richardson coefficient is
nonzero, we construct a polytope P(λ, µ; a) parametrized by λ, µ and a = (a1, . . . , ak)
for the monomial of interest xa1

1 xa2
2 · · · x

ak
k . A monomial appears in sλ ∗ sµ if and only if

P(λ, µ; a) has an integer point, and we can infer the following.
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Proposition 1.6. Let µ, λ ` n. The Kronecker product sλ ∗ sµ(x1, . . . , xk) has a saturated
Newton polytope if and only if for every a ∈ Zk the polytope P(λ, µ; a) is either empty or has
an integer point.

It is not hard to see that P(λ, λ; a) is always nonempty and has an integer point.
However, it is far from clear how to characterize when P(λ, µ; a) 6= ∅ once µ 6= λ and
the number of variables k grows, and further to determine if there is an integer point.
It is also not apparent whether these polytopes have an integer vertex as the relevant
inequalities result in many non-integral vertices.

The limiting version of Conjecture 1.3 holds in general.

Theorem 1.7. Let λ, µ be partitions of the same size and k ∈ N. Then the set of points

∞⋃
p=1

1
p

Mk(spλ ∗ spµ)

is a convex subset of Qk.

This is not surprising since the set of triples 1
|λ| (λ, µ, ν) for which there is a p, such

that g(pλ, pµ, pν) > 0, forms a polytope known as the Moment polytope, see [19, 1].

1.2 Positivity implications

Suppose that g(λ, µ, α) > 0 and g(λ, µ, β) > 0 for some partitions α, β. Then the mono-
mials with powers α and β appear in sλ ∗ sµ. Suppose that γ = tα + (1− t) ∗ β ∈ Zk

for some t = p
q ∈ Q with p < q. The SNP property would imply that γ appears as a

monomial, and thus there is a partition θ � γ, such that g(λ, µ, θ) > 0. By the semigroup
property we have that g(pλ, pµ, pα) > 0, g((q − p)λ, (q − p)µ, (q − p)β) > 0 and thus
g(qλ, qµ, qγ) > 0. However, the Kronecker coefficients do not, in general, possess the
saturation property, so we cannot expect g(λ, µ, γ) > 0 and in fact this is not always
true1. We can generalize the above reasoning into the following.

Proposition 1.8. Suppose that sλ ∗ sµ has a saturated Newton polytope. Then for every collection
of partitions α1, α2, . . ., s.t. g(λ, µ, αi) > 0 and ∑i tiα

i has integer parts for some ti ∈ [0, 1]
with t1 + t2 + · · · = 1, there exists a partition θ � ∑i tiα

i in the dominance order, such that
g(λ, µ, θ) > 0.

Our methods and the Horn inequalities also give some necessary conditions for a
Kronecker coefficient to be positive. We cannot expect easy necessary and sufficient

1 Let λ = (8, 8) and µ = (5, 3, 1, 1, 1, 1, 1, 1, 1, 1). Let α = (7, 3, 2, 2, 2), β = (5, 5, 2, 2, 2) and ν =

(6, 4, 2, 2, 2). We have that g(λ, µ, α) = g(λ, µ, β) = 1, but g(λ, µ, α+β
2 ) = 0, and sλ ∗ sµ does not have a

unique dominant term.
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criteria for positivity since this decision problem is NP-hard by [3]. The general statement
is Theorem 6.1 stated in Section 6 in terms of the so-called LR-consistent triples. We
illustrate the criteria with a simplified version below in the case of one two-row partition.

Proposition 1.9. Suppose that g(λ, µ, ν) > 0 and `(µ) = 2, k = `(λ). Then there exist
nonnegative integers yi ∈ [0, bλi/2c] for i ∈ [k], such that

∑
i∈A∪C

λi + ∑
i∈B

yi −∑
i∈C

yi ≤ min{∑
j∈J

µj, ∑
j∈J

νj} (1.1)

for all triples of mutually disjoint sets A t B t C ⊂ [k] and J = {1, . . . , r, r + 2, . . . , r + b + 1}
or J = {1, . . . , r + b− 1, r + 2b}, where r = 2|A|+ |C| and b = |B|.

The details of the above results, along with full proofs, computations, and additional
discussions will appear in the full version of this abstract, available in [15].

2 Definitions and tools

2.1 Basic notions from algebraic combinatorics

We use standard notation from [7] and [17, §7] throughout the paper.
The irreducible representations of the symmetric group Sn are the Specht modules Sλ

and are indexed by partitions λ ` n. The irreducible polynomial representations of
GLN(C) are the Weyl modules Vλ and are indexed by all partitions with `(λ) ≤ N. Their
characters are the Schur functions sλ(x1, . . . , xN), where x1, . . . , xN are the eigenvalues
of g ∈ GLN(C).

We will use the standard bases for the ring of symmetric functions Λ: the monomial
symmetric functions

mα(x1, x2, . . . , xk) = ∑
σ

xα1
σ1 xα2

σ2 · · · ,

where the sum goes over all permutations σ giving different monomials.
The Schur functions sλ(x1, . . .) can be defined as the generating functions for SSYTs

of shape λ, i.e., sλ = ∑α Kλαmα. We will also use the homogeneous symmetric functions
hλ defined as hk := s(k) = ∑i1≤···≤ik xi1 · · · xik and hλ := hλ1 hλ2 · · · .

The Littlewood–Richardson coefficients cλ
µν are defined as structure constants in Λ for

the Schur basis, and also as the multiplicities in the GL-module decomposition Vµ⊗Vν =

⊕λV
cλ

µν

λ . We have
sµsν = ∑

λ

cλ
µνsλ.

They can be evaluated by the Littlewood–Richardson rule as a positive sum of skew
SSYT of shape λ/µ and type (weight) ν whose reverse reading word is a ballot sequence.
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Their positivity can be decided in polynomial time as cλ
µν > 0 if and only if its corre-

sponding polytope is nonempty (see [5, 9]). The multi-LR coefficients can be defined
recursively as

cλ
ν1,ν2,...,νk := 〈sλ, sν1sν2 · · · sνk〉 = ∑

τ1,τ2,...,τk

cλ
ν1τ1cτ1

ν2τ2 · · · cτk−1

νkτk .

2.2 The Kronecker product

The Kronecker product, denoted by ∗, of symmetric functions can be defined on the
basis of the Schur functions and extended by linearity: sλ ∗ sµ = ∑ν g(λ, µ, ν)sν.

It is also ch(χλχµ), where χ are the Sn characters and ch is the Frobenius characteristic
map. The Kronecker coefficients can be equivalently defined as the coefficients in the
expansion

sλ[x · y] = ∑
µ,ν

g(λ, µ, ν)sµ(x)sν(y), (2.1)

where [x · y] := (x1y1, x1y2, . . . , x2y1, . . .) denote all pairwise products of the two sets of
variables.

Via Schur–Weyl duality the Kronecker coefficients can be interpreted as the dimen-
sions of GL highest weight spaces, which then makes the following semigroup property,
see [2], apparent:

If α1, β1, γ1 ` n and α2, β2, γ2 ` m satisfy g(αi, βi, γi) > 0 for i = 1, 2, then g(α1 +
α2, β1 + β2, γ1 + γ2) ≥ max{g(α1, β1, γ1), g(α2, β2, γ2)}.

Here we will be concerned with the monomial expansion. Since the homogeneous
and monomial bases are orthogonal to each other, i.e. 〈hλ, mµ〉 = δλ,µ we have that

sλ ∗ sµ = ∑
ν

g(λ, µ, ν)sν = ∑
ν,α

g(λ, µ, ν)Kναmα = ∑
α`n
〈sλ ∗ sµ, hα〉mα. (2.2)

In Section 4 we will see further ways of finding the monomial expansion.

2.3 Newton polytopes

Let f (x1, . . . , xk) = ∑α cαxα be a polynomial with nonnegative coefficients, where xα :=
xα1

1 · · · x
αk
k and α ∈ Zk

≥0 is the degree vector. We denote by Mk( f ) := {α ∈ Zk
≥0 : cα > 0}

the set of vectors, for which the corresponding monomial appears in f (x1, . . . , xk). For
brevity we will say “monomial α appears in f ”. We denote by Nk( f ) := Conv(Mk( f )) the
convex hull of Mk( f ), this is the Newton polytope of f (x1, . . . , xk). Thus, a polynomial
f has a saturated Newton polytope if and only if Mk( f ) = Nk( f ). In particular, a
polynomial f has an SNP if and only if the following condition holds:

For every k + 1-tuple of compositions (α1, . . . , αk+1), such that cαi > 0, and

(snp)
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weights ti ∈ [0, 1], such that t1 + · · ·+ tk+1 = 1 and γ :=
k+1

∑
i=1

tiα
i ∈ Zk, we have cγ > 0.

Note that it is enough to check the convex combination of k + 1 points in k-dimensional
space by Caratheodory’s theorem.

As noted in [8] many of the important symmetric polynomials have SNP. Since Kostka
coefficients Kλµ are positive if and only if λ � µ in the dominance order, we get an
immediate characterization of Mk(sλ) and the following important statement.

Proposition 2.1 ([8]). The Schur polynomial sλ(x1, . . . , xk) has a saturated Newton polytope
and Mk( f ) = conv{(λσ1 , . . . , λσk) for all σ ∈ Sk}.

3 Two and three-row partitions

In this section, we deduce the SNP property for certain cases from existing formulas. In
the cases treated here we will see that there will be a unique partition ν, s.t. g(λ, µ, ν) > 0
and if g(λ, µ, α) > 0 then ν � α and so sλ ∗ sµ will contain all monomials α ≺ ν, as
observed in [8].

First, let `(λ), `(µ) = 2 and the number of variables be arbitrary. In [16], Rosas
computed the Kronecker product of two two-row partitions. In particular, [16, Corollary
5] gives a formula for Kronecker coefficients indexed by 3 two-row partitions. We could
then show that N(sλ ∗ sµ; k) = N(sν; k) for a certain partition ν.

Lemma 3.1. Let λ = (λ1, λ2), µ = (µ1, µ2), and ν = (ν1, ν2) be two-row partitions of n.
Without loss of generality, suppose that λ2 ≥ µ2. Then 〈sλ ∗ sµ, hν〉 > 0 if and only if ν2 ≥
λ2 − µ2.

By equation (2.2) this means that mν appears with a nonzero coefficient in that Kro-
necker product.

We now move to a more general case and invoke the full Theorem from [16]. Specif-
ically, [16, Theorem 5] gives a formula for Kronecker products of 2 two-row partitions,
allowing us to show that there is a unique maximal term in dominance order in the
Kronecker product sλ ∗ sµ in the following case.

Proposition 3.2 (Theorem 1.4). Let λ and µ be partitions of n, where λ = (λ1, λ2) and
µ = (µ1, µ2, µ3), such that µ1 ≥ λ1. Then the Kronecker product sλ ∗ sµ(x1, . . . , xk) has a
saturated Newton polytope for every k.

Remark 3.3. We cannot expect to have unique maximal terms in general. For instance,
s(6,6) ∗ s(8,2,1,1) = s(4,4,2,1,1)+ s(4,4,3,1)+ s(5,3,1,1,1,1)+ s(5,3,2,1,1)+ s(5,3,2,2)+ s(5,3,3,1)+ 2s(5,4,1,1,1)
+ 3s(5,4,2,1) + s(5,4,3) + s(5,5,1,1) + 2s(5,5,2) + s(6,2,2,1,1) + 2s(6,3,1,1,1) + 3s(6,3,2,1) + s(6,3,3) +
4s(6,4,1,1) + 2s(6,4,2) + 2s(6,5,1) + s(7,2,1,1,1) + s(7,2,2,1) + 2s(7,3,1,1) + 2s(7,3,2) + 2s(7,4,1) + s(7,5) +
s(8,2,1,1) + s(8,3,1). In this product, (7, 5) and (8, 3, 1) are incomparable maximal.
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4 Multi-LR coefficients and Horn inequalities

4.1 Monomial expansion via multi-LR coefficients

As we observed, the Kronecker product does not necessarily have a unique dominating
term sν. Moreover, there are no positive formulas for many other cases we could use.
We thus move directly towards the monomial expansion. The coefficient at xa, where
a = (a1, a2, . . .) in sλ ∗ sµ can be expressed as

〈sλ(y) ∗ sµ(z), ha[yz]〉 = 〈sλ(y) ∗ sµ(z), ∏
i

∑
αi`ai

sαi(y)sαi(z)〉 = ∑
αi`ai,i=1,...

cλ
α1α2···c

µ

α1α2···

(4.1)
We now define the following set of points given by the concatenation of the vectors

α1, α2, . . . , αk:

P(µ; a) := {(α1, α2, · · · , αk) ∈ Z
`(µ)k
≥0 : cµ

α1α2··· > 0 and |ai| = ai for all i = 1, . . . , k}. (4.2)

Observe that P(µ; a) 6= ∅ for all µ, a of the same size. This can be seen either by a
greedy algorithm to construct α1, . . . a nonzero multi-LR coefficient, or by observing that
sµ ∗ sµ = s(n) + · · · and contains every monomial of degree n, so for every a there are
some αi ` ai with cµ

α1··· > 0. The monomials appearing in sλ ∗ sµ correspond to a, for
which there exist α1, · · · with cλ

α1··· > 0 and cµ

α1··· > 0. Thus

Proposition 4.1. The set of monomial degrees a = (a1, . . . , ak) appearing in sλ ∗ sµ is given as

Mk(sλ ∗ sµ) = {a ∈ Zk
≥0 : P(λ; a) ∩ P(µ; a) 6= ∅}.

We turn towards understanding the above set of points, and in particular, whether
they would be the set of lattice points of a convex polytope.

4.2 Horn inequalities for multi-LR’s

We first reduce our multi-LR positivity problem from (4.1) and (4.2) to the case of regular
LR coefficients. Let again cµ

α1,α2,... = 〈sα1sα2 · · · , sµ〉 be the multi-LR coefficients.

Theorem 4.2 ([6]). Let λ, µ, ν be partitions such that |λ| = |µ|+ |ν|. Then cλ
µ,ν = 〈sλ, sµ�ν〉,

where µ � ν denotes the skew shape (ν`(µ)1 + µ, ν)/ν.

We can thus generalize Theorem 4.2 as follows.

Lemma 4.3. Let λ ` n. For a k-tuple of partitions α1, · · · , αk with `(αi) ≤ `, such that
|α1| + · · · + |αk| = n we have that cλ

α1···αk = 〈sλ, sα1�α2�···�αk〉 = cω(α)
λ, δk(n,`), where α1 � α2 �

α3 · · · = α1 � (α2 · · · ) recursively, ω(α) := ((n(k− 1))` + α1, (n(k− 2))` + α2, · · · , αk), and
δk(n, `) :=

(
(n(k− 1))`, (n(k− 2))`, · · · , n`

)
.
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We next turn to LR positivity as described by the Horn inequalities. For a subset I =
{i1 < i2 < · · · < is} ⊂ [r], let ρ(I) denote the partition ρ(I) := (is − s, . . . , i2 − 2, i1 − 1).
We say a triple of subsets I, J, K ⊂ [r] is LR-consistent if they have the same cardinality s
and cρ(I)

ρ(J),ρ(K) = 1.

Theorem 4.4 ([20, 4, 5]). Let λ, µ, ν ∈ Nr with weakly decreasing component. Then cλ
µ,ν > 0

if and only if |λ| = |µ| + |ν| and ∑i∈I λi ≤ ∑j∈J µj + ∑k∈K νk for all LR-consistent triples
I, J, K ⊂ [r].

For a set I ⊂ {1, . . . , `k} construct the set D(I) := {(i, j) ∈ [k]× [`], such that `(i −
1) + j ∈ I}, that is the set of pairs (d x

` e, x%`), where x ∈ I and x%` is its remainder
by division by `, adjusted to be in the range from 1 to `. Applying Theorem 4.4 with
λ = ω(α), µ and ν = δk(n, `) from Lemma 4.3, and observing that if m = `(i − 1) + j
then ω(α)m = n(k− i) + αi

j and (δk(n, `))m = n(k− i) we get the following.

Corollary 4.5. Let `(µ) = ` and a = (a1, . . . , ak). Then P(µ; a) is the set of points (α1, . . . , αk) ∈
Z`k
≥0 satisfying the following linear conditions.

∑
j

αi
j = ai, for i ∈ [k]; (4.3)

αi
j ≥ αi

j+1, for j ∈ [`− 1], i ∈ [k]; (4.4)

∑
(i,j)∈D(I)

(
n(k− i) + αi

j

)
≤ ∑

j∈J
µj + ∑

(d,r)∈D(K)
n(k− d), (4.5)

where the last inequalities hold for all LR-consistent triples I, J, K ∈ [`k].

4.3 The case for k = 3

As we know the values of LR coefficients for the triples of partitions ρ(I), ρ(J), ρ(K)
when |I| ≤ 6, we can write all the linear inequalities defining the set of (λ, µ, ν) with
`(λ), `(µ), `(ν) ≤ 6 and see that they are the integer points in a convex polytope. In
general this polytope is quite complicated and it is not known whether it has any integral
nonzero vertices. We will approach the first cases beyond Section 3.

We will restrict ourselves to the Kronecker product of a two-row and a three-row
partition and monomials xa1

1 xa2
2 xa3

3 . Let `(λ) = 2 and `(µ) = 3. Our goal is to describe
P(λ; a1, a2, a3) ∩ P(µ; a1, a2, a3). Applying Corollary 4.5 to λ, (a1, a2, a3) and µ, (a1, a2, a3),
we have

cµ

α1,α2,α3cλ
α1,α2,α3 > 0 if and only if (4.6)

max{α1
1, α2

1, α3
1, α1

2 + α2
2, α1

2 + α3
2, α2

2 + α3
2} ≤ µ1
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max{α1
2, α2

2, α3
2} ≤ µ2

α1
2 + α2

2 + α3
2 ≤ λ2

max{α1
1 + α2

2 + α3
2, α1

2 + α2
1 + α3

2, α1
2 + α2

2 + α3
1} ≤ min{µ1 + µ3, λ1}

max{α1
1 + α2

1 + α3
2, α1

2 + α2
1 + α3

1, α1
1 + α2

2 + α3
1} ≤ µ1 + µ2

max{α1
1 + α1

2 + α2
2 + α3

2, α1
2 + α2

1 + α2
2 + α3

2, α1
2 + α2

2 + α3
1 + α3

2} ≤ µ1 + µ2.

4.4 The set P(λ; a) ∩ P(µ; a)

The linear inequalities (4.6) describe a polytope in R6 for the variables (α1
1, α1

2, . . .). By
Section 4 a monomial xa occurs in sλ ∗ sµ if and only if the set P(λ; a) ∩ P(µ; a) has a
nonzero integer point. This set corresponds to the set of lattice points of the section of
the polytope in (4.6) with αi

1 + αi
2 = ai for i = 1, 2, 3, as well as αi

1 ≥ αi
2, which comes from

αis being partitions. Let x := α1
1, y := α2

1, z := α3
1. Define P(λ, µ, a) to be that polytope,

substituting the new constraints in (4.6), it is defined by the following inequalities

P(λ, µ, a) :=

{
(x, y, z) ∈ R3 s.t. a1 −min(µ2, λ2,

a1

2
) ≤ x ≤ min(a1, µ1) (1)

a2 −min(µ2, λ2,
a2

2
) ≤ y ≤ min(a2, µ1) (2)

a3 −min(µ2, λ2,
a3

2
) ≤ z ≤ min(a3, µ1) (3)

max(µ3, a1 + a2 − µ1) ≤ x + y (4)
max(µ3, a1 + a3 − µ1) ≤ x + z (5)
max(µ3, a2 + a3 − µ1) ≤ y + z (6)

λ1 ≤ x + y + z (7)
max(µ2, λ2)− a1 ≤ −x + y + z ≤ µ1 + µ2 − a1 (8)
max(µ2, λ2)− a2 ≤ x− y + z ≤ µ1 + µ2 − a2 (9)

max(µ2, λ2)− a3 ≤ x + y− z ≤ µ1 + µ2 − a3

}
(10)

We can summarize these descriptions and derivations in the following.

Proposition 4.6. The monomial xa occurs in sλ ∗ sµ if and only if P(λ; a)∩ P(µ; a) 6= ∅. When
`(λ) = 2, `(µ) = 3 and µ1 < λ1 this is equivalent to P(λ, µ, a) ∩Z3 6= ∅.

5 Integer points in P(λ, µ, a)

We are now ready to prove the counterpart of Proposition 3.2 by analyzing the polytope
P(λ, µ, a). By considering P(λ, µ, c) as a fiber of a linear projection from a polyhedral
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cone, we have the following proposition.

Proposition 5.1. Suppose that P(λ, µ, ai) 6= ∅ for some vectors ai, i = 1, . . . , 4 and c = ∑i tiai

for some ti ∈ [0, 1] with t1 + t2 + t3 + t4 = 1. Then P(λ, µ, c) 6= ∅.

Proof sketch. The inequalities defining P(λ, µ, a) can be written in the form A[x, y, z]T ≤ v
for a 3× 3 matrix A with entries {0, 1,−1} and vector v = B1[λ1, λ2]

T + B2[µ1, µ2, µ3]
T +

B3[a1, a2, a3]
T. Assuming P(λ, µ, ai) 6= ∅ for all i, we can show that p := ∑i ti pi where

pi ∈ P(λ, µ, ai) satisfies the inequalities for P(λ, µ, c) and this polytope is hence nonempty.

We will now show this polytope is nonempty if and only if it has an integer point.

Theorem 5.2. If P(λ, µ, a) 6= ∅ then it has an integer point, i.e. P(λ, µ, a) ∩Z3 6= ∅.

Proof sketch. We first show that if a polytope P = P(λ, µ, a) is nonempty, it contains a
half-integer point by discussing cases for different types of matrices defining the poly-
tope and proving that, in each case, there exists a half-integer point near a vertex of
P . We then extend this result by showing that if P contains a half-integer point, it must
contain an integer point. Our proof considers perturbations of a given half-integer point,
showing that small adjustments lead to integer points within P . Exploiting the integer
bounds of the inequalities is key to bridge the gap between half-integer and integer
points.

Proof of Theorem 1.5. Let xai
1

1 xai
2

2 xai
3

3 be monomials appearing in sλ ∗ sµ(x1, x2, x3) with non
zero coefficients. By Proposition 4.6 we have that P(λ, µ; ai) ∩Z3 6= ∅. Suppose that
(c1, c2, c3) is in the convex hull of {ai}i, so c = ∑i tiai for some ti ∈ [0, 1] with t1 +
t2 + · · · = 1. By Proposition 5.1 we have that P(λ, µ, c) 6= ∅. Then if ci ∈ Z by
Theorem 5.2 we have P(λ, µ; c) ∩Z3 6= ∅ and thus xc appears as a monomial in sλ ∗ sµ.
By the characterization (snp), the polynomial sλ ∗ sµ(x1, x2, x3) has a saturated Newton
polytope.

6 Positivity of Kronecker coefficients

First, we will discuss the limiting case of the SNP property.

Proof sketch of Theorem 1.7. By Caratheodory’s theorem, it suffices to show that if every
point is a convex combination of k + 1 points from our set and is contained in the
set, then the set is convex. Consider points α1, α2, · · · , αk+1 ∈ ⋃∞

p=1
1
p Mk(pλ, pµ) where

Mk(pλ, pµ) := Mk(spλ ∗ spµ). For each αi, choose pi such that αi ∈ 1
pi

Mk(piλ, piµ). Let

p = lcm(p1, . . . , pk). Employing the semigroup property, establish that αi ∈ 1
p Mk(pλ, pµ)
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for all i. Suppose θ is a rational convex combination of α1, α2, . . . , αk+1. Apply the semi-
group property to show that θ is in 1

qp Mk(qpλ, qpµ) for some carefully chosen q ∈ Z,
implying convexity of the set by Caratheodory’s theorem.

We next consider positivity criteria for Kronecker coefficients. Suppose that g(λ, µ, ν) >
0, then sν appears in sλ ∗ sµ, and so its leading monomial mν also appears, so P(λ, µ, ν)∩
Zr 6= ∅, where r = min{`(λ), `(µ)}`(ν). Then from Section 4 we must have that
P(λ; ν) ∩ P(µ; ν) has an integer point. We can then apply Corollary 4.5 and its inequali-
ties to infer that the polytope P(λ, µ, ν) has an integer point.

We define an mLR-consistent triple (I, J, K) of subsets of [1, . . . , `k] as an LR-consistent
triple satisfying the condition that |I ∩ [`(j− 1) + 1, . . . , `j]| = |K ∩ [`(j− 1), . . . , `j]| for
every j = 1, . . . , k.

Theorem 6.1. Suppose that g(λ, µ, ν) > 0 and let ` = min{`(µ), `(ν)} Then there exist
nonnegative integers {αi

j}i∈[k],j∈[`] satisfying

∑
j

αi
j = λi, for i ∈ [k]; (6.1)

αi
j ≥ αi

j+1, for j ∈ [`− 1], i ∈ [k]; (6.2)

∑
(i,j)∈D(I)

αi
j ≤ min{∑

j∈J
µj, ∑

j∈J
νj}, for every mLR-consistent (I, J, K). (6.3)

Proof sketch of Theorem 6.1. For I, J, K to be an LR-consistent triple, we must have ρ(K) ⊂
ρ(I), which implies that if I = {i1 < i2 < · · · < is} and K = {k1 < · · · < ks} then k j ≤ ij
for all j. Thus in (4.5) we have ∑(d,r)∈D(K) n(k− d) ≥ ∑(i,j)∈D(I) n(k− i), with a difference
of at least n if the two sums are not equal. If they are not equal then the inequalities are
trivially satisfied. Thus we assume that we have equality. Thus I = ∪Ip and K = ∪Kp,
where Ij, Kj ⊂ [`(j− 1) + 1, . . . , `j] and |Ij| = |Kj| and for all such sets, and a set J with

|J| = |I| and cρ(I)
ρ(J)ρ(K) = 1 , which is the definition of mLR-consistent.
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Whirling and rowmotion dynamics on the chain of
V’s poset

Matthew Plante*1 and Tom Roby1

1Department of Mathematics, University of Connecticut

Abstract. Given a finite poset P, we study the whirling action on vertex-labelings of
P with the elements {0, 1, 2, . . . , k}. When such labelings are (weakly) order-reversing,
we call them k-bounded P-partitions. We give a general equivariant bijection between
k-bounded P-partitions and order ideals of the poset P × [k] which conveys whirling
to the well-studied rowmotion operator. As an application, we derive periodicity and
homomesy results for rowmotion acting on the chain of V’s poset V× [k]. We are able
to generalize some of these results to the more complicated dynamics of rowmotion
on Cn × [k], where Cn is the claw poset with n unrelated elements each covering 0̂.

Keywords: posets, chain of V’s, dynamical algebraic combinatorics, homomesy, P-
partitions, rowmotion, whirling.

1 Introduction

We connect the well-studied operation of rowmotion on the order ideals of a finite poset
with the less familiar whirling action on P-partitions with bounded labels. One of our
main results is an equivariant bijection that carries one to the other for any finite poset
P. We then leverage this to study the rowmotion action on the “chain of V’s” poset
Vk := V× [k] (a 3-element V-shaped poset cross a finite chain, see Figure 2), which has
surprisingly good dynamical properties. We also generalize this to the case where we
replace V with a n-claw, a poset with a single minimal element covered by exactly n
incomparable elements. In both cases we obtain both periodicity results and homomesy.

Let P be a finite poset, and J (P) be the set of order ideals of P. (For basic poset
definitions, we refer the reader to Stanley [9, Ch. 3].) Combinatorial rowmotion is an
invertible map ρ : J (P) → J (P) which takes each ideal I ∈ J (P) to the order ideal
generated by the minimal elements of the complement of I in P. The periodicity of this
map on products of chains was first studied by Brouwer and Schrijver [2], and Cameron
and Fon-der-Flaass [3]. Later Striker and Williams [10] considered it as one element of
the “toggle group” of a poset and related it to a kind of “promotion” operator on order

*matthew.plante@uconn.edu

mailto:matthew.plante@uconn.edu
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ideals. Around the same time, Armstrong, Stump, and Thomas [1] studied rowmotion
on root posets, relating it to “Kreweras complementation” on noncrossing partitions, and
used this to prove a conjecture of Panyushev about the equality of the average cardinality
of antichains for each rowmotion orbit.

Propp and Roby [7] noticed that this conjecture was merely one instance of a much
broader phenomenon which they dubbed homomesy. Given a finite set S, a “statistic”
f : S → C, and an invertible map φ on S, we call f homomesic if the average value of f is

the same for every φ-orbit R, i.e.,
1

#R ∑
x∈R

f (x) = c, where c is a constant not dependent

on the choice of orbit R. The confluence of all this work was the beginning of dynamical
algebraic combinatorics as a distinct area within algebraic combinatorics (with antecedents
going back to the Robinson–Schensted–Knuth correspondence and related operations
on Young tableaux such as promotion, evacuation, and cyclage). In the past decade, the
subfield has grown in a number of directions, and the study of rowmotion has been
of continuing interest. For more background information, see the survey articles of
Hopkins [4], Roby [8], and Striker [11].

Cameron and Fon-der-Flaass [3] were the first to describe rowmotion as a product of
involutions called toggles, as detailed in Section 1.1. A natural generalization of toggling
at a poset element x is “whirling at x,” which cycles the label at x among j possible
values. (Toggles are the case when j = 2.) Joseph, Propp, and Roby defined these
and the operation of whirling on sets of functions between finite sets, obtaining various
homomesy results for various classes of functions (injective, surjective, etc.) [6]. This is
described in Section 2.

A bijective function f : P → [p] (with #P = p) such that f (x) < f (y) whenever
x <P y is called a linear extension. We denote by L(P) the set of all linear extensions of P;
its cardinality, e(P), is an important numerical invariant of a poset. Its refinement, the
order polynomial ΩP(k), counts the number of k-bounded P-partitions. For some special
posets P, mainly ones connected with Lie theory (root and minuscule posets) and those
of partition or shifted shapes, product formulae for ΩP(k) are known. Hopkins surveys
these posets, the formulae, and gives the heuristic: Posets with order-polynomial product
formulae are the same as the posets with good dynamical behavior. The one poset in his list
whose rowmotion dynamics were relatively unexplored is V× [k], a gap this paper fills.
In separate work Hopkins and Rubey study the dynamics of Schützenberger promotion
on linear extensions of V× [k], which also exhibit unusually good behavior [5].

This paper is organized as follows. In Section 1 after the introduction, we review the
toggling definition of rowmotion. Section 2 describes whirling, and includes the equiv-
ariant bijection which allows us to study rowmotion on Vk as whirling on k-bounded
P-partitions. Section 3 contains our main periodicity and homomesy results for rowmo-
tion on Vk, which use decompositions of the “orbit board” of the corresponding whirling
action into “whorms”. Finally, Section 4 contains the periodicity and homomesy results
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which generalize to rowmotion on the “chain of claws” graph, Cn × [k]. A version of this
paper with full proofs will appear soon on the arXiv.

1.1 Rowmotion as a product of toggles

Definition 1.1. We define the (order-ideal) rowmotion map, ρ : J (P) → J (P) as follows:
For any I ∈ J (P), ρ(I) is the order ideal generated by the minimal elements of the
complement of I, as in the example below.

Example 1.2. Here is one iteration of ρ on an order ideal with the action broken down
into its three steps: (1) complement, (2) take minimal elements, (3) saturate down.

(1)−→ (2)−→ (3)−→

Rowmotion has an alternate definition as a composition of toggling involutions,
which has proven useful for understanding and generalizing many of its properties.
Cameron and Fon-der-Flaass [3] showed that for any finite poset P, rowmotion can be
realized as “toggling once at each element of P along any linear extension (from top to
bottom)”. Other toggling orders also lead to interesting maps, such as Striker–Williams
“promotion” (of order ideals) of a poset, which is toggling from left-to-right along “files”
of a poset [10].

Definition 1.3. For each fixed x ∈ P define the (order-ideal) toggle τx : J (P) → J (P) by

τx(I) =


I ∖ {x} if x ∈ I and I ∖ {x} ∈ J (P)
I ∪ {x} if x ̸∈ I and I ∪ {x} ∈ J (P)
I otherwise.

It is an easy exercise to show that order-ideal toggles [3, §2] are involutions, and that
toggles at incomparable elements commute (a special case of Prop 2.7).

Example 1.4. We will toggle each node down the following fixed linear extension: at

each step we consider whether or not to toggle the red node in or out.
2

5 4
7

1
3

6
.

For this linear extension we toggle the elements from top-to-bottom, then left-to-right.

τ7−→ τ6−→ τ5−→
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τ4−→ τ3−→ τ2−→ τ1−→

Proposition 1.5 ([3, Lemma 1]). Let x1, x2, . . . , xp be any linear extension (i.e., any order-
preserving listing of the elements) of a finite poset P with p elements. Then the composite map
τx1τx2 · · · τxp coincides with the rowmotion operation ρ.

2 Whirling

2.1 Whirling function between finite sets

Let F ⊆ [k][n] be a family of functions f : [n] → [k]. For the rest of section 2.1, we use
{1, . . . , k} = [k] to represent the congruence classes of Z/kZ, as opposed to the usual
{0, 1, . . . , k − 1}. For fixed values of k and n, we represent such functions in one-line
notation, e.g., f = 21344 represents the function f ∈ [4][5] with f (1) = 2, f (2) = 1,
f (3) = 3, f (4) = 4, and f (5) = 4.

Definition 2.1 ( [6, Definition 2.3] ). For f ∈ F we define the whirl wi : F → F at index i
as follows: repeatedly add 1 (modulo k) to the value of f (i) until we get a function in F .

Example 2.2. Let F = { f ∈ [4][5] : f (1) ̸= f (2)}. If we apply w2 to f = 21344, adding 1
in the second position gives 22344, but this is not in F . Adding 1 again in this position
gives the result: w2( f ) = 23344.

4 1 5
6 2 1
3 4 2
5 6 3
1 2 4
3 5 6
4 1 2
5 3 4
6 5 1
2 6 3

Figure 1

We will now highlight some specific results from the paper where
whirling was first introduced. Let Injm(n, k) be the set of m-injective
functions, that is, functions f : [n] → [k] such that # f−1(t) ≤ m for all
t ∈ [k]. Similarly, let Surm(n, k) be the set of m-surjective functions,
that is, f : [n] → [k] such that # f−1(t) ≥ m for all t ∈ [k]. Note
that injective functions are 1-injections and surjective functions are
1-surjections. We also define the statistic ηj( f ) = # f−1({j}).

Theorem 2.3. [6, Theorem 2.11] Fix F to be either Injm(n, k) or
Sur1(n, k) for given n, k, m ∈ P. Then under the action of w =
wn ◦ wn−1 ◦ · · · ◦ w1 on F , ηj is n

k -mesic for any j ∈ [k]

This result is conjectured to hold for Surm(n, k), but is still open for
m > 1. Proof details can be found in Sections 2.2–2.4 of [6].

Example 2.4. Here is the orbit of w on Inj1(3, 6) containing f = 415.
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415 w−→ 621 w−→ 342 w−→ 563 w−→ 124 w−→ 356 w−→ 412 w−→ 534 w−→ 651 w−→ 263 w

Figure 1 shows the corresponding orbit board (a matrix whose rows are the successive
orbit elements) partitioned into chunks. Notice that each value 1, 2, . . . , 6 appear exactly
5 times in this orbit of size 10, in accordance with the 1/2-mesy of Theorem 2.3.

2.2 k-bounded P-partitions

Now we extend the definition of whirling to k-bounded P-partitions. Throughout the
rest of the paper, P will denote a finite poset. Define [0, k] := {0, 1, 2, . . . , k}.

A P-partition is a map σ from P to N such that if x <P y, then σ(x) ≥ σ(y) [9, Ch. 3].

Definition 2.5. A k-bounded P-partition is a function f : P → [0, k] such that if x ≤P y,
then f (x) ≥ f (y). Let Fk(P) be the set of all such functions.

Throughout the rest of the paper we use {0, 1, . . . , k} to represent the congruence classes
of Z/(k + 1)Z, as usual.

Definition 2.6. For f ∈ Fk(P) and x ∈ P, define wx : Fk(P) → Fk(P), called the whirl at
x, as follows: repeatedly add 1 (mod k + 1) to the value of f (x) until we get a function
in Fk(P). This new function is wx( f ).

The case k = 1 of the above definition recovers toggling of order ideals (Def. 1.3).

Proposition 2.7. If x, y ∈ P are incomparable, then wxwy( f ) = wywx( f ).

Definition 2.8. Let (x1, x2, . . . xp) be a linear extension of P. Define w : Fk(P) → Fk(P)
by w := wx1wx2 . . . wxp . The above proposition shows that this is well-defined, since
one can get from any linear extension to any other by a sequence of interchanges of
incomparable elements.

Example 2.9. Let P be the V poset with labels
ℓ

c
r

, k = 2, and w = wcwrwℓ.

0

2

2
wℓ−→

1

2

2
wr−→

1

2

0
wc−→

1

1

0

There is a natural bijection between order ideals of a poset P and 1-bounded P-
partitions in F1(P). Specifically, a 1-bounded P-partition in F1(P) is simply the indicator
function of an order ideal I ∈ J(P). We extend this to an equivariant bijection Fk(P) →
J (P × [k]) which sends w to ρ, meaning the following diagram commutes.
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Fk(P)

J (P × [k])

Fk(P)

J (P × [k])
ρ

w

We will call the chains {(x, 1), (x, 2), . . . , (x, k)} ⊆ P × [k], for x ∈ P, the fibers of
P × [k], and construct an equivariant bijection that first sends wx to order-ideal toggling
down the fiber {(x, 1), (x, 2), . . . , (x, k)}.

Lemma 2.10. There is an equivariant bijection between Fk (P) and J (P × [k]) which sends wx
to the toggle product τ(x,1)τ(x,2) . . . τ(x,k).

Theorem 2.11. Fix any linear extension (x1, x2, . . . , xp) ∈ L(P). There is an equivariant bijec-
tion between Fk (P) and J (P × [k]) which sends whirling, w = wx1wx2 · · · wxp , to rowmotion
on J (P × [k]).

The following definitions will allow us to partition orbit boards of whirling into
subsets called whorms.

Definition 2.12. For any x ∈ P and f ∈ Fk(P), define (x, f ) to be a whirl element. The
whirl element (y, g) is whirl successive of (x, f ) if either:

1. y = x and g(y) = w( f )(x) = f (x) + 1, or

2. x covers y, f = g, and f (x) = g(y).

We consider whirl-successive elements to be whirl elements which are one step away
from each other, either by moving one covering relation down the poset or by whirling
the function at the element, and ending one label greater. While we must consider the entire
P-partitions f and g to check whether two whirl elements are whorm connected, we think of whirl
elements as being simply (x, f (x)), the location and its label, and indicate them in this way in
the examples that follow.

Definition 2.13. Two whirl elements (x, f ) and (y, g) are whorm-connected if there exists
a sequence of whirl-successive elements {(x, f ) = (x0, f0), (x1, f1), . . . , (xp, fp) = (y, g)}.
A whorm is a maximal set of whorm-connected whirl elements, that is, if (x, f ) is in a
whorm and (x, f ) is whorm-connected to (y, g), then (y, g) is in the whorm.

Example 2.14. An orbit of whirling P-partitions (for P = [2]× [2]) with its four whorms
indicated by the same color and (redundantly) node-shape.

2

2 1

0

w−→

2

1 2

1

w−→

2

2 0

0

w−→

1

0 1

0

w−→

2

1 0

0

w
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3 Periodicity and homomesy for rowmotion on V× [k]

In this section we consider the dynamics of rowmotion acting on the order ideals of the
chain of V’s poset Vk, establishing its periodicity and finding interesting examples of
homomesy.

Definition 3.1. Let V be the 3-element poset with Hasse diagram , and define
Vk = V× [k], where [k] is the chain poset. We call Vk the chain of V’s poset.

Example 3.2. Figure 2 shows the Hasse diagram of Vk with our vertex-labeling conven-
tion.

ℓ1

c1

r1

ℓ2

c2

r2

ℓ3

c3

r3

ℓk

ck

rk

...

...

...

Figure 2

Our main goals for this section are the following theorems. We will
leverage the equivariant bijection and the notion of whorms from the
last section.

Theorem 3.3. The order of rowmotion on J (Vk) is 2(k + 2).

Theorem 3.4. Let χs be the indicator function for s ∈ Vk. We have the
following homomesies for the action of ρ on J (Vk)

1. The statistic χℓi − χri is 0-mesic for all i ∈ [k].

2. The statistic χℓ1 + χr1 − χck is 2(k−1)
k+2 -mesic.

Example 3.5. This ρ-orbit on J (V4) has size 4, which divides 2(4+ 2) =
12. The homomesies are also easily checked, e.g., across the orbit the
total number of elements at rank 1 in the side fibers is 6, minus the
two at the top of the center fiber, for an average of 6−2

4 = 1 = 2(4−1)
4+2 ,

agreeing with Theorem 3.4(2).

ρ−→ ρ−→ ρ−→ ρ

To prove these theorems we utilize our equivariant bijection (Theorem 2.11) from
J (Vk) to Fk(V), then represent the latter by triples f = (ℓ, c, r) with ℓ ≤ c and r ≤ c.
This bijection ϕ sends an order ideal I to a triple (ℓ, c, r), counting the number of elements
of the order ideal in the left, center, and right fibers respectively.
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Example 3.6. Here is the orbit of F4(V) corresponding to Example 3.5.

(1, 3, 3) w−→ (2, 4, 0) w−→ (3, 3, 1) w−→ (0, 4, 2) w

Proposition 3.7. The number of order ideals of Vk is given by |J (Vk)| = k(k+1)(2k+1)
6 .

3.1 Center-seeking whorms

1
2
3
4 4

0
1
2
3
440

1 1
2
3
4

0
1
2
3
44

0
1
2
3
4 4 0

11

2
3
4

0

0 2 0
1 3 1
2 4 2
3 3 3
0 4 0
1 4 11 1 1

Figure 3

To show that the order of ρ on J (Vk) is 2(k + 2) we end up
proving something stronger, namely that ρk+2(I) is the reflec-
tion of I across the the center chain. Our method is to in-
vestigate the whorms that arise from repeatedly whirling a
k-bounded P-partition.

Recall from Definition 2.13 that, given a whirling orbit
board, O = { f , w( f ), w2( f ), . . . } of w on Fk(V), a whorm ς is
a maximal set of whorm-connected elements. Figure 3 shows
two orbit boards of F4(V), one with six whorms and one with
two whorms. Notice that each whorm in the second orbit has
two “starting" positions.

Each whorm in an orbit board of V × [k] starts on the
left, or the right, or both left and right; we call the former
one-tailed and the later two-tailed. Since these whorms move

down the orbit board at every step, except for one move to the center, we consider
them as a sequence of function values in the orbit board which start at 0 and end
at k, where one value is repeated when moving into the center. We call these center-
seeking whorms. (Since an orbit board is actually a cylinder, we have a “can of worms”
to deal with.) In the left orbit of Figure 4 we isolate one example of a left whorm:
ς = {(ℓ, (0, 3, 3)), (ℓ, (1, 4, 0)), (ℓ, (2, 2, 1)), (c, (2, 2, 1)), (c, (0, 3, 2)), (c, (1, 4, 3))}, visual-
ized within an orbit board of F4(V). It is easy to see that an orbit board is tiled either
entirely by one-tailed whorms or entirely by two-tailed whorms. (See the discussion at
the start of Section 4.)

We first observe that all whorms have k + 2 elements, since each contains the k + 1
elements 0, ..., k, exactly one of which is doubled.

Define b(ς) := 1 + min{ f (c) : (c, f ) ∈ ς}, the number of elements in the outer
columns and e(ς) := k + 2 − b(ς), the number of elements in the center column. For the
red whorm in the orbit on the left of Figure 4, b(ς) = 3 and e(ς) = 3.

Example 3.8. The right orbit board in Figure 4 is the previous example with all the
whorms colored. The number of elements in the left column of the yellow, red, and
orange whorms are 5, 3, 4 respectively, and the orbit board is of length 12.
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1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0

1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0

Figure 4

It follows that the order of whirling divides the sum of b(ς)
over all whorms ς ∈ S. In the setting of Fk(V), as long as we
know b(ς) and whether f (ℓ) = 0, f (r) = 0, or both, then we
can recover the entire whorm.

Definition 3.9. We place a circular order on the whorms. Let
ς1 and ς2 be whorms in an orbit board of Fk(V). If there ex-
ists (c, f ) ∈ ς1 with f (c) = k such that (c, w( f )) ∈ ς2, then we
say ς2 is in front of ς1. We call a sequence of whorms consecu-
tive if each is in front of the next. In a one-tailed orbit board,
consecutive whorms alternate starting from the left and right.

Example 3.10. In Figure 4 the blue (horizontal lines) whorm is
in front of the red (crosshatch) whorm, which is in front of the
green (northwest lines) whorm.

Lemma 3.11. Assume an orbit board O of w on Fk(V) has all one-
tailed whorms. Let ς1, ς2, and ς3 be three consecutive whorms, that is, ς3 is in front of ς2 which
is in front of ς1 in O. Then, b(ς1) + b(ς2) + b(ς3) = 2(k+ 2). Otherwise, if there are two-tailed
whorms, then b(ς1) + b(ς2) = k + 2.

In fact, the entire orbit board can be reconstructed simply from knowing the values of
b(ς1) and b(ς2) for two consecutive whorms in the one-tailed case, and from a single
b(ς1) in the two-tailed case.

Example 3.12. In Figure 4 we have k = 4, b(green) = 4, b(red) = 3, and b(blue) = 5,
which sum to 12 = 2(4 + 2).

Lemma 3.13. Given an orbit board with one-tailed whorms, let ς1, ς2, ς3, ς4 be consecutive, then
b(ς4) = b(ς1). Furthermore, if the orbit board contains two-tailed whorms, then b(ς1) = b(ς3).

...

...

...

...

...

...

Figure 5

Notice that for orbits with one-tailed whorms, we are not claiming
the board starts to repeat; since whorms alternate sides, ς4 will start on
the opposite side from ς1. If we keep applying the previous Lemma to
even more consecutive whorms, we see b(ς5) = b(ς2) and b(ς6) = b(ς3).
Finally we get b(ς7) = b(ς1) and the pattern repeats. Therefore there are
at most six unique whorms in a one-tailed orbit board.

Lemma 3.14. Given an orbit board with one-tailed whorms, there are at most
six distinct whorms.

Theorem 3.15. Let (x, y, z) ∈ Fk(V), then wk+2(x, y, z) = (z, y, x).

Corollary 3.16. The order of w on Fk(V) divides 2(k + 2).
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Lemma 3.17. Under the action of rowmotion on order ideals of J (Vk), the
difference of successive flux-capacitor indicator functions, Fi − Fi+1 is 3

k+2 -mesic for i ∈ [2, k− 1].

This lemma can be generalized to the following theorem.

Theorem 3.18. For k > 1. Let Fi = χℓi + χri + χci−1 . Under the action of rowmotion on order
ideals of J (Vk), the difference of arbitrary flux- capacitors is Fi − Fj is 3(j−i)

k+2 -mesic.

4 Periodicity and homomesy for rowmotion on Cn × [k]

We define the claw poset Cn = {b1, . . . , bn, 0̂} where each bi covers 0̂. For example, the

Hasse diagram of C4 would be .
Using the established equivariant bijection between J (Cn × [k]) and k-bounded P-

partitions Fk(Cn) that sends rowmotion to whirling, we can prove similar homomesies
and periodicity to that of C2 = V. Now instead of triples of numbers, we will consider
orbit boards of (n + 1)-tuples on [0, k],

(
f (b1), f (b2), . . . , f (bn), f (0̂)

)
, satisfying f (bi) ≤

f (0̂) for each i ∈ [n].

31 0 1 2
32 1 2 3
33 2 3 0
30 3 0 1
21 0 1 2
32 1 2 0
33 2 3 1
30 3 0 2
31 0 1 3
22 1 2 0
30 2 0 1
31 3 1 2
32 0 2 3
33 1 3 0
20 2 0 1

Figure 6

In Figure 6, note that if two entries are the same among the first n in
a given row, then those positions (columns) remain the same through-
out the entire orbit board. This is because the entries b1, . . . , bn rep-
resent the result of whirling at incomporable elements of the poset Cn.
Furthermore, these two entries must belong to the same whorm, be-
cause each will be whorm-connected via 0̂ exactly when their value
matches the value of the last entry. These observations will allow us to
generalize our peridocity and homomesy results from V to Cn.

Definition 4.1. For A ⊆ [0, k], define the family of order-reversing
maps FA

k (Cn) = { f : f ∈ Fk(Cn) and f (bj) ∈ A for all j ∈ [n]}. For
any fixed A we denote w to be whirling on the non-0̂ elements of order-
reversing maps f ∈ F A

k (Cn). Which is equivalent to incrementing each
non-0̂ value, but only allowing values within A.

Given f ∈ Fk(Cn), set A( f ) = {a : f (bj) = a for some j ∈ [n]}, the
set of values that the P-partition f attains on the non-0̂ elements of Cn.
Set α = #A and α( f ) = #A( f ). For any f , g ∈ Fk(Cn), if g = wj( f )

for some j ∈ N, then α( f ) = α(g). So we may sometimes write just α when an orbit is
fixed. For this section, we impose A = A( f ) when computing w : Fk(Cn) → Fk(Cn) of
an order-reversing map f .

Example 4.2. Consider f = (1, 3, 3, 0, 4, 1, 6) ∈ F9(C6). We see A( f ) = {0, 1, 3, 4} so

w(1, 3, 3, 0, 4, 1, 6) = (3, 4, 4, 1, 0, 3, 6).
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The last entry remains unchanged and the earlier entries are increasing cyclically
within the set A( f ) = {0, 1, 3, 4}. In the special case where V (= C2) are set within
any orbit A will have at most two elements, hence w will just toggle between those two
values at the left and the right. This means that w is the same as reflecting values across
the center of V, which we already saw was the effect of wk+2. Our next result generalizes
this to the case Cn.

Lemma 4.3. Let f ∈ Fk(Cn) and α = α( f ). If ς1, . . . , ςα+1 are α + 1 consecutive whorms, then

b(ς1) + · · ·+ b(ςα+1) = α(k + 2).

Proposition 4.4. Let w be whirling k-bounded P-partitions on Fk(Cn). For any f ∈ Fk(Cn)
and A = A( f ), we have wk+2( f ) = w( f ).

The proof of this theorem can be approached with whorms. Define b(ς) = 1 +
min{ f (0̂) : (0̂, f ) ∈ ς}. If there exists (0̂, f ) ∈ ς1 with f (0̂) = k such that (0̂, w( f )) ∈ ς2,
then we say ς2 is in front of ς1. In Figure 6, the pink snake is in front of the red snake.

Corollary 4.5. Let f ∈ Fk(Cn) and α = α( f ). If ς1, . . . , ςα+2 are consecutive whorms, then
b(ς1) = b(ςα+2).

0 1 2 3 3
1 2 3 0 3
2 3 0 1 3
3 0 1 2 3

Figure 7

If f ∈ F k(Cn) satisfies f (0̂) ̸∈ A( f ), then f will contain entries
from α + 1 distinct whorms. From Proposition 4.4, we will have at
most α(α + 1) whirls in an orbit board (each action of ŵ resulting in
α + 1 whorms potentially distinct from those previous, as in Figure 6).
On the other hands, consider the orbit board of F3(C4) in Figure 7
with α = 4. Here w( f ) = w5( f ) so the orbit is only 4 rows long with 4
distinct whorms. In general, we can extend this to a super orbit board
with α(α + 1) whorms.

Theorem 4.6. Let m = min(k, n). The order of rowmotion on J (Cn × [k]) divides m!(k + 2).

Only the analogue of the first homomesy in Theorem 3.4 holds.

Theorem 4.7. Let χ(i,j) be the indicator function for (i, j) ∈ Cn × [k]. Then for the action of
rowmotion on J (Cn × [k]), the statistic χ(i,a) − χ(j,a) is 0-mesic for all i, j ∈ [n] and a ∈ [k].

Remark 4.8. The average of the statistic
(

∑n
i=1 χ(i,1)

)
−χ(0̂,k) (analogous to Theorem 3.4(2))

turns out to be dependent on α( f ) (for any f ∈ O) and can be computed as

n(α)(k + 2)− (n + α)(α + 1)
(α)(k + 2)

.

Consider the super-orbit with nα(k + 2) entries among the non-minimal elements.
We know χ(i,1)(I) = 0 if and only if for corresponding f , f (i) = 0. But this is counted by
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the number of whorm beginnings, that is n(α+ 1). Furthermore, χ(0̂,k)(I) = 1 if and only

if for corresponding f , f (0̂) = k, which is counted by the number of whorm endings,
that is α(α + 1). Therefore the average is obtained.

The “flux-capacitor” homomesy of Theorem 3.18 also generalizes to the claw-graph
setting, and has a similar proof.

Theorem 4.9. Let Bi = χ(i−1,0̂)+∑n
j=1 χ(i,j). Then for the action of rowmotion on J (Cn × [k]),

Bi − Bj is (j−i)(n+1)
k+2 -mesic for all i, j ∈ [n].
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Abstract. We introduce a Whitney polynomial for hypermaps and use it to generalize
the results connecting the circuit partition polynomial to the Martin polynomial and
the results on several graph invariants.

Résumé. Nous introduisons un polynôme de Whitney pour les hypercartes et nous
l’utilisons pour généraliser les résultats liant le polynôme des partitions de circuit aux
polynômes de Martin et les résultats de plusieurs invariants de graphes.

Keywords: set partitions, noncrossing partitions, genus of a hypermap, Tutte poly-
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Introduction

The Tutte polynomial is a key invariant of graph theory, which has been generalized to
matroids, polymatroids, signed graphs and hypergraphs in many ways. A partial list of
recent topological graph and hypergraph generalizations includes [2, 3, 4, 19, 21].

The work we present [8] generalizes a variant of the Tutte polynomial, the Whitney
rank generating function to hypermaps which encode hypergraphs topologically embed-
ded in a surface. This polynomial may be recursively computed using a generalized
deletion-contraction formula, and many of the famous special substitutions (for instance,
counting spanning subsets of edges, or trees contained in the a graph) may be easily gen-
eralized to this setting. Our approach seems to be most amenable to generalize results on
the Eulerian circuit partition polynomials, but we also have a promising generalization
of the characteristic polynomial. This last generalization (involving the Möbius function
of the noncrossing partition lattice) also indicates that, for hypermaps many invariants
cannot be obtained by a simple negative substitution into some generalized Tutte poly-
nomial. For similar reasons, a generalized Whitney polynomial seems to work better
than a generalized Tutte polynomial, and the difference between the two should not be
thought of as a mere linear shift.
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Our work is organized as follows. After the Preliminaries, the key definition of
our Whitney polynomial is contained in Section 2. We may generalize the well-known
deletion-contraction recurrence formulas from graphs to this setting. This section also
contains several important specializations and the proof of the fact that taking the dual
of a planar hypermap amounts to swapping the two variables in its Whitney polynomial.

We introduce the directed medial map of a hypermap in Section 3. Every directed
Eulerian graph arises as the directed medial map of a collection of hypermaps. In this
section and in Section 5, we present analogues and generalizations of several results of
Arratia, Bollobás, Ellis-Monaghan, Martin and Sorkin [1, 5, 12, 13, 15, 14, 25, 26] on
the circuit partition polynomials of Eulerian digraphs and the medial graph of a plane
graph.

The visually most appealing part of our work is in Section 4. Here we extend the cir-
cuit partition approach to a refined count which keeps track of circuits bounding external
(“wet”) and internal (“dry”) faces and define a process that allows the computation of
the Whitney polynomial of a planar hypermap using paper and a scissor.

Finally, in Section 6 we introduce a characteristic polynomial for hypermaps which
generalizes the characteristic polynomial of a map, as well as of a graded poset. We
show that for hypermaps whose hyperedges have length at most three, this variant of
the characteristic polynomial is still a chromatic polynomial, counting the admissible
colorings of the vertices.

1 Preliminaries

A hypermap is a pair of permutations (σ, α) acting on the same finite set of labels, gener-
ating a transitive permutation group. It encodes a hypergraph, topologically embedded
in a surface. Fig. 1 represents the planar hypermap (σ, α) for σ = (1, 4)(2, 5)(3) and
α = (1, 2, 3)(4, 5). The cycles of σ are the vertices, the cycles of α are the hyperedges and
the cycles of α−1σ = (1, 5)(2, 4, 3) are the faces. A hypermap is a map if the length of
each cycle in α is at most 2. In terms of the function z(π), counting the cycles of the

3

1

2

4

5

Figure 1: The hypermap (σ, α)

permutation π, the genus g(σ, α) of a hypermap may be computed using the equation
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n + 2 − 2g(σ, α) = z(σ) + z(α) + z(α−1σ) due to Jacques [17]. The present work was
motivated by the study of the spanning hypertrees of a hypermap, initiated in [6, 9, 10, 24]
and continued in [7]. A hypermap (σ, α) is unicellular if it has only one face, and it is a
hypertree if it also has genus zero. A permutation β is a refinement of a permutation α if
β is obtained by replacing each cycle αi of α by a permutation βi acting on the same set
of points in such a way that g(αi, βi) = 0. We will use the notation β ≤ α to denote that
β is a refinement of α. A hypermap (σ, β) spans the hypermap (σ, α) if β is a refinement
of α. A hyperdeletion is the operation of replacing a hypermap (σ, α) with the hypermap
(σ, αδ) where δ = (i, j) is a transposition disconnecting α, that is, i and j must belong
to the same cycle. This time we will work with collections of hypermaps (defined in Sec-
tion 2) hence we may perform hyperdeletions even if the permutation group generated
by the pair (σ, αδ) has more orbits than the one generated by the pair (σ, α). For maps
the deletion operation corresponds to deleting an edge (i, j). A hypercontraction is the
operation of replacing a hypermap (σ, α) with the hypermap (γσ, γα) where γ = (i, j)
is a transposition disconnecting α. All hypercontractions considered in this work will
be topological: i and j have to belong to different cycles of σ, for maps this operation
corresponds to contracting an edge that is not a loop.

2 A Whitney polynomial of a collection of hypermaps

Definition 1. A collection of hypermaps (σ, α) is an ordered pair of permutations acting on
the same set of points. We call the orbits of the permutation group generated by σ and α the
connected components of (σ, α) and denote their number by κ(σ, α).

Definition 2. The Whitney polynomial R(σ, α; u, v) of a collection of hypermaps (σ, α) on a
set of n points is defined by the formula

R(σ, α; u, v) = ∑
β≤α

uκ(σ,β)−κ(σ,α) · vκ(σ,β)+n−z(β)−z(σ)

Here the summation is over all permutations β refining α.

For maps we recover the usual definition of the Whitney polynomial of the under-
lying graph. This invariant is multiplicative for a pair of collections of hypermaps on
disjoint sets of points. The function R(σ, α; u, v) may be computed recursively using the
following generalization of the the well-known deletion-contraction recurrence for the
Whitney polynomial R(G; u, v) of a graph G.

Theorem 3. Let H = (σ, α) be a collection of hypermaps on the set {1, 2, . . . , n} and assume
that (1, 2, . . . , m) is a cycle of α of length at least 2. Then the Whitney polynomial R(H; u, v) is
given by the sum

R(H; u, v) =
m

∑
k=1

R(ϕk(H); u, v) · wk,
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where each ϕk(H) is a collection of hypermaps and each wk is a monomial from the set {1, u, v, uv},
according to the following rules:

ϕk(H) =

{
((1, k)σ, (1, k)α(1, k − 1)) if z((1, k)σ ≤ z(σ),
(σ, (1, k)α(1, k − 1)) otherwise.

(2.1)

wk =

{
uκ(ϕk(H))−κ(H) if z((1, k)σ ≤ z(σ),
uκ(ϕk(H))−κ(H)v otherwise.

(2.2)

In rule (2.1) we count modulo m, that is, we replace k − 1 with m if k = 1, and we read (1, 1) as
a shorthand for the identity permutation.

In analogy to the case of maps, Theorem 3 may be modified in such a way that
for a hypermap (σ, α) the recurrence only involves hypermaps. This recurrence uses
hyperdeletions and hypercontractions.

Example 4. For the hypermap shown in Fig 1, repeated use of Theorem 3 gives

R((1, 4)(2, 5)(3), (1, 2, 3)(4, 5); u, v) = u2 + uv + 4u + v + 3.

Certain substitutions into the Tutte polynomial yield famous graph theoretic invari-
ants. Some of these results carry over easily to the Whitney polynomial of a collection of
hypermaps. We define a hyperforest as a collection of genus zero unicellular hypermaps
and we call a collection of hypermaps (σ, β) associated to some refinement β of α (σ, α) a
spanning collection of hypermaps if the subgroup generated by σ and β has the same orbits
as the permutation group generated by σ and α. Then

1. R(σ, α; 0, 0) is the number of spanning hyperforests of (σ, α).
2. R(σ, α; 0, 1) is the number of spanning collections of hypermaps of (σ, α).

The Tutte polynomial T(G; x, y) of a graph G (or of a map) is given by T(G; x, y) =
R(G; x − 1, y− 1). Extending this definition to collections of hypermaps the obvious way
does not seem to be a good idea because of the following example.

Example 5. Consider the hypermap (σ, α) given by σ = (1)(2) · · · (n) and α = (1, 2, . . . , n).
For this, R(σ, α; u, v) and R(α−1σ, α−1; u, v) are the Narayana polynomials of u and and v,
respectively, associated to the noncrossing partitions of {1, 2, . . . , n}. For n = 2 these are
1 + u and 1 + v respectively, but they become much more complicated for larger values
of n. For n = 3 we get R(σ, α; u, v) = u2 + 3u+ 1, substituting u = x− 1 yields x2 + x− 1,
a polynomial with a negative coefficient.

On the other hand, we have the following generalized duality result.

Theorem 6. A collection of hypermaps (σ, α) of genus zero and its dual collection (α−1σ, α−1)
satisfy R(σ, α; u, v) = R(α−1σ, α−1; v, u).
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3 Medial maps

Definition 7. Let (σ, α) be a collection of hypermaps on the set of points {1, 2, . . . , n}. We define
its medial map M(σ, α) as the following map (σ′, α′) on {1−, 1+, 2−, 2+, . . . , n−, n+}:

1. the cycles of σ′ are all cycles of the form (i−1 , i+1 , i−2 , i+2 , . . . , i−k , i+k ) where (i1, i2, . . . , ik) is
a cycle of α;

2. the cycles of α′ are all cycles of the form (i+, σ(i)−).

We obtain a collection of maps (σ′, α′) satisfying σ′(i−) = i+ for all i, such that
the endpoints of each edge have opposite signs. We call each such collection of maps
Eulerian and define its underlying Eulerian digraph by directing each edge (i+, j−) from its
positive endpoint toward its negative endpoint. The process of creating the medial map

6+

4
51

2
3 6

1−

2+

4−
4+

5+

2−
5−

2+

4−
4+

5+

2−
5−

6− 6−
3−3−

3+ 3+

1−
1+ 1+

6+

Figure 2: A planar hypermap and its medial map

of ((1, 5)(2, 6)(3)(4), (1, 2, 3, 4)(5, 6)) is shown in Figure 2.

Proposition 8. Every directed Eulerian graph arises as the directed medial graph of a collection
of hypermaps.

A hypermap of any genus has a medial map of the same genus. A planar map (σ, α)

encodes a plane graph G. In this case M(σ, α) is essentially the directed medial graph
−→
Gm

of G, as defined by Martin [25, 26]. Next we generalize the circuit partition polynomials
appearing in the works of Ellis-Monaghan [12, 13] and Arratia, Bollobás and Sorkin [1]
(see also the Introduction of [5]).

Definition 9. Let (σ, α) be a collection of Eulerian maps. A noncrossing Eulerian state is a
partitioning of the edges of the underlying directed medial graph into closed paths in such a way
that these paths do not cross at any of the vertices.
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4−

2+

4+
5+

2−
5−

6−
3−

3+

1−
1+

6+

Figure 3: A noncrossing Eulerian state

Figure 3 represents a noncrossing Eulerian state of the Eulerian map shown in the
right hand side of Figure 2. We partition the set of edges into closed paths by matching
each negative point on a vertex to a positive point on the same vertex. The arrows inside
the vertices are the ones pointing from the negative points towards the positive points.
A noncrossing Eulerian state is uniquely defined by a coherent matching that refines the
vertex permutation of the Eulerian map, and matches positive points to negative points.

Definition 10. We define the noncrossing circuit partition polynomial of an Eulerian map
(σ, α) as

j((σ, α); x) = ∑
k≥0

fk(σ, α)xk.

Here fk(σ, α) is the number of noncrossing Eulerian states with k cycles.

The following result generalizes Ellis-Monaghan’s generalization of Martin’s for-
mula [15, Eq. (15)] from planar maps to hypermaps.

Theorem 11. Let (σ, α) be a genus zero collection of hypermaps and M(σ, α) the collection of
its medial maps. Then j(M(σ, α); x) = xκ(σ,α)R(σ, α; x, x) holds.

4 A visual computation of R(σ, α; u, v) in the planar case

Consider the hypermap (σ, α) given by σ = (1, 5, 12)(4, 11, 10)(3, 9, 8)(2, 7, 6) and α =
(1, 2, 3, 4)(5, 6)(7, 8)(9, 10)(11, 12), shown in Figure 4. For each point i we add the points
i− and i+ of the medial map. The vertices of M(σ, α) are identified with the hyperedges
of (σ, α), and we “shrink” the edges (i+, σ(i)−) of M(σ, α) to follow the outline of the
original vertices and the hyperedges. Thus we fatten the outline of the diagram of (σ, α),
except for the counterclockwise arcs from i− to i+ along the vertices (unless σ(i) = i)
and for he arcs from i+ to α(i)− along the hyperedges (unless α(i) = i). Next we select



A Whitney polynomial for hypermaps 7

11+

3

5

12−

4
11−4+

2+3−

4−

3+ 2−
1+ 5+

6−

6

6+
5−

8

7+8−

8+

10−

9

9+
10+

11−

7−

9−

10

12+ 12

7

11

2

Figure 4: A planar hypermap with the edges of its medial map shrunk to its outline

a coherent matching on the signed points. The nontrivial choices are the ones when i+ is
not matched to α(i)−, the remaining choices are trivial. We can think of the diagram of
(σ, α) as a paper cutout, with the vertices and the hyperedges being solid and the faces
missing. Each nontrivial pair of matched points corresponds then to a cut into the object
using a scissor, subject to the following rules:

(R1) Each cut is a simple curve connecting a point i+ with a point j−, inside a hyperedge.
(R2) Each point i+ and j− may be used at most once.
(R3) The remaining points not used in the cuts must come in pairs (i+, α(i)−).
(R4) A new cut cannot cut into the cut-line of a previous cut.

At the end of the process the curves of the outline correspond to the faces β−1σ of (σ, β)
for some β ≤ α, and they are also the circuits of the corresponding circuit partition.
Let us think of the unbounded face of the hypermap (σ, α) as “the ocean” with a “wet
coastline”. After a few nontrivial cuts, we may have several connected components, each
has one coastline. Figure 5 illustrates this situation after performing the nontrivial cuts
indicated in Figure 4. The shaded regions indicate the faces of σ, α whose border has
been merged with a (thickened) wet coastline.

Theorem 12. Given a planar hypermap (σ, α), we may visually compute its Whitney polynomial
by making its model in paper, and performing the above cutting procedure in all possible ways
and associating to each outcome u raised to the power of the wet coastlines and v raised to the
power of the dry faces. The sum of all weights is u · R(σ, α; u, v).
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Figure 5: Wet coastlines after a few cuts

5 Counting noncrossing Eulerian colorings

In this section we extend the formula counting the Eulerian colorings of the medial
graph of a plane graph [14, Evaluation 6.9] to medial maps of planar hypermaps. The
following definition may be found in [14, Definition 4.3].

Definition 13. An Eulerian m-coloring of an Eulerian directed graph
−→
G is an edge coloring

of
−→
G with m colors so that for each color the (possibly empty) set of all edges of the given color

forms an Eulerian subdigraph.

Consider now a planar hypermap (σ, α) and its directed Eulerian medial map M(σ, α).
Given an Eulerian m-coloring of the edges, let us color the endpoints of (i+, σ(i)−) with
the color of the edge. We call this coloring of the points the coloring of the points induced
by the Eulerian m-coloring. In order to relate the count of the Eulerian m-colorings to our
Whitney polynomial, we must restrict our attention to noncrossing Eulerian m-colorings,
defined as follows.

Definition 14. Let (σ, α) be a planar hypermap and let M(σ, α) be its directed medial map. We
call an Eulerian m-coloring noncrossing if there is a noncrossing Eulerian state such that all
edges of the same connected circuit have the same color.

Remark 15. If (σ, α) is a map then the above noncrossing condition is automatically sat-
isfied by each Eulerian m-coloring of M(σ, α) as all Eulerian states of M(σ, α) are non-
crossing. The more general case of partitioning the edge set of an Eulerian digraph into
Eulerian subdigraphs was addressed in [1, 5, 12].
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Using the induced coloring of the points we can verify vertex by vertex whether an
Eulerian m-coloring is non-crossing: it is necessary and sufficient to be able to find a
coherent matching at each vertex such that only points of the same color are matched.
This observation motivates the following definition.

Definition 16. Let (σ, α) be a planar hypermap on the set of points {1, 2 . . . , n} and M(σ, α) =
(σ′, α′) its directed medial map on the set of points {1−, 1+, 2−, 2+, . . . , n−, n+}. We call an m-
coloring of the points {1−, 1+, 2−, 2+, . . . , n−, n+} a legal coloring if it satisfies the following
conditions:

1. The endpoints of each edge (i+, σ(i)−) ∈ α′ of M(σ, α) have the same color.
2. There is a coherent matching of the set {1−, 1+, 2−, 2+, . . . , n−, n+} such that each point

is matched to a point of the same color.

Definition 16 is motivated by the following observation.

Proposition 17. Given a planar hypermap (σ, α) and its directed medial map M(σ, α) a coloring
of the set of points of M(σ, α) is legal if and only if it is induced by a noncrossing Eulerian m-
coloring of the edges of M(σ, α).

Note that for a given m-coloring of the signed points, induced by a coloring of the
edges in α′, condition (2) may be independently verified at each vertex of σ′. This obser-
vation motivates the following definition.

Definition 18. Let (i−1 , i+1 , i−2 , i+2 , . . . , i−k , i+k ) be a cyclic signed permutation and let is fix an
m-coloring of its points. We say that the valence of this colored cycle is number of coherent
matchings of its points that match each point the a point of the same color.

Now we are able to state the generalization of [14, Evaluation 6.9].

Theorem 19. Let (σ, α) be a planar hypermap. Then, for a fixed positive integer m, we have

mκ(σ,α)R(σ, α; m, m) = ∑
λ

∏
v∈σ′

ν(v, λ).

Here the summation runs over all Eulerian m-colorings λ of the directed medial map M(σ, α) =
(σ′, α′), and for each vertex v ∈ σ′ the symbol ν(v, λ) represents the valence of v colored by the
restriction of the point coloring induced by λ to the points of v.

Example 20. For maps (σ, α), there are essentially two types of vertices in the directed
medial map M(σ, α): monochromatic vertices and vertices colored with two colors. We
can recover the formula [14, Evaluation 6.9]:

mκ(σ,α)R(σ, α; m, m) = ∑
λ

2m(λ)

where m(λ) is the number of monochromatic vertices. Evaluating this formula at m = 2
was used by Las Vergnas [23] to describe the exact power of 2 that divides R(σ, α; 2, 2)
for a map (σ, α), or equivalently the evaluation of its Tutte polynomial at (3, 3).
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6 The characteristic polynomial of a hypermap

Proposition 21. Let α be a permutation of {1, 2, . . . , n} with k cycles of lengths c1, . . . , ck. Then
the partially ordered set of all refinements of α, ordered by the refinement operation, is a direct
product [id, α] = ∏k

i=1 NC(ci). Here id is the identity permutation (1)(2) · · · (n) and NC(ci)
is the lattice of noncrossing partitions on ci elements.

Using the results in [27], the Möbius function µ(β, α) of any interval [β, α] may be
expressed in terms of Catalan numbers.

Definition 22. Given a collection of hypermaps (σ, α) on the set of points {1, 2, . . . , n}, we
define its characteristic polynomial χ(σ, α; t) by

χ(σ, α; t) = ∑
β≤α

µ(id, β) · tκ(σ,β)−κ(σ,α).

When (σ, α) is a collection of maps on the set {1, 2, . . . , n}, we get that χ(σ, α; t) is the
characteristic polynomial of its underlying graph. For a fixed collection of hypermaps
(σ, α), let us define the function X([α1, α2]; t) on the intervals of the partially ordered set
of the refinements of α by

X([α1, α2]; t) = ∑
β∈[α1,α2]

µ(α1, β) · tκ(σ,β) (6.1)

A Möbius inversion formula computation yields ∑β≤α X([β, α]; t) = tz(σ). For maps, this
computation implies that the chromatic polynomial κ(σ, α)χ(σ, α; t) = X([id, α]; t) is the
number of ways to color the vertices using t colors such that adjacent vertices have the
same color. This reasoning cannot be extended to arbitrary hypermaps, but it is possible
to generalize it to hypermaps with hyperedges containing at most 3 points.

Theorem 23. Let (σ, α) be a collection of hypermaps such that each cycle of α has length at
most 3. Then for any positive integer n, the number nκ(σ,α) · χ(σ, α, n) is the number of ways to
n-color the vertices of (σ, α) in such a way that no two vertices of the same color are incident to
the same cycle of α.

A completely analogous dual reasoning may be developed for the flow polynomial
C(σ, α, ; t) of a collection of hypermaps (σ, α) on the set of points {1, 2, . . . , n}, defined
by

C(σ, α; t) = ∑
β≤α

µ(β, α)tn+κ(σ,β)−z(β)−z(σ).
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The doubly asymmetric simple exclusion process,
the colored Boolean process, and the restricted

random growth model

Yuhan Jiang*1

1Department of Mathematics, Harvard University, MA, USA

Abstract. The multispecies asymmetric simple exclusion process (mASEP) is a Markov
chain in which particles of different species hop along a one-dimensional lattice. This
paper studies the doubly asymmetric simple exclusion process DASEP(n, p, q) in which
q particles with species 1, . . . , p hop along a circular lattice with n sites, but also the
particles are allowed to spontaneously change from one species to another. In this
paper, we introduce two related Markov chains called the colored Boolean process and
the restricted random growth model, and we show that the DASEP lumps to the col-
ored Boolean process, and the colored Boolean process lumps to the restricted random
growth model. This allows us to generalize a theorem of David Ash on the relations
between sums of steady state probabilities. We also give explicit formulas for the
stationary distribution of DASEP(n, 2, 2).

Keywords: Asymmetric simple exclusion process, Markov chain

1 Introduction

The asymmetric simple exclusion process (ASEP) is a model from statistical mechanics
introduced by Macdonald-Gibbs-Pipkin [12] and Spitzer [17], which describes a Markov
chain for particles hopping left or right along a one-dimensional lattice such that each
site contains at most one particle. It can be used to model traffic flow or translation in
protein synthesis. There are many variations of the ASEP: the lattice can have open, half
open, closed, or periodic boundaries, and there can be reservoirs (see Liggett [10, 11]).
Particles can exhibit different species, and this variation is called the multispecies ASEP
(mASEP). The asymmetry can be partial, so that particles are allowed to hop both left and
right, but one side is t times more probable, and this is called the partially asymmetric
exclusion process (PASEP). The ASEP is closely related to a growth model defined by
Kardar-Parizi-Zhang [8], and various methods have been invented to study the ASEP,
such as the matrix ansatz introduced by Derrida et al. in [5]. The combinatorics of the
ASEP was studied by many people, see [2, 3, 4, 7, 13].

*yjiang@math.harvard.edu

yjiang@math.harvard.edu
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Let λ = (λ1, . . . , λn) be a partition with λ1 ≥ · · · λn ≥ 0, |λ| be the sum of all parts
of λ, and mi = mi(λ) := #{j : λj = i} be the number of parts of λ that equal i. We
also denote λ by 1m12m2 · · · . Let ℓ(λ) = ∑i mi(λ) denote the length of λ. We write
Sn(λ) as the set of all weak compositions obtained from permuting the parts of λ. The
mASEP can be thought of a Markov chain on Sn(λ) [4, Definition 1.2], or a coupling of
multiple ASEP [13]. The stationary distribution of the mASEP is related to Macdonald
polynomials [4] and multiline queues [7].

Let n be the number of sites on the lattice, p be number of types of species, and q
be the number of particles. David Ash [1] defined the doubly asymmetric simple exclusion
process DASEP(n, p, q). The DASEP is a variant of the mASEP but also allows particles
to spontaneously change species. This might be applied to biology models involving
evolutions, or traffic flow problem that also tracks the gears of the cars. If p = 1,
DASEP(n, 1, q) is the usual 1-species PASEP on a ring.

Definition 1. [1] Let n, p, q be positive integers with n > q, and let u, t ∈ [0, 1) be
constants. The doubly asymmetric simple exclusion process DASEP(n, p, q) is a Markov chain
on the set of words (or weak compositions) of length n in 0, . . . , p with n − q zeros:

Γp,q
n =

⋃
λ1≤p,
ℓ(λ)=q

Sn(λ) =
⋃

m1+···+mp=q
Sn(1m1 · · · pmp).

The transition probability P(µ, ν) on two states µ and ν is as follows:

• If µ = AijB and ν = AjiB (where A and B are words in 0, . . . , p) with i ̸= j, then
P(µ, ν) = t

3n if i > j and P(µ, ν) = 1
3n if j > i.

• If µ = iAj and ν = jAi with i ̸= j, then P(µ, ν) = t
3n if j > i and P(µ, ν) = 1

3n if
i > j.

• If µ = AiB and ν = A(i + 1)B with i ≤ p − 1, then P(µ, ν) = u
3n .

• If µ = A(i + 1)B and ν = AiB with i ≥ 1, then P(µ, ν) = 1
3n .

• Otherwise P(µ, ν) = 0 for µ ̸= ν and P(µ, µ) = 1 − ∑ν ̸=µ P(µ, ν).

Remark 1. There is an inherent cyclic symmetry in the definition, so that a state has the
same dynamic under any cyclic permutation.

This Markov chain is irreducible and aperiodic, so it has a unique stationary distri-
bution π given by rational functions in u, t, which satisfies the global balance equations
π(µ)∑ν ̸=µ P(µ, ν) = ∑ν ̸=µ π(ν)P(ν, µ) for any state µ. For convenience, we clear the
denominators and obtain the “unnormalized steady state probabilities" πDASEP which
are proportional to the stationary distribution by a factor of the partition function Zp,q

n =
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Figure 1: The state diagram of DASEP(2, 2, 1) and DASEP(3, 2, 2). Bold edges de-
note changes in species, while regular edges denote exchanges of particles of different
species or between particles and holes.

∑µ∈Γp,q
n

πDASEP(µ). We require the unnormalized steady state probabilities to be coprime
so they are uniquely defined.

Our first main result concerns the ratio between the sums of certain sets of πDASEP(µ).
For each partition λ with length q and each binary word w = (w1, . . . , wn) with q ones
and n − q zeros, define

Sw
n (λ) := {µ ∈ Sn(λ)|µi ̸= 0 if and only if wi ̸= 0}

as the equivalence class of weak compositions µ obtained from permuting λ whose sup-
port is equal to w. Then we have |Sn(1m1 · · · pmp)| = ( n

n−q,m1,...,mp
) and |Sw

n (1m1 · · · pmp)| =
( q

m1,m2,...,mp
).

Theorem 1. Consider DASEP(n, p, q) for any positive integers n, p, q with n > q.

(1) For any two binary words w, w′ ∈ ([n]q ), we have πDASEP(w) = πDASEP(w′).

(2) For any binary word w ∈ ([n]q ) and partition λ = 1m12m2 · · · pmp with m1 + · · ·+mp = q,
we have

∑
µ∈Sw

n (λ)

πDASEP(µ) = u|λ|−q
(

q
m1, m2, . . . , mp

)
πDASEP(w).

In other words, the average of steady state probabilities over orbits of Sq-action on
the particles are all equal up to a power of u. This is a polynomial generalization of a
combinatorial phenomenon called homomesy defined by Propp and Roby, see[14].
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µ πDASEP(µ)
011 u + 3t + 4
012 u(u + 4t + 3)
021 u(u + 2t + 5)
022 u2(u + 3t + 4)

µ πDASEP(µ)
0011 u + 2t + 3
0101 u + 2t + 3
0022 u2(u + 2t + 3)
0202 u2(u + 2t + 3)
0012 u(u + 3t + 2)
0102 u(u + 2t + 3)
0021 u(u + t + 4)

Table 1: The unnormalized steady state probabilities of DASEP(3, 2, 2) and
DASEP(4, 2, 2). We present all states up to cyclic symmetry.

Remark 2. In the special case of DASEP(3, p, 2), Theorem 1 was proved by David Ash
[1, Theorem 5.2].

Example 1. For the partition λ = (2, 1, 0) with |λ| = 2 + 1 = 3, we have S011
3 ((2, 1, 0)) =

{012, 021} and |S011
3 ((2, 1, 0))| = ( 2

1,1) = 2; also S3((2, 1, 0)) = {012, 021, 102, 201, 120, 210}
and |S3((2, 1, 0))| = ( 3

1,1,1) = 6.

The following are direct corollaries of Theorem 1.

Corollary 1. For the DASEP(n, p, q) defined by positive integers n, p, q, n > q, and λ, µ two
partitions with λ1 ≤ p, µ1 ≤ p, ℓ(λ) = ℓ(µ) = q, we have

∑ν∈Sn(λ) πDASEP(ν)

∑ν∈Sn(µ) πDASEP(ν)
=

|Sn(λ)|
|Sn(µ)|

u|λ|−|µ|.

Let t = 1, then our model is symmetric, dubbed the “doubly symmetric simple
exclusion process (DSSEP)". It is a generalization of the model considered by Salez in
[15], which is an exclusion process on a graph (a circle in our case) with a reservoir of
particles at each vertex. Recall that [p + 1]u = 1 + u + · · ·+ up denotes the u analog of
the integer p + 1. For DSSEP, it follows from Theorem 1 that

Corollary 2. The partition function of DSSEP(n, p, q) is(
n
q

)
(1 + u + · · ·+ up)q =

(
n
q

)
([p + 1]u)q.

Example 2. For DASEP(3, 2, 2), by Theorem 1, we have πDASEP(012) + πDASEP(021) =
2uπDASEP(011) and πDASEP(022) = u2πDASEP(011) which can be seen from Table 1.

Similarly, for DASEP(4, 2, 2), Theorem 1 asserts that πDASEP(0011) = πDASEP(0101),
πDASEP(0012) + πDASEP(0021) = 2uπDASEP(0011) and πDASEP(0102) + πDASEP(0201) =
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2uπDASEP(0011). Since 0201 is a cyclic permutation of 0102, their steady state probabili-
ties are equal by Remark 2, and Table 1 shows that it is equal to uπDASEP(0101).

To prove Theorem 1, we introduce a new Markov chain that we call colored Boolean
process (see Definition 2), and we show that DASEP lumps is a colored Boolean process.
This gives a relationship between the stationary distribution of the colored Boolean pro-
cess and the DASEP; see Theorem 2.

In Theorem 6, we give explicit formulas for the stationary distributions of the infi-
nite family DASEP(n, 2, 2), n ≥ 3 which depend on whether n is odd or even. Both are
described by polynomial sequences given by a second-order homogeneous recurrence
relation (see Theorem 6). The polynomials sequences are generating functions of match-
ings of certain graphs (see Figure 4 and Figure 5). When specialized to u = t = 1,
the polynomial sequences specialize to trinomial transform of Lucas number A082762
and binomial transform of the denominators of continued fraction convergents to

√
5

A084326 [16].

Acknowledgements

We thank Lauren Williams for suggesting the problem and helping me better understand
ASEP. We thank Evita Nestoridi and Sylvie Corteel for helpful discussions.

2 The DASEP lumps to the colored Boolean process

In this section, we define the colored Boolean process, and we show that the DASEP lumps
to the colored Boolean process. We compute the ratios between steady states probabilities
in the colored Boolean process, leading us to understand the ratios between sums of
steady state probabilities of the DASEP.

Definition 2. The colored Boolean process is a Markov chain dependent on three positive
integers n, p, q with n > q on the set of pairs of binary words and partition in a q × p
rectangle

Ωp,q
n = {(w, λ)|w ∈

(
[n]
q

)
, λ1 ≤ p, ℓ(λ) = q}

with the following transition probabilities:

• Q((w, λ), (w, λ′)) = mi(λ)u
3n if λ′ is obtained from λ by changing a part equal to

i < p to a part equal to i + 1, denoted by λ ↗i λ′.

• Q((w, λ), (w, λ′)) = mi(λ)
3n if λ′ is obtained from λ by changing a part equal to i > 1

to a part equal to i − 1, denoted by λ ↘i λ′.

https://oeis.org/A082762
https://oeis.org/A084326
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• Q((w, λ), (w′, λ)) = 1
3n if w′ is obtained from w by 01 → 10 in a unique position,

allowing wrap-around at the end.

• Q((w, λ), (w′, λ)) = t
3n if w′ is obtained from w by 10 → 01 at a unique position,

allowing wrap-around at the end.

• If none of the above applies but w ̸= w′ or λ ̸= λ′, then Q((w, λ), (w′, λ′)) = 0.
Otherwise Q((w, λ), (w, λ)) = 1 − ∑(w′,λ′) ̸=(w,λ) Q((w, λ), (w′, λ′)).

We denote the stationary distribution of Ωp,q
n by πCBP. We think of parts of different

sizes as particles of different colors, or species; hence the name.
The relation between the colored Boolean process and the DASEP is captured by the

following notion.

Definition 3. [9, Section 6.3] Let {Xt} be a Markov chain on state space ΩX with transi-
tion matrix P, and let f : ΩX → ΩY be a surjective map. Suppose there is an |ΩY| × |ΩY|
matrix Q such that for all y0, y1 ∈ ΩY, if f (x0) = y0, then

∑
x: f (x)=y1

P(x0, x) = Q(y0, y1).

Then { f (Xt)} is a Markov chain on ΩY with transition matrix Q. We say that { f (Xt)} is
a lumping of {Xt}.

We may use the stationary distribution of {Xt} to compute that of its lumping.

Proposition 1. [9, Section 6.3] Suppose p is a stationary distribution for {Xt}, and let π be
the measure on ΩY defined by π(y) = ∑x: f (x)=y p(x). Then π is a stationary distribution for
{ f (Xt)}.

Theorem 2. The projection map on state spaces f : Γp,q
n → Ωp,q

n sending each µ to (w, λ) if
µ ∈ Sw

n (λ) is a lumping of DASEP(n, p, q) onto the colored Boolean process Ωp,q
n .

It follows from Proposition 1 that the unnormalized steady state probabilities of the
colored Boolean process are proportional to the sums of the unnormalized steady state
probabilities of the DASEP as follow:

πCBP(w, λ) ∝ ∑
µ∈Sw

n (λ)

πDASEP(µ).

Proof. Fix (w0, λ0) and (w1, λ1), we want to show that for any µ0 ∈ Sw0
n (λ0), the quantity

∑µ:µ∈S
w1
n (λ1)

P(µ0, µ) is independent of the choice of µ0 and equal to Q((w0, λ0), (w1, λ1)).
We may assume (w0, λ0) ̸= (w1, λ1). Note that this quantity is nonzero only in the
following cases:
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(101,(1,1))(110,(1,1)) (011,(1,1))

(101,(2,1))(110,(2,1)) (011,(2,1))

(101,(2,2))(110,(2,2)) (011,(2,2))

Figure 2: Transition diagram of Ω2,2
3 , as a lumping of DASEP(3, 2, 2) as shown on the

right hand side in Figure 1. The bold edges denote the changes of species, while the
regular edges denote the exchanges between particles of different species or between
particles and holes.

• If w0 = w1 and there exists a unique i < p such that λ0 ↗i λ1, we increase the
species of a particle from i to i + 1, and there are mi ways to do it. For each
µ ∈ Sw1

n (λ1), we have P(µ0, µ) = u
3n , so their sum is equal to miu

3n .

• If w0 = w1 and there exists a unique i > 1 such that λ0 ↘i λ1, we decrease the
species of a particle from i to i − 1, and there are mi ways to do it, so the quantity
is equal to mi

3n .

• If λ0 = λ1 and w1 is obtained from w0 by 01 → 10 or 10 → 01 at a unique position
(allow wraparound). This quantity is equal to 1

3n or t
3n respectively.

Theorem 3. Consider the colored Boolean process Ωp,q
n .

(1) The steady state probabilities of all binary words with the trivial partition are equal, i.e.,

πCBP(w, 0n−q1q) = πCBP(w′, 0n−q1q), for all w, w′ ∈
(
[n]
q

)
.

(2) The steady state probability of an arbitrary state (w, λ) can be expressed in terms of the
steady state probability of the corresponding state (w, 0n−q1q) with the trivial partition
0n−q1q as follows:

πCBP(w, λ) = u|λ|−q
(

q
m1, . . . , mp

)
πCBP(w, 0n−q1q). (2.1)
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Proof. Since the colored Boolean process is irreducible, it suffices to verify the global
balance equations. For simplicity of notation, denote πCBP(w, λ) by pw,λ. Let bw be the
number of blocks of consecutive 1’s in w (allowing wrap-around).

We first check it for the states given by a binary word and the trivial partition λ0 =
0n−q1q. Notice that any occurrence of 01 in w must begin a block, and any occurrence of
10 must signify the end of a block. The balance equation at (w, 0n−q1q) is

(qu + bw + bwt)pw,λ0 = qpw,1q−12 + bwt ∑
w′→w
10→01

pw′,λ0 + bw ∑
w′′→w
01→10

pw′′,λ0 . (2.2)

Since ( q
q−1,1) = 1, we are left with

bw(1 + t)pw = bwt ∑
w′→w
10→01

pw′ + bw ∑
w′′→w
01→10

pw′′

which will be satisfied if we set all pw’s to be equal.
For arbitrary partition λ = 1m12m2 · · · pmp , the left hand side of the balance equation

at (w, λ) is
((m1 + · · ·+ mp−1)u + m2 + · · ·+ mp + bw + bwt)pw,λ

These account for all the states that (w, λ) can transition to.
The right hand side of the balance equation at (w, λ) is

∑
i<p,λ↗iλ′

(mi+1 + 1)pw,λ′ + ∑
i>1,λ↘iλ′′

(mi−1 + 1)upw,λ′′ + bwt ∑
w′→w
10→01

pw′,λ + bw ∑
w′′→w
01→10

pw′′,λ

These account for all the states that can transition into (w, λ). Using Equation (2.1), the
multinomial coefficients give

pw,λ′

pw,λ
=

miu
mi+1 + 1

, λ ↗i λ′ =⇒ mi(λ
′) = mi − 1, mi+1(λ

′) = mi+1 + 1, ∀i < p

pw,λ′′

pw,λ
=

mi

(mi−1 + 1)u
, λ ↘i λ′′ =⇒ mi(λ

′′) = mi − 1, mi−1(λ
′′) = mi−1 + 1, ∀i > 1.

Then we have a term by term equality for each i where a corresponds to the first sum-
mation and b corresponds to the second.

Proof of Theorem 1. This follows directly from Theorem 2 and Theorem 3.

3 The colored Boolean process lumps to the restricted ran-
dom growth model

In this section, we define the restricted random growth model, which is a Markov chain on
the set of Young diagrams inside a rectangle. We show that the colored Boolean process
lumps to the restricted random growth model.
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2u 1

u 2

∼=

u u
1 1

u u
1 1

Figure 3: Transition diagram of the restricted random growth model on χ2,2. The
Markov chain on the left can be viewed as a lumping of the Markov chain on the right
by rearranging boxes into weakly decreasing order.

Definition 4. Define the restricted random growth model on the the set χp,q = {λ : λ1 ≤
p, ℓ(λ) = q} of all partitions that fit inside a q× p rectangle but do not fit inside a shorter
rectangle, with transition probabilities as follows:

• If ν ↗i λ, then Pr(ν, λ) = mi(ν)u
3n .

• If ν ↘i λ, then Pr(ν, λ) = mi(ν)
3n .

• Otherwise if ν ̸= λ, then Pr(ν, λ) = 0 and Pr(λ, λ) = 1 − ∑ν:ν ̸=λ Pr(ν, λ).

We denote the unnormalized steady state probability of the restricted random growth
model by πRRG.

For two partitions λ and λ′, if λ ↗i λ′, then the Young diagram of λ′ is obtained
from the Young diagram of λ by adding a corner box to the topmost row of length
i. If λ ↘i λ′, then we remove the corner box from the topmost row of length i. In
other words, the restricted random growth model either adds or removes a box from a
uniformly chosen part of the Young diagram of the partition (conditioned on staying in
the q × p rectangle) as shown on the right hand side of Figure 3, then rearrange the parts
in weakly decreasing order as shown on the left hand side of Figure 3. Random growth
models are of independent interests and have been studied by many people [6].

Theorem 4. The projection map on state spaces Ωp,q
n → χp,q sending (w, λ) to λ (forgetting the

positions of 0’s) is a lumping of the colored Boolean process to the restricted random growth.

It follows from Proposition 1 that

πRRG(λ) ∝ ∑
w∈([n]q )

πCBP(w, λ).
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Proof. By Definition 3, we need to show that for any ν ̸= λ and binary word w the
following equation holds:

Pr(ν, λ) = ∑
w′

Q((w, ν), (w′, λ)).

Then Q((w, ν), (w′, λ)) ̸= 0 only if w = w′ by Definition 2, and this quantity is either
mi(ν)u

3n when ν ↗i λ or mi(ν)
3n when ν ↘i λ.

Theorem 5. The steady state probabilities of the restricted random growth satisfy the following
relations for all partitions ν, λ ∈ χp,q:

πRRG(λ)

πRRG(ν)
=

|Sn(λ)|
|Sn(ν)|

u|λ|−|ν|.

Proof. This follows from Theorem 4 and Theorem 3 and a computation on multinomial
coefficients.

Proof of Corollary 1. This follows from Theorem 4 and Theorem 5.

Proof of Corollary 2. When t = 1, for any partition λ and for any two weak compositions
µ, ν ∈ Sn(λ), we have πDASEP(µ) = πDASEP(ν). By Theorem 5 and the requirement for
unnormalized steady state probabilities to be coprime, we see that the partition function
of DSSEP is

∑
λ1≤p,
ℓ(λ)=q

u|λ||Sn(λ)| =
(

n
q

)
∑

m1+···+mp=q
um1+2m2···pmp

(
q

m1, . . . , mp

)
=

(
n
q

)
(1 + u + · · ·+ up)q.

4 The stationary distribution of DASEP(n,2,2)

In this section, we give a complete description of the stationary distributions when there
are two particles and two species, while the number of sites can be arbitrary.

t+ 1 t+ 1 t+ 1 u+ 1

Figure 4: a1 = u + 3t + 4
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• • •
t+ 1

• • •
t+ 1

• • •
u+ 1

Figure 5: b1 = u + 2t + 3

µ πDASEP(2k+1,2,2)(µ)

Sn((1, 1, 0, . . . , 0)) ak
0 . . . 010m20 . . . 0 uak + u(t − 1)(t + 1)mak−m−1, (0 ≤ m < k)
0 . . . 020m10 . . . 0 uak − u(t − 1)(t + 1)mak−m−1, (0 ≤ m < k)

Sn((2, 2, 0, . . . , 0)) u2ak

Table 2: The unnormalized steady state probabilities of DASEP(2k + 1, 2, 2).

µ πDASEP(2k+2)(µ)

Sn((1, 1, 0, . . . , 0)) bk
0 . . . 010m20 . . . 0 ubk + u(t − 1)(t + 1)mbk−m−1, (0 ≤ m ≤ k)
0 . . . 020m10 . . . 0 ubk − u(t − 1)(t + 1)mbk−m−1, (0 ≤ m ≤ k)

Sn((2, 2, 0, . . . , 0)) u2bk

Table 3: The unnormalized steady state probabilities of DASEP(2k + 2, 2, 2).

Let (ak)k≥0 and (bk)k≥−1 be polynomial sequences in u, t satisfying the recurrence
relation

ak = (u + 2t + 3)ak−1 − (t + 1)2ak−2

bk = (u + 2t + 3)bk−1 − (t + 1)2bk−2.

with initial conditions b−1 = 0, a0 = b0 = 1, a1 = u + 3t + 4.

Theorem 6. Consider matchings M in the cycle C2k+1 or the path L2k+1 with (2k + 1) vertices.
Assign each matching M a weight of (t + 1)|M|(u + 1)k−|M|. Then the stationary distributions
of DASEP(2k+ 1, 2, 2) and DASEP(2k+ 2, 2, 2) are given by Table 2 and Table 3 where ak is the
generating function of the matchings in C2k+1, and bk is the generating function of the matchings
in L2k+1, i.e.,

ak = ∑
M:C2k+1

(t + 1)|M|(u + 1)k−|M|

bk = ∑
M:L2k+1

(t + 1)|M|(u + 1)k−|M|.
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Abstract. We devise a constructive method for computing explicit combinatorial for-
mulae for Hadamard products of certain rational generating functions. The latter arise
naturally when studying so-called ask zeta functions of direct sums of modules of
matrices or class- and orbit-counting zeta functions of direct products of groups. Our
method relies on shuffle compatibility of coloured permutation statistics and coloured
quasisymmetric functions, extending recent work of Gessel and Zhuang.

Keywords: Coloured permutations, permutation statistics, Hadamard products, shuf-
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1 Introduction

Permutation statistics are functions defined on permutations and their generalisations.
Studying the behaviour of said functions on sets of permutations is a classical theme in
algebraic and enumerative combinatorics. The origins of permutation statistics can be
traced back to work of Euler and MacMahon. The past decades saw a flurry of further
developments in the area; see e.g. [2, 32] and references therein. Recently, Gessel and
Zhuang [17] developed an algebraic framework for systematically studying so-called
shuffle-compatible permutation statistics by means of associated shuffle algebras. In
their work, quasisymmetric functions and Hadamard products of rational generating
functions played key roles.

Numerous types of zeta functions have been employed in the study of enumerative
problems surrounding algebraic structures. L. Solomon [31] introduced zeta functions
associated with integral representations and, in another influential paper, Grunewald,
Segal, and Smith [18] initiated the study of zeta functions associated with (nilpotent and
pro-p) groups. Following [18], a variety of methods have been developed and applied to
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predict the behaviour and study symmetries of zeta functions associated with algebraic
structures, and to produce explicit formulae. Theoretical work of this type often employs
a blend of combinatorics and p-adic integration; see [35] for a survey. On the practical
side, a range of effective methods have been devised and used to symbolically compute
zeta functions of algebraic structures; see [25] and the references therein.

A common feature of zeta functions ζGpsq attached to algebraic structures G (e.g.
groups) in the literature is that they often admit an Euler factorisation ζGpsq “

ś

p ζG,ppsq
into so-called local factors indexed by primes p. Deep results from p-adic integration
often guarantee that these local factors are rational in p´s, i.e. of the form ζG,ppsq “
Wppp´sq for some WppYq P QpYq. A key theme is then to study how the WppYq vary with
the prime p. In a surprising number of cases of interest, deep uniformity results ensure
the existence of a single bivariate rational function WpX, Yq such that ζG,ppsq “ Wpp, p´sq

for all primes p (perhaps excluding a finite number of exceptions). In such situations,
understanding our zeta function is tantamount to understanding WpX, Yq.

In this context, permutation statistics (and, more generally, combinatorial objects)
have recently found spectacular applications, in particular when it comes to describing
the numerators of the rational functions WpX, Yq from above; see, for instance, [1, 12,
9, 8, 10, 34]. Conversely, the need for combinatorial descriptions of such zeta functions
gave rise to new directions in the study of permutation statistics and, more generally,
combinatorial objects; see, e.g. [4, 5, 11, 13, 16, 14, 33].

In the spirit of this line of research, in the present work we relate permutation statis-
tics and ask zeta functions. Introduced in [26] and developed further in [27, 30, 7], ask zeta
functions are generating functions encoding average sizes of kernels in suitable modules
of matrices. One motivation for studying these functions comes from group theory. In-
deed, for groups with a sufficiently powerful Lie theory, the enumeration of linear orbits
and conjugacy classes boils down to determining average sizes of kernels within matrix
Lie algebras—this is essentially the orbit-counting lemma.

Amidst a plethora of algebraically-defined zeta functions, ask zeta functions stand
out as particularly amenable to combinatorial methods. Indeed, natural operations at the
level of the modules (or groups) often translate into natural operations of corresponding
rational generating functions. In particular, ask zeta functions of direct sums of modules
are Hadamard products of the ask zeta function of the summands.

In this extended abstract (and forthcoming preprint [6]) we answer some of the ques-
tions from [30] and give a constructive algorithm (based on coloured shuffle compatibility
of permutation statistics) to compute Hadamard products of certain ask zeta functions.
Our results have corollaries pertaining to generating functions enumerating orbits of
finite direct products of groups within various infinite families.
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2 Hadamard products and coloured configurations

In this section, we provide a self-contained account of our main result pertaining to
Hadamard products of suitable rational generating functions. Its proof relies on the
coloured shuffle compatibility of certain permutation statistics and the structure of asso-
ciated coloured shuffle algebras. We will describe the latter in Section 3.

Coloured permutations and descents. We consider coloured permutations with sym-
bols taken from the poset Σ “ t1 ă 2 ă . . . u and colours taken from Γ “ t0 ą 1 ą
2 ą ¨ ¨ ¨ u. Let a “ σγ “ σ

γ1
1 ¨ ¨ ¨ σ

γn
n be a coloured permutation. We write |a| “ n for

the length of a. We further write sympaq “ tσ1, . . . , σnu, palpaq “ tγ1, . . . , γnu, and
pal˚paq “ palpaqzt0u. On the set of Γ-coloured positive integers, consider the total order

¨ ¨ ¨ ă 11
ă 21

ă ¨ ¨ ¨ ă 10
ă 20

ă . . . ;

that is, σ
γ1
1 ă σ

γ2
2 if and only if γ1 “ γ2 and σ1 ă σ2, or if γ1 ą γ2 in Z (equivalently:

γ1 ă γ2 in Γ). This is the usual colour order, corresponding to the left lexicographic order
on Γ ˆ Σ. The descent set of a as above consists of all i P rn ´ 1s such that σ

γi
i ą σ

γi`1
i`1

together with 0 whenever γ1 ‰ 0. The descent number and comajor index are defined as
always as functions of the descent set: despaq “ |Despaq| and comajpaq “

ř

iPDespaqpn´ iq.

Coloured configurations. Let A be the set of all coloured permutations, and let ZA
be the free abelian group with basis A. We call elements of ZA coloured configurations.
These elements are of the form f “

ř

aPA faa, where each fa belongs to Z and almost
all fa are zero. Write suppp f q “ ta P A : fa ‰ 0u, symp f q “

Ť

aPsuppp f q sympaq, and
pal˚p f q “

Ť

aPsuppp f q pal˚paq. We call f , g P ZA strongly disjoint if symp f q X sympgq “
∅ “ pal˚p f q X pal˚pgq. For a, b P A, let a� b P ZA be the sum over all shuffles of a and
b. We extend � to a bi-additive product on ZA.

Labels. Let U “ t˘Xk : k P Zu, viewed as a subgroup of the multiplicative group of the
field QpXq. For α : Γ Ñ U, write supppαq “ tc P Γ : αpcq ‰ 1u and, for a “ σ

γ1
1 ¨ ¨ ¨ σ

γn
n as

above, let αpaq “
śn

i“1 αpγiq. A labelled coloured configuration is a pair p f , αq, where f P ZA
and α : Γ Ñ U satisfies supppαq Ď pal˚p f q. Given labelled coloured configurations p f , αq

and pg, βq such that f and g are strongly disjoint, the pair p f � g, αβq is a labelled coloured
configuration too. (Here, αβ denotes the pointwise product of α and β.)

Equivalence. Let p f , αq be a labelled coloured configuration. Let φ : symp f q Ñ S
and ψ : pal˚p f q Ñ P be order-preserving bijections onto finite subsets of Σ and Γzt0u,
respectively. Given φ and ψ, define a labelled coloured permutation p f 1, α1q as fol-
lows. For a P suppp f q, say a “ σ

γ1
1 ¨ ¨ ¨ σ

γn
n , write a1 “ φpσ1q

ψpγ1q ¨ ¨ ¨ φpσnq
ψpγnq. Define

f 1 “
ř

aPsuppp f q faa1. The support of α1 is P and α1pψpcqq “ αpcq for c P pal˚p f q. We
call p f , αq and each p f 1, α1q (as φ and ψ range over possible choices) equivalent, written
p f , αq — p f 1, α1q. This defines an equivalence relation on labelled coloured configurations.
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Rational functions. Given a labelled coloured configuration p f , αq and ε P Z, we define
a rational formal power series

Wε
f ,α “ Wε

f ,αpX, Yq “
ÿ

aPsuppp f q

fa
αpaqXε comajpaqYdespaq

p1´Yqp1´ XεYq ¨ ¨ ¨ p1´ Xε|a|Yq
P QpXqrrYss.

Note that, by construction, if p f , αq — p f 1, α1q, then Wε
f ,α “ Wε

f 1,α1 for all ε P Z.

Example 2.1. Let f “ 10 ` 11. Let α : Γ Ñ U with supppαq Ď pal˚p f q “ t1u. Then

Wε
f ,α “

1` αp1qXεY
p1´Yqp1´ XεYq

.

Recall that the Hadamard product of two formal power series ApYq “
ř8

k“0 akYk and
BpYq “

ř8
k“0 bkYk is the power series ApYq ˚Y BpYq “

ř8
k“0 akbkYk.

Theorem 2.2. Let p f , αq and pg, βq be labelled coloured configurations such that f and g are
strongly disjoint. Then Wε

f ,α ˚Y Wε
g,β “ Wε

f�g, αβ for each ε P Z.

Example 2.3. Let f “ 10 ` 11 and g “ 20 ` 22. Then

f � g “ p10
` 11

q� p20
` 22

q

“ 10
� 20

` 10
� 22

` 11
� 20

` 11
� 22

“ 1020
` 2010

` 1022
` 2210

` 1120
` 2011

` 1122
` 2211.

Let α and β satisfy supppαq Ď t1u and supppβq Ď t2u. By Theorem 2.2,

Wε
f ,α ˚Y Wε

g,β “
1` αp1qXεY

p1´Yqp1´ XεYq
˚Y

1` βp2qXεY
p1´Yqp1´ XεYq

“
1` p1` αp1q ` βp2qqXεY` pαp1q ` βp2q ` αp1qβp2qqX2εY` αp1qβp2qX3εY2

p1´Yqp1´ XεYqp1´ X2εYq
“ Wε

f�g, αβ.

Theorem 2.2 implies, in particular, that for each fixed ε P Z, the set
!

Wε
f ,α : p f , αq is a coloured configuration

)

is closed under Hadamard products in Y. Indeed, given coloured configurations p f , αq

and pg, βq, we can find pg1, β1q such that f and g1 are strongly disjoint and pg, βq — pg1, β1q.
In that case, Wε

f ,α ˚Y Wε
g,β “ Wε

f ,α ˚Y Wε
g1,β1 “ Wε

f�g1, αβ1 is computed by the preceding
theorem.

In Section 4, we will apply Theorem 2.2 to provide explicit combinatorial descriptions
of Hadamard products of ask, class- and orbit-counting zeta functions.
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3 Coloured shuffle compatibility

For technical reasons, in this section, we will only consider coloured permutations with
colours drawn from t0 ą 1 ą ¨ ¨ ¨ ą r ´ 1u (for sufficiently large r). For clarity, we
occasionally refer to these as r-coloured permutations. A coloured permutation statistic is
a function st defined on the set of coloured permutations such that given a coloured
permutation σγ, if π is a permutation of the same length as σ and with the same rel-
ative order, then stpσγq “ stpπγq. Given coloured permutation statistics st1, . . . , stk, we
regard the tuple pst1, . . . , stkq as a coloured permutation statistic via pst1, . . . , stkqpaq “
pst1paq, . . . , stkpaqq. Given a coloured permutation a “ σγ “ σ

γ1
1 ¨ ¨ ¨ σ

γn
n , let coljpaq :“ |ti P

rns : γi “ ju|. The colour vector of a a is colpaq “ pcol0paq, . . . , colr´1paqq; this is a weak
composition of n. The functions col, des, and comaj are coloured permutation statistics.

Recall from [17, 22] that a (coloured) permutation statistic st is shuffle compatible if
for coloured permutations a and b on disjoint sets of symbols, the multiset ttstpcq : c P
a� buu only depends on stpaq, stpbq and the lengths of a and b. (Here, a� b denotes
the set of all coloured permutations obtained as shuffles of a and b.) Generalising [17,
22], we associate a shuffle algebra Aprqst over Q to a shuffle-compatible coloured permu-
tation statistic st as follows. First, st defines an equivalence relation „st on r-coloured
permutations via a „st b if and only if a and b have the same length and stpaq “ stpbq;
we refer to this as st-equivalence. We write rasst to denote the st-equivalence class of a.
As a Q-vector space Aprqst has a basis given by the st-equivalence classes of r-coloured
permutations. The multiplication is given by linearly extending the rule

rasst rbsst “
ÿ

cPa�b

rcsst,

where a and b are r-coloured permutations on disjoint sets of symbols. (Thanks to the
shuffle compatibility of st, this yields a well-defined multiplication on Aprqst .)

The main shuffle algebra of interest to us is the one attached to pdes, comaj, colq. Let
p0, . . . , pr´1, x, t be commuting variables over Q; write p “ pp0, . . . , pr´1q. For a ring R,
let Rrrt˚ss denote the ring Rrrtss with multiplication given by the Hadamard product in t.

Theorem 3.1.

(a) The tuple of statistics pdes, comaj, colq is shuffle compatible.

(b) The linear map on Aprq
pdes,comaj,colq defined by

raspdes,comaj,colq ÞÑ

$

&

%

pcolpaqxcomajpaqtdespaq`1

p1´tqp1´xtq¨¨¨p1´x|a|tq
z|a|, if |a| ě 1

1
1´t , if |a| “ 0
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is an isomorphism from the (r-coloured) shuffle algebra of pdes, comaj, colq onto the sub-
algebra of Qrp0, p1, . . . , pr´1, z, xsrrt˚ss spanned by
"

1
1´ t

*

ď

"

pc0
0 ¨ ¨ ¨ pcr´1

r´1 xk tj`1

p1´ tqp1´ xtq ¨ ¨ ¨ p1´ xntq
zn
*

ně1, jPr0,ns, c0,...,cr´1Pr0,r´1s, kP
”

p
j`1

2 q,nj´p j
2q
ı

.

While we omit the proof of the preceding theorem here, we should like to take this
opportunity to provide a brief overview of its key steps and ingredients. The coloured
descent set of a coloured permutation a “ σ

γ1
1 ¨ ¨ ¨ σ

γn
n is defined as

sDespaq “
!

pi, γiq : i P rn´ 1s, γi ‰ γi`1 or pγi “ γi`1 and σi ą σi`1q
)

Y

!

pn, γnq
)

.

This coloured permutation statistic, which was introduced by Mantaci and Reutenauer
[21] while studying a coloured generalisation of Solomon’s descent algebra, is shuffle
compatible. Moreover, it refines the tuple pdes, comaj, colq. As a consequence, the alge-
bra Aprq

pdes,comaj,colq is naturally a quotient of AprqsDes.

Let xpjqi for i “ 1, 2, . . . and j “ 0, 1, . . . , r´ 1 be independent (commuting) variables.

We write xpjq “ pxpjq1 , xpjq2 , . . . q. The coloured quasisymmetric function attached to an r-
coloured permutation a “ σγ of length n is

Fapxp0q, . . . , xpr´1q
q “

ÿ

1ďi1ďi2ď¨¨¨ďin
jPDes˚paqñ ijăij`1

xpγ1q
i1

xpγ2q
i2

¨ ¨ ¨ xpγnq
in ,

where Des˚paq “ Despaqzt0u. This is a (homogeneous) formal power series of degree
n in the variables xp0q, . . . , xpr´1q. These functions were first introduced in [24]; see also
[19, 22, 23]. The space QSymprq spanned by all such coloured quasisymmetric functions
forms a Q-algebra. It turns out that QSymprq and AprqsDes are canonically isomorphic.
Our proof of Theorem 3.1 is based on a judicious choice of specialisations of coloured
quasisymmetric functions; cf. [22, §4.4]. Theorem 2.2 is a consequence of Theorem 3.1.

4 Applications to zeta functions

4.1 Ask, class-counting, and orbit-counting zeta functions

The main purpose of the present section is to recall four families of zeta functions associ-
ated with algebraic structures (Examples 4.1–4.6). These will feature in our applications
of Theorem 2.2 in Section 4.2. For further details, see [26, 27]. Rings will be assumed
to be commutative and unital. In order to maintain consistency with the literature, we
regard dˆ e matrices over a ring R as homomorphisms Rd Ñ Re acting by right multi-
plication.
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Global ask zeta functions. Given a module M Ď MdˆepZq of integral matrices, for
each n ě 1, let Mn Ď MdˆepZ{nZq denote the reduction of M modulo n. The (global)
ask zeta function of M is the Dirichlet series ζask

M psq “
ř8

n“1 anpMqn´s, where anpMq P Q

denotes the average size of the kernel of matrices in Mn. By the Chinese remainder
theorem, ζask

M psq “
ś

p ζask
Mp
psq (Euler product), where the product is taken over all primes

p and the local factor at p is given by ζask
Mp
psq “

ř8
k“0 apkpMqp´ks, a power series in p´s.

Drawing upon deep results from p-adic integration and the theory of zeta functions of
algebraic structures, it is known that each ζask

Mp
psq is rational in p´s.

Local ask zeta functions. It is often advantageous to bypass global structures alto-
gether and directly study variants of the local factors from above. Let O be a compact
discrete valuation ring. Let P be the maximal ideal of O and let q denote the size of the
residue field O{P. Such rings O are precisely the valuation rings of non-Archimedean
local fields. Examples include the p-adic integers Zp (in which case O{P – Fp) and the
ring Fqrrzss of formal power series over Fq (in which case P “ zFqrrzss).

Given a module of matrices M Ď MdˆepOq, its associated (local) ask zeta function is the
formal power series Zask

M pYq “
ř8

k“0 αkpMqYk, where αkpMq denotes the average size of
the kernels within the reduction of M modulo Pk.

Example 4.1. Zask
MdˆepOq

pYq “ 1´q´eY
p1´Yqp1´qd´eYq ; see [26, Prop. 1.5].

Example 4.2. Let O have characteristic distinct from 2. Let sodpOq be the module of

antisymmetric dˆ d matrices over O. By [26, Prop. 5.11], Zask
sodpOq

pYq “ 1´q1´dY
p1´Yqp1´qYq .

Example 4.3. Let ndpOq be the module of strictly upper triangular dˆ d matrices over O.

By [26, Prop. 5.15(i)], Zask
ndpOq

pYq “ p1´Yqd´1

p1´qYqd .

Class- and orbit-counting zeta functions. Let O be a compact discrete valuation ring as
above. Let G be a linear group scheme over O, with a given embedding into dˆ d matri-
ces. The orbit-counting zeta function of G is the generating function Zoc

G pYq “
ř8

k“0 bkpGqYk,
where bkpGq denotes the number of orbits of the (finite) matrix group GpO{Pkq on its
natural module pO{Pkqd. The class-counting zeta function of G is the generating function
Zcc
G pYq “

ř8
k“0 ckpGqYk, where ckpGq denotes the number of conjugacy classes of GpO{Pkq.

Class-counting zeta functions go back to work of du Sautoy [15]. As shown in [26, 27],
subject to restrictions on the residue field size q of O, class- and orbit-counting zeta
functions of G are instances of ask zeta functions associated with modules of matrices
over O. When passing between ask and class-counting zeta functions, one often needs
to apply a transformation Y Ð qmY for a suitable integer m; see below for an example
and cf. Lemma 4.7.
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Example 4.4. Suppose that the residue field size q of O is odd. By exponentiation, the
free class-2-nilpotent Lie algebra on d generators over O gives rise to a group scheme
F2,d over O. We may view F2,d as an analogue of the free class-2-nilpotent group on d
generators. Lins [20, Cor. 1.5] showed that

Zcc
F2,d
pYq “

1´ qp
d´1

2 qY
´

1´ qp
d
2qY

¯´

1´ qp
d
2q`1Y

¯ .

Looking back at Example 4.2, we observe that Zcc
F2,d
pYq “ Zask

sodpOq
pqp

d
2qYq; this is no coin-

cidence, see [27, Ex. 7.3].

Example 4.5. Let Ud be the group scheme of upper unitriangular dˆ d matrices over O.
Suppose that gcdpq, pd´ 1q!q “ 1. By [26, Thm 1.7] (cf. [7, Prop. 4.12]) and Example 4.3,

we have Zoc
Ud
pYq “ p1´Yqd´1

p1´qYqd .

Graphs and graphical groups. Given a (finite, simple) graph Γ with distinct vertices
v1, . . . , vn and m edges, let MΓ be the module of antisymmetric nˆ n matrices A “ raijs

such that aij “ 0 whenever vi and vj are non-adjacent. We write Zask
Γ pYq for Zask

MpΓqpYq. As

shown in [30, Thm A], Zask
Γ pYq is a rational function in q and Y. In [30, §3.4], the graphical

group scheme GΓ associated with Γ is constructed; for an alternative but equivalent
construction, see [28, §1.1]. By [30, Prop. 3.9], Zcc

GΓ
pYq “ Zask

Γ pqmYq. Given graphs Γ1
and Γ2, let Γ1 _ Γ2 denote their join, obtained from the disjoint union of Γ1 and Γ2 by
adding edges connecting each vertex of Γ1 to each vertex of Γ2. Let Kn (resp. ∆n) denote
the complete (resp. edgeless) graph on n vertices.

Example 4.6. Consider Γ “ ∆n _ Kn`1. Then Γ has 3
`n`1

2

˘

edges. It follows from [30,
Thm 8.18] that

Zask
Γ pYq “

p1´ q´nYqp1´ q´n´1Yq
p1´ q´1Yqp1´Yqp1´ qYq

.

Hadamard products and zeta functions. Let O be as above. Elaborating further on
what we wrote in the introduction, modules of matrices, (linear) group schemes, and
graphs all admit natural operations which correspond to taking Hadamard products of
zeta functions. In detail, given modules M Ď MdˆepOq and M1 Ď Md1ˆe1pOq, we regard
M ‘ M1 as a submodule of Mpd`d1qˆpe`e1qpOq, embedded diagonally. Then Zask

M‘M1pYq “
Zask

M pYq ˚Y Zask
M1 pYq. Similarly, given (linear) group schemes G and G1 over O, we obtain

Zcc
GˆG1pYq “ Zcc

G pYq ˚Y Zcc
G1pYq. Finally, given graphs Γ and Γ1, let Γ‘Γ1 denote their disjoint

union. Then Zask
Γ‘Γ1pYq “ Zask

Γ pYq ˚Y Zask
Γ1 pYq; moreover, GΓ‘Γ1 – GΓ ˆGΓ1 .
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4.2 Applications

It turns out that each zeta function from Examples 4.1–4.6 can be expressed in terms
of the rational functions We

f ,αpX, Yq attached to labelled coloured configurations as in
Section 2. Omitting proofs, details of this are recorded in Table 1. This table is to be read
as follows: for each row and each compact discrete valuation ring O with residue field
size q (possibly subject to further conditions on O as in the examples above), the zeta
function ZpYq indicated in the leftmost column is obtained from the rational function in
the rightmost column via ZpYq “ Wε

f ,αpq, upqqYq. In Table 1, we write n for the sum of all
2n coloured permutations of the form 1ν1 ¨ ¨ ¨ nνn with νi P t0, iu. A “%” indicates that an
entry coincides with the one immediately above it. We note that Table 1 does not consti-
tute an exhaustive list of zeta functions expressible in terms of coloured configurations;
we refer to our upcoming paper [6] for further examples and applications.

Zeta function f α ε upXq Wε
f ,αpX, Yq

Zask
MdˆepOq

pYq 1 1 Ð ´X´d d´ e 1 1´X´eY
p1´Yqp1´Xd´eYq

Zask
sodpOq

pYq, Zask
Mdˆpd´1qpOq

pYq % % 1 % 1´X1´dY
p1´Yqp1´XYq

Zcc
F2,d
pYq % % % Xp

d
2q %

Zask
∆n_Kn`1

pYq 2 1, 2 Ð ´X´n´1 1 X´1 p1´X1´nYqp1´X´nYq
p1´Yqp1´XYqp1´X2Yq

Zcc
G∆n_Kn`1

pYq % % % X3pn`1
2 q´1 %

Zoc
Ud`1

pYq d 1, . . . , d Ð ´X´1 0 X p1´X´1Yqd

p1´Yqd`1

Table 1: Examples of zeta functions from labelled coloured configurations

We now explain how, subject to a compatibility condition, Theorem 2.2 can be used
to explicitly compute Hadamard products of the zeta functions in Table 1. As explained
in Section 4.1, we can interpret such Hadamard products as zeta functions associated
with “products” of the objects under consideration. We first record an elementary fact.

Lemma 4.7. Let R be a commutative ring. Let ApYq “
ř8

k“0 akYk and BpYq “
ř8

k“0 bkYk be
formal power series over R. Let u, v P R. Then ApuYq ˚Y BpvYq “ pA ˚Y BqpuvYq.

The compatibility condition that we alluded to above is that we require entries in the
ε-column of Table 1 to agree for us to compute associated Hadamard products via Theo-
rem 2.2 and Lemma 4.7. Thus, suppose that p f , αq and pg, βq are coloured configurations
and let upXq and vpXq each be of the form ˘X` for ` P Z. Then

Wε
f ,α
`

X, upXqY
˘

˚Y Wε
g,β

`

X, vpXqY
˘

“ pWε
f ,α ˚Y Wε

g,βq
`

X, upXqvpXqY
˘

.



10 A. Carnevale, V. D. Moustakas, T. Rossmann

As explained in Section 2, by passing to equivalent labelled coloured configurations,
we may assume that f and g are strongly disjoint. Theorem 2.2 then allows us to explic-
itly compute Wε

f ,α ˚Y Wε
g,β. (Here it is crucial that a common value of ε is used in both

factors.) All that remains to obtain our zeta function is to apply the specialisation X Ð q.
To illustrate the scope of our method by means of, say, a group-theoretic application,

first note that for specific choices of d1, . . . , dr, a finite computation (using the algorithm
in [30, §6], implemented in the software package Zeta [29]) can be used to determine
Zcc
F2,d1

ˆ¨¨¨ˆF2,dr
pYq. Our results here go substantially further. Indeed, for any fixed r, an

explicit finite computation produces a single formula for Zcc
F2,d1

ˆ¨¨¨ˆF2,dr
pYq “ Zcc

F2,d1
pYq ˚Y

¨ ¨ ¨ ˚Y Zcc
F2,dr

pYq as a symbolic expression involving variables d1, . . . , dr.

Example 4.8. By combining Example 2.3 and Example 4.4, we find that Zcc
F2,dˆF2,d1

pYq “

W
`

q, qp
d
2q`p

d1
2 qY

˘

, where

WpX, Yq “
1` p1´ X´d ´ X´d1qXY` pX´d´d1 ´ X´d ´ X´d1qX2Y` X´d´d1X3Y2

p1´Yqp1´ XYqp1´ X2Yq
.

In the same spirit, using the data from Table 1, we can e.g. symbolically compute the
orbit-counting zeta function of Ud1 ˆ ¨ ¨ ¨ ˆ Udr and the ask zeta function of Md1ˆe1pOq ‘

¨ ¨ ¨ ‘ MdrˆerpOq when d1 ´ e1 “ ¨ ¨ ¨ “ dr ´ er, all for fixed r but symbolic variables
d1, . . . , dr and e1, . . . , er. In particular, the latter case provides an explicit description of
the ask zeta function of Md1pOq ‘ ¨ ¨ ¨ ‘MdrpOq in terms of coloured permutation statis-
tics; cf. [30, Question 10.4(a)–(b)]. Such a description was previously only known for
d1 “ ¨ ¨ ¨ “ dr; see [30, Prop. 10.3].

We conclude by noting that, to the best of our knowledge, the previously mentioned
result [30, Prop. 10.3] and its close relative [26, Cor. 5.17] (both pertaining to direct pow-
ers of MdpOq) were the only examples of Hadamard products of ask (as well as class- and
orbit-counting) zeta functions expressed in terms of (coloured) permutation statistics. In
the aforementioned results in the literature, the proofs rely on work of Brenti [3]. These
proofs are based on the coincidence of the rational generating functions in question with
those attached to so-called q-Eulerian polynomials of signed permutations. This pre-
ceded more recent machinery surrounding shuffle compatibility. This earlier work is
now explained as part of the framework presented here.
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Murnaghan-Type Representations of the Elliptic
Hall Algebra

Milo Bechtloff Weising*1

1Department of Mathematics, University of California, Davis

Abstract. We construct a new family of graded representations W̃λ indexed by Young
diagrams λ for the positive elliptic Hall algebra E+ which generalizes the standard
E+ action on symmetric functions. These representations have homogeneous bases
of eigenvectors for the action of the Macdonald element P0,1 ∈ E+ generalizing the
symmetric Macdonald functions. We find an explicit combinatorial rule for the ac-
tion of the multiplication operators er[X]• generalizing the Pieri rule for symmetric
Macdonald functions.

Keywords: Macdonald polynomials, elliptic Hall algebra, double affine Hecke algebra

1 Introduction

The space of symmetric functions, Λ, is a central object in algebraic combinatorics deeply
connecting the fields of representation theory, geometry, and combinatorics. In his in-
fluential paper [11], Macdonald introduced a special basis Pλ[X; q, t] for Λ over Q(q, t)
simultaneously generalizing many other important and well-studied symmetric func-
tion bases like the Schur functions sλ[X]. These symmetric functions Pλ[X; q, t], called
the symmetric Macdonald functions, exhibit many striking combinatorial properties and
can be defined as the eigenvectors of a certain operator ∆ : Λ → Λ, called the Mac-
donald operator, constructed using polynomial difference operators. It was discovered
through the works of Bergeron, Garsia, Haiman, Tesler, and many others [10] [1] [2] that
variants of the symmetric Macdonald functions called the modified Macdonald func-
tions H̃λ[X; q, t] have deep ties to the geometry of the Hilbert schemes Hilbn(C2). On the
side of representation theory, it was shown first in full generality by Cherednik [4] that
one can recover the symmetric Macdonald functions by considering the representation
theory of certain algebras called the spherical double affine Hecke algebras (DAHAs) in
type GLn.

The positive elliptic Hall algebra (EHA), E+, was introduced by Burban and Schiff-
mann [3] as the positive subalgebra of the Hall algebra of the category of coherent
sheaves on an elliptic curve over a finite field. This algebra has connections to many
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areas of mathematics including, most importantly for the present paper, to Macdonald
theory. In [13], Schiffmann and Vasserot realize E+ as a stable limit of the positive spher-
ical DAHAs in type GLn. They show further that there is a natural action of E+ on Λ
aligning with the spherical DAHA representations originally considered by Cherednik.
In particular, the action of P0,1 ∈ E+ gives the Macdonald operator ∆. The action of E+

on Λ can be realized as the action of certain generalized convolution operators on the
torus equivariant K-theory of the schemes Hilbn(C2).

Dunkl and Luque in [6] introduced symmetric and non-symmetric vector-valued (vv.)
Macdonald polynomials. The term vector-valued here refers to polynomial-like objects
of the form ∑α cαXα⊗ vα for some scalars cα, monomials Xα, and vectors vα lying in some
Q(q, t)-vector space. The non-symmetric vv. Macdonald polynomials are distinguished
bases for certain DAHA representations built from the irreducible representations of the
finite Hecke algebras in type A. These DAHA representations are indexed by Young
diagrams and exhibit interesting combinatorial properties relating to periodic Young
tableaux. The symmetric vv. Macdonald polynomials are distinguished bases for the
spherical (i.e. Hecke-invariant) subspaces of these DAHA representations. Naturally, the
spherical DAHA acts on these spherical subspaces with the special element Y1 + . . . +Yn
of spherical DAHA acting diagonally on the symmetric vv. Macdonald polynomials.

Dunkl and Luque in [6] (and in later work of Colmenarejo, Dunkl, and Luque [5] and
Dunkl [7]) only consider the finite rank non-symmetric and symmetric vv. Macdonald
polynomials. It is natural to ask if there is an infinite-rank stable-limit construction using
the symmetric vv. Macdonald polynomials to give generalized symmetric Macdonald
functions and associated representations of the positive elliptic Hall algebra E+. In this
paper, we will describe such a construction (Thm. 2). We will obtain a new family of
graded E+-representations W̃λ indexed by Young diagrams λ and a natural generaliza-
tion of the symmetric Macdonald functions PT indexed by certain labellings of infinite
Young diagrams built as limits of the symmetric vv. Macdonald polynomials. For com-
binatorial reasons there is essentially a unique natural way to obtain this construction.
For any λ we will consider the increasing chains of Young diagrams λ(n) = (n− |λ|, λ)
for n ≥ |λ| + λ1 to build the representations W̃λ. These special sequences of Young
diagrams are central to Murnaghan’s Theorem [12] regarding the reduced Kronecker co-
efficients. As such we refer to the E+-representations W̃λ as Murnaghan-type. For λ = ∅
we recover the E+ action on Λ and the symmetric Macdonald functions Pµ[X; q, t]. We
will show that these Murnaghan-type representations W̃λ are mutually non-isomorphic.
The existence of these representations of the elliptic Hall algebra raises many questions
about possible new relations between Macdonald theory and geometry. Other authors
have constructed families of E+-representations [8] [9]. Although there should exist a re-
lationship between the Murnaghan-type representations W̃λ and those of other authors,
the construction in this paper appears to be distinct from prior E+-module constructions.

For technical reasons regarding the misalignment of the spectrum of the Cherednik
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operators Yi we will need to restate many of the results of Dunkl and Luque in [6] using a
re-oriented version of the Cherednik operators θi. This alternative choice of conventions
greatly assists during the construction of the generalized Macdonald functions PT. The
combinatorics underpinning the non-symmetric vv. Macdonald polynomials originally
defined by Dunkl and Luque will be reversed in the conventions appearing in this paper.

The author would like to thank their advisor Monica Vazirani for her consistent guid-
ance. The author would also like to thank Erik Carlsson, Daniel Orr, and Eugene Gorsky
for helpful conversations about the elliptic Hall algebra and the geometry of Hilbert
schemes. The author was supported during this work by the 2023 UC Davis Dean’s
Summer Research Fellowship.

2 Definitions and Notations

2.1 Some Combinatorics

We start with a description of many of the combinatorial objects which we will need for
the remainder of this paper.

Definition 1. A partition is a (possibly empty) sequence of weakly decreasing positive integers.
Denote by Y the set of all partitions. Given a partition λ = (λ1, . . . , λr) we set ℓ(λ) := r and
|λ| := λ1 + . . . + λr. For λ = (λ1, . . . , λr) ∈ Y and n ≥ nλ := |λ| + λ1 we set λ(n) :=
(n− |λ|, λ1, . . . , λr). We will identify partitions as defined above with Young diagrams of the
corresponding shape in English notation i.e. justified up and to the left.

Fix a partition λ with |λ| = n. We will require each of the following combinatorial construc-
tions for types of labellings of the Young diagram λ. If a diagram λ appears as the domain of a
labelling function then we are referring to the set of boxes of λ as the domain.

• A non-negative reverse Young tableau RYT≥0(λ) is a labelling T : λ → Z≥0 which is
weakly decreasing along rows and columns.

• A non-negative reverse semi-standard Young tableau RSSYT≥0(λ) is a labelling T :
λ→ Z≥0 which is weakly decreasing across rows and strictly decreasing down columns.

• A standard Young tableau SYT(λ) is a labelling τ : λ → {1, . . . , n} which is strictly
increasing along rows and columns.

• A non-negative periodic standard Young tableau PSYT≥0(λ) is a labelling τ : λ →
{jqb : 1 ≤ j ≤ n, b ≥ 0} in which each 1 ≤ j ≤ n occurs in exactly one box of λ and
where the labelling is strictly increasing along rows and columns. Here we order the formal
products jqm by jqm < kqℓ if m > ℓ or in the case that m = ℓ we have j < k. Note that
SYT(λ) ⊂ PSYT≥0(λ).
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Example 1.

17q7 15q5 16q5 11q3 7q1 2q0

14q6 12q4 13q4 9q2 8q0

10q2 4q1 5q1 6q1

3q1 1q0

∈ PSYT≥0(6, 5, 4, 2)

Definition 2. Given a box, □, in a Young diagram λ we define the content of □ as c(□) := a− b
where □ is in row b and column a. Let τ ∈ PSYT≥0(λ) and 1 ≤ i ≤ n. Whenever τ(□) = iqb

for some box □ ∈ λ we will write cτ(i) := c(□) and wτ(i) := b. Let 1 ≤ j ≤ n− 1 and suppose
that for some boxes □1,□2 ∈ λ that τ(□1) = jqm and τ(□2) = (j+ 1)qℓ. Let τ′ be the labelling
defined by τ′(□1) = (j + 1)qm, τ′(□2) = jqℓ, and τ′(□) = τ(□) for □ ∈ λ \ {□1,□2}. If
τ′ ∈ PSYT≥0(λ) then we write sj(τ) := τ′. Let Ψ(τ) ∈ PSYT≥0(λ) be the labelling defined
by whenever τ(□) = kqa then either Ψ(τ)(□) = (k− 1)qa when k ≥ 2 or Ψ(τ)(□) = nqa+1

when k = 1. We give the set PSYT≥0(λ) a partial order defined by the following cover relations.

• For all τ ∈ PSYT≥0(λ), Ψ(τ) > τ.

• If wτ(i) < wτ(i + 1) then si(τ) > τ.

• If wτ(i) = wτ(i + 1) and cτ(i)− cτ(i + 1) > 1 then si(τ) > τ.

Define the map pλ : PSYT≥0(λ) → RYT≥0(λ) by pλ(τ)(□) = b whenever τ(□) = iqb. We
will write PSYT≥0(λ; T) for the set of all τ ∈ PSYT≥0(λ) with pλ(τ) = T ∈ RYT≥0(λ).

Example 2. Ψ



1q7 3q5 5q5 8q2 12q1 17q0

2q6 4q5 6q5 14q0 16q0

7q2 10q1 11q1 15q0

9q1 13q0


=

17q8 2q5 4q5 7q2 11q1 16q0

1q6 3q5 5q5 13q0 15q0

6q2 9q1 10q1 14q0

8q1 12q0

Lemma 1. Let λ ∈ Y and T ∈ RYT≥0(λ). There exist min(T), top(T) ∈ PSYT≥0(λ; T) such
that for all τ ∈ PSYT≥0(λ; T), min(T) ≤ τ ≤ top(T).

Example 3. Given T =

7 5 5 2 1 0
6 5 5 0 0
2 1 1 0
1 0

∈ RYT≥0(6, 5, 4, 2) we have that
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min(T) =

17q7 12q5 13q5 10q2 6q1 1q0

16q6 14q5 15q5 2q0 3q0

11q2 7q1 8q1 4q0

9q1 5q0

and top(T) =

1q7 3q5 5q5 8q2 12q1 17q0

2q6 4q5 6q5 14q0 16q0

7q2 10q1 11q1 15q0

9q1 13q0

.

Definition 3. Let λ ∈ Y with |λ| = n and T ∈ RYT≥0(λ). Define S(T) ∈ SYT(λ) by ordering
the boxes of λ according to □1 ≤ □2 if and only if

• T(□1) > T(□2) or

• T(□1) = T(□2) and □1 comes before □2 in the column-standard labelling of λ.

Define the composition µ(T) of n so that the Young subgroup Sµ(T) of Sn is the group
generated by the si ∈ Sn such that the entries iqa and (i + 1)qb occur in the same row of min(T)
for some a, b ≥ 0.

Example 4. For T ∈ RYT≥0(6, 5, 4, 2) as in Example 3 we have that S(T) =
1 3 5 8 12 17
2 4 6 14 16
7 10 11 15
9 13

.

Definition 4. Let λ ∈ Y, with |λ| = n and τ ∈ PSYT≥0(λ; T). An ordered pair of boxes
(□1,□2) ∈ λ× λ is called an inversion pair of τ if S(T)(□1) < S(T)(□2) and i > j where
τ(□1) = iqa, τ(□2) = jqb for some a, b ≥ 0. The set of all inversion pairs of τ will be denoted
by Inv(τ).

Example 5. In the labelling

17q7 12q5 13q5 10q2 6q1 1q0

16q6 14q5 15q5 2q0 3q0

11q2 7q1 8q1 4q0

9q1 5q0

the pairs (17q7, 12q5), (14q5, 13q5),

and (5q0, 4q0) are examples of inversions. Here we have referred to boxes according to their labels.

2.2 Positive Double Affine Hecke Algebra

Here we describe the positive double affine Hecke algebras in type GLn.

Definition 5. Define the positive double affine Hecke algebra Dn to be the Q(q, t)-algebra
generated by T1, . . . , Tn−1, θ1, . . . , θn, and X1, . . . , Xn subject to the relations
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• (Ti − 1)(Ti + t) = 0

• TiTi+1Ti = Ti+1TiTi+1

• TiTj = TjTi, |i− j| > 1

• θiθj = θjθi

• θi+1 = tT−1
i θiT−1

i

• Tiθj = θjTi, j /∈ {i, i + 1}

• XiXj = XjXi

• Xi+1 = tT−1
i XiT−1

i

• TiXj = XjTi, j /∈ {i, i + 1}

• πnXi = Xi+1πn

• πnXn = qX1πn.

where in the above πn := tn−1θ1T−1
1 · · · T

−1
n−1. The finite Hecke algebra Hn is the subalge-

bra of Dn generated by the elements T1, . . . , Tn−1 and the positive affine Hecke algebra An is
the subalgebra of Dn generated by the elements T1, . . . , Tn−1, θ1, . . . , θn.

Remark 1. Note that Dn has a Z≥0-grading determined by deg(Xi) = 1 and deg(θi) =

deg(Ti) = 0. We will sometimes write θ
(n)
i for θi ∈ An to differentiate between θi ∈ Am .

Definition 6. Let ϵ(n) ∈ Hn denote the (normalized) trivial idempotent given by

ϵ(n) :=
1

[n]t!
∑

σ∈Sn

t(
n
2)−ℓ(σ)Tσ

where [n]t! := ∏n
i=1(

1−ti

1−t ). We will write [µ]t! := [µ1]t! · · · [µr]t! for any composition µ =

(µ1, . . . , µr). The positive spherical double affine Hecke algebra D
sph
n is the (non-unital)

subalgebra of Dn given by D
sph
n := ϵ(n)Dn ϵ(n).

Remark 2. Given any Dn-module V the space ϵ(n)(V) is naturally a D
sph
n -module. Note that

although 1 /∈ D
sph
n the algebra Dsph

n is unital with unit ϵ(n). Further, Dsph
n has a grading inherited

from Dn .

2.3 Positive Elliptic Hall Algebra

Here we give a very brief description of the positive elliptic Hall algebra.

Definition 7. For ℓ > 0 define the special elements P(n)
0,ℓ , P(n)

ℓ,0 ∈ D
sph
n by

• P(n)
0,ℓ = ϵ(n)

(
∑n

i=1 θℓi
)

ϵ(n)

• P(n)
ℓ,0 = qℓϵ(n)

(
∑n

i=1 Xℓ
i
)

ϵ(n).

Theorem 1. [13] There is a unique graded algebra surjection D
sph
n+1 → D

sph
n determined for

ℓ > 0 by P(n+1)
0,ℓ → P(n)

0,ℓ and P(n+1)
ℓ,0 → P(n)

ℓ,0 .
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The existence of the graded algebra surjections Dsph
n+1 → D

sph
n allows for the following

definition.

Definition 8. [13] The positive elliptic Hall algebra E+ is the stable limit of the graded
algebras D

sph
n with respect to the maps D

sph
n+1 → D

sph
n . For ℓ > 0 define the special elements of

E+, P0,ℓ := limn P(n)
0,ℓ and Pℓ,0 := limn P(n)

ℓ,0 .

Remark 3. The elements P(n)
0,ℓ , P(n)

ℓ,0 for ℓ > 0 generate D
sph
n and the elements P0,ℓ, Pℓ,0 for

ℓ > 0 generate E+ [13]. Further E+ has a Z≥0-grading determined by deg(P0,ℓ) = 0 and
deg(Pℓ,0) = ℓ.

3 DAHA Modules from Young Diagrams

3.1 The Dn-module Vλ

We begin by defining a collection of DAHA modules indexed by Young diagrams λ ∈ Y .
These modules are the same as those appearing in [6] but we take the approach of using
induction from An to Dn for their definition.

Definition 9. Let λ ∈ Y with |λ| = n. We will denote by Sλ the irreducible Hn module
corresponding to the partition λ. Define the algebra homomorphism ρn : An → Hn by ρn(Ti) =
Ti and ρn(θ1) = 1. Let ρ∗n(Sλ) denote the An module determined by X(v) := ρn(X)(v) for
X ∈ An and v ∈ Sλ. Define the Dn-module Vλ to be the induced module Vλ := IndDn

An
ρ∗n(Sλ).

We fix a distinguished basis {eτ|τ ∈ SYT(λ)} for Sλ consisting of ρn(θ(n))-weight
vectors uniquely normalized such that the next proposition holds. The defining rela-
tions for the Hn modules Sλ have been omitted but they can be inferred from the next
proposition. The modules Vλ naturally have the basis given by Xα ⊗ eτ where Xα is a
monomial and τ ∈ SYT(λ). Note that the action of πn on Vλ is invertible so we may
consider the action of π−1

n although we have not formally included π−1
n into the algebra

Dn .
Using the theory of intertwiners for DAHA and some combinatorics we are able to

show the following structural results. The Fτ appearing below are the version of the
non-symmetric vv. Macdonald polynomials following our conventions.

Proposition 1. There exists a basis of Vλ consisting of θ(n)-weight vectors Fτ for
τ ∈ PSYT≥0(λ) with distinct θ(n)-weights such that the following hold:

• θ
(n)
i (Fτ) = qwτ(i)tcτ(i)Fτ

• If τ ∈ SYT(λ) then Fτ = 1⊗ eτ.
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• If si(τ) > τ then Fsi(τ)
=
(

tT−1
i + (t−1)qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i)−qwτ (i+1)tcτ (i+1)

)
Fτ.

• FΨ(τ) = qw1(τ)Xnπ−1
n Fτ.

Example 6.

F 1q 2q
3

= t−2X1X2 ⊗ e 1 2
3

+ t−2
(

1− t
1− qt2

)
X2X3 ⊗ e 1 3

2

+
t−2

1 + t

(
1− t

1− qt2

)
X2X3 ⊗ e 1 2

3

− t−3
(

1− t
1− qt2

)
X1X3 ⊗ e 1 3

2

+
t−1

1 + t

(
1− t

1− qt2

)
X1X3 ⊗ e 1 2

3

Using Mackey decomposition we obtain the following.

Proposition 2. The Dn-module Vλ has the following decomposition into An-submodules:

ResDn
An

Vλ =
⊕

T∈RYT≥0(λ)

UT

where UT := spanQ(q,t){Fτ : pλ(τ) = T}. Further, each An-module UT is irreducible.

3.2 Connecting Maps Between Vλ(n)

In order to build the inverse systems which we will use to define Murnaghan-type mod-
ules for E+, we need to consider the following maps.

Definition 10. Let λ ∈ Y. For n ≥ nλ define Φ(n)
λ : Vλ(n+1) → Vλ(n) as the Q(q, t)-linear map

determined by

Φ(n)
λ (Xα ⊗ eτ) =

{
Xα1

1 · · ·X
αn
n ⊗ eτ|

λ(n)
αn+1 = 0, τ(□0) = n + 1

0 otherwise

where □0 = λ(n+1)/λ(n).

The next proposition is a crucial step in proving the main theorem of this paper.
Its proof relies heavily on the use of the re-oriented Cherednik operators θi and their
spectral analysis as well as the existence of a triangular monomial expansion of the Fτ.

Proposition 3. Let T ∈ RYT≥0(λ
(n)) and T′ ∈ RYT≥0(λ

(n+1)) be such that T(□) = T′(□)

for □ ∈ λ(n) and T′(□0) = 0 for □0 = λ(n+1)/λ(n). Then Φ(n)
λ (Ftop(T′)) = Ftop(T).
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The maps Φ(n)
λ possess another remarkable stability property regarding the action of

the elements P(n)
(0,ℓ) for ℓ > 0.

Proposition 4. For all ℓ > 0 and n ≥ nλ,

Φ(n)
λ

(
P(n+1)
(0,ℓ) − ∑

□∈λ(n+1)

tℓc(□)

)
=

(
P(n)
(0,ℓ) − ∑

□∈λ(n)

tℓc(□)

)
Φ(n)

λ .

4 Positive EHA Representations from Young Diagrams

In this section we build E+-modules using the maps Φ(n)
λ and the stability of the Fτ basis

already described.

4.1 The Dsph
n -modules Wλ(n)

Here we consider the spherical subspaces of the Vλ modules.

Definition 11. For λ ∈ Y with |λ| = n define the Dsph
n -module Wλ := ϵ(n)(Vλ).

We will need the following combinatorial description of the AHA submodules of Vλ

which contain a nonzero Ti-invariant vector.

Proposition 5. For λ ∈ Y with |λ| = n and T ∈ RYT≥0(λ),

dimQ(q,t)ϵ
(n)(UT) =

{
1 T ∈ RSSYT≥0(λ)

0 T /∈ RSSYT≥0(λ).

We define the symmetric vv. Macdonald polynomials in the following way. These
will agree up to scalars with those in [6].

Definition 12. Let T ∈ RSSYT≥0(λ). Define PT ∈ ϵ(n)(UT) to be the unique element of the
form

PT = Ftop(T) + ∑
τ∈PSYT≥0(λ;T)\{top(T)}

κτFτ.

We can now use Prop. 1 and Prop. 3 to prove the following results for the PT.

Proposition 6. For all T ∈ RSSYT≥0(λ),

PT = ∑
τ∈PSYT≥0(λ;T)

∏
(□1,□2)∈Inv(τ)

(
qT(□1)tc(□1)+1 − qT(□2)tc(□2)

qT(□1)tc(□1) − qT(□2)tc(□2)

)
Fτ.
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Example 7. P 1 1
0

= F 1q 2q
3

+
(

qt2−t−1

qt−t−1

)
F 1q 3q

2

+
(

qt2−t−1

qt−t−1

) (
qt−t−1

q−t−1

)
F 2q 3q

1

Proposition 7. The set {PT : T ∈ RSSYT≥0(λ)} is a Q(q, t)[θ1, . . . , θn]Sn-weight basis for Wλ

and P(n)
0,ℓ (PT) =

(
∑□∈λ qℓT(□)tℓc(□)

)
PT.

The following is an important stability result for the symmetric vv. Macdonald poly-
nomials. Its proof relies on Prop. 3 and Prop. 7.

Corollary 1. Let T ∈ RSSYT≥0(λ
(n)) and T′ ∈ RSSYT≥0(λ

(n+1)) such that T(□) = T′(□)

for □ ∈ λ(n) and T′(□0) = 0 for □0 = λ(n+1)/λ(n). Then Φ(n)
λ (PT′) = PT.

4.2 Stable Limit of the Wλ(n)

We now can define the stable-limit spaces W̃λ and the generalized symmetric Macdonald
functions.

Definition 13. Let λ ∈ Y. Define the infinite diagram λ(∞) :=
⋃

n≥nλ
λ(n). Define Ω(λ) to be

the set of all labellings T : λ(∞) → Z≥0 such that |{□ ∈ λ(∞) : T(□) ̸= 0}| < ∞, T decreases
weakly across rows, and T decreases strictly down columns.

Define the space W(∞)
λ to be the inverse limit lim←−Wλ(n) with respect to the maps Φ(n)

λ . Let W̃λ

be the subspace of all bounded X-degree elements of W(∞)
λ . For any symmetric function F ∈ Λ

define F[X]• to be the corresponding multiplication operator on W̃λ. Lastly, for T ∈ Ω(λ) define
the generalized symmetric Macdonald function PT := limn PT|

λ(n)
∈ W̃λ.

Remark 4. Each PT is homogeneous of X-degree deg(PT) = ∑□∈λ(∞) T(□) < ∞. The set of
all PT for T ∈ Ω(λ) gives a Q(q, t)-basis of W̃λ. Lastly, the multiplication operators F[X]• are
well-defined since Φ(n)

λ Xn+1 = 0.

Using Prop. 4 we can define the following operators on W̃λ generalizing the Mac-
donald operators on the space of symmetric functions Λ.

Definition 14. For ℓ > 0 define the operator ∆ℓ : W̃λ → W̃λ to be the stable-limit
∆ℓ := limn

(
P(n)

0,ℓ −∑□∈λ(n) tℓc(□)
)

.

4.3 E+ Action on W̃λ

Finally, we are ready to state the main result of this paper. This theorem follows by
applying Prop. 4, Cor. 1, and an argument of Schiffmann-Vasserot (Lemma 1.3 in [13]).



Murnaghan-Type Representations of the Elliptic Hall Algebra 11

Theorem 2 (Main Theorem). For λ ∈ Y, W̃λ is a graded E+-module with action determined
for ℓ > 0 by Pℓ,0 → qℓpℓ[X]• and P0,ℓ → ∆ℓ. Further, W̃λ is spanned by a basis of eigenvectors
{PT}T∈Ω(λ) with distinct eigenvalues for the operator ∆ = ∆1 which we will refer to as the
Macdonald operator.

Remark 5. For λ = ∅, W̃∅ = Λ recovers the standard representation of E+ . In this case,
Ω(∅) ≡ Y and Pµ = Pµ[X; q−1, t] (up to nonzero scalar).

By considering the grading of each module W̃λ and the spectral theory of the Mac-
donald operator ∆ we can prove the following.

Proposition 8. For λ, µ ∈ Y distinct, W̃λ ≇ W̃µ as graded E+-modules.

5 Pieri Rule

In this section we give the description of a Pieri rule for the generalized symmetric
Macdonald functions PT. We need to consider the following q, t-rational function.

Definition 15. For T ∈ RSSYT≥0(λ) define

KT(q, t) :=
[µ(T)]t!
[n]t!

∏
(□1,□2)∈Inv(min(T))

(
qT(□1)tc(□1) − qT(□2)tc(□2)+1

qT(□1)tc(□1) − qT(□2)tc(□2)

)
.

Using Prop. 6 and some book-keeping we obtain the following finite-rank Pieri for-
mula.

Theorem 3. For T ∈ RSSYT≥0(λ) and 1 ≤ r ≤ n we have the expansion

er[X1 + . . . + Xn]PT = ∑
S

d(r)S,TPS

where

d(r)S,T

t(
r
2)er(1, . . . , tn−1)KS(q, t)

= ∑
τ∈PSYT≥0(λ;T)

s.t.
Ψr(τ)∈PSYT≥0(λ;S)

tcτ(1)+...+cτ(r) ∏
(□1,□2)∈Inv(τ)

(
qT(□1)tc(□1)+1 − qT(□2)tc(□2)

qT(□1)tc(□1) − qT(□2)tc(□2)

)

× ∏
(□1,□2)∈Inv(Ψr(τ))

(
qS(□1)tc(□1) − qS(□2)tc(□2)

qS(□1)tc(□1) − qS(□2)tc(□2)+1

)
and S ranges over all S ∈ RSSYT≥0(λ) one can obtain from T by adding r 1’s to the boxes of

T with at most one 1 being added to each box.
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Definition 16. For S, T ∈ Ω(λ) and r ≥ 1 define d
(r)
S,T by er[X]•(PT) = ∑S∈Ω(λ) d

(r)
S,T PS .

Define the rank rk(T) to be the minimal n ≥ nλ such that T|λ(∞)/λ(n) = 0.

We can use the stability from Cor. 1 to obtain a Pieri rule.

Corollary 2 (Pieri Rule). Let S, T ∈ Ω(λ) and r ≥ 1. For all n ≥ rk(T) + r

d
(r)
S,T = d(r)S|

λ(n)
,T|

λ(n)
.
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Plane partitions and rowmotion on rectangular
and trapezoidal posets

Joseph Johnson*1 and Ricky Ini Liu†2

1Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
2Department of Mathematics, University of Washington, Seattle, WA

Abstract. We define a birational map between labelings of a rectangular poset and its
associated trapezoidal poset. This map tropicalizes to a bijection between the plane
partitions of these posets of fixed height, giving a new bijective proof of a result by
Proctor. We also show that this map is equivariant with respect to birational rowmo-
tion, resolving a conjecture of Williams and implying that birational rowmotion on
trapezoidal posets has finite order.

Keywords: birational rowmotion, plane partitions, trapezoidal posets

1 Introduction

For a finite poset P, a plane partition of P (also known as a P-partition) is an order-
preserving labeling of P with nonnegative integers. When P is the rectangular poset Rr,s,
the Cartesian product of two chains of r and s elements, an elegant product formula
for the number of plane partitions of P with maximum label at most ℓ was given by
MacMahon [16]. Surprisingly, Proctor [19] showed that there is another poset, namely
the trapezoidal poset Tr,s, that has the same number of plane partitions with maximum
label at most ℓ for all ℓ. (See Figure 1 for a depiction of R4,3 and T4,3.)

Proctor’s proof relies on a branching rule for Lie algebra representations and is not
bijective. Partial bijections were later constructed by Stembridge [22] and Reiner [20] for
ℓ = 1, and Elizalde [5] for ℓ = 2, but a full bijection for all ℓ was not given until work of
Hamaker, Patrias, Pechenik, and Williams [10] using K-theoretic jeu de taquin.

Although the bijection given in [10] has many nice properties, it also has some short-
comings. First, it cannot be extended in a natural way to a continuous piecewise-linear
map on real-valued labelings of the rectangle and trapezoid. As a result, it cannot be
written using expressions in the tropical semiring (that is, using the operations addition,
subtraction, and maximum). Second, it does not appear to be generally well-behaved
with respect to a certain map on posets called rowmotion.
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(Combinatorial) rowmotion is a term coined by Striker and Williams [23] to describe
a map first studied by Brouwer and Schrijver [1] that permutes the set of order ideals
of a poset, sending an order ideal I ⊆ P to the order ideal generated by the minimal
elements of P \ I. It was shown in [1] that the action of rowmotion on order ideals
of the rectangle Rr,s has order exactly r + s. Einstein and Propp [4] observed that one
can generalize combinatorial rowmotion to a piecewise-linear map or birational map.
Results about birational rowmotion then descend to results for piecewise-linear rowmo-
tion (via tropicalization) and further to combinatorial rowmotion. Birational rowmotion
on rectangular posets is closely related to the birational Robinson–Schensted–Knuth (RSK)
correspondence, also known as tropical or geometric RSK—see [18] for some discussion.

For rectangular posets, birational rowmotion maintains many of the important dy-
namical properties of combinatorial rowmotion. For example, Grinberg and Roby [7]
showed that birational rowmotion on Rr,s still has finite order r + s, which was observed
by Glick and Grinberg [9, 17] to be equivalent to a phenomenon from discrete dynam-
ics known as type AA Zamolodchikov periodicity (see Volkov [24]). However, the class of
posets for which birational rowmotion is known to have finite order is very small [7, 8].
Grinberg and Roby conjecture that birational rowmotion on Tr,s likewise has finite order
r + s. (See also [6] for more on conjectured good behavior of the related R-systems.)

Given the apparent close relationship between the rectangular and trapezoidal posets,
Williams conjectures (as noted in [7], based on work in [25]) that there should exist a
birational map between labelings of Rr,s and Tr,s that intertwines with the action of row-
motion (see also Hopkins [11] for further discussion). In particular, such a map would
prove that birational rowmotion on Tr,s has finite order r + s. In work of Dao, Wellman,
Yost-Wolff, and Zhang [3], it was shown that the bijection given in [10] does intertwine
with combinatorial rowmotion on plane partitions of height 1, thereby showing that
combinatorial rowmotion on Tr,s has the correct order. However, they also note that it
does not respect piecewise-linear or birational rowmotion, so it cannot be used to prove
periodicity on Tr,s in these cases.

Our main result is to settle these questions. We construct a birational map between
labelings of Rr,s and Tr,s using birational toggles [2, 4]. We then show that this map:

• tropicalizes to a continuous, piecewise-linear map that restricts to a bijection be-
tween plane partitions of Rr,s and Tr,s of height at most ℓ, and

• is equivariant with respect to rowmotion on Rr,s and Tr,s, implying that birational
(as well as piecewise-linear and combinatorial) rowmotion on Tr,s has order r + s.

We also generalize the chain shifting lemma proved by the current authors in [12] (see also
the noncommutative conversion lemma by Grinberg–Roby [9]), which is closely related
to Schützenberger promotion on semistandard Young tableaux [13]. In particular, we
derive a new, simple proof of this lemma based on the duality of plane trees.

The full version of this paper, which includes proofs, can be found at [14].
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(4,1)

(5,2)

(6,3)

Figure 1: The right trapezoid RT4,3, the rectangle R4,3, and the trapezoid T4,3.

2 Background

We begin with some background on posets and rowmotion. Fix positive integers r ≥ s.

Definition 2.1. The rectangle poset Rr,s is the Cartesian product of chains [r]× [s].
The right trapezoid poset RTr,s is the induced subposet {(i, j) | i − j < r} ⊆ Rr+s−1,s.
The trapezoid poset Tr,s is the induced subposet {(i, j) | i + j > s} ⊆ RTr,s.

See Figure 1. We draw our posets oriented in the plane so that the first coordinate
increases to the northwest and the second coordinate increases to the northeast.

We can augment a poset P to a poset P̂ by adding minimum and maximum elements 0̂
and 1̂. Throughout, we will identify the labelings in RP

+ with the corresponding labelings
in RP̂

+, where the labels at 0̂ and 1̂ are both 1.

Definition 2.2. For any p ∈ P, the (birational) toggle tp : RP
+ → RP

+ is the map that acts

on y ∈ RP
+ by fixing all coordinates except yp and sending yp 7→

(
∑

q⋗p

1
yq

)−1(
∑

q⋖p
yq

)
1

yp
.

The rowmotion map ρ : RP
+ → RP

+ is the composition ρ = tL−1(1) ◦ tL−1(2) ◦ · · · ◦ tL−1(n)
for any linear extension L : P → [n].

Definition 2.3. The transfer map ψ−1 : RP
+ → RP

+ is defined coordinatewise by ψ−1(y)p =

yp
∑

q⋖p
yq

. Its inverse ψ acts by ψ(x)p = ∑
0̂⋖q1⋖···⋖qn=p

n

∏
i=1

xqi .

It will be convenient for us to work with the conjugate of rowmotion under the
transfer map, ρ̃ = ψ−1 ◦ ρ ◦ ψ. (This map was called birational antichain rowmotion or
barmotion by Joseph and Roby [15].) An important property of ρ̃ is the following identity.

Proposition 2.4. Let x ∈ RP
+, y = ψ(x), and z = ρ̃−1(x). Then for p ∈ P,

x−1
p = ∑

q⋖p

yq

yp
and z−1

p = ∑
q⋗p

yp

yq
.

See Figure 2 for some example calculations involving these maps on RT3,2.
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a

b

d

c

e

f

g

a

ab

abd

ac

a(b + c)e

a(bd + be + ce) f

a(bd + be + ce) f g

bc
b+c

bcde
bd+be+ce

ce f

be

b(d + e) f

(bd + be + ce) f g

1
a

bc
b+c

(b+c)de
bd+be+ce

(bd+be+ce) f
bd

(b+c)e
c

(bd+be+ce) f
(b+c)e

g

1
a(bd+be+ce) f g

Figure 2: Labelings of RT3,2: x, y = ψ(x), ρ−1(y), and z = ρ̃−1(x) = ψ−1(ρ−1(y)).

3 Chain Shifting in Skew Shapes

Let P be a poset and x ∈ RP
+. For a subset S ⊆ P, define the weight of S to be wS(x) =

∏p∈S xp. We first show how to relate weights of certain subsets of P to weights of certain
arborescences with respect to y = ψ(x). (Recall that we set y0̂ = y1̂ = 1.)

Definition 3.1. An upward arborescence of P is a subgraph of P̂ \ {1̂} such that every
element of P has down degree 1. Similarly, a downward arborescence of P is a subgraph of
P̂ \ {0̂} such that every element of P has up degree 1. We denote the set of upward and
downward arborescences of P by UP and DP, respectively.

Define the weight (with respect to y) of the edge e corresponding to the cover relation
p ⋖ q to be ωe(y) =

yp
yq

and the weight of an arborescence T to be ωT(y) = ∏e∈E(T) ωe(y).
(Note: The weight ωT of an arborescence is different from the weight wS of a subset.)

Example 3.2. The upward and downward arborescences of RT3,2 are shown in Figure 3
with their weights. The weight of the first upward arborescence can be computed as

1
y11

· y11

y21
· y11

y12
· y21

y31
· y21

y22
· y31

y32
· y32

y42
=

y11y21

y12y22y42
.

For any y ∈ RP
+, we can use ωT(y) to define probability measures on UP and DP: for

subsets U ⊆ UP and D ⊆ DP, define

µy(U) =
∑T∈U ωT(y)
∑T∈UP

ωT(y)
, µy(D) =

∑T∈D ωT(y)
∑T∈DP

ωT(y)
.

Given a collection of saturated chains C , let UP(C ) and DP(C ) denote the sets of all
upward and downward arborescences that contain (the edges of) some chain in C , and
let wC (x) denote the total weight of all chains in C (as subsets of P).

One can exploit the symmetry of Proposition 2.4 to compute the following result.

Corollary 3.3. Let P be a poset, x ∈ RP
+, and z = ρ̃−1(x). Let m, m′, M, M′ ∈ P such that

m′ is the unique element covered by m and M is the unique element covering M′. Let C be any
collection of saturated chains from m to M, and similarly define C ′. Then µy(UP(C ))

wC (x) =
µy(DP(C

′))
wC ′ (z)

.
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y11y21
y12y22y42

y11
y22y42

y11y21
y12y31y42

y11
y31y42

y11y21y31
y22y32

y11y12y31
y22y32

y11y21
y32

y11y12
y32

Figure 3: The four upward arborescences in URT3,2 and the four downward arbores-
cences in DRT3,2 , together with their weights.

Let S be a skew shape poset as in Figure 4. Note that if q ∈ S only covers a single
element p, then any element of US must contain the edge p ⋖ q, so we call this edge
forced for US. Likewise, the edge p ⋖ q is forced for DS if q is the only element covering p.

We define a bijection ℵ : US → DS as follows. Translate T ∈ US in the plane by the
vector (− 1

2 ,− 1
2) (i.e., downward) to T. Then form ℵ(T) by taking all edges of S that do

not intersect T, together with all forced edges for DS. See Figure 4 for an example.
We show that ℵ affects the weight of each arborescence in a uniform way.

Lemma 3.4. Let T ∈ US and y ∈ RS
+. Then there exists a Laurent monomial yα(S) depending

only on S such that ωℵ(T)(y) = ωT(y) · yα(S) for all T ∈ US.

Corollary 3.5. The bijection ℵ : US → DS is measure-preserving: µy(U) = µy(ℵ(U)) for all
y ∈ RS

+ and subsets U ⊆ US.

Example 3.6. Consider again the arborescences for RT3,2 in Figure 3. The bijection ℵ
sends each upward arborescence to the downward arborescence directly below it. In
each case, ℵ multiplies the weight by y42 · y12y31

y32
, as predicted by Lemma 3.4.

We are now ready to prove a chain shifting lemma for skew shapes. Our first form is
a generalization of the chain shifting lemma for rectangles proven by the current authors
in [12] (and in the noncommutative setting by Grinberg and Roby [9]) to skew shapes S.

For p ∈ S, write se(p) ̸= ∅ if p has a southeast neighbor and se(p) = ∅ otherwise.
Given elements p < q in S, let Cp,q denote the set of all saturated chains from p to q, and
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m

M

m′

M′

Figure 4: An upward arborescence T (in red) and its image ℵ(T) (in blue).

let C se
p,q ⊆ Cp,q denote the subset consisting of those chains C for which se(r) ̸= ∅ for all

r ∈ C. (Also define the analogous notation for the directions sw, ne, and nw.)

Lemma 3.7. Let m′ ⋖ m and M′ ⋖ M be elements of S such that sw(m) = ne(M′) = ∅.

(a) The bijection ℵ restricts to a bijection from US(C
se
m,M) to DS(C

nw
m′,M′).

(b) Let x ∈ RS
+ and z = ρ̃−1(x). Then wC se

m,M
(x) = wC nw

m′ ,M′ (z).

Proof sketch. Let T ∈ US(C
se
m,M), and let C be the chain in T from m to M. By the con-

struction of ℵ, ℵ(T) ∈ DS contains a saturated chain upward from m′ that does not cross
C, so it must pass through M′. It follows that ℵ(T) ∈ DS(C

nw
m′,M′). The reverse argument

shows that ℵ is a bijection, and (b) then follows from Corollaries 3.5 and 3.3.

Example 3.8. Let S = RT32 and take m = (2, 1), M = (3, 2), m′ = (1, 1), and M′ = (2, 2).
We can verify that Lemma 3.7(b) holds in this case using the labels in Figure 2:

z11z21z22 + z11z12z22 = bcd f
b+c + b(bd+be+ce) f

b+c = bd f + be f = x21x31x32 + x21x22x32.

We can also verify Lemma 3.7(a) using Figure 3 by noting that US(C
se
m,M) and DS(C

nw
m′,M′)

are the arborescences in the leftmost three columns, which are in bijection via ℵ.

The bijection ℵ is a powerful tool for relating weights of subsets of P with respect to
x and z = ρ̃(x). The general strategy is simple: relate the quantities of interest to the
weights of certain subsets of UP and DP, then show that these subsets are in bijection
via ℵ. In this way, one can easily prove many previously established results about
rowmotion on rectangles as well as further generalizations.

For another example of this, define the left border of the right trapezoid RTr,s to be the
set of elements of the form L = {(ℓ+ r − 1, ℓ) | 1 ≤ ℓ ≤ s}. For p, q ∈ RTr,s, let C L

p,q be
the subset of Cp,q consisting of chains that intersect L.
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Figure 5: The four intermediate posets I4, . . . , I1 lying inside of RT4,4 with M2 high-
lighted in red. The map ζ2 acts on labelings of I3 by applying ρ̃−1

2 inside M2 and
shifting the other entries parallel to the sides.

Lemma 3.9. Let S = RTr,s, and let m′ ⋖ m and M′ ⋖ M such that se(m) = ne(M′) = ∅.

(a) The bijection ℵ restricts to a bijection from US(C
L

m,M) to DS(C
L

m′,M′).
(b) Let x ∈ RS

+ and z = ρ̃−1(x). Then wC L
m,M

(x) = wC L
m′ ,M′

(z).

4 A map between the rectangle and trapezoid

In this section, we use the chain shifting lemmas (Lemmas 3.7 and 3.9) to define a bira-
tional map ζ between labelings of the rectangle Rr,s and trapezoid Tr,s. In the tropical
setting, this map will become a continuous, piecewise-linear, volume-preserving map
between the chain polytopes of these two posets, which can be used to give a bijection
between the plane partitions of Rr,s and Tr,s of height ℓ. To construct ζ, we need to
construct certain intermediate posets as induced subposets of the right trapezoid RTr,s.

Definition 4.1. Let k ≤ s ≤ r be positive integers. The kth intermediate poset Ik = Ir,s,k is
the induced subposet of RTr,s on Tr,k ∪ [(k, k + 1), (r + k − 1, s)].

See Figure 5. Note that the leftmost minimal element of Ik is (k, 1). One can easily
verify that I1 = Rr,s, Is = Tr,s, and |Ik| = rs for all k.

We now define maps ζk : R
Ik+1
+ → R

Ik
+ as follows. Consider the interval Mk =

[(k, 1), (r + k, k + 1)] ⊆ RTr,s. For any x ∈ R
Ik+1
+ , let x̄ ∈ R

Mk
+ be obtained by restrict-

ing x to Mk \ {(k, 1)} ⊆ Ik+1 and setting x̄k,1 to be an arbitrary a ∈ R+ (say, 1). Let
ρ̃k : R

Mk
+ → R

Mk
+ be the antichain rowmotion map on Mk. Then we define ζk(x) ∈ R

Ik
+ by

ζk(x)ij =


ρ̃−1

k (x̄)ij if (i, j) ∈ Ik ∩ Mk = Mk \ {(r + k, k + 1)},
xi+1,j if (i, j) ∈ Ik \ Mk and j > k + 1,
xi,j+1 if (i, j) ∈ Ik \ Mk and i < k.
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a b c

d e

f g

h

i

ab
a+b

c

(a+b)d
a

(a+b)de
ad+bd+be

(ad+bd+be) f g
ad f+adg+bd f+bdg+beg

(ad+bd+be)g
be

(ad f+adg+bd f+bdg+beg)h
(a+b)d f

(ad f+adg+bd f+bdg+beg)h
(ad+bd+be)g

i

abc
ab+ac+bc

(ab+ac+bc)de
(bd+be+ce)a

(ab+ac+bc)de
(ad+bd+be)c

(a+b)(bd+be+ce) f g
(ad f+adg+bd f+bdg+beg)b

(ad f+adg+bd f+bdg+beg)h
(a+b)d f

(ad+bd+be)g
be

(ad f+adg+bd f+bdg+beg)h
(ad+bd+be)g

i

(a+b)(ad+bd+be)(bd+be+ce) f g
(ab+ac+bc)(ad f+adg+bd f+bdg+beg)e

Figure 6: Applying ζ2 and then ζ1 to a labeling x of T3,3, resulting in ζ(x).

See Figure 5. One can show that ζk does not depend on the choice of a.
We then define the birational map ζ = ζ1 ◦ ζ2 ◦ · · · ◦ ζs−1 from R

Tr,s
+ to R

Rr,s
+ .

Example 4.2. Figure 6 shows the result of applying ζ = ζ1 ◦ ζ2 to a labeling x ∈ RT
+

when T = T3,3. Note that x13 = c = ζ2(x)12 as this label lies below M2. Similarly
ζ2(x)j+1,3 = ζ(x)j3 for j = 1, 2, 3 as these labels lie above M1.

The key property of ζ that we will need to prove is that ζ preserves the total weight
of all maximal chains. However, this does not hold for the maps ζk unless we restrict to
a certain special class of polygonal chains.

Definition 4.3. A maximal chain C ⊆ Ik ⊆ RTr,s is polygonal if C intersects L (the left
border of RTr,s) or if (k, 1) ∈ C.

Note that all chains in the trapezoid and rectangle are polygonal (when k = s or 1).
The following result relates the weights of polygonal chains under ζk. Since the only

complicated part of ζk occurs inside Mk, it follows readily from Lemmas 3.7 and 3.9.

Proposition 4.4. Let Pk be the collection of polygonal chains in Ik. For x ∈ R
Ik+1
+ , let z = ζk(x).

Then wPk+1(x) = wPk(z).

It is now simple to deduce the following theorem.

Theorem 4.5. Let C and C ′ be the sets of all maximal chains in Tr,s and Rr,s, respectively. Then
for all x ∈ R

Tr,s
+ , wC (x) = wC ′(ζ(x)).
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0
1
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1

0
1

2
0

0
1

0
1

0
1

0
0

1
0

0
0

0
0

1
1

2
2

3

1
2

3
3

4

1
2

4
4

4
4

ζ3

0
1

1

2
0

0
1

0

0
1

0
0

0
1

0

1
2

0
0

0

0
0

1
2

2
2

2
3

3

3
3

3
3

4
4

ζ2

0
1

1
1

0
0

0
1

0
1

0
0

0
1

0

1
2

0
0

0

0
0

1
2

3

0
0

1
3

3
4

ζ1

0
0

0
1

0

0
1

2
0

1

0
0

0
1

0

1
2

0
0

0

Figure 7: Example calculation of ζ for r = 5 and s = 4. The top row shows the labelings
of the intermediate posets obtained from x when applying ζ3, ζ2, and ζ1 with entries
in Mk highlighted. The vertical maps show applications of (‡) and (†) on Mk.

4.1 Polytopes and plane partitions

We now examine the consequences of Proposition 4.4 and Theorem 4.5 in the piecewise-
linear case. In this section, we will take all maps to be their piecewise-linear counterparts.
In particular, the definition of ζk inside Mk utilizes the map ρ̃−1 on Mk. By tropicalizing
Proposition 2.4, we can compute z = ρ̃−1(x) via

zp = −max
q⋗p

{yp − yq} = min
q⋗p

{yq} − yp, where (†)

yp = ψ(x)p = max
0̂⋖q1⋖···⋖qn=p

∑
i

xqi . (‡)

Example 4.6. An example calculation of ζ when r = 5 and s = 4 is given in Figure 7. Each
ζk can be computed by applying (‡) and then (†) on Mk. (The minimum element of Mk
is arbitrarily given the label 0, and the label of the maximum element of Mk is discarded
after ζk is applied.) The entries outside of Mk are shifted downward appropriately.

To each intermediate poset Ik ⊆ RTr,s, we can associate a polygonal chain polytope. This
coincides with the chain polytope (as defined by Stanley [21]) when k = 1 or k = s.

Definition 4.7. The polygonal chain polytope C̃(Ik) ⊆ RIk is the set of all R-labelings x =
(xp)p∈Ik such that xp ≥ 0 for all p ∈ Ik, and ∑p∈C xp ≤ 1 for all polygonal chains C ⊆ Ik.

Although C̃(Ik) is a lattice polytope when k = 1 or k = s (when it is an ordinary chain
polytope), this is not true in general. Nevertheless, for fixed r and s, these polytopes all
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0
1

1
2

2
3

2
2

2
3

3
4

0
3

3
3

4
4

4
4

ψ ◦ ζ ◦ ψ−1

0
0

0
1

1

0
1

3
3

4

0
1

3
4

4

1
3

3
4

4

Figure 8: Example of the bijection ψ ◦ ζ ◦ ψ−1 obtained by applying ψ to the labelings
in Figure 7. Note that both plane partitions have the same height.

have the same volume and Ehrhart polynomial. In particular, if C̃(Ik) is not a lattice
polytope, then it exhibits period collapse of its Ehrhart quasi-polynomial.

Theorem 4.8. The map ζk : RIk+1 → RIk defines a continuous, piecewise-linear, and lattice-
preserving bijection from ℓ · C̃(Ik+1) to ℓ · C̃(Ik) for all ℓ ∈ Z≥0. Hence, for fixed r and s, the
rational polytopes C̃(Ik) share the same Ehrhart polynomial for all k.

The following corollary then gives a bijective proof of the result of Proctor [19].

Corollary 4.9. The continuous, piecewise-linear map ψ ◦ ζ ◦ ψ−1 : RTr,s → RRr,s defines a bijec-
tion between plane partitions of Tr,s and Rr,s of height ℓ for all ℓ ∈ Z≥0.

Example 4.10. An example application of ψ ◦ ζ ◦ ψ−1 is given in Figure 8 (obtained by
applying ψ to Figure 7). As required, both plane partitions have the same height.

5 Rowmotion equivariance

To prove that the map ζ defined in the previous section is equivariant with respect to
the action of rowmotion ρ̃ (or, equivalently, that ψ ◦ ζ ◦ ψ−1 is equivariant with respect
to ρ), we define a modified version of rowmotion on the intermediate posets Ik that is
respected by the maps ζk.

As above, let k ≤ s ≤ r and consider Ik ⊆ RTr,s. Let Pk denote the set of polygonal
chains in Ik, and let Pk(p) denote the subset of those chains that contain p.

Definition 5.1. For any p ∈ Ik, the (birational) polygonal toggle τ′
p : R

Ik
+ → R

Ik
+ is the

map that changes the p-coordinate of x ∈ R
Ik
+ by xp 7→ wPk(p)(x)−1 while keeping all

other coordinates fixed. The (birational) polygonal rowmotion map ϱ̃k : R
Ik
+ → R

Ik
+ is the

composition ϱ̃k = τ′
L−1(|Ik|)

◦ · · · ◦ τ′
L−1(1) for any linear extension L of Ik.

When k = 1 or s (that is, on the rectangle or trapezoid), the set of polygonal chains is
just the set of all maximal chains, and so ϱ̃k = ρ̃k as shown by Joseph and Roby [15].

We then prove the following theorem.
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Theorem 5.2. The maps ζk : R
Ik+1
+ → R

Ik
+ are equivariant with respect to polygonal rowmotion:

ζk ◦ ϱ̃k+1 = ϱ̃k ◦ ζk.

The proof involves categorizing the possible bottom and top parts of polygonal chains
and expressing their weights using “partial transfer maps”. We then use the bijection ℵ
to formulate and apply chain shifting results for these maps. (This proof requires the
use of subtraction.) The following corollary follows immediately.

Corollary 5.3. Let T = Tr,s and R = Rr,s be the rectangle and trapezoid poset. Then the map
ζ : RT

+ → RR
+ is equivariant with respect to birational (antichain) rowmotion:

ζ ◦ ρ̃T = ρ̃R ◦ ζ.

In particular, birational rowmotion on the trapezoid (ρ̃T or ρT) has order r + s.
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Abstract. A graphic arrangement is a subarrangement of the braid arrangement whose
set of hyperplanes is determined by an undirected graph. A classical result due to
Stanley, Edelman and Reiner states that a graphic arrangement is free if and only if
the corresponding graph is chordal, i.e., the graph has no chordless cycle with four
or more vertices. In this article we extend this result by proving that the module of
logarithmic derivations of a graphic arrangement has projective dimension at most
one if and only if the corresponding graph is weakly chordal, i.e., the graph and its
complement have no chordless cycle with five or more vertices.

Keywords: Hyperplane arrangements, graph theory, projective resolutions

1 Introduction

The principal algebraic invariant associated to a hyperplane arrangement A is its module
of logarithmic vectors fields or derivation module D(A). Such modules provide an
interesting class of finitely generated graded modules over the coordinate ring of the
ambient space of the arrangement. The chief problem is to relate the algebraic structure
of D(A) to the combinatorial structure of A, i.e., whether it is free or more generally
to determine its projective dimension or even graded Betti numbers. In general, this is
notoriously difficult and still wide open, at its center is Terao’s famous conjecture which
states that over a fixed field of definition, the freeness of D(A) is completely determined
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by combinatorial data. Conversely, one might ask which combinatorial properties of A
are determined by the algebraic structure of D(A).

It is natural to approach these very intricate questions by restricting attention to
certain distinguished classes of arrangements.

A prominent and much studied class are the graphic arrangements, around which our
present article revolves. They are defined as follows.

Definition 1.1. Let V ∼= Qℓ be an ℓ-dimensional Q-vector space. Let x1, .., xℓ be a basis
for the dual space V∗. Given an undirected graph G = (V , E) with V = {1, . . . , ℓ}, define
an arrangement A(G) by

A(G) := {ker(xi − xj)|{i, j} ∈ E}.

Regarding the freeness of D(A(G)), a nice complete answer is given by the following
theorem, due to work by Stanley [15], and Edelman and Reiner [6].

Theorem 1.2 ([6, Thm. 3.3]). The module D(A(G)) is free if and only if the graph G is chordal,
i.e., G does not contain a chordless cycle with four or more vertices.

A recent refined result was established in [16] by Tran and Tsujie, who showed that
the subclass of so-called strongly chordal graphs in the class of chordal graphs corre-
sponds to the subclass of MAT-free arrangements, cf. [2], [4].

In this note, we will investigate the natural question raised by Kung and Schenck
in [11] of whether it is possible to give a characterization of graphs G, similar to Theo-
rem 1.2, for which the projective dimension of D(A(G)) is bounded by a certain positive
value. To this end, we consider the more general notion of weakly chordal graphs intro-
duced by Hayward [9]:

Definition 1.3. A graph G is weakly chordal if G and its complement graph GC do not
contain a chordless cycle with five or more vertices.

It was subsequently discovered that many algorithmic questions that are intractable
for arbitrary graphs become efficiently solvable within the class of weakly chordal graphs
[10].

The main result of this paper is the following:

Theorem 1.4. The projective dimension of D(A(G)) is at most 1 if and only if the graph G is
weakly chordal. Moreover, the projective dimension is exactly 1 if G is weakly chordal but not
chordal.

Along the way towards the preceding theorem, we will prove the following key result,
yielding the more difficult implication of Theorem 1.4.

Theorem 1.5. For ℓ ≥ 6, the projective dimension of D(A(CC
ℓ )) is equal to 2, where CC

ℓ is the
complement of the cycle-graph with ℓ vertices, also called the (ℓ-)antihole.
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Moreover, we prove a refined result. Namely, in Theorem 5.10 we provide an explicit
minimal free resolution of D(A(CC

ℓ )).

Remark 1.6. This extended abstract corresponds to an article that is published as preprint
on the arXiv ([3]).

2 Preliminaries – Graph Theory

In this section, we define objects of interest to us while studying graphic arrangements,
notably specific graph classes and their attributes. The exposition is mostly based on [5].
We only consider simple, undirected graphs:

Definition 2.1. (i) A simple graph G on a set V is a tuple (V , E) with E ⊆ (V2) the set
of (undirected) edges connecting the vertices in V .

(ii) The graph GC =
(
V , (V2)\E

)
is called the complement graph of G.

(iii) A graph G′ = (V ′, E′) with V ′ ⊆ V , E′ ⊆ E is called a subgraph of G. If E′ is the
set of all edges of E between vertices in V ′, i.e. E′ = (V

′

2 ) ∩ E, the graph G′ is an
induced subgraph of G.

Besides restricting the graph to a set of vertices, there are two basic operations we
can perform on graphs, as described in [12]:

Definition 2.2. Let G = (V , E) be a graph and e = {i, j} ∈ E.
The graph G′ = (V , E \ {e}) is obtained from G through deletion of e and the

graph G′′ = (V ′′, E′′) with V′′ the vertex set obtained by identifying i and j and E′′ =
{{ p̄, q̄} |{p, q} ∈ E′} is obtained by contraction of G with respect to e.

We will define graph classes based on certain path or cycle properties:

Definition 2.3. 1. For k ≥ 2, a path of length k is the graph Pk = (V , E) of the form

V = {v0, . . . , vk} , E = {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}}

where all vi are distinct.

2. If Pk = (V , E) is a path, and k ≥ 3, then the graph Ck = (V , E ∪ {vk−1, v0}) is called
a (k-)cycle.

For k ≥ 6, we call CC
k the k-antihole.

The main objects of interest in this article are graphs that satisfy a weaker condition
than chordality and were introduced by Hayward in [9]:
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Definition 2.4. A graph is called weakly chordal (or weakly triangulated) if it contains no
induced k-cycle with k ≥ 5 and no complement of such a cycle as an induced subgraph.

We prove the following:

Lemma 2.5. For a weakly chordal graph G = (V , E), there exists a sequence of edges e1, .., ek /∈
E, such that

1. Gi = (V , E ∪ {e1, . . . , ei}) is weakly chordal for i = 1, . . . , k − 1,

2. the edge ei is not part of an induced cycle C4 in Gi for i = 1, . . . , k and

3. Gk is chordal.

3 Preliminaries – Hyperplane Arrangements

In this section, we recall some fundamental notions form the theory of hyperplane ar-
rangements. The standard reference is Orlik and Terao’s book [12].

Definition 3.1. Let K be a field and let V ∼= Kℓ be a K-vector space of dimension ℓ. A
hyperplane H in V is a linear subspace of dimension ℓ− 1. A hyperplane arrangement
A = (A, V) is a finite set of hyperplanes in V.

Let V∗ be the dual space of V and S = S(V∗) be the symmetric algebra of V∗. Identify
S with the polynomial algebra S = K[x1, . . . , xℓ].

Definition 3.2. Let A be a hyperplane arrangement. Each hyperplane H ∈ A is the
kernel of a polynomial αH of degree 1 defined up to a constant. The product

Q(A) := ∏
H∈A

αH

is called a defining polynomial of A.

Define the rank of A as rk(A) := codimV(∩H∈AH). If B ⊆ A is a subset, then (B, V)
is called a subarrangement. The intersection lattice L(A) of the arrangement is the set of
all non-empty intersections of elements of A (including V as the intersection over the
empty set), with partial order by reverse inclusion. For X ∈ L(A) define the localization
at X as the subarrangement AX of A by

AX := {H ∈ A | X ⊆ H}

as well as the restriction (AX, X) as an arrangement in X by

AX := {X ∩ H | H ∈ A\AX and X ∩ H ̸= ∅}.
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Define
Lk(A) := {X ∈ L(A) | codimV(X) = k}

and L≥k(A), L≤k(A) analogously.

Definition 3.3. Let A be a non-empty arrangement and let H0 ∈ A. Let A′ = A\{H0}
and let A′′ = AH0 . We call (A,A′,A′′) a triple of arrangements with distinguished
hyperplane H0.

We can associate a special module to the hyperplane arrangement A:

Definition 3.4. A K-linear map θ : S → S is a derivation if for f , g ∈ S:

θ( f · g) = f · θ(g) + g · θ( f ).

Let DerK(S) be the S-module of derivations of S. This is a free S-module with basis the
usual partial derivatives ∂x1 , . . . , ∂xℓ .

Define an S-submodule of DerK(S), called the module of A-derivations, by

D(A) := {θ ∈ DerK(S)|θ(Q(A)) ∈ Q(A)S}.

The arrangement A is called free if D(A) is a free S-module.

The class of arrangements we are interested in are graphic arrangements:

Definition 3.5. Given a graph G = (V , E) with V = {1, . . . , ℓ}, define an arrangement
A(G) by

A(G) := {ker(xi − xj)|{i, j} ∈ E}.

Remark 3.6. Note that for a graphic arrangement A(G), localizations exactly correspond
to disconnected unions of induced subgraphs of G.

For given derivations θ1, . . . , θℓ ∈ Der(S) we define the the coefficient matrix

M(θ1, . . . , θℓ) :=
(
θj(xi)

)
1≤i,j≤ℓ

,

i.e., the matrix of coefficients with respect to the standard basis ∂x1 , . . . , ∂xℓ of Der(S).
We recall Saito’s useful criterion for the freeness of D(A), cf. [12, Thm. 4.19].

Theorem 3.7. For θ1, . . . , θℓ ∈ D(A), the following are equivalent:

1. det(M(θ1, . . . , θℓ)) ∈ K× Q(A),

2. θ1, . . . , θℓ is a basis of D(A).
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3.1 Projective dimension

In this manuscript, we want to take a look at the non-free case of graphic arrangements
and find a characterization for their different projective dimensions. For a comprehen-
sive account of all the required homological and commutative algebra notions we refer
to [17] respectively [7].

Definition 3.8. A projective resolution of a module M is a complex P• with a map ϵ : P0 →
M, such that the augmented complex

· · · → P2 → P1 → P0
ϵ−→ M → 0

is exact and Pi is projective for all i ∈ N.

We can define the notion of projective dimension:

Definition 3.9. Let M be an S-module. Its projective dimension pd(M) is the minimum
integer n (if it exists), such that there is a resolution of M by projective S-modules

0 → Pn → · · · → P1 → P0 → M → 0

The projective dimension of an arrangement is the projective dimension of its deriva-
tion module and we simply write pd(A) := pd(D(A)). Note that since S is a polynomial
ring, it follows from the Quillen-Suslin Theorem that in this case projective and free res-
olutions coincide. The following result is due to Terao, cf. [18, Lem. 2.1].

Proposition 3.10. Let X ∈ L(A). Then pd(AX) ≤ pd(A).

An arrangement A is generic, if |A| > rk(A) and for all X ∈ L(A) \ {∩H∈AH} we
have |AX| = codimV(X). The next result, due to Rose and Terao [13], identifies generic
arrangements as those with maximal projective dimension.

Theorem 3.11. Let A be a generic arrangement. Then pd(A) = rk(A)− 2.

Important for our present investigations are the following examples of generic ar-
rangements.

Example 3.12. Let Cℓ be the cycle graph with ℓ vertices. Then, for ℓ ≥ 3, the graphic
arrangement A(Cℓ) is generic. In particular, we have pd(A(Cℓ)) = rk(A(Cℓ)) − 2 =
ℓ− 3.

Since arrangements of induced subgraphs correspond to localizations, from Exam-
ple 3.12 and Proposition 3.10 we obtain the following, first observed by Kung and
Schenck [11, Cor. 2.4].

Corollary 3.13. If G contains an induced cycle of length m, then pd(A(G)) ≥ m − 3.
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Figure 1: The triangular prism of [11] on the left is the same as C6
C on the right.

In [11], Kung and Schenck introduced a graph they called the “triangular prism”
to serve as an example for a graphic arrangement A(G) whose projective dimension is
strictly greater than k − 3, k the length of the longest chordless cycle in G. Note that the
graph they describe is the 6-antihole, see Figure 1. It does not have any cycle of length 5
or more, yet pd(A(G)) = 2 and it is not weakly chordal.

3.2 Terao’s polynomial B

Let A be an arbitrary arrangement and H0 a distinguished hyperplane. Let (A,A′,A′′)
be the corresponding triple. Choose a map ν : A′′ → A′ such that ν(X) ∩ H0 = X for all
X ∈ A′′.

Terao defined the following polynomial

B(A′, H0) =
Q(A)

αH0 ∏X∈A′′ αν(X)
.

The main properties of this polynomial can be summarized as follows:

Proposition 3.14. [12, Lem. 4.39 and Prop. 4.41]

1. deg B(A′, H0) = |A′| − |A′′|.

2. The ideal (αH0 , B(A′, H0)) is independent of the choice of ν.

3. The polynomial θ(αH0) is contained in the ideal (αH0 , B(A′, H0)) for all θ ∈ D(A′).

In the following, we fix a hyperplane H0 and simply write B = B(A′, H0) for Terao’s
polynomial.

By Proposition 3.14, we have an exact sequence:

0 → D(A) ↪→ D(A′)
∂̄′−→ S̄ · B̄, (3.15)

where S̄ = S/αH0 , B̄ is Terao’s polynomial in S̄ and ∂′(θ) = θ(αH0).
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The following new result regarding this sequence will be important in our subsequent
proofs. It is a special case of “surjectivity theorems” for sequences of local functors
recently obtained by the first author in [1].

Theorem 3.16. Assume that pd(AX) < codimV(X)− 2 for all X ∈ L≥2(AH0). Then the map
∂′ in the sequence (3.15) is surjective. Hence, in this case, the sequence (3.15) is also right exact.

Proof. This immediately follows from [1, Thm. 3.2, Thm. 3.3].

We record the following consequences of the preceding theorem.

Corollary 3.17. Assume that AX is free for all X ∈ L2(AH0) and pd(A) ≤ 1. Then the
sequence (3.15) is also right exact.

Proof. This follows immediately from Theorem 3.16 and Proposition 3.10.

Lemma 3.18. Assume that AX is free for all X ∈ L2(AH0) and pd(A) ≤ 1. Then we also have
pd(A′) ≤ 1.

4 Weakly chordal graphic arrangements

The goal of this section is to show that a graphic arrangement of a weakly chordal graph
has projective dimension at most 1, which gives one direction of our main Theorem 1.4.

Theorem 4.1. Let G = (V , E) be a weakly chordal graph. Then pd(A(G)) ≤ 1.

Proof. Firstly, Lemma 2.5 implies that there exists a sequence of edges e1, . . . , ek such that
Gi = (V , E ∪ {e1, .., ei}) is weakly chordal, the edge ei is not the middle edge of any
induced P4 in Gi for i = 1, .., k, and Gk is chordal.

We prove that pd(A(Gi)) ≤ 1 for all i = 1, .., k by a descending induction. As Gk is
chordal, the arrangement A(Gk) is free and hence pd(A(Gk)) = 0 by Theorem 1.2. So
assume that pd(A(Gj)) ≤ 1 for some 1 < j ≤ k. We will now argue that this implies
pd(A(Gj−1)) ≤ 1 which finishes the proof.

Let H0 be the hyperplane corresponding to the edge ej in the arrangement A(Gj). We
aim to apply Lemma 3.18 to A(Gj) and A(Gj−1). To check the assumption of this result,
we consider X ∈ L2(A(Gj)

H0) and need to show that the arrangement A(Gj)X is free.
Assume the contrary, i.e., that A(Gj)X is not free. By definition of X, the arrange-

ment A(Gj)X is a graphic arrangement on an induced subgraph of Gj on four vertices
containing the edge ej. The assumption that this arrangement is not free implies that
this induced subgraph is not chordal. As this subgraph only contains four vertices it
must be the cycle C4. This however contradicts condition (2) in Lemma 2.5 which states
that the edge ej cannot be an edge of an induced cycle C4 in the graph Gj. Therefore, the
arrangement A(Gj)X is free for all X ∈ L2(A(Gj)

H0).
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Moreover, by the induction hypothesis, we have pd(A(Gj)) ≤ 1. Thus, by Lemma
3.18, we also have pd(A(Gj−1)) ≤ 1 as desired.

Let us record the following result which immediately follows from the previous the-
orem and Theorem 1.2.

Corollary 4.2. Let G be a weakly chordal but not chordal graph. Then pd(A(G)) = 1.

5 Graphic arrangements of antiholes

The main result of this section yields the other direction of implications in Theorem 1.4.
Recall that the graph CC

ℓ is the complement graph of a cycle with ℓ vertices which is
called the ℓ-antihole.

Theorem 5.1. For all ℓ ≥ 6 it holds that

pd(A(CC
ℓ )) = 2.

Let us first explain how this concludes the proof of Theorem 1.4.

Proof of Theorem 1.4, using Theorem 5.1. By Theorem 4.1, we have pd(A(G)) ≤ 1 for a
weakly chordal graph G and pd(A(G)) = 1 if G is not chordal by Corollary 4.2.

Conversely, assume that G is a graph such that pd(A(G)) = 1. In particular, by
Theorem 1.2, the graph G is not chordal. Suppose G is also not weakly chordal. Then,
by definition, there is either an m ≥ 5 such that Cm is an induced subgraph or there is an
ℓ ≥ 6 such that CC

ℓ is an induced subgraph of G. In the first case, by Corollary 3.13, we
have pd(A(G)) ≥ ℓ− 3 ≥ 2; in the second case, by Proposition 3.10 and Theorem 5.1,
we also have pd(A(G)) ≥ 2. Both cases contradict our assumption. Hence, G is weakly
chordal.

To prove Theorem 5.1, let us first introduce some notation for special derivations we
will consider in this section. Let G be a graph with vertex set V = [ℓ] := {1, 2, . . . , ℓ}.
Write Hij := ker(xi − xj) for the hyperplane corresponding to the edge {i, j} and let

Aℓ−1 := {Hij | 1 ≤ i < j ≤ ℓ}

be the graphic arrangement of the complete graph in Qℓ. We set

θi :=
ℓ

∑
j=1

xi
j∂xj (i ≥ 0) and define φi := ∏

j∈[ℓ]\{i−1,i,i+1}
(xi − xj)∂xi

for i ̸= 1, ℓ. Also define

φ1 :=
ℓ−1

∏
i=3

(x1 − xi)∂x1 and φℓ :=
ℓ−2

∏
i=2

(xℓ − xi)∂xℓ .
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In this section we always consider indices and vertices in [ℓ] in a cyclic way, i.e., we
identify i + ℓ with i etc.

There is the following fundamental result due to K. Saito.

Theorem 5.2 ([14]). Aℓ−1 is free with basis θ0, . . . , θℓ−1.

With this, we can show the following.

Lemma 5.3. Let
Bi,j := Aℓ−1 \ {Hs,s+1 | i ≤ s ≤ j}.

Then Bi,i+2 is free with basis
θ0, . . . , θℓ−3, φi+1, φi+2.

With the same notation, we have:

Proposition 5.4. If i + 2 ≤ j and (i, j) ̸= (1, l), then D(Bi,j) is generated by

θ0, . . . , θℓ−3, φi+1, φi+2, . . . , φj.

To obtain generators for B1,ℓ we need to modify the argument utilizing the polyno-
mial B. For that purpose, we introduce the following new refined version of Proposi-
tion 3.14.

Theorem 5.5. Let A be an arrangement, H1, H2 ̸∈ A be distinct hyperplanes and let Ai :=
A∪ {Hi}. Assume that H1 = ker(α), H2 = ker(β) and let Bi be the polynomial B with respect
to (A, Hi). Assume that ker(α + β) ∈ A, let b be the greatest common divisor of the reduction
of B1 and B2 modulo (α, β) and let b2b ≡ B2 modulo (α, β). Then for θ ∈ D(A) we have:

θ(α) ∈ (α, βB1, b2B1).

We can apply Theorem 5.5 to B1,ℓ−1 and B := B1,ℓ = Aℓ−1 \ {H1,2, . . . , Hℓ−1,ℓ, Hℓ,1}.
Namely, we can show the following:

Theorem 5.6. D(B) = ⟨θ0, . . . , θℓ−3, φ1, . . . , φℓ⟩S.

Note that ψi := (xi−1 − xi)φi − (xi+1 − xi+2)φi+1 ∈ D(Aℓ−1) = ⟨θ0, . . . , θℓ−1⟩S for
i = 1, . . . , ℓ, since

ψi(xi − xi+1) = − ∏
j∈[ℓ]\{i,i+1}

(xi − xj) + ∏
j∈[ℓ]\{i,i+1}

(xi+1 − xj) ≡ 0 mod (xi − xi+1).

Thus, there are fij such that

ψi −
ℓ−3

∑
j=0

fijθj = −θℓ−2 (i = 1, 2, . . . , ℓ). (5.7)
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So we have relations

ψi −
ℓ−3

∑
j=0

fijθj = ψs −
ℓ−3

∑
j=0

fsjθs,

and they are generated by

ψ1 −
ℓ−3

∑
j=0

f1jθj = ψi −
ℓ−3

∑
j=0

fijθj (5.8)

for i = 2, . . . , ℓ. We now prove that they indeed generate all the relations among the
generators of D(B).

Theorem 5.9. All relations among the set of generators θ0, . . . , θℓ−3, φ1, . . . , φℓ are generated by
the ones given in Equations (5.8).

Now we are ready to prove the following, which immediately implies Theorem 1.5.

Theorem 5.10. The module D(B) has the following minimal free resolution:

0 → S[−ℓ+ 1] → S[−ℓ+ 2]ℓ−1 → ⊕ℓ−4
i=0 S[−i]⊕ S[−ℓ+ 3]ℓ+1 → D(B) → 0. (5.11)

In particular, pd(B) = 2.

6 Remark on generalization of the result

A natural question arising from our Theorem 1.4 would be if this generalizes to the
remaining projective dimensions, i.e. if A(G) has projective dimension ≤ k if and only
if G and its complement graph do not contain a chordless cycle with k + 4 or more
vertices. This is however not the case, first note that in the case of projective dimension
0, it suffices for the graph itself to have no chordless cycle of length 4 or more and
chordality is not closed under taking the complement (The complement of the 4-cycle for
instance, is chordal, whereas the 4-cycle itself is not). Moreover, since the arrangement
of the k-cycle is generic of rank k − 1, it has maximal projective dimension k − 3 (see
Example 3.12) and by Theorem 1.5 its complement has projective dimension 2. Moreover,
we found two counterexamples to the other direction of this conjecture in dimension 7;
both graphs and their complements have no induced cycle of length more than 5, yet
have projective dimension 3, which was also found by Hashimoto in [8].
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Abstract. In 2019, Ceballos and Pons introduced the s-weak order on s-decreasing
trees, for any weak composition s. They proved its lattice structure and conjectured
that it could be realized as the 1-skeleton of a polyhedral subdivision of a zonotope of
dimension n − 1. We answer their conjecture in the case where s is a (strict) composi-
tion by providing three geometric realizations of the s-permutahedron. The first one
is the dual graph of a triangulation of a flow polytope of high dimension. The second,
obtained using the Cayley trick, is the dual graph of a fine mixed subdivision of a sum
of hypercubes that has the conjectured dimension. The third, obtained using tropical
geometry, is the 1-skeleton of a polyhedral complex for which we can provide explicit
coordinates of the vertices and whose support is a permutahedron as conjectured.

Keywords: s-decreasing tree, s-weak order, flow polytope, geometric realization, poly-
hedral subdivision, Cayley trick, tropical hypersurface.

1 Introduction

In [3, 4, 5], Ceballos and Pons introduced and studied the s-weak order, a lattice structure
on s-decreasing trees parameterized by a weak composition s = (s1, . . . , sn). It general-
izes the classical weak order on permutations of [n] := {1, . . . , n}, that is recovered
with s = (1, . . . , 1). Figure 1 shows the Hasse diagram of the (1, 2, 1)-weak order.

In the same way that the weak order on permutations is related to the Tamari order
on Catalan objects, the s-weak order is related to the s-Tamari lattice which has received
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a lot of attention under various guises. It was first introduced by Préville–Ratelle and
Viennot [14] on grid paths weakly above the path ν = NEsn . . . NEs1 . The Hasse dia-
gram of the s-Tamari lattice was realized as the edge graph of a polyhedral complex by
Ceballos et al. [2]. This complex is dual to a subdivision of a subpolytope of a product
of simplices called UI,J and to a fine mixed subdivision of a generalized permutahe-
dron. Bell et al. [1] showed that the s-Tamari lattice can also be realized as the graph
dual to a triangulation of a flow polytope, by using a method of Danilov, Karzanov, and
Koshevoy [6] for obtaining regular unimodular triangulations.
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Figure 1: The s-permutahedron for s = (1, 2, 1). The vertices are indexed by the
following combinatorial objects: s-decreasing trees, Stirling s-permutations, maximal
cliques of routes (omitting the all bumps or dips routes), and integer flows (in red on
the topmost graph). The edges are oriented according to the s-weak order.

As notation for the rest of this article, let s = (s1, . . . , sn) be a composition (i.e. a vec-
tor with positive integer entries). An s-decreasing tree is a planar rooted tree on n internal
vertices (called nodes), labeled by [n], such that the node labeled i has si + 1 children and
any descendant j of i satisfies j < i. We denote by Ti

0, . . . , Ti
si

the subtrees of node i from
left to right. The collection of s-decreasing trees is in bijection with 121-avoiding permu-
tations of the word 1s12s2 . . . nsn , called Stirling s-permutations. The bijection consists of
reading labels along the in-order traversal of s-decreasing trees.

Let T be an s-decreasing tree and 1 ≤ x < y ≤ n. We denote by inv(T) the multi-set
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of tree-inversions of T formed by pairs (y, x) with multiplicity (also called cardinality)

#(y, x)T =


0, if x is left of y,
i, if x ∈ Ty

i ,
sy, if x is right of y.

An ascent on an s-decreasing tree T is a pair (a, c) satisfying

• a ∈ Tc
i for some 0 ≤ i < sc,

• if a < b < c and a ∈ Tb
i , then i = sb, and

• if sa > 0, then Ta
sa consists of only one leaf.

In [3] Ceballos and Pons introduced the s-weak order ⊴ on s-decreasing trees as fol-
lows. For s-decreasing trees R and T, we say that R ⊴ T if inv(R) ⊆ inv(T).

If A is a subset of ascents of T, we denote by T + A the s-decreasing tree whose
inversion set is the smallest one that contains inv(T)∪ A. Ceballos and Pons conjectured
that the combinatorial complex whose faces are the intervals [T, T + A], which they call
the s-permutahedron Perms, has the following geometric structure.

Conjecture 1.1 ([3, Conj. 1], [5, Conj. 3.1.2]). Let s = (s1, . . . , sn) be a weak composition. The
s-permutahedron can be realized as a polyhedral subdivision of a polytope which is combinatorially
isomorphic to the zonotope ∑1≤i<j≤n sj∆ij, where (ei)1≤i≤n is the canonical basis of Rn and ∆ij
is the segment conv{ei, ej}.

2 Three geometric realizations of the s-permutahedron

In the following subsections we provide background on the techniques we use and
present our three realizations of the s-permutahedron, finally answering Conjecture 1.1
when s is a composition. The proofs are in the long version of this extended abstract [8].

Examples of the third realization are available on this webpage1 and code can be
found on this webpage2. Figure 1 shows the (1, 2, 1)-permutahedron together with the
corresponding combinatorial objects used throughout this work.

2.1 Triangulations of flow polytopes

Let G = (V, E) be a loopless connected oriented multigraph on vertices V = {v0, . . . , vn}
with edges oriented from vi to vj if i < j such that v0 (resp. vn) is the only source (resp.
sink) of G. For any vertex vi we denote by Ii its set of incoming edges and by Oi its set
of outgoing edges.

1https://sites.google.com/view/danieltamayo22/gallery-of-s-permutahedra
2https://cocalc.com/ahmorales/s-permutahedron-flows/demo-realizations

https://sites.google.com/view/danieltamayo22/gallery-of-s-permutahedra
https://cocalc.com/ahmorales/s-permutahedron-flows/demo-realizations
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Given a vector a = (a0, a1 . . . , an−1, an) such that ∑i ai = 0, a flow of G with netflow a
is a vector ( fe)e∈E ∈ (R≥0)

E such that ∑e∈Ii
fe + ai = ∑e∈Oi

fe for all i ∈ [0, n]. A flow
( fe)e∈E of G is called an integer flow if all fe are integers. We denote by FZ

G (a) the set of
integer flows of G with netflow a. A route of G is a path from v0 to vn i.e. a sequence
of edges ((v0, vk1), (vk1 , vk2), . . . , (vkl

, vn)), with 0 < k1 < k2 < . . . < kl < n. The flow
polytope of G is

FG(a) =
{
( fe)e∈E flow of G with netflow a

}
⊂ RE.

It is a polytope of dimension |E| − |V| + 1. When it is not specified, the netflow is
assumed to be a = (1, 0, . . . , 0,−1). In this case, the vertices of FG correspond to the
routes of G.

Flow polytopes admit several nice subdivisions that can be understood via certain
combinatorial properties of the graph G with respect to a framing. Let P be a route of G
that contains vertices vi and vj. We denote by Pvi the prefix of P that ends at vi and viP
the suffix of P that starts at vi. A framing ⪯ of G is a choice of linear orders ⪯Ii and ⪯Oi

on the sets of incoming and outgoing edges for each inner vertex vi. This induces a total
order on the set of partial routes from v0 to vi (resp. from vi to vn) by taking Pvi ⪯ Qvi
if eP ⪯Ij eQ where vj is the first vertex after which the two partial routes coincide, and
eP, eQ are the edges of P and Q that end at vj. The definition of viP ⪯ viQ is similar
using ⪯Oj . When G is endowed with such a framing ⪯, we say that G is framed. See
Figure 2a for an example.

1
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3 1
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21
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1
2

0 0 000

(a)

e21

e11
e41

e10e20

e22

e30

e31

(b)

Figure 2: (a) The graph oru(s) for s = (2, 3, 2, 2) with framing in red. (b) The graph
oru(s) for s = (1, 2, 1) with edge labels.

We say that routes P and Q of G are in conflict at a common path of inner vertices
[vi, vj] if the initial parts Pvi and Qvi are ordered differently than the final parts vjP, vjQ.
Otherwise we say that P and Q are coherent at [vi, vj]. We say that P and Q are coherent if
they are coherent at each common inner path.

Defining the sets of mutually coherent routes as the cliques of (G,⪯), we denote by
MaxCliques(G,⪯) the set of maximal collections of cliques under inclusion. Given a set
of routes C let ∆C be the convex hull of the vertices of FG corresponding to the routes
in C.

Theorem 2.1 ([6, Sec. 1]). The simplices {∆C |C ∈ MaxCliques(G,⪯)} are the maximal cells
of a regular triangulation of FG.
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The triangulation obtained this way is called the DKK triangulation of FG with respect
to the framing ⪯ and we denote it by TriangDKK(G,⪯).

Another scheme to subdivide flow polytopes is a recursive procedure by Postnikov
and Stanley (see [15]) based on subdividing FG into two polytopes that are integrally
equivalent to other flow polytopes. They used this to show that the volume of FG
equals the number of integer flows in FZ

G (d), where d = (0, d1, . . . , dn−1,−∑i di) and
di = indegG(vi) − 1. This recursive subdivision can be made compatible with DKK
triangulations in what are called framed Postnikov–Stanley triangulations [13]. This allows
for the following explicit bijection between the maximal cliques and the integer flows.

Theorem 2.2 ([13, Thm 7.8]). Given a framed graph (G,⪯), the map

ΩG,⪯ :

{
MaxCliques(G,⪯) → FZ

G (d)
C 7→ (nC(e)− 1)e∈E(G)

,

where nC(vi, vj) is the number of times the edge (vi, vj) appears in the prefixes {Pvj | P ∈ C},
is a bijection between the maximal cliques of (G,⪯) and the integer flows in FZ

G (d).

We define a framed graph associated to the composition s such that the corresponding
DKK triangulation encodes the combinatorial structure of the s-weak order.

Definition 2.3. Let s = (s1, . . . , sn) be a composition, and for convenience of notation set
sn+1 = 2. The framed graph (oru(s),⪯) consists of vertices {v−1, v0, . . . , vn} and

• for i ∈ [n + 1], there are si − 1 source-edges (v−1, vn+1−i) labeled ei
1, . . . , ei

si−1,
• for i ∈ [n], there are two edges (vn+1−i−1, vn+1−i) called bump and dip labeled ei

0
and ei

si
,

• the incoming edges of vn+1−i are ordered ei
j ≺In+1−i ei

k for 0 ≤ j < k ≤ si,

• the outgoing edges of vn+1−i are ordered ei−1
0 ≺On+1−i ei−1

si−1
.

We denote by oru(s) the s-oruga graph and orun the oruga graph of length n which is the
induced subgraph of oru(s) with vertices {v0, . . . , vn}. Figure 2a and Figure 2b show
examples of our construction. The corresponding flow polytope Foru(s) has dimension
|s| := ∑n

i=1 si.

We describe the routes of oru(s) intuitively as follows. Every route of oru(s) starts
from v−1, lands in a vertex vn+1−k via a source-edge labeled ek

t and follows k − 1 edges
that are either bumps or dips denoted by a 01-vector δ. Formally, for k ∈ [n + 1],
t ∈ [sk − 1], and δ = (δ1, . . . , δk−1) ∈ {0, 1}k−1, we denote by R(k, t, δ) the sequence
of edges (ek

tk
, ek−1

tk−1
, . . . , e1

t1
) where tk = t and tj = δjsj for all j ∈ [k − 1].

Theorem 2.4. The s-decreasing trees are in bijection with the maximal simplices of the DKK
triangulation of Foru(s) with respect to the framing ⪯.
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Proof. We describe a bijection between s-decreasing trees and integer flows of oru(s) with
netflow d = (0, sn, sn−1, . . . , s1,−∑n

i=1 si). The statement then follows from Theorems 2.2
and 2.1.

Given an integer d-flow ( fe)e of oru(s) (note that it is enough to know the values
fei

0
for i ∈ [n − 1] to determine the entire integer flow), we build an s-decreasing tree

inductively as follows. Start with the tree given by the node n and sn + 1 leaves. At step
i for i ∈ [n − 1], we have a partial s-decreasing tree with labeled nodes n to n + 1 − i,
and 1 + ∑n

k=n+1−i sk leaves that we momentarily label from 0 to ∑n
k=n+1−i sk along the

counterclockwise traversal of the partial tree. Attach the next node n − i, with sn−i + 1
pending leaves, to the leaf of the partial tree labeled fen−i

0
. This procedure produces

decreasing trees with the correct number of children at each node. Hence, after the n-
th step we obtain an s-decreasing tree. Reciprocally, any s-decreasing tree can be built
iteratively in this way, so it is associated to a choice of integers fei

0
∈ [0, ∑n

k=n+1−i sk] for
all i ∈ [n − 1].

We can now explicitly describe the DKK maximal cliques of coherent routes in terms
of Stirling s-permutations.

Definition 2.5. Let s be a composition, and u a (possibly empty) prefix of a Stirling
s-permutation. For all a ∈ [n], we denote by ta the number of occurrences of a in u,
and we denote by c the smallest value in [n] such that 0 < tc < sc. If there is no
such value, we set c = n + 1 and tn+1 = 1. The definition of c implies that for all
a < c, either ta = 0 or ta = sa. Then we define R[u] to be the route (ec

tc
, ec−1

tc−1
, . . . , e1

t1
).

For example, for the subword u = 3372545 of w = 33725455716 we have that c = 5,
t5 = 2, t4 = 1, t3 = 2, t2 = 1, t1 = 0 so R[u] = (e5

2, e4
1, e3

2, e2
1, e1

0) = R(5, 2, (1, 1, 1, 0)).
Let w be a Stirling s-permutation. For i ∈ [|s|], we denote by wi the i-th letter of w,

and for i ∈ [0, |s|] we denote by w[i] the prefix of w of length i, with w[0] := ∅. Let ∆w be
the set of routes {R[w[i]] | i ∈ [0, |s|]} and identify it with the simplex whose vertices are
the indicator vectors of these routes.

Note that each maximal clique always contains the routes R[w[0]] = (en+1
1 , en

0 , . . . , e1
0) =

R(n + 1, 1, (0)n) and R[w[|s|]] = (en+1
1 , en

sn , . . . , e1
s1
) = R(n + 1, 1, (1)n). See Figure 3 for the

example of ∆w corresponding to the Stirling (1, 2, 1)-permutation w = 3221.

Lemma 2.6 ([8, Thm. 3.9]). The maximal simplices of TriangDKK(oru(s),⪯) are exactly the
simplices ∆w where w ranges over all Stirling s-permutations.

The next theorem shows that the triangulation TriangDKK(oru(s),⪯) encodes the
combinatorics of the s-permutahedron.

Theorem 2.7 ([8, Thm. 3.18]). The face poset of the s-permutahedron Perms is isomorphic (as a
poset) to the set of interior simplices of TriangDKK(oru(s),⪯) ordered by reverse inclusion.
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Figure 1 shows the graph dual to the DKK triangulation for s = (1, 2, 1), which
corresponds to the Hasse diagram of the (1, 2, 1)-weak order.

R[w[0]] = , R[w[1]] = , R[w[2]] = ,

R[w[3]] = , R[w[4]] = .

Figure 3: The maximal clique ∆w = {R[w[0]], . . . , R[w[|s|]]} corresponding to the Stirling
(1, 2, 1)-permutation w = 3221.

2.2 Cayley trick and mixed subdivisions

The Cayley trick allows us to give another geometric realization of the s-permutahedron
as the dual of a fine mixed subdivision of an (n − 1)-dimensional polytope. This dimen-
sion coincides with the dimension of the polyhedral complex conjectured in 1.1.

For more details on the Cayley trick, see [7, Sec. 9.2] for a general introduction
and [12, Sec. 7] for its application on flow polytopes. We slightly adapt the work of
Mészáros–Morales for our special case of Foru(s).

Definition 2.8. For the polytopes P1, . . . , Pk in Rn their Minkowski sum is the polytope
P1 + . . . + Pk := {∑ xi | xi ∈ Pi}. For the Minkowski sum of k copies of a polytope P we
simply write kP. A Minkowski cell is a sum ∑ Bi where Bi is the convex hull of a subset
of vertices of Pi. A mixed subdivision of a Minkowski sum is a subdivision of their convex
hull such that all the cells of the subdivision are Minkowski cells (see [7, Def. 9.2.5]). A
fine mixed subdivision is a minimal mixed subdivision via containment of its summands.

Let e1, . . . , ek be a basis of Rk. We call the polytope C(P1, . . . , Pk) := conv({e1} ×
P1, . . . , {ek} × Pk) ⊂ Rk × Rn the Cayley embedding of P1, . . . , Pk.

Proposition 2.9 (The Cayley trick [9]). Let P1, . . . , Pk be polytopes in Rn. The polytopal
subdivisions (resp. triangulations) of C(P1, . . . , Pk) are in bijection with the mixed subdivisions
(resp. fine mixed subdivisions) of P1 + . . . + Pk.

To apply the Cayley trick to our triangulation TriangDKK(oru(s),⪯) of the flow poly-
tope Foru(s), we need to describe it as the Cayley embedding of some lower-dimensional
polytopes. Recall that Foru(s) lives in the space of edges of the graph oru(s). We pa-
rameterize this space as Rp × R2n, where p = 1 + ∑n

i=1(si − 1) and Rp corresponds to
the space of source-edges and R2n to the space of bumps and dips (edges of orun, see
Definition 2.3). Moreover, for all i ∈ [n] and for any point in Foru(s), (i.e. a flow of
oru(s)), we have that the sum of its coordinates along edges ei

0 and ei
si

is determined by
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the coordinates along the source-edges ek
t for k ∈ [i + 1, n + 1], t ∈ [sk − 1]. Thus, Foru(s)

is affinely equivalent to its projection on the space Rp ×Rn where Rn corresponds to the
space of edges ei

0 for i ∈ [n].
With this parametrization, the indicator vector of the route of oru(s) denoted R(k, t, δ)

(as in the discussion after Def. 2.3) with k ∈ [n + 1], t ∈ [sk − 1] and δ ∈ {0, 1}k−1 is

ek
t × ∑

i∈[k−1], δi=0
ei

0.

Thus, denoting by □k−1 these (k − 1)-dimensional hypercubes with the set of vertices
{0, 1}k−1 × 0n−k+1 embedded in Rn, we see that Foru(s) is the Cayley embedding of □n
and □k−1 repeated sk − 1 times for k ∈ [n]. We denote by Subdiv□(s) the fine mixed
subdivision of the Minkowski sum of hypercubes □n + ∑n

i=1(si − 1)□i−1 ⊆ Rn obtained

by intersecting the triangulation TriangDKK(oru(s),⪯) with the subspace
{

1
p

}p
× Rn.

The following theorem follows directly from the Cayley trick (Proposition 2.9), and
the isomorphism between the face poset of Perms and the interior simplices of the DKK
triangulation given in Theorem 2.7.

Theorem 2.10 ([8, Thm. 4.3]). The face poset of the s-permutahedron Perms is isomorphic to
the set of interior cells of Subdiv□(s) ordered by reverse inclusion. In particular, the s-decreasing
trees are in bijection with the maximal cells of Subdiv□(s).

e31e30
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e21
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Figure 4: (a) Summands of the Minkowski cell corresponding to w = 3221 together
with their corresponding routes in ∆w. (b) Mixed subdivision of 2□2 +□1 correspond-
ing dually to the (1, 2, 1)-permutahedron. The cells are numbered according to Fig-
ure 1. The highlighted cell in blue corresponds to w = 3221 as obtained in Figure 4a.

Remark 2.11. We can use a different parameterization of the space where Foru(s) lives
by considering the cube □n as the Cayley embedding of two hypercubes □n−1, or
equivalently intersect Rn with the hyperplane xn = 1

2 . This allows us to lower the
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dimension and obtain a fine mixed subdivision of the Minkowski sum of hypercubes
(sn + 1)□n−1 + ∑n−1

i=1 (si − 1)□i−1. We use this representation in our figures.

Figure 4a shows the mixed cell corresponding to the Stirling (1, 2, 1)-permutation
w = 3221, obtained from the clique ∆w with the Cayley trick. Figure 4b shows the
entire mixed subdivision for the case s = (1, 2, 1). Both figures are represented in the
coordinate system (e2

0, e1
0).

2.3 Intersection of tropical hypersurfaces

In this section, we explain how to dualize our previous realizations in order to obtain
our desired polytopal realization and fully answer the conjecture for strict compositions.
Tropical geometry offers a convenient setting to dualize regular polyhedral subdivisions
that interacts nicely with the Cayley trick.

This section is based on the work of Joswig in [10] and [11, Chap. 1]. Let A =
{a1, . . . , am} be a point configuration in Rd with integer coordinates, and S a subdivision
of A. The subdivision S is said to be regular if there is a function h : [m] → R, i 7→ hi

such that the faces of S are the images of the lower faces of the lift of A (the polytope
with vertices (ai, hi) ∈ Rd+1 for i ∈ [m]) by the projection that omits the last coordinate.
In this case, the function h is called an admissible height function for S .

Such a point configuration together with a height function h is associated to the tropi-
cal polynomial F(x) =

⊕
i∈[m] hi ⊙ xai

= min
{

hi + ⟨ai, x⟩ | i ∈ [m]
}

in the min-plus algebra
where x ∈ Rd and ⟨·, ·⟩ is the usual scalar product in Rd. The tropical hypersurface defined
by F is T (F) :=

{
x ∈ Rd | the minimum of F(x) is attained at least twice

}
(see examples

on Figure 5). This tropical hypersurface is the image of the codimension-2-skeleton of
the dome D(F) =

{
(x, y) ∈ Rd+1 | x ∈ Rd, y ∈ R, y ≤ F(x)

}
under the orthogonal pro-

jection that omits the last coordinate. The cells of T (F) are the projections of the faces of
D(F) (here we include the regions of Rd delimited by T (F) as its d-dimensional cells).
We say that T (F) is the tropical dual of the subdivision S with admissible function h
since we have the following theorem.

Theorem 2.12 ([11, Thm. 1.13]). There is a bijection between the k-dimensional cells of S and
the (d − k)-dimensional cells of T (F) that reverses the inclusion order.

We showed in [8, Lem. 5.2] that this bijection restricts to a bijection between the
interior cells of S and the bounded cells of T (F).

In the case where A is a Cayley embedding, Joswig explains in [11, Cor. 4.9] how
the Cayley trick allows us to describe the tropical dual of a regular mixed subdivision
with an arrangement of tropical hypersurfaces. We consider A given by the vertices of
the Cayley embedding C(P1, . . . , Pk), with Pj = conv(aj,1, . . . , aj,mj) being a polytope in
Rd with integer coordinate vertices, and consider a regular subdivision S given by the
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height h = (h1,1, . . . , h1,m1 , . . . , hk,mk) ∈ R[m1]×...×[mk]. After the Cayley trick we obtain the
subdivision S̃ of the point configuration Ã given by the points ∑k

j=1 aj,ij for (i1, . . . , ik) ∈
[m1]× . . . × [mk] with height h(i1,...,ik) = ∑k

j=1 hj,ij .

Theorem 2.13 ([11, Cor. 4.9]). The tropical dual of the mixed subdivision S̃ obtained after apply-
ing the Cayley trick to S is the polyhedral complex of cells induced by the arrangement of tropical

hypersurfaces
{
T (Fj) | j ∈ [m]

}
where Fj is the tropical polynomial Fj(x) =

⊕
ij∈[mj]

hj,ij ⊙ xaj,ij .

For example, the arrangement on Figure 5 is dual to the mixed subdivision depicted
on Figure 4b.

0

1

2

4

5

3

0 1 2 3 4 5 6 7 8

F 3
1 = 2⊕ (−1� x)⊕ y ⊕ (−6� x� y)

F 3
0 = 1⊕ x⊕ y ⊕ (−4� x� y)

F 2
1 = 3⊕ y

6

Figure 5: Arrangement of three tropical hypersurfaces, associated to the tropical poly-
nomials on the right. The bounded cells of this arrangement give a realization of the
(1, 2, 1)-permutahedron.

Danilov et al. provided explicit constructions of admissible height functions for the
DKK triangulation ([6, Lem. 2 & 3]) that we can adapt to oru(s). We refined their results
in [8, Lem. 5.5] to prove that the following height function is admissible.

Lemma 2.14 ([8, Lem. 5.6 and Prop. 5.7]). Let s be a composition and 0 < ε < 1
n(1+∑n

j=2(2sj+1)) .

Consider hε to be the function that associates to a route R := R(k, tk, δ) of oru(s) the quan-
tity hε(R) = −∑k≥c>a≥1 εc−a(tc + δa)2, where tc = 0 if δc = 0 or tc = sc if δc = 1, for all
c ∈ [k − 1]. Then hε is an admissible height function for TriangDKK(oru(s),⪯).

Since we defined in Subsection 2.2 the mixed subdivision Subdiv□(s) from the regular
triangulation TriangDKK(oru(s),⪯) via the Cayley trick, the following theorem directly
follows from Theorem 2.13.

Theorem 2.15 ([8, Thm. 5.8]). The tropical dual of Subdiv□(s) is the polyhedral complex in-
duced by the arrangement of hypersurfaces Hs(h) :=

{
T (Fk

t ) | k ∈ [2, n + 1], t ∈ [sk − 1]
}

,
where h is an admissible height function for TriangDKK(oru(s),⪯) and

Fk
t (x) =

⊕
δ∈{0,1}k−1

h(R(k, t, δ))⊙ xδ = min

{
h(R(k, t, δ)) + ∑

i∈[k−1]
δixi | δ ∈ {0, 1}k−1

}
.
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Definition 2.16. We denote by Perms(h) the polyhedral complex of bounded cells in-
duced by the arrangement Hs(h).

Theorem 2.17 ([8, Thm. 5.10]). The face poset of the geometric polyhedral complex Perms(h) is
isomorphic to the face poset of the combinatorial s-permutahedron Perms.

Figure 6 shows some examples of such realizations of the s-permutahedron.

Figure 6: The (1, 1, 1, 2)-permutahedron (left) and the (1, 2, 2, 2)-permutahedron (right)
via their tropical realization.

Moreover, we can describe the explicit coordinates of the vertices of Perms(h). For
a Stirling s-permutation w, a ∈ [n] and t ∈ [sa], we denote i(at) the length of the prefix
of w that precedes the t-th occurrence of a. As explained in the argument leading to
Lemma 2.6, this prefix is associated to the route R[w[i(at)]] in the clique ∆w.

Theorem 2.18 ([8, Thm. 5.11]). The vertex v(w) = (v(w)a)a∈[n] of Perms(h) associated to a

Stirling s-permutation w has coordinates v(w)a = ∑sa
t=1

(
h(R[w[i(at)]])− h(R[w[i(at)+1]])

)
.

With these explicit coordinates, we obtain the directions of the edges of Perms(h) and
show that its support, i.e. the union of faces of Perms(h), is a polytope combinatorially
isomorphic to the (n − 1)-dimensional permutahedron. This completely answers Con-
jecture 1.1 in the case where s is a composition, as then the zonotope ∑1≤i<j≤n sj[ei, ej]
is combinatorially isomorphic to the (n − 1)-dimensional permutahedron.
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Monomial expansions for q-Whittaker and
modified Hall-Littlewood polynomials
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Abstract. We consider the monomial expansion of the q-Whittaker polynomials given
by the fermionic formula and via the inv and quinv statistics. We construct bijections
between the parametrizing sets of these three models which preserve the x- and q-
weights, and which are compatible with natural projection and branching maps. We
apply this to the limit construction of local Weyl modules and obtain a new character
formula for the basic representation of ŝln. Finally, we indicate how our main results
generalize to the modified Hall-Littlewood case.

Keywords: q-Whittaker polynomial, modified Hall-Littlewood polynomial, local Weyl
modules

1 Introduction

Let λ be a partition. For n ≥ 1, let Xn denote the tuple of indeterminates x1, x2, · · · , xn.
The q-Whittaker polynomial Wλ(Xn; q) and the modified Hall-Littlewood polynomial
Q′

λ(Xn; q) are well-studied specializations of the modified Macdonald polynomial. Sev-
eral different monomial expansions for these polynomials are known. In this article,
our focus will be on three of these: the so-called fermionic formulas [13, (0.2), (0.3)] and
the inv- and quinv-expansions arising from specializations of the formulas of Haglund-
Haiman-Loehr [9] and Ayyer-Mandelshtam-Martin [1].

We recall that the Schur expansion of the Wλ(Xn; q) (resp. Q′
λ(Xn; q)) has certain

q-Kostka polynomials as coefficients [13]. In turn, this implies yet another monomial
expansion, with the underlying indexing set involving pairs of semistandard Young
tableaux of conjugate (resp. equal) shapes. This relates to the inv-expansion via the RSK
correspondence [9].

The fermionic formula, expressed as a sum of products of q-binomials, is seemingly
of a very different nature from all the other monomial expansions, and should proba-
bly viewed as a kind of compression of these formulas. Recently, Garbali-Wheeler [8]
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obtained a general formula of the fermionic kind for the full modified Macdonald poly-
nomial H̃λ(Xn; q, t).

The purpose of this article is to bijectively reconcile the fermionic formula with both
the inv- and quinv-expansions. We construct bijections between the underlying sets of
these three models which (i) preserve the x- and q-weights, and (ii) are compatible with
natural projection and branching maps.

As a corollary, we obtain bijections between the inv- and quinv-models in the q-
Whittaker and modified Hall-Littlewood specializations, partially answering a ques-
tion of [1]. We find that the inv- and quinv-models are related by the simple box-
complementation map of the fermionic model and that inv + quinv is a constant on fibers
of the natural projection. We also apply this to the limit construction for Weyl modules
[7, 15] and obtain an apparently new character formula for the basic representation of
the affine Lie algeba ŝln.

In this extended abstract, we describe the q-Whittaker polynomials in greater detail,
contenting ourselves with brief remarks about the modified Hall-Littlewood case in §8
due to space limitations. Complete proofs will appear in [3].

2 Specializations of H̃λ(Xn; q, t)

Given a partition λ = (λ1 ≥ λ2 ≥ · · · ), we will draw its Young diagram dg(λ) following
the English convention, as a left-up justified array of boxes, with λi boxes in the ith row
from the top. The boxes are called the cells of dg(λ). We let |λ| := ∑i λi. Fix n ≥ 1 and
let F (λ) denote the set of all maps (“fillings”) F : dg(λ) → [n] where [n] = {1, 2, · · · , n}.
If the values of F strictly increase (resp. weakly decrease) as we move down a column,
we say F is a column strict filling (CSF) (resp. weakly decreasing filling (WDF)1), and denote
the set of such fillings by CSF(λ) (resp. WDF(λ)). The x-weight of a filling F is the
monomial xF := ∏

c∈dg(λ)
xF(c).

We recall that the modified Macdonald polynomial H̃λ(Xn; q, t) is a symmetric poly-
nomial in the xi with N[q, t] coefficients. We expand this in powers of t; our interest lies
in the coefficients of the lowest and highest powers [2, (3.1)]:

H̃λ(Xn; q, t) = Hλ(Xn; q)t0 + · · ·+ Wλ(Xn; q)tη(λ) (2.1)

where η(λ) = ∑j≥1 (
λ′

j
2
) where λ′

j denote the parts of the partition conjugate to λ. The
Wλ(Xn; q) is the q-Whittaker polynomial. The q-reversal (or reciprocal) polynomial of
Hλ(Xn; q) coincides with the modified Hall-Littlewood polynomial Q′

λ′(Xn; q) where λ′

1These latter ones may be easily transformed into the familiar tabloids by transposing rows and columns
and replacing i 7→ n − i + 1
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is the partition conjugate to λ, i.e., qη(λ′)Hλ(Xn; q−1) = Q′
λ′(Xn; q). These are further

related to each other by ωWλ(Xn; q) = Q′
λ′(Xn; q) where ω is the classical involution on

the ring of symmetric polynomials.
Following Haglund-Haiman-Loehr [9] and Ayyer-Mandelshtam-Martin [1], there are

statistics inv, quinv and maj on F (λ) such that

H̃λ(Xn; q, t) = ∑
F∈F (λ)

xFqv(F)tmaj(F) (2.2)

where v ∈ {inv, quinv}. The next lemma follows directly from the definition of maj [9]:

Lemma 1. Let F ∈ F (λ). Then (i) maj(F) = η(λ) iff F ∈ CSF(λ), and (ii) maj(F) = 0 iff
F ∈ WDF(λ).

Putting together (2.1), (2.2) and Lemma 1, we obtain for v ∈ {inv, quinv}:

Wλ(Xn; q) = ∑
F∈CSF(λ)

xFqv(F) (2.3)

Q′
λ′(Xn; q) = ∑

F∈WDF(λ)
xFqη(λ′)−v(F) (2.4)

These are in fact symmetric in the x-variables and can be viewed as expansions in terms
of the monomial symmetric functions in x1, x2, · · · , xn.

3 Fermionic formula for Wλ(Xn; q)

Let n ≥ 1 and λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) be a partition with at most n nonzero
parts. Let GT(λ) denote the set of integral Gelfand-Tsetlin (GT) patterns with bounding
row λ. Given T ∈ GT(λ), we denote its entries by T j

i for 1 ≤ i ≤ j ≤ n as in Figure 1.
It will also be convenient to define T j

j+1 = 0 for all 1 ≤ j ≤ n. We define the North-East

and South-East differences of T by: NEij(T) = T j+1
i − T j

i and SEij(T) = T j
i − T j+1

i+1 for
1 ≤ i ≤ (j + 1) ≤ n. The GT inequalities ensure that these differences are non-negative.

We will interchangeably think of a GT pattern as a semistandard Young tableau
(SSYT). In this perspective, (T j

1, T j
2, · · · , T j

j ) is the partition formed by the cells of the
tableau which contain entries ≤ j. It follows that NEij(T) is the number of cells in the
i th row of the tableau which contain the entry j + 1. We let xT denote the x-weight of
the corresponding tableau. The following fermionic formula for the q-Whittaker poly-
nomial appears in [10, 13] and follows readily from Macdonald’s more general formula
[14, Chap VI, (7.13)’]:

Wλ(Xn; q) = ∑
T∈GT(λ)

xT ∏
1≤i≤j<n

[
NEij(T) + SEij(T)

NEij(T)

]
q

(3.1)
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Figure 1: A GT pattern for n = 4. The NE and SE differences are those along the red
and blue lines. On the right is a partition overlay compatible with this GT pattern.

Following [12], we define wtq(T) = ∏
1≤i≤j<n

[
NEij(T) + SEij(T)

NEij(T)

]
q

.

3.1 Partition overlaid patterns

We recall that the q-binomial [k+ℓ
k ]q is the generating function of partitions that fit into a

k × ℓ rectangle, i.e., [k+ℓ
k ]q = ∑ q|γ| where γ = (γ1 ≥ γ2 ≥ · · · ≥ γk ≥ 0) with ℓ ≥ γ1.

We also identify partitions of the above form with strictly decreasing k-tuples of integers
between 0 and k + ℓ− 1 via the bijection γ 7→ γ = γ + δ where δ = (k − 1, k − 2, · · · , 0).

As shown in [15], the right-hand side of (3.1) can be interpreted in terms of the
so-called partition overlaid patterns (POPs). A POP of shape λ is a pair (T, Λ) where
T ∈ GT(λ) and Λ = (Λij : 1 ≤ i ≤ j < n) is a tuple of partitions such that each Λij fits
into a rectangle of size NEij(T)× SEij(T). For example, if T is the GT pattern of Figure 1,
we could take Λ11 = (2, 1, 0), Λ12 = (2), Λ13 = (1, 1), Λ22 = (0, 0, 0), Λ23 = (1), Λ33 =
(2, 2). We imagine the Λij as being placed in a triangular array as in Figure 1. We let
POP(λ) denote the set of POPs of shape λ. It is now clear from (3.1) that

Wλ(Xn; q) = ∑
(T,Λ)∈POP(λ)

xTq|Λ| (3.2)

where |Λ| = ∑i,j |Λij|. We remark that Wλ(Xn; q) is the character of the local Weyl module
Wloc(λ) - a module for the current algebra sln[t] [6, 5]. Further, POPs of shape λ index a
special basis of this module with Gelfand-Tsetlin like properties [6, 15].

3.2 Projection and Branching for Partition overlaid patterns

Given λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0), we say that µ = (µ1, µ2, · · · , µn−1) interlaces λ

(and write µ ≺ λ) if λi ≥ µi ≥ λi+1 for 1 ≤ i < n. The q-Whittaker polynomials have the
following important properties which readily follow from (3.2):
(projection) Wλ(Xn; q = 0) = sλ(Xn), the Schur polynomial, and

(branching) Wλ(x1, x2, · · · , xn−1, xn = 1; q) = ∑
µ≺λ

∏
1≤i<n

[
λi − λi+1

λi − µi

]
q
· Wµ(Xn−1; q) (3.3)
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In fact, Chari-Loktev [6] lift (3.3) to the level of modules, showing that the local Weyl
module Wloc(λ) when restricted to sln−1[t] admits a filtration whose successive quotients
are of the form Wloc(µ) for µ ≺ λ; further their graded multiplicities are precisely given
by the product of q-binomial coefficients that appear in (3.3).

The combinatorial shadow of projection is the map pr : POP(λ) → GT(λ) given by
pr(T, Λ) = T. Likewise, we define combinatorial branching to be the map br : POP(λ) →⊔

µ≺λ POP(µ) defined by br(T, Λ) = (T†, Λ†) where T† is obtained from T by deleting
its bottom row, and Λ† is obtained from Λ by deleting the overlays Λij with j = n − 1.

3.3 Box complementation

In addition to pr and br, POP(λ) is endowed with another important map, which we
term box complementation. Observe that given a partition π = (π1 ≥ π2 ≥ · · · ≥ πk ≥ 0)
fitting into a k × ℓ rectangle, i.e., with π1 ≤ ℓ, we may consider its complement in this
rectangle, defined by πc = (ℓ − πk ≥ ℓ − πk−1 ≥ · · · ≥ ℓ − π1). Now, for (T, Λ) ∈
POP(λ), define boxcomp(T, Λ) = (T, Λc) where for each i, j, (Λc)ij is defined to be the
complement of Λij in its bounding rectangle of size NEij(T)× SEij(T).

We note that since |Λ| ̸= |Λc| in general, boxcomp preserves x-weights, but not q-
weights. However |Λ| + |Λc| = ∑i,j NEij(T) SEij(T) =: area(T) (in the terminology of
[15]), which depends only on T.

4 Projection and branching for Column strict fillings

Our goal is to construct natural bijections between CSF(λ) and POP(λ) which explain
the equality of (2.3) and (3.2) for v = inv, quinv. In addition to preserving x- and q-
weights, we would like our bijections to be compatible with projection and branching.
Towards this end, we first define these latter maps in the setting of CSF(λ).

4.1 Projection: rowsort

Given F ∈ CSF(λ), let rsort(F) denote the filling obtained from F by sorting entries of
each row in ascending order. In light of the following easy lemma, we think of rsort as
the projection map in the CSF setting.

Lemma 2. If F ∈ CSF(λ), then rsort(F) ∈ SSYT(λ) ∼= GT(λ).

4.2 Branching: delete-and-splice

A strictly increasing sequence a = (a1 < a2 < · · · < am) of positive integers will also
be termed a column tuple with len(a) = m ≥ 0. Let ℓ ≥ 1 and suppose σ = (σ1 < σ2 <
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· · · < σℓ−1) and τ = (τ1 < τ2 < · · · < τℓ) are column tuples of length ℓ − 1 and ℓ
respectively. We set σ0 = 0 and let k denote the maximum element of the (non-empty)
set {1 ≤ i ≤ ℓ : σi−1 < τi}. Define splice(σ, τ) = (σ, τ) where

σi =

{
σi 1 ≤ i < k
τi k ≤ i ≤ ℓ

and τi =

{
τi 1 ≤ i < k
σi k ≤ i < ℓ

i.e., σ, τ are obtained by swapping certain suffix portions of σ, τ. The choice of k ensures
that σ, τ are also column tuples; we also have len(σ) = len(τ) and len(τ) = len(σ). For
instance, when (σ, τ) = ( 1

5
, 2

3
4

), we get (σ, τ) = ( 1
3
4

, 2
5
).

We now define the delete-and-splice rectification (“dsplice") map on F ∈ CSF(λ) as
follows: (1) delete all cells in F containing the entry n and let F† denote the resulting
filling. While its column entries remain strictly increasing, F† may no longer be of
partition shape. (2) Let σ(j) (j ≥ 1) denote the column tuple obtained by reading the j th

column of F† from top to bottom. If F† is not of partition shape, there exists j ≥ 1 such
that len(σ(j+1)) = len(σ(j)) + 1. Choose any such j and modify F† by replacing the pair
of columns (σ(j), σ(j+1)) in F† by splice(σ(j), σ(j+1)). This swaps the column lengths and
brings the shape of F† one step closer to being a partition. (3) If the shape of F† is a
partition, STOP. Else go back to step 2.

It is clear that this process terminates and finally produces a CSF of partition shape
(filled by numbers between 1 and n − 1), which we denote dsplice(F). The following
properties hold:

Proposition 1. With notation as above: (i) D := dsplice(F) is independent of the intermediate
choices of j made in step 2 of the procedure. (ii) rsort(D) is obtained from rsort(F) by deleting
the cells containing the entry n. (iii) If µ and λ are the shapes of D and F respectively, then
µ ≺ λ.

We consider dsplice to be the combinatorial branching map in the CSF context. Its
key property is its compatibility with the natural branching map br of the POP setting.

5 The main theorem

Theorem 1. For any n ≥ 1 and any partition λ : λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 with at most
n nonzero parts, there exist two bijections ψinv and ψquinv from CSF(λ) to POP(λ) with the
following properties:

1. If ψv(F) = (T, Λ), then xF = xT and v(F) = |Λ|, for v = inv or quinv.

2. The following diagrams commute (v = inv or quinv):
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(A)

CSF(λ) POP(λ)

GT(λ)

ψv

rsort pr

(B)

CSF(λ) POP(λ)

⊔
µ≺λ

CSF(µ)
⊔

µ≺λ

POP(µ)

ψv

dsplice

ψv

br

3. The two bijections are related via the commutative diagram:

CSF(λ)

POP(λ) POP(λ)

ψinv ψquinv

boxcomp

To summarize, ψinv and ψquinv acting on a CSF produce POPs with the same underly-
ing GT pattern, but with complementary overlays. These bijections are compatible with
the natural projection and branching maps, and preserve x- and appropriate q-weights
(inv or quinv). Note the slight abuse of notation in part 2(B) above: for µ ≺ λ, CSF(µ)
denotes the set of column strict fillings F : dg(µ) → [n − 1] (rather than [n]). Theorem 1,
with the exception of part 2(B), can also be formulated in the setting of q-Whittaker
functions in infinitely many variables. Next, we obtain the following corollaries:

Corollary 1. Let T ∈ GT(λ) and let rsort−1(T) = {F ∈ CSF(λ) : rsort(F) = T} be the fiber
of rsort over T.

1. ∑
F∈rsort−1(T)

qinv(F) = ∑
F∈rsort−1(T)

qquinv(F) = wtq(T).

2. inv(F) + quinv(F) = area(T) is constant for F ∈ rsort−1(T).

An interpretation of wtq(T) in terms of flags of subspaces compatible with nilpotent
operators appears in [12, Theorem 5.8(i)]. In [1], the authors asked for an explicit bijec-
tion on F (λ) which interchanges the inv and quinv statistics. We describe this bijection
on CSF(λ), thereby partially answering their question.
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F = 1 1 2 1 2 1 2 4 4 3

2 2 3 3 3 4
3 3 4 4

zcount(·, F) = 0 0 0 0 1 0 2 1 1 2
0 0 0 0 0 1
0 0 2 2

Figure 2: Here F ∈ CSF(λ) for λ = (10, 6, 4, 0) and n = 4. Cells of F are coloured
according to their entries. The gray cells are the extra cells in the augmented diagram
d̂g(λ). On the right are cellwise zcount values. Here quinv(F) = 12.

Corollary 2. The map Ω : ψ−1
inv ◦ ψquinv = ψ−1

inv ◦ boxcomp ◦ψinv : CSF(λ) → CSF(λ) is an
involution satisfying inv(Ω(F)) = quinv(F) for all F ∈ CSF(λ).

The explicit construction of the ψv and their inverses in the next section makes Ω
effectively computable.

6 Proof sketch

For a partition λ, the augmented diagram d̂g(λ) is dg(λ) together with one additional
cell below the last cell in each column (see Figure 2). Given F ∈ CSF(λ), a quinv-triple in F
is a triple of cells (x, y, z) in d̂g(λ) such that (i) x, z ∈ dg(λ) and z is to the right of x in the
same row, (ii) y is the cell immediately below x in its column, (iii) F(x) < F(z) < F(y),
where we set F(y) = ∞ if y lies outside dg(λ). It is easy to see that the quinv-triples
considered in [1] for F ∈ F (λ) reduce to this description when F is a CSF rather than a
general filling. Thus, quinv(F) as defined in [1] equals the number of quinv-triples in F
(as defined above) for a CSF F.

Given F ∈ CSF(λ), we define a function zcount which tracks the contributions of in-
dividual cells of dg(λ) to quinv(F) as follows: for each cell c ∈ dg(λ), let zcount(c, F) =
the number of quinv-triples (x, y, z) in F with z = c. Clearly

∑
c∈dg(λ)

zcount(c, F) = quinv(F) (6.1)

We next group cells of the filling F row-wise according to the entries they contain. More
precisely, let cells(i, j, F) = {c ∈ dg(λ) : c is in the ith row and F(c) = j + 1} for 1 ≤ i ≤
j + 1 ≤ n. Figure 2 shows an example, with these groups colour-coded in each row. It
readily follows from §3 that

| cells(i, j, F)| = NEij(T), where T = rsort(F). (6.2)

The next proposition brings the SE differences also into play [3]:

Proposition 2. Let F ∈ CSF(λ) and T = rsort(F). Fix 1 ≤ i ≤ j + 1 ≤ n. (1) If c ∈
cells(i, j, F), then zcount(c, F) ≤ SEij(T). (2) If c, d ∈ cells(i, j, F) with c lying to the right of
d, then zcount(c, F) ≥ zcount(d, F). (3) Further, equality holds in (1) for all i, j and all cells
c ∈ cells(i, j, F) iff F = T.
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Figure 3: (left to right) Configuration of quinv, inv and refinv triples.

6.1 Definition of ψquinv

We now have all the ingredients in place to define ψquinv. Let F ∈ CSF(λ) and T =
rsort(F). For each 1 ≤ i ≤ j + 1 ≤ n, consider the sequence

Λij = (zcount(c, F) : c ∈ cells(i, j, F) traversed right to left in row i). (6.3)

In Figure 2, this amounts to reading the entries of a fixed colour from right to left in
a given row of zcount(·, F). By Proposition 2, this is a weakly decreasing sequence
bounded above by SEij(T). Together with (6.2), this implies that Λij may be viewed as
a partition fitting into the NEij(T) × SEij(T) rectangle. Since SEij = 0 for i = j + 1,
Λij is the zero sequence in this case. We drop the pairs (j + 1, j) to conclude that if
Λ = (Λij : 1 ≤ i ≤ j < n), then (T, Λ) ∈ POP(λ). We define ψquinv(F) = (T, Λ). Clearly,
xF = xT and (6.1) implies quinv(F) = |Λ|, establishing (1) of Theorem 1 for v = quinv.

6.2 refinv triples

We now turn to the definition of ψinv. While we may anticipate doing this via a modifica-
tion of the foregoing arguments, replacing quinv-triples with Haglund-Haiman-Loehr’s
inv-triples, that turns out not to work out-of-the-box. In place of the latter (see Figure 3),
we consider triples (x, y, z) in d̂g(λ) where (i) x, z ∈ dg(λ) with z to the left of x in the
same row, (ii) y is the cell immediately below x in its column. Given F ∈ CSF(λ), we call
(x, y, z) a refinv-triple (or “reflected inv-triple”) for F if in addition to (i) and (ii), we also
have (iii) F(x) < F(z) < F(y), where F(y) := ∞ if y ̸∈ dg(λ). We have [3]:

Proposition 3. For F ∈ CSF(λ), inv(F) equals the number of refinv-triples of F.

Remarks. 1. We may in fact define a new statistic2 refinv on all fillings F ∈ F (λ) as
follows: refinv(F) = Inv(F)− ∑u∈Des F coarm(u), borrowing notation of [9, §2]. This re-
places arm in HHL’s definition by coarm. The content of Proposition 3 is that refinv(F) =
inv(F) for F ∈ CSF(λ). In fact, this equality holds more generally for all fillings F whose
descent set is a union of rows of dg(λ).

2. The refinv triples for F ∈ CSF(λ) actually make an appearance in [13, §2.2], where
they are attributed to Zelevinsky (and their total number denoted Z̃EL). From this
perspective, the content of Proposition 3 is that Z̃EL(F) = inv(F).

2In fact, refquinv can also be likewise defined on all fillings, and agrees with quinv on CSFs. But
rephrased in terms of refquinv-triples, this involves counting such triples with signs [3].
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6.3 zcount, zcount and the proof of the main theorem

Given F ∈ CSF(λ) and c ∈ dg(λ), define zcount(c, F) = the number of refinv-triples
(x, y, z) in F with z = c. In light of Proposition 3, it is clear that

∑
c∈dg(λ)

zcount(c, F) = inv(F) (6.4)

We have the following relation between zcount and zcount [3]:

Proposition 4. Let F ∈ CSF(λ) and T = rsort(F). Let 1 ≤ i ≤ j + 1 ≤ n and c ∈
cells(i, j, F). Then zcount(c, F) + zcount(c, F) = SEij(T).

We may now define ψinv following the template of ψquinv. Given F ∈ CSF(λ), let
T = rsort(F). For each 1 ≤ i ≤ j < n, consider the sequence:

Λij = (zcount(c, F) : c ∈ cells(i, j, F) traversed left to right in row i)

Recall also the definition of the partition Λij from (6.3). It follows from Propositions 2
and 4 that Λij is the box-complement of Λij in the NEij(T)× SEij(T) rectangle. Letting
Λ = (Λij : 1 ≤ i ≤ j < n), we define ψinv(F) = (T, Λ). As in the case of quinv, we have
xF = xT, and inv(F) = |Λ| by (6.4). This proves part (1) of Theorem 1 for v = inv.

Since by definition pr(ψv(F)) = T for v = inv, quinv, Part (2A) of Theorem 1 follows.
Part (3) of Theorem 1 follows from the fact that Λ and Λ are box complements of each
other in the appropriate rectangles. That the diagrams in part (2B) of Theorem 1 are
commutative follows from an analysis of each elementary splice step of the dsplice map.

Finally, this leaves us with proving that the ψv are bijections. We sketch the construc-
tion of ψ−1

inv. Given (T, Λ) ∈ POP(λ), construct the filling F := ψ−1
inv(T, Λ) ∈ CSF(λ)

inductively row-by-row, from the bottom (nth) row to the top as follows: (a) fill all cells
of the nth row (if nonempty) with n, (b) let 1 ≤ i ≤ j < n; assuming that all rows of F
strictly below row i have been completely determined and that the locations of entries
> (j + 1) in row i have been determined, we now need to fill NEij(T) many cells of row
i with the entry j + 1. It turns out that the number of cells in row i in which we can
potentially put a j + 1 without violating the CSF condition thus far is exactly k + ℓ where
k = NEij(T) and ℓ = SEij(T). We label these cells 0, 1, · · · , k + ℓ− 1 from right to left
(left-to-right when defining ψ−1

quinv). We now use the identification from §3.1 of partitions
fitting inside a (k× ℓ)-box with k-tuples of distinct integers in 0, 1, · · · , k+ ℓ− 1. Via this,
the partition Λij can be viewed as a k-tuple of candidate cells in row i; we put the entry
j + 1 into these, (c) fill the remaining cells of row i with the entry i. The rest of the
argument is straightforward [3].

For example, let n = 4, λ = (10, 6, 4, 0) and let T, Λ be the GT pattern and overlay
depicted in Figure 1. Then ψ−1

quinv(T , Λ) is precisely the CSF F of Figure 2, while

ψ−1
inv(T , Λ) = 2 1 1 1 3 2 1 4 4 2

3 3 2 2 4 3
4 4 3 3
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2 1 1 2
4 3 4

3

2

1

Figure 4: A CSF F with columns colour-coded to match its lattice path representation.
The three marked intersections show that inv(F) = 3.

7 Local Weyl modules and limit constructions

Finally, we can apply these ideas to the study of local Weyl modules, in particular to the
limit constructions of [7, 15, 16]. Let L(Λ0) denote the basic representation of the affine
Lie algebra ŝln [11, Prop. 12.13]. Using Theorem 1 to replace POPs with CSFs as our
model in [15, Corollary 5.13], we deduce [3]:

Proposition 5. Fix n ≥ 2 and consider the partition θ = (2, 1, 1, · · · , 1, 0) with n − 1 nonzero
parts and |θ| = n. For k ≥ 0, let Ck denote the set of CSFs F of shape kθ and entries in [n], with
the property that either 1 occurs in the first column of F or 1 does not occur in its last column.
Then ∑k≥0 ∑F∈Ck

xF qk2−inv(F) equals the character of L(Λ0).

There is also a more general version with λ + kθ in place of kθ (for appropriate λ),
mirroring [15, Corollary 5.13].

8 Concluding Remarks

For the modified Hall-Littlewood polynomials Q′
λ′(Xn; q) of (2.4), the fermionic formula

appears in [13, (0.2)]. Analogous to (3.2), this can now be recast as a weighted sum
over partition overlaid plane-partitions (POPP) of shape λ. Theorem 1 takes the form of
bijections from WDF(λ) to POPP(λ) (or equivalently, from tabloids to partition overlaid
reverse-plane-partitions). The subtlety here is that POPPs need to be weighted with an
additional power of q (which depends only on the underlying plane-partition, cf [13,
(0.2)]). The refinv- or quinv-triples in this case also involve ≤ relations (rather than just
<) and this extra q-power keeps track of certain equalities among the triples [3].

Secondly, the bijections of Theorem 1 (and those indicated above for the modified
Hall-Littlewood case) have an attractive interpretation in terms of lattice-path diagrams
[8, 4]. Figure 4 shows the lattice path representation of a CSF F; inv(F) is just the total

number of intersections of the form in the grid, and refining this further to each
box of the grid produces the partition overlay as well [3]. Likewise quinv(F) counts
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non-intersections of the above form. The dsplice map of §4.2 translates into deletion of

the last row of the grid followed by appropriate rectifications
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Extremal weight crystals over affine Lie algebras
of infinite rank

Taehyeok Heo*1

1Research Institute of Mathematics, Seoul National University, Seoul, Korea

Abstract. We explain extremal weight crystals over affine Lie algebras of infinite rank
using combinatorial models: a spinor model due to Kwon, and an infinite rank ana-
logue of Kashiwara–Nakashima tableaux due to Lecouvey. In particular, we show
that the Lecouvey’s tableau model combinatorially explains an extremal weight crys-
tal structure of level zero. Using these combinatorial models, we explain an algebra
structure of the Grothendieck ring for a category consisting of some extremal weight
crystals.

Keywords: extremal weight crystals, affine Lie algebras of infinite rank, Jacobi–Trudi
formula, Grothendieck ring

1 Introduction

Let Uq(g) be a quantum group associated with a Kac–Moody algebra g. For an integral
weight λ, let V(λ) be an extremal weight Uq(g)-module of weight λ and B(λ) be its
associated crystal base (cf. [6]). It is significant to study extremal weight crystals because
it is closely related to level-zero representations of quantum affine Lie algebras (of finite
rank). For details, see [1, 2, 8, 17] and references therein. However, properties of extremal
weight crystals over affine Lie algebras of infinite rank differ considerably from those
over affine Lie algebras of finite rank. In this extended abstract, we discuss several
properties of extremal weight crystals over affine Lie algebras of infinite rank.

An important observation by Naito and Sagaki [16] (see Proposition 3.2 also) is that
for an integral weight λ of a nonnegative level, there exist λ0 ∈ E and λ+ ∈ P+ (and
unique in some sense) such that

B(λ) ∼= B(λ0)⊗ B(λ+). (1.1)

This isomorphism suggests that a combinatorial model of B(λ) (λ ∈ P) by combining
that for B(λ0) (λ0 ∈ E) and that for B(λ+) (λ+ ∈ P+).

*gjxogur123@snu.ac.kr. Taehyeok Heo is supported by Basic Science Research Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of Education (RS-2023-00241542).
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We associate B(λ) (λ ∈ E) to a set KNg(λ†) (λ† ∈ P) of g∞-type Kashiwara–
Nakashima (simply KN) tableaux introduced by Lecouvey [15], which are an infinite
rank analogue of KN tableaux. We define a g∞-crystal structure on KNg(λ), and we
construct an isomorphism between KNg(λ) and B(ϖλ) (Theorem 3.10). On the other
hand, we associate B(λ) for λ ∈ P+ to a spinor model introduced by Kwon [12, 13].
Indeed, the crystal structure of a spinor model is already known and a spinor model is
isomorphic to extremal weight crystals of dominant weights (see Theorem 3.6).

As an application, we characterize the Grothendieck ring K for a category C consist-
ing of some extremal weight crystals. In particular, as similarly as (1.1), the set K has
the tensor decomposition

K = K0 ⊗K+

where K0 and K+ are the subalgebra of K generated by [B(λ)] for λ ∈ E and λ ∈
P+

int, respectively. It is known that K0 is isomorphic to the ring of symmetric functions
(Proposition 5.2) and K+ is isomorphic to the ring of formal power series (Theorem 5.4).
One can find a full version of this extended abstract including proofs and details in [3].

2 Preliminaries

2.1 Notations

Let Z+ be the set of nonnegative integers. Let P be the set of partitions and, for n ∈ Z+,
Pn = { λ ∈ P | ℓ(λ) ≤ n}, where ℓ(λ) is the length of λ. Denote by λ′ = (λ′

1, λ′
2, . . . ) the

conjugate of λ.
For even ℓ ≥ 2, let Gℓ be one of the algebraic groups: Spℓ, Pinℓ, and Oℓ. Let

P(Spℓ) = P ℓ
2
, P(Pinℓ) = P ℓ

2
,

P(Oℓ) = { λ ∈ Pℓ | λ′
1 + λ′

2 ≤ ℓ },

and
P(G) = { (λ, ℓ) | ℓ ∈ N, λ ∈ P(G2ℓ) }

for G = Sp, Pin, or O.
For an ordered set A and a skew shape λ/µ, denote by SSTA(λ/µ) the set of semi-

standard (or A-semistandard) tableaux of shape λ/µ, that is, tableaux with letters in A
such that entries in each row (resp. column) are weakly (resp. strictly) increasing. We
omit a subscript A from SSTA(λ/µ) if there is no confusion or it does not depend on
the choice of A.
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2.2 Affine Lie algebras of infinite rank

A Lie algebra g is of infinite rank if it is the Kac–Moody algebra associated with a
generalized Cartan matrix of infinite rank. A Lie algebra of infinite rank is of affine
type if every principal minor (of finite rank) of associated generalized Cartan matrix
is positive. There are five (non-isomorphic) affine Lie algebras of infinite rank whose
Dynkin diagram is connected and these are referred to Lie algebras a+∞, a∞, b∞, c∞, and
d∞ (cf. [4]). The followings are Dynkin diagrams corresponding to stated affine Lie
algebras of infinite rank.

a+∞ : ◦
1

◦
2

· · · ◦
n

· · ·

a∞ : ◦
0

◦
1

◦
−1

· · ·· · · ◦
n

◦
−n

· · ·· · ·

b∞ : ◦
0

◦
1

◦
2

◦
3

· · · ◦
n − 1

· · ·

c∞ : ◦
0

◦
1

◦
2

◦
3

· · · ◦
n − 1

· · ·

d∞ :
◦
0

◦
1 ◦

2
◦
3

◦
4

· · · ◦
n

· · ·

In this extended abstract, we focus on providing results for g = b∞, c∞, or d∞. The
corresponding results to ours can be found in [10] when g = a+∞ and in [11] when
g = a∞. We use the following notations for affine Lie algebras g∞ of infinite rank.

• I = Z+ : the index set

• {αi | i ∈ I} : the set of simple roots

• {Λg
i | i ∈ I} : the set of fundamental weights

• P = ZΛg
0 ⊕

∞⊕
i=1

Zϵi : the weight lattice

• P+ : the set of dominant weights, E =
∞⊕

i=1

Zϵi ⊆ P

• W : the Weyl group
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In this paper, we take the simple roots αi as below. Then we can derive the following
equations on Λg

i .

c∞ α0 = −2ϵ1, αi = ϵi − ϵi+1 (i ≥ 1)
Λc

i = Λc
0 + (ϵ1 + · · ·+ ϵi) (i ≥ 1)

b∞ α0 = −ϵ1, αi = ϵi − ϵi+1 (i ≥ 1)
Λb

i = 2Λb
0 + (ϵ1 + · · ·+ ϵi) (i ≥ 1)

d∞ α0 = −ϵ1 − ϵ2, αi = ϵi − ϵi+1 (i ≥ 1)
Λd

1 = Λd
0 + ϵ1, Λd

i = 2Λd
0 + (ϵ1 + · · ·+ ϵi) (i ≥ 2)

For an integer n ≥ 2, let gn be the Lie subalgebra of g∞ generated by ei, fi (i = 0, 1, . . . , n−
1). We write the expression g = b, c, d when we don’t have to specify its rank.

For λ = (λ1, λ2, . . . ) ∈ P , define

ϖλ = ∑
i≥1

λiϵi ∈ E.

For simplicity, we write ϖi = ϖ(1i) for i ≥ 1. On the other hand, we suppose that a Lie
algebra g∞ corresponds to an algebraic group G (and vice versa) as follows:

(g, G) : (b∞, Pin), (c∞, Sp), (d∞, O) (2.1)

Put

• Πc
i = Λc

i (i ≥ 0)

• Πb
0 = 2Λb

0, Πb
i = Λb

i (i ≥ 1)

• Πd
0 = 2Λd

0, Πd
0 = 2Λd

1, Πd
1 = Λd

0 + Λd
1, and Πd

i = Λd
i (i ≥ 2)

and let
Πg(λ, ℓ) = ℓΠg

0 + ϖλ′ ∈ P+

for (λ, ℓ) ∈ P(G). For (λ, ℓ) ∈ P(G) with ℓ(λ) = t, we have

Πg(λ, ℓ) =

{
Πg

λ1
+ · · ·+ Πg

λℓ
if t ≤ ℓ,

Πd
λ1

+ · · ·+ Πd
λ2ℓ−t

+ (t − ℓ)Πd
0 if t > ℓ.

The condition (λ, ℓ) ∈ P(G) with ℓ(λ) > ℓ holds only when (g, G) = (d∞, O).
Let

P+
int = {Πg(λ, ℓ) | (λ, ℓ) ∈ P(G)} ⊆ P+.

Note that when g = c∞, we have P+
int = P+, and when g = b∞ or d∞, we have P+

int ⊊ P+

and P+
int is the set of dominant weights with a positive even level. Recall that the level of

λ ∈ P is the value ⟨λ, K⟩, where K is the canonical central element of g∞ (cf. [4, Section
7.12]).

Remark 2.1. The correspondence (2.1) between Lie algebras and algebraic groups originates from
dual pairs due to Howe. For details, see [3, Remark 2.1].
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3 A combinatorial realization of extremal weight crystals

3.1 Extremal weight crystals

We recall the notion of an extremal weight crystal, which is introduced by Kashiwara
(cf. [6, 8]). For λ ∈ P, let V(λ) be an extremal weight module generated by an extremal
weight vector. In particular, V(λ) is an irreducible highest weight module when λ ∈ P+

(cf. [5]). It is proved in [6] that V(λ) has a crystal base (L(λ), B(λ)), which provides a
tool to interpret a given module in a combinatorial way. We simply say that B(λ) is an
extremal weight crystal.

When g is a general Kac–Moody algebra, for λ ∈ P and w ∈ W, there exists an iso-
morphism B(λ) ∼= B(wλ) of g-crystals [6]. Moreover, the converse of the above statement
holds when g is an affine Lie algebra of infinite rank.

Proposition 3.1 ([16, Proposition 3.9]). When g is an affine Lie algebra of infinite rank and
λ, µ ∈ P, we have B(λ) ∼= B(µ) if and only if λ ∈ Wµ.

From now on, we assume that all Lie algebras in this article are affine Lie algebras of
infinite rank without otherwise stated. In particular, we use the notation g∞ to emphasize
the infinite rank.

The key observation of this paper is that an extremal weight crystal B(λ) (λ ∈ P) is
decomposed into the tensor product of two extremal weight crystals.

Proposition 3.2 ([16, Section 4.2]). For a nonnegative level λ ∈ P, there exist λ0 ∈ E and
λ+ ∈ P+ such that

B(λ) ∼= B(λ0)⊗ B(λ+). (3.1)

Moreover, for λ0, µ0 ∈ E and λ+, µ+ ∈ P+, we have

B(λ0)⊗ B(λ+) ∼= B(µ0)⊗ B(µ+) ⇐⇒ λ+ = µ+, λ0 ∈ Wµ0.

By Proposition 3.2, we shift our focus to understand extremal weight crystals B(λ)
for λ ∈ E or λ ∈ P+. In particular, for given λ ∈ E, there exists unique µ ∈ Wλ such that
µ is of the form ϖα for some α ∈ P , and we denote by λ† ∈ P such a (unique) partition
α. Since B(λ) ∼= B(ϖλ†) by Proposition 3.1, we may assume that λ ∈ E is of the form ϖα

for some α ∈ P , indeed α = λ†.

Remark 3.3. For a nonpositive level λ ∈ P, we have an isomorphism

B(λ) ∼= B(λ−)⊗ B(λ0)

for some λ0 ∈ E and λ− ∈ −P+, which is obtained from (3.1) by applying dual crystals (cf. [7,
Section 7.4]).
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Example 3.4 ([3, Example 3.11]). When g∞ = c∞, consider λ = 4Πc
0 + 2ϵ1 + 5ϵ3 − 3ϵ4 −

ϵ5 + 4ϵ6 ∈ P. Then we have ν = 4Πc
0 + 4ϵ1 + 3ϵ2 + 2ϵ3 − ϵ4 − 3ϵ5 ∈ Wλ with

ν+ = 4Πc
0 + 4ϵ1 + 3ϵ2 + 2ϵ3 = Πc((3, 3, 2, 1), 4),

ν0 = −ϵ4 − 3ϵ5.

In this case, (ν0)†(= (λ0)†) = (3, 1). Thus, we have λ0 = ϖ(3,1) and λ+ = Πc((3, 3, 2, 1), 4).

3.2 Spinor model

For a, b, c ∈ Z+, let λ(a, b, c) = (2b+c, 1a)/(1b) be a skew shape with two columns.
Suppose that T ∈ SST(λ(a, b, c)) for some a, b, c ∈ Z+ and T′ is the tableau obtained
from T by sliding the right column of T by k positions down for 0 ≤ k ≤ min{a, b}. Set
rT to be the maximal integer k ≥ 0 such that T′ ∈ SST(λ(a − k, b − k, c + k)).

For a ∈ Z+, let

Tg(a) = { T ∈ SSTN(λ(a, b, c)) | (b, c) ∈ Hg, rT ≤ rg },

where

Hg =


{0} × Z+ if g = c

Z+ × Z+ if g = b

2Z+ × 2Z+ if g = d

, rg =

{
0 if g = b, c
1 if g = d

,

and
Td

(0) =
⊔

(b,c)∈Hd

SSTN(λ(0, b, c + 1)).

For (λ, ℓ) ∈ P(G), put t = ℓ(λ) and

T̂g(λ, ℓ) =

{
Tg(λℓ)× · · · × Tg(λ1) if t ≤ ℓ,
Td

(0)t−ℓ × Td(λ2ℓ−t)× · · · × Td(λ1) if t > ℓ.

Definition 3.5 ([12, 13]). A spinor model Tg(λ, ℓ) of shape (λ, ℓ) ∈ P(G) is the set of
(Tℓ, . . . , T1) ∈ T̂g(λ, ℓ) such that each pair (Ti+1, Ti) satisfies the admissibility condition (cf.
[12, Definition 6.7], [13, Definition 3.4]) for 1 ≤ i ≤ ℓ− 1.

Theorem 3.6 ([12, Theorem 7.4], [13, Theorem 4.4]). For (λ, ℓ) ∈ P(G), the set Tg(λ, ℓ) is
a g∞-crystal and is isomorphic to B(Πg(λ, ℓ)) as g∞-crystals.

Remark 3.7. In this extended abstract, it is sufficient to describe B(λ) for λ ∈ P+
int (not P+),

and we intentionally omit some related notions; Tsp in particular. The skipped ones can be found
in [12, 13], which cover whole extremal (highest) weight crystals B(λ) for λ ∈ P+.
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The character of Tg(λ, ℓ) is defined to be

ch Tg(λ, ℓ) = tℓ ∑
(Tℓ,...,T1)∈Tg(λ,ℓ)

ℓ

∏
i=1

xTi

where t is a formal symbol and xT = ∏∞
i=1 xmi

i , with mi being the number of appearances
of i ≥ 1 in a semistandard tableau T. Indeed, we understand xi = eϵi and t = eΠg

0 when
we consider them as elements in the group algebra Z[P]. An explicit formula of the
character of a spinor model will be explained in Section 4.

3.3 Kashiwara–Nakashima tableaux

For n ∈ Z+, let Ig
n be the following ordered sets.

Ib
n = { n < · · · < 1 < 0 < 1 < · · · < n }

I c
n = { n < · · · < 1 < 1 < · · · < n }

Id
n =

{
n < · · · < 2 <

1
1
< 2 < · · · < n

}
Here, Id

n is a partially ordered set, and (1, 1) is the unique non-comparable pair in Id
n.

Definition 3.8 ([9]). The (gn-type) KN tableau of shape λ ∈ P is an Ig
n-semistandard tableau

T of shape λ such that each column of T is admissible and adjacent columns of T do not have
certain (a, b)-configurations (cf. [9]). We denote by KNg

n(λ) the set of KN tableaux of shape λ.
Note that the condition for a tableau to be Ig

n-semistandard is similar as the usual one with some
exceptions (cf. [3, 9, 15]).

For λ ∈ P , we easily check that KNg
n(λ) ⊆ KNg

n+1(λ) for n ≥ 1. As a role of KN
tableaux corresponding to the infinite rank, Lecouvey [15] introduces a tableau model,
which we call a g∞-type KN tableau.

Definition 3.9 ([15]). For λ ∈ P , define

KNg(λ) =
⋃

n≥ℓ(λ)

KNg
n(λ)

where the union is over n > ℓ(λ) when g = d. It is the set of Ig-semistandard tableaux of shape
λ satisfying the same (a, b)-configuration conditions as those in Definition 3.8, where Ig is the
following ordered set.

Ib = { · · · < n < · · · < 1 < 0 < 1 < · · · < n < . . . }
I c = { · · · < n < · · · < 1 < 1 < · · · < n < . . . }

Id =

{
· · · < n < · · · < 2 <

1
1
< 2 < · · · < n < . . .

}
Here, a pair (1, 1) in Id is the unique non-comparable pair in Id.



8 Taehyeok Heo

It is known that KNg
n(λ) is a gn-crystal and is isomorphic to B(ϖλ) as gn-crystals [9].

Then we can extend this gn-crystal structure to KNg(λ). Moreover, we show that these
extended gn-crystal structures on KNg(λ) ranging over n ≥ ℓ(λ) are compatible. From
this observation, we induce a g∞-crystal structure on KNg(λ). One of the main results
is that this g∞-crystal KNg(λ) is isomorphic to the extremal weight crystal B(ϖλ).

Theorem 3.10 ([3, Theorem 4.11]). For λ ∈ P , there exists an isomorphism of g∞-crystals.

KNg(λ) ∼= B(ϖλ)

4 Jacobi–Trudi type character formulas

For r ∈ N, let er(x) be the r-th elementary symmetric function in x = {x1, x2, . . . , }, and
set e0(x) = 1 and er(x) = 0 for r < 0. For r ∈ Z, define

Er(x) =
∞

∑
i=0

ei(x)er+i(x),

E′
r(x) = Er(x)− Er+2(x), E′′

r (x) = Er(x) + Er+1(x).

We can easily check that Er(x) = E−r(x) for r ∈ Z. In addition, we easily derive the
following identities using E♢

r (x) (♢ ∈ { · , ′, ′′}).

Proposition 4.1 ([3, Proposition 5.2]). For a ∈ Z+ (a ∈ N when g = d), the following
equalities hold.

ch Tc(a) = tE′
a(x), ch Tb(a) = tE′′

a (x), ch Td(a) = tEa(x),

ch Td(0) + ch Td
(0) = tE0(x), ch Td(0)− ch Td

(0) = t

(
∞

∑
i=0

ei(x)

)(
∞

∑
i=0

(−1)iei(x)

)

In general, we explicitly write the (Jacobi–Trudi type) character formula of a spinor
model in terms of E♢

r (x) (♢ ∈ { · , ′, ′′}).

Definition 4.2 ([14]). For ♢ ∈ { · , ′, ′′} and (λ, ℓ) ∈ P(G), denote

Σ♢
(λ,ℓ)(x) = det(E♢

(λℓ−i+1+i−1)+(j−1)(x) + δ(j ̸= 1)E♢
(λℓ−i+1+i−1)−(j−1)(x))i,j=1,...,ℓ

=

∣∣∣∣∣∣∣∣∣∣∣

E♢
λℓ

E♢
λℓ+1 + E♢

λℓ−1 · · · E♢
λℓ+(ℓ−1) + E♢

λℓ−(ℓ−1)

E♢
λℓ−1+1 E♢

(λℓ−1+1)+1 + E♢
(λℓ−1+1)−1 · · · E♢

(λℓ−1+1)+(ℓ−1) + E♢
(λℓ−1+1)−(ℓ−1)

...
... . . . ...

E♢
λ1+ℓ−1 E♢

(λ1+ℓ−1)+1 + E♢
(λ1+ℓ−1)−1 · · · E♢

(λ1+ℓ−1)+(ℓ−1) + E♢
(λ1+ℓ−1)−(ℓ−1)

∣∣∣∣∣∣∣∣∣∣∣
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where δ(P) = 0 if a statement P is false and δ(P) = 1 otherwise. Also, define Sg
(λ,ℓ)(x) by

Sc
(λ,ℓ)(x) = Σ′

(λ,ℓ)(x)

Sb
(λ,ℓ)(x) = Σ′′

(λ,ℓ)(x)

Sd
(λ,ℓ)(x) =



Σ(λ,ℓ)(x) if t = ℓ,
1
2

Σ(λ,ℓ)(x) +
1
2

(
∞

∑
i=0

ei(x)

)(
∞

∑
i=0

(−1)iei(x)

)
Σ′
(λ,ℓ−1)(x) if t < ℓ,

1
2

Σ(µ,ℓ)(x)−
1
2

(
∞

∑
i=0

ei(x)

)(
∞

∑
i=0

(−1)iei(x)

)
Σ′
(µ,ℓ−1)(x) if t > ℓ,

where t = ℓ(λ) and µ = (λ1, . . . , λ2ℓ−t). Note that the pair (µ, ℓ) appearing when t > ℓ
satisfies that (µ, ℓ) ∈ P(G) and ℓ(µ) < ℓ.

Proposition 4.3 ([3, Proposition 5.4]). For (λ, ℓ) ∈ P(G), the following holds.

ch Tg(λ, ℓ) = tℓSg
(λ,ℓ)(x)

5 The Grothendieck ring

Let C be the category of g∞-crystals whose object B has connected components isomor-
phic to B(λ0)⊗ B(λ+) for some λ0 ∈ E and λ+ ∈ P+

int with some finiteness conditions
(see [3, Section 6.1]). We show that C is a monoidal category under the tensor product
of crystals [3, Theorem 6.1]. Let K = K(C) be the Grothendieck group of C, i.e., the
additive group of isomorphism classes [B] for B ∈ C. Define a multiplication on K by

[B] · [B′] = [B ⊗ B′].

Then we can show K forms an associative Z-algebra. Note that we can find correspond-
ing results for type A in [11].

We explain an algebra structure of K using the decomposition of tensor products
of underlying crystals into connected components (cf. [16, Section 4]). Let K0 and K+

be the subgroups of K generated by [B(λ)] for λ ∈ E and λ ∈ P+
int, respectively. It is

clear K ⊆ K0 ⊗K+ by definition. Conversely, for given λ0 ∈ E and λ+ ∈ P+, we have
B(λ0)⊗ B(λ+) ∼= B(λ) for λ ∈ P (cf. [16, Theorem 4.4]). Thus, we have K = K0 ⊗K+.

To explain an algebra structure of K0, we consider the following decomposition.

Proposition 5.1 ([15]). For λ, µ ∈ E, we have

B(λ)⊗ B(µ) ∼=
⊕
ν∈E

B(ν)
⊕LRν†

λ†µ† ,

where LRν†

λ†µ† is the Littlewood-Richardson coefficient for partitions λ†, µ†, and ν†.
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As a corollary, we know that K0 is a subalgebra of K and obtain an algebra iso-
morphism between K0 and the ring Sym of symmetric functions since their structure
constants coincide.

Proposition 5.2 ([3, Proposition 6.5]). There exists an algebra isomorphism

Ψ0 : K0 −→ Sym (5.1)

which, for λ ∈ P , sends [B(ϖλ)] to sλ.

On the other hand, for k ≥ 0 and (λ, ℓ) ∈ P(G), put

Hg
k = [B(Πg

k)], Hg(λ, ℓ) = [B(Πg(λ, ℓ))]

and Hd
(0) = [B(Πd

0)]. By the semisimplicity result in [12, 13], we deduce that [B] = [B′]
in K+ if and only if ch(B) = ch(B′). Thus, we can rewrite Proposition 4.3 as follows.

Proposition 5.3 ([3, Proposition 6.2]). When g = d and (λ, ℓ) ∈ P(G) with ℓ(λ) < ℓ, the
following identity holds in K+.

Hd(λ, ℓ) =
1
2

det(Hd
(λℓ−i+1+i−1)+(j−1) + δ(j ̸= 1)Hd

(λℓ−i+1+i−1)−(j−1))i,j=1,...,ℓ

+
1
2
(Hd

0 − Hd
0)Hc(λ, ℓ− 1)

When g = d and (λ, ℓ) ∈ P(G) with ℓ(λ) > ℓ, the following identity holds in K+.

Hd(λ, ℓ) =
1
2

det(Hd
(µℓ−i+1+i−1)+(j−1) + δ(j ̸= 1)Hd

(µℓ−i+1+i−1)−(j−1))i,j=1,...,ℓ

−1
2
(Hd

0 − Hd
0)Hc(µ, ℓ− 1),

Here, t = ℓ(λ) and µ = (λ1, . . . , λ2ℓ−t, 0t−ℓ). Otherwise, the following identity holds in K+.

Hg(λ, ℓ) = det(Hg
(λℓ−i+1+i−1)+(j−1) + δ(j ̸= 1)Hg

(λℓ−i+1+i−1)−(j−1))i,j∈[ℓ]

As a corollary, we know that K+ is a subalgebra of K. Even though above two cases
seem to contain different variables coming from Hc (not Hd), the identity E′

r = Er − Er+2
implies that Hc

k is a polynomial in {Hd
i }.

Let h = {hk | k ∈ Z+} ({hk | k ∈ Z+} ∪ {h0} when g∞ = d∞) be commuting formal
variables, and Z[[h]] be the set of formal power series in h. Using Proposition 5.3 and [3,
Lemma 6.3], we can construct an isomorphism between K+ and Z[[h]].

Theorem 5.4 ([3, Theorem 6.4]). Define Φ+ : Z[[h]] −→ K+ by a Z-algebra homomorphism
sending hk to Hg

k (and h0 to Hd
0 when g = d). Then Φ+ is an isomorphism of Z-algebras.
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Finally, we can explicitly describe an algebra structure of K. Based on the above
results, we know that {[B(ϖi)] | i ≥ 1} ∪ {[B(Πg

j )] | j ≥ 0} generates K as a Z-algebra
and hence it is sufficient to find a basis expansion of [B(Πg

a)] · [B(ϖb)]. A general result
for the basis expansion of [B(Πg(λ, ℓ))] · [B(ϖµ)] for (λ, ℓ) ∈ P(G) and µ ∈ P is given
in [16, Section 4.3]. In particular, we obtain the basis expansion of [B(Πg

a)] · [B(ϖb)] by
applying the general result (see [3, Proposition 6.6]).

To characterize the algebra structure of K, we introduce a set z = {zk | k ∈ N} of
(other) commuting formal variables. Define A0 = Z[[h]], An = A0[z1, . . . , zn] for n ∈ N,
and A = ∑n≥0 An. We inductively define a Z-algebra structure on A as follows.

• The multiplication on A0 is the usual multiplication.

• Suppose that the multiplication on An−1 is defined. Define azn = zna + δn(a) for
a ∈ An−1, where δn is a derivation on An−1 such that

c∞


δn(zk) = 0 (1 ≤ k ≤ n − 1)

δn(ha) =
n−1

∑
i=0

min{a,n−i}

∑
j=0

ziha+n−i−2j (a ∈ Z+)

b∞


δn(zk) = 0 (1 ≤ k ≤ n − 1)

δn(ha) =
n−1

∑
i=0

zi

(
min{a,b−i}

∑
j=0

ha+b−i−2j + δ(b − i > a)
b−i−a

∑
k=1

hb−i−a−k

)
(a ∈ Z+)

d∞



δn(zk) = 0 (1 ≤ k ≤ n − 1)

δn(h0) =
n−1

∑
i=0

⌊ n−i
2 ⌋⊕

j=0

zihb−i−2j, δn(h0) =
n−1

∑
i=0

⌊ n−i
2 ⌋⊕

j=0

zihb−i−2j

δn(ha) =
n−1

∑
i=0

zi

min{⌊ a+b−i
2 ⌋,b−i}

∑
j=0

ha+b−i−2j + δ(b − i ≥ a)
⌊ b−i−a

2 ⌋

∑
k=0

hb−i−a−2k

 (a ∈ N)

where ha = ha for a ≥ 1. Now, we obtain an algebra isomorphism between K and A.

Theorem 5.5 ([3, Theorem 6.8]). The assignment sending [B(Πg
a)] to ha ([B(Πd

0)] to h0) and
[B(ϖb)] to zb defines a Z-algebra isomorphism Ψ : K → A. Indeed, we have Ψ = Ψ0 ⊗ Ψ+,
where Ψ+ is the inverse map of Φ+ given in Theorem 5.4.
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Lascoux polynomials and Gelfand–Zetlin patterns
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Abstract. We give a new combinatorial description for Lascoux polynomials and for
symmetric Grothendieck polynomials in terms of cellular decompositions of Gelfand–
Zetlin polytopes. This generalizes a similar result on key polynomials by Kiritchenko,
Smirnov, and Timorin.

Keywords: Lascoux polynomials, key polynomials, Gelfand–Zetlin polytopes

1 Introduction

In this paper, we provide a new combinatorial description of Lascoux polynomials in
terms of subdivisions of Gelfand–Zetlin polytopes and certain collections of their faces.
Lascoux polynomials, denoted by L

(β)
α , form a basis for Z[β][x1, x2, . . . ], where α runs

over the set of weak compositions (i.e., infinite sequences of nonnegative integers with
finitely many positive entries). They simultaneously generalize key polynomials and
Grassmannian Grothendieck polynomials; the latter family represents classes of struc-
ture sheaves of Schubert varieties in the connective K-theory of a Grassmannian, as
shown by A. Buch [2]. Both of these families are superfamilies of Schur polynomials.

Lascoux polynomials were defined by A. Lascoux [6] in terms of homogeneous di-
vided difference operators; just as many other families of polynomials defined using
these operators, they have nonnegative coefficients. Although Lascoux polynomials do
not have a description in geometric or representation-theoretic terms, they admit sev-
eral combinatorial descriptions: for example, T. Yu [9] provides a description of Lascoux
polynomials in terms of set-valued tableaux, generalizing simultaneously Buch’s de-
scription of symmetric Grothendieck polynomials in terms of set-valued Young tableaux
and A. Lascoux and M.-P. Schützenberger’s tableau formula for key polynomials ([7]).

Lascoux polynomials L
(β)

α specialized at β = 0 are equal to key polynomials. Sup-
pose w ∈ Sn is a permutation such that α = (α1, . . . , αn) = w(λ) for a suitable partition
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2 Ekaterina Presnova and Evgeny Smirnov

λ = (λ1, . . . , λn). The key polynomials κα = κw,λ are defined as the characters of De-
mazure modules Dw,λ, i.e. B-submodules in the irreducible GL(n)-representation Vλ

with the highest weight λ. The module Dw,λ is defined as the smallest B-submodule
containing the extremal vector wvλ ∈ Vλ, where B ⊂ GL(n) is a fixed Borel sub-
group. A character formula for Demazure modules was stated in [3] and proved by
H. H. Andersen in [1] (the original proof by M. Demazure contained a gap). The first
combinatorial description of these characters was given in [7].

In [5], V. Kiritchenko, E. Smirnov, and V. Timorin provide a formula for key polynomi-
als in terms of integer points in Gelfand–Zetlin polytopes. Let λ be a strictly dominant
weight for GL(n); then it defines an integer convex polytope GZ(λ) ⊂ Rn(n−1)/2, called
the Gelfand–Zetlin polytope. This polytope admits a projection π : GZ(λ)→ wt(λ) into
the weight polytope of Vλ. For each permutation w ∈ Sn, one can construct a collection
of faces Fw,λ of GZ(λ), such that κw,λ = ∑ exp(π(z)), where z ranges over the set of
integer points in Fw,λ (see [5, Corollary 5.2]).

The main purpose of this paper is to generalize this result, constructing a combi-
natorial description of symmetric Grothendieck and Lascoux polynomials in terms of
subdivisions of Gelfand–Zetlin polytopes. For this we construct a cellular decomposi-
tion C of GZ(λ) whose 0-cells coincide with the integer points in GZ(λ). Now, to each
i-dimensional cell Ci we assign a monomial m(Ci) in x1, . . . , xn; for a 0-cell z ∈ GZ(λ)
we have m(Ci) = exp(π(z)). Some cells correspond to the zero monomial. Our main
result is as follows:

L
(β)

w,λ = ∑
Ci∈C∩Fw,λ

βim(Ci),

where the sum is taken over all cells situated inside the collection of faces Fw,λ.
Informally, the Lascoux polynomial L

(β)
w,λ can be viewed as a “weighted Euler charac-

teristic” of the subdivision C ∩ Fw,λ for the collection of faces Fw,λ. Namely, i-dimensional
cells of this subdivision correspond to monomials of degree i + `(w) with coefficient βi

in front of them.
It would be very interesting to establish a bijection of our construction of cells index-

ing monomials in Lascoux polynomials with T. Yu’s description in terms of set-valued
tableaux. In particular, we expect the crystal operations on set-valued tableaux (see [9])
to have a nice description in terms of Gelfand–Zetlin polynomials. However, we do not
address these questions in this paper, leaving them as a subject of subsequent work.

An extended exposition of the results presented in this note, with all proofs and
further discussion, can be found in [8].
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2 Preliminaries

2.1 Lascoux polynomials

To define Lascoux polynomials, we need two families of operators: divided difference op-
erators ∂i, with 1 ≤ i ≤ n− 1, acting on the polynomial ring Z[x1, . . . , xn] and Demazure–
Lascoux operators π

(β)
i , again with 1 ≤ i ≤ n − 1, acting on the ring Z[β, x1, . . . , xn]

equipped with a formal parameter β.

Definition 2.1. The i-th divided difference operator ∂i acts on polynomial f = f (x1, x2, . . .)
in the following way:

∂i( f ) =
f − si f

xi − xi+1
,

where si f is obtained from f by permuting variables xi and xi+1.

We consider operators π
(β)
i , that are modifications of divided differences operators.

Definition 2.2. The ith Demazure–Lascoux operator π
(β)
i acts on f ∈ Z[β][x1, x2, . . .] in the

following way:
π
(β)
i ( f ) = ∂i(xi f + βxixi+1 f ).

Let α = (α1, α2, . . .) be an infinite sequence of nonnegative integers with finitely many
positive entries.

Definition 2.3. The Lascoux polynomial L
(β)

α ∈ Z[β][x1, x2, . . .] associated with α is defined
by:

L
(β)

α =

{
xα if α is a partition: α1 ≥ α2 ≥ . . .

π
(β)
i (L

(β)
siα ) otherwise, where αi < αi+1

Since the Demazure–Lascoux operators satisfy the braid relations, we can associate a
Lascoux polynomial to partition λ and permutation w ∈ Sn in the following way:

L
(β)

w,λ = π
(β)
ik

. . . π
(β)
i2

π
(β)
i1

(xλ),

where (sik , . . . , si1) is a reduced word for permutation w = si1 . . . sik .
It is well-known (cf., for instance, [9]) that specializations of Lascoux polynomials

provide other nice families of polynomials. Namely, taking β = 0 gives key polynomials
κw,λ = L

(β)
w,λ |β=0. If we take the Lascoux polynomial of the longest permutation, we get a

symmetric Grothendieck polynomial G(β)
λ = L

(β)
w0,λ = π

(β)
w0 (xλ). Finally, taking these two

specializations simultaneously gives us Schur polynomials: Sλ = κw0,λ = π
(β)
w0 (xλ)|β=0.
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λ1 − λ2

λ1 − λ2

λ2 − λ3

λ2 − λ3

Figure 1: Gelfand–Zetlin polytope

2.2 Gelfand–Zetlin patterns

Let λ be a partition, i.e. a sequence of nonnegative integers λ1 ≥ λ2 ≥ . . . ≥ λn. Consider
the space Rd, where d = n(n−1)

2 , with coordinates yij indexed by pairs (i, j) of positive
integers satisfying i + j ≤ n. The following triangular tableau

λn λn−1 λn−2 . . . λ1
y11 y12 . . . y1,n−1

y21 . . . y2,n−2
. . . ... ...

yn−1,1

(2.1)

is called a Gelfand–Zetlin pattern, if all yij are integers, and every small triangle in this
tableau satisfies inequalities yi−1,j ≤ yi,j ≤ yi−1,j+1. Here we formally set y0j = λn+1−j.

Gelfand–Zetlin patterns parametrize elements of the Gelfand–Zetlin basis in the GL(n)-
module V(λ) with highest weight λ (see [4]). The number of such patterns for a fixed
top row λ can be computed using Weyl’s dimension formula:

dim V(λ) = ∏
i<j

λi − λj − i + j
j− i

.

2.3 Gelfand–Zetlin polytopes

Gelfand–Zetlin patterns can be viewed as integer points in R
n(n−1)

2 . The convex hull of
these points is called a Gelfand–Zetlin polytope and denoted GZ(λ). It is easy to see that
the set of integer points in GZ(λ) gives us exactly the set of Gelfand–Zetlin patterns.
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Example 2.4. For n = 3, the Gelfand–Zetlin polytope GZ(λ) is defined in R3 by the
following inequalities: λ3 ≤ x ≤ λ2, λ2 ≤ y ≤ λ1, x ≤ z ≤ y. If all λi are distinct, it is
three-dimensional, as shown on Fig. 1.

3 Enhanced Gelfand–Zetlin patterns

3.1 Construction of enhanced Gelfand–Zetlin patterns

In this section we define enhanced Gelfand–Zetlin patterns, i.e. Gelfand–Zetlin patterns
with some additional data, which we will call enhancement. These data are of two kinds:
first, some elements in a pattern may be encircled, and second, some pairs of neighbor
elements in consecutive rows can be joined by an edge.

Informally, the pattern without enhancement stands for the “maximal” point of the
closure of the corresponding cell, i.e. the point with the largest sum of coordinates.

Definition 3.1. A Gelfand–Zetlin pattern with the top row (λn, . . . , λ1) with some entries
marked by circles and with edges between certain neighboring entries is said to be an
enhanced Gelfand–Zetlin patterns, if these elements satisfy the following conditions:

1. The numbers in the first row are encircled.

2. The two entries joined by an edge must be equal, and the bottom entry should be
encircled. The converse does not have to be true: two equal neighboring entries are
not necessarily joined by an edge.

3. If two neighboring entries in a row are joined by edges with an entry above them,
they must also be joined with the entry below them, and vice versa. Pictorially:

a

a a

b

or b

a a

a

⇒ a

a a

a

.

(a dotted circle around an entry means that it may be either encircled or not).

4. If two entries in the topmost row are equal, then the entry below them (which is
equal to both of them) is encircled and connected to both of them by edges.

5. If a < b and the pattern contains the following triangle: a b
a , then there is an edge

between the two a’s. Pictorially:

a b

a

⇒ a b

a
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6. If a < b and the pattern contains the following triangle: a b
b with the bottom entry

encircled, then there is an edge between the two b’s:

a b

b

⇒ a b

b

7. For a triangle a a
a : if the two top entries can be connected by a path of edges, the

bottom entry should be encircled and connected with them.

8. If in a triangle a a
a the bottom entry is encircled, then it should be connected with

at least one of them by an edge.

We denote the set of all enhanced patterns with the first row λ by P(λ).

Example 3.2. The pattern
0 1 2

1 2
2

has eight enhancements.

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

Example 3.3. The pattern
0 1 2

1 1
1

has four enhancements.

0 1 2

1 1

1

0 1 2

1 1

1

0 1 2

1 1

1

0 1 2

1 1

1

Note that according to Definition 3.1 (4), the last entry in the second row must be encir-
cled and connected to the middle entry in the first row.

An enhanced pattern can be viewed as a graph (with marked vertices). Consider the
connected components of this graph.

Lemma 3.4. The connected components of an enhanced Gelfand–Zetlin pattern satisfy the fol-
lowing:

1. the entries in the topmost row belong to the same connected component if and only if they
are equal;
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2. each connected component either has a unique highest vertex or contains one or more entries
from the topmost row;

3. all vertices in a connected component, possibly except the highest one, are encircled. In
particular, the number of connected components is not less than the number of distinct λi’s
plus the number of entries without circles.

Proof. This follows immediately from Definition 3.1.

Definition 3.5. The rank rk P of an enhanced pattern P is the number of entries without
circles.

Now introduce the notion of a reduced enhanced pattern. Let us index the positions
that may contain a NE-SW edge by simple reflections from Sn as shown on Fig. 2. On
each NE-SW edge joining yi,j with yi−1,j+1 in our pattern we write the corresponding
simple reflection if the entries joined by this edge are equal to y0,i+j = λn+1−i−j (that
is, are maximal possible on this diagonal). Then take the word formed by the letters on
the edges read from bottom to top, from right to left. If this word is reduced, then the
corresponding pattern P is said to be reduced. Then denote the product by w−. Given a
reduced pattern P, define the permutation corresponding to P as w(P) = w0w−.

s3 s2 s1

s3 s2

s3

Figure 2: Assigning permutation to an enhanced pattern

Example 3.6. All enhanced patterns from Example 3.2 except the seventh one are re-
duced. They correspond to the following permutations: w0 = s1s2s1 = s2s1s2, s2s1, s1s2,
s2s1, s1, s2, Id.

Finally, given a permutation w ∈ W, denote by P(w, λ) the set of all reduced en-
hanced patterns P from P(λ) such that w(P) ≤ w in the Bruhat order. We will use this
set of patterns later in Theorem 4.3.

3.2 Efficient enhanced patterns

Definition 3.7. A enhanced pattern P is said to be inefficient if it contains a triangle of
the form a a

a such that its bottom entry is not connected with the right one by an edge,
and efficient otherwise. The set of all efficient reduced enhanced patterns with the first
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row λ is denoted by P+(λ). Like in the previous subsection, for a fixed w ∈ Sn denote
by P+(w, λ) the set of all efficient reduced enhanced patterns P satisfying w(P) ≤ w in
the Bruhat order.

Proposition 3.8. Every enhanced pattern of rank zero is efficient.

Proof. Take an inefficient enhanced pattern P. This means that it contains a triangle of
the form a a

a such that there is no edge between the bottom and the right entries. Defi-
nition 3.1 implies that these two entries are contained in different connected components,
both marked with the same number a. This means that at least one of these components
contains a vertex without circle, so the rank of P cannot be zero.

Moreover, it turns out that for an efficient enhanced pattern, the edges provide re-
dundant data. Namely, we have the following lemma.

Lemma 3.9. The edges in an efficient enhanced pattern are uniquely determined by positions of
encircled vertices.

Proof. The conditions listed in Definition 3.1 imply that positions of edges are defined
by positions of encircled vertices in all cases except for case (8). In the latter case there
are two possibilities of joining the bottom vertex in the triangle a a

a with one of its
neighbors in the upper row, and only one of them defines an efficient pattern.

For a reduced efficient enhanced GZ-pattern P, we assign to it a monomial xP in the
following way. Let Si(P) be the sum of numbers in the i-th row of the pattern P, with
S0(P) = λ1 + · · ·+ λn, and let Di(P) stand for the number of entries without circles in
the i-th row of P. Denote dn+1−i = dn+1−i(P) = Si−1(P)− Si(P) + Di(P). Then

xP = βrk Pxd1
1 . . . xdn

n .

Example 3.10. All enhanced GZ-patterns patterns in Example 3.2 are efficient; the corre-
sponding monomials are

β3x2
1x2

2x2
3, β2x2

1x2
2x3, β2x2

1x2
2x3, β2x2

1x2x2
3, βx2

1x2
2, βx2

1x2x3, βx2
1x2x3, x2

1x2.

In Example 3.3, the first two patterns are inefficient, and the second two correspond to
βx1x2x2

3 and x1x2x3, respectively.

4 Main results

In this section we give the main results of this paper. We start with constructing a
cellular decomposition for GZ(λ). The cells are indexed by enhanced Gelfand–Zetlin
patterns, and the set of 0-dimensional cells is exactly the set of integer points in GZ(λ).
The second main result is as follows: Lascoux polynomial L

(β)
w,λ is equal to the sum of

monomials corresponding to all efficient reduced enhanced patterns P ∈ P+(λ) such
that w(P) ≤ w in the Bruhat order.
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4.1 Cellular decomposition of Gelfand–Zetlin polytopes

Let GZ(λ) ⊂ R
n(n−1)

2 be a Gelfand–Zetlin polytope. In this section we construct its
cellular decomposition, with cells indexed by enhanced Gelfand–Zetlin patterns.

Construction 4.1. Let P be an enhanced pattern with entries aij, and let y ∈ GZ(λ) be
a point with coordinates yij. To each coordinate yij we assign an equality or a double
inequality as follows:

1. if there is an edge going up from aij to ai−1,j or ai−1,j+1 (or both), then yij = yi−1,j
or yij = yi−1,j+1, respectively;

2. if there are no edges going up from aij, and this entry is encircled, then yij = aij;

3. if there are no edges going up from aij and this entry is not encircled, we impose a
double inequality on yij as follows:

(a) If the entry ai−1,j satisfies aij − ai−1,j ≥ 2, then aij − 1 < yij; otherwise, yi−1,j <
yij;

(b) If ai−1,j+1 is equal to aij, we set yij < yi−1,j+1; otherwise, yij < aij.

Denote the set defined by these equalities and inequalities by ĈP. This is “almost”
the required cell corresponding to P; however, it does not necessarily lie in GZ(λ). To
get an actual cell, take the affine span L of ĈP and intersect ĈP with the relative interior
of GZ(λ) ∩ L in L:

CP = ĈP ∩ (GZ(λ) ∩ L)0.

This set is convex and open in L.
Informally, the relation between an enhanced pattern P and the corresponding set

CP is as follows. For each connected component in P containing only encircled entries
with the same numbers, all the corresponding coordinates of points in CP are equal to
this number. On the other hand, if a connected component has a non-encircled vertex,
the corresponding coordinate can take values in an interval determined by the condition
(4) of Definition 3.1; note that the length of this interval does not exceed i − 1, where
i is the row number. All the remaining coordinates in the same connected component
(corresponding to encircled entries) are equal to this coordinate.

The first main result of this paper states that this is indeed a cellular decomposition
of GZ(λ).

Theorem 4.2. For each P ∈ P(λ), the set CP ⊂ GZ(λ) is homeomorphic to an open ball of
dimension rk P. These balls CP form a cellular decomposition of GZ(λ) whose zero-dimensional

cells coincide with GZ(λ) ∩Z
n(n−1)

2 .
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Moreover, this cellular decomposition is compatible with the Bruhat order on Sn.
Namely, in [5] the authors define a collection of special faces (called dual Kogan faces) of
GZ(λ) for each w ∈ Sn. The following result holds.

Theorem 4.3. Let Fw be the set of dual Kogan faces of GZ(λ) corresponding to w in the sense
of [5, Theorem 4.3]. Then we have

Fw =
⋃

P∈P(w,λ)

CP.

4.2 Lascoux polynomials as sums over efficient enhanced patterns

The following is the second main result of this paper.

Theorem 4.4. Let w ∈ Sn be a permutation and λ be a partition. Then the Lascoux polynomial
L

(β)
w,λ is equal to

L
(β)

w,λ = ∑
P∈P+(w,λ)

xP.

The sum is taken over all efficient reduced enhanced patterns P with w(P) ≤ w. In
the case w = w0 we get an expression for the symmetric Grothendieck polynomial:

Corollary 4.5. Let λ be a partition. Then the symmetric Grothendieck polynomial G(β)
λ (x1, . . . , xn)

is equal to
G(β)

λ (x1, . . . , xn) = L
(β)

w0,λ = ∑
P∈P+(λ)

xP.

The specialization of the equality from Theorem 4.4 gives an expression for key poly-
nomials, obtained in [5]:

Theorem 4.6 ([5, Theorem 5.1]). Let w ∈ Sn be a permutation and λ be a partition. Then the
key polynomial κw,λ is equal to

κw,λ = ∑
P∈P+(w,λ)

xP,

where the sum is taken over efficient reduced enhanced patterns P of rank 0.

Another immediate corollary from Theorem 4.4, to the best of our knowledge, did
not appear in the literature before.

Corollary 4.7. Let λ be a partition and u, w ∈ Sn be permutations such that u ≤ w in the
Bruhat order on Sn. Then the polynomial L

(β)
w,λ −L

(β)
u,λ has nonnegative coefficients.
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4.3 Example: GZ(3, 2, 0)

Let λ = (3, 2, 0). The Gelfand–Zetlin polytope GZ(λ) with its cellular decomposition
defined in Theorem 4.2 is shown in Figure 3 below. All cells except the two purple ones
(one one-dimensional and one two-dimensional) are efficient.

Now let us establish the correspondence between permutations from S3 and combi-
nations of faces of this polytope. The identity permutation id corresponds to the vertex
with the highest sum of coordinates (it is marked by a larger black dot in Figure 3).
The simple transpositions s1 and s2 correspond to the vertical and horizontal edges ad-
jacent to this vertex, respectively. The cellular decompositions of these edges are shown
in Figure 4.

The permutation s1s2 corresponds to the back trapezoid face (shown by blue color
in Figure 5), while the permutation s2s1 corresponds to two faces, a triangular and a
rectangular one, highlighted in green. Now, for each of these sets of faces, we need to
take its cellular decomposition and compute the sum of all the monomials corresponding
to the cells occurring in it; this would give us the Lascoux polynomials. The figures are
self-explanatory; the picture for the symmetric Grothendieck polynomial Ls1s2s1,λ is too
bulky, so we do not provide it here.

Figure 3: Cellular
decomposition of
GZ(3, 2, 0)

x3
1x2

2

Lid,λx

x2
1x3

2

x3
1x2

2

βx3
1x3

2

Ls1,λ

x3
1x2

3

βx3
1x2x2

3

x3
1x2x3

βx3
1x2

2x3

x3
1x2

2

Ls2,λ

Figure 4: Lascoux polynomials for id, s1, and s2
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β2x3
1x2

2x2
3 β2x3

1x3
2x3

β2x2
1x3

2x2
3

x3
1x2

3

βx3
1x2x2

3

x2
1x2x2
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3
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3
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Figure 5: Lascoux polynomials for s1s2 and s2s1
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Chain polynomials of generalized paving matroids

Petter Brändén*1 and Leonardo Saud Maia Leite†1

1Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. We prove that the chain polynomial of the lattice of flats of a paving matroid
is real-rooted, and we define a class of matroids called generalized paving matroids.
Generalized paving matroids associated to subspace lattices are shown to have real-
rooted chain polynomials, by a study of a q-analog of the subdivision operator. We
finish by studying single element extensions, and prove that the chain polynomials of
the lattice of flats of single element extensions of Un

n and Un−1
n are real-rooted.

Keywords: matroid, chain polynomial, geometric lattice, real-rootedness

1 Introduction

The chain polynomial of a finite poset P is defined as

cP(t) := ∑
k≥0

ck(P)tk, (1.1)

where ck(P) is the number of k-element chains in P. The chain polynomials of posets in
several important classes have been proven to be real-rooted. For example face lattices
of simplicial [8] and cubical polytopes [1], (3 + 1)-free posets [14, Corollary 2.9], and for
some classes of distributive lattices [7, 18], but not all [16]. In [2] the authors asked for
which posets the chain polynomial is real-rooted. In particular the following conjecture
was formulated.

Conjecture 1.1. [2, Conjecture 1.2] The chain polynomial cL(t) is real-rooted for every geomet-
ric lattice L.

This conjecture can bee seen as a member of a family of recent conjectures about the
real-rootedness of Kazhdan-Lusztig polynomials [9, 11] and Chow ring Poincaré poly-
nomials [10, 17] associated matroids arising in the emerging Hodge theory of matroids
[12].

In [2], Athanasiadis and Kalampogia-Evangelinou proved Conjecture 1.1 for the sub-
space lattices Ln(q), for the partition lattices Πn and ΠB

n , and for the lattice of flats of
near-pencils and uniform matroids.
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Wallenberg Foundation, and the Göran Gustafsson foundation.
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The purpose of this paper is to verify Conjecture 1.1 for further classes of geometric
lattices. We prove Conjecture 1.1 for the lattice of flats of paving matroids, a class of
matroids which is conjectured to correspond to almost all finite matroids. We define
a new class of matroids, called generalized paving matroids, that includes the class of
paving matroids and we prove Conjecture 1.1 for generalized paving matroids associated
to subspace lattices. In the process we extend the well studied subdivision operator E
(see [6, 8]) to subspace lattices, and prove several real-rootedness results concerning
these generalized subdivision operators. We finish the paper by studying single-element
extensions and proving that the chain polynomials of the lattice of flats of single-element
extensions of some uniform matroids are real-rooted.

2 Interlacing polynomials

In this section we collect a few results and terminology that will be needed in subsequent
sections, for proofs we refer to [6].

Let f , g ∈ R[t] be real-rooted polynomials with nonnegative coefficients and of
degrees r and s, respectively. Let xr ≤ · · · ≤ x2 ≤ x1 be the zeros of f , and let
ys ≤ · · · ≤ y2 ≤ y1 be the zeros of g. We say that g interlaces f (written g ⪯ f ) if
either r = s and

ys ≤ xr ≤ · · · ≤ y2 ≤ x2 ≤ y1 ≤ x1

or r = s + 1 and
xr ≤ ys ≤ xr−1 ≤ · · · ≤ y2 ≤ x2 ≤ y1 ≤ x1.

We say that a sequence of polynomials f1, f2, . . . , fm ∈ R[t] is interlacing if fi ⪯ f j
whenever i < j.

Proposition 2.1. Let f , g, h ∈ R[t].

1. If f ⪯ g and f ⪯ h, then f ⪯ ag + bh for all a, b ≥ 0.

2. If g ⪯ f and h ⪯ f , then ag + bh ⪯ f for all a, b ≥ 0.

Proposition 2.2. Let f0, f1, . . . , fm ∈ R[t] be an interlacing sequence of real-rooted polynomials
with positive leading coefficients.

1. Every nonnegative linear combination f of f0, f1, . . . , fm is real-rooted, and f0 ⪯ f ⪯ fm;

2. If we define

gk := t
k−1

∑
i=0

fi +
m

∑
i=k

fi,

for k = 0, 1, . . . , m, then {gi}m
i=0 is interlacing.
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Proposition 2.3. Let f1, . . . , fm ∈ R[t]. If f1 ⪯ f2 ⪯ · · · ⪯ fm and f1 ⪯ fm, then fi ⪯ f j for
all i ≤ j.

Lemma 2.4. Suppose f0, f1, . . . , fn is an interlacing sequence of polynomials of degree d, such
that for each 0 ≤ j ≤ n, the polynomial f j has nonnegative leading coefficient and all zeros in the
interval [−1, 0]. Then the sequence g0, g1, . . . , gn+1 defined by

gk = t
k−1

∑
j=0

f j + (1 + t)
n

∑
j=k

f j,

is interlacing.

Proof. Let hj(t) = (1 − t)d f j(t/(1 − t)) and rj(t) = (1 − t)d+1gj(t/(1 − t)). Then {hj}n
j=0

is an interlacing sequence of polynomials with nonnegative coefficients. Moreover,

rj = t
k−1

∑
j=0

hj +
n

∑
j=k

hj,

and hence {rj}n+1
j=0 is interlacing by Proposition 2.2. Since gj = (1 + t)d+1rj(t/(1 + t)),

the lemma follows.

3 Generalized subdivision operators

Let P be a locally finite and graded poset with a least element 0̂, such that [0̂, x] is
isomorphic to [0̂, y] whenever x and y have the same rank. Define a linear operator
EP : R[t] → R[t] by EP(1) = 1, and

EP(tn) =
n

∑
j=1

|{0̂ < x1 < · · · < xj = x}| · tj =
t

(1 + t)2 · c[0̂,x](t),

where x is any element in P of rank n. Let further RP : R[t] → R[t] be the linear operator
defined by

RP(tn) =
n

∑
k=0

rn,ktk,

where rn,k is the number of elements in [0̂, x] of rank k, where x is any element in P of
rank n. Hence, for n ≥ 1,

EP(tn) = tEP
(
RP(tn)− tn) and (1 + t)EP(tn) = tEP(RP(tn)). (3.1)

If P is a Boolean lattice, then EP is the subdivision operator E , which has the property
that

E( f∆(t)) = fsd(∆)(t),



4 Petter Brändén and Leonardo Saud Maia Leite

for any simplicial complex ∆, where f∆ is the f -polynomial of ∆ and sd(∆) is the
barycentric subdivision of ∆, see [6, 8]. The subdivision operator is important in proving
real-rootedness for polynomials associated to simplicial complexes, posets or Ehrhart
theory [6]. In this section we will generalize and refine the following result to subspace
lattices Ln(q).

Proposition 3.1. [5, Section 4] The sequence {E
(
ti(t + 1)d−i)}d

i=0 is interlacing.

Let L(q) be the inverse limit, as n → ∞, of the subspace lattices Ln(q) of all subspaces
of Fn

q , where Fq is a finite field with q elements. Denote by Eq, the linear operator EL(q).
Hence

Eq(tn) = tEq
(
Gn(t)− tn), (3.2)

where Gn(t) = ∑n
k=0 (

n
k)qtk, and (n

k)q, 0 ≤ k ≤ n, are the Gaussian polynomials which may
be defined recursively by (n

0)q = 1, and(
n
k

)
q
= qk

(
n − 1

k

)
q
+

(
n − 1
k − 1

)
q
, (3.3)

see [15, Section 1.7]. Henceforth we let q be any real number greater or equal to 1.

Lemma 3.2. Let n be a nonnegative integer. Then

Eq(tkGn+1−k(t)) = t
k−1

∑
j=0

Eq(tjGn−j(qt)) + (1+ t)
n

∑
j=k

Eq(tjGn−j(qt)), 0 ≤ k ≤ n+ 1, (3.4)

and

Eq(tkGn−k(qt)) = Eq(tkGn−k(t)) + (qn−k − 1)Eq(tk+1Gn−(k+1)(t)), 0 ≤ k ≤ n. (3.5)

Proof. The identity (3.3) implies

tkGn+1−k(t)− tn+1 =
n

∑
j=k

tjGn−j(qt). (3.6)

By (3.2) and (3.6),

Eq(tn+1) = tEq(Gn+1(t)− tn+1) = t
n

∑
j=0

Eq(tjGn−j(qt)),

which combined with (3.6) gives (3.4).
Similarly, the identity

qk
(

n
k

)
q
=

(
n
k

)
q
+ (qn − 1)

(
n − 1
k − 1

)
q

(3.7)

implies (3.5).
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The following theorem generalizes Theorem 3.1 to any q ≥ 1.

Theorem 3.3. Let n be a nonnegative integer. The sequence of polynomials {Eq(tkGn−k(t))}n
k=0

is interlacing. Moreover all zeros of Eq(tkGn−k(t)) lie in the interval [−1, 0].

Proof. The proof is by induction over n, the case n = 0 being trivial.
Suppose true for n − 1 ≥ 0. Since {Eq(tkGn−k(t))}n

k=0 is interlacing, we have by (3.5)
and [6, Corollary 8.6] that {Eq(tkGn−k(qt))}n

k=0 is interlacing. Moreover (3.5) implies

Eq(tkGn−k(t)) ≺ Eq(tkGn−k(qt)) ≺ Eq(tk+1Gn−k−1(t)),

so that all zeros of Eq(tkGn−k(qt)) are in the interval [−1, 0]. The lemma now follows by
induction from (3.4) and Lemma 2.4.

Corollary 3.4. Suppose f = ∑d
k=0 hktkGd−k, where hk ≥ 0 for all 0 ≤ k ≤ d. Then Eq( f ) is

real-rooted and Eq(Gd) ≺ Eq( f ) ≺ Eq(td).

Proof. Follows immediately from Proposition 2.2 and Theorem 3.3.

For d ≤ n, let Gd
n,k be the polynomial obtained from tkGn−k(t) by removing all terms

tj, where j > d.

Lemma 3.5. Let d be a nonnegative integer.

(a) If n ≥ d, then {Eq(Gd
n,k)}

d
k=0 is interlacing.

(b) If 0 ≤ k ≤ d, then {Eq(Gd
n,k)}

∞
n=d is interlacing.

Proof. We first prove (a) by induction over n ≥ d, the case n = d being Theorem 3.3.
Assume true for n. Equations (3.6) and (3.7) imply

tkGn+1−k − tn+1 = tkGn−k +
n

∑
j=k+1

qn+1−jtjGn−j,

and thus

Eq(Gd
n+1,k) = Eq(Gd

n,k) +
d

∑
j=k+1

qn+1−jEq(Gd
n,j),

which by [6, Corollary 8.6] proves that {Eq(Gd
n+1,k)}

d
k=0 is interlacing, and that Eq(Gd

n,k) ≺
Eq(Gd

n+1,k). This proves (a) by induction.
Notice that

lim
n→∞

Eq(Gd
n,k)

(n−k
d )q

= Eq(td),

and that Eq(Gd
d,k) ≺ Eq(td) by Theorem 3.3. Hence (b) now follows from Proposition 2.3.
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The next theorem generalizes a recent result [3] of Athanasiadis and Kalampogia-
Evangelinou from Boolean lattices to subspace lattices. Suppose P is a graded poset, and
S = {0 = s0 < s1 < s2 < · · · } ⊆ N. Consider the rank selected poset PS := {x ∈ P :
ρ(x) ∈ S}. Define a linear operator TS : R[t] → R[t] by

TS(tk) =

{
0 if k ̸∈ S,
ti if k = si.

Theorem 3.6. Let n be a positive integer, and let S be a subset of N containing 0. The
sequence{EP(TS(tkGn−k))}n

k=0 is interlacing, where P = L(q)S. In particular the chain poly-
nomial of Ln(q)S is real-rooted.

Proof. The proof is omitted in this extended abstract.

4 Generalized paving matroids

Recall that a geometric lattice L of rank d + 1 is the lattice of flats of a paving matroid
on E if and only if

• the set H of hyperplanes of L form a d-partition, i.e., |H| ≥ d for each H ∈ H, and
for each set S of size d there exists a unique H ∈ H such that S ⊆ H;

• the flats of rank k ≤ d − 1 are the sets of size k of the Boolean lattice on E.

For example, if P = ([n]d ), then P is a d-partition of [n] and, hence, there is a paving

matroid whose set of hyperplanes is H1 = ([n]d ). Another example, a 2-partition of [7], is
H2 = {{1, 2, 4}, {1, 3, 7}, {1, 5, 6}, {3, 4, 6}, {2, 6, 7}, {4, 5, 7}, {2, 3}, {2, 5}, {2, 3}, {3, 5}}.

We will now generalize this construction to any geometric lattice, and prove that the
chain polynomials of the lattice of flats of generalized paving matroids associated to
subspace lattices and Boolean lattices are real-rooted.

Let L be a geometric lattice with rank function ρ on a ground set E. Suppose d ≥ 1,
and suppose H ⊂ L satisfies

(a) ρ(H) ≥ d for each H ∈ H,

(b) for each F ∈ L with ρ(F) = d, there exists a unique H ∈ H such that F ≤ H.

Let L(H) be the graded meet semi-lattice of rank d + 1,

L(H) = {F ∈ L(H) : ρ(F) ≤ d − 1} ∪H ∪ {E}.

Lemma 4.1. L(H) is a geometric lattice with set of hyperplanes H.
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Proof. Let ρ′ be the rank function of L(H), and let ∨ and ∨′ (respectively, ∧ and ∧′) be
the joins (respectively, the meets) in L and L(H), respectively. We will prove that L(H)
is (1) a lattice, (2) atomistic and (3) semimodular:

1. L(H) is a lattice - Since L(H) is a finite meet semi-lattice with a largest element, then,
by [15, Proposition 3.3.1], it is a lattice;

2. L(H) is atomistic - Let F ∈ L(H). If ρ′(F) ≤ d − 1, then, by definition of L(H), if
F =

∨
i Fi, then F =

∨′
i Fi. If ρ′(F) = d, then there exist a unique G ∈ L such that

ρ(G) = d and G ≤ F. Since G =
∨

i Gi for atoms Gi ∈ L, then F =
∨′

i Gi. Finally, if
F = E, then F is the join of two elements in H and hence a join of atoms, by the above;

3. L(H) is semimodular - Let F, G ∈ L(H). We want to prove that

ρ′(F) + ρ′(G) ≥ ρ′(F ∨′ G) + ρ′(F ∧′ G). (4.1)

There are three different cases to deal with:

• F and G are in H. Then ρ′(F) = ρ′(G) = d, ρ′(F ∨′ G) = d + 1 and ρ′(F ∧′ G) ≤
d − 1, which implies (4.1);

• F is not in H and G is in H. If F ≤′ G, then there is nothing to prove. Otherwise,
ρ′(F ∧′ G) ≤ ρ′(F)− 1 and F ∨′ G = E, and (4.1) holds;

• F and G are not in H. We may assume F and G are smaller than E. Then

ρ′(F) + ρ′(G) = ρ(F) + ρ(G) ≥ ρ(F ∨ G) + ρ(F ∧ G)

= ρ(F ∨ G) + ρ′(F ∧′ G).

Hence it remains to prove

ρ′(F ∨′ G) ≤ ρ(F ∨ G). (4.2)

If ρ(F ∨ G) ≤ d − 1, then F ∨ G = F ∨′ G and so (4.2) holds. If ρ(F ∨ G) = d,
then there exists H ∈ H such that F ∨ G ≤ H, and hence ρ′(F ∨′ G) ≤ d. If
ρ(F ∨ G) ≥ d + 1, then (4.2) holds since ρ′(E) = d + 1.

If L is the Boolean algebra, then the lattices L(H) are precisely the lattices of flats of
paving matroids.

Notice that
cL(H)(t) = cLd(t) + t ∑

H∈H
c[0̂,H]d(t), (4.3)

where Ld = {F ∈ L : ρ(F) ≤ d − 1} ∪ {E} is the truncation of L to rank d.
The next theorem verifies Conjecture 1.1 for the lattice of flats of paving matroids and

generalized paving matroids associated to subspace lattices.
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Theorem 4.2. Suppose L is a subspace lattice Ln(q) or a Boolean lattice, and that H satisfies
(a) and (b). Then cL(H)(t) is real-rooted and cLd(t) ≺ cL(H)(t).

Proof. Clearly,

cLd(t) = (1 + t) · Eq(Gd−1
n,d−1(t)) and c[0̂,H]d(t) = (1 + t) · Eq(Gd−1

m,d−1(t)),

where m ≤ n, and q = 1 for the Boolean case. The theorem now follows from Proposi-
tion 2.1, Lemma 3.5 and (4.3).

5 Single-element extensions

Let N be a matroid with ground set E. Recall that, if T ⊂ E, then the deletion of T in N is
N\T, the matroid on E\T with independent sets given by

{I : I is independent in N and I ∩ T = ∅}.

In this case, N is called an extension of N\T. For the particular case when |T| = 1, we
call N a single-element extension of N\T.

A modular cut M of a matroid M is a set of flats of M that satisfies the following:

(i) if F ∈ M and F′ is a flat of M containing F, then F′ ∈ M;

(ii) if F1, F2 ∈ M and r(F1) + r(F2) = r(F1 ∪ F2) + r(F1 ∩ F2), then F1 ∩ F2 ∈ M.

There is a one-to-one correspondence between the modular cuts of a matroid M and
single-element extensions of M, see [13, Chapter 7.2]. Hence, for each modular cut M of
M we can associate a single-element extension M +M e of M, where e is an element not
in the ground set of M, whose lattice of flats fall into the three following disjoint classes
(see [13, Corollary 7.2.]):

(i) flats F of M that are not in M;

(ii) sets F ∪ e, where F is a flat of M that is in M;

(iii) sets F ∪ e, where F is a flat of M that is not in M and F is not contained in a
member F′ of M of rank r(F) + 1.

Moreover, we can use this construction to determine all matroids: any matroid M is
obtained from a uniform matroid Un

n by a sequence of single-element extensions.
For example, consider the uniform matroid U3

3 . Then, M1 = [[1], [3]] and M2 =
[[2], [3]] are modular cuts. The lattices of flats of U3

3 , U3
3 +M1 4 and U3

3 +M2 4 are given
as follows:
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Lemma 5.1. Conjecture 1.1 is true for all matroids of ranks 1, 2 or 3.

Proof. The result is trivial for matroids of ranks 1 and 2. For matroids of rank 3, its lattice
of flats is given by

1̂

2-flats

1-flats

0̂

and, hence, its chain polynomial is cL(t) = [1 + (m1 + m2)t + et2](1 + t)2, where mi is
the number of i-flats and e is the number of edges between 1-flats and 2-flats. Since
e ≤ m1m2, then cL(t) is real-rooted.

Now, consider uniform matroids Un
n , n ≥ 4. The lattice of flats of M is Bn. So,

if M is a modular cut of Un
n (and, in general, a modular cut of Ur

n), then M = ∅ or
M = [X, [n]], where X ⊆ [n]. Hence, every flat of the lattice of flats of Un

n +M {n + 1}
fall into one of the following disjoint classes:

(i) F ⊂ {1, . . . , n, n + 1} such that {1, . . . , m, n + 1} is not a subset of F. In this case,
the rank of F is |F|;

(ii) F ⊂ {1, . . . , n, n + 1} such that {1, . . . , m, n + 1} ⊆ F. In this case, the rank of F is
|F| − 1.
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It follows that Un
n +M {n + 1} is isomorphic to the direct product Um

m+1 × Un−m
n−m .

Lemma 5.2. [6, Theorem 7.6] If all zeros of E( f ) and E(g) lie in the interval [−1, 0], then so
does E( f g).

Lemma 5.3. Let P and Q be two posets with a least and a greatest element such that |P|, |Q| ≥ 2,
and define

ĉP(t) =
t

(1 + t)2 · cP(t).

Then
ĉP×Q = ĉP ⋄ ĉQ := E(E−1(ĉP)E−1(ĉQ)).

Proof. Omitted in the long abstract.

Lemma 5.4 ([5]). If

f (x) =
d

∑
k=0

hkxk(1 + x)d−k

has hk ≥ 0 for all 0 ≤ k ≤ d, then all zeros of E( f ) are real, simple and located in [−1, 0]. In
particular, the h-polynomial of a Cohen-Macaulay poset is real-rooted.

Now, we can prove the following:

Theorem 5.5. If the h-polynomials of the order complexes of the posets P and Q have nonnegative
coefficients, then the chain polynomial of P × Q is real-rooted.

Proof. It follows directly from Lemmas 5.4, 5.2 and 5.3.

Corollary 5.6. The chain polynomial of Un
n +M {n + 1} is real-rooted for any modular cut of

Un
n .

Proof. As mentioned before, Un
n +M {n + 1} is isomorphic to Um

m+1 × Un−m
n−m . So, by

Lemma 5.3,
ĉL(Un

n+M{n+1}) = ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m ).

By Theorem 3.3, cL(Um
m+1)

and cL(Un−m
n−m ) are real-rooted. So, by Lemma 5.2, cL(Un

n+M{n+1})
is real-rooted.

Corollary 5.7. The chain polynomial of Un−1
n +M {n + 1} is real-rooted for any modular cut of

Un−1
n .

Proof. First, observe that Un−1
n is a truncation of Un

n and that modular cuts of Un−1
n are

also intervals. Let M̂ = [[m], [n]] be a modular cut of Un−1
n and M = [[m], [n]] be a

modular cut of Un
n . So Un−1

n +M̂ {n + 1} is a truncation of Un
n +M {n + 1}. Hence, if H

is the set of hyperplanes of Un
n +M {n + 1} = Um

m+1 × Un−m
n−m , then H ∈ H if and only if
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H = A × [n − m] or H = [m + 1]× B, where A ∈ A is a hyperplane of Um
m+1 and B ∈ B

is a hyperplane of Un−m
n−m . So,

ĉL(Un−1
n +M̂{n+1})(t) = ĉL(Un

n+M{n+1})(t)− t ∑
Hi∈H

ĉ[∅,Hi]
(t)

= ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m )(t)− t ∑

Ai∈A
ĉ[∅,Ai×[n−m]](t)

− t ∑
Bj∈B

ĉ[∅,[m+1]×Bj]
(t)

= ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m )(t)− t ∑

Ai∈A
ĉ[∅,Ai]

(t) ⋄ ĉL(Un−m
n−m )(t)

− t ∑
Bj∈B

ĉL(Um
m+1)

(t) ⋄ ĉ[∅,Bj]
(t).

Since ĉ[∅,Ai]
(t) ⪯ ĉL(Um

m+1)
(t) for all Ai ∈ A and ĉ[∅,Bj]

(t) ⪯ ĉL(Un−m
n−m )(t) for all Bj ∈ B,

ĉ[∅,Ai×[n−m]](t) ⪯ ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m )(t), for all Ai ∈ A

and
ĉ[∅,[m+1]×Bj]

(t) ⪯ ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m )(t), for all Bj ∈ B.

by [4, Theorem 3]. Hence ĉL(Un−1
n +M̂{n+1})(t) is real-rooted.
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A Galois structure on the orbit
of large steps walks in the quadrant

Pierre Bonnet*1 and Charlotte Hardouin†2

1LaBRI, Université de Bordeaux, Bordeaux
2Institut de mathématiques, Université Paul Sabatier, Toulouse

Abstract. The enumeration of weighted walks in the quarter plane reduces to studying
a functional equation with two catalytic variables. When the steps of the walk are
small, Bousquet-Mélou and Mishna defined a group called the group of the walk which
turned out to be crucial in the classification of the small steps models. In particular,
its action on the catalytic variables provides a convenient set of changes of variables
in the functional equation. This particular set called the orbit has been generalized to
models with arbitrary large steps by Bostan, Bousquet-Mélou and Melczer (BBMM).
However, the orbit had till now no underlying group.

In this article, we endow the orbit with the action of a Galois group, which extends the
notion of the group of the walk to models with large steps. As an application, we look
into a general strategy to prove the algebraicity of models with small backwards steps,
which uses the fundamental objects that are invariants and decoupling. The group action
on the orbit allows us to develop a Galoisian approach to these two notions. Up to the
knowledge of the finiteness of the orbit, this gives systematic procedures to test their
existence and construct them. Our constructions lead to the first proofs of algebraicity
of weighted models with large steps, proving in particular a conjecture of BBMM, and
allowing to find new algebraic models with large steps.

Keywords: functional equations, Galois theory, quadrant walks

1 Introduction and preliminaries

1.1 Walks in the quarter plane

A weighted walk in the quarter plane is defined as follows. Consider a finite subset
S of Z × Z. To each step s of S we attach its weight ws which is a nonzero complex
number. The tuple W = (S , (ws)s∈S ) is called a weighted model of walks. A weighted walk
in the quarter plane of length n on the model W is then a sequence of points P0, . . . , Pn in
N ×N such that for all i there exists si ∈ S satisfying si + Pi = Pi+1. The weight of the
walk is the product ws0ws1 . . . wsn−1 of the weights of the steps taken by the walk.

*pierre.bonnet@u-bordeaux.fr
†hardouin@math.univ-toulouse.fr

mailto:pierre.bonnet@u-bordeaux.fr
mailto:hardouin@math.univ-toulouse.fr


2 Pierre Bonnet and Charlotte Hardouin

λ

The weighted model Gλ (for which we take any nonzero λ

in C) along with an example of a walk on Gλ, of length 8,
ending at (3, 0) and of weight λ2.

λ

λ

Figure 1: An example of weighted model and walk

The enumeration of weighted walks in the quarter plane has attracted a lot of at-
tention over the past 20 years. Indeed, these objects are general enough to encode
many objects in combinatorics (families of permutations, trees, maps), probability theory
(stochastic processes, games of chance, sums of discrete random variables) or statistics
(non-parametric tests). The attraction for this topic comes from the fact that the solution
of this problem requires many different techniques and points of view, from combina-
torics of course, but also from probability theory, computer algebra, differential Galois
theory, complex analysis, geometry. . .

1.2 Generating function and classification

Given a model W , denote by qi,j,n the sum of the weights of walks in the quadrant on
W of length n starting at P0 (taken as (0, 0) unless stated otherwise) and terminating at
(i, j). The generating function for these walks is defined as

Q(X, Y, t) = ∑
i,j,n≥0

qi,j,nXiY jtn.

The weighted model is encoded as the Laurent polynomial of the model defined as S(X, Y) =
∑s∈S wsXsxYsy . From any weighted modelW , it is quite easy to form a functional equa-
tion for Q(X, Y, t), as we demonstrate in the following example.

Example 1. Let Gλ = {(−1,−1), (0, 1), ((1, 0), λ), (2, 1), (1,−1)} as in Figure 1 (Exam-
ple 2.1 in [2], see also Remark 2.2 for alternate weightings). Its Laurent polynomial is
S(X, Y) = 1

XY +Y + λX + X
Y + X2Y. We now construct a recurrence on the walks: a walk

terminating at coordinates (i, j) can be completed by a step s of S as long as (i, j) + s is
in N×N. This translates into the following functional equation:

Q(X, Y, t) = 1 + tX2YQ(X, Y, t) + tλXQ(X, Y, t) + tYQ(X, Y, t)

+ t
X
Y
(Q(X, Y, t)−Q(X, 0, t)) + t

1
XY

(Q(X, Y, t)−Q(X, 0, t)−Q(0, Y, t) + Q(0, 0, t)) .
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Such an equation is then usually put in the following normal form:

K̃(X, Y, t)Q(X, Y, t) = XY− t(X2 + 1)Q(X, 0, t)− tQ(0, Y, t) + tQ(0, 0, t), (1.1)

with K̃(X, Y, t) the kernel polynomial of the walk being equal here to XY (1− tS(X, Y)).

Given a class of combinatorial objects, a natural question is to determine where its
generating function fits in the classical hierarchy of power series of C(X, Y)[[t]]

rational ⊂ algebraic ⊂ D-finite ⊂ D-algebraic,

where algebraic series satisfy polynomial equations; D-finite series satisfy one linear
differential equation in each variable X, Y, t; and D-algebraic series satisfy polynomial
differential equations, all the coefficients being taken in the polynomial ring C[X, Y, t].

For walks, this hierarchy measures the complexity of a model: the lower its gener-
ating function in this hierarchy, the simpler the walks. The catalytic variables equations
like (1.1) do not immediately allow to conclude to the position of their solutions in this
hierarchy, hence the question of classifying the complexity of a model of walks in the
quarter plane is highly nontrivial.

Models: 79

|G| = ∞ : 56

D-transcendental : 47D-algebraic : 9

|G| < ∞: 23

D-finite: 19Algebraic: 4

(a) S ⊂ {−1, 0, 1}2

Models: 13 110

|O| = ∞: 12 870

non D-finite : ≥ 12 854

|O| < ∞: 13+227

D-finite: 227+4+7?Algebraic: 2?

(b) S ⊂ {−2,−1, 0, 1}2

Figure 2: The partial classifications for two families of unweighted models

For instance, consider the restriction of the problem to unweighted models with steps
contained in {−1, 0, 1}2 (these models are commonly called small steps models). The clas-
sification completed in 2018 and summarized in Figure 2a shows the numerous different
behaviours that arise. Following the success of this first classification, the set of con-
sidered models has been extended to models with steps in {−2, 1, 0,−1}2 in [3]. It is
summarized in Figure 2b, and is currently incomplete. One of the reasons is that not all
the tools used in the classification of small steps models extend to large steps.

For small steps models, [9, Chapter 4] proposes a complete strategy with Galois the-
oretic tools to classify solutions of functional equation of the form (1.1) when the kernel
polynomial is biquadratic and the orbit is finite. Unfortunately, theses tools rely heavily
on an elliptic uniformization of the algebraic curve associated with the kernel polyno-
mial. We propose here a an extension of these tools with in sight a particular strategy
to prove algebraicity, which goes beyond the elliptic framework since it deals with ker-
nel polynomials of arbitrary degree. It has the advantage to stay within the realm of
Laurent power series and is almost algorithmic until an algebraic characterization of
certain invariants. Moreover, we hope that the geometric framework hidden behind our
constructions will allow to adapt entirely the strategy of [1] to large steps models.
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1.3 The group and the orbit

A fundamental object which arises in the study of models with small steps is the group
of the walk, introduced by Bousquet-Mélou and Mishna in [5], following [9]. It is defined
as follows. For a small steps model, we can write its Laurent polynomial in two ways:

S(X, Y) = A−1(X)/Y + A0(X) + A1(X)Y
= B−1(Y)/X + B0(Y) + B1(Y)X.

Assume A−1(X), A1(X), B−1(Y) and B1(Y) to be nonzero. The polynomial S(x, y) is left
unchanged by the two birational transformations (that are involutions) of C×C defined as

Φ : (u, v) 7→
(

B−1(v)
uB1(v)

, v
)

Ψ : (u, v) 7→
(

u,
A−1(u)
vA1(u)

)
.

The group of the walk is then defined as ⟨Φ, Ψ⟩, the subgroup of birational transformations
of C×C generated by Φ and Ψ. This group turned out to be a crucial algebraic invariant
of a model with small steps. For instance, an unweighted model with small steps has a
D-finite generating function if and only if the group is finite (see the introduction of [1]).

The group also acts on pairs of catalytic variables. The orbit of its action on the pair
(x, y) has a graph structure: the vertices are the pairs (u, v) of the orbit of (x, y), and two
pairs are adjacent if one can be obtained from the other by applying Φ or Ψ to it.

If the model contains a large step, the equation S(x, y) = S(x, y′) may have non-
rational solutions in x and y because of the higher degree of the polynomials, therefore
in that case this group cannot be defined as a group of birational transformations of
C × C. Nonetheless, Bostan, Bousquet-Mélou and Melczer noted in [3] that the graph
could be defined independently from the group, and called it the orbit of the walk. It
is defined as follows. Denote by K = C(x, y) the algebraic closure of C(x, y) for two
indeterminates x and y.

Definition 2 (Definition 3.1 in [3]). Let (u, v) and (u′, v′) be in K ×K. Then (u, v) and
(u′, v′) are called x-adjacent if S(u, v) = S(u′, v′) and u = u′. Similarly, they are called
y-adjacent if S(u, v) = S(u′, v′) and v = v′. We denote these two equivalence relations by
∼x and ∼y. Two pairs are then adjacent if they are either x-adjacent or y-adjacent, and
this relation is denoted by ∼. We denote by ∼∗ the transitive closure of ∼. The orbit of
the walk is the set of pairs (u, v) such that (u, v) ∼∗ (x, y), and is denoted O.

Example 3. For the small steps model S(X, Y) = 1/X + 1/Y + XY, the orbit is the cycle

(x, y) Φ←→
(

1
xy

, y
)

Ψ←→
(

1
xy

, x
)

Φ←→ (y, x) Ψ←→
(

y,
1

xy

)
Φ←→

(
x,

1
xy

)
Ψ←→ (x, y)

Example 4. For Gλ, the equation S(x, y) = S(x′, y) has three solutions x, x1 and x2 with
x1 algebraic of degree two over C(x, y). Continuing the construction, it turns out that
the orbit O is finite of size 12 with coordinates in C(x, y, x1) (see Figure 3).



A Galois structure on the orbit of large steps walks in the quadrant 5

In Section 2, we introduce a Galois framework to study the orbit. It allows us to
generalize the group of the walk to weighted models with arbitrarily large steps.

1.4 A strategy based on invariants and decoupling

In their article [1], Bernardi, Bousquet-Mélou and Raschel introduced a general strategy
for proving algebraicity of a small steps model in the quadrant, later adapted to models
of the three-quadrant cone in [6]. This method relies critically on objects called invariants,
of which we use one flavor in the realm of formal power series, the t-invariants.

Define the subring Cmul(X, Y)[[t]] of power series of C(X, Y)[[t]] whose coefficients
in the t-expansion are of the form An(X,Y)

Bn(X)Cn(Y)
for An, Bn and Cn polynomials over C. A

power series in Cmul(X, Y)[[t]] is said to have poles of bounded order at 0 if there is a bound
on the order of the poles at X = 0 and Y = 0 of its coefficients (Definition 2.1 in [6]).

Definition 5. Let F(X, Y, t) and G(X, Y, t) be two power series of Cmul(X, Y)[[t]]. They
are t-equivalent (with respect to K̃) if the power series F(X,Y,t)−G(X,Y,t)

K̃(X,Y,t)
∈ Cmul(X, Y)[[t]]

has poles of bounded order at 0. This equivalence is denoted by F(X, Y, t) ≡ G(X, Y, t).

The t-equivalence relation is compatible with ring operations, and is used to define
the notions of t-invariants and t-decoupling.

Definition 6 (Invariants, Def. 2.3 in [6]). Let F(X, t), G(Y, t) ∈ Cmul(X, Y)[[t]]. The pair
(F(X, t), G(Y, t)) is called a pair of t-invariants if F(X, t) ≡ G(Y, t).

Definition 7 (Decoupling). Let H(X, Y, t) be a series of Cmul(X, Y)[[t]]. Then H(X, Y, t)
admits a t-decoupling if there exist F(X, t) in Cmul(X)[[t]] and G(Y, t) in Cmul(Y)[[t]] such
that H(X, Y, t) ≡ F(X, t) + G(Y, t).

Example 8. Consider the model defined by S(X, Y) = XY + 1
X + 1

Y (the same as Exam-
ple 3). The fraction XY admits the obvious decoupling XY ≡ 1

t −
1
X −

1
Y . Moreover, the

following identity induces a pair of rational invariants: X + 1
tX −

1
X2 ≡ Y + 1

tY −
1

Y2 .

When all the components of a pair of t-invariants or a t-decoupling are rational
fractions, we speak of rational t-invariants or t-decoupling. This notion of invariants
intervenes in the following result, on which the strategy of [1, 6] relies crucially.

Lemma 9 (Lemma 2.6 in [6]). Let (F(X, t), G(Y, t)) be a pair of t-invariants. If the coefficients
of the power series F(X,t)−G(Y,t)

K̃(X,Y,t)
∈ Cmul(X, Y)[[t]] have no pole at X = 0 nor Y = 0, then there

exists a series A(t) in C[[t]] such that F(X, t) = G(Y, t) = A(t).

The strategy of [1, 6] applies verbatim to large steps models with small backward
steps, and goes as follows. Using a rational t-decoupling of XY (or more generally
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Xk+1Yl+1 for other starting points) and the special shape of the equation (e.g. Equa-
tion (1.1)), we construct a first pair of t-invariants. Next, we combine it with a pair of
non-constant rational t-invariants using ring operations, to eventually obtain a third pair
of invariants that satisfy the conditions of Lemma 9. As this pair involves Q(X, 0, t) and
Q(0, Y, t), the lemma gives two equations with one catalytic variable on these series. By
a result of Bousquet-Mélou and Jehanne in [4], they must be algebraic, so is Q(X, Y, t).

The existence of non-constant rational t-invariants and decoupling is crucial to con-
duct this strategy. In sections 3.2 and 3.3, we give a Galois approach to these two notions,
which exploits the notion of the group of the walk introduced in Section 2, providing a
systematic construction of these objects up to their existence and the finiteness of the or-
bit. This is an alternative approach to the one developed in [8] where the authors search
for a polynomial decoupling (see the discussion of Example 3.19 in [2]).

Using our systematic approach, we were able to conduct the strategy on the model
Gλ, proving a conjecture of Bostan, Bousquet-Mélou and Melczer in [3]. We detail the
proof in Section 4 as an illustration of the strategy. Moreover, for a family of models
with large steps (Hn)n whose orbits are conjectured to be finite, we were able to conjec-
ture that Xi+1Y j+1 (which appears in place of XY in equations of the form (1.1) when
considering a starting point (i, j) other than (0, 0)) admits a decoupling for several (i, j)
(namely, (n− 1, 0) and ((n + 1)k− 1, k− 1) for every k). We successfully proved the al-
gebraicity for several of these starting points for n ≤ 4, hinting a possibly infinite family
of algebraic models with arbitrarily large steps (see Appendix E of [2]).

2 A Galois structure on the orbit

The proofs and constructions in Sections 2, 3 and 4 are detailed in our upcoming pa-
per [2]. We consider a weighted model W with a non-univariate step polynomial. We
denote by k the field C(S(x, y)). Recall also that K = C(x, y), and that if M|L is a subex-
tension of K|L, a L-algebra automorphism σ : M → M is a ring homomorphism such
that σ|L = idL. We denote by Aut(M|L) the group of L-algebra automorphisms of M.

We first endow the orbit with a group action as follows. If σ : K → K is a C-algebra
automorphism, define its action on a pair (u, v) ∈ K×K by σ · (u, v) = (σ · u, σ · v).

Lemma 10 (Lemmas 3.7 and 3.8 in [2]). The orbit is stable under the action of k(x) and
k(y)-algebra automorphisms of K, which all preserve the relations ∼x and ∼y.

This lemma has a field theoretic counterpart: define k(O) to be the subextension of
K|k generated by the coordinates of the pairs of O.

Theorem 11 (Theorem 3.9 in [2]). The field extensions k(O)|k(x) and k(O)|k(y) are Galois.

We denote by Gx = Aut(k(O)|k(x)) and Gy = Aut(k(O)|k(y)) their respective Galois
groups, and by Gxy their intersection Gx ∩Gy (which is the Galois group of the extension
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k(O)|k(x, y)). We recall that the algebraic extension k(O)|k(x) is Galois if k(x) coincides
with the subfield of k(O) formed by the elements fixed by every automorphism in Gx.

Definition 12 (Group of the walk). We define the group of the walk G =
〈

Gx, Gy
〉

to be
the subgroup of k-algebra automorphisms of k(O) generated by Gx and Gy.

It is easy to see from its definition that G acts by graph automorphisms on the graph
of O, and that its action is faithful. Moreover, while the group G is a priori not finitely
generated, the left cosets Gx/Gx,y and Gy/Gx,y are of finite cardinal, respectively dx =

degX K̃ and dy = degY K̃ (Lemma 3.14 in [2]). We then fix Ix = {id, ιx
1, . . . , ιx

dx−1} and
Iy = {id, ι

y
1, . . . , ι

y
dy−1} two respective sets of representatives for these two cosets.

Theorem 13 (Theorem 3.16 in [2]). The subgroup
〈

Ix, Iy
〉

of G acts transitively on O.

Thus, the orbit O is realized as the action of a finite set of automorphisms on the pair
(x, y), completing the analogy with the small steps setting.

Example 14 (Examples 3.10 and 3.18 in [2]). For W a model with small steps that has
both positive and negative steps in each direction, k(O) = C(x, y). Therefore, Gxy = 1,
of index two in Gx and Gy. Hence, Gx = ⟨ψ⟩ and Gy = ⟨ϕ⟩ with ψ2 = ϕ2 = 1, and we
find G = ⟨ϕ, ψ⟩. The identities ψ(h(x, y)) = h(Ψ(x, y)) and ϕ(h(x, y)) = h(Φ(x, y)) yield
an isomorphism between G and the group of small steps (§ 1.3).

Example 15 (continuing Example 4). For Gλ, we saw that k(O) = C(x, y, x1), with x1
algebraic of degree 2 over C(x, y). Hence, Gxy = ⟨τ⟩ with τ2 = 1, and after some
computation we find Gx = ⟨τ, τ′⟩ ≃ Z/2Z ×Z/2Z and Gy = ⟨τ, σ⟩ ≃ S3 for τ′2 = 1
and σ3 = 1. In the end, G = ⟨τ, τ′, σ⟩ ≃ S4, which in this particular case coincides with
the full group of graph automorphisms of O.

3 Construction of invariants and decoupling

3.1 Fractions as elements of k(O)
To apply the Galois framework of Section 2 to the construction of rational invariants
and decoupling, we define an evaluation of some fractions of C(X, Y, t) into k(O). Its
definition relies crucially on the fact that the kernel polynomial K̃(X, Y.t) is irreducible
in C[X, Y, t] (Lemma 3.10 in [2]).

Definition 16. We call a fraction H(X, Y, t) of C(X, Y, t) regular if the denominator of H
is not divisible by K̃(X, Y, t).

Note that fractions of C(X, Y), C(X, t) and C(Y, t) are automatically regular because
K̃(X, Y, t) is irreducible and trivariate by assumption onW .
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Definition 17. If (u, v) is a pair of the orbit and H(X, Y, t) is a regular fraction of
C(X, Y, t), define its evaluation on (u, v) to be H(u,v) = H(u, v, 1/S(x, y)) ∈ k(O).

The evaluation on a pair of the orbit naturally extends to C-linear combinations of
pairs of the orbit (called 0-chains):

for c = ∑
(u,v)∈O

cu,v(u, v), define Hc = ∑
(u,v)∈O

cu,vH(u,v)

Proposition 18 (Proposition 3.23 in [2]). The evaluation homomorphism sending a regular
fraction H to its evaluation H(x,y) maps bijectively C(X, t) to k(x), C(Y, t) to k(y) and C(X, Y)
to k(x, y). A regular fraction evaluates to 0 if and only if its numerator is divisible by K̃(X, Y, t).

Thus, we can consider regular fractions as elements of the field k(O), so as to ben-
efit from our Galois-theoretic formalism. The homomorphism induces a relation on
regular fractions: two regular fractions of C(X, Y, t) are called Galois-equivalent if their
evaluations induce the same element in k(O). Like the t-equivalence (Definition 5), this
equivalence relation induces notions of invariants and decoupling:

• A pair of regular fractions (I(X, t), J(Y, t)) that are Galois equivalent is called a
pair of Galois invariants. By Proposition 18, the evaluation homomorphism gives
a correspondence between pairs of Galois invariants and elements of the subfield
k(x) ∩ k(y) of k(O), which we denote by kinv, whose elements are fixed by G.

• Likewise, we say that a regular fraction H(X, Y, t) admits a Galois decoupling pair
(F(X.t), G(Y, t)) if H is Galois-equivalent to F + G. As above, a fraction H admit-
ting a Galois decoupling corresponds through the evaluation homomorphism to a
fraction h in k(x, y) that writes as h = f + g for some f ∈ k(x) (fixed by Gx) and
g ∈ k(y) (fixed by Gy).

Proposition 3.23 in [2] implies that t-equivalent regular fractions are Galois equiv-
alent. Therefore, the existence of rational t-invariants or t-decoupling of a fraction H
is conditioned to the existence of their Galois counterparts (of which we give a com-
plete treatment in the next two subsections). Once we have obtained non-constant Ga-
lois invariants or decoupling, we simply check if the Galois-equivalences involved are
also t-equivalences, so that we obtain non-constant t-invariants and t-decoupling. If
one of these two steps fails, then we know that non-constant rational t-invariants or
t-decoupling of H do not exist.

3.2 Galois invariants

A pair of constant invariants (F(t), F(t)) is mapped by the evaluation homomorphism
at (x, y) to an element of k. Therefore, the existence of non-constant Galois invariants is
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reduced to the field-theoretic question of whether the inclusion k ⊂ kinv is proper or not.
This question is answered through the following result, which is a special instance of a
theorem proved in the more general context of finite algebraic correspondences by Fried
in [10], which we translate in the context of walks. This extends Theorem 4.6 in [1] and
Corollary 4.6.11 in [9] to the large steps case.

Theorem 19 (Theorem 4.3 in [2]). The following statements are equivalent:

1. the orbit O is finite,

2. G is a finite group,

3. there exists a pair of non-constant Galois invariants.

When finite, the orbit is described by two explicit polynomials that cancel the left
and right coordinates. In this case, the extension kinv|k is purely transcendental of tran-
scendence degree 1, and any nonconstant coefficient of these polynomials is a generator,
making the construction of rational invariants systematic (e.g. Equation (4.3) for Gλ).
Finally, as k(O)G = kinv, then k(O)|kinv is a finite Galois extension with Galois group G.

3.3 Galois decoupling

We now assume that the orbit is finite. Given a regular fraction H(X, Y, t), we want to
find a criterion for whether it admits a Galois decoupling, and if it does, to compute it.
To this end, we define a notion of decoupling in the orbit.

Definition 20 (Definition 5.7 in [2]). Let (γx, γy, α) be a tuple of 0-chains such that
(x, y) = γx + γy + α (with (x, y) being considered as a vertex in the orbit). This is called
a decoupling of (x, y) in the orbit if for every regular H(X, Y, t) the following conditions
hold: (1) Hγx ∈ k(x), Hγy ∈ k(y) and (2) Hα = 0 when H admits a Galois decoupling.

In the proof of Theorem 4.11 in [1], the authors construct an explicit decoupling of
(x, y) for the cyclic orbits of small steps models. We extend their result to an arbitrary
finite orbit using our Galois-theoretic framework and graph homology.

Theorem 21 (Theorem 5.10 in [2]). If the orbit is finite, the pair (x, y) always admits a decou-
pling (γx, γy, α) in the orbit (in the sense of Definition 20).

Thanks to this result, the question of the existence of the Galois decoupling of a
regular fraction may be decided through an evaluation:

Proposition 22. If (γx, γy, α) is a such a tuple, then a regular fraction H(X, Y, t) admits a
Galois decoupling if and only if Hα = 0, and the decoupling is given by H(x,y) = Hγx + Hγy .
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Note however that for an arbitrary 0-chain c, it is not always convenient to compute
the evaluation Hc, because the coordinates of elements of the orbit are random algebraic
elements. A friendlier family for computer algebra is composed of 0-chains of the form

c = ∑
(u,v)∈O,P(u)=0

(u, v) or c = ∑
(u,v)∈O,P(v)=0

(u, v)

with P a polynomial over C(x, y), which we call symmetric chains. It is easy to compute
the evaluation of regular fractions over symmetric chains via Newton’s identities. Some
symmetric chains are presented as level lines for a well chosen distance in the graph of
the orbit. They are denoted by Xi and Yi in Figure 3.

Assuming a distance transitivity property on the graph of the orbit, we refine Theo-
rem 21 by showing that the pair (x, y) admits a decoupling (γx, γy, α) with γx and γy
composed of level lines, whose expression is explicit (Theorem 5.34 in [2]). This as-
sumption was verified for all finite orbits arising from weighted models with steps in
{−1, 0, 1, 2} (Figure 10 in [3]) which includes the one of Figure 3. Other families of orbits
have been checked such as the ones arising from Hadamard (Section 11 of [3]) and Tandem
models (Section 3.2 of [7]).

Example 23. For the orbits of the same type as in Figure 3, the pair (x, y) admits a
decoupling in terms of the symmetric chains Xi and Yi. It reads

(x, y) =
(

X0

2
− X1

8
+

X2

8

)
+

(
Y0

4
− Y1

4

)
+ α.

We evaluated the fraction XY on it to obtain its Galois decoupling (4.2).

4 An example: the model Gλ is algebraic

We illustrate here with the model Gλ the generic strategy for proving algebraicity of
large steps models with small backward steps described in Section 1.4. First, recall the
equation found for the generating function of walks on Gλ in Example 1:

K̃(X, Y, t)Q(X, Y, t) = XY− t(X2 + 1)Q(X, 0, t)− tQ(0, Y, t) + tQ(0, 0, t). (1.1)

Note that the generating function Q(X, Y, t) has polynomial coefficients, hence the left
hand-side of the equation is t-equivalent to 0, so the functional equation translates into

XY ≡
(

t(X2 + 1)Q(X, 0, t)− tQ(0, 0)
)
+ tQ(0, Y, t). (4.1)

Moreover, using the decoupling of (x, y) in the orbit of Gλ (Example 23), Proposition 22
gives a Galois decoupling of the fraction XY, which is checked to be the t-decoupling

XY ≡ −3λX2t− λt− 4X
4t(X2 + 1)

+
−λY− 4

4Y
. (4.2)



A Galois structure on the orbit of large steps walks in the quadrant 11

(x, y1)

(x3, y1) (x4, y1)

(x, y)

(x1, y) (x2, y)

(x1, y2)
(x3, y2)

(x5, y2)

(x2, y3)

(x5, y3)

(x4, y3)

(x, y1)

(x3, y1)

(x4, y1)

(x, y)

(x1, y)

(x2, y)

(x1, y2) (x3, y2)

(x5, y2)

(x2, y3)

(x5, y3)

(x4, y3)

Y0

Y1

Y2

X0

X1

X2

X3

Figure 3: The orbit O12 of Gλ in two perspectives, illustrating a distance transitivity
property (the 0-chains Xi and Yi are the sums of vertices in their respective regions).

Combining Equations (4.1) and (4.2), we obtain the t-equivalence(
t(X2 + 1)Q(X, 0, t)− tQ(0, 0, t)

)
+

3λX2t− λt− 4X
4t(X2 + 1)

≡ −λY− 4
4Y

− tQ(0, Y, t),

which gives a first pair of invariants P1 = (I1(X, t), J1(Y, t)). Note that J1(Y, t) has a pole
at Y = 0, so this pair does not satisfy the conditions of Lemma 9.

The orbit of the model Gλ being finite, we also obtain automatically the following
pair P2 = (I2(X, t), J2(Y, t)) of Galois invariants, which we check to be t-invariants:(

(−λ2 X3−1 X4−X6+X2+1)t2−X2λ(X2−1)t+X3

t2X(X2+1)2 , −t Y4+λtY+Y3+t
Y2t

)
. (4.3)

In order to find a pair of invariants satisfying the conditions of Lemma 9, the heuristic
is to combine the pairs of invariants P1 and P2 using ring operations in order to remove
their poles both in X and Y, by examining their Taylor expansions in their respective
variables. Unlike the previous steps, the pole elimination is not systematic and requires
a case by case treatment. This leads us to define P3 = (I3(X, t), J3(Y, t)) to be

P2

(
P1 − λ

4

)
− P3

1 +
(

2tQ(0, 0)− λ
4

)
P2

1 +
(

2t ∂Q
∂y (0, 0)− t2Q(0, 0)2 + 5λ2

16

)
P1.

Using the functional equation, we are now able to check that this pair of t-invariants
indeed satisfies the conditions of Lemma 9. Therefore, there exists a power series A(t)
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in C[[t]] such that I3(X, t) = J3(Y, t) = A(t). These are equations with one catalytic
variable for Q(X, 0, t) and Q(0, Y, t) that satisfy the assumptions of Theorem 3 in [4].
This allows us to conclude that these series are algebraic over C(X, Y, t), so that the
same holds for the generating function Q(X, Y, t) of the model Gλ. Following the method
of [4], we found an explicit minimal polynomial for the series Q(0, 0, t) of degree 32 with
coefficients in Q(λ, t), proving in particular the algebraicity conjecture on the excursion
series of the two models in [3] (lines 2 and 3 in Table 4, which are the reversed models
of G0 and G1 but sharing the same excursion series).
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Abstract. For each permutation w in Sn and each irreducible representation (ρλ, Vλ) of
Sn, we determine when ρλ(w) admits a non-zero invariant vector in Vλ. We find that
non-zero invariant vectors exist in most cases, with very few exceptions.
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1 Introduction

This extended abstract is based on the results of [8]. The main results of this article
are motivated by various problems in representation theory which we survey in the first
four subsections of this introduction. The main results are stated in Section 1.5. Section 2
contains an outline of the proof of our main theorem. Details can be found in [8]. In
Section 3, we list some interesting questions for further study.

1.1 Locally Invariant Vectors

Let G be a finite group and let V be a complex representation of G. A G-invariant
vector in V is a vector v ∈ V such that g · v = v for all g ∈ G. The representation V
admits a G-invariant vector if and only if it contains the trivial representation of G as a
subrepresentation.

In this article, we will be concerned with locally G-invariant vectors. Fixing an element
g ∈ G, we ask if there exists a non-zero vector v ∈ V such that g · v = v. It is easy to see
that the existence of such a vector depends on g ∈ G only through its conjugacy class.

Let C(G) denote the set of conjugacy classes of G. Let Irr(G) denote the set of
irreducible complex representations of G up to isomorphism.

Question 1. Given a finite group G, for which pairs (C, V) ∈ C(G)× Irr(G) does there
exist a non-zero vector v ∈ V such that g · v = v for some element g ∈ C?

*velmurugan@imsc.res.in

velmurugan@imsc.res.in
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1.2 Cyclic Permutation Representations

A cyclic representation of G is a representation that is induced from a multiplicative char-
acter of a cyclic subgroup of G. Artin [1] proved that every complex representation of
any finite group can be expressed as a virtual rational linear combination of cyclic rep-
resentations. This allowed him to show that some integer power of the Artin L-function
associated to any representation of G extends to a meromorphic function on the complex
plane.

Brauer [3] showed that every representation of G is a virtual integer linear combi-
nation of representations induced from linear characters of (not necessarily Abelian)
subgroups of G. Brauer showed that the subgroups of G can all be taken to be elementary
(product of a p-group with a cyclic group of order coprime to p for some prime p). This
variation on Artin’s theorem was used to improve Artin’s result on L-functions, conclud-
ing that Artin L-functions extend to meromorphic functions on the complex plane.

A permutation representation is a representation induced from the trivial representation
of a subgroup of G.

Definition 2 (Cyclic permutation representation). A cyclic permutation representation of
a finite group G is a representation that is induced from the trivial representation of a
cyclic subgroup of G.

In general (even for symmetric groups), it is not true that every representation of G
is a virtual rational linear combination of cyclic permutation representations.

Given g ∈ G, let Vg = IndSn
⟨g⟩ 1 denote the representation of G induced from the

trivial representation of the cyclic group ⟨g⟩ generated by g. The isomorphism class
of Vg depends only on the conjugacy class of g in G. By Frobenius reciprocity, given
V ∈ Irr(G), g admits a non-zero invariant vector in V if and only if V occurs in the
decomposition of Vg into irreducibles. Thus Question 1 can be reformulated in terms of
cyclic permutation representations as follows:

Question 3. Given a finite group G, for which pairs (C, V) ∈ C(G)× Irr(G) does V occur
in Vg?

Let ZG(g) denote the centralizer of g in G. The following definition is due to Heide
and Zalessky [4].

Definition 4 (Global conjugacy class). Let G be a finite group. The conjugacy class of an
element g ∈ G is said to be a global conjugacy class if every irreducible representation of
G occurs in the permutation representation IndG

ZG(g) 1.

The group algebra C[G] of G can be thought of as a representation of G via the action
of G on itself by conjugation, called the adjoint representation of G. Heide, Saxl, Tiep,
and Zalessky [5] showed that the adjoint representation of G contains every irreducible
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representation of G for every finite simple group G except G = SU(n, q2) when n is
odd and coprime to q + 1. Since C[G] is a direct sum of the representations IndG

ZG(g) 1
as g runs over the conjugacy classes of G, if G admits a global conjugacy class then the
adjoint representation of G contains every irreducible representation of G. Heide and
Zalessky [4, Conjecture 1.5] conjectured that the converse is true: if every irreducible
representation of a finite simple group G occurs in its adjoint representation then G
admits a global conjugacy class. They proved this conjecture for alternating groups An,
n > 4, and for all sporadic simple groups.

Sheila Sundaram [10, Theorem 5.1] characterized global conjugacy classes for all sym-
metric groups (see Theorem 7). She showed [10, Theorem 1.1] that a symmetric group
Sn admits a global conjugacy class if and only if n = 6 or n ≥ 8.

For every element g ∈ G, the cyclic group ⟨g⟩ generated by g is a subgroup of the
centralizer group ZG(g). It follows that IndG

ZG(g) 1 is a subrepresentation of IndG
⟨g⟩ 1.

Thus, if the conjugacy class of G is a global class, then every irreducible representation
V of G admits a non-zero vector v ∈ V such that g · v = v.

Definition 5. Let G be a finite group, and let C be a conjugacy class in G. We say that C
is a cyclically global class if Ind⟨g⟩ 1 contains every irreducible representation of G.

A complete answer to the equivalent Questions 1 or 3 will result in the characteriza-
tion of cyclically global conjugacy classes in G.

1.3 Immersion of Representations

Prasad and Raghunathan [9] proposed a partial order on automorphic representations
called immersion. Adapted to finite groups, it may be defined as follows.

Definition 6. Given representations (ρ, V) and (σ, W) of G, say that V is immersed in
W, denoted V ≼ W, if for every g ∈ G and every λ ∈ C, the multiplicity of λ as an
eigenvalue of ρ(g) does not exceed the multiplicity of λ as an eigenvalue of σ(g).

In particular, if V is a subrepresentation of W, then V ≼ W.
Let 1 denote the trivial representation of G. Then 1 ≼ V if and only if, for every

g ∈ G, there exists a non-zero vector v ∈ V such that g · v = v.

1.4 Results for Symmetric Groups

In this section, we follow standard notation from the theory of symmetric functions. See
e.g., Macdonald [7].

Let Sn denote the nth symmetric group. The conjugacy class of w ∈ Sn is completely
determined by the cycle type of w which is a partition µ ⊢ n. For each µ ⊢ n, let wµ

denote a permutation with cycle type µ.
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Following Schur, irreducible representations of Sn are elegantly characterized by as-
sociated symmetric functions. If the representation V of Sn has character χ : Sn → C, its
Frobenius characteristic is defined as the symmetric function

chn χ = ∑
µ⊢n

χ(wµ)

zµ
pµ,

where pµ denotes the power sum symmetric function associated to the partition µ and
zµ denotes the number of permutations in Sn that commute with wµ.

For every partition λ ⊢ n, there is a unique irreducible representation Vλ of Sn whose
character χλ satisfies

chn χλ = sλ,

where sλ is the Schur function associated to λ ⊢ n. The representations {Vλ | λ ⊢ n} are
the irreducible representations of Sn.

Sundaram’s characterization of global conjugacy classes for symmetric groups is the
following.

Theorem 7 (Sundaram [10, Theorem 5.1]). Let n ̸= 4, 8. A partition of n is the cycle type of
a global conjugacy class in Sn if and only if it has at least two parts, and all its parts are odd and
distinct.

When µ = (n), wµ is an n-cycle in Sn and ZSn(w(n)) = ⟨w(n)⟩. The decomposi-
tion of the cyclic permutation representation of Sn induced from ⟨w(n)⟩ into irreducible
representations has a nice combinatorial interpretation.

Theorem 8 (Kraśkiewicz and Weyman [6]). Let χr denote the character of ⟨w(n)⟩ which takes
w(n) to e2πir/n. For any λ ⊢ n, the multiplicity of Vλ in IndSn

⟨w(n)⟩
χr is given by the number aλ,r

of standard tableaux of shape λ whose major index is congruent to r modulo n.

However, it is not easy to say when aλ,r is positive. This question was resolved by
Swanson [12, Theorem 1.5]. When r = 0, his results prove a conjecture of Sundaram [11,
Remark 4.8].

Theorem 9. For λ ⊢ n, Vλ occurs in IndSn
⟨w(n)⟩

1 unless λ is one of

1. (n − 1, 1),

2. (2, 1n−2) with n odd,

3. (1n) with n even.
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1.5 Our Main Results

Let An denote the alternating group, a subgroup of index 2 in Sn.

Main Theorem. The only pairs of partitions (λ, µ) of a given integer n such that wµ does not
admit a nonzero invariant vector in Vλ are the following:

1. λ = (1n), µ is any partition of n for which wµ /∈ An,

2. λ = (n − 1, 1), µ = (n), n ≥ 2,

3. λ = (2, 1n−2), µ = (n), n ≥ 3 is odd,

4. λ = (22, 1n−4), µ = (n − 2, 2), n ≥ 5 is odd,

5. λ = (2, 2), µ = (3, 1),

6. λ = (23), µ = (3, 2, 1),

7. λ = (24), µ = (5, 3),

8. λ = (4, 4), µ = (5, 3),

9. λ = (25), µ = (5, 3, 2).

It follows that most irreducible representations of Sn admit w-invariant vectors for
every permutation w. In terms of the notion of immersion (Definition 6), we have

Theorem 10. Given a partition λ ⊢ n, V(n) ≼ Vλ if and only if λ is not one of

1. (1n),

2. (n − 1, 1) for n ≥ 2,

3. (2, 1n−2) when n ≥ 3 is odd,

4. (22, 1n−4), when n ≥ 5 is odd,

5. (2, 2), (23), (24), (42) and (25).

Because the sign representation does not admit any non-zero invariant vector for a
permutation that does not lie in An, conjugacy classes of Sn that are not contained in
An cannot be cyclically global. We find that most conjugacy classes of Sn which are
contained in An are cyclically global.

Theorem 11. Given a partition µ ⊢ n the conjugacy class in Sn consisting of permutations with
cycle type µ is cyclically global if and only if it is contained in An and µ is not one of



6 Amrutha P., Amritanshu Prasad, and Velmurugan S.

1. (n) for n ≥ 2,

2. (n − 2, 2) for n ≥ 5 odd,

3. (3, 1), (5, 3).

While conjugacy classes that are not contained in An cannot be cyclically global, for
most of them, the only obstruction to being cyclically global is the sign representation.

Definition 12 (Persistent class). A permutation w ∈ Sn is said to be persistent if IndSn
⟨w⟩ 1

contains Vλ for every λ ⊢ n with the possible exception of λ = (1n). If w is persistent
then every permutation in its conjugacy class is persistent.

By Frobenius reciprocity, w is persistent if there exists a non-zero v ∈ Vλ such that
w · v = v for all λ ⊢ n such that λ ̸= (1n). It turns out that for most partitions µ, wµ is
persistent.

Theorem 13. Given µ ⊢ n, wµ is persistent unless µ is one of the following:

1. (n) when n ≥ 2,

2. (n − 2, 2), when n ≥ 5 is odd,

3. (3, 1), (3, 2, 1), (5, 3), (5, 3, 2).

2 Proof of the Main Theorem

The main theorem is proved using Swanson’s theorem (Theorem 9) and the Littlewood-
Richardson rule. We outline the main steps in the proof in this section.

2.1 Reformulation in terms of Symmetric Functions

Definition 14. Given symmetric functions f and g with integer coefficients, say that
f ≥ g if f − g is a non-negative integer combination of Schur functions.

Define
fµ = chn IndSn

⟨wµ⟩ 1.

Then Vλ occurs in IndSn
⟨wµ⟩ 1 if and only if

fµ ≥ sλ (2.1)
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If µ = (µ1, . . . , µk) let Sµ = Sµ1 × · · · × Sµk be the Young subgroup corresponding to the
cycles of wµ. Let Dµ be the subgroup of Sµ generated by the cycles of wµ. Thus Dµ is a
product of cyclic groups of orders µ1, µ2, . . . , µk. Using induction in stages,

fµ = ch IndSn
Sµ

Ind
Sµ

Dµ
Ind

Dµ

Cµ
1.

Therefore

fµ ≥ ch IndSn
Sµ

Ind
Sµ

Dµ
1 =

k

∏
i=1

f(µi)
. (2.2)

Swanson’s theorem (Theorem 9) tells us that f(n) ≥ sλ for most partitions λ of n. We will
use this fact, together with the inequality (2.2), to establish (2.1) in most cases using the
Littlewood-Richardson rule. Recall that the Littlewood-Richardson coefficients cλ

αβ are
defined by

sαsβ = ∑
λ

cλ
αβsλ.

The Littlewood-Richardson rule [7, Section I.9] asserts that cλ
αβ is the number of LR-

tableaux of shape λ/α and weight β. Recall that an LR-tableau is a semistandard skew-
tableau whose reverse row reading word is a lattice permutation.

2.2 The Basic Lemmas

Our proof of the main will make frequent use of the following lemmas.

Lemma 15. For every partition λ of p + q, and every partition α of p that is contained in λ,
there exists a partition β of q such that sαsβ ≥ sλ.

Proof. Let Tλα denote the skew-tableau obtained by putting i in the ith cell of each col-
umn of λ/α. Let β be the weight of Tλα. For example, if λ = (5, 4, 4, 1) and α = (3, 2, 1)
then

Tλα = 1 1
1 2

1 2 3
1

,

and β is (5, 2, 1). Since every i + 1 occurs below an i, Tλα is an LR-tableau. The
Littlewood-Richardson rule implies that sαsβ ≥ sλ.

Lemma 15 is nothing more than the well-known statement that the skew-Schur func-
tion sλ/α is non-zero whenever λ ⊃ α. However, the method of constructing β in the
proof is also used in our proof of the main theorem.

Lemma 16. Given integers p ≥ 2, q ≥ 1, and a partition λ ⊢ (p + q) different from (1(p+q)),
there exists a partition β ⊢ q such that f(q) ≥ sβ and β ⊂ λ.

Proof. We consider the following cases:
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Case 1: λ ⊃ (q − 1, 1)

Since p ≥ 2, the skew shape λ/(q − 1, 1) has at least two cells. If at least one of these
cells lies in the first row of λ, then choose β = (q). If at least one of these cells lies
in the first column of λ, then choose β = (q − 2, 1, 1) If neither of the above happens,
then λ/(q − 1, 1) has at least two cells in its second row. In this case q − 1 ≥ 3. Choose
β = (q − 2, 2). The possible placements of the cells of λ/(q − 1, 1) are shown in Figure 1.

Figure 1: Possible placements of two cells of λ/(q − 1, 1)

In all these cases, Theorem 9 implies that f(q) ≥ sβ.

Case 2: λ ⊃ (1q) and q is even

Since λ ̸= (1p+q), the skew-shape λ/(1q) must contain at least one cell in the first row.
Take β = (2, 1q−2). By Theorem 9, f(q) ≥ sβ, since q is even.

Case 3: λ ⊃ (2, 1q−2) and q is odd

If λ/(2, 1q−2) has a cell in its first row, take β = (3, 1q−3). If λ/(2, 1q−2) has a cell in
its first column, take β = (1q). By Theorem 9, f(q) ≥ sβ, since q is odd. Otherwise the
second column of λ/(2, 1q−2) must have at least two cells in its second column. In this
case q ≥ 4. Take β = (2, 2, 1q−4). The possible placements of the cells of λ/(2, 1q−2) are

Figure 2: Possible placements of cells of λ/(2, 1q−2).

shown in Figure 2.

All remaining λ:

Take β to be any partition of q that is contained in λ. Since λ does not contain any of the
exceptions of Theorem 9, f(q) ≥ sβ.
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2.3 The Main Steps of the Proof

For convenience, we will say that a partition µ is persistent if wµ is persistent in the sense
of Definition 12. The goal is to prove that, for n ≥ 11, every partition µ ⊢ n is persistent,
except for the partitions µ = (n), and µ = (n − 2, 2) when n is odd. The cases n ≤ 10
are easily solved by computer calculation, using, for example, the Sage Mathematical
Software [13]. The following lemma deals with most partitions that have two parts.

Lemma 17. If µ = (p, q) where p ≥ q ≥ 4, then µ is persistent.

For the details of the proof, we refer the reader to [8]. We only outline the main idea
here.

We wish to show that f(p,q) ≥ sλ for every λ ⊢ (p + q) different from (1p+q). By (2.2),
f(p,q) ≥ f(p) f(q). Hence, in order to show that f(p,q) ≥ sλ, it suffices to find α ⊢ p and
β ⊢ q such that

f(p) ≥ sα, f(q) ≥ sβ, and sαsβ ≥ sλ. (2.3)

Lemma 16 allows us to choose β ⊢ q such that β ⊂ λ and f(q) ≥ sβ. Using Lemma 15
with the roles of α and β reversed, we may choose α ⊢ p such that sαsβ ≥ sλ. If f(p) ≥ sα

we are done. Otherwise, α must be one of the partitions occurring in Swanson’s theorem
(Theorem 9). Most of these cases are dealt with by prescribing a replacement for α and
β so that (2.3) holds.

Lemma 17 can be leveraged to deal with most partitions with more than two parts
using the following lemma.

Lemma 18. A partition µ = (µ1, . . . , µk) ⊢ n with k ≥ 2 is persistent if the partition µ̃ obtained
by removing a part µi from µ is persistent and n − µi ≥ 4.

In order to prove the lemma, we wish to show that fµ ≥ sλ for every λ ⊢ n except
λ = (1n). Suppose µ = (µ1, . . . , µk). Noting that Cµ̃ × C(µi)

⊂ Cµ and Dµ̃ × D(µi)
= Dµ,

we have
Ind

Dµ

Cµ
1 ≥ Ind

Dµ̃

Cµ̃
1 ⊗ Ind

D(µi)

C(µi
)

1

Inducing to Sp1 × · · · × Spk , and then to Sp1+···+pk gives

fµ ≥ fµ̃ f(µi)
.

Hence it suffices to show that fµ̃ f(µi)
≥ sλ for all λ ⊢ n except λ = (1n). As before,

it suffince to find α ⊢ n − µi and β ⊢ µi such that α ̸= (1n), f(µi)
≥ β and sαsβ ≥ sλ.

Again, using Lemma 16, we may choose β such that β ⊂ λ and f(µi)
≥ sβ. Again,

using Lemma 15 with the roles of α and β reversed, we may choose α ⊢ n − µi such that
sαsβ ≥ sλ. In this case, there is a way to replace α and β with another pair which have
the required properties. The details of the proof are found in [8].

Lemmas 17 and 18 take care of most cases of partitions. To complete the proof, they
need to be carefully put together with a few more cases, for which we refer the reader
to [8].
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3 Futher Questions

We conclude this extended abstract by enumerating a few interesting open questions.

Question 19. Classify the global conjugacy classes of the alternating group An.

Heide and Zalesski [4] proved the existence of at least one such class for each n and
gave an algorithm to find it.

Question 20. Find “effective” versions of Artin and Brauer induction theorem (discussed
in Section 3) for symmetric groups.

For the Artin induction theorem, this would mean finding, for each positive integer n,
a set of pairs (µ, χ) where µ ⊢ n and χ : ⟨wµ⟩ → C is a multiplicative character such that
the representations IndSn

⟨wµ⟩ χ form a basis for the space of class functions on Sn. For the
Brauer induction theorem, this would mean finding, for each positive integer n and each
prime p, a set of pairs (A, χ) where A is an elementary subgroup of Sn and χ : A → C is
a multiplicative character such that the characters of the representations IndSn

A χ form a
basis for the space of class functions on Sn. Techniques developed by Boltje, Snaith and
Symonds [2] may be useful in this context.

Consider the representation Uχ
µ = IndSn

⟨wµ⟩ χ, where χ : ⟨wµ⟩ → C is a primitive
multiplicative character.

Question 21. Determine the set of triples (λ, µ, χ) such that Uχ
µ contains Vλ.

Since Swanson [12] solves this problem for µ = (n), this problem could also be
amenable to the methods of [8].

Question 22. Find subgroups H of Sn that are maximal among subgroups for which Vλ

occurs in IndSn
H 1 for every λ ⊢ n.

Theorem 11 shows that there are many cyclic subgroups with this property, and hence
there should be a large class of such maximal subgroups.
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Excedance quotients, Quasisymmetric Varieties,
and Temperley–Lieb algebras

Nantel Bergeron*1 and Lucas Gagnon†1

1Dept. of Math. and Stat., York University, Toronto, Ontario M3J 1P3, CANADA

Abstract. Let Rn “ Qrx1, x2, . . . , xns be the ring of polynomials in n variables and con-
sider the ideal xQSym`

n y Ď Rn generated by quasisymmetric polynomials without con-
stant term. It was shown by Aval–Bergeron–Bergeron that dim

`

Rn
L

xQSym`
n y

˘

“ Cn

the nth Catalan number. We explain here this phenomenon by defining a set of permu-
tations QSVn with the following properties: first, QSVn is a basis of the Temperley–Lieb
algebra TLnp2q, and second, when considering QSVn as a collection of points in Qn,
the top-degree homogeneous component of the vanishing ideal IpQSVnq is xQSym`

n y.
Our construction has a few byproducts which are independently noteworthy.

Résumé. Soit Rn “ Qrx1, x2, . . . , xns l’anneau des polynômes en n variables, et consid-
érez l’idéal xQSym`

n y Ď Rn engendré par les polynômes quasisymétriques sans terme
constant. Il a été démontré par Ava–Bergeron–Bergeron que dim

`

Rn
L

xQSym`
n y

˘

“ Cn

le n-ième nombre de Catalan. Nous expliquons ici ce phénomène en construisant un
ensemble de permutations QSVn ayant les propriétés suivantes: premièrement, QSVn
est une base de l’algèbre de Temperley–Lieb TLnp2q, et deuxièmement, en consid-
érant QSVn comme une collection de points dans Qn, la composante homogène de
degré supérieur de l’idéal IpQSVnq est xQSym`

n y. Notre construction a quelques sous-
produits qui sont indépendamment dignes d’intérêt.

Keywords: Quasisymmetric Polynomials, Bruhat order, Excedance, Temperley–Lieb

1 Introduction

Quasisymmetric functions originate in the work of Stanley [18], where they appear as
enumeration series for P-partitions. Later, Gessel [8] gave a more algebraic treatment
of the ring QSym spanned by all quasisymmetric functions, establishing a beautiful
analogy with the classical ring of symmetric functions Sym. The importance of QSym
has continued to increase: [1] established QSym as a universal setting for enumerative
combinatorial invariants, and in recent years quasisymmetric functions have been at the
center of a number of research programs (many examples can be found in [11, 15, 16]
and references therein).

*bergeron@yorku.ca
†lgagnon@yorku.ca
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In this abstract, based on the paper [4], we explore the striking similarity between
quasisymmetric functions and the invariant theory of finite reflection groups. Cheval-
ley’s theorem states that each finite reflection group W acts naturally on a polynomial
ring R, and the quotient of R by the ideal xRW

` y generated by positive degree invariants
is isomorphic to the regular module of W; see [13, Chapter 3]. Hivert [12] shows that
the quasisymmetric polynomials QSymn in Rn “ Qrx1, . . . , xns are likewise the invari-
ants of an action of the Temperley–Lieb algebra TLnp2q on Rn. Writing xQSym`

n y for
the ideal generated by the positive degree quasisymmetric polynomials, [2, 3] show that
the dimension of the coinvariant space Rn

L

xQSym`
n y and TLnp2q agree: both are the nth

Catalan number Cn. Since TLnp2q shares many nice properties with reflection groups,
one might expect a Chevalley-type theorem from this coincidence, but there is no obvi-
ous TLnp2q-action on Rn

L

xQSym`
n y: Hivert’s action is not multiplicative and xQSym`

n y is
not a TLnp2q-submodule.

Motivated by the discussion above, we revisit two modules which afford the left
regular representation of the symmetric group Sn:

(1) the quotient Rn
L

xSym`
n y of the polynomial ring Rn “ Qrx1, . . . , xns by the ideal

generated by positive-degree symmetric polynomials Sym`
n , and

(2) the coordinate ring Rn
L

IpSnq for the vertices of the regular permutohedron Sn in
Qn, which are the points pσ1, . . . , σnq for each permutation σ on n letters.

Module (1) is a famous case of Chevalley’s theorem: the Sn-invariants of Rn are the
symmetric polynomials, and Rn

L

xSym`
n y is the Sn coinvariant ring. On the other hand,

module (2) comes from the left multiplicative action of Sn on the permutohedron realized
on the coordinate ring Rn

L

IpSnq where IpSnq is the vanishing ideal. However, as seen in
the work of Garsia and Procesi [7] and reference therein, a careful inspection reveals that
these modules determine one another! Consider the ideal

In “ x f px1, . . . , xnq ´ f p1, . . . , nq | f P Sym`
n y Ď IpSnq.

For each f P Rn, let hp f q denote the top-degree homogeneous component of f , and for
any ideal I in Rn write grpIq “ xhp f q | f P Iy. Then grpInq Ě xSym`

n y, and Gröbner basis
theory gives a linear isomorphism Rn

L

grpInq – Rn
L

In. We therefore have

|Sn| “ dim
`

Rn
L

xSym`
n y
˘

ě dim
`

Rn
L

grpInq
˘

“ dim
`

Rn
L

Inq ě dimpRn
L

IpSnq
˘

“ |Sn|,

so that In “ IpSnq and grpInq “ xSym`
n y, and Rn

L

xSym`
n y – Rn

L

IpSnq as vector spaces.
This isomorphism respects the Sn-action on each quotient: both IpSnq and xSym`

n y are
fixed spaces for the standard Sn-action on Rn, and this action coindices with the action on
points for Rn

L

IpSnq. Thus, we have an Sn-module isomorphism Rn
L

xSym`
n y – Rn

L

IpSnq,
though the left hand side has a natural grading and the right hand side does not.

Our work in [4] applies this approach to quasisymmetric functions and Temperley–
Lieb algebras. It is known that xSym`

n y Ď xQSym`
n y, and that there is a surjective algebra
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homomorphism ϕ : CSn Ñ TLnp2q. Guided by these relationships, we searched for a
subset QSVn Ď Sn Ď Qn which satisfies:

(i) |QSVn| “ Cn,
(ii) the image ϕpQSVnq is a basis of TLnp2q, and

(iii) considering the vanishing ideal IpQSVnq, we have gr
`

IpQSVnq
˘

“ xQSym`
n y.

Assuming such a set exists, one can define an action of TLnp2q on the space Rn
L

xQSym`
n y

using Gröbner basis theory and the multiplication constants for the basis obtained from
QSVn. However, QSVn is not readily found: it took several years of computer exploration
to find a list of candidates for small values of n. We have now found it, along with a
number of remarkable properties that should be of interest to the wider community.

The set QSVn Ď Sn is defined in Section 3. After discovering it, we noticed that the
cycle structure of permutations in QSVn determine a noncrossing partition, tying them
to a more general story of Coxeter–Catalan combinatorics for the symmetric groups [5]
(see also [17]). For example, writing Qλ to denote the element of QSVn indexed by the
partition λ,

λ “ 1 2 3 4 5 6 7 corresponds to Qλ “ p1qp72qp653qp4q.

Through this connection, [9, 10] and [20] have studied bases of general Temperley–Lieb
algebras which specialize to ϕpQSVnq for TLnp2q, so only condition (iii) remains.

Our initial attempts to prove condition (ii) also led us to an exciting discovery about
how QSVn sits in Sn. In Section 4 we define an equivalence relation „ on Sn using the
weak excedance set of a permutation and its inverse. We call the equivalence classes of
Sn
L

„ excedance classes, and show that each noncrossing partition λ bijectively determines
an excedance class Cλ. Surprisingly, the Bruhat order induces a well-defined quotient or-
der on excedance classes. In the following, ĺ denotes the order on noncrossing partitions
which is dual to Young’s lattice, described further in Section 3.

Theorem 4.2. Writing ď for the relation on excedance classes Sn
L

„ induced by the Bruhat order,
Cλ ď Cµ if and only if λ ĺ µ.

This exhibits a duality between sub- and quotient orders of the Bruhat poset: a par-
allel result is given by [10] for the set QSVn as a sub-poset of the Bruhat order (see
Section 3). The result of [10] also simplifies the proof of Theorem 4.2 we give in [4].

Corollary 4.3. Each excedance class Cλ is an interval in the Bruhat order, with upper bound
Qλ P QSVn and lower bound given by a 321-avoiding permutation.

The combinatorics of excedance classes are very rich, and there is much left to ex-
plore. In Section 5, we use excedance classes of Sn to produce bases of TLnp2q. Using
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results of [10] and [20], our Theorem 5.1 restates the fact that QSVn satisfies condition
(ii) above. However, our technique is more general, and produces many (often novel)
bases of TLnp2q coming from the surjection ϕ : CSn Ñ TLnp2q.

Theorem 5.2. Let n ě 0 and for each noncrossing partition λ of size n, fix an element wλ P Cλ.
Then the set tϕpwλq | noncrossing partitions λu is a basis of TLnp2q.

Finally, in Section 6 we outline our approach to proving that the set QSVn satisfies
condition (iii) above. The space of positive-degree quasisymmetric polynomials QSymn
has a homogeneous basis of monomial quasisymmetric functions Mα indexed by the
compositions α ( d of positive integers d ą 0 with length ℓpαq ď n. For each such
composition α, we construct a nonhomogeneous polynomial Pα P Rn for which hpPαq “

Mα and show the following.

Theorem 6.3. The ideal xPα | α ( d with d ą 0 and ℓpαq ď ny Ď Rn is the vanishing ideal
IpQSVnq and xQSym`

n y “ gr
`

IpQSVnq
˘

.

From this, we obtain a linear isomorphism Rn
L

IpQSVnq – Rn
L

xQSym`
n y.

2 Noncrossing partitions and Bruhat order

Noncrossing partitions: Let n be a nonnegative integer. A noncrossing partition of size n
is a diagram λ consisting of:

1. the positive integers 1, . . . , n, placed from left to right along a horizontal axis; and
2. a set of left-to-right arcs i j “ pi, jq, i ă j drawn above the axis with no intersec-

tions or coterminal points: λ contains no pair i k , j l with i ď j ă k ď l.

For example,

λ “ 1 2 3 4 5 6 7 (2.1)

is a noncrossing partition of size 7 containing three arcs: 2 7 , 3 5 , and 5 6 .
Considering a noncrossing partition λ as an (undirected) graph, the connected com-

ponents of λ give a partition of the set rns “ t1, . . . , nu, which is the origin of the term.
For example, the noncrossing partition shown in Equation (2.1) corresponds to the set
partition

␣

t1u, t2, 7u, t3, 5, 6u, t4u
(

. Let

NCPn “ tnoncrossing partitions of size nu.

The size of NCPn is the nth Catalan number, Cn “ 1
n`1

`2n
n
˘

[19].
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Given an arc i j P λ, say that i is the left endpoint and j is the right endpoint, and
let

λ`
“ tleft endpoints in λu and λ´

“ tright endpoints in λu.

For example, with the noncrossing partition λ in (2.1), λ` “ t2, 3, 5u and λ´ “ t5, 6, 7u.
The arcs in λ give a bijection between the sets λ` and λ´, so that |λ`| “ |λ´|.

Permutations and the Bruhat order: Let Sn denote the group of permutations of rns. We
represent elements of Sn either by using the standard one- and two-line notations or as
a product of cycles. We also write ℓ for the length function, so that for w P Sn, ℓpwq is
the number of inversions of w: ℓpwq “ |tpi, jq | 1 ď i ă j ď n and wi ą wju|.

The Bruhat order on Sn is the partial order generated by the relation

v ă w if and only if wv´1 is a transposition pi jq and ℓpvq ă ℓpwq.

This order is ubiquitous in the study of Sn and related objects (for examples, see [6]).

3 The set QSVn

Let λ be a noncrossing partition of size n. Define a permutation Qλ P Sn by

Qλpjq “

#

i if j P λ´ and i j P λ

k if j R λ´ and k is the largest element connected to j in λ

Thus, Qλ sends each j P rns to its leftward neighbor in λ, if such a neighbor exists, and
otherwise sends j to the rightmost element of its connected component.

The cycles of Qλ correspond to the connected components of λ, for example, with

λ “ 1 2 3 4 5 6 7 we have Qλ “ p1qp72qp653qp4q “ 1764352.

Let QSVn “ tQλ | λ P NCPnu. For example, the elements of QSV3 are:

Q
1 2 3

“ 321, Q
1 2 3

“ 312, Q
1 2 3

“ 213,

Q
1 2 3

“ 132, and Q
1 2 3

“ 123.

Remark 3.1. Given any n-cycle c P Sn, [5] gives a bijection between NCPn and the in-
terval between the identity and c in the absolute order on Sn. Our construction of the
permutations Qλ realize this bijection for the n-cycle c “ pn ¨ ¨ ¨ 21q.
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321

312

132213

123

1 2 3

1 2 3

1 2 31 2 3

1 2 3

H

Figure 1: From left to right, the Hasse diagrams of: QSV3 with the Bruhat order; NCP3

with ĺ; and the dual interval in the Young’s lattice.

The Bruhat order on QSVn: The Bruhat order on Sn described in Section 2 restricts to a
partial order on the set QSVn. This order turns out to be very natural, as is described in
the paper [10], and we recall the description for use in later sections.

Define a partial order ĺ on the set NCPn of noncrossing partitions as the extension
of the covering relation: λ is covered by µ if and only if λ is obtained from µ in one of
the following ways:

1. removing an arc of the form i i`1 from µ, or

2. replacing any arc i k in µ with two arcs i j and j k for some i ă j ă k
which do not intersect or share a left or right endpoint with any other arc in µ.

Proposition 3.2 ([10, Theorem 1.1 and Corollary 7.5]). Let λ and µ be noncrossing partitions
of size n. The following are equivalent:

1. λ ĺ µ,
2. Qλ ď Qµ in the Bruhat order.

Moreover, the partial orders on NCPn and QSVn are each dual to the interval between the empty
diagram and the staircase in Young’s lattice; see Figure 1.

Remark 3.3. In fact, [10] describes the Bruhat order on the set tω0wω´1
0 | w P QSVnu,

where ω0 is the longest element of Sn. Vis-a-vis Remark 3.1, these are the non-crossing
partitions associated with the cycle p12 . . . nq instead of pn . . . 21q. Since conjugation by
ω0 is an automorphism of the Bruhat order, this result is equivalent to Proposition 3.2.
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4 The excedance quotient of the Bruhat order

In this section we describe a novel equivalence relation „ on Sn and show that it induces
a quotient of the Bruhat order. This equivalence relation is defined in a simple way using
the weak excedances of a permutation. We have discovered a number of nice properties
of the equivalence classes in Sn

L

„, which we summarize after our initial definition.
Given a permutation w P Sn, a weak excedance of w is a pair pi, wiq for which i ď wi.

We define the excedance values Evalpwq and excedance positions Epospwq to be the sets

Evalpwq “ twi | pi, wiq is a weak excedance of wu, and

Epospwq “ ti | pi, wiq is a weak excedance of wu.

The sets Evalpwq and Epospwq are most easily seen using two-line notation for permuta-
tions. For example, marking the non-excedances of a permutation in red,

w “
1
3

2
5

3
1

4
4

5
2

6
6

7
5

8
8, Epospwq “ t1, 2, 4, 6, 8u, and Evalpwq “ t3, 4, 5, 6, 8u.

We define the excedance relation „ on Sn by:

v „ w if and only if Evalpvq “ Evalpwq and Epospvq “ Epospwq, (4.1)

and say that each equivalence class of Sn
L

„ is an excedance class.
We now summarize our main results on excedance classes. Each noncrossing parti-

tion λ of size n determines an excedance class:

Cλ “ tw P Sn | Evalpwq “ rns ´ λ` and Epospwq “ rns ´ λ´
u.

This construction is bijective, so that the excedance classes are counted by the Catalan
numbers. For example, the five excedance classes of S3 are:

C
1 2 3

“ t
1
3

2
2

3
1,

1
2

2
3

3
1u, C

1 2 3
“ t

1
3

2
1

3
2u, C

1 2 3
“ t

1
2

2
1

3
3u,

C
1 2 3

“ t
1
1

2
3

3
2u, and C

1 2 3
“ t

1
1

2
2

3
3u.

The Bruhat order induces a relation on Sn
L

„. Recall the order ĺ from Section 3.

Theorem 4.2. Writing ď for the relation on excedance classes Sn
L

„ induced by the Bruhat order,
Cλ ď Cµ if and only if λ ĺ µ.

Our proof Theorem 4.2 in [4] includes the intermediate result that each excedance
class Cλ contains unique Bruhat-minimal and Bruhat-maximal elements, and moreover
these are respectively a 321-avoiding permutation and the element Qλ P QSVn. Com-
bined with Theorem 4.2, this implies the following corollary.
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Corollary 4.3. Each excedance class Cλ is an interval in the Bruhat order, with maximum Qλ P

QSVn and minimum given by a 321-avoiding permutation.

We now identify the minimal element of each excedance class. For a noncrossing
partition λ of size n, enumerate the sets λ`, λ´, rns ´ λ`, and rns ´ λ´ in increasing
order as

λ`
“ ta1 ă a2 ă ¨ ¨ ¨ ă asu, λ´

“ tb1 ă b2 ă ¨ ¨ ¨ ă bsu,

rns ´ λ`
“ tx1 ă x2 ă ¨ ¨ ¨ ă xn´su, and rns ´ λ´

“ ty1 ă y2 ă ¨ ¨ ¨ ă yn´su.

Let Tλ P Sn be the permutation with

Tλpiq “

#

ar if i P λ´ and i “ br

xr if i R λ´ and i “ yr.

Thus, the two-line notation for Tλ can be obtained by placing the elements of λ` in
increasing left-to-right order below the elements of λ´, and placing the elements of
rns ´ λ` below the elements of rns ´ λ´ in the same manner. For example, with n “ 8
and

λ “ 1 2 3 4 5 6 7 8

we have λ` “ t1, 2, 5u and λ´ “ t3, 5, 7u, r8s ´ λ` “ t3, 4, 6, 7, 8u, and r8s ´ λ´ “

t1, 2, 4, 6, 8u, and consequently

Tλ “
1
3

2
4

3
1

4
6

5
2

6
7

7
5

8
8,

where non-excedances are marked in red, as at the beginning of Section 4.

Proposition 4.4. For all noncrossing partitions λ, Tλ P Cλ, is the Bruhat-minimum element of
Cλ, and is 321-avoiding.

Remark 4.5. Proposition 4.4 implicitly defines a bijection between 321-avoiding permu-
tations and noncrossing partitions. This bijection is equivalent to one used by Zinno
in [20] and Gobet in [9].

5 Bases for the Temperley–Lieb Algebra TLnp2q

The Temperley–Lieb algebra TLnp2q is the C-algebra generated by elements e1, . . . , en´1
subject to the following relations for each 1 ď i, j ď n

e2
i “ 2ei; eiej “ ejei if |i ´ j| ą 1; eiejei “ ei if |i ´ j| “ 1.

There is a surjective algebra morphism from the symmetric group algebra CSn to TLnp2q
given by ϕ : CSn Ñ TLnp2q where ϕpsiq “ 1 ´ ei. In particular TLnp2q – Sn

L

kerpϕq.
It is well-known that the images of all 321-avoiding permutations under ϕ forms a

basis for TLnp2q. Gobet [9] shows that the set QSVn has a similar property.
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Theorem 5.1 ([9, Theorem 7.21]). For all n ě 0, the set ϕpQSVnq is a basis for TLnp2q.

In our investigation of excedance classes we found an application of their structure
the problem of computing sets of permutations which give bases of TLnp2q under ϕ. We
include it here as it is a nice result of our current investigation.

Theorem 5.2. Let n ě 0 and for each noncrossing partition λ of size n, fix an element wλ P Cλ.
Then the set tϕpwλq | noncrossing partitions λu is a basis of TLnp2q.

Here, we discuss its implications: taking wλ “ Qλ in the theorem gives yet another
proof of Theorem 5.1, confirming the results of [10] and [20]. In general, however, many
bases obtained via Theorem 5.2 are novel. The smallest novel example can be found with
n “ 4: the set

t
1
4

2
3

3
1

4
2,

1
4

2
2

3
3

4
1,

1
4

2
2

3
1

4
3,

1
3

2
1

3
4

4
2,

1
1

2
4

3
3

4
2,

1
4

2
1

3
2

4
3,

1
3

2
2

3
1

4
4,

1
3

2
1

3
2

4
4,

1
2

2
1

3
4

4
3,

1
1

2
3

3
2

4
3,

1
2

2
1

3
3

4
4,

1
1

2
3

3
2

4
4,

1
1

2
2

3
4

4
3,

1
1

2
2

3
3

4
4u

meets the criteria of Theorem 5.2, and accordingly maps to a basis of TLnp2q under ϕ.
This set is neither QSV4 nor the set of 321-avoiding permutations (4312 R QSV4 and
is not 321-avoiding). Moreover, the set above is not described in [10, 20]: each subset
of S4 in these sources which is not QSV4 contains more than one element from certain
excedance classes and none from others.

6 The quasisymmetric variety

In this section, we summarize Theorem 6.3 and its proof, which is given in full in our
paper [4]. As in the introduction, let QSymn denote the quasisymmetric polynomials in
Rn “ Qrx1, . . . , xns and write Mα for the monomial quasisymmetric function indexed by
the composition α. In Section 6.1, we define a family of non-homogeneous polynomials
Pα which are also indexed by compositions and we show that

Pα “ Mα ` lower degree terms. (6.1)

For a permutation σ P Sn, we write Pαpσq for the evaluation of Pα at x1 “ σ1, x2 “ σ2, and
so on. Recall the set QSVn defined in Section 3.

Theorem 6.2. For each non-empty integer composition α with at most n parts and any σ P QSVn
we have Pαpσq “ 0.

Our proof of Theorem 6.2 in [4] uses the noncrossing cycle structure of each element
σ P QSVn, as well as a sign-reversing involution to establish desired vanishing property.

Now recall that for any f P Rn, hp f q denotes the homogeneous top-degree component
of f , and that for any ideal I Ď Rn, we write grpIq “ xhp f q | f P Iy. Standard results in
Gröbner basis theory give a linear isomorphism Rn

L

I – Rn
L

grpIq. With Theorem 6.2 and
the dimension considerations set out in the introduction, this proves of our main result.
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Theorem 6.3. The ideal xPα | non-empty compositions α of length ℓpαq ď ny Ď Rn is the van-
ishing ideal IpQSVnq and

xQSym`
n y “ gr

`

IpQSVnq
˘

,

where QSym`
n denotes the set of positive-degree quasisymmetric functions.

Using Gröbner basis theory again, we obtain the following corollary.

Corollary 6.4. We have Rn
L

xQSym`
n y – Rn

L

IpQSVnq as vector spaces.

Remark 6.5. Remarks 3.1 and 3.3 describe the combinatorics of the sets twσw | σ P QSVnu,
each of which corresponds to a unique n-cycle c P Sn. It is natural to consider how
Theorems 6.2 and 6.3 generalize to these sets as well, and we explain this below.

1. For the set tω0σω0 | σ P QSVnu corresponding to the Coxeter element c “ p1 2 . . . nq,
our results generalize completely. In particular, the modified polynomials

ω0Pαω0 “ Pαp´xn ` n ` 1, . . . ,´x2 ` n ` 1,´x1 ` n ` 1q

vanish on every permutation ω0σω0 for σ P QSVn. Moreover,

h
`

ω0Pαω0
˘

“ Mαp´xn, . . . ,´x2,´x1q “ p´1q|α|MÐÝα ,

where for a composition α “ pα1, . . . , αkq, MÐÝα denotes the monomial quasisymmet-
ric function corresponding to the reverse ÐÝα “ pαk, . . . , α1q. This is closely related to
the automorphisms of the ring of quasisymmetric functions (see, for example [14]).

2. For the sets corresponding to n-cycles other than p1 2 . . . nq and pn . . . 2 1q, the
vanishing ideal does not have top-degree homogeneous component xQSym`

n y.

6.1 The vanishing polynomial Pα

In this section we define the polynomials Pα and prove Theorem 6.2. We begin with a
short review of compositions and the refinement order as they relate to QSym.

A composition is a sequence of positive integers α “ pα1, . . . , αkq. We refer to k as
the length of α and to d “

řk
i“1 αi as the size of α. Compositions are partially ordered by

refinement: the composition α refines another composition β “ pβ1, . . . , βℓq if there exists
a sequence 1 “ f1 ă f2 ă ¨ ¨ ¨ ă fℓ`1 “ k ` 1 for which βi “ α fi ` α fi`1 ` ¨ ¨ ¨ ` α fi`1´1, and
in this case we write β ľ α. Whenever we have a refinement relation β ľ α, we will use
the notation f1, f2, . . . , fℓ`1 to refer to the sequence of indices in the definition.

For each composition of length k ě 1, the monomial quasisymmetric function Mα P

Rn is defined by
Mα “

ÿ

1ďi1ăi2ă¨¨¨ăikďn

xα1
i1

xα2
i2
¨ ¨ ¨ xαk

ik
,
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where the sum is over subsets ti1, . . . , iku of rns, enumerated in increasing order. Using
the same convention we define the vanishing polynomial Pα P Rn to be

Pα “
ÿ

βľα

ÿ

1ďi1ăi2ă¨¨¨ăiℓďn

ℓ
ź

j“1

´

px
α f j
ij

´ i
α f j
j q

f j`1´1
ź

s“ f j`1

p´ijq
αs
¯

.

While this formula appears to be quite dense, expanding it reveals an intuitive combina-
torial structure. We compute one example in its entirety for the sake of exposition:

Pp1,2,1qpx1, . . . , x4q “px1 ´ 1qpx2
2 ´ 22

qpx3 ´ 3q ` px1 ´ 1qpx2
2 ´ 22

qpx4 ´ 4q

` px1 ´ 1qpx2
3 ´ 32

qpx4 ´ 4q ` px2 ´ 2qpx2
3 ´ 32

qpx4 ´ 4q

´ px1 ´ 1qpx2
2 ´ 22

q2 ´ px1 ´ 1qpx2
3 ´ 32

q3 ´ px1 ´ 1qpx2
4 ´ 42

q4

´ px2 ´ 2qpx2
3 ´ 33

q3 ´ px2 ´ 2qpx2
4 ´ 42

q4 ´ px3 ´ 3qpx2
4 ´ 42

q4

´ px1 ´ 1q12
px2 ´ 2q ´ px1 ´ 1q12

px3 ´ 3q ´ px1 ´ 1q12
px4 ´ 4q

´ px2 ´ 2q22
px3 ´ 3q ´ px2 ´ 2q22

px4 ´ 4q ´ px3 ´ 3q32
px4 ´ 4q

` px1 ´ 1q13
` px2 ´ 2q23

` px3 ´ 3q33
` px4 ´ 4q43,

where summands corresponding to the same index β ľ p1, 2, 1q are grouped horizontally
and by alignment. These values of β are respectively p1, 2, 1q, p1, 3q, p3, 1q, and p4q.
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Combinatorial properties of triangular partitions
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Abstract. A triangular partition is a partition whose Ferrers diagram can be separated
from its complement (as a subset of N2) by a straight line. Having their origins in
number theory and computer vision, triangular partitions have been studied from a
combinatorial perspective by Corteel et al. under the name plane corner cuts, and more
recently by Bergeron and Mazin in the context of algebraic combinatorics. Here we
derive new enumerative, geometric, and algorithmic properties of such partitions.

We give a new characterization of triangular partitions and the cells that can be added
or removed while preserving the triangular condition, and use it to describe the Möbius
function of the restriction of Young’s lattice to triangular partitions. We obtain a for-
mula for the number of triangular partitions whose Young diagram fits inside a square,
deriving a new proof of Lipatov’s enumeration theorem for balanced words. Finally,
we present an algorithm that generates all the triangular partitions of a given size,
which is significantly more efficient than previous ones and allows us to compute the
number of triangular partitions of size up to 105.

Keywords: triangular partition, corner cut, balanced word, Young’s lattice

1 Introduction

An integer partition is said to be triangular if its Ferrers diagram can be separated from
its complement by a straight line. Triangular partitions and their higher-dimensional
generalizations have been studied from several perspectives during the last five decades.
They first appeared in the context of combinatorial number theory [5], where they were
called almost linear sequences. Later, the closely related notion of digital straight lines
became relevant in the field of computer vision [6]. From a combinatorial perspective,
triangular partitions were first studied by Onn and Sturmfels [12], who defined them
in any dimension and called them corner cuts. Soon after, Corteel et al. [7] found an
expression for the generating function for the number of plane corner cuts.
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Renewed interest in triangular partitions has recently come from algebraic combi-
natorics; specifically, from the study of generalizations of the shuffle theorem and, more
broadly, of the ubiquitous connections between Dyck paths, parking functions, diagonal
coinvariant spaces, and Macdonald polynomials. In generalizing Dyck paths to Fuss-
Catalan paths, then rational Dyck paths, and then rectangular Dyck paths, a natural
next step is to consider lattice paths (with unit south and east steps) that stay weakly
below the line segment from (0, s) to (r, 0), where r and s are any positive real numbers.
These paths arise in recent work of Blasiak et al. [4] generalizing the shuffle theorem.
Motivated by this result, Bergeron and Mazin [2] coined the terms triangular partitions,
triangular Dyck paths, and triangular parking functions, and studied some of their combi-
natorial and algebraic properties.

In this abstract we obtain further enumerative, geometric, poset-theoretic, and algo-
rithmic properties of triangular partitions. In Section 2 we give basic definitions and
summarize some of the work from [7, 2]. In Section 3 we give a simple alternative char-
acterization of triangular partitions, as those for which the convex hull of the Ferrers
diagram and that of its complement (as a subset of N2) have an empty intersection. We
also characterize which cells can be added to or removed from the Young diagram while
preserving triangularity.

In Section 4 we study the restriction of Young’s lattice to triangular partitions. It was
shown in [2] that this poset is a lattice. Here we completely describe its Möbius function,
and we provide an explicit construction of the join and meet of two triangular partitions.

In Section 5, we introduce a new encoding of triangular partitions in terms of bal-
anced words, and use it to implement an algorithm which computes the number of
triangular partitions of each size up to N in time O(N5/2). This allows us to produce the
first 105 terms of this sequence, compared to the 39 terms that were known previously.

In Section 6, refining the approach from [7], we obtain generating functions for tri-
angular partitions with a given number of removable and addable cells. In Section 7,
we provide a formula for the number of triangular partitions whose Young diagram fits
inside a square (or equivalently, inside a staircase), which involves Euler’s totient func-
tion. As a byproduct, we obtain a new combinatorial proof of a formula of Lipatov [8]
for the number of balanced words.

Due to space constraints, proofs are omitted from this extended abstract.

2 Background

A partition λ is a weakly decreasing sequence of positive integers, often called the parts
of λ. We will write λ = (λ1, λ2, . . . , λk), or λ = λ1λ2 . . . λk when there is no confusion.
We call |λ| = λ1 + λ2 + · · ·+ λk the size of λ. If |λ| = n, we say that λ is a partition of n.

Let N denote the set of positive integers. The Ferrers diagram of λ is the set of lattice



Combinatorial properties of triangular partitions 3

points
{(a, b) ∈ N2 | 1 ≤ b ≤ k, 1 ≤ a ≤ λb}.

The Young diagram of λ is the set of unit squares (called cells) whose north-east corners
are the points in the Ferrers diagram. We identify each cell with its north-east corner, so
we also use the term cell to refer to points in the Ferrers diagram. In particular, we say
that a cell lies above, below or on a line when the north-east corner does. We will often
identify λ with its Ferrers and Young diagrams, and use notation such as c = (a, b) ∈ λ.

For a partition λ = λ1λ2 . . . λk, we call λ1 its width, and k its height. Let σk = (k, k −
1, . . . , 2, 1) denote the staircase partition of height k. The conjugate of λ, obtained by
reflecting its Ferrers diagram along the diagonal y = x, will be denoted by λ′. Identifying
λ with its Ferrers diagram, we define its complement to be the set N2 \ λ.

Definition 1. A partition τ = τ1τ2 . . . τk is triangular if there exist positive real numbers r
and s such that

τj = ⌊r − jr/s⌋ ,

for 1 ≤ j ≤ k, and k = ⌊s − s/r⌋.

In other words, τ is triangular if its Ferrers diagram consists of the points in N2 that
lie on or below the line that passes through (0, s) and (r, 0) for some r, s ∈ R>0. See
Figure 1 for an example. This line is called a cutting line of τ. Unlike in the definition
given in [2], here we do not allow τ to have parts equal to 0, hence the condition on k.
We often use τ to denote a triangular partition.

s

r

min(τ)

dif(τ) + 1

dif(τ) + 1

dif(τ)

dif(τ) + 1

1
1

0
1

Figure 1: Left: A cutting line for the triangular partition (8, 6, 5, 3, 1). Right: Applying
the bijection from Theorem 19 to τ = (12, 9, 7, 4, 1) gives χ(τ) = (1, 2, 1011).

Denote by ∆(n) the set of triangular partitions of n, and by ∆ =
⋃

n≥0 ∆(n) the set of
all triangular partitions. The following two results are due to Corteel et al. [7].



4 Sergi Elizalde and Alejandro B. Galván

Theorem 2 ([7]). The generating function for triangular partitions can be expressed as

G∆(z) = ∑
n≥0

|∆(n)|zn =
1

1 − z
+ ∑

gcd(a,b)=1
∑

0≤j<a
0≤i<b

∑
1≤m<k

zN∆(a,b,k,m,i,j),

where

N∆(a, b, k, m, i, j) = (k − 1)
(
(a + 1)(b + 1)

2
− 1

)
+

(
k − 1

2

)
ab + ij (2.1)

+ i(k − 1)a + j(k − 1)b + T(a, b, j) + T(b, a, i) + m,

and T(a, b, j) = ∑
j
r=1(⌊rb/a⌋+ 1).

Theorem 3 ([7]). There exist positive constants c and c′ such that, for all n > 1,

cn log n < |∆(n)| < c′n log n.

Let λ = λ1 . . . λk be a partition, and let c = (i, j) be a cell of its Young diagram.
Define the arm length and the leg length of c to be a(c) = λj − i and ℓ(c) = λ′

i − j, that is,
the number of cells to the right of c in its row, and above c in its column, respectively.
Bergeron and Mazin [2] give the following characterization of triangular partitions.

Lemma 4 ([2, Lemma 1.2]). A partition λ is triangular if and only if t−λ < t+λ , where

t−λ = max
c∈λ

ℓ(c)
a(c) + ℓ(c) + 1

, and t+λ = min
c∈λ

ℓ(c) + 1
a(c) + ℓ(c) + 1

.

Definition 5. A cell of τ ∈ ∆ is removable if removing it from τ yields a triangular
partition. A cell of the complement N2 \ τ is addable if adding it to τ yields a triangular
partition.

Lemma 6 ([2, Lemma 4.5]). Every nonempty triangular partition has either one removable cell
and two addable cells, two removable cells and one addable cell, or two removable cells and two
addable cells.

Let Y∆ be the poset of triangular partitions ordered by containment of their Young
diagrams; equivalently, the restriction of Young’s lattice to the subset of triangular parti-
tions. The covering relations in Y∆ can be described as follows.

Lemma 7 ([2, Lemma 4.2]). Let τ, ν ∈ Y∆ such that τ < ν. Then, τ ⋖ ν if and only if τ

is obtained from ν by removing exactly one cell. In particular, Y∆ is ranked by the size of the
partitions.

Lemma 8 ([2, Corollary 4.1, Lemma 4.4]). The poset Y∆ has a planar Hasse diagram, and it
is a lattice.
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3 Characterizations of triangular partitions

Bergeron and Mazin’s [2] characterization of triangular partitions, given in Lemma 4
above, requires computing some quotients of arm and leg lengths for all the cells in the
partition. In this section, we introduce an alternative and arguably simpler characteriza-
tion of triangular partitions in terms of convex hulls, along with various ways to identify
removable and addable cells. We then use these to describe an algorithm which deter-
mines if an integer partition is triangular and finds its removable and addable cells. The
convex hull of a set S ⊆ N2 will be denoted by Conv(S).

Proposition 9. A partition λ is triangular if and only if Conv(λ) ∩ Conv(N2 \ λ) = ∅.

We will use the term vertex in the sense of a 0-dimensional face of a polygon; in
particular, Conv(τ) may have lattice points in its boundary that are not vertices.

Proposition 10. Two cells in τ ∈ ∆ are removable if and only if they are consecutive vertices
of Conv(τ) and the line passing through them does not intersect Conv(N2 \ τ). Similarly, two
cells in N \ τ are addable if and only if they are consecutive vertices of Conv(N2 \ τ) and the
line passing through them does not intersect Conv(τ).

An immediate consequence is that a triangular partition can have no more than two
removable cells and no more than two addable cells, as we knew from Lemma 6.

Proposition 11. A cell c = (a, b) ̸= (1, 1) in τ ∈ ∆ is its only removable cell if and only if it is
a vertex of Conv(τ) and both of the following hold:

• if a > 1, the line containing the edge of Conv(τ) adjacent to c from the left intersects
Conv(N2 \ τ) to the right of c;

• if b > 1, the line containing the edge of Conv(τ) adjacent to c from below intersects
Conv(N2 \ τ) above c.

The characterization for a single addable cell is analogous.

The above characterizations can be used to describe an algorithm that determines
whether a partition λ of n into k parts is triangular, and if it is, it finds its removable and
addable cells. The algorithm first finds the vertices of Conv(λ) and Conv(N2 \ λ), and
then it searches for a segment of the boundary of one of these convex hulls such that the
line containing it does not intersect the opposite convex hull. By Proposition 10, such
a segment joins two removable or addable cells. This algorithm has complexity O(k)
for the initialization and O(min{k,

√
n}) for the rest of its steps, whereas an algorithm

based on Bergeron and Mazin’s Lemma 4 would take time O(n).
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4 The triangular Young poset

Bergeron and Mazin [2] introduced the poset Y∆ of triangular partitions ordered by con-
tainment of their Young diagrams. They showed that it has a planar Hasse diagram, and
deduced from this property that Y∆ is a lattice, and it is ranked by the size of each par-
tition. Here we describe the Möbius function of Y∆, and we give explicit constructions
for the meet and the join of any two elements.

Our first result confirms Bergeron’s conjecture (personal communication, 2022) that
the Möbius function only takes values in {−1, 0, 1}.

Theorem 12. Let τ, ν ∈ Y∆ such that τ ≤ ν. The value of the Möbius function is:

µ(τ, ν) =


1 if either τ = ν or there exist ζ1 ̸= ζ2 such that ν = ζ1 ∨ ζ2 and τ ⋖ ζ1, ζ2,
−1 if τ ⋖ ν,
0 otherwise.

It is shown in [2] that the faces of the Hasse diagram of Y∆ are polygons with an
even number of sides. We can interpret Theorem 12 as stating that, if τ < ν and ν does
not cover τ, then µ(τ, ν) equals 1 if [τ, ν] is one of the polygonal faces, and 0 otherwise.

The next result explicitly characterizes the join and meet of two elements of Y∆. A
similar formula works for the join and the meet of any number of elements.

Proposition 13. The join and the meet of τ, ν ∈ Y∆ are given by

τ ∨ ν = N2 ∩ Conv(τ ∪ ν) and τ ∧ ν = N2 \
(

N2 ∩ Conv
(
N2 \ (τ ∩ ν)

))
.

5 Bijections to balanced words and efficient generation

In this section we present two different interpretations of triangular partitions in terms
of factors of Sturmian words. The first interpretation, which is hinted at in [2], is quite
natural, and it will allow us to prove some enumeration formulas in Section 7. The
second interpretation encodes families of triangular partitions by one single balanced
word, along with two other parameters, and it will be used in Section 5.4 to implement
efficient algorithms to count triangular partitions by their size.

5.1 Balanced words

Recall that a factor of a word is a consecutive subword. An infinite binary word s is
Sturmian if, for every n ≥ 1, the number of factors of s of length n equals n+ 1. Sturmian
words have applications in combinatorics, number theory, and dynamical systems; see
[9, Chapter 2] for a thorough study.
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It is known that a finite binary word w = w1 . . . wℓ is a factor of some Sturmian word
if and only if it is balanced, that is, for any h ≤ ℓ and i, j ≤ ℓ− h + 1, we have∣∣(wi + wi+1 + · · ·+ wi+k−1)− (wj + wj+1 + · · ·+ wj+k−1)

∣∣ ≤ 1.

This condition says that for any two factors of w of the same length, the number of ones
in these factors differs by at most 1. We denote by B the set of all balanced words, and
by Bℓ the set of those of length ℓ.

The following enumeration formula for balanced words is due to Lipatov [8]. We use
φ to denote Euler’s totient function.

Theorem 14 ([8]). The number of balanced words of length ℓ is

|Bℓ| = 1 +
ℓ

∑
i=1

(ℓ− i + 1)φ(i).

5.2 First Sturmian interpretation

Definition 15. A triangular partition is wide (respectively tall) if it admits a cutting line
x/r + y/s = 1 with r > s (respectively r < s).

It can be shown that every triangular partition must be wide, tall, or both. Addition-
ally, a triangular partition τ is wide if and only if its conjugate τ′ is tall.

Lemma 16. For any triangular partition τ = τ1 . . . τk, we have

τ is wide ⇔ τ1 ≥ k ⇔ the parts of τ are distinct,

τ is wide and tall ⇔ τ1 = k ⇔ τ = σk.

Given a wide triangular partition τ = τ1 . . . τk, define the binary word

ω(τ) = 10τ1−τ2−110τ2−τ3−1 . . . 10τk−1−τk−110τk−1. (5.1)

The fact that all the parts of τ are distinct guarantees that the exponents are nonnegative.
For example, ω(86531) = 10110101.

Proposition 17. For every k, ℓ ≥ 1, the map ω is a bijection between the set of wide triangular
partitions with k parts and first part equal to ℓ, and the set of balanced words of length ℓ with k
ones that start with 1.
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5.3 Second Sturmian interpretation

Our second encoding of triangular partitions using balanced words appears to be new.
Let ϵ denote the empty partition, and let W be the set of wide triangular partitions with
at least two parts. Let B0 denote the set of balanced words that contain at least one 0.

First we describe the possible sets that can be obtained by taking the differences of
consecutive parts in a wide triangular partition. For τ = τ1 . . . τk ∈ W , define

D(τ) = {τ1 − τ2, τ2 − τ3, . . . , τk−1 − τk}.

Lemma 18. For any τ = τ1 . . . τk ∈ W , either D(τ) = {d} or D(τ) = {d, d + 1} for some
d ≥ 1 such that τk ≤ d + 1.

Define also min(τ) = τk, dif(τ) = minD(τ), and wrd(τ) = w1 . . . wk−1 where, for
i ∈ [k − 1], we let wi = τi − τi+1 − dif(τ). Lemma 18 guarantees that wi ∈ {0, 1} for all i.

Theorem 19. The map χ = (min, dif, wrd) is a bijection between W and the set

T = {(m, d, w) ∈ N × N ×B0 | m ≤ d + 1; w1 ∈ B0 if m = d + 1}.

Its inverse is given by the map

ξ(m, d, w1 . . . wk−1) = τ1 . . . τk, where τi = m +
k−1

∑
j=i

(wj + d) for i ∈ [k].

Additionally, given τ ∈ W with image χ(τ) = (m, d, w), its number of parts equals the length
of w plus one, and its size is

|τ| = km +

(
k
2

)
d +

k−1

∑
i=1

iwi. (5.2)

5.4 Efficient generation

At the time of writing this abstract, the entry of the OEIS [11, A352882] for the number
triangular partitions of n only includes values for n ≤ 39. These are the terms that
appear in [7], where they were obtained using the generating function in Theorem 2.
Computing more terms using this generating function is impractical for large n.

Theorem 19 can be used to implement a much more efficient algorithm that can
quickly compute the first 105 terms of the sequence. On input N, our algorithm to
compute |∆(n)| for 1 ≤ n ≤ N performs a depth first search through the tree of balanced
words of length up to ⌊

√
2N⌋. The parent of a nonempty balanced word in this tree is the

balanced word obtained by removing its last letter. For each w ∈ Bℓ, our algorithm can
quickly determine whether w0 and w1 are balanced by keeping a vector that records,
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for each h ≤ ℓ, whether all the factors of length h have the same number of ones, or
otherwise, whether the rightmost factor of w has more or less ones than other factors.

For each w ∈ Bℓ with ℓ ≤
√

2N, the algorithm finds all the values m, d ∈ N such
that (m, d, w) ∈ T , as defined in Theorem 19, and such that the size function given in
equation (5.2) is at most N. Each triplet (m, d, w) accounts for two triangular partitions,
namely τ = χ(m, d, w) and its conjugate, except when w = 0k−1 (for some k ≥ 2) and
m = d, in which case it accounts for only one partition, the staircase σk.

A C++ implementation of this algorithm is available at [1]. In a standard laptop
computer, this algorithm yields the first 103 terms of the sequence |∆(n)| in under one
second, the first 104 terms in one minute, and the first 105 terms in about one hour.

Proposition 20. The above algorithm finds |∆(n)| for 1 ≤ n ≤ N in time O(N5/2). Addition-
ally, it can be modified to generate all (resp., all wide) triangular partitions of size at most N in
time O(N3 log N) (resp., O(N5/2 log N)).

The first 105 terms of the sequence |∆(n)|/(n log n) are plotted on the left of Figure 2.
The plot suggests that, for large n, this sequence oscillates between two decreasing func-
tions that differ by about 0.05.

Figure 2: Left: The first 105 terms of the sequence |∆(n)|/(n log n). Right: Plot of
|∆2(n)| and |∆1(n)| for 1 ≤ n ≤ 100.

6 Generating functions for subsets of triangular partitions

Let ∆1 and ∆2 denote the subsets of triangular partitions with one removable cell and
with two removable cells, respectively. Let ∆1 and ∆2 denote the subsets of triangular
partitions with one addable cell and with two addable cells, respectively. Let ∆2

2 = ∆2 ∩
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∆2. Denote partitions of size n in each subset by ∆1(n), ∆2(n), ∆1(n), ∆2(n) and ∆2
2(n).

In this section we obtain generating functions for each of these sets, refining Theorem 2.
In our following result, N∆(a, b, k, m, i, j) is the function defined in equation (2.1).

Proposition 21. The generating function for triangular partitions with two removable cells can
be expressed as

G∆2(z) = ∑
n≥0

|∆2(n)|zn = ∑
gcd(a,b)=1

∑
0≤j<a
0≤i<b

∑
k≥2

zN∆(a,b,k,k,i,j).

Proposition 22. The generating functions for partitions in ∆1, ∆2, ∆1, ∆2
2 can be written in

terms of G∆(z) (given in Theorem 2) and G∆2(z) (given in Proposition 21) as follows:

G∆1(z) = G∆(z)− G∆2(z)− 1, G∆2(z) =
1 − z

z
G∆(z) +

1
z

G∆2(z)−
1
z

,

G∆1(z) =
2z − 1

z
G∆(z)−

1
z

G∆2(z) +
1
z

, G∆2
2
(z) =

1 − 2z
z

G∆(z) +
1 + z

z
G∆2(z)−

1
z

.

We can use the expression for G∆2 given in Proposition 21 to write an algorithm to
find |∆2(n)|. We have computed the first 100 terms of this sequence using a MATLAB
implementation of this algorithm, which is available at [1]. The initial terms of the
sequences |∆1(n)| and |∆2(n)|, plotted on the right of Figure 2, suggest that |∆2(n)| >
|∆1(n)| for all n ≥ 9, although we do not have a proof of this. It is interesting to note that
both the local maxima of |∆1(n)| and the local minima of |∆2(n)| seem to occur precisely
when n ≡ 2 (mod 3). On the other hand, |∆(n)| does not exhibit such periodic extrema.

7 Triangular subpartitions and a combinatorial proof of
Lipatov’s formula for balanced words

For τ ∈ ∆, let I(τ) = |{ν ∈ ∆ : ν ⊆ τ}| denote the number of triangular subpartitions of
τ. We start by giving a recurrence for this number. In some particular cases, we will be
able to obtain explicit formulas for I(τ). In this section we will also derive a new proof
of Theorem 14.

Let c− and c+ be the removable cells of τ. Following [2], denote by τ◦ the triangular
partition that is obtained from τ by removing all the cells in the segment joining c−

and c+. If τ has only one removable cell, then c− = c+, and τ◦ is simply the partition
obtained by removing this cell.

Lemma 23. For any τ ∈ ∆(n) with n ≥ 1,

I(τ) = I(τ \ {c−}) + I(τ \ {c+})− I(τ◦) + 1.
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This recurrence relation, along with the base case I(ϵ) = 1, allows us to compute I(τ)
for any τ ∈ ∆, although not very efficiently. For example, for the staircase, the first few
terms of the sequence I(σℓ) for ℓ ≥ 0 are 1, 2, 5, 12, 25, 48, 83, . . . .

We use the terms height and width of a partition τ to refer to the number of parts
and the largest part of τ, respectively. In order to find explicit formulas for I(τ) in some
cases, let us consider the closely related problem of counting triangular partitions whose
width is at most ℓ and whose height is at most h; equivalently, those whose Young
diagram fits inside an h × ℓ rectangle. We denote by ∆h×ℓ the set of such partitions.

Lemma 24. Let h, ℓ ≥ 1, and let ν ∈ ∆. Then ν ∈ ∆h×ℓ if and only if ν ⊆ τ, where τ = τ1 . . . τh

is the triangular partition given by τi =
⌊
ℓ+ 1 − ℓ(i−1)+1

h

⌋
, for 1 ≤ i ≤ h.

Our next goal is to give a formula for I(σℓ), which, by Lemma 24, equals the number
of triangular partitions that fit inside an ℓ× ℓ square, that is,

∣∣∆ℓ×ℓ
∣∣. The proof of the

following lemma uses the bijection ω from equation (5.1).

Lemma 25. For ℓ ≥ 1, the number of triangular partitions of width exactly ℓ and height at most
ℓ is |Bℓ|/2, and ∣∣∣∆ℓ×ℓ \ ∆(ℓ−1)×(ℓ−1)

∣∣∣ = I(σℓ)− I(σℓ−1) = |Bℓ| − 1.

Combining the above lemma with Lipatov’s enumeration formula for balanced words
(Theorem 14), we deduce the following result.

Theorem 26. For any ℓ ≥ 0,∣∣∣∆ℓ×ℓ
∣∣∣ = I(σℓ) = 1 +

ℓ

∑
i=1

(
ℓ− i + 2

2

)
φ(i).

Unfortunately, the proof of Theorem 26 that relies on Lipatov’s formula does not give
a conceptual understanding of why the terms (ℓ−i+2

2 ) and φ(i) appear.
Instead, we have been able to find a direct, combinatorial proof of Theorem 26 that

explains why these terms appear. While this proof does not fit in this extended abstract,
we briefly describe its main ideas. First we give a bijection ϕ between triangular parti-
tions (except those that have all parts equal to one) and the set {(a, b, d, e) ∈ N4 | d <
a, gcd(d, e) = 1}, and characterize the set ϕ(∆ℓ×ℓ). Then we show that, for fixed d < e
with gcd(d, e) = 1, by combining the points (a, b) for which (a, b, d, e) ∈ ϕ(∆ℓ×ℓ), with
(a certain linear transformation of) the points (a, b) for which (a, b, e, e − d) ∈ ϕ(∆ℓ×ℓ),
one obtains precisely the set of lattice points in a certain triangle, which are counted by
(ℓ−e+2

2 ). Summing over all pairs d < e with gcd(d, e) = 1 gives our formula for
∣∣∆ℓ×ℓ

∣∣.
As an added benefit, our argument also provides a new proof of Lipatov’s formula

(Theorem 14), which is fundamentally different from the existing proofs that have ap-
peared over the years, all of which are quite technical; see e.g. [10, 3].
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Similar formulas for the number of triangular subpartitions in other rectangles can
be derived from Theorem 26.

Corollary 27. For ℓ ≥ 2,∣∣∣∆ℓ×(ℓ−1)
∣∣∣ = 1

2
+

ℓ

∑
i=1

(ℓ− i + 1)2

2
φ(i),

∣∣∣∆ℓ×(ℓ−2)
∣∣∣ = 1− ℓ+

ℓ

∑
i=1

(ℓ− i + 1)(ℓ− i) + 1
2

φ(i).
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Abstract. We study the asymptotics of bounded lecture hall tableaux. Limit shapes
form when the bounds of the lecture hall tableaux go to infinity linearly in the lengths
of the partitions describing the large-scale shapes of these tableaux. We prove Con-
jecture 6.1 in [8], stating that the slopes of the rescaled height functions in the scaling
limit satisfy a complex Burgers equation. We also show that the fluctuations of the
unrescaled height functions converge to the Gaussian free field. The proof is based
on new construction and analysis of Schur generating functions for the lecture hall
tableaux, whose corresponding particle configurations do not form a Gelfand-Tsetlin
scheme; and the corresponding dimer models are not doubly periodic.

Résumé. Nous étudions l’asymptotique des tableaux de la salle de cours bornés. Les
formes limites se forment lorsque les bornes des tableaux de la salle de cours tendent
vers l’infini linéairement par rapport aux longueurs des partitions décrivant les formes
à grande échelle de ces tableaux. Nous démontrons la Conjecture 6.1 dans [8], affir-
mant que les pentes des fonctions de hauteur mises à l’échelle dans la limite d’échelle
satisfont une équation de Burgers complexe. Nous montrons également que les fluc-
tuations des fonctions de hauteur non mises à l’échelle convergent vers le champ libre
gaussien. La preuve repose sur une nouvelle construction et une analyse des fonctions
génératrices de Schur pour les tableaux de la salle de cours, dont les configurations
de particules correspondantes ne forment pas un schéma de Gelfand-Tsetlin; et les
modèles de dimères correspondants ne sont pas doublement périodiques.

Keywords: lecture hall tableaux, limit shape, Gaussian free field

1 Introduction

Lecture hall tableaux were introduced in [10] as fillings of Young tableaux satisfying
certain conditions, which generalize both lecture hall partitions ([2, 3]) and anti-lecture
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hall compositions ([11]), and also contain reverse semistandard Young tableaux as a limit
case. Lecture hall partitions and anti-lecture hall compositions have attracted consider-
able interest among combinatorists in the last two decades; see the recent survey [21]
and references therein.

We now define the lecture hall tableaux. Recall that a partition λ = (λ1, . . . , λk) is a
sequence of nonnegative integers λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0. Each integer λi is called a
part of λ. The length l(λ) of λ is the number of parts. A partition λ = (λ1, . . . , λk) can
be identified with its Young diagram, which consists of unit squares (cells) with integer
coordinates (i, j) satisfying 1 ≤ i ≤ k and 1 ≤ j ≤ λi. For two partitions λ and µ we
write µ ⊂ λ to mean that the Young diagram of µ is contained in that of λ as a set.
In this case, a skew shape λ/µ is defined to be the set-theoretic difference λ/µ of their
Young diagrams. We denote by |λ/µ| the number of cells in λ/µ. A partition λ is also
considered as a skew shape by λ/∅; where ∅ represents the empty partition.

A tableau of shape λ/µ is a filling of the cells in λ/µ with nonnegative integers.
In other words, a tableau is a map T : λ/µ → N, where N is the set of nonnegative
integers.

An n-lecture hall tableau of shape λ/µ is a tableau L of shape λ/µ satisfying the
following conditions

L(i, j)
n + c(i, j)

≥ L(i, j + 1)
n + c(i, j + 1)

,
L(i, j)

n + c(i, j)
>

L(i + 1, j)
n + c(i + 1, j)

.

where c(i, j) = j − i is the content of the cell (i, j). The set of n-lecture hall tableaux
is denoted by LHTn(λ/µ). For L ∈ LHTn(λ/µ), let ⌊L⌋ be the tableaux of shape λ/µ

whose (i, j)th entry is ⌊ L(i,j)
(n−i+j)⌋.

See the left graph of Figure 1 for an example of a lecture hall tableaux.
We shall study lecture hall tableaux with an extra condition as follows:

L(i, j) < t(n + j − i)

We say these tableaux are bounded by t > 0. These tableaux are called bounded lecture
hall tableaux and are enumerated in [9].

The main aim to study the asymptotics of bounded n-lecture hall tableaux as n →
∞. We shall first recall a bijection between lecture hall tableaux and non-intersecting
path configurations in [9], and then investigate the asymptotics (limit shape and height
fluctuations) of the corresponding non-intersecting path configurations. Now we define
the graph on which the non-intersecting path configurations correspond to the lecture
hall tableaux.

1. Given a positive integer t, the lecture hall graph is a graph Gt = (Vt, Et). This graph
can be described through an embedding in the plane with vertex set Vt given by
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•
(

i, j
i+1

)
for i ≥ 0 and 0 ≤ j < t(i + 1).

and the directed edges given by

• from
(
i, k + r

i+1

)
to

(
i + 1, k + r

i+2

)
for i ≥ 0, 0 ≤ r ≤ i and 0 ≤ k < t

• from
(

i, k + r+1
i+1

)
to

(
i, k + r

i+1

)
for i ≥ 0 and 0 ≤ r ≤ i and 0 ≤ k < t − 1 or

for i ≥ 0 and 0 ≤ r < i and k = t − 1.

2. Given a positive integer t and a partition λ = (λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ . . . ≥
λn ≥ 0, a non-intersecting path configuration is a system of n paths on the graph
Gt. For each integer i satisfying 1 ≤ i ≤ n, the ith path starts at

(
n − i, t − 1

n−i+1

)
,

ends at (n − i + λi, 0) and moves only downwards and rightwards. The paths are
said to be not intersecting if they do not share a vertex.

See the middle graph of 1 for an example of G3 and a configuration of non-intersecting
paths on G3.

Given a positive integer t and a partition λ = (λ1, . . . , λn) with λ1 ≥ . . . ≥ λn ≥ 0, the
non-intersecting path system is a system of n paths on the graph Gt. The ith path starts
at

(
n − i, t − 1

n−i+1

)
and ends at (λi + n − i, 0). The paths are called non-intersection if

they do not share a vertex.

Theorem 1. ([9])There is a bijection between the bounded lecture hall tableaux of shape λ and
bounded by t and non-intersecting paths on Gt starting at

(
n − i, t − 1

n−i+1

)
and ending at

(n − i + λi, 0) for i = 1, 2, . . . , n.
More precisely, there are exactly |λ| non-vertical edges present in the non-intersecting path

configuration in Gt corresponding to a lecture-hall tableaux of shape λ. These edges have left
endpoints located at

(
n + j − i − 1, L(i,j)

n+j−i

)
. The non-intersecting path configuration corre-

sponding to the lecture hall tableaux is the unique non-intersecting path configuration joining(
n − i, t − 1

n−i+1

)
and (n − i + λi, 0) for i = 1, 2, . . . , n obtained by adding only vertical edges

to these present non-vertical edges.

One can see that for an n-lecture hall tableaux bounded by t, t is also the height of
the corresponding lecture hall graph Gt, and n is also the total number of paths in the
corresponding non-intersecting path configuration on Gt. See Figure 1 for an example of
such a correspondence.

We shall investigate the asymptotics of bounded lecture hall tableaux as n, t → ∞
by studying the asymptotics of the corresponding non-intersecting paths. These asymp-
totics were studied in [8] using the (not fully rigorous) tangent method; here we attack
this problem by analyzing Schur polynomials. The tangent method gives the frozen



4 Zhongyang Li, David Keating, and Istvan Prause

ARCTIC CURVES PHENOMENA FOR BOUNDED LECTURE HALL TABLEAUX

SYLVIE CORTEEL, DAVID KEATING, AND MATTHEW NICOLETTI

Abstract. Recently the first author and Jang Soo Kim introduced lecture hall tableaux in their study of
multivariate little q-Jacobi polynomials. They then enumerated bounded lecture hall tableaux and showed

that their enumeration is closely related to standard and semistandard Young tableaux. In this paper we
study the asymptotic behavior of these bounded tableaux thanks to two other combinatorial models: non-
intersecting paths on a graph whose faces are squares and pentagons and dimer models on a lattice whose

faces are hexagons and octagons. We use the tangent method to investigate the arctic curve in the model
of non-intersecting lattice paths with fixed starting points and ending points distributed according to some

arbitrary piecewise di↵erentiable function. We then study the dimer model and use an ansatz to guess

the asymptotics of the inverse of the Kasteleyn, which confirm the arctic curve computed with the tangent
method for two examples.

1. Introduction

Recently the first author and Jang Soo Kim introduced lecture hall tableaux in their study of multivariate
little q-Jacobi polynomials [10]. They then enumerated bounded lecture hall tableaux and showed that their
enumeration is closely related to standard and semistandard Young tableaux [9].

Given a positive integer t and a partition � = (�1, . . . ,�n) with �1 � . . . � �n � 0, the bounded lecture
hall tableaux are fillings of the diagram of � with integers Ti,j such that

(1) Ti,j < t(n� i+ j)
(2) Ti,j/(n� i+ j) � Ti,j+1/(n� i+ j + 1)
(3) Ti,j/(n� i+ j) > Ti+1,j/(n� i� 1 + j)

We call them bounded lecture hall tableaux (BLHT) of shape � and bounded by t. On the left of Figure
1, we give an example of such a tableau for t = 3 and � = (2, 2). In this paper we study the asymptotic
behavior of these bounded tableaux thanks to two other combinatorial models: the non-intersecting paths on
a graph whose faces are squares and pentagons and the dimer models on a lattice whose faces are hexagons
and octagons. An example of the path model and the dimer model is given on the middle and the right of
Figure 1. Detailed definitions will be given in Section 2.

One special quality of this model is that the number of configurations is relatively easy to compute [9].
Given t, n and � = (�1, . . . ,�n), the number Z�(t) of bounded lecture hall tableaux of shape � bounded by
t is

Z�(t) = t|�|
Y

1i<jn

�i � i� �j + j

j � i
,
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Figure 1. Tableau, non-intersecting paths, and dimers
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Figure 1: Tableau, non-intersecting paths, and dimers (Figure 1 in [8]). The left graph
represents a lecture hall tableaux L of shape λ = (2, 2) with L(1, 1) = 5, L(1, 2) = 6,
L(2, 1) = 2, L(2, 2) = 3 and n = 2. Then L(1,1)

n+1−1 = 5
2 ; L(2,1)

n+1−2 =2; L(1,2)
n+2−1 = 2; L(2,2)

n+2−2 = 3
2 .

The lecture hall tableaux is bounded by t = 3. The middle graph represents the
corresponding non-intersecting path configuration. The right graph represents a dimer
configuration on a graph which is not doubly-periodic.

boundary without the full limit shape; instead Conjecture 6.1 were made in [8], indi-
cating that the slopes of the rescaled height functions in the scaling limit satisfy the
complex Burgers equation. The complex Burgers equation was proved to be the gov-
erning equation of height functions in the scaling limit for uniform lozenge tilings and
for other doubly periodic dimer models [13]. This equation naturally arises through a
variational problem, we refer to [1] for a detailed study of the variational problem. Here
we note that for lecture hall tableaux no variational principle has been established and
although lecture hall tableaux naturally corresponds to non-interacting paths configu-
rations and dimer configurations on a hexagon-octagon lattice ([8]), the corresponding
hexagon-octagon lattice in this case is not doubly periodic as in the setting in [13]; see
the right graph of Figure 1.

The Schur generating function approach was applied to study uniform dimer model
on a hexagonal lattice in a trapezoid domain in [5, 6], and for uniform dimer model on
a rectangular square grid in [7]. A generalized version of the Schur generating function
was defined to study the non-uniform dimer model on rail-yard graphs in [4, 16, 15,
17, 19]. Schur processes are specializations of the Macdonald processes when q = t,
hence the asymptotics of Schur processes can also be obtained by investigating the more
general Macdonald processes; see [20, 18]. All the existing Schur-generating functions
seem to be defined in the setting of the Gelfand-Tsetlin scheme; however the lecture
hall tableaux are novel in the sense that on a skew shape they cannot be computed by
skew Schur functions; and the corresponding particle configurations induced by the non-
intersecting path configurations of the lecture hall tableaux do not satisfy the interlacing
conditions required by the Gelfand-Tsetlin scheme; see Figure 2 for an example.

By constructing a novel Schur generating function specifically for the lecture hall
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tableaux and analyzing its asymptotics, in this paper we obtain a full description of the
limit shape, including the moment formulas for the counting measures and the complex
Burgers equation; resolving Conjecture 6.1 in [8].

The Gaussian free field, as a high dimensional time analog of the Brownian motion,
was proved to be the rule of height fluctuations for dimer models on a large class of
graphs ([12, 14]). In this paper we show that the unrescaled height fluctuations of the
lecture hall tableaux converge to the Gaussian free field when t goes to infinity linearly
as n goes to infinity.

The main results (with exact statements given in later sections after a number of
precise definitions) are as follows.

• In Section 2, we discuss the moment formula for the limit counting when n → ∞,
t → ∞ and t

n → α ∈ (0, ∞) (Theorem 2); the equation of the boundary curve sep-
arating different phases (Theorem 3) and that the slopes of the (rescaled) height
function in the scaling limit satisfy the complex Burgers equation; confirming Con-
jecture 6.1 in [8] (Theorem 4).

• In Section 3, we prove the convergence of the (unrescaled) height fluctuation to the
Gaussian free field (GFF) n → ∞, t → ∞ and t

n → α ∈ (0, ∞) (Theorem 5)

2 Limit Shape when t → ∞ and Complex Burger’s Equa-
tion

Let M be a random non-intersecting path configuration on G = Gt. Let n be the total
number of non-intersecting paths. Let κ ≥ 0 be an integer. Let ϵ > 0 be sufficiently
small such that the region y ∈ (κ, κ + ϵ] does not intersect any non-vertical edge of G.
We associate a partition λ(κ) as follows:

• λ
(κ)
1 is the number of absent vertical edges of M intersecting y = κ + ϵ to the left

of the rightmost vertical edges present in M.

• for j ≥ 2, λ
(κ)
j is the number of absent vertical edges of M intersecting y = κ + ϵ

to the left of the jth rightmost vertical edges present in M.

See Figure 2 for an example.
For x = (x0, x1, . . .) Let sλ/µ(x) be the skew Schur function. For any tableaux T of

shape λ/µ, let

xT = ∏
(i,j)∈λ/µ

xT(i,j);
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0 1 2 3 4 5 6 7 8
0

1

2

3

4

· · ·

· · ·

Figure 2: Non-intersecting lattice paths on G4 for n = 5. We have λ(3) = (1, 0, 0, 0, 0),
λ(2) = (1, 1, 1, 0, 0), λ(1) = (3, 3, 1, 0, 0) and λ(0) = (4, 3, 1, 0, 0). The sequence of parti-
tions (λ(0), λ(1), λ(2), λ(3)) do not form a Gelfand-Tsetlin scheme.

we define

Ln
λ/µ(x) = ∑

T∈LHTn(λ/µ)

x⌊T⌋

Let ρκ be the probability distribution of λ(κ). Define the Schur generating function
for ρκ as follows:

Sρκ(|x|, u) = ∑
λ∈Y

ρκ(λ)
sλ(|x|+ u)

sλ(|x|)
(2.1)

where

u = (u1, u2, . . . , un); x = (x1, x2, . . . , xt); |x| = x1 + x2 + . . . + xt

and

sλ(|x|+ u) := sλ(|x|+ u1, |x|+ u2, . . . , |x|+ un) (2.2)
sλ(|x|) := sλ(|x|, . . . , |x|) (2.3)

Let λ be a length-N partition. We define the counting measure m(λ) as a probability
measure on R as follows:

m(λ) =
1
N

N

∑
i=1

δ

(
λi + N − i

N

)
.

If λ is random, then we can define the corresponding random counting measure.
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let Sm(z) = z + ∑∞
k=1 Mk(m)zk+1 be the moment generating function of the measure

m, where Mk(m) =
∫

xkdm(x), and S(−1)
m be its inverse for the composition. Let Rm(z)

be the Voiculescu R-transform of m defined as

Rm(z) =
1

S(−1)
m (z)

− 1
z

.

Then

Hm(u) =
∫ ln u

0
Rm(t)dt + ln

(
ln u

u − 1

)
. (2.4)

In particular, Hm(1) = 0, and

H′
m(u) =

1

uS(−1)
m (ln u)

− 1
u − 1

. (2.5)

Assume as n → ∞, the rescaled graph 1
nG approximate a bounded simply-connected

region R ⊂ R2. Let L be the set of (χ, y) inside R such that the density dmy(
χ

1−y ) is not
equal to 0 or 1. Then L is called the liquid region. Its boundary ∂L is called the frozen
boundary. Let

L̃ := {(χ, s) : (χ, y) ∈ L}

where s, y are given as Theorem 2.

Theorem 2. Let n be the the total number of non-interacting paths in G, and let t be the height
of G. Let ρκ(n) be the probability distribution of λ(κ). Assume

y := lim
n→∞

κ

n
; s := lim

n→∞

|xκ|
|x| ; α := lim

n→∞

t
n

; (2.6)

such that

s ∈ (0, 1); y ∈ (0, α).

Then random measures mρκ(n) converge as n → ∞ in probability, in the sense of moments to a
deterministic measure my on R, whose moments are given by

∫

R
xjmy(dx) =

1
2(j + 1)πi

∮

1

dz
z − 1 + s

(
(z − 1 + s)H′

m0
(z) +

z − 1 + s
z − 1

)j+1

Here m0 is the limit counting measure for the boundary partition λ(0) ∈ Yn as n → ∞, and
Hm0 is defined as in (2.4).
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The main idea to prove Theorem 2 is to use a differential operator acting on the Schur
generating function defined by (2.1), which gives the moments of

∫
R

xjmρκ(n); by proving
that

lim
n→∞

E

[∫

R
xjmρκ(n)

]2

= lim
n→∞

[
E

∫

R
xjmρκ(n)

]2

;

it follows that the limit counting measure is deterministic. The explicit integral formula
for

∫
R

xjmρκ(n) follows from the Residue theorem.

Theorem 3. Let

Uy(z) := (z − 1 + s)H′
m0

(z) +
z − 1 + s

z − 1
(2.7)

Assume the liquid region is nonempty, and assume that for any x ∈ R, the equation Uy(z) = x
has at most one pair of complex conjugate roots. Then for any point (χ, y) lying on the frozen
boundary, the equation Uy(z) = χ has double roots.

The main idea to prove Theorem 3 is to compute the density of the measure dmy(x)
by the Stieljes transform

dmy(x)
dx

= − lim
ϵ→0+

1
π
ℑ(Stmy(x + iϵ)) (2.8)

where ℑ(·) represents the imaginary part of a complex number and Stmy is the Stieljes
transform of the measure my; and then find the boundary of the region where the density
is 0 or 1 (frozen region).

Example 1. Assume the bottom boundary partition is given by

λ(0)(n) := ((p − 1)n, (p − 1)(n − 1), . . . , p − 1) ∈ Yn

where p, n are positive integers. We have

Uy(z) =
pzp−1(z − 1 + s)

zp − 1

Assume p = 3. then for each χ ∈ R the equation Uy(z) = χ has at most one pair of nonreal
conjugate roots. The condition that Uy(z) = χ has double roots gives

{
Uy(z) = χ.
U′

y(z) = 0

which gives the parametric equation for (x, s) as follows.
{

χ = 3z3

z3+2
s = z3−3z+2

z3+2
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1

Figure 3: Frozen boundary for the scaling limit of weighted non-interaction paths. The
blue curve is for the uniform weight; the red curve is when the limit weight function s
satisfies y = (1 − s)2.

1. When x1 = x2 = . . . = xn, and α = 1, we have s = 1 − y. The frozen boundary is given
by the blue curve of Figure 3.

2. When α = 1, and y = (1 − s)2. The frozen boundary is given by the red curve of Figure 3.

On the lecture hall graph G, define a random height function h associated to a random
non-intersecting path configuration as follows. The height at the lower left corner is 0,
and the height increases by 1 whenever crossing a path from the left to the right. Define
the rescaled height function by

hn(χ, y) :=
1
n

h(nχ, ny)

Following similar computations before Lemma 8.1 of [4], we obtain that when (χ, y) is
in the liquid region,

lim
n→∞

dhn(χ, y)
dχ

=
1
π

Arg(z+(χ, y)− 1 + s).

where z+(χ, y) is the unique root in the upper half plane of the equation Uy(z) = χ.

Theorem 4. Assume G is uniformly weighted such that s = 1− y. Suppose that the assumptions
of Theorem 3 holds. Let

u =
1

z+(χ, y)S(−1)
m0 (ln z+(χ, y))

Then

∂h
∂x

=
1
π
(2 − Arg(u)) ;

∂h
∂y

=
1
π
ℑu (2.9)
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where Arg(·) is the branch of the argument function taking values in [0, 2π). Moreover, u
satisfies the complex Burgers equation

ux − uuy = 0. (2.10)

3 Height Fluctuations and Gaussian Free Field

Let C∞
0 be the space of smooth real-valued functions with compact support in the upper

half plane H. The Gaussian free field (GFF) Ξ on H with the zero boundary condition
is a collection of Gaussian random variables {ξ f } f∈C∞

0
indexed by functions in C∞

0 , such
that the covariance of two Gaussian random variables ξ f1 , ξ f2 is given by

Cov(ξ f1 , ξ f2) =
∫

H

∫

H
f1(z) f2(w)GH(z, w)dzdzdwdw,

where

GH(z, w) := − 1
2π

ln
∣∣∣∣
z − w
z − w

∣∣∣∣ , z, w ∈ H

is the Green’s function of the Dirichlet Laplacian operator on H. The Gaussian free field
Ξ can also be considered as a random distribution on C∞

0 of H, such that for any f ∈ C∞
0 ,

we have

Ξ( f ) =
∫

H
f (z)Ξ(z)dz := ξ f ;

where Ξ(z) is the generalized function corresponding to the linear functional Ξ. Note
that GFF is conformally invariant; in the sense that for any simply-connected domain
D ⊊ C, and let ϕ : D → H be a conformal map from D to H. Then the GFF on D is

ΞD(z) := Ξ(ϕ(z))

See [22] for more about GFF.
Let f be a function of r variables. Define the symmetrization of f as follows

Symx1,...,xr
f (x1, . . . , xr) :=

1
r! ∑

σ∈Sr

f (xσ(1), . . . , xσ(r)); (3.1)

Assumption 1. Let l be a fixed positive integer. Assume there exists

0 = a1 < b1 < a2 < b2 < . . . < al < bl
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such that m0, the limit counting measure corresponding to the partition on the bottom boundary
satisfies

dm0

dx
=

{
1 if ai < x < bi

0 if bj < x < aj+1

where i ∈ [l] and j ∈ [l − 1].

Theorem 5. Suppose that Assumption 1 holds. For each z ∈ H, let

∆n(z) := ∆n(nχL̃(z), nsL̃(z)) :=
√

π
∣∣∣{g ∈ [n] : λ

(n−ny(sL̃(z)))
g − n + g ≥ nχL̃(z)}

∣∣∣

Under the assumption of Theorem 2, ∆n(z)− E∆n(z) converge to GFF in the upper half plane
in the sense that for each s ∈ (0, 1)

lim
n→∞

∫ ∞

−∞
χj (∆n(nχ, ns)− E∆n(nχ, ns)) dχ =

∫

z∈H:sL̃(z)=s
χ

j
L̃(z)

dχL̃(z)
dz

Ξ(z)dz

The main idea to prove Theorem 5 is to first show that a collection of certain observ-
ables converge to a Gaussian vector in the scaling limit by applying the Wick’s moment
formula; then find an explicit diffeomorphism from the liquid region to the upper half
plane, which gives the convergence of the observables to the pull-back of GFF in H.
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Abstract. We provide an explicit description of the recurrent configurations of the
sandpile model on a family of graphs Ĝµ,ν, which we call clique-independent graphs, in-
dexed by two compositions µ and ν. Moreover, we define a delay statistic on these con-
figurations, and we show that, together with the usual level statistic, it can be used to
provide a new combinatorial interpretation of the celebrated shuffle theorem of Carlsson
and Mellit. More precisely, we will see how to interpret the polynomials ⟨∇en, eµhν⟩ in
terms of these configurations.

Keywords: Shuffle theorem, sandpile model, recurrent configurations

1 Introduction

1.1 Shuffle theorem

The shuffle theorem of Carlsson and Mellit [4] is a recent breakthrough that provided a
positive solution to a long-standing conjecture about a combinatorial formula for the
Frobenius characteristic of the so-called diagonal harmonics. More precisely, this theo-
rem provides the monomial expansion of the symmetric function ∇en, where en is the
elementary symmetric function of degree n in the variables x1, x2, . . . , and ∇ is the fa-
mous nabla operator introduced by Bergeron and Garsia in the 90’s. In this formula, to
each labelled Dyck path of size n corresponds a monomial, where the variables x1, x2, . . .
keep track of the labels, while the variables q and t keep track of the bistatistic (dinv,
area).
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In [14] Loehr and Remmel provided an alternative combinatorial interpretation of
the same symmetric function in terms of the same objects, but using the bistatistic (area,
pmaj). In particular, they showed bijectively that the two combinatorial formulas coin-
cide. In the present article we show that this last combinatorial formula has a natural
interpretation in terms of the sandpile model.

1.2 Sandpile model

The (abelian) sandpile model is a combinatorial dynamical system on graphs first intro-
duced by Bak, Tang and Wiesenfeld [3] in the context of “self-organized criticality” in
statistical mechanics. The sandpile model (and variants of it) have found applications
in a wide variety of mathematical contexts including enumerative combinatorics, trop-
ical geometry, and Brill–Noether theory, among others: see [13] for a nice introductory
monograph. In the present article we only consider the sandpile model with a sink.

A well-known link between the combinatorics of this dynamical system and the one
of the underlying graph is given by the so-called recurrent configurations (see Definition 9).
For example, the recurrent configurations of the sandpile model are in bijection with the
spanning trees of the graph (see e.g. [7]).

If the underlying graph presents some symmetries, then it is natural to look at the
recurrent configurations “modulo” those symmetries. For example, for the complete
graph we can identify recurrent configurations that are the same up to a permutation of
the vertices (not moving the sink): perhaps not surprisingly, we still get an interesting
combinatorics, as in this case we find Catalan many such “sorted” configurations.

More formally, consider the sandpile model on a graph G, and let Aut(G) be the
automorphism group of G. Consider a subgroup Γ of the stabilizer of the sink. Now
Γ acts naturally on the set Rec(G) of recurrent configurations: we are interested in the
orbits of this action, that we will call sorted recurrent configurations.

1.3 Main result

We will consider an explicit family of graphs Ĝµ,ν indexed by pairs of compositions µ

and ν. For such a graph Ĝµ,ν we will look at a subgroup Γ of its automorphism group
that will be isomorphic to the Young subgroup Sµ ×Sν of the symmetric group Sn,
where n = |µ| + |ν|. We denote by SortRec(µ, ν) the set of the corresponding sorted
recurrent configurations of Ĝµ,ν.

For every recurrent configuration κ of Ĝµ,ν, we will define a new statistic, called the
delay of κ (denoted delay(κ)), which we will couple with the usual level statistic (denoted
level(κ)). To state our main result, we need a few more definitions.

Given a composition µ = (µ1, µ2, . . . ), we denote by eµ the product eµ1eµ2 · · · , and
similarly hµ = hµ1 hµ2 · · · , where hn is the complete homogeneous symmetric function of
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degree n. Finally, we denote by ⟨−,−⟩ the Hall scalar product on symmetric functions.

Theorem 1. For every pair of compositions µ, ν such that n = |µ|+ |ν| we have

⟨∇en, eµhν⟩ = ∑
κ∈SortRec(µ,ν)

qlevel(κ)tdelay(κ).

Notice that for µ = ∅, the coefficient ⟨∇en, hν⟩ is simply the coefficient of xν =
xν1

1 xν2
2 · · · in ∇en, hence this formula gives in particular a new combinatorial interpreta-

tion of the monomial expansion of the symmetric function ∇en in terms of the sandpile
model.

The idea of the proof is to show that the sorted recurrent configurations with the
bistatistic (level, delay) correspond bijectively to the labelled Dyck paths predicted by the
shuffle theorem with the bistatistic (area, pmaj).

1.4 Comments

Theorem 1 extends several previous results in the literature: the case Ĝ∅,(n) was already
worked out in [8], (a slight modification of) the case Ĝ(m,n−m),∅ already appears in [1,
11], while the case Ĝ(m),(n−m) is dealt with in [10].

Other articles in which sorted recurrent configurations make their appearance are for
example [2] and [9]. It should be noticed that the works [8] and [9] inspired the results
in [6] and [5] respectively, which belong to tropical geometry and Brill-Noether theory.

We hope that the findings in the present article motivate further investigation of
sorted recurrent configurations, and their relation to other parts of mathematics.

2 Combinatorics of the shuffle theorem

For every n ∈ N, we set [n] := {1, 2, . . . , n}.
The pmaj statistic was first introduced in [14]. The area statistic is classical.

Definition 1. A Dyck path of size n is a lattice path going from (0, 0) to (n, n), using
only north and east steps and staying weakly above the line x = y (also called the main
diagonal). A labelled Dyck path is a Dyck path whose vertical steps are labelled with (not
necessarily distinct) positive integers such that, when placing the labels in the square
to the right of its step, the labels appearing in each column are strictly increasing from
bottom to top. For us, a parking function1 of size n is a labelled Dyck path of size n whose
labels are precisely the elements of [n]. See Figure 1 for an example.

The set of all parking functions of size n is denoted by PF(n).
1These are in bijection with the functions f : [n] → [n] such that #{1 ≤ j ≤ n | f (j) ≥ i} ≤ n + 1 − i,

by defining f (i) to be the column of the label i.
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3
5
6
9
10

7
11

2
8

4
1
12

a1(D) =
a2(D) =
a3(D) =
a4(D) =
a5(D) =
a6(D) =
a7(D) =
a8(D) =
a9(D) =

a10(D) =
a11(D) =
a12(D) =

0
1
2
3
4
4
5
4
5
2
2
3

area(D) = 35

Figure 1: An element D of PF((4, 3); (3, 2)).

Definition 2. Given D ∈ PF(n), we define its area word to be the string of integers
a(D) = a1(D) · · · an(D) where ai(D) is the number of whole squares in the i-th row
(from the bottom) between the path and the main diagonal. We define the area of D as

area(D) :=
n

∑
i=1

ai(D).

Example 1. The area word of the path in Figure 1 is 012344545223 and its area is 35.

To introduce the other statistic, we need a couple of definitions.

Definition 3. Let a1a2 · · · ak be a string of integers. We define its descent set

Des(a1a2 · · · ak) := {1 ≤ i ≤ k − 1 | ai > ai+1}

and its major index maj(a1a2 · · · ak) as the sum of the elements of the descent set.

Definition 4. Let D ∈ PF(n). We define its parking word p(D) as follows.
Let C1 be the multiset containing the labels appearing in the first column of D, and

let p1(D) := max C1. At step i, let Ci be the multiset obtained from Ci−1 by removing
pi−1(D) and adding all the labels in the i-th column of the D; let

pi(D) := max {x ∈ Ci | x ≤ pi−1(D)}

if this last set is non-empty, and

pi(D) := max Ci

otherwise. We finally define the parking word of D as p(D) := p1(D) · · · pn(D).
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Definition 5. We define the statistic pmaj on D ∈ PF(n) as

pmaj(D) := maj(pn(D) · · · p1(D)).

Example 2. For example, the parking word of the parking function D in Figure 1 is2

109765321184112. In fact, we have C1 = {3, 4, 5, 6, 9, 10}, C2 = {3, 4, 5, 6, 9, 7, 11}, C3 =
{3, 4, 5, 6, 7, 11}, and so on. The descent set of the reverse is {1, 5}, so pmaj(D) = 6.

Definition 6. For D ∈ PF(n) we set li(D) to be the label of the i-th vertical step. Then
the pmaj reading word of D is the sequence l1(D) · · · ln(D), i.e. the sequence of the labels
read bottom to top.

For example, the labelled Dyck path in Figure 1 has pmaj reading word 356910711284112.
Given two compositions µ = (µ1, µ2, . . . ) and ν = (ν1, ν2, . . . ) with |µ|+ |ν| = n, let

Kµ1 = {n, n − 1, . . . , n − µ1 + 1}, Kµ2 = {n − µ1, n − µ1 − 1, . . . , n − µ1 − µ2 + 1}, and so
on, and let Iν1 = {1, 2, . . . , ν1}, Iν2 = {ν1 + 1, ν1 + 2, . . . , ν1 + ν2}, and so on. Notice that
the sets Kµ1 , Kµ2 , . . . , Iν1 , Iν2 , . . . form a partition of [n].

Let now ↑Kµi be the word consisting of the elements of Kµi in increasing order: for
example ↑Kµ1 = (n − µ1 + 1)(n − µ1 + 2) · · · (n − 1)n. Similarly, let ↓ Iνj be the word
consisting of the elements of Iνj in decreasing order: for example ↓Iν1 = ν1(ν1 − 1) · · · 21.

Consider the shuffle

W(µ; ν) :=↑Kµ1� ↑Kµ2 � · · ·� ↑Kµℓ(µ)
� ↓Iν1� ↓Iν1 � · · ·� ↓Iνℓ(ν) ,

which we can think of as a set of permutations in Sn in one-line notation. Let PF(µ; ν)
be the set of parking functions whose pmaj reading word is in W(µ; ν).
For example2, W((4, 3); (3, 2)) = 910 11 12� 678� 54� 321, and the pmaj reading word
of the parking function D in Figure 1 belongs to it, so that D ∈ W((4, 3); (3, 2)).

We can now state the shuffle theorem in the form that is suitable for our purposes:
this is a combination of the main results in [4] and [14] combined with superization: see
[12, Chapter 6].

Theorem 2. For every pair of compositions µ and ν with |µ|+ |ν| = n we have

⟨∇en, eµhν⟩ = ∑
D∈PF(µ;ν)

qarea(D)tpmaj(D).

3 The clique-independent graphs Ĝµ,ν

Definition 7. Let µ, ν be two compositions (i.e. tuples of positive integers). Set n =
|µ|+ |ν|. We define a graph Gµ,ν with set of vertices [n] := {1, 2, . . . , n} consisting of the
following components3:

2We put a bar on the two-digit numbers not to confuse them.
3Notice that the notation is coherent with the one used in Section 2.
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1
2

3

4

5

6
7

8

9

10

11

12

0

Figure 2: The graph Ĝ(4,3),(3,2).

• ℓ(µ) clique components, i.e. complete graphs, Kµ1 , Kµ2 , . . . , on µ1, µk, . . . vertices re-
spectively. The vertices of Kµ1 are n, n − 1, . . . , n − µ1 + 1; the vertices of Kµ2 are
n − µ1, n − µ1 − 1, . . . , n − µ1 − µ2 + 1; and so on.

• ℓ(ν) independent components, i.e. graphs without edges, Iν1 , Iν2 , . . . , on ν1, ν2, . . . ver-
tices respectively; the vertices of Iν1 are 1, 2, . . . , ν1; the vertices of Iν2 are ν1 + 1, ν1 +
2, . . . , ν1 + ν2; and so on.

Finally, two vertices in distinct components are always connected by an edge.

Example 3. If µ = ∅, then G∅,ν is the complete multipartite graph Kν1,ν2,.... If ν = ∅,
then Gµ,∅ is isomorphic to the complete graph K|µ|; however, for our purposes we will
distinguish between G(|µ|),∅ and G(µ1,µ2,... ),∅, as we will consider the action of different
groups of automorphisms, which will lead to different sorted configurations.

Given one of our labelled graphs Gµ,ν, we define the graph Ĝµ,ν simply as Gµ,ν to
which we add a vertex 0, and we connect it with every other vertex. We will consider the
sandpile on Ĝµ,ν, where 0 is the sink. Figure 2 is an illustration of the graph Ĝ(4,3),(3,2).

4 Basics of the sandpile model

In the present work with a graph we will always mean a simple graph, i.e. a graph with
no loops and no multiple edges.

Definition 8. Let G be a finite, undirected graph on the vertex set {0, 1, . . . , n}.
A configuration of the sandpile (model) on G is a map κ : [n] ∪ {0} → Z that assigns a

(integer) number of “grains of sand” to each vertex of G.
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If 0 ≤ κ(v) ≤ deg(v), we say that v is stable, and otherwise it is unstable. Any vertex
can topple (or fire), and “donate a single grain” to each of its neighbors: the result is a
new configuration κ′ in which κ′(v) = κ(v)− deg(v) and for any w ̸= v

κ′(w) =

{
κ(w) + 1, if (v, w) is an edge
κ(w), otherwise.

For any v ∈ {0, . . . , n} we write ϕv for the toppling operator at vertex v. That is ϕv(κ) is a
new configuration obtained from κ by toppling the vertex v.

The vertex 0 is special in this model, and we call it the sink, while we call all the
others nonsink vertices. We say that a configuration κ is non-negative if all of its nonsink
vertices are non-negative, stable if all of its nonsink vertices are stable, and unstable if at
least one of its nonsink vertices is unstable.

Remark 1. Notice that the notion of stable configuration has no dependency on the value
on the sink. Therefore, as it is customary, we will ignore the value of a configuration on
the sink, and consider the configurations as restricted on the nonsink vertices. Moreover,
we will identify every configuration κ with the word κ(n)κ(n − 1) · · · κ(2)κ(1).

Example 4. Consider the graph Ĝ(4,3),(3,2) (see Figure 2), whose vertices are {0} ∪ [12],
and let 0 be the sink. The configuration κ given by2 310 11 11810 11 104973 is a stable
configuration. We compute a few topplings:

ϕ0(κ) = 411 12 12911 12 1151084,

(ϕ10◦ϕ0)(κ) = 512013 10 12 13 1261195,

(ϕ9◦ϕ10◦ϕ0)(κ) = 613 1111 13 14 13712 106,

(ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 714 2212115 14813 117,

(ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 815 33132315914 128,

(ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 916 4414344915 139,

(ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 10 17 5515455105139,

(ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 11 18 661656611539.

Definition 9. Let κ be a stable configuration, and consider the configuration ϕ0(κ). We
say that κ is recurrent4 if there is an order of all the nonsink vertices such that toppling the
vertices in that order we always stay non-negative. Of course at the end of this sequence
of topplings we will be back to κ. More precisely, a configuration κ is recurrent if there
is a permutation σ = σ1σ2 · · · σn ∈ Sn such that

ϕ0(κ), (ϕσ(1) ◦ ϕ0)(κ), (ϕσ(2) ◦ ϕσ(1) ◦ ϕ0)(κ), . . . , (ϕσ(n) ◦ · · · ◦ ϕσ(1) ◦ ϕ0)(κ) = κ

4In the literature “recurrent” is sometimes used in a broader sense than in this paper. Configurations
that are recurrent in our sense are called critical in these settings.
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are all non-negative configurations. In this case, σ is the toppling word of this sequence
of topplings, and we say that this sequence verifies the recurrence of κ.

Example 5. The configuration κ = 310 11 11810 11 104973 is a recurrent configuration for
Ĝ(4,3),(3,2): indeed it is easy to check that σ = 109765321184112 verifies the recurrence of κ

(cf. Example 2).

Remark 2. It is well known (see e.g. [2, Theorem 2.4]) that the condition for κ to be re-
current is equivalent to say that starting from ϕ0(κ) there is no proper (possibly empty)
subset A of [n] such that toppling all the vertices of A brings ϕ0(κ) to a stable configura-
tion.

Definition 10. Given a recurrent configuration κ of G, we define its level as

level(κ) := −|Es(G)|+
n

∑
i=1

κ(i)

where Es(G) is the set of edges of G that are not incident to the sink.

It is well-known that level(κ) ≥ 0, and there exists a recurrent configuration of level 0
if G is connected [15].

Remark 3. For Ĝµ,ν with |µ|+ |ν| = n we have

|Es(Ĝµ,ν)| =
(

n
2

)
− ∑

i≥0

(
νi

2

)
.

Example 6. The configuration κ = 310 11 11810 11 104973 for Ĝ(4,3),(3,2) has level

level(κ) = −
(

12
2

)
+

(
3
2

)
+

(
2
2

)
+ 97 = 35.

5 Toppling algorithm and delay

Consider the sandpile on a graph G with vertices {0} ∪ [n], where 0 is the sink. Let κ be
a recurrent configuration of G. Consider Algorithm 1.
Before discussing the algorithm, let us look at an example.

Example 7. Consider again the configuration κ from Example 4: in that example we
actually computed the sequence of toppling given by the first iteration of the for loop of
Algorithm 1 applied to κ. We compute the second iteration of the for loop:

(ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 1267717677126410,

(ϕ8◦ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 137885788137511,

(ϕ4◦ϕ8◦ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 14899689828612,

(ϕ1◦ϕ4◦ϕ8◦ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 15910 10791093862,
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and finally the third and last iteration of the for loop:

(ϕ12◦ϕ1◦ϕ4◦ϕ8◦ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 310 11 11810 11 104973 = κ.

Hence, the output of Algorithm 1 applied to κ is the word 109765321184112 (cf. Example 2
and Example 5).

Algorithm 1 Toppling algorithm

Input: A graph G and a recurrent configuration κ

Output: The word of nonsink vertices in the order they have been toppled
Topple the sink, i.e. compute ϕ0(κ)
Initialize the output word as empty
while there are nonsink vertices that are untoppled do

for i going from n to 1 (in decreasing order) do
if vertex i is unstable then

Topple vertex i
Append i to the output word

end if
end for

end while

Observe that by construction the algorithm terminates: since κ is recurrent, ϕ0(κ)
is non-negative and at least one of the vertices adjacent to the sink is unstable; then
every time we topple we stay non-negative, and since κ is recurrent the process must go
through all the nonsink vertices (otherwise we found a subset A of nonsink vertices such
that after we topple its vertices we are in a stable configuration, cf. Remark 2).

By construction the algorithm outputs a toppling sequence that verifies the recurrence
of κ. We can now define our new statistic on recurrent configurations.

Definition 11. Let κ be a recurrent configuration of G. For every i ∈ [n], let ri(κ) be the
number of for loop iterations in Algorithm 1 that occurred before the one in which the
vertex i is toppled (so if i is toppled in the first iteration, then ri(κ) = 0). Then we define
the delay of κ as

delay(κ) :=
n

∑
i=1

ri(κ).

Remark 4. If σ is the output of Algorithm 1 applied to κ, then clearly

delay(κ) = maj(σnσn−1 · · · σ1).

Example 8. For the configuration κ of Example 4, we got in Example 7 that Algorithm 1
gives σ = 109765321184112, so that delay(κ) = maj(121481123567910) = 1 + 5 = 6. Indeed,
looking at the computation of the algorithm, we find that the word r1(κ)r2(κ) · · · in this
case is indeed 100100010012, whose letters add up to 6 (cf. Example 2).
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6 Sorted recurrent configurations of Ĝµ,ν

Consider the Young subgroup Sµ ×Sν of the symmetric group Sn consisting of the
permutations that preserve the components of Gµ,ν. We want to consider configurations
“modulo” the natural action of Sµ ×Sν on the set of configurations. More precisely, a
sorted configuration5 of the sandpile on Ĝµ,ν is a configuration κ that is weakly decreasing
inside each clique component of Ĝµ,ν and weakly increasing inside each independent
component of Ĝµ,ν: if i, j ∈ Kµr and i < j, then κ(i) ≤ κ(j); if i, j ∈ Iνs and i < j, then
κ(i) ≥ κ(j).

Example 9. The configuration κ = 310 11 11810 11 104973 is a sorted recurrent configuration
for Ĝ(4,3),(3,2) (recall that in our notation κ = κ(n)κ(n − 1) · · · κ(1)).

Let κ be a sorted recurrent configuration of Ĝµ,ν. Let σ ∈ Sn be the toppling word
produced by Algorithm 1 applied to κ.

For every independent component Iνs of Gµ,ν, we order its vertices in decreasing

order, and if v(s)j is the j-th vertex of Iνs , we set

κ̃(v(s)j ) := κ(v(s)j ) + νs − j.

For every vertex v in a clique component Kµr we set

κ̃(v) := κ(v).

For every i ∈ [n], we set
uσ−1(i) := σ−1(i) + κ̃(i)− n.

Example 10. For the configuration κ = 310 11 11810 11 104973 in Example 9, we found in
Example 7 that Algorithm 1 gives σ = 109765321184112. Hence κ̃ = 310 11 11811 11 1141183,
and the word u := u1u2 · · · is 011345365223.

Given a permutation σ = σ(1)σ(2) · · · σ(n), we add σ(0) := 0 in front of it, and we
define its runs as its maximal consecutive decreasing substrings. Now for every i ∈ [n],
we define wσ−1(i) = wσ−1(i)(σ) as

wσ−1(i)(σ) := #{numbers in the same run of i and larger than i}
+ #{numbers smaller than i in the run immediately to the left of the one containing i}.

Example 11. The runs of σ = 109765321184112 are separated by bars: 0|10976532|11841|12,
so that the word w = w1(σ)w2(σ) · · · is 123456776434.

5The relation with the general definition of sorted configuration given in Section 1.2 is simply that we
are picking a specific convenient element in each orbit.
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The following propositions characterize the sorted recurrent configurations of Ĝµ,ν.

Proposition 1. Let κ be a sorted recurrent configuration of Ĝµ,ν. Let σ ∈ Sn be the toppling
word produced by Algorithm 1 applied to κ. Then for every i ∈ [n]

0 ≤ uσ−1(i) < wσ−1(i).

Proposition 2. Let κ be a sorted stable configuration of Ĝµ,ν, and let σ ∈ Sn be such that for
every i ∈ [n]

0 ≤ uσ−1(i) < wσ−1(i).

Then κ is recurrent and σ is the toppling word given by Algorithm 1 applied to κ.

We omit the proofs, but an instance can be checked by comparing Examples 10 and 11.

7 Bijection with parking functions

We now provide a bijection between recurrent sorted configurations of Ĝµ,ν and the
parking functions in PF(µ; ν).

Let SortRec(µ, ν) be the set of sorted recurrent configurations of Ĝµ,ν. Define the
function Φ : SortRec(µ, ν) → PF(µ, ν) in the following way: given κ ∈ SortRec(µ, ν),
in the notation of Section 6, we set Φ(κ) to be the (unique) parking function of size
n = |µ| + |ν| such that the label i occurs in column n − κ̃(i) (we number the columns
increasingly from left to right) for every i ∈ [n].

Example 12. The parking function D ∈ PF((4, 3); (3, 2)) in Figure 1 is the image Φ(κ) of
the configuration κ in Example 4 (κ̃ is computed in Example 10).

We can finally state the main result of our article.

Theorem 3. The map Φ is a well-defined bijection such that area(Φ(κ)) = level(κ) and such
that the σ obtained from the Algorithm 1 applied to κ equals the pmaj word of Φ(κ), so that
pmaj(Φ(κ)) = delay(κ).

Now Theorem 1 is an immediate consequence of this result combined with Theo-
rem 2. It can be checked in the instance of Example 12 (cf. Examples 7, 8, 2, 1 and 6).
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Real matroid Schubert varieties, zonotopes, and
virtual Weyl groups

Leo Jiang∗1

1Department of Mathematics, University of Toronto

Abstract. We show that the matroid Schubert variety of a real hyperplane arrangement
is homeomorphic to the zonotope of the arrangement with parallel faces identified.
Using this explicit model, we compute the homology and fundamental group of the
matroid Schubert variety in terms of combinatorial data of the underlying oriented
matroid. When the hyperplane arrangement is a Coxeter arrangement, we show that
the equivariant fundamental group is a virtual analogue of the associated Weyl group.

Keywords: matroid Schubert varieties, zonotopes, virtual Weyl groups

1 Introduction

Several recent breakthroughs in matroid theory have come from understanding the
topology of certain algebraic varieties associated to hyperplane arrangements. One such
variety is the matroid Schubert variety, which compactifies the ambient vector space of
a central essential hyperplane arrangement. Originally studied by Ardila–Boocher [1]
and Li [8], it has most notably found applications to the Dowling–Wilson top-heavy
conjecture for representable matroids [5].

We study the topology of matroid Schubert varieties YA associated with real hyper-
plane arrangements A. The main result is an explicit homeomorphism from YA to a
natural quotient of the zonotope associated with A. As a consequence, we obtain pre-
sentations for the homology and fundamental group of YA that depend only on the
oriented matroid data of A. When A is a Coxeter arrangement, we also show that the
equivariant fundamental groups are of independent interest. We call them virtual Weyl
groups, since they are quotients of virtual Artin groups [3] (which themselves generalise
the virtual braid group in type A).

Full details of the results in this extended abstract will be presented as part of the
forthcoming paper [7].

∗ljiang@math.toronto.edu

mailto:ljiang@math.toronto.edu
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2 Setup

Let V be a finite-dimensional vector space over a field F, and let A = (αe)e∈E ∈ (V∗)E

be a representation of an F-linear matroid M with (finite) ground set E. The rank of
S ⊆ E is rk S = dim span{αe : e ∈ S}, and a flat of M is a subset F ⊆ E that is not
strictly contained in another subset of the same rank. Flats of M are partially ordered by
inclusion, and this poset is in fact a geometric lattice L(M) called the lattice of flats of M.

Remark 1. The αe should be thought of as defining hyperplanes He = ker αe ⊆ V. When
M is simple, the αe are all nonzero and no two are parallel. In this case, M is the matroid
associated to the central hyperplane arrangement determined by the He.

For every F ∈ L(M), define the subspace VF =
⋂

e∈F ker αe ⊆ V. The localisation MF

is the matroid on ground set F with flats {G ⊆ F : G ∈ L(M)}. It has a representation
AF = (αe)e∈F ∈ ((V/VF)

∗)F. The contraction MF is the matroid on ground set E \ F with
flats {G \ F : F ⊆ G ∈ L(M)}. It has a representation AF = (αe|VF)e∈E\F ∈ (V∗F )

E\F.
Without loss of generality, assume that the αe span V∗. (If M is simple, this would

correspond to the hyperplane arrangement defined in Remark 1 being essential.) In this
case, the choice of A defines an embedding V → FE by v 7→ (αe(v))e∈E. Considering
FE as the subset of (P1)E = (F ∪ {∞})E with all coordinates finite, the closure of V in
(P1)E (in the Zariski topology) is the matroid Schubert variety YA of A. A key property of
matroid Schubert varieties is the existence of an affine paving.

Proposition 2 ([9, Lemmas 7.5 and 7.6]). The matroid Schubert variety YA has a stratification
YA =

⊔
F∈L(M) YF

A, where

YF
A = {(ye)e∈E ∈ YA : ye = ∞ if and only if e /∈ F} ∼= V/VF

∼= Frk F.

Further, YG
A =

⊔
F⊆G YF

A
∼= YAG for every G ∈ L(M).

Henceforth we fix F = R. In this case much of the combinatorics of A (and hence M)
can be encoded in the geometry of a convex polytope.

Definition 3. The zonotope associated to A is the Minkowski sum

ZA = ∑
e∈E

[−1, 1]αe =

{
∑
e∈E

ceαe : − 1 6 ce 6 1 for all e ∈ E

}
⊂ V∗.

Equivalently, it is the image of the cube [−1, 1]E under the projection (ce)e∈E 7→ ∑e∈E ceαe.

The face structure of ZA can be understood explicitly using the oriented matroid
structure of A in terms of covectors. Define a map V → {+,−, 0}E by sending v ∈ V
to C = (Ce)e∈E, where Ce = + if αe(v) > 0, − if αe(v) < 0, and 0 if αe(v) = 0. The
image of this map is the set of covectors of A. Each covector C gives a decomposition
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E = C+ t C− t C0, where C+ = {e ∈ E : Ce = +}, C− = {e ∈ E : Ce = −}, and
C0 = {e ∈ E : Ce = 0}. Observe that the flats of A are exactly the zero sets C0 of
covectors of A. Further, the set of covectors has a partial order induced from the product
order on {+,−, 0}E defined by 0 < +,− on each coordinate. Adjoining a top element
gives the face lattice of A.

We can associate a face of ZA to each covector C as follows:

C 7→ ∑
e∈C+

αe − ∑
e∈C−

αe + ∑
e∈C0

[−1, 1]αe. (2.1)

It follows immediately that the face associated to a covector C is (isometric to) ZAF ,
where F is the zero set of C.

Proposition 4 ([4, Proposition 2.2.2]). The map (2.1) is an order-reversing bijection between
covectors of A and faces of ZA (under inclusion).

Example 5. In Figure 1 we visualise the rank 2 braid arrangement. Concretely, in the
above notation we have V∗ = R3/R(1, 1, 1), E = {1, 2, 12}, and α1 = (1,−1, 0), α2 =
(0,−1, 1), and α12 = (1, 0,−1) = α1 + α2. By fixing an isomorphism V ∼= V∗ using the
dot product, we draw both the hyperplanes in V (in black) and the zonotope in V∗ (in
blue) in the same plane. Finally, we label the regions of V by their covectors.

α1α2

α12

+++

+0+

+−+

+− 0

+−−
0−−

−−−
−0−

−+−

−+ 0

−++

0 ++

ker α12

ker α1 ker α2

Figure 1: The rank 2 braid arrangement
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3 The combinatorial model

Observe from the explicit equations (2.1) that faces of ZA whose covectors correspond
to the same flat are translates of each other. Let ZA/∼ be the quotient of ZA obtained
by identifying two points if one is moved to the other by such a translation. Intuitively,
ZA/∼ is the result of identifying parallel faces in ZA.

The stratification of ZA by (relatively open) faces descends to a stratification of ZA/∼
indexed by L(M). Denote by ZF

A the stratum corresponding to F ∈ L(M).

Theorem 6. The real matroid Schubert variety YA (with the analytic topology) is homeomorphic
to ZA/∼.

Proof sketch. We claim that every homeomorphism f : R → (−1, 1) determines a homeo-
morphism φ : YA → ZA/∼. First observe that there is a map V → RE → (−1, 1)E → ZE

A
defined by v 7→ (αe(v)) 7→ ( f (αe(v))) 7→ ∑e∈E f (αe(v))αe. Unfortunately this compo-
sition does not obviously extend to the desired map, as the projection [−1, 1]E → ZA
does not descend to a well-defined map after identifying parallel faces. Nevertheless, we
claim that a suitable interpretation of the formula (ye)e∈E 7→ ∑e∈E f (ye)αe extends the
map V → ZE

A to the required continuous φ. In fact, if y = (ye)e∈E ∈ YF
A, there are several

possible values for ( f (ye))e∈E ∈ [−1, 1]E allowed by continuity, but they correspond to
different covectors with the same zero set F and hence ∑e∈E f (ye)αe is well-defined in
the quotient ZA/∼.

Since YA is compact and ZA/∼ is Hausdorff, the continuous map φ is a homeomor-
phism if it is a bijection. By construction it maps YF

A to ZF
A, so it is enough to verify

bijectivity on each stratum separately. Further, it is enough to check the open stratum
YE
A
∼= V, since each YF

A is the open stratum in YAF .
For injectivity, let v, w ∈ V and consider (de) = ( f (αe(v)) − f (αe(w))) ∈ (−1, 1)E.

Observe that f must be (strictly) increasing or decreasing; without loss of generality,
assume that f is increasing. The sign of de is then the same as the sign of αe(v − w).
So ∑e∈E deαe(v− w) is non-negative, and it is zero if and only if de = αe(v− w) = 0 for
every e ∈ E. But if v and w map to the same point in ZE

A, then ∑e∈E deαe = 0. It follows
that αe(v− w) = 0 for every e ∈ E, and thus v = w as the αe span V∗.

To show surjectivity, consider the quotients of YA and ZA/∼ identifying all boundary
strata to a point ∞. Both quotients are homeomorphic to spheres, with induced cell
decompositions V t {∞} and ZE

A t {∞} respectively. Since φ sends strata to strata, it
descends to a continuous cellular map φ between the quotients. If φ were not surjective,
then the image of φ would be contained in the sphere minus one point and hence be
homeomorphic to (a subset of) V. By the Borsuk–Ulam theorem φ would not be injective.
In particular, cellularity of φ implies that φ|V = φ|V would not be injective, contradicting
what was shown above.
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Remark 7. In the case of Coxeter arrangements, Theorem 6 was proved in [6, Appendix
A] using somewhat involved root system combinatorics.

Example 8. If dim V = dim V∗ = 2, then ZA is a 2n-gon (where n > 2 is the number
of rank 1 flats). Identifying parallel edges of ZA gives a connected compact orientable
surface without boundary. The resulting cell structure on the surface has one 0-cell if
n is even and two 0-cells if n is odd. By an Euler characteristic computation and the
classification of surfaces, it follows that YA is homeomorphic to Σg (if n = 2g is even)
or Σg with two (distinct) points identified (if n = 2g + 1 is odd). For example, the
matroid Schubert variety corresponding to the rank 2 braid arrangement of Example 5
is homeomorphic to the torus with two points identified.

4 Computations of invariants

The combinatorial model of Theorem 6 allows for easy computation of some topological
invariants of YA.

Homology

There is a cellular chain complex for ZA/∼ with cells given by the strata ZF
A. The

boundary map in this complex is necessarily zero, since in the computation for any cell
ZF
A opposite faces of ZF

A both occur and with opposite sign. Their contributions cancel,
as the opposite faces are identified in ZA/∼. Hence the homology of YA is easy to
compute.

Proposition 9. H•(YA, Z) ∼= H•(ZA/∼, Z) ∼=
⊕

F∈L(M) ZxF, where deg xF = rk F.

Remark 10. It is interesting to note that the cellular boundary maps for the analogous
cell structures on complex matroid Schubert varieties are also zero, but for the different
reason that the cells are concentrated in even (real) dimension.

Fundamental group

The fundamental group of a cell complex depends only on the 2-skeleton. For ZA/∼, the
cells of dimension k correspond to the flats of rank k. We take the 0-cell corresponding
to the unique rank 0 flat to be the basepoint. There is then a presentation of π1(YA) with
generators xF indexed by rank 1 flats and relations indexed by rank 2 flats.

To compute the relations, it is helpful to work with an acyclic reorientation of A (this
does not change the zonotope ZA). Let G be a rank 2 flat. The rank 1 flats contained in
G can be ordered as follows. If G contains n rank 1 flats, the zonotope ZAG is a 2n-gon.
One vertex of this 2n-gon has a covector without any + coordinates (this follows from
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the choice of acyclic orientation). A length n sequence of edges from this vertex to its
opposite vertex defines a total order F1 < . . . < Fn on the rank 1 flats contained in G.
There are two such sequences, giving opposite orders. The relation corresponding to G
then says that the two paths xF1 · · · xFn and xFn · · · xF1 determined by these sequences are
equal.

Theorem 11. The fundamental group π1(YA) has a presentation with generators {xF : F ∈
L(M), rk F = 1} and relations xF1 · · · xFn x−1

F1
· · · x−1

Fn
for every rank 2 flat G, where F1, . . . , Fn

are the rank 1 flats contained in G ordered as above.

Example 12. Continuing Example 5, the fundamental group of the matroid Schubert
variety in this case has a presentation 〈x1, x2, x12 | x1x12x2x−1

1 x−1
12 x−1

2 〉.

Remark 13. When ZA is the (type A) permutohedron of dimension n, the homology and
fundamental group were computed in this way in [2, Proposition 8.3] and [2, Theorem
8.1], generalising the n = 2 computation in Example 12. In particular, the fundamental
group was shown to be isomorphic to the triangular group Trn+1, also known as the
pure flat braid group.

Remark 14. Every rank 2 oriented matroid is representable over R [4, Corollary 8.3.3], so
the above presentation of π1(YA) can be used to define a group for any oriented matroid.

Homotopy groups

In certain cases, the higher homotopy groups πn(YA) are also known.

Theorem 15 ([2, Theorem 8.1]). If ZA is the (type A) permutohedron, then ZA/∼ is a classi-
fying space and hence πn(YA) = πn(ZA/∼) is trivial for all n > 1.

The proof uses the theory of non-positively curved polyhedral complexes. We expect
that the same result holds more generally, at least for nice enough choices of A.

5 Coxeter arrangements

We first fix some notation. Let Φ be a root system with simple roots Π and positive roots
Φ+. Each (positive) root defines a hyperplane in the dual space, and the corresponding
hyperplane arrangement is called a Coxeter arrangement. By abuse of notation, we also
use Φ+ for the matroid representation with coordinates given by the positive roots.

Further, let (mα,β)α,β∈Π be the Coxeter matrix associated to the root system Φ, and let
Σ = {σα : α ∈ Π} and S = {sα : α ∈ Π} be abstract sets indexed by Π. The Artin group A
has a presentation with generators Σ and relations Prod(σα, σβ, mα,β) = Prod(σβ, σα, mα,β)
for all α, β ∈ Π with α 6= β and mα,β 6= ∞. Here Prod(a, b, m) is the word aba . . . of length
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m. Similarly, the Weyl group W has a presentation with generators S and relations s2
α = 1

for all α ∈ Π and Prod(sα, sβ, mα,β) = Prod(sβ, sα, mα,β) for all α, β ∈ Π with α 6= β and
mα,β 6= ∞.

Bellingeri–Paris–Thiel [3] have recently defined the virtual Artin group VA as the free
product of W and A modulo some “mixed relations” coming from the action of W on
Φ. Their definition unifies the Coxeter-theoretic and knot-theoretic generalisations of
the classical braid group to Artin groups and virtual braid groups respectively. We are
interested in a quotient of their group that can be considered as a virtual analogue of the
corresponding Weyl group.

Definition 16 ([3]). The virtual Artin group VA is the free product of W and A modulo
relations Prod(sα, sβ, mα,β − 1)σα = σγProd(sα, sβ, mα,β − 1) for all α, β ∈ Π with α 6= β

and mα,β 6= ∞. In these relations, the positive root γ is defined as α if mα,β is even and β

if mα,β is odd.

Definition 17. The virtual Weyl group VW is the quotient of VA by the relations σ2
α = 1

for all α ∈ Π.

There is a surjective group homomorphism VW → W defined on generators by
σα, sα 7→ sα for all α ∈ Π, and we call its kernel the pure virtual Weyl group PVW. The map
πP : VA→ W [3, Section 2] is the composition of this map with the quotient VA→ VW,
and its kernel is the pure virtual Artin group PVA.

Proposition 18. The fundamental group π1(YΦ+) is isomorphic to PVW.

Proof sketch. There is a presentation of the pure virtual Artin group with generators
{ζβ : β ∈ Φ} and certain relations [3, Theorem 2.6]. As PVW is the image of PVA
under the quotient map VA → VW, we can obtain a presentation of PVW by imposing
(consequences of) the relations σ2

α = 1 to the presentation of PVA.
In fact, the generator ζβ is the element wsασαw−1 ∈ VA for some w ∈ W and α ∈ Π

such that w(α) = β [3, p. 197]. This definition is independent of the choices of w and
α [3, Lemma 2.2]. Then −β = wsα(α), so ζ−β = (wsα)sασα(sαw−1) = wσαsαw−1 and
ζβζ−β = wsασ2

αsαw−1. But this is the identity if and only if σ2
α = 1, so PVW has a

presentation with generators {ζβ : β ∈ Φ+} and the same relations as PVA.
A root subsystem Φ′ ⊂ Φ is parabolic if Φ′ ∩Φ+ corresponds to a flat of the Coxeter

arrangement. The relations in the above presentation of PVA correspond to choices of
simple roots for rank 2 parabolic root subsystems of Φ. One can compute the relations
and show that, after accounting for the extra relations ζβζ−β = 1, the relations for pairs
of simple roots depend only on the parabolic root subsystem, and that they are the same
as the relations in Theorem 11 coming from the rank 2 flats. Hence the presentations of
PVW and π1(YΦ+) define the same group.
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The Weyl group W acts on V, and hence on YΦ+ and π1(YΦ+). We can therefore con-
sider the W-equivariant fundamental group πW

1 (YΦ+) [6, Definition 11.1]. As the unique
0-cell is fixed by the action of W, taking it as the basepoint gives a semidirect prod-
uct decomposition πW

1 (YΦ+) ∼= W n π1(YΦ+). The homomorphism W → Aut(π1(YΦ+))
defining the semidirect product is exactly the W-action indicated above. Explicitly, an
element w ∈W acts on generators of π1(YΦ+) by ζβ 7→ ζw(β).

Theorem 19. The W-equivariant fundamental group πW
1 (YΦ+) is isomorphic to the virtual Weyl

group VW.

Proof sketch. The virtual Weyl group also has a semidirect product decomposition W n
PVW descending from the semidirect product decomposition of the virtual Artin group
[3, Proposition 2.1]. As π1(YΦ+) ∼= PVW (Proposition 18) and the action of W on PVW
[3, p. 203] agrees with the action of W on π1(YΦ+), the semidirect products πW

1 (YΦ+)
and VW must be isomorphic.

Remark 20. In type A, the virtual Weyl group is known as the flat (virtual) braid group. It
was called the virtual symmetric group in [6], where it was realised as the equivariant
fundamental group πSn

1 (YΦ+) of the corresponding matroid Schubert variety [6, Lemma
11.6].
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[4] A. BjÃűrner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented Matroids.
2nd ed. Encyclopedia of Mathematics and its Applications. Cambridge University Press,
1999. doi.

[5] J. Huh and B. Wang. “Enumeration of points, lines, planes, etc.” Acta Mathematica 218.2
(2017), pp. 297–317. doi.

https://dx.doi.org/10.1007/s10801-015-0634-x
https://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2005.12.006
https://dx.doi.org/https://doi.org/10.1112/plms.12491
https://dx.doi.org/10.1017/CBO9780511586507
https://dx.doi.org/https://doi.org/10.4310/ACTA.2017.v218.n2.a2


Real matroid Schubert varieties 9

[6] A. Ilin, J. Kamnitzer, Y. Li, P. Przytycki, and L. Rybnikov. “The moduli space of cactus flower
curves and the virtual cactus group”. 2023. arXiv:2308.06880.

[7] L. Jiang and Y. Li. in preparation.

[8] B. Li. “Images of rational maps of projective spaces”. International Mathematics Research
Notices 2018.13 (2018), pp. 4190–4228. doi.

[9] N. Proudfoot, Y. Xu, and B. Young. “The Z-Polynomial of a Matroid”. The Electronic Journal
of Combinatorics (2018), P1–26. doi.

https://arxiv.org/abs/2308.06880
https://dx.doi.org/10.1093/imrn/rnx003
https://dx.doi.org/https://doi.org/10.37236/7105


Séminaire Lotharingien de Combinatoire 91B (2024) Proceedings of the 36th Conference on Formal Power
Article #72, 12 pp. Series and Algebraic Combinatorics (Bochum)

Chromatic functions, interval orders, and
increasing forests

Michele D’Adderio*1, Roberto Riccardi†2, and Viola Siconolfi‡3

1Università di Pisa, Dipartimento di Matematica, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
2Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
3Politecnico di Bari, Dipartimento di Meccanica, Matematica e Managment, Via Orabona 4,
70125 Bari, Italy

Abstract. The chromatic quasisymmetric functions (csf) of Shareshian and Wachs as-
sociated to unit interval orders have attracted a lot of interest since their introduction
in 2016, both in combinatorics and geometry, because of their relation to the famous
Stanley-Stembridge conjecture (1993) and to the topology of Hessenberg varieties, re-
spectively. In the present work we study the csf associated to the larger class of interval
orders with no restriction on the length of the intervals. Inspired by an article of Abreu
and Nigro, we show that these csf are weighted sums of certain quasisymmetric func-
tions associated to the increasing spanning forests of the associated incomparability
graphs. Furthermore, we define quasisymmetric functions that include the unicellu-
lar LLT symmetric functions and generalize an identity due to Carlsson and Mellit.
Finally we conjecture a formula giving their expansion in the type 1 power sum qua-
sisymmetric functions which should extend a theorem of Athanasiadis.

Keywords: Chromatic quasisymmetric functions, LLT quasisymmetric functions, in-
creasing spanning forests

1 Introduction

In [15] Shareshian and Wachs introduced the chromatic quasisymmetric function χG[X; q]
associated to every graph G whose vertices are totally ordered, as a sum over proper
colorings of G of suitable monomials. At q = 1 the series χG[X; q] reduces to the well-
known chromatic symmetric function χG[X; 1] = χG(x) introduced by Stanley in [17]. A
famous conjecture of Stanley and Stembridge ([17, Conjecture 5.1], [18, Conjecture 5.5])
states that if G is the incomparability graph of a (3 + 1)-free poset, then χG[X; 1] is e-
positive, i.e. its expansion in the elementary symmetric functions has coefficients in N.
Shareshian and Wachs showed (cf. [15, Theorem 4.5]) that if G is the incomparability
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†roberto.riccardi@sns.it
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graph of a poset that is both (3 + 1)-free and (2 + 2)-free, then χG[X; q] is a symmetric
function, and they conjecture that it is e-positive, i.e. its expansion in the elementary
symmetric functions has coefficients in N[q]. Thanks to a result of Guay-Paquet [9], it is
known that the Shareshian-Wachs conjecture implies the Stanley-Stembridge conjecture.
The former problem attracted a lot of attention recently: see e.g. [10, 2, 16, 7, 12, 8].

The posets that are (3 + 1)-free and (2 + 2)-free are precisely the unit interval orders
(see [14]), whose elements are intervals in R of the same length, and an interval a is
smaller than an interval b if all the points of a are strictly smaller than all the points of
b. If in such a poset we order the intervals increasingly according to their left endpoints,
then we get a total order on them, and now the incomparability graphs of these posets
will inherit this total order on the vertices, giving the labelled graphs G involved in the
Shareshian-Wachs conjecture. In our article we call these labelled graphs Dyck graphs, as
they are in a natural bijection with Dyck paths.

If in the definition of unit interval orders we drop the condition on the intervals to
have all the same length, then we get the interval orders. The incomparability graphs of
these posets will be called interval graphs in our article, and their chromatic quasisym-
metric functions χG[X; q] are the object of our study.

Inspired by the work of Abreu and Nigro [1], given an interval graph G, for every
increasing spanning forest F of G we will define a quasisymmetric function Q(G)

F so
that the following formula holds (the statistic wtG(F) is essentially the one in [1], while
ISF(G) is the set of increasing spanning forests of G).

Theorem 4.1. Given an interval graph G on n vertices, we have

χG[X; q] = ∑
F∈ISF(G)

qwtG(F)Q(G)
F . (1.1)

For every simple graph G with totally ordered vertices we introduce the quasisym-
metric function LLTG[X; q], analogous to χG[X; q] but defined as a sum over all (not
necessarily proper) colorings of G of suitable monomials.

The main result of this article is the following theorem, stated in plethystic notation
(ρ and ψ are well-known involutions of the algebra QSym of quasisymmetric functions).

Theorem 5.1. Given G an interval graph on n vertices, we have

(1− q)nρ

(
ψχG

[
X

1
1− q

])
= LLTG[X; q].

This result extends the identity in [6, Proposition 3.5] proved by Carlsson and Mellit
when G is a Dyck graph.

In [5] the authors study a family of quasisymmetric functions that they call type 1
quasisymmetric power sums, denoted Ψα. Actually {Ψα | α composition} is a basis of
QSym that refines the power symmetric function basis.
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Figure 1: The interval graph G = ([8], {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7),
(3, 4), (3, 5), (3, 6), (5, 6), (5, 7), (6, 7), (6, 8), (7, 8)}), on the left. On the right, the Dyck
graph G2 = ([8], {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (5, 6), (5, 7), (6, 7), (7, 8)}).

We state the following conjecture which is supposed to provide an extension of the
formula proved by Athanasiadis in [4].

Conjecture 6.1. For any interval graph G on n vertices we have

ρψχG[X; q] = ∑
α⊨n

Ψα

zα
∑

σ∈NG,α

qĩnvG(σ).

2 Preliminaries

For every n ∈ Z>0 := {1, 2, 3, . . . } we will use the notation [n] := {1, 2, . . . , n}.

2.1 Interval graphs

In this abstract a graph will always be simple, i.e. no loops and no multiple edges.
In our work a (labelled) graph G = ([n], E) will be called interval if whenever {i, j} ∈ E

and i < j, then {i, k} ∈ E for every i < k ≤ j. We will call IGn the set of all interval
graphs with vertex set [n].

We can represent an interval graph G = ([n], E) in the following way: in a n × n
square grid we order the columns from left to right with numbers 1, 2, . . . , n and similarly
the rows from bottom to top; then we color the cells {i, j} ∈ E with i < j. See Figure 1,
on the left, for an example1.

Notice that in these pictures we simply obtain a bunch of (possibly empty) colored
columns, starting just above the diagonal cells. Hence clearly there are n! interval graphs
on n vertices.

1Sometimes we denote by (i, j) an edge {i, j} ∈ E with i < j, like in the caption of Figure 1.
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Given an interval graph G on n vertices, we can consider its flipped, obtained from
G by replacing each edge {i, j} with an edge {n + 1− i, n + 1− j}: in terms of pictures,
this corresponds to flip the picture of G around the line y = −x.

An interval graph G on n vertices such that its flipped is still an interval graph is
called a Dyck graph. The explanation of the name is obvious, since the picture of a Dyck
graph determines a Dyck path: see the graph G2 in Figure 1, on the right (the Dyck path
is the thicker one).

It turns out that the interval graphs are the incomparability graphs of certain posets
called interval orders (hence their name).

Given a (naturally labelled) poset P = ([n],<P), its incomparability (labelled) graph
Inc(P) = ([n], EP) is defined by setting {i, j} ∈ EP if and only if i and j are incomparable
in P.

Let I be the set of all bounded closed intervals of R, and given I = [a, b] and J = [c, d]
we set I ≺ J if and only if b < c. Clearly (I ,≺) is a poset. Any subposet of (I ,≺) is
called an interval order.

2.2 Symmetric and quasisymmetric functions

In this section we recall a few basic facts of symmetric and quasisymmetric functions,
mainly to fix the notation.

Given a composition α = (α1, α2, . . . , αk) of n ∈ N (denoted α ⊨ n), we denote its size
by |α| = ∑i αi = n and its length by ℓ(α) = k. For brevity, sometimes we will use the
exponential notation, so that for example we will write (14) for (1, 1, 1, 1), or (13, 22, 1, 3)
for (1, 1, 1, 2, 2, 1, 3).

To a composition α = (α1, α2, . . . , αk) of n we associate a set set(α) = setn(α) ⊆ [n− 1]:

set(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1}.

Viceversa, to a subset S ⊆ [n− 1] whose elements are i1 < i2 < · · · < ik we associate the
composition

comp(S) = compn(S) = (i1, i2 − i1, i3 − i2, . . . , ik − ik−1, n− ik) ⊨ n.

Notice that the functions setn and compn are inverse of each others.
Given a composition α ⊨ n, α = (α1, α2, . . . , αk), its reversal is αr = (αk, αk−1, . . . , α1),

its complement is αc = comp([n− 1] \ set(α)), and its transpose is αt = (αr)c = (αc)r.
We denote by QSym the algebra of quasisymmetric functions in the variables x1, x2,. . .

and coefficients in Q(q), where q is a variable.
Given n ∈ N and S ⊆ [n − 1], we define the fundamental (Gessel) quasisymmetric

function Ln,S as
Ln,S := ∑

i1≤i2≤···≤in
j∈S⇒ij ̸=ij+1

xi1 xi2 · · · xin
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and for every α ⊨ n, we define Lα := Ln,set(α).
It is well known that {Lα | α composition} is a basis of QSym.
We have the following three involutions of QSym: ψ : QSym → QSym, defined by

ψ(Lα) := Lαc , ρ : QSym → QSym defined by ρ(Lα) = Lαr , and ω : QSym → QSym
defined by ω(Lα) = Lαt .

We will use the plethysm of quasisymmetric functions: cf. [11].

2.3 Colorings and (co)inversions

Given n ∈ Z>0, let G = ([n], E) be a (simple) graph.
A coloring of G is simply a function κ : [n] → Z>0. We call C(G) the set of colorings

of G. We can and will identify a coloring κ ∈ C(G) with the word κ(1)κ(2) · · · κ(n) in
the alphabet Z>0.

A coloring of G is called proper if {i, j} ∈ E implies κ(i) ̸= κ(j). We call PC(G) the set
of proper colorings of G. Notice that with the above identifications we always have that
the symmetric group Sn is a subset of PC(G).

Given κ ∈ C(G) a G-inversion of κ is a pair (i, j) with {i, j} ∈ E, i < j and κ(i) > κ(j).
Similarly, a G-coinversion of κ is a pair (i, j) with {i, j} ∈ E, i < j and κ(i) < κ(j).
We denote by InvG(κ), respectively CoInvG(κ), the set of G-inversions, respectively G-
coinversions, of κ. Let us denote by Inv(G) the (finite) set of possible sets of G-inversions
of a coloring of G: in other words Inv(G) := {InvG(σ) | σ ∈ Sn}. Similarly, we set
CoInv(G) := {CoInvG(σ) | σ ∈ Sn}.

We can now set for every κ ∈ C(G)

invG(κ) := |InvG(κ)| and coinvG(κ) := |CoInvG(κ)|.

Example 2.1. Consider the graph G in Figure 1, and σ = 31852647 ∈ S8 ⊆ PC(G). Then

InvG(σ) = {(1, 2), (3, 4), (3, 5), (3, 6), (6, 7)} and
CoInvG(σ) = {(1, 3), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (5, 6), (5, 7), (6, 8), (7, 8)},

so that invG(σ) = 5 and coinvG(σ) = 10.

Let ϕ : C(G) → Sn be the standardization from left to right: given κ(1)κ(2) · · · κ(n),
if c1 < c2 < · · · < ck is the ordered set of values κ(i), then ϕ(κ) is the permutation
obtained by replacing the d1 occurrences of c1 with the numbers 1, 2, . . . , d1 from left to
right, then the d2 occurrences of c2 with the numbers d1 + 1, d1 + 2, . . . , d1 + d2 from left
to right, and so on. For example ϕ(3253353) = 2163475.
Remark 2.2. Observe that for any κ ∈ C(G),

CoInvG(κ) ⊆ CoInvG(ϕ(κ)) and InvG(κ) = InvG(ϕ(κ)).

The asymmetry is due to the fact that the standardization ϕ is from left to right. But
observe that if κ ∈ PC(G), then in fact CoInvG(κ) = CoInvG(ϕ(κ)) as well.
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2.4 Interval graphs and (co)inversions

Given n ∈ Z>0, let G = ([n], E) be an interval graph.
Given τ ∈ Sn, set

DesG(τ) := {i ∈ [n− 1] | τ(i) > τ(i + 1) or {τ(i), τ(i + 1)} ∈ E} ⊆ [n− 1].

The next proposition is sort of implicit in the work of Shareshian and Wachs [15].

Proposition 2.3. Given G = ([n], E) an interval graph, for every S ∈ Inv(G) we have

∑
κ∈PC(G)

InvG(κ)=S

qinvG(κ)xκ = ∑
σ∈Sn

InvG(σ)=S

qinvG(σ)Ln,DesG(σ−1) = q|S| ∑
σ∈Sn

InvG(σ)=S

Ln,DesG(σ−1),

and for every S ∈ CoInv(G) we have

∑
κ∈PC(G)

CoInvG(κ)=S

qcoinvG(κ)xκ = ∑
σ∈Sn

CoInvG(σ)=S

qcoinvG(σ)Ln,DesG(σ−1) = q|S| ∑
σ∈Sn

CoInvG(σ)=S

Ln,DesG(σ−1).

3 Increasing spanning forests and quasisymmetric func-
tions

Given a graph G = ([n], E), we say that a subgraph F ⊆ G is a spanning forest if F is a
forest on the vertices [n]. In this case, the connected components are labelled trees, with
the vertex set contained in [n]. Given such a tree T, we call root(T) its minimal vertex.
Then T is called increasing if in the paths stemming from root(T) the other vertices appear
in increasing order.

A spanning forest F of a graph G = ([n], E) is called increasing if all its connected
components are increasing trees. In this case, we think of F as the ordered collection
F = (T1, T2, . . . , Tk), where the Ti are its connected components, ordered so that

root(T1) < root(T2) < · · · < root(Tk).

E.g. the forest F = (T1, T2) in Figure 2, with1 T1 = (V(T1), E(T1)) = ({1, 3}, {(1, 3)})
and T2 = (V(T2), E(T2)) = ({2, 4, 5, 6, 7, 8}, {(2, 4), (2, 5), (2, 6), (5, 7), (6, 8)}), is an in-
creasing spanning forest of the graph G in Figure 1, .

We denote by ISF(G) the set of increasing spanning forests of G.
Given a graph G = ([n], E) and an F ∈ ISF(G), F = (T1, T2, . . . , Tk), we say that

a pair (u, v) with u, v ∈ [n] is a G-inversion of F if u ∈ V(Ti), v ∈ V(Tj), i > j and
(u, v) ∈ E (so that u < v). Given an edge (u, v) ∈ E(Ti) of Ti we define its weight in G,
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Figure 2: An example of increasing spanning forest of the graph G in Figure 1.

denoted wtG((u, v)), to be the number of w ∈ V(Ti) vertex of Ti such that u ≤ w < v
and (w, v) ∈ E(G). So for every tree Ti we define its weight in G as

wtG(Ti) = ∑
(u,v)∈E(Ti)

wtG((u, v))

and finally the weight of F (in G) as

wtG(F) := #{G-inversions of F}+
k

∑
i=1

wtG(Ti).

Example 3.1. The forest F = (T1, T2) in Figure 2 is an increasing spanning forest of the
graph G in Figure 1: we observe that its only G-inversion is (2, 3) (as 3 occurs in T1, 2
occurs in T2 and (2, 3) ∈ E), wtG(T1) = wtG((1, 3)) = 1, and

wtG(T2) = wtG((2, 4)) + wtG((2, 5)) + wtG((2, 6)) + wtG((5, 7)) + wtG((6, 8))
= 1 + 1 + 2 + 2 + 2 = 8,

so that wtG(F) = 1 + 1 + 8 = 10.

Let G = ([n], E) be an interval graph, i.e. G ∈ IGn. We define a function ΦG :
PC(G)→ ISF(G) via Algorithm 1 and Algorithm 2.

Algorithm 1 Algorithm defining the function getW(G, v, S, κ)

Input: A graph G = ([n], E), S ⊂ [n], v ∈ [n] \ S, and κ ∈ PC(G)
Output: W ▷ It will be W ⊆ S ∪ {v}

W ← {v}
for w ∈ S do

if {u ∈W | u < w, (u, w) ∈ E and κ(u) < κ(w)} ̸= ∅ then
W ←W ∪ {w}

end if
end for
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Algorithm 2 The algorithm defining the function ΦG(κ)

Input: A graph G = ([n], E) and κ ∈ PC(G)
Output: F = (T1, T2, . . . ) ▷ It will be F ∈ ISF(G)

S← [n]
F ← ( ) ▷ Empty list
while S ̸= ∅ do

v← min(S)
S← S \ {v}
T = (V(T), E(T))← ({v},∅) ▷ The tree we are going to build
W ← getW(G, v, S, κ) ▷ Defined in Algorithm 1
for i ∈ {2, . . . , #W} do

L← {u ∈ V(T) | u < Wi and (u, Wi) ∈ E} ▷ W = {W1 < W2 < · · · < W#W}
r ← #{u ∈ L | (u, Wi) ∈ E and κ(u) < κ(Wi)}
T ← (V(T) ∪ {Wi}, E(T) ∪ {(L#L−r+1, Wi)}) ▷ L = {L1 < L2 < · · · < L#L}
S← S \ {Wi}

end for
Append T to the right of F

end while

Proposition 3.2. Given a graph G = ([n], E), the Algorithm 2 defines a function ΦG :
PC(G)→ ISF(G).

The first nontrivial property of the function ΦG is its surjectivity.

Theorem 3.3. Let G = ([n], E) a graph. There exists an explicit function fG : ISF(G)→ Sn ⊂
PC(G) such that ΦG ◦ fG(F) = F for every F ∈ ISF(G). In particular ΦG is surjective, fG is
injective, and ISF(G) = {ΦG(σ) | σ ∈ Sn} = {ΦG(σ) | σ ∈ fG(ISF(G))}.

When G = ([n], E) is an interval graph, ΦG has also the following property.

Proposition 3.4. Given an interval graph G = ([n], E), the function ΦG : PC(G) → ISF(G)
defined by Algorithm 2 is such that for every κ, κ′ ∈ PC(G), ΦG(κ) = ΦG(κ

′) if and only if
CoInvG(κ) = CoInvG(κ

′). Moreover wtG(ΦG(κ)) = coinvG(κ) for every κ ∈ PC(G).

We are now ready to define quasisymmetric functions associated to increasing span-
ning forests of interval graphs.

Definition 3.5. Given an interval graph G = ([n], E), and given F ∈ ISF(G), we define
the formal power series

Q(G)
F = Q(G)

F [X] := ∑
κ∈PC(G)

ΦG(κ)=F

xκ.
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We have the following fundamental formula.

Theorem 3.6. Given an interval graph G = ([n], E) ∈ IGn, and given F ∈ ISF(G), we have

Q(G)
F = ∑

σ∈Sn
CoInvG(σ)=CoInvG(F)

Ln,DesG(σ−1), (3.1)

where
CoInvG(F) := CoInvG( fG(F)).

4 Interval orders, chromatic functions and LLT

Given any simple graph G = ([n], E), Shareshian and Wachs defined in [15] its chromatic
quasisymmetric function as

χG[X; q] := ∑
κ∈PC(G)

qcoinvG(κ)xκ.

The following theorem is a direct consequence of Proposition 3.4 and Theorem 3.3.

Theorem 4.1. Given an interval graph G = ([n], E), we have

χG[X; q] = ∑
F∈ISF(G)

qwtG(F)Q(G)
F . (4.1)

Example 4.2. For G = ([3], {(1, 2), (1, 3)}), the increasing spanning forests of G are

F1 = (([3], {(1, 2), (1, 3)})), F2 = (({1, 3}, {(1, 3)}), ({2},∅)),
F3 = (({1, 2}, {(1, 2)}), ({3},∅)), F4 = (({1},∅), ({2},∅), ({3},∅)),

and we compute

wtG(F1) = 2, wtG(F2) = wtG(F3) = 1, wtG(F4) = 0,

Q(G)
F1

= L(1,2) + L(13), Q(G)
F2

= Q(G)
F3

= L(13), Q(G)
F4

= L(2,1) + L(13),

hence finally
χG[X; q] = L(2,1) + q2L(1,2) + (1 + 2q + q2)L(13).

The following corollary is a reformulation of [15, Theorem 3.1] in our cases, and it
follows immediately from Theorems 4.1 and 3.6.

Corollary 4.3. Given an interval graph G on n vertices, we have

χG[X; q] = ∑
σ∈Sn

qcoinvG(σ)Ln,DesG(σ−1). (4.2)
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Given any simple graph G = ([n], E) ∈ IGn, we define its LLT quasisymmetric function
as

LLTG[X; q] := ∑
κ∈C(G)

qinvG(κ)xκ.

The following formula is an immediate consequence of Proposition 2.3.

Theorem 4.4. Given any interval graph G = ([n], E), we have

LLTG[X; q] = ∑
σ∈Sn

qinvG(σ)Ln,Des(σ−1).

The name LLT of these quasisymmetric functions comes from the following well-
known facts: when G is a Dyck graph, LLTG[X; q] is a symmetric function, and in fact it
is a so called unicellular LLT symmetric functions (see e.g. [3, Section 3]). In this case the
formula in Theorem 4.4 is well known (e.g. it can be deduced from [13, Theorem 8.6]).

5 The main identity

Recall from Section 2.2 the involutions ψ and ρ. We use the plethysm of quasisymmetric
functions: cf. [11].

Theorem 5.1. Let G = ([n], E) be an interval graph. Then

(1− q)nρ

(
ψχG

[
X

1
1− q

])
= LLTG[X; q]. (5.1)

Remark 5.2. This is really an extension of [6, Proposition 3.5]. Indeed, when G is a
Dyck graph, χG[X; q] is symmetric (by [15, Theorem 4.5]), the plethysm reduces to the
usual plethysm of symmetric functions (cf. [11]), ρ fixes the symmetric functions while
ψ gives the usual ω involution of symmetric functions, and LLTG[X; q] is precisely the
unicellular LLT symmetric function corresponding to the Dyck graph G, so, our (5.1) is
just a rewriting of [6, Proposition 3.5].

6 Expansions in the Ψα

In [5] the authors study a family of quasisymmetric functions that they call type 1 qua-
sisymmetric power sums, and they denote Ψα. Actually {Ψα | α composition} is a basis
of QSym, and these quasisymmetric functions refine the power symmetric functions, i.e.
for any partition λ ⊢ n

∑
α⊨n

λ(α)=λ

Ψα = pλ , (6.1)
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where λ(α) is the unique partition obtained by rearranging in weakly decreasing order
the parts of α, and the pλ = pλ1 pλ2 · · · are the usual power symmetric functions.

Given G = ([n], E) a graph and σ ∈ Sn a permutation, we say that r ∈ [n] is a left-
to-right G-maximum if for every s ∈ [r − 1] we have σ(s) < σ(r) and {σ(s), σ(r)} /∈ E.
Notice that 1 is always a left-to-right G-maximum, that we call trivial. We set

ĩnvG(σ) := {{σ(i), σ(j)} ∈ E | i < j and σ(i) > σ(i + 1)},

and
D̃esG(σ) := {i ∈ [n− 1] | σ(i) > σ(i + 1) and {σ(i), σ(i + 1)} /∈ E}.

We say that i ∈ [n− 1] is a G-descent if i ∈ D̃esG(σ).
Given a composition α = (α1, α2, . . . , αk) ⊨ n, let NG,α be the set of σ ∈ Sn such that if

we break σ = σ(1)σ(2) · · · σ(n) into contiguous segments of lengths α1, α2, . . . , αk, each
contiguous segment has neither a G-descent nor a nontrivial left-to-right G-maximum.

Given a composition α, define zα := zλ(α), where, as usual, for every partition λ ⊢ n,
if mi denotes the number of parts of λ equal to i, then zλ := ∏n

i=1 mi! · imi .
Finally, recall the involution ω : QSym→ QSym from Section 2.2.
We state our conjecture.

Conjecture 6.1. For any interval graph G = ([n], E) we have

ωχG[X; q] = ∑
α⊨n

Ψα

zα
∑

σ∈NG,α

qĩnvG(σ).

This conjecture should generalize the following formula, proposed by Shareshian and
Wachs [15, Conjecture 7.6] and later proved by Athanasiadis [4].

Theorem 6.2. For any Dyck graph G = ([n], E) we have

ωχG[X; q] = ∑
λ⊢n

pλ

zλ
∑

σ∈NG,λ

qĩnvG(σ).
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Crystals for variations of decomposition tableaux
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Abstract. Our previous work introduced a category of extended queer crystals, whose
connected normal objects have unique highest weight elements and characters that are
Schur Q-polynomials. Our initial models for such crystals were based on semistandard
shifted tableaux. Here, we introduce a simpler construction using certain “primed”
decomposition tableaux, which slightly generalize the decomposition tableaux used
in work of Grantcharov et al. This leads to a new, much shorter proof of the highest
weight properties of the normal subcategory of extended queer crystals. We also de-
scribe a natural crystal structure on set-valued decomposition tableaux. Our results
give the first crystal constructions for shifted set-valued tableaux, and lead to partial
progress on a conjectural formula of Cho and Ikeda for K-theoretic Schur P-functions.

Keywords: Crystals, K-theoretic Schur P-functions, queer Lie superalgebras, decom-
position tableaux, set-valued tableaux

1 Introduction

Crystals are an abstraction for the crystal bases of quantum group representations, and
can be viewed as acyclic directed graphs with labeled edges and weighted vertices, sat-
isfying certain axioms. Crystals for gln and other classical Lie algebras were first studied
by Kashiwara [9, 10] and Lusztig [12, 13] in the 1990s. More recent work by Grantcharov
et al. [3, 4] introduced crystals for the queer Lie superalgebra qn.

Our previous work [14] defined a slightly modified category of q+n -crystals, which
share many nice features with gln-crystals and qn-crystals. For example, q+n -crystals
have a natural tensor product and a standard crystal corresponding to the vector rep-
resentation of the quantum group Uq(qn). This lets one define a subcategory of normal
crystals, consisting of crystals whose connected components can each be embedded in
some tensor power of the standard crystal.

In [14], our primary models for normal q+n -crystals were derived from semistandard
shifted tableaux, using crystal operators with very technical formulas. One of the main
results of this note is to introduce a much simpler model for normal q+n -crystal based
on a “primed” generalization of decomposition tableaux. The latter tableaux served as the
original model for normal (non-extended) qn-crystals in [3].

*emarberg@ust.hk. This work was supported by Hong Kong RGC grants 16306120 and 16304122.
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After formally defining primed decomposition tableaux, we equip them with a natu-
ral family of q+n -crystal operators, identify their highest weight elements, and construct
a primed generalization of a useful “insertion scheme” from [3]. As an application, we
give a short, alternate proof that normal q+n -crystals are determined up to isomorphism
by their characters (which range over all Schur Q-positive symmetric polynomials in n
variables), and also by by their multisets of highest weights (which range over all strict
partitions with at most n parts).

Our other main results concern a new crystal structure on a “set-valued” generaliza-
tion of decomposition tableaux. Several authors (for example, [5, 18, 20]) have recently
studied gln-crystal structures on unshifted set-valued tableaux. The characters of these
crystals give K-theoretic symmetric functions of independent interest. It has been an
open problem to extend such constructions to shifted tableaux.

Addressing this open problem, we show that a certain natural family of set-valued de-
composition tableaux has a normal gln-crystal structure. This structure is formally similar
to the one in [18] for unshifted set-valued tableaux, though somewhat more technical.
Cho and Ikeda [6] has conjectured that the weight generating function for set-valued de-
composition tableaux recovers the K-theoretic Schur P-function GPλ. As partial progress
on this conjecture, our results imply that this generating function is at least symmetric
and equal to GPλ plus a (possibly infinite) Z-linear combination of GPµ’s with |µ| > |λ|.

2 Abstract crystals

Let N = {0, 1, 2, . . . } and P = {1, 2, 3, . . . }. Fix n ∈ N and let [n] = {1, 2, . . . , n}. Let B
be a set with maps wt : B → Nn and ei, fi : B → B ⊔ {0} for i ∈ [n− 1], where 0 /∈ B. We
assume that if b, c ∈ B then fi(b) = c if and only if ei(c) = b. This means that the maps
ei and fi encode a directed graph with vertex set B, to be called the crystal graph, with an

edge b i−→ c if fi(b) = c. The string lengths εi, φi : B → {0, 1, 2, . . . } ⊔ {∞} are

εi(b) := sup
{

k ≥ 0 | ek
i (b) ̸= 0

}
and φi(b) := sup

{
k ≥ 0 : f k

i (b) ̸= 0
}

. (2.1)

We assume that εi(b) and φi(b) are always finite. If the set B is finite then its char-
acter is the polynomial ch(B) := ∑b∈B∏i∈[n] xwt(b)i

i ∈ N[x1, x2, . . . , xn]. Finally, let
e1, e2, . . . , en ∈ Zn be the standard basis.

Definition 2.1. The set B is a gln-crystal if for all i ∈ [n − 1] and b ∈ B we have (a)
wt(ei(b)) = wt(b) + ei − ei+1 if ei(b) ̸= 0, and (b) φi(b)− εi(b) = wt(b)i −wt(b)i+1.

We refer to wt as the weight map and to each ei as a raising operator. Each connected
component of the crystal graph of B may be viewed as a gln-crystal by restricting the
weight map and crystal operators; these objects are called full subcrystals. A crystal iso-
morphism is a weight-preserving bijection that induces an isomorphism of crystal graphs.
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Example 2.2. The standard gln-crystal Bn =
{

i : i ∈ [n]
}

has crystal graph

1 2 3 · · · n1 2 3 n− 1 with wt( i ) := ei.

The set of formal tensors B ⊗ C := {b⊗ c : b ∈ B, c ∈ C} has a unique gln-crystal
structure with wt(b⊗ c) := wt(b) + wt(c) and with

ei(b⊗ c) :=

{
b⊗ ei(c) if εi(b) ≤ φi(c)
ei(b)⊗ c if εi(b) > φi(c)

(2.2)

for i ∈ [n− 1], where it is understood that b⊗ 0 = 0⊗ c = 0 [1, §2.3]. This follows the
“anti-Kashiwara convention,” which reverses the tensor product order in [3, 4].

3 Queer crystals

The general linear Lie algebra gln has two super-analogues, one of which is the queer Lie
superalgebra qn. Grantcharov et al. developed a theory of crystals for qn in [3, 4], which
we review here. Assume n ≥ 2. Let B be a gln-crystal with maps e1, f1 : B → B ⊔ {0}
satisfying f1(b) = c if and only if b = e1(c) when b, c ∈ B. Define ε1, φ1 : B → N ⊔ {∞}
as in (2.1) but with i = 1. Below, we say that one map ϕ : B → B ⊔ {0} preserves another
map η : B → X if η(ϕ(b)) = η(b) whenever ϕ(b) ̸= 0.

Definition 3.1. The gln-crystal B is a qn-crystal if for all b ∈ B:

(a) wt(e1(b)) = wt(b) + e1 − e2 whenever e1(b) ̸= 0,

(b) φ1(b) + ε1(b) is 0 if wt(b)1 = wt(b)2 = 0 and 1 otherwise, and

(c) e1 and f1 commute with ei, fi while preserving εi, φi for all 3 ≤ i ≤ n− 1.

Assume B is a qn-crystal. The corresponding qn-crystal graph has vertex set B and

edges b i−→ c whenever fi(b) = c for any i ∈ {1, 1, 2, . . . , n− 1}.

Example 3.2. The standard qn-crystal Bn =
{

i : i ∈ [n]
}

has crystal graph

1 2 3 · · · n
1

1 2 3 n− 1
with wt( i ) := ei.

Suppose B and C are qn-crystals. The set B ⊗ C already has a gln-crystal structure.
There is a unique way of viewing this object as a qn-crystal [3, Thm. 1.8] with

e1(b⊗ c) :=

{
b⊗ e1(c) if wt(b)1 = wt(b)2 = 0
e1(b)⊗ c otherwise.

(3.1)
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4 Extended crystals

We continue to assume n ≥ 2. The following theory of extended qn-crystals (abbreviated
as q+n -crystals from now on) was introduced in our previous work [14]. Suppose B is a
qn-crystal with additional maps e0, f0 : B → B ⊔ {0} satisfying f0(b) = c if and only if
b = e0(c) when b, c ∈ B. Define ε0, φ0 : B → N ⊔ {∞} by the formula (2.1) with i = 0.

Definition 4.1. The qn-crystal B is a q+n -crystal if for all b ∈ B:

(a) wt(e0(b)) = wt(b) if e0(b) ̸= 0,

(b) φ0(b) + ε0(b) is 0 if wt(b)1 = 0 and 1 otherwise, and

(c) e0 and f0 commute with ei, fi while preserving εi, φi for all 2 ≤ i ≤ n− 1.

Assume B is a q+n -crystal. The corresponding q+n -crystal graph has vertex set B and

edges b i−→ c whenever fi(b) = c for any i ∈ {1, 0, 1, 2, . . . , n− 1}.

Example 4.2. The standard q+n -crystal B+
n has crystal graph

1′ 2′ 3′ · · · n′

1 2 3 · · · n

1

1

2 3 n− 1

1

1

2 3 n− 1

0 with wt( i ) = wt( i′ ) := ei.

If B and C are q+n -crystals then the gln-crystal B ⊗ C has a q+n -crystal structure with

e0(b⊗ c) :=

{
e0(b)⊗ c if wt(b)1 ̸= 0
b⊗ e0(c) if wt(b)1 = 0

(4.1)

and

e1(b⊗ c) :=


b⊗ e1(c) if wt(b)1 = wt(b)2 = 0
f0e1(b)⊗ e0(c) if wt(b)1 = 0, f0e1(b) ̸= 0, and e0(c) ̸= 0
e0e1(b)⊗ f0(c) if wt(b)1 = 0, e0e1(b) ̸= 0, and f0(c) ̸= 0
e1(b)⊗ c otherwise

(4.2)

where it is again understood that b⊗ 0 = 0⊗ c = 0 [14, Thm. 3.14].

Remark 4.3. For i ∈ Z define i′ := i− 1
2 ∈ Z′ := Z− 1

2 . We refer to elements of Z ⊔Z′

as primed numbers. A primed word is a finite sequence of primed numbers. We identify
each primed word w = w1w2 · · ·wm with wi ∈ {1′ < 1 < · · · < n′ < n} with the formal
tensor w1⊗w2⊗ · · · ⊗wm ∈ (B+

n )
⊗m. This allows us to evaluate wt(w), ei(w), and fi(w)

for i ∈ [n− 1] using the definition of the q+n -crystal (B+
n )
⊗m. For example, the weight of

w becomes the vector whose ith component is the number of letters equal to i or i′.
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There are well-known, explicit signature rules to compute the crystals operators on
tensor powers of the standard gln-, qn-, and q+n -crystals (and hence on primed words).
We omit this background material in this extended abstract; see [2, 14] for the full details.

5 Decomposition tableaux

Assume λ = (λ1 > λ2 > · · · > 0) is a strict integer partition. Let ℓ(λ) be the number of
nonzero parts of λ. The shifted diagram of λ is the SDλ := {(i, i+ j− 1) : i ∈ [ℓ(λ)] and j ∈
[λi]}. We often refer to the pairs (i, j) ∈ SDλ as boxes. A box (i, j) ∈ SDλ is on the diagonal
if i = j. A shifted tableau of shape λ is an assignment of numbers to the boxes in SDλ.

A hook word is a sequence of positive integers w = w1w2 · · ·wn such that w1 ≥ w2 ≥
· · · ≥ wm < wm+1 < wm+2 < · · · < wn for some m ∈ [n]. The weakly decreasing part of
such a hook word w is the (always nonempty) subword w1w2 · · ·wm, while the increasing
part of w is the (possibly empty) subword wm+1wm+2 · · ·wn.

Following [3], we define a (semistandard) decomposition tableau of shape λ to be a
shifted tableau T of shape λ such that if ρi denotes row i of T, then (1) each ρi is a hook
word and (2) ρi is a hook subword of maximal length in ρi+1ρi for each i ∈ [ℓ(λ)− 1].
Note that this definition is different from Serrano’s definition in [19], which uses the
opposite weak/strict inequality convention for hook words. Let DecTabn(λ) be the set of
decomposition tableaux of shape λ with all entries in [n].

Example 5.1. We draw tableaux in French notation, so that row indices increase from

bottom to top and column indices increase from left to right. Then 1
2 1 1 ∈ DecTab2(λ)

for λ = (3, 2), but T = 2 1
2 2 3 is a not a decomposition tableau even though its rows are

hook words, as ρ2ρ1 = 21223 contains the hook subword 2223, which is longer than 223.

Remark 5.2. The maximal hook subword condition in the definition of a decomposition
tableau is equivalent to a set of inequalities that must hold for certain triples of entries.
Concretely, a shifted tableau is a decomposition tableau if and only none of the following
patterns with a ≤ b ≤ c and x < y < z occur in consecutive rows [3, Prop. 2.3]:

· · · b
a · · ·

,
· · · c · · · b
· · · a · · ·

,
· · · x

y · · · z
, or

· · · · · · x
· · · y · · · z

.

Here, the leftmost boxes are on the main diagonal and the ellipses “· · · ” indicate se-
quences of zero or more columns.

Define the middle element of a hook word w to be the last letter in the weakly decreas-
ing subword w ↓. Suppose T is a decomposition tableau of strict partition shape λ. We
call any tableau formed by adding primes to the middle elements in a subset of rows
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in T a primed decomposition tableau of shape λ. Let DecTab+n (λ) denote the set of such
tableaux with all entries in {1′ < 1 < · · · < n′ < n}.

Example 5.3. 1
2 1 2 , 1′

2 1 2 , 1
2 1′ 2 , and 1′

2 1′ 2 are all in DecTab+2 (λ) for λ = (3, 1).

The row reading word of a shifted tableau T is the word row(T) formed by reading the
rows from left to right, but starting with last row. The reverse reading word of T is the

reversal of row(T); we denote this by revrow(T). For example, revrow
(

1
2 1 1′

)
= 1′121.

A crystal embedding is a weight-preserving injective map ϕ : B → C between crys-
tals that commutes with all crystal operators, in the sense that ϕ(ei(b)) = ei(ϕ(b)) and
ϕ( fi(b)) = fi(ϕ(b)) for all b ∈ B when we set ϕ(0) = 0. Our first new result is the
following theorem, which extends [3, Thm. 2.5(a)] from qn-crystals to q+n -crystals.

Theorem 5.4. There is a unique q+n -crystal structure on DecTab+n (λ) that makes revrow :
DecTab+n (λ) → (B+

n )
⊗|λ| into a q+n -crystal embedding. This structure restricts to a qn-

crystal on DecTabn(λ), for which revrow : DecTabn(λ)→ B
⊗|λ|
n is a qn-crystal embedding.

Finally, the characters of these crystals are the symmetric polynomials

ch(DecTabn(λ)) = Pλ(x1, x2, . . . , xn) and ch(DecTab+n (λ)) = Qλ(x1, x2, . . . , xn)

where Pλ and Qλ are the Schur P- and Q-functions of λ.

An important property of many crystals is the existence of unique highest weight
elements. For gln-crystals, such elements are exactly the sources in the crystal graph. The
precise definitions of highest weight elements for qn and q+n -crystals from [3, 14] are
more technical, and given as follows.

Assume B is a gln-crystal. An i-string in B is a connected component in the subgraph

of the crystal graph retaining only the i−→ arrows. Let σi : B → B be the involution that
reverses each i-string, so that the first and last elements are swapped, the second and
second-to-last elements are swapped, and so on.

Definition 5.5. An element b in a qn-crystal B is qn-highest weight if ei(b) = ei(b) = 0 for
i ∈ [n− 1], where ei := (σi−1σi) · · · (σ2σ3)(σ1σ2)e1(σ2σ1)(σ3σ2) · · · (σiσi−1) for 2 ≤ i < n.

Definition 5.6. An element b in a q+n -crystal B is q+n -highest weight if it is qn-highest
weight with σi−1 · · · σ2σ1e0σ1σ2 · · · σi−1(b) = 0 for all i ∈ [n].

Let λ be a strict partition with ℓ(λ) = k. The first border strip of a shifted shape SDλ

is the minimal subset S containing (1, λ1) such that if (i, j) ∈ S and i ̸= j, then either
(i + 1, j) ∈ S, or (i, j− 1) ∈ S when (i + 1, j) /∈ SDλ.

Let SD
(1)
λ be the first border strip of SDλ. The set difference SDλ − SD

(1)
λ is either

empty when k = 1 or equal to SDµ for a strict partition µ with ℓ(µ) = k − 1. For
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i ∈ [k− 1] let SD(i+1)
λ be the first border strip of SDλ − (SD

(1)
λ ⊔ · · · ⊔ SD

(i)
λ ). Finally, let

Thighest
λ be the shifted tableau of shape λ with all i entries in SD

(i)
λ .

Example 5.7. If λ = (6, 4, 2, 1) then the boxes with • below make up the first border strip

•
•
• •
• •

and we have Thighest
λ =

1
2 1

3 2 1 1
4 3 2 2 1 1

.

The qn-part of the following is [3, Thm. 2.5(b)], while the q+n -extension is new:

Theorem 5.8. The shifted tableau Thighest
λ is the unique qn-highest weight element of

DecTabn(λ) and also the unique q+n -highest weight element of DecTab+n (λ).

6 Decomposition insertion

This section introduces a “primed” extension of Grantcharov et al.’s insertion scheme
from [3, §3]. Suppose T is a primed decomposition tableau and x ∈ Z⊔Z′. We will form

another primed decomposition tableau x dec−−→ T by the following insertion procedure.
On step i of this algorithm, a number ai is inserted into row i of T, starting with a1 := x.

To compute the insertion on step i, set a = ⌈ai⌉ and remove any prime from middle
element mi of row i (if the row is nonempty). The (unprimed) number a is added to
the end of the (now unprimed) row if this creates a hook word; otherwise, a replaces
the leftmost entry b from the increasing part of the row with b ≥ a, then b replaces the
leftmost entry c from the weakly decreasing part of the row with c < b.

Now we must decide the value ai+1 and whether to add back a prime to the middle
element of the row. There are two cases:

(A) Suppose the row was initially empty, or the location of the middle element has
moved (necessarily to the right). If ai ∈ Z′ then we add a prime to the new middle
element. If no entries were bumped from the row, then the algorithm halts at this
step and we say the insertion is even if mi ∈ Z and odd if mi ∈ Z′. Otherwise, we
set ai+1 = c when mi ∈ Z and ai+1 = c′ when mi ∈ Z′. For example:

4 2 2 1◦ 3 ← 1• = ai ❀ ai+1 = 2◦ ← 4 3 2 1 1• .

Here ◦ and • indicate arbitrary, unspecified choice of primes.

(B) Suppose instead that the location of the row’s middle element has not changed.
If mi ∈ Z′ then we add back a prime to the middle element. If no entries were
bumped from the row, then the algorithm halts at this step and we say the insertion
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is even if ai ∈ Z and odd if ai ∈ Z′. Otherwise, we set ai+1 = c when ai ∈ Z and
ai+1 = c′ when ai ∈ Z′. For example:

4 2 2 1◦ 3 ← 3• = ai ❀ ai+1 = 2• ← 4 3 2 1◦ 3 .

Definition 6.1. Given any primed word w = wm · · ·w2w1, form

Pdec(w) := wm
dec−−→ (· · · dec−−→ (w2

dec−−→ (w1
dec−−→ ∅)) · · · )

by inserting the letters of w into the empty tableau ∅. Let Qdec(w) be the tableau with

the same shape as Pdec(w) that has i (respectively, i′) in the box added by wi
dec−−→ if this

insertion is even (respectively, odd).

Example 6.2. For w = 4′4332′3′32′1′, Pdec(w) =
1′

2 2′ 3
4 3 3 3 4

and Qdec(w) =
7

4 5′ 9′
1 2′ 3 6 8

.

A shifted tableau with n boxes is standard if its rows and columns are increasing and
it has exactly one entry equal to i′ or i for each i ∈ [n].

Theorem 6.3. The map w 7→ (Pdec(w), Qdec(w)) is a bijection from the set of all words
with letters in {1′ < 1 < 2′ < 2 < . . . } to the set of pairs (P, Q) of shifted tableaux
with the same shape such that P is a primed decomposition tableau and Q is a standard
shifted tableau with no primed diagonal entries.

Let wr be the reverse of w. On unprimed words, the map w 7→ (Pdec(wr), Qdec(wr)) is
[3, Def. 4.1] and gives a bijection to pairs (P, Q) where P is an (unprimed) decomposition
tableau and Q is a standard shifted tableau of the same shape with no primed entries.

A map ϕ : B → C between (gln, qn, or q+n ) crystals is a quasi-isomorphism if for each
full subcrystal B′ ⊆ B there is a full subcrystal C ′ ⊆ C such that ϕ|B′ is an isomorphism
B′ → C ′. The qn part of the following more substantial result is [3, Thm. 4.5].

Theorem 6.4. The map Pdec defines qn and q+n crystal quasi-isomorphisms

B⊗m
n → ⊔

strict λ⊢m
ℓ(λ)≤n

DecTabn(λ) and (B+
n )
⊗m → ⊔

strict λ⊢m
ℓ(λ)≤n

DecTab+n (λ).

Moreover, and the full qn-subcrystals of B⊗m
n and the full q+n -subcrystals of (B+

n )
⊗m are

the subsets on which Qdec is constant.

7 Applications to normal crystals

A (gln-, qn-, or q+n -) crystal is normal if each of its full subcrystals is isomorphic to a
full subcrystal of a tensor power of the relevant standard crystal. Normal crystals are
automatically preserved by disjoint unions and tensor products.
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One motivation for the new results in this article was to provide a simpler and more
intuitive proof of the following theorem, which was our main result in [14]. One ap-
plication of this theorem is a new Littlewood-Richardson rule for multiplying Schur
Q-functions [14, Cor. 1.7].

Theorem 7.1. The following properties hold for normal q+n -crystals:

(a) Suppose B is a connected normal q+n -crystal. Then B has a unique q+n -highest
weight element, whose weight λ is a strict partition with at most n parts, and it
holds that B ∼= DecTab+n (λ) and ch(B) = Qλ(x1, x2, . . . , xn).

(b) For each strict partition λ with at most n parts, there is a connected normal q+n -
crystal with highest weight λ.

(c) Finite normal q+n -crystals are isomorphic if and only if they have the same charac-
ters, which range over all Schur Q-positive symmetric polynomials in x1, x2, . . . , xn.

Proof. If B is a connected normal q+n -crystal then B ∼= DecTab+n (λ) for some strict parti-
tion λ with ℓ(λ) ≤ n by Theorem 6.4. Theorem 5.8 implies that B has a unique q+n -highest
weight element of weight λ. This proves part (a). Part (b) follows from Theorems 5.4
and 5.8. Part (c) holds since Schur Q-polynomials are linearly independent.

The crux of this proof is Theorem 6.4 regarding decomposition insertion. Proving
Theorem 6.4 is not a trivial exercise, but this is significantly easier than for the analogous
result used in [14], which involves a more technical insertion algorithm defined in [15].

By essentially the same proof, one can derive a qn-version of this theorem (involving
Schur P-polynomials in place of Schur Q-polynomials); this proof strategy is similar to
what appears in [3]. There is also a classical version of Theorem 7.1 for normal gln-
crystals (see [1, Thms. 3.2 and 8.6] or [14, Thm. 1.1]) which implies that the character of
every finite normal gln-crystal is Schur positive.

8 Set-valued tableaux

Let M = {1′ < 1 < 2′ < 2 < . . . } and define Set(M) to be the set of finite, nonempty
subsets of M. For S, T ∈ Set(M) write S ≺ T if max(S) < min(T) and S ⪯ T is
max(S) ≤ min(T). Finally, for S ∈ Set(M) let xS = ∏i∈S xunprime(i).

Fix a strict partition λ. A set-valued shifted tableau of shape λ is a filling T of the shifted
diagram SDλ by elements of Set(M). For such tableau T define xT = ∏(i,j)∈T xTij where
Tij is the entry of T in box (i, j). A set-valued shifted tableau T is semistandard if it has all
of the following properties: (1) no unprimed number appears twice in the same row, (2)
no primed number appears twice in the same columns, and (3) rows and columns are
weakly increasing in the sense that Tij ⪯ Ti,j+1 and Tij ⪯ Ti+1,j for all relevant positions.
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Let SetShTab+(λ) be the set of all semistandard set-valued shifted tableaux of shape
λ, and let SetShTab+n (λ) be the subset with all entries at most n. Let SetShTab(λ) ⊆
SetShTab+(λ) and SetShTabn(λ) ⊆ SetShTab+n (λ) be the subsets of tableaux with no
primed numbers in any diagonal boxes. The K-theoretic Schur P- and Q-functions of λ, as
introduced by Ikeda and Naruse [7], are the power series

GPλ = ∑
T∈SetShTab(λ)

xT ∈ NJx1, x2, . . .K and GQλ = ∑
T∈SetShTab+(λ)

xT ∈ NJx1, x2, . . .K.

Often the definitions of these power series involve a bookkeeping parameter β. Here, for
simplicity, we have set β = 1.

Remark 8.1. It turns out that GPλ and GQλ are both Schur positive symmetric functions,
though of unbounded degree [17, Thms. 3.27 and 3.40]. Specializations of GPλ and GQλ

give equivariant K-theory representatives for Schubert varities in the maximal isotropic
Grassmannians of orthogonal and symplectic types [7, Cor. 8.1]. These symmetric func-
tions have a number of remarkable positivity properties; see [8, 11, 16].

A distribution of a tableau with set-valued entries is a tableau of the same shape
formed by replacing every set-valued entry by one of its elements. A semistandard
set-valued shifted tableau is just a set-valued tableau whose distributions are all semi-
standard shifted tableaux. Analogously, define a (semistandard) set-valued decomposition
tableau of strict partition shape λ to be a set-valued shifted tableau whose distributions
are each (semistandard) decomposition tableaux of shape λ. Let SetDecTab(λ) be the set
of all such tableaux and let SetDecTabn(λ) be the subset with all entries at most n.

Conjecture 8.2 (Cho–Ikeda [6]). It holds that GPλ = ∑T∈SetDecTab(λ) xT.

Remark 8.3. It would be natural to define SetDecTab+(λ) as the set of set-valued shifted
tableaux with entries from Set(M) whose distributions are each primed decomposition
tableaux of shape λ. But in general GQλ ̸= ∑T∈SetDecTab+(λ) xT and it remains an open
problem to find even a conjectural decomposition tableau formula for GQ-functions.

Crystals for gln have been identified on unshifted (semistandard) set-valued tableaux
(see, e.g., [5, 18, 20]), and it is a natural open problem to find similar structures on shifted
tableaux. We have identified one such crystal structure on set-valued decomposition
tableaux, which implies a weaker form of Conjecture 8.2.

Fix a strict partition λ and T ∈ SetDecTab(λ). The reverse reading word of T is the
word revrow(T) formed by iterating over the boxes of T in the reverse reading word
order (starting with the last box of the first row and proceeding row by row, reading
each row right to left), and listing the entries of each box in decreasing order. Define

wt(T) = wt(revrow(T)). For example, if T =
1 3

4 123234
then revrow(T) = 432321431

and wt(T) = (2, 2, 3, 2).
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Fix i ∈ [n− 1]. Mark each i in revrow(T) by a right parenthesis “)" and each i + 1 by
a left parenthesis “(". A letter in revrow(T) is i-unpaired if it is equal to i or i + 1 but does
not belong to a matching pair of parentheses.

Definition 8.4. Given i ∈ P and a set-valued decomposition tableau T, construct ei(T)
in the following way. Define ei(T) = 0 if there are no i-unpaired letters equal to i + 1.
Otherwise, suppose the first i-unpaired i + 1 in revrow(T) occurs in box (x, y) of T.

(a) Form ei(T) from T by changing the i + 1 in box (x, y) to i if this yields a set-valued

decomposition tableau. For example, e2 :
1 2

3 13 123
7→

1 2

3 12 123
.

(b) Otherwise, some box (a, b) preceding (x, y) in the reverse row reading word order
has {i, i + 1} ⊆ Tab. If (a, b) is the last such box, then form ei(T) by removing i + 1
from Tab and adding i to Txy. One can show that the box (a, b) must either have
a = x and b > y, or a = x− 1 and b < y, as in the examples

e3 :
1 2

4 1 34
7→

1 2

34 1 3
and e2 :

1 3

4 123234
7→

1 23

4 12 234
.

Theorem 8.5. For each strict partition λ with at most n parts, SetDecTabn(λ) has a gln-
crystal structure for the raising operators e1, e2, . . . , en−1 given in Definition 8.4.

Corollary 8.6. The power series ∑T∈SetDecTab(λ) xT is symmetric.

We can slightly extend this partial progress on Ikeda’s conjecture. A power series
f ∈ ZJx1, x2, . . .K satisfies the K-theoretic Q-cancelation property if for all 1 ≤ i < j the
power series f (x1, . . . , xi−1, t, xi+1, . . . , xj−1, −t

1+t , xj+1, . . . ) does not depend on t, that is,
belongs to ZJx1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . .K. The symmetric functions satisfying the
K-theoretic Q-cancelation property are exactly the ones that may be (uniquely) expressed
as formal (i.e., possibly infinite) Z-linear combinations of GP-functions [7, Prop. 3.4].

Proposition 8.7. The symmetric power series ∑T∈SetDecTab(λ) xT has the K-theoretic Q-
cancelation property and lowest degree term Pλ, so is equal to GPλ plus a (possibly
infinite) Z-linear combination of GPµ’s with |µ| > |λ|.
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Abstract. We define generalized Schröder polynomials Sλ(q, t, a) for triangular par-
titions and prove that these polynomials recover the triangular (q, t)-Catalan poly-
nomials of [2] at a = 0. Moreover, we show that the Poincaré polynomials of the
reduced Khovanov-Rozansky homology of Coxeter knots of these partitions are given
by Sλ(q, t, a). Finally, combined with recent results in [8], we compute the Poincaré
polynomial of the (d, dnm + 1)-cable of the (n, m)-torus knot, thus proving a special
case of the Oblomkov-Rassmusen-Shende conjecture [16, 18] for generic unibranched
planar curves with two Puiseux pairs.

1 Introduction

A fundamental pursuit in knot theory for the last century has been the classification of
knots and links. One particularly effective method has been the study of certain homol-
ogy theories that realize the knot as certain chain complexes, whose Poincaré polyno-
mials, which compute the graded dimensions of the homology groups, are then used as
knot invariants. One such especially celebrated homology theory is (reduced) Khovanov-
Rozansky homology. This tri-graded theory associates to each link L a polynomial in three
variable PKR

L (q, t, a). It turns out that computing these polynomials explicitly is very
difficult, and the pursuit of a closed form for them has spurned a remarkable volume
of deep and surprising results bridging combinatorics with low dimensional topology
and algebraic geometry. One of the only cases where these polynomials are explicitly
known is the case of torus knots and links, where by transforming these knots to certain
binary sequences and defining a family of recursions, Hogancamp and Mellit were able
to compute explicit solutions [11, 15]. The connections between these polynomials and
(q, t)-Catalan combinatorics have been deeply established [5, 12, 10], with the a = 0
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specialization of PKR
L (q, t, a) for a torus knot recovering the (q,t)-Catalan polynomial and

higher a powers equaling (q,t)-Schröder polynomials.
One of our first main results is the generalization of (q,t)-Schröder polynomials to the

context of triangular partitions, which are defined as maximal partitions that fit under a
line of arbitrary slope (i.e. certain Dyck paths under lines with non-integer intercepts.).
These partitions were thoroughly studied by Bergeron and Mazin [1]. In particular, our
triangular Schröder polynomial recovers at a = 0 the triangular (q, t)-Catalan polyno-
mials studied in [1] that appeared in the generalized shuffle theorem under any line
[2]. Our construction relies on certain recursions introduced by Gorsky-Mazin-Vazirani
[9] using so called (m, n)-invariant subsets, which allow us to produce certain binary
sequences from the triangular partitions and compute them using the recursions.

Recently, Oblomkov and Rozansky considered Coxeter links, which contain torus
knots and links as special cases, and identified their homology with certain sections
on the flag Hilbert scheme [17]. Even more recently, Galashin and Lam introduced a
family of knots that arise directly from certain monotone paths on an m × n grid and
proved that all monotone links are Coxeter. Thus, since the Gorsky-Mazin-Vazirani re-
cursions agree with the Hogancamp-Mellit recursions, using the results above we prove
that the Poincaré polynomial of the reduced Khovanov-Rozansky homology of Coxeter
knots arising from triangular partitions is precisely our triangular Schröder polynomial.

The next natural family of links to try to understand are cabled torus knots. Infor-
mally, a cabled knot is a knot within a knot, so that the string that makes up the knot
locally carries a smaller knot on it. A highly nontrivial and celebrated conjecture due to
Oblomkov-Rasmussen-Shende, relates the Khovanov-Rozansky homology of algebraic
links to certain plane curve singularities on the Hilbert scheme of points. Combining
results in [8] with our previous results above, we compute the Poincaré polynomial for a
certain family of cabled knots, proving a special case of the Oblomkov-Rasmussen-Shende
conjecture for unibranched planar curves with two Puiseux pairs.

2 Background and Definitions

2.1 Recursions for the Poincaré Series of Link Homology

In [11] the third author and Anton Mellit introduced a recursive method for computing
the Poincaré series of the reduced Khovanov-Rozansky homology of torus links. Given
two finite binary sequences u and v with the same number of 1’s, they introduced the
power series Ru,v(q, t, a) via the following recursive relations:

R0u,0v = t−|u|Ru1,v1 + qt−|u|Ru0,v0, R1u,0v = Ru1,v, R∅,0n =

(
1 + a
1 − q

)n
,
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0
0
1
0

0 1 0

Figure 1: (Left) Steps 1-4 in constructing the link Lu,v for u = 0010 and v = 010.
(Right) Two diagrams for the knot L0010,010. Middle right: the closure of the diagram to
its left (step 5). Far right: an equivalent closure considered in [11].

R1u,1v = (t|u| + a)Ru,v, R0u,1v = Ru,v1, R0m,∅ =

(
1 + a
1 − q

)m
,

where |u| is the number of 1’s in u and R∅,∅ = 1. Let l(u) denote the length of u.

Theorem 1 ([11]). Let (n, m) be any positive integers. The Poincaré series of the reduced
Khovanov-Rozansky homology of the (n, m)-torus link is given by

PKR
Ln,m

(q, t, a) = (1 − q)R0n,0m = R0n−11,0m−11.

Furthermore, it follows from their construction that for |u| = |v| = 1, the recurrence
applied to Ru,v(q, t, a) will terminate and compute the Poincaré series of the reduced
Khovanov-Rozansky homology for the link Lu,vconstructed as follows:
Step 1: Mark ℓ(v) points on the bottom edge and ℓ(u) points on the left edge of [0, 1]2,
labeled with the sequences starting from the bottom left corner. Mark also the points on
the top and right edges directly across from marked points labeled by 0.
Step 2: Starting with the lowest point on the left edge and leftmost point on the bottom
edge, connect the dots with diagonal non-intersecting lines until all points are matched.
Step 3: Erase the tail of the line connected to the point labeled 1 on the bottom wall and
connect it to right side of [0, 1]2, going above all other strands in the process.
Step 4: Erase the tail of the line connected to the point labeled 1 on the left wall, pass
it underneath all other strands beneath it, and connect it once again to the left wall, but
now in the first position, directly across the new marked point created in Step 3.
Step 5: Close the diagram by identifying the edges in the usual way for a torus.

Example 2. Consider u = 0010 and v = 010 with lengths ℓ(u) = 4, ℓ(v) = 3, and with
|u| = |v| = 1. Steps 1 and 2 followed by 3 and 4 will yield the left two diagrams in
Figure 1. It’s closure, Step 5, is the third diagram. Iteratively applying the recurrence we
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see that the Poincare series of the KhR-homology of Lu,v is then equal to:

R0010,010 = t−1R0101,101 + qt−1R0100,100 = . . .

= t−1(t + a)(a)R∅,∅ + (qt−1)2(a)R∅,∅ + (qt−1)(t−1)(t + a)(a)R0,∅

= a(t−1(t + a) + (qt−1)2) + (qt−1)(t−1)(t + a)(a)
(1 + a)
1 − q

.

2.2 Invariant Subsets and Dyck Paths

Given positive integers m and n, an (n, m)-Dyck path is a lattice path from (m, 0) to (0, n)
consisting exclusively of north and west steps that stays weakly below the diagonal line
y = n − n

m x. Indexing each cell by its top right lattice point, for any such choice of
(n, m) we define an Anderson filling on each of the cells of the lattice via the function
γ : Z2 → Z by γ(x, y) = mn − nx − my.

Definition 3. A subset ∆ ⊂ Z≥0 is called (n, m)-invariant if ∆ + n ⊂ ∆ and ∆ + m ⊂ ∆.
Let In,m denote the set of all (n, m)-invariant subsets. In addition, an (n, m)-invariant
subset ∆ is called 0-normalized if 0 ∈ ∆. We will use the notation I0

n,m for the set of
0-normalized (n, m)-invariant subsets.

If n and m are relatively prime then the set of (n, m)-Dyck paths is in a natural
bijection with the set of 0-normalized (n, m)-invariant subsets. Namely, given an (n, m)-
Dyck path D let Gaps(D) be the set of positive Anderson labels corresponding to the
cells above D (positivity of a label is equivalent to the cell fitting under the diagonal). The
corresponding 0-normalized (n, m)-invariant subset is given by ∆(D) = Z≥0 \ Gaps(D).
It is not hard to see that this defines a bijection.

The rational (q, t)-Catalan polynomials and the rational Schröder polynomials are
usually defined in terms of the (n, m)-Dyck and Schröder paths. However, it is more
suitable for us to follow [6, 7] and define these polynomials in terms of the invariant
subsets. The two approaches are equivalent due to the bijection described above. To do
so, we need the following statistics. Let ∆ ∈ In,m and define:

• the area to be the number of gaps in ∆, area(∆) := ♯(Z≥0 \ ∆).

• the n-generators of ∆ as the set ngen(∆) := ∆ \ (∆ + n) = {a ∈ ∆ : a − n /∈ ∆}.

• the codinv as the number of gaps in length m intervals beginning at n-generators:

codinv(∆) := ∑
a∈ngen(∆)

♯{a ≤ g < a + m : g /∈ ∆}, (2.1)

dinv(∆) := δ(n, m)− codinv(∆), δ(n, m) :=
(n − 1)(m − 1)

2
.
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Definition 4. For each coprime pair (m, n), the rational (q, t)-Catalan polynomial, de-
note Cn,m(q, t), is given by:

Cn,m(q, t) := ∑
∆∈I0

n,m

qarea(∆)tdinv(∆) = (1 − q) ∑
∆∈In,m

qarea(∆)tdinv(∆).

In order to define Schröder polynomials, we will need a couple more ingredients.

• Let Cogen(∆) := {a ∈ Z : a /∈ ∆, a + n ∈ ∆, a + m ∈ ∆} be the set of double co-
generators of ∆.

• Let k ∈ Z. Set λk(∆) := ♯{a ∈ ngen(∆) : k + n + 1 ≤ a ≤ k + n + m}.

Definition 5. For each coprime pair (m, n), the Schröder polynomial Sn,m(q, t, a) is:

Sn,m(q, t, a) := ∑
∆∈I0

n,m

qarea(∆)tdinv(∆) ∏
k∈Cogen(∆)

(
1 + at−λk(∆)

)
.

Example 6. In Figure 2, the bijection between (3, 4)-Dyck paths and the 0-normalized
(3, 4)-invariant subsets is illustrated, complemented with a computation of the area and
dinv statistics, as well as the factors necessary for the Schröder polynomial, for two out
of five invariant subsets in I0

3,4. The rest are computed similarly. Summing all together,
one obtains the Schröder polynomial:

S3,4(q, t, a) =t3(1 + a)(1 + at−1)(1 + at−2) + qt2(1 + a)(1 + at−1) + qt(1 + a)(1 + at−1)

+ q2t(1 + a)(1 + at−1) + q3(1 + a)

=q3 + q2t + qt2 + t3 + qt + a(q3 + q2t + qt2 + t3 + q2 + 2qt + t2 + q + t)

+ a2(q2 + qt + t2 + q + t + 1) + a3.

2.3 Recursions for Invariant Subsets

In [9] the fourth author together with Gorsky and Vazirani introduced a recursion com-
puting the rational (q, t)-Catalan series and showed that their recursion is equivalent to
the Hogancamp-Mellit recursion in the case of the torus link. Hence, in the relatively
prime case the Gorsky-Mazin-Vazirani recursion recovers the (q, t)-Catalan polynomials.

Let (m, n) be a pair of positive relatively prime integers. In order to define the re-
cursion, one needs to consider subfamilies in the set of invariant subsets In,m given by
fixing the intersection of the subsets with the interval [0, n + m − 1]. Let w ∈ {0, 1}n+m

be a binary sequence of length n + m.

Definition 7. Set Iw := {∆ ∈ In,m : ∀0 ≤ i < n + m, i ∈ ∆ ⇔ wi = 1} and define:

Pw(q, t, a) := ∑
∆∈Iw

qarea(∆)tcodinv(∆) ∏
k∈Cogen(∆)∩Z≥0

(1 + atλk(∆)). (2.2)
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-12 Gaps = {2}
∆ = Z≥0 \ {2}

area(∆) = 1

3-gen = {0, 1, 5}
codinv(∆) = 2
dinv(∆) = 1

Cogen = {−3, 2}
(1 + a)(1 + at−1)
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-12 Gaps = {1, 2}
∆ = Z≥0 \ {1, 2}

area(∆) = 2

3-gen = {0, 4, 5}
codinv(∆) = 2
dinv(∆) = 1

Cogen = {1, 2}
(1 + a)(1 + at−1)

Figure 2: Three out of five (3, 4)-Dyck paths are on the left, with the cells correspond-
ing to the gaps in yellow. The corresponding (3, 4)-invariant subsets are in the second
column, together with the area, 3-generators, codinv, and dinv in the third column,
and the corresponding Schröder factor is in the fourth.

Then, the Schröder polynomial can be obtained from (2.2),

Sn,m(q, t, a) =
(1 − q)tδ(n,m)

qn+m P0n+m(q, t−1, a) =
tδ(n,m)

qn+m−1 P0n+m−11(q, t−1, a).

The polynomials Pw satisfy a recursion, however, in order to match this recursion to
the Hogancamp-Mellit recursion, certain adjustments are required.

First, we need to replace the sequence w of length n + m by two sequences (x, y)
in the alphabet {0, •, 1} of lengths m and n respectively. The sequence x records gaps
(encoded by 0), n-generators (encoded by 1), and the rest of the elements of ∆ (encoded
by •) on the interval [n, n + m − 1]. Similarly, the sequence y records gaps, m-generators,
and the rest of the elements of ∆ on the interval [m, n + m − 1]. In other words,

Definition 8. Let x, y be sequences as above. Let Ix,y be the set of ∆ ∈ In,m such that:

∀0 ≤ k < m


xk = 0 ⇔ k + n /∈ ∆,
xk = 1 ⇔ k + n ∈ ngen(∆),
xk = • ⇔ k ∈ ∆,

∀0 ≤ k < n


yk = 0 ⇔ k + m /∈ ∆,
yk = 1 ⇔ k + m ∈ mgen(∆),
yk = • ⇔ k ∈ ∆.

Example 9. Let (n, m) = (4, 7) and ∆ = Z≥0 \ {0, 1, 2, 3, 4, 6, 7, 8, 10}. Then, the associated
binary sequence w = 00000100010 yields the ternary sequences x = (01000 • 0) and y =
(0010), since the only 4-generator in [4, 10] is 5 and the only 7-generator in [7, 10] is 9. In
particular, 9 is not a 4-generator since 9− 4 = 5 ∈ ∆. Thus, ∆ ∈ I00000100010 = I01000•0,0010.

The statistics on In,m are modified as follows. Set:

area′(∆) = ♯{k ∈ Z≥n+m : k /∈ ∆} = ♯ (Gaps(∆) ∩ Z≥n+m) ,

codinv′(∆) = ∑
a∈ngen(∆)

♯{k ∈ Z≥n+m : a ≤ k < a + m, k /∈ ∆} − λ(∆)(λ(∆)− 1)
2

,
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where λ(∆) := λ−1(∆) = ♯{a ∈ ngen(∆) : n ≤ a < n + m}.

Definition 10. Given sequences x and y as above, let

Qx,y(q, t, a) := ∑
∆∈Ix,y

qarea′(∆)t−codinv′(∆) ∏
k∈Cogen(∆)∩Z≥0

(1 + at−λk(∆)).

Note that for any ∆ ∈ I0n+m one gets area′(∆) = −n − m + area(∆), codinv′(∆) =
codinv(∆), and all the double co-generators are non-negative. Therefore,

Q0m,0n(q, t, a) = q−n−mP0n+m(q, t−1, a).

Theorem 11 ([9]). The following recursions hold:

Q0u,0v = t−|u|Qu1,v1 + qt−|u|Qu0,v0, Q1u,0v = Qu1,v•, Q•u,•v = Qu•,v•,

Q1u,1v = (t|u| + a)Qu•,v•, Q0u,1v = Qu•,v1, Q∅,∅ = 1.

Finally, notice that in the recursion for Q one can completely ignore all the •’s. Also,
it follows that the recursion always terminates in Q∅,∅, so one doesn’t need the normal-
ization conditions for Q∅,0n and Q0m,∅.

Theorem 12 ([9]). Let (u, v) be the sequences obtained from the sequences (x, y) by ignoring
all •’s. Then

Ru,v(q, t, a) = Qx,y(q, t, a).

Corollary 13 ([15, 9]). The Poincaré polynomial of the reduced Khovanov-Rozansky homology
of the (n, m)-torus knot is given by

R0m−11,0n−11(q, t, a) =Q0m−11,0n−11(q, t, a) =
P0n+m−11(q, t−1, a)

qn+m−1 =
Sn,m(q, t, a)

tδ(n,m)
.

Remark 14. The last formula was first proven by Anton Mellit in [15]. We follow notations
from [11] and [9], where the result was generalized to torus links.

2.4 Monotone and Coxeter Links

In [4] Galashin-Lam study a family of links, called monotone that arise from certain
curves on the plane. They define a new invariant, the elliptic Hall algebra superpolynomial,
which they prove recovers the HOMFLY polynomial of LC and conjecture agrees with
the Poincaré series of the Khovanov-Rozansky homology of any algebraic link LC.

Definition 15. Let C denote a curve from (0, n) to (m, 0). A monotone link LC is a
projection onto R2/Z2 of a curve C such that the x- and y-coordinates of C are monotone
increasing and decreasing, respectively1. Trace the projection of C starting from the left
top corner, crossing the earlier strand on top.

1This differs slightly from the definition in [4] by a flip sending x 7→ −x.
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•

•

Figure 3: The curve C on the left and its projection onto [0, 1]2 and annular closure
βC, on the right. The associated triangular partition is displayed in red, so that µ =

(3, 2, 1, 0, 0) with b = (0, 1, 1, 1) and e = (1, 1, 1). It is straightforward to verify that the
braid βcox

b,e = JM1
2 JM1

3 JM1
4σ1σ2σ3 is isotopic to βC.

It is well known [11] that if C is the straight diagonal line, then LC is the (m, n) torus
link, with the special case of m, n relatively prime yielding a knot.

Let A denote the annulus. Given a curve C, we can construct its annular closure
βC ∈ A × [0, 1] as follows. Consider the projection of C onto [0, 1]2. Now, identify the
top and bottom boundaries so that for each point x ∈ (0, 1) for which (x, 0) and (x, 1)
are in C, the line connecting them lies underneath all other strands. Denote the resulting
braid in A × [0, 1] by βC (see Figure 3).

Denote by σi ∈ Bn, with Bn the braid group, the positive crossing of the ith and i + 1st

strands, i.e. the ith strand is above the i + 1st strand.

Definition 16. Given sequences b = (b1, . . . , bm) ∈ Zm
≥0 and e = (ϵ1, . . . , ϵm−1) ∈

{0, 1}m−1, the Coxeter braid βcox
b,e is given by:

βcox
b,e := JMb1

1 . . . JMbm
m σϵ1

1 . . . σ
ϵm−1
m−1 , (2.3)

where JMi := σi . . . σm−1σm−1 . . . σi for each 1 ≤ i ≤ m.

To any curve C, we can assign a Coxeter braid βcox
C in the following way. Let

µ = (n, µ1, . . . , µm) be such that (µ1, . . . , µm) is the transpose of the triangular parti-
tion corresponding to the curve C. Set bm−i+1 = µi−1 − µi (with µ0 = n) and for each
1 ≤ i ≤ m − 1, set ϵi = 0 if C passes through the lattice point (i, j) for some j ∈ Z, with
ϵi = 1 otherwise. Then for eC = (ϵ1, . . . , ϵm−1) and bC = (b1. . . . , bm), let βcox

C := βcox
bC,eC

.

Theorem 17 ([4]). The braid βcox
C is conjugate to the annular closure βC of C. In particular, all

monotone links in A × [0, 1] are Coxeter links, and all Coxeter links arise in this way.
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Figure 4: The triangular partition λ = (2, 3) = τ3.2,5.6 with (m, n) = (4, 7) and the
Anderson labels denoted in blue.

3 Main Results

3.1 Schröder Polynomials for Triangular Partitions

Definition 18. A partition λ is called triangular if there exist two not necessarily integral
points (0, s) and (r, 0) such that λ consists of all the boxes below the line connecting these
points, in which case we denote λ by τr,s.

Evidently, for any given triangular partition λ, there exist many choices for positive
real numbers r and s such that λ = τr,s (see [1] for details). In particular, one can always
choose r and s in such a way that λ = τr,s, and r/s = n/m, where (n, m) are positive
relatively prime integers with r ≤ n (equivalently, the line connecting (r, 0) to (0, s)
is below the line connecting (n, 0) to (0, m)). Generalized (q, t)-Catalan polynomials
corresponding to triangular partitions appeared in the generalized shuffle theorem [2].

We claim that to any triangular partition τr,s one can associate a pair of binary se-
quences u(s, t) and v(s, t) [3], which we explain how to construct in Example 20 below.
With this in hand, we extend the Schröder polynomial to the triangular setting.

Definition 19. Let λ = τr,s and (n, m) be as above with associated sequences u(r, s)
and v(r, s) as in Example 20. The (q,t)-Schröder polynomial for triangular partitions is
defined as Sλ(q, t, a) := t|λ|Ru(r,s),v(r,s)(q, t, a).

Example 20. Let λ = τ3.2,5.6 = (2, 3) as in Figure 4 and observe that the line connecting
(0, 3.2) and (5.6, 0) has the same slope as the diagonal line connecting (0, 4) and (7, 0).
We call the line connecting (0, 3.2) and (5.6, 0) the shifted diagonal, with (n, m) = (4, 7)
denoting the closest line above it with equal slope and integer x and y -intercepts.

Let W = {−5,−4 . . . , 5} = [−5, 5] be the window of labels of all cells intersected by
the shifted diagonal (shaded yellow in Figure 4). The subdiagrams of λ are in bijection
with the subfamily I0

3.2,5.6 ⊂ I0
4,7 consisting of subsets ∆, such that {1, 2, 3, 5} ∩ ∆ = ∅,

where {1, 2, 3, 5} = Gaps(λ). This is equivalent to saying that ∆ ∩ W = {0, 4}. Hence,

I0
3.2,5.6 ={∆ ∈ I0

4,7 : {1, 2, 3, 5} ∩ ∆ = ∅}
={∆ ∈ I0

4,7 : ∆ ∩ W = {0, 4}} = {∆ ∈ I0
4,7 : ∆ + 5 ∈ I00000100010}.
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Gaps ∩ Z≥6 = {6, 9, 13} 4-gen = {0, 7, 10, 17} Cogen = {3, 13}
area = 3 codinv = 4, dinv = 1 (1 + a)(1 + at−1)
Gaps ∩ Z≥6 = {6, 9} 4-gen = {0, 7, 10, 13} Cogen = {3, 6, 9}
area = 2 codinv = 2, dinv = 3 (1 + a)(1 + at−1)(1 + at−2)
Gaps ∩ Z≥6 = {6, 10} 4-gen = {0, 7, 9, 14} Cogen = {5, 10}
area = 2 codinv = 3, dinv = 2 (1 + a)(1 + at−1)

Figure 5: For three of the nine ∆ ∈ I0
3.2,5.6 we record the gaps that are greater than

5, since only those contribute to area and codinv (respectively, area′ and codinv′ on
I01000•0,0010). There cannot be any double co-generators below the interval W = [0, n +

m − 1]− 5, therefore all co-generators are used for the Schröder factors.

That is, the family I0
3.2,5.6 is simply I00000100010 = I01000•0,0010 from Example 9 shifted

down by 5. So setting u(3.2, 5.6) = 010000 and v(3.2, 5.6) = 0010, we obtain Sλ(q, t, a) =
t5R010000,0010(q, t, a). In Figure 5 we illustrate the computation of the contributions to-
wards Sλ(q, t, a) of three of the nine invariant subsets in I0

3.2,5.6. All together:

Sλ(q, t, a) =q5(1 + a) + q4t(1 + a)(1 + at−1) + q3t2(1 + a)(1 + at−1)

+q3t(1 + a)(1 + at−1) + q2t3(1 + a)(1 + at−1)(1 + at−2)

+q2t2(1 + a)(1 + at−1) + qt3(1 + a)(1 + at−1)

+qt4(1 + a)(1 + at−1)(1 + at−2) + t5(1 + a)(1 + at−1)(1 + at−2).

Note that plugging in a = 0 we recover the corresponding (q, t)-Catalan polynomial:

Cλ(q, t) = Sλ(q, t, 0) = q5 + q4t + q3t2 + q2t3 + qt4 + t5 + q3t + q2t2 + qt3.

With the definition of the Schröder polynomial established for any triangular parti-
tion, we can now state our first main theorem.

Theorem 21. [3] The triangular Schröder polynomial Sλ(q, t, a) at a = 0 specializes to the
triangular (q, t)-Catalan polynomial of [1] and [2]. Hence, for λ = τr,s as before, we obtain that

Cλ(q, t) = Sλ(q, t, 0) = t|λ|Ru(r,s),v(r,s)(q, t, 0).

By construction, the polynomial Sλ(q, t, a) depends on a choice of a shifted diagonal.
At a = 0 this corresponds to choosing an appropriate slope in the definition of the
dinv statistic [1, 2]. The Catalan polynomial doesn’t depend on that choice (this follows
from the shuffle theorem of [2], see also [13, 14]). The shuffle theorem argument can
be generalized to show that the full Schröder polynomial also depends only on the
partition. Nonetheless, this will also follow from our results below.
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0
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0
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1

00 01

Figure 6: Left: λ = (3, 2) together with the monotone curve C obtained by augmenting
the shifted diagonal. Second: the monotone knot Kr,s drawn on a torus. We cut a
vertical strip on the right (the red line) and reattach it on the left for the third picture.
We also close the vertical green strand. Finally, we pull the green strand from under
the blue ones to obtain the picture on the right, which is the knot L010000,0010.

3.2 The Monotone Knot of a Triangular Partition

Let λ = τr,s be a triangular partition, and (r, s) be as in the previous section: r/s = n/m,
where n, m ∈ Z>0 are relatively prime and r ≤ n. The monotone curve C from (0, ⌈r⌉) to
(⌈s⌉, 0) is constructed by augmenting the shifted diagonal connecting (0, r) to (s, 0) by
adding an almost vertical segment at the top and an almost horizontal segment at the
bottom (see Figure 6). Let Kr,s be the closure of the corresponding monotone braid βC
(see Section 2.4). It follows from [4, Prop. 7.5] that Kr,s is isotopic to the closure of the
Coxeter braid βcox

C , which only depends on the partition λ and not on the choice of the
shifted diagonal. We will call it the Coxeter knot of the partition λ and denote it Kλ.

Theorem 22 ([3]). The monotone knot Kr,s is isotopic to the knot Lu(r,s),v(r,s) (see Section 2.1 for
a definition). In particular, the Poincaré polynomial of the reduced Khovanov-Rozansky homology
of the Coxeter knot Kλ is given by PKR

Kλ
(q, t, a) = Ru(r,s),v(r,s)(q, t, a) = t−|λ|Sλ(q, t, a).

Remark 23. Theorem 22 implies that the Schröder polynomial Sλ(q, t, a) does not depend on the
choice of the shifted diagonal (0, r)− (s, 0), but only on the triangular partition λ = τr,s.

Example 24. In Figure 6 we illustrate the construction of the monotone knot Kr,s and its
isotopy to Lu(r,s),v(r,s) for (r, s) = (3.2, 5.6), continuing Example 20.

In the case when (r, s) = (dn, dm), where d, n, m are integers and n and m are rela-
tively prime, Galashin and Lam in [4, Lem. 8.1] proved that the monotone knot Kτdn,dm is
the (d, dnm + 1)-cable of the (n, m)-torus knot, which is an algebraic knot: it can be ob-
tained as the intersection of the planar curve (x = tdn, y = tdm + tdm+1) with a small 3D
sphere around the origin in C2. Such curves were studied by the fourth author, Gorsky,
and Oblomkov in [8], were they showed that the Poincaré polynomial PJC(t) of the
Compactified Jacobian of such a curve is a specialization of the (dn, dm) (q, t)-Catalan
polynomial. Combining this with our Theorem 22, we obtain

PJC(t) = t2δCnd,md(1, t−2) = t2δSτdn,dm(1, t−2, 0) = PKR
Kτdn,dm

(1, t−2, 0),
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which is a special case of the Oblomkov-Rasmussen-Shende conjecture for such curves.
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Abstract. We introduce a probabilistic generalization of the dual Robinson–Schensted–
Knuth correspondence, called qtRSK∗, depending on two parameters q and t. This
correspondence extends the qRSt correspondence, recently introduced by the authors,
and allows the first tableaux-theoretic proof of the dual Cauchy identity for Macdonald
polynomials. By specializing q and t, one recovers the row and column insertion
version of the classical dual RSK correspondence as well as of q- and t-deformations
thereof which are connected to q-Whittaker and Hall–Littlewood polynomials, but also
a novel correspondence for Jack polynomials.

Keywords: dual RSK, growth diagrams, Macdonald polynomials, Jack polynomials

1 Introduction

The Robinson–Schensted–Knuth (RSK) correspondence is a bijection between matrices
of nonnegative integers with finite support and pairs of semistandard Young tableaux of
the same shape and has significant applications in combinatorics, representation theory,
probability theory and algebraic geometry. It was introduced by Knuth [8] and gen-
eralizes the Robinson–Schensted correspondence (RS) introduced by Robinson [14] for
permutations and independently by Schensted [15] for words. A closely related bijection
is the dual RSK correspondence (RSK∗) introduced by Knuth [8] which yields a bijective
proof of the dual Cauchy identity

∑
λ

sλ(x)sλ′(y) = ∏
1≤i≤m
1≤j≤n

(1 + xiyj), (1.1)

where the sum is over all partitions λ, sλ denotes the Schur polynomial in the variables
x = (x1, . . . , xm) or y = (y1, . . . , yn) respectively, and λ′ is the conjugate of λ.
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All of the above mentioned correspondences have been extended in various directions
throughout the last few decades. Among others several randomized generalizations of
RS, RSK and RSK∗ were introduced in [2, 3, 4, 10, 11, 12, 13]. These generalizations
associate to each permutation or nonnegative integer matrix respectively a distribution
on pairs of (dual) (semi)standard Young tableaux depending on a parameter q or t and
thereby giving a proof of the (dual) Cauchy identity for q-Whittaker or Hall–Littlewood
symmetric functions. Similar to the classical RSK algorithm, these randomized general-
izations have many applications to probabilistic models, compare for example with [2,
3, 4, 10].

In a previous paper [1], the authors introduced a randomized generalization for RS
called qRSt depending on two parameters q and t. This generalization was designed
to prove the squarefree part of the Cauchy identity for the Macdonald symmetric func-
tions Pλ(x; q, t) and Qλ(x; q, t). Analogously to Macdonald symmetric functions, which
specialize to q-Whittaker, Hall–Littlewood and Schur symmetric polynomials, the qRSt
correspondence specializes to the corresponding randomized variations of RS, and to the
row and column insertion versions of RS itself for q = t = 0 or q = t→ ∞ respectively.

In this abstract we present a unifying generalization of both qRSt and RSK∗, called
qtRSK∗, and thereby give the first tableaux-theoretic proof of the dual Cauchy identity
for Macdonald polynomials

∑
λ

Pλ(x; q, t)Pλ′(y; t, q) = ∏
1≤i≤m
1≤j≤n

(1 + xiyj). (1.2)

Our map specializes to known randomized generalizations of RSK∗ by specializing q
or t respectively, and to (q, t)-variations of RS for words or RS, i.e., qRSt, by restricting
the input matrices. In particular we obtain a novel correspondence for Jack polynomials
with an intriguing property when restricting to words.

This extended abstract is organized as follows. In §2 we present the notion of an
insertion algorithm by using local growth rules. In §3 we review Macdonald polynomi-
als and introduce (q, t)-analogue of up and dual down operators. In §4 we define the
forward and backward probabilities which are the building block of qtRSK∗ which is in-
troduced in §5. In §6 we discuss the properties of qtRSK∗. For further details, including
the proofs, we refer the reader to our paper [7].

Notation

We assume the reader is familiar with (skew) Young diagrams, semistandard Young
tableaux (abbreviated SSYT), and Schur polynomials, as defined, e.g., in [16, Ch. 7].
We draw Young diagrams in French notation and starting from §4 in Quebecois notation,
in which the boxes are right-justified instead of left-justified. We write SSYT(λ) (resp.,
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SSYT∗(λ)) for the set of SSYTs (resp., dual SSYTs) of shape λ, where a dual SSYT is a
filling of the cells of λ with strictly increasing rows and weakly increasing columns. If
T is a (dual) SSYT, we denote by T(i) the shape of the subtableau consisting of entries at
most i.

2 Insertion algorithms and local dual growth rules

Young’s lattice is the partial order (Y,⊆) on partitions defined by the inclusion of Young
diagrams; its meet and join are given by ∩ and ∪, respectively. We say that λ/µ is a
horizontal strip (resp., vertical strip) if no two cells of λ/µ are in the same column (resp.,
row), where we use the notation µ ≺ λ (resp., µ ≺′ λ). We define the up operator Ux and
dual down operator D∗y as Q(x, y)-linear maps on the Q(x, y)-vector space Q(x, y)Y with
basis Y via

Uxλ = ∑
ν≻λ

x|ν/λ|ν, D∗yλ = ∑
µ≺′λ

y|λ/µ|µ.

The up and dual down operator satisfy the commutation relation

D∗yUx = (1 + xy)UxD∗y . (2.1)

The commutation relation immediately implies the dual Cauchy identity (1.1). Indeed
by rewriting the Schur polynomials as

sλ(x) = ⟨Uxm · · ·Ux1∅, λ⟩ , sλ′(y) =
〈

D∗y1
· · ·D∗yn λ, ∅

〉
, (2.2)

where ⟨·, ·⟩ is the inner product defined by ⟨λ, µ⟩ = δλ,µ, for all λ, µ ∈ Y, the dual Cauchy
identity follows by a straight forward induction using the commutation relation, see for
example [7, §2.2]. Define the sets U k(λ, ρ) := {ν : λ ≺′ ν ≻ ρ, |ν/(λ ∪ ρ)| = k} and
Dk(λ, ρ) := {µ : λ ≻ µ ≺′ ρ, |(λ ∩ ρ)/µ| = k}. The equation (2.1) can be reformulated as
the set of equations

|U k(λ, ρ)| = |Dk(λ, ρ)|+ |Dk−1(λ, ρ)|. (2.3)

for all partitions λ, ρ and non-negative integers k. It turns out to be quite fruitful to prove
these equations bijectively.

An inner corner of a partition λ is a cell c ∈ λ such that λ/µ = {c} for a partition
µ ⊆ λ. An outer corner of λ is a cell c /∈ λ such that ν/λ = {c} for a partition ν with
λ ⊆ ν. We call an inner corner c of λ ∩ ρ removable with respect to (λ, ρ) if λ/µ is a
horizontal strip and ρ/µ is a vertical strip, where (λ ∩ ρ)/µ = {c}. Analogously we call
an outer corner c of λ ∪ ρ addable with respect to (λ, ρ) if ν/λ is a vertical strip and ν/ρ

is a horizontal strip, where ν/(λ ∪ ρ) = {c}. For both removable and addable corners
we omit referring to (λ, ρ) whenever the partitions λ, ρ are clear from context. For an
example see Figure 1.
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λ/(λ ∩ ρ) = (λ ∪ ρ)/ρ ρ/(λ ∩ ρ) = (λ ∪ ρ)/λ

−
inner corner
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Figure 1: For λ = (7, 7, 3, 2, 2) and ρ = (8, 5, 4, 2, 2, 1): (left) the partition λ∩ ρ together
with all inner corners, (middle) the partition λ ∪ ρ with all outer corners, and (right)
λ ∩ ρ with all removable inner corners of λ ∩ ρ and addable outer corners of λ ∪ ρ. At
the bottom we show the color and shading code for cells in certain skew shapes.

Each partition ν in U k(λ, ρ) corresponds to a k-subset of the addable outer corners of
λ ∪ ρ and each partition µ in Dk(λ, ρ) corresponds to a k-subset of the removable inner
corners of λ ∩ ρ. We call a collection F• = {Fλ,ρ,k : λ, ρ ∈ Y, k ∈ N} of bijections

Fλ,ρ,k : Dk−1(λ, ρ) ∪Dk(λ, ρ)→ U k(λ, ρ),

a set of local dual growth rules. Two of the many possible bijections Fλ,ρ,k are very natural:
the dual row insertion bijection Frow

λ,ρ,k and the dual column insertion bijection Fcol
λ,ρ,k. For k = 1

the dual row (resp., column) insertion bijection maps a removable inner corner to the
next addable outer corner in a row above (resp., column to the right) and sends the
empty set to the lowest (resp., left-most) addable outer corner. Figure 2 illustrates this
case. For k > 1 both maps are defined recursively by

F•λ,ρ,k(X) =


⋃

x∈X
F•λ,ρ,1({x}) |X| = k,

F•λ,ρ,1(∅) ∪ ⋃
x∈X

F•λ,ρ,1({x}) |X| = k− 1,
(2.4)

where F•λ,ρ,k stands for Frow
λ,ρ,k or Fcol

λ,ρ,k respectively.
Each set of local growth rules F• determines a bijection

RSK∗F• : {0, 1}m×n →
⋃
λ

SSYT(λ)× SSYT∗(λ), A 7→ (P, Q).

While the bijection RSK∗F• is best understood by using Fomin’s growth diagrams [6], we
describe it as an insertion algorithm in order to save space and refer the reader to [7,
§2.3] for more details.
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Frow
λ,ρ,1 Fcol

λ,ρ,1

Figure 2: The two maps Frow
λ,ρ,1 (left) and Fcol

λ,ρ,1 (right) for λ = (7, 7, 3, 2, 2) and ρ =

(8, 5, 4, 2, 2, 1). The removable inner corners (colored in orange) and the addable outer
corners (colored in blue) are obtained in Figure 1.

Definition 2.1. Let F• be a set of local dual growth rules, T an SSYT and i1 < · · · < ir positive
integers. We define the F•-insertion of i1, . . . , ir into T as the SSYT T̂ obtained as follows. Call
the (multi-)1 set {i1, . . . , ir} the insertion queue. Let i be the smallest integer of the insertion
queue. Denote by C the set of cells of Fλ,ρ,k(µ)/(λ ∪ ρ) where λ = T(i), ρ = T̂(i−1), µ = T(i−1)

and k is the multiplicity of i in the insertion queue. Place i into each cell of C, delete all i’s from
the insertion queue and add all entries which have been replaced (bumped) in the current step to
the insertion queue. Repeat the previous step until the insertion queue is empty.

For a m× n {0, 1}-matrix A denote by i(j)
1 < · · · < i(j)

rj the rows for which A has a 1
entry in the j-th column. The insertion tableau P is obtained by the successive F•-insertion
of i(j)

1 , . . . , i(j)
rj , starting with j = 1, into the empty tableau. The recording tableau Q is the

dual SSYT such that Q(j) has the same shape as P after the j-th insertion process.

3 Macdonald polynomials

We review certain basic properties of Macdonald polynomials, following [9, Ch. VI].
The Macdonald symmetric functions Pλ(x; q, t) are symmetric functions in an infinite set
of variables x = (x1, x2, . . .) with coefficients in the field Q(q, t) of rational functions
in two additional variables q and t. While they are originally defined indirectly by
a linear algebra criterion, we take the somewhat unusual perspective to define them
combinatorially using their monomial expansion via SSYTs.

We define for a cell c = (x, y) ∈ λ its arm-length aλ(c) and its leg-length ℓλ(c) by

aλ(c) = λy − x, ℓλ(c) = λ′x − y.

1Note that at the initial step this is just an ordinary set. The same is true for Definition 5.1.
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c aλ(c)

ℓλ(c)

Figure 3: The Young diagram of the partition λ = (7, 6, 3, 2) for which the cell c =

(2, 1) is marked.

The hook-length of c is defined as hλ(c) = aλ(c) + ℓλ(c) + 1. The cell c as in Figure 3 has
arm-length aλ(c) = 5, leg-length ℓλ(c) = 3, and hook-length hλ(c) = 9. We define the
(q, t)-hook-lengths hℓλ(c) = 1− qaλ(c)tℓλ(c)+1 and ha

λ(c) = 1− qaλ(c)+1tℓλ(c) for c ∈ λ, and
hℓλ(c) = ha

λ(c) = 1 if c ̸∈ λ. Further we need their ratio which is denoted by bλ(c)

bλ(c) =
hℓλ(c)
ha

λ(c)
.

For µ ⊆ λ, define2

ψλ/µ(q, t) = ∏
c∈Rλ/µ−Cλ/µ

bµ(c)
bλ(c)

, φ∗λ/µ(q, t) = ∏
c∈Cλ/µ−Rλ/µ

bλ(c)
bµ(c)

,

where Rλ/µ (resp., Cλ/µ) is the set of all cells in λ which are in the same row (resp.,
column) as a cell of λ/µ. For a semistandard Young tableau T and a dual semistandard
Young tableau T∗, define the rational functions ψT(q, t), φ∗T∗(q, t) by

ψT(q, t) = ∏
i≥1

ψT(i)/T(i−1)(q, t), φ∗T∗(q, t) = ∏
i≥1

φT∗(i)/T∗(i−1)(q, t).

Macdonald [9, Ch. VI (7.13)] showed the following monomial expansions over semistan-
dard Young tableaux of shape λ

Pλ(x; q, t) = ∑
T∈SSYT(λ)

ψT(q, t)xT, Pλ′(x; t, q) = ∑
T∗∈SSYT∗(λ)

φ∗T∗(q, t)xT∗ . (3.1)

By using the linear algebraic definition, Macdonald proved the following generalization
of the dual Cauchy identity.

Theorem 3.1 ([9, Ch. VI (5.4)]). Let x = (x1, x2, . . .) and y = (y1, y2, . . .) be two sets of
variables. Then

∏
i,j
(1 + xiyj) = ∑

λ

Pλ(x; q, t)Pλ′(y; t, q). (3.2)

2Contrary to Macdonald [9, Ch. VI (6.24)] we use the symbol φ∗ instead of ψ′.
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In this abstract our goal is to provide a tableaux-theoretic proof of this theorem by
starting with the monomial expansion of Macdonald polynomials. We define the (q, t)-
up operator and (q, t)-dual down operator as

Ux(q, t)λ = ∑
ν≻λ

x|ν/λ|ψν/λ(q, t) ν, D∗y(q, t)λ = ∑
µ≺′λ

y|λ/µ|φ∗λ/µ(q, t) µ.

Theorem 3.2. The (q, t)-up and (q, t)-dual down operators satisfy the commutation relation

D∗y(q, t)Ux(q, t) = (1 + xy)Ux(q, t)D∗y(q, t). (3.3)

Note that the commutation relation (3.3) is actually equivalent to the skew version
of the dual Cauchy identity, compare to [9, Ch. VI, Ex 6(c)]. It is immediate by the
definition of the (q, t)-up and (q, t)-dual down operator and the monomial expansions
of Pλ and Pλ′ in (3.1) that

Pλ(x; q, t) = ⟨Uxm(q, t) · · ·Ux1(q, t)∅, λ⟩, Pλ′(y; t, q) = ⟨D∗y1
(q, t) · · ·D∗yn(q, t)λ, ∅⟩,

when restricting to x = (x1, . . . , xm) and y = (y1, . . . , yn). The Cauchy identity (3.2)
follows algebraically by the same standard argument as in the Schur case.

4 The qtRSK∗ correspondence

Definition 4.1. Let X and Y be finite sets equipped with weight functions ω : X → A, ω :
Y → A, where A is an algebra. A probabilistic bijection from (X, ω) to (Y, ω) is a pair of
maps P ,P : X×Y → A satisfying

1. for each x ∈ X, ∑
y∈Y
P(x, y) = 1, and for each y ∈ Y, ∑

x∈X
P(x, y) = 1,

2. for each x ∈ X and y ∈ Y, ω(x)P(x, y) = P(x, y)ω(y).

For the remainder of the abstract we write P(x → y) for P(x, y) and P(x ← y)
for P(x, y), and think of P(x → y) as the “probability” of mapping x to y, called for-
ward probability, and of P(x ← y) as the “probability” of mapping y back to x, called
the backward probability. We put “probability” in quotes because we do not require
P(x → y),P(x ← y) ∈ [0, 1] (they need not even be real-valued). We refer to (2) as
the compatibility condition. It is immediate that a probabilistic bijection from (X, ω) to
(Y, ω) implies the identity

∑
x∈X

ω(x) = ∑
y∈Y

ω(y).

We want to point out, that there is an easy connection between the concept of probabilis-
tic bijections and joint distributions, compare for example with [1, Remark 4.1.4].
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For partitions λ, ρ, µ, ν satisfying µ ≺ λ ≺′ ν and µ ≺′ ρ ≺ ν we define the weights

ωλ,ρ(µ) = ψλ/µ(q, t)φ∗ρ/µ(q, t), ωλ,ρ(ν) = ψν/ρ(q, t)φ∗ν/λ(q, t).

Analogously to (2.3), the commutation relation (3.3) is equivalent to the family of equa-
tions

∑
µ∈Dk(λ,ρ)∪Dk−1(λ,ρ)

ωλ,ρ(µ) = ∑
ν∈U k(λ,ρ)

ωλ,ρ(ν). (4.1)

In the remainder of this section we define the forward probabilities Pλ,ρ(µ → ν) and
the backward probabilities Pλ,ρ(µ← ν) which form a probabilistic bijection and thereby
prove this equation. Before we can define these probabilities, we need to introduce some
notations.

Denote by d the number of removable inner corners of λ ∩ ρ. For a subset R ⊆
[d] = {1, 2, . . . d} we define µ(R) as the partition obtained by removing from λ ∩ ρ the
i-th removable inner corner, counted from bottom to top, for all i ∈ R. For a subset
S ⊆ [0, d] = {0, 1, . . . , d} we define ν(S) as the partition obtained by adding to λ ∪ ρ the
i-th addable (“supplementable”) outer corner, where we count the addable outer corners
again from bottom to top but starting with 0.

As we see in a moment, it turns out to be convenient to draw Young diagrams using
Quebecois notation in which the boxes are right-justified instead of left-justified, i.e., one
obtains this new convention by reflecting diagrams in French convention vertically, see
Figure 4. We define Ri (resp., Ri) to be the lower right (resp., upper left) corner of the
i-th removable inner corner of λ ∩ ρ, Si (resp., Si) to be the lower right (resp., upper left)
corner of the i-th addable outer corner of λ ∪ ρ, and set Ii = Ri and Oi = Si. For an
example see Figure 4. For the rest of the abstract we identify a point with coordinates
(x, y) with the monomial qxty. Since the expressions we are interested in are homoge-
neous rational functions of degree 0 in the above defined points, these expressions are
invariant under translation of the points and hence well-defined.

For R ⊆ [d] and S ⊆ [0, d], we define the probabilities

Pλ,ρ(µ
(R) → ν(S)) = ∏

s∈S

∏
i∈[d]\R

(Ss − Ii)

∏
j∈[0,d]\S

(Ss −Oj)
∏
r∈R

∏
j∈[0,d]\S

(Rr −Oj)

∏
i∈[d]\R

(Rr − Ii)
, (4.2)

Pλ,ρ(µ
(R) ← ν(S)) = ∏

s∈S

∏
i∈[d]\R

(Ss − Ii)

∏
j∈[0,d]\S

(Ss −Oj)
∏
r∈R

∏
j∈[0,d]\S

(Rr −Oj)

∏
i∈[d]\R

(Rr − Ii)
. (4.3)

For an integer k ≥ 0 and a set S, we denote by (S
k) the set of k-element subsets of S.
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+

+

+ −

−

S0 = O0

S0 S1 = O1

S1

S2 = O2

S2

R1

R1 = I1

R1

R1 = I1

Figure 4: The partition λ ∪ ρ together with the points Ii, Oj, Ri, Ri, Sj and Sj for λ =

(7, 7, 3, 2, 2) and ρ = (8, 5, 4, 2, 2, 1) as in Figure 1.

Theorem 4.2. Let λ, ρ be partitions, d the number of removable inner corners of λ ∩ ρ, and
k ∈ [d + 1]. The probabilities defined in (4.2) and (4.3) satisfy

∑
S∈([0,d]

k )

Pλ,ρ(µ
(R) → ν(S)) = 1 for each R ∈

(
[d]

k− 1

)
∪
(
[d]
k

)
, (4.4)

∑
R∈( [d]

k−1)∪(
[d]
k )

Pλ,ρ(µ
(R) ← ν(S)) = 1 for each S ∈

(
[0, d]

k

)
, (4.5)

ωλ,ρ(µ
(R))

ωλ,ρ(ν(S))
=
Pλ,ρ(µ

(R) ← ν(S))

Pλ,ρ(µ(R) → ν(S))
for each R ∈

(
[d]

k− 1

)
∪
(
[d]
k

)
, S ∈

(
[0, d]

k

)
. (4.6)

The above theorem shows that our probabilities define a probabilistic bijection. The
proof of (4.4) and (4.5) uses an extension of Lagrange interpolation for symmetric poly-
nomials by Chen and Louck [5]. The proof of (4.6) is based on a careful analysis of the
involved terms and alternative representations of the probabilities. We refer the reader
to [7, §5] for more details.

5 The qtRSK∗ correspondence

We view the probabilities Pλ,ρ as a set of “probabilistic” local dual growth rules and
define the qtRSK∗ correspondence analogously to the insertion algorithm RSK∗F• in §2.

Definition 5.1. Let T be a semistandard Young tableau and i1 < · · · < ir be positive integers.
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The qtRSK∗-insertion of i1, . . . , ir into T, denoted

(i1, . . . , ir)
qtRSK∗−−−−→ T = T̂,

is the probability distribution computed as follows. Call the (multi-) set {i1, . . . , ir} the insertion
queue. Let i be the smallest integer of the insertion queue and denote by k the multiplicity of i
in the insertion queue. For each ν ∈ U k (λ, ρ), place i in each cell of ν/ (λ ∪ ρ) with probability
Pλ,ρ (µ→ ν), where λ = T(i), ρ = T̂(i−1), µ = T(i−1). Delete all i′s from the insertion queue
and add all entries which have been replaced (bumped) by an i to the insertion queue. Repeat the
previous step until the insertion queue is empty.

For an m × n {0, 1}-matrix A denote by i(j)
1 < · · · < i(j)

rj the rows for which A has
a 1 entry in the j-th column. The qtRSK∗-correspondence associates to A a probability
distribution P(A → P, Q) on pairs (P, Q) of an SSYT P and a dual SSYT Q of the same
shape, where the probability P(A → P, Q) is the sum of the forward probabilities of
all ways to obtain the insertion tableau P by successively qtRSK∗-inserting i(j)

1 , . . . , i(j)
rj ,

starting with j = 1, into the empty tableau and Q as the recording tableau by the analo-
gous construction as for RSK∗F• . Note that the backward probabilities P(A ← P, Q) are
defined analogously by summing over the backward probabilities instead of the forward
probabilities. By using the perspective of Fomin’s growth diagrams, it is not difficult to
prove that qtRSK∗ defines a probabilistic bijection between the weighted sets of m × n
{0, 1}-matrices with weight ω and

⊔
λ⊆(mn)

SSYT(λ)× SSYT∗(λ) with weight ω, where

ω(A) = ∏
1≤i≤m
1≤j≤n

(xiyj)
Ai,j and ω(P, Q) = ψP(q, t)φ∗Q(q, t)xPyQ.

See [7, §4.4] for more details.

Example 5.2. The insertion (2, 3)
qtRSK∗−−−−→ 1 2

3 produces

1 2 2
3 3 with probability = P(2),(1)((1)→ (3)) =

1− qt
1− q2t

,

1 2 3
2 3 with probability = P(2),(1)((1)→ (2, 1))P(2,1),(2,1)((2)→ (3, 2))

= q2t
(1− q)2(1− t)2

(1− qt)(1− q2)(1− q2t)(1− q2t2)
,

1 2
2 3
3

with probability = P(2),(1)((1)→ (2, 1))P(2,1),(2,1)((2)→ (2, 2, 1))

= qt2 (1− q)2(1− q2t)
(1− qt)(1− q2)(1− q2t2)

,
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1 2 3
2
3

with probability = P(2),(1)((1)→ (2, 1))P(2,1),(2,1)((2)→ (3, 1, 1))

= qt
(1− q)2(1− t)
(1− q2)(1− qt)2 .

6 Properties of qtRSK∗

Our randomized qtRSK∗ correspondence can be specialized in two different ways: one
can specialize the parameter q, t or restrict the correspondence to a smaller family of
matrices.

For q, t ∈ [0, 1) or q, t ∈ (1, ∞) the probabilities P(A → P, Q) and P(A ← P, Q) take
values in [0, 1], i.e., they become actual probabilities. The qtRSK∗-insertion specializes
to the q-Whittaker dual row insertion (t = 0) first described by Matveev and Petrov [10,
§5.1] and to a Hall–Littlewood dual-row insertion (q = 0), first described Matveev and
Petrov in [10, §5.4] as a q-Whittaker dual column insertion. Finally for q = t = 0 or
q = t→ ∞ we obtain the row or column insertion version of RSK∗.

By restricting the input of qtRSK∗ to {0, 1}-matrices with at most one entry equal to
1 in each column, we obtain a (q, t)-deformation of RS for words. By further restricting
to permutation matrices we obtain the qRSt correspondence. The restriction of qtRSK∗

to words is in particular interesting when further specializing to Jack polynomials, i.e.,
by setting q = tα and taking the limit t → 1. We prove in [7, Thm 6.5] that in the Jack
limit of qtRSK∗ restricted to words, interchanging adjacent columns of the input matrix
does not affect the distribution of the P-tableau. Note that this can not be extended to
all {0, 1}-matrices.

Similarly to the classical dual RSK, the qtRSK∗ correspondence also yields a tableaux-
theoretic proof of the dual Pieri rule for Macdonald polynomials. This can be obtained
by considering a growth diagram with one column for which the number of 1 entries is
fixed to k; this corresponds to multiplying by ek.
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Abstract. The classical Robinson–Schensted–Knuth correspondence is a bijection from
nonnegative integer matrices to pairs of semi-standard Young tableaux. Based on the
work of, among others, Burge, Hillman, Grassl, Knuth and Gansner, it is known that
a version of this correspondence gives, for any nonzero integer partition λ, a bijection
from arbitrary fillings of λ to reverse plane partitions of shape λ, via Greene–Kleitman
invariants. By bringing out the combinatorial aspects of our recent results on quiver
representations, we construct a family of bijections from fillings of λ to reverse plane
partitions of shape λ parametrized by a choice of Coxeter element in a suitable sym-
metric group. We recover the above version of the Robinson–Schensted–Knuth corre-
spondence for a particular choice of Coxeter element depending on λ.

Résumé. La correspondance Robinson–Schensted–Knuth classique est une bijection
partant des matrices à coefficients des entiers naturels vers les paires de tableaux de
Young semi-standards. Basé sur les travaux, entre autres, de Burge, Hillman, Grassl,
Knuth et Gansner, on sait qu’une version de cette correspondance donne, pour toute
partage d’un entier non nulle λ, une bijection allant des remplissages arbitraires de λ

vers les partitions planes renversées de forme λ, via les invariants de Greene–Kleitman.
En faisant ressortir les aspects combinatoires de nos récents résultats sur les représen-
tations de carquois, nous construisons une famille de bijections partant des remplis-
sages de λ vers les partitions planes renversées de forme λ, paramétrées par un choix
d’élément de Coxeter dans un groupe symétrique approprié. Nous récupérons la ver-
sion de la correspondance Robinson–Schensted–Knuth ci-dessus pour un choix partic-
ulier d’élément de Coxeter dépendant de λ.

Keywords: Quiver representations, Robinson–Schensted–Knuth, Reverse plane parti-
tions.

1 Introduction

The Robinson–Schensted–Knuth (RSK) correspondence is a fundamental bijection from
nonnegative integer matrices to pairs of semi-standard Young tableaux of the same
shape. For further details, the reader may consult the following references: [16], [6].

*dequene.benjamin@courrier.uqam.ca
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Based on observations of various works of Burge [3], Hillman–Grassl [12] and Knuth
[13], Gansner [7, 9] constructed a generalized version of this correspondence, via Greene–
Kleitman invariants, which gives a bijection from arbitrary fillings to reverse plane par-
titions of the same shape.

Our paper [4] studies a representation-theoretic setting in which a version of RSK
exists. In the present paper, we present an explicit, combinatorial form of the results from
[4]. Given a fixed nonzero integer partition λ, we present the construction of a family
of maps (RSKλ,c)c from fillings of λ to reverse plane partitions of shape λ parametrized
by c a Coxeter element of the symmetric group Sn where n − 1 is the hook-length of the
box (1, 1) in λ. We can state the following result from [4].

Theorem 1. The map RSKλ,c gives a one-to-one correspondence from fillings of shape λ to reverse
plane partitions of shape λ. Moreover, for any λ, there exists a unique (up to inverse) choice of c
such that RSKλ,c coincides with the usual RSK.

No knowledge in quiver representation is required to read this abstract, except for
Section 5 in which we discuss the connection with quiver representations. For more
details on this work, we refer the reader to [5].

2 Gansner’s Ferrers Diagram RSK

In this section, we describe Gansner’s correspondence explicitly.

2.1 Some vocabulary

An integer partition is a weakly decreasing nonnegative integer sequence λ = (λn)n∈N∗

with finitely many nonzero terms. The length of λ is the minimal k ∈ N such that
λk+1 = 0. We endow (N∗)2 with the Cartesian product order ⊴. The Ferrers diagram of
λ Fer(λ) is the subset of (N∗)2 given by pairs (i, j) such that i ⩽ λj. We call any map
f : Fer(λ) −→ N a filling of shape λ . Such a filling f is a reverse plane partition whenever
f weakly increases with respect to ⊴. We give an example of a reverse plane partition of
shape (5, 3, 3, 2) in Figure 1.

0 3 5 5 7
1 5 5
4 6 9
4 10

Figure 1: A reverse plane partitions of shape λ = (5, 3, 3, 2).
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2.2 Greene–Kleitman invariants

Let G = (G0, G1) be a finite directed graph, where G0 is the set of vertices of G, and
G1 ⊂ (G0)

2 is the set of arrows of G. Assume that G has no multi-arrows.
We see a path γ in G as a finite sequence of vertices (v0, . . . , vk) such that (vi, vi+1) ∈

G1. Denote by s(γ) = v0 its source and by t(γ) = vk its target. Write Supp(γ) =
{v0, . . . , vk} to denote the support of γ. For ℓ ⩾ 1, we extend the notion of support to
ℓ-tuples of paths γ = (γ1, . . . , γℓ) as Supp(γ) =

⋃ℓ
i=1 Supp(γi). For ℓ ⩾ 1, write Πℓ(G)

the set of ℓ-tuples of paths in G.
From now on, assume that G is acyclic, meaning there is no nontrivial path γ in G

such that s(γ) = t(γ). An antichain of G is any subset of vertices {w1, . . . , wr} ⊂ G0 such
that there is no path γ in G with s(γ) = wi and t(γ) = wj for all 1 ⩽ i, j ⩽ r with i ̸= j.

A filling of G is a map f : G0 −→ N. We assign to any ℓ-tuple of paths γ of G a
f -weight defined by

wt f (γ) = ∑
v∈Supp(γ)

f (v).

Set MG
0 ( f ) = 0, and for all integers ℓ ⩾ 1, MG

ℓ ( f ) = maxγ∈Πℓ(G) wt f (γ). We define the
Greene–Kleitman invariant of f in G as

GKG( f ) =
(

MG
ℓ ( f )− MG

ℓ−1( f )
)
ℓ⩾1

.

See Figure 2 for an explicit computation example.

Proposition 2 (Greene–Kleitman [11]). Let G be a finite direct acyclic graph and f be a filling
of G. The integer sequence GKG( f ) is an integer partition of length the maximal cardinality of
an antichain in G.

2.3 Ferrers diagram RSK

Throughout this section, we highlight Gansner’s generalized version of the RSK corre-
spondence, which gives, for any nonzero integer partition λ, a bijection from fillings of
shape λ to reverse plane partitions of shape λ.

Fix a nonzero integer partition λ. Let Gλ be the oriented acyclic graph such that:

• its vertices are the elements of Fer(λ);

• its arrows are given by:

• (i, j) −→ (i + 1, j) whenever (i, j), (i + 1, j) ∈ Fer(λ);

• (i, j) −→ (i, j + 1) whenever (i, j), (i, j + 1) ∈ Fer(λ).
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G =

•
•

•
•

• •

•
• •

• •

f =

1
2

3
2

2 1

0
4 2

5 1

1
2

3
2

2 1

0
4 2

5 1

1
2

3
2

2 1

0
4 2

5 1

1
2

3
2

2 1

0
4 2

5 1

1
2

3
2

2 1

0
4 2

5 1

GKG( f ) = (13, 5, 3, 2)

Figure 2: An example of the computation of GKG.

For all m ∈ Z, write Dm(λ) = {(i, j) ∈ Fer(λ) | i − j + λ1 = m} for the mth diagonal of
λ. Note that Dm(λ) ̸= ∅ for 1 ⩽ m ⩽ hλ(1, 1), where hλ(1, 1) = #{(i, j) ∈ Fer(λ) | i =
1 or j = 1} denotes the hook length of the box (1, 1) in λ.

For each value 1 ⩽ m ⩽ hλ(1, 1), consider (um, vm) the maximal element of Dm(λ).
Write Gλ(m) for the full subgraph of Gλ given by the poset ideal generated by (um, vm).
Note that Gλ(m) admits only one source (1, 1), and only one sink (um, vm).

We define g = RSKλ( f ) to be the filling of shape λ defined by

∀m ∈ {1, . . . , hλ(1, 1)}, ∀(i, j) ∈ Dm(λ), g(i, j) = GKGλ(m)( f )um−i+1.

See Figure 3 for an explicit calculation of RSKλ( f ) for a given filling of λ = (5, 3, 3, 2).

Theorem 3 (Gansner [9]). Let λ be a nonzero integer partition. The map RSKλ is a bijection
from fillings of shape λ to reverse plane partitions of shape λ.

Remark. If λ is a rectangle, we can recover the classical RSK. See [11] and [10, Section 6]
for more details.

Moreover, a parallel can be made with Britz and Fomin’s version of the RSK algo-
rithm [2], where we compute sequences of integer partitions for an n × n nonnegative
integer matrix as growth diagrams. A generalized version of RSK was also exploited by
Krattenthaler [14] on polyominos. From a given filling f of shape λ, the integer parti-
tions we can read on diagonals Dm(λ) of RSKλ( f ) correspond precisely to the results
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1 2 1 0 3
2 1 1
2 1 3
3 2

1 3 4 4 7
3 4 5
4 6 9
8 10

RSKλ

4

3 2 1

56

78

7

4

3 2 1

56

78

4 7

4

3 2 1

56

78

4 4 7

4

3 2 1

56

78

3 4 4 7
5

4

3 2 1

56

78

1 3 4 4 7
4 5

9

4

3 2 1

56

78

1 3 4 4 7
3 4 5

6 9

4

3 2 1

56

78

1 3 4 4 7
3 4 5
4 6 9

10

4

3 2 1

56

78

1 3 4 4 7
3 4 5
4 6 9
8 10

1 2 1 0 3

2 1 1

2 1 3

3 2

1 2 1 0 3

2 1 1

2 1 3

3 2

1 2 1 0 3

2 1 1

2 1 3

3 2

1 2 1 0 3

2 1 1

2 1 3

3 2

1 2 1 0 3

2 1 1

2 1 3

3 2

1 2 1 0 3

2 1 1

2 1 3

3 2

1 2 1 0 3

2 1 1

2 1 3

3 2

1 2 1 0 3

2 1 1

2 1 3

3 2

Figure 3: Explicit calculations of RSKλ( f ) for a given filling f of shape λ = (5, 3, 3, 2).
For 1 ⩽ m ⩽ 8, each framed subgraph corresponds to the subgraph Gλ(m), and each
filled diagonal colored in red corresponds to GKGλ(m)( f ).

obtained at the end of each line by using the Krattenthaler growth diagram algorithm
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version.

3 Some tools

In this section, we give the definition of some combinatorial objects that will be useful
to present our generalized version of Gansner’s RSK correspondence.

3.1 Interval bipartitions

An interval bipartition is a pair (B, E) ∈ P(N∗)2 such that {B, E} is a set partition of
{i, . . . , j} for some 1 ⩽ i ⩽ j. Call it elementary whenever 1 ∈ B and max(B ∪ E) ∈ E.

Fix (B, E) as an interval bipartition. Write B = {b1 < b2 < . . . < bp}. We define
the integer partition λ(B, E) by λ(B, E)i = #{e ∈ E | bi < e}. If we also write E =
{e1 < . . . < eq}, we can also describe λ(B, E) by its Ferrers diagram: we have (i, j) ∈
Fer(λ(B, E)) whenever bi < eq−j+1. It allows us to label the ith row of Fer(λ(B, E)) by bi
and the jth row by eq−j+1. See Figure 4 for an example of such an object.

9 7 6 5 3

1

2

4

8

Figure 4: The (labelled) integer partition λ(B, E) with B = {1, 2, 4, 8} and E =

{3, 5, 6, 7, 9}.

Proposition 4. For any integer partition λ, there exists an interval bipartition (B, E) such that
λ(B, E) = λ. Moreover, if λ is a nonzero integer partition, there exists a unique elementary
interval bipartition satisfying this property.

3.2 (Type A) Coxeter elements

For any n ⩾ 2, let Sn be the symmetric group on n letters. For 1 ⩽ i < j ⩽ n, write
(i, j) for the transposition exchanging i and j. For 1 ⩽ i < n, let si be the adjacent
transposition (i, i + 1). Let S be the set of the adjacent transpositions.

For any w ∈ Sn, an expression of w is a way to write w as a product of adjacent
transpositions in S. The length ℓ(w) of w is the minimal number of adjacent transposi-
tions in S needed to express w. Whenever, for some 1 ⩽ i < n, ℓ(siw) < ℓ(w), we say
that si is initial in w. Similarly, we call si final in w whenever ℓ(wsi) < ℓ(w).



RSK via the combinatorics of quiver representations 7

A Coxeter element (of Sn) is an element c ∈ Sn which can be written as a product of
all the adjacent transpositions, in some order, where each of them appears exactly once.
For example, c = s2s1s3s6s5s4s8s7 = (1, 3, 4, 7, 9, 8, 6, 5, 2) is a Coxeter element of S9.

Lemma 5. An element c ∈ Sn is a Coxeter element if and only if c is a long cycle which can be
written as follows

c = (c1, c2, . . . , cm, cm+1, . . . , cn)

where c1 = 1 < c2 < . . . < cm = n > cm+1 > . . . > cn > c1 = 1.

3.3 Auslander–Reiten quivers

Let c ∈ Sn be a Coxeter element. The Auslander–Reiten quiver of c, denoted AR(c), is the
oriented graph satisfying the following conditions:

• The vertices of AR(c) are the transpositions (i, j), with i < j, in Sn;

• The arrows of AR(c) are given, for all i < j, by

• (i, j) −→ (i, c(j)) whenever i < c(j);

• (i, j) −→ (c(i), j) whenever c(i) < j.

To construct recursively such a graph, we can first find the initial adjacent transpositions
of c, which are all the sources, and step by step, using the second rule, construct the
arrows and the vertices of AR(c) until we reach all the transpositions of Sn. Note that
the sinks of AR(c) are given by the final adjacent transpositions of c. See Figure 5 for an
explicit example.

Remark. The Auslander–Reiten quiver of a Coxeter element has a representation-theoretic
meaning: briefly it corresponds to the oriented graph whose vertices are the indecom-
posable representations of a certain type A quiver, and whose arrows are the irreducible
morphisms between them.

To see further details about Auslander-Reiten quivers of type A quivers in particular,
we refer the reader to [15, Section 3.1]. To learn more about quiver representation theory,
and for more in-depth knowledge on the notion of Auslander–Reiten quivers, we invite
the reader to look at [1].

4 An extended generalized Ferrers diagram RSK

In the following, we describe a generalized version of RSK using (type A) Coxeter ele-
ments, and state the main result.
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(67)

(57)

(27)

(17)

(37)

(47)
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(59)

(29)
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(39)
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(68)

(58)

(28)

(18)

(38)

(48)

(78)

(89)

(79)

(56) (25) (12)

(13) (34)

(26) (15)

(23) (14)

(16) (35)

(24)

(36) (45)

(46)

Figure 5: The Auslander–Reiten quiver of c = (1, 3, 4, 7, 9, 8, 6, 5, 2) = s2s1s3s6s5s4s8s7.

Let λ be a nonzero integer partition and consider (B, E) the unique elementary in-
terval bipartition such that λ(B, E) = λ. Set n = hλ(1, 1) + 1. Let c ∈ Sn and consider
AR(c) its Auslander–Reiten quiver.

Recall that if B = {b1 < . . . < bp} and E = {e1 < . . . < eq}, then (i, j) ∈ Fer(λ) if and
only if bi < eq−j+1. It allows us to label each box (i, j) by a transposition (bi, eq−j+1) ∈ Sn.
Thus it allows us to construct a one-to-one correspondence from fillings of shape λ to
fillings of the Auslander–Reiten quiver AR(c) which are supported on vertices (b, e) ∈
B × E such that b < e. Explicitly, for any filling f of shape λ, we define f be the filling
of AR(c) defined by f (bi, eq−j+1) = f (i, j) whenever (i, j) ∈ Fer(λ) and f (x, y) = 0
otherwise.

As in Section 2, for m ∈ {1, . . . , n − 1}, let (um, vm) be the maximal pair with respect
of ⊴ in Dm(λ). The boxes in the ideal generated by (um, vm) correspond to pairs (i, j)
such that bi ⩽ m < eq−j+1, and therefore (um, vm) is the maximal pair satisfying this
condition.

For each m ∈ {1, . . . , n − 1}, we consider the subgraph ARm(c) of AR(c) where the
vertices are the transpositions (i, j) with i ⩽ m < j. This subgraph has only one source
and only one sink.

We define g = RSKλ,c( f ) to be the fillings of shape λ defined for m ∈ {1, . . . , n − 1}
by

∀(i, j) ∈ Dm(λ), g(i, j) = GKARm(c)( f )um−i+1.

See Figure 6 for an explicit example.
Our main result is the following.
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1
4
5
7
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2 1 1
2 1 3
3 2
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78
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2 3 4 4 7
3 4 5
4 6 8
8 10
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(27)

(17)

(37)

(47)
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(59)
2

(29)
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1

(39)

(49)2
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1
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2

(38)

(48)1

(78)
2
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(56)
3
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3
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0

(34)
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1

(35)

(24)

(36) (45)

(46)1
RSKλ,c

Figure 6: Explicit calculation of RSKλ,c( f ) for the boxes in D5(λ) from a filling of
λ = (5, 3, 3, 2), with c = (1, 3, 4, 7, 9, 8, 6, 5, 2)

Theorem 6. Let λ be a nonzero integer partition. Consider n = hλ(1, 1) + 1. Let c ∈ Sn be a
Coxeter element. The map RSKλ,c gives a one-to-one correspondence from fillings of shape λ to
reverse plane partitions of shape λ.

The following result shows that we extended the RSK correspondence.

Proposition 7. Let λ be a nonzero integer partition. Consider n = hλ(1, 1) + 1 and (B, E)
be the only elementary interval bipartition such that λ(B, E) = λ. Let c ∈ Sn be the Coxeter
element such that

• for i ∈ {1, . . . , n − 1}, (i, i + 1) is final in c if and only if i ∈ B and i + 1 ∈ E;

• for i ∈ {2, . . . , n − 2}, (i, i + 1) is initial in c if and only if i ∈ E and i + 1 ∈ B.
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Then RSKλ,c = RSKλ. Moreover, c and c−1 are the unique Coxeter element of Sn satisfying this
property.

Remark. Gansner’s RSK for a fixed integer partition λ admits a local description in terms
of toggles on Gλ. Based on the proof given in [4], for c = (1, 2, . . . , n), we can give a local
description in terms of toggles on AR(c). However, more works need to be done for a
general choice of c, as this local description does not extend naturally.

5 Some words about quiver representation theory

This section aims to give a dictionary to link the result from [4] with Theorem 6.
Fix Q = (Q0, Q1) a type A quiver. A finite dimensional representation E of Q over C is

an assignment of a finite dimensional C-vector space Eq to each vertex q of Q, and an
assignment of a C-linear transformation Eα : Ei −→ Ej to each arrow α : i → j of Q. For
two representations E and F, a morphism ϕ : E −→ F is the data of a C-linear map ϕq
for each vertex q of Q such that for any arrow α : i → j, ϕjEα = Fαϕi. Denote by repK(Q)
the category consisting of the representations of Q.

Any representation E of Q can be uniquely decomposed into a direct sum of copies of
indecomposable representations up to isomorphism. Thus, we can consider the invariant
which counts the number of indecomposable summands of each isomorphism class in
E. Write it Mult(E).

In [10], A. Garver, R. Patrias and H. Thomas introduce a new invariant of quiver
representations, called the generic Jordan form data. For any representation E of Q,
write GenJF(E) for the generic Jordan form data of E. This data encodes the generic
behavior of a nilpotent endomorphism N = (Nq)q∈Q0 of the representation via the size of
the Jordan blocks of each Nq. In some subcategories, the representation can be recovered
from this invariant up to isomorphism.

They also show that the map from Mult to GenJF generalizes the RSK correspondence
for type A quivers, using Gansner’s previous work [8].

As this map is bijective, if we restrict it to the representation in some subcategories C ,
one can be interested to get an explicit way to invert it. An algebraic method developed
in [10] asks the subcategory C to satisfy the following property. For any E ∈ C , there
exists a dense open set Ω (in the Zariski topology) in the set of representations admitting
a nilpotent endomorphism with Jordan forms encoded by GenJF(E) such that any F ∈ Ω
is isomorphic to E. Such a subcategory is said to be canonically Jordan recoverable (CJR).

More recently, in [4], we gave a combinatorial characterization of all the CJR subcat-
egories of representations of Q, substancially enlarging the family of subcategories for
which GenJF is a complete invariant given by [10]. The maximal such subcategories can
be described thanks to the elementary interval partitions (B, E) of {1, . . . , n + 1}.
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The following table compares the representation-theoretic tools used in [4] and the
combinatorial tools used to describe our generalized RSK.

Combinatorial tools Representation-theoretic tools
Coxeter element of Sn Orientation of an An−1 type quiver Q

Transposition in Sn Indecomposable representation in repC(Q)
AR quiver of c AR quiver of repC(Q)

Integer partition λ with hλ(1, 1) = n − 1 CJR subcategory C of repC(Q)
Filling of λ Mult(E) for some E ∈ C

Reverse plane partition of λ GenJF(E) for E in C .
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Pattern-avoiding polytopes and Cambrian lattices
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Abstract. For each Coxeter element c in the symmetric group, we define a pattern-
avoiding Birkhoff subpolytope whose vertices are the c-singletons. We show that the
normalized volume of our polytope is equal to the number of longest chains in a
corresponding type A Cambrian lattice. Our work extends a result of Davis and Sagan
which states that the normalized volume of the convex hull of the 132 and 312 avoiding
permutation matrices is the number of longest chains in the Tamari lattice, a special
case of a type A Cambrian lattice. Furthermore, we prove that each of our polytopes is
unimodularly equivalent to the order polytope of the heap of the c-sorting word of the
longest permutation. This gives an affirmative answer to a generalization of a question
posed by Davis and Sagan.

Keywords: order polytopes, heap, Birkhoff polytopes, Cambrian lattices, permutations

1 Introduction

The sequence [6, A003121] counts shifted standard tableaux of staircase shape and
longest chains in the Tamari lattice; it also counts the number of reduced words in a
certain commutation class of the longest permutation. More recently, it was shown by
Davis and Sagan in [2] that this sequence gives the normalized volume of a certain
"pattern-avoiding polytope," a subpolytope of the Birkhoff polytope whose vertices are
132 and 312 avoiding permutations. Since these permutations form a distributive sub-
lattice of the right weak order, Davis and Sagan asked whether their polytope might be
unimodularly equivalent to the order polytope of the poset of join irreducibles of the 132
and 312 avoiding permutations.
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In the same paper, Davis and Sagan pointed out that the 132 and 312 avoiding permu-
tations are known to be the c-singletons for the symmetric group for a specific "Tamari"
Coxeter element c and proposed that it would be interesting to define similar pattern-
avoiding polytopes for other Coxeter groups and study them from the perspective of
c-singletons. The c-singletons are the spine of an important lattice called the c-Cambrian
lattice [7], and they form a distributive sublattice of the right weak order [4].

In this article, we associate a pattern-avoiding polytope to each Coxeter element c in
the symmetric group. We define this polytope to be the convex hull of the permutation
matrices of the c-singletons (see Sections 3.2 and 4.1). We prove that our polytope is
indeed unimodularly equivalent to the order polytope of the poset of join irreducibles of
the c-singletons (see Section 5). In particular, for the Tamari Coxeter element, our result
answers Davis and Sagan’s question in the affirmative.

2 Background and notation

Denote the symmetric group on n + 1 elements by An. We can represent a permutation
w ∈ An in one-line notation as w = w(1)w(2) · · · w(n + 1). For each i ∈ {1, . . . , n}, we
write si ∈ An to denote the simple reflection (or adjacent transposition) that swaps i and i+ 1
and fixes all other letters. Every permutation can be expressed as a product of simple
reflections. Given w ∈ An, the minimum number of simple reflections among all such
expressions for w is called the (Coxeter) length of w, and is denoted by ℓ(w). A reduced
decomposition of w is an expression w = si1 · · · siℓ(w)

realizing the Coxeter length of w. To

simplify notation, we refer to such a decomposition via its reduced word
[
i1 · · · iℓ(w)

]
. For

example, consider w = 51342 ∈ A4. One of its reduced decompositions is s4s2s3s2s4s1
with [423241] as the corresponding reduced word, and ℓ(w) = 6.

A Coxeter element c in An is a product of all n simple reflections in any order, where
each reflection appears exactly once. The longest permutation of An is the permutation
w0 = (n + 1)n . . . 321 and ℓ(w0) = (n+1

2 ).
Simple reflections satisfy commutation relations of the form sisj = sjsi for |i − j| > 1.

An application of a commutation relation to a product of simple reflections is called a
commutation move. When referring to reduced words, we will say adjacent letters i and j
in a reduced word commute when |i − j| > 1. Given a reduced word [u] of a permutation,
the equivalence class consisting of all words that can be obtained from [u] by a sequence
of commutation moves is the commutation class of [u].

2.1 Heaps

We review the classical theory of heaps, which was used in [12] to study fully commu-
tative elements of a Coxeter group. Heaps also appeared as "the natural partial orders"
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in [3, Definition 6] and [5, Definition 1] and they were used to study certain acyclic do-
mains. For a detailed list of attributions on the theory of heaps, see [10, Solutions to
Exercise 3.123(ab)].

Definition 2.1. Given a reduced word [u] = [u1 · · · uℓ] of a permutation, consider the partial
order ≼ on the set {1, . . . , ℓ} obtained via the transitive closure of the relations

x ≺ y

for x < y such that |ux − uy| ≤ 1 (that is, ux and uy do not commute). For each 1 ≤ x ≤ ℓ, the
label of the poset element x is ux. This labeled poset is called the heap for [u], denoted Heap([u]).
The Hasse diagram for this poset with elements {1, . . . , ℓ} replaced by their labels is called the
heap diagram for [u]. The labels in the heap diagram are drawn in increasing order from left to
right.

1

2

5

4

3

6

9

8

7

10

1

2

3

4

1

2

3

4

1

2

Figure 1: Hasse diagram of the underlying poset (left) and the heap diagram (right) of
a commutation class of w0 given in Example 2.2.

Example 2.2. Consider a reduced word [u] = [u1 . . . u10] = [1214321432] of the longest element
w0 in A4.

1. Figure 1 (left) shows a Hasse diagram of the underlying unlabeled poset Heap([u]). Here
ℓ = 10 and so the the elements of the heap poset Heap([u]) are {1, 2, . . . , 10}.

2. Figure 1 (right) shows the heap diagram for Heap([u]). The possible labels of the poset
elements are {1, 2, 3, 4}.

Linear extensions of Heap([u]) relate to the commutation class of [u].

Definition 2.3. A linear extension π = π(1) · · · π(ℓ) of a partial order ≼ on {1, . . . , ℓ}
is a total order on the poset elements that is consistent with the structure of the poset. That
is, x ≺ y implies π(x) < π(y). A labeled linear extension of the heap of a reduced word
[u] = [u1 · · · uℓ] is a word

[
uπ(1) · · · uπ(ℓ)

]
, where π = π(1) · · · π(ℓ) is a linear extension of

the heap.
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Proposition 2.4 ([12, Proof of Proposition 2.2] and [10, Solutions to Exercise 3.123(ab)]).
Given a reduced word [u], the set of labeled linear extensions of the heap for [u] is the commutation
class of [u].

Example 2.5. Three of labeled linear extensions of Heap([u]) from Example 2.2 are [u] itself,
[1243124312], and [4123412312]. Notice that these reduced words all belong to the same com-
mutation class, due to Proposition 2.4.

2.2 Order polytopes

In this section, we review order polytopes, following Stanley’s paper [11]. Given a finite
poset P, the order polytope of P is given by

O(P) := {x ∈ RP : 0 ⩽ xt ⩽ 1 for all t ∈ P and xt ⩽ xs when t ⩽P s} .

Many basic properties of an order polytope are answered by the combinatorial struc-
ture of the poset. Below are some properties that are relevant to us.

1. The dimension of O(P) is given by the number of elements in P.

2. The volume of O(P) can be computed from the number of linear extensions of P.

3. The vertices of O(P) are exactly the indicator vectors of order ideals of P.

In this paper, we will be focusing on order polytopes for certain heap posets.

3 c-singletons

3.1 c-sorting words and c-sortable permutations

In this section, we review c-sorting words and c-sortable elements, which were intro-
duced in [8]. Given a Coxeter element c and reduced word [a1a2 . . . an], define an infinite
word

c∞ := a1a2 . . . an | a1a2 . . . an | · · ·

consisting of repeated copies of the given reduced word for c. The symbols "|" are
"dividers" which facilitate the definition of sortable elements. The c-sorting word of
w ∈ An is the lexicographically first (as a sequence of positions in c∞) subword of c∞

that is a reduced word for w. We denote this word by sortc(w).
We say that the identity permutation is c-sortable. If w is not the identity permutation,

we can think of sortc(w) as a sequence of nonempty subsets of {a1, . . . , an}. The subsets
K1, K2, . . . , Kp in this sequence are the sets of letters of c that occur between two adjacent
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dividers, so we have x ∈ Kj if x is in the jth copy of c inside c∞. We say that a permutation
w is c-sortable if K1 ⊇ K2 ⊇ · · · ⊇ Kp. The set of c-sortable permutations does not depend
on the choice of reduced word for c.

Example 3.1. Consider the Coxeter element c = s1s2s3s4 = [1234] of A4. Then the c-sorting
word of the permutation 42351 is [1234 | 2 | 1]. Our subsets are K1 = {1, 2, 3, 4}, K2 = {2},
and K3 = {1}. Since K2 ̸⊇ K3, these sets do not form a nested sequence and therefore 42351 is
not c-sortable. On the other hand, the permutation 43215 has c-sorting word [123 | 12 | 1] and
is c-sortable.

Reading showed in [9] that the restriction of the right weak order to c-sortable ele-
ments is a lattice which is isomorphic to an important quotient of the right weak order
called the c-Cambrian lattice [7]. For the Coxeter element c = s1s2 . . . sn, the c-sortable
elements form the Tamari lattice. For this reason, we refer to this Coxeter element as the
"Tamari" Coxeter element of An. Cambrian lattices and c-sortable elements have strong
connections to cluster algebras, representation theory, and many areas of combinatorics,
and they are widely studied. We will be interested in a subclass of c-sortable elements,
called c-singletons, which we describe next.

3.2 c-singleton permutations

There is an order-preserving projection πc
↓ : An → An which sends an element w to the

largest c-sortable element that is weakly below w in the right weak order [9, Proposition
3.2]. In [4], Hohlweg, Lange, and Thomas used this map to introduce an important
subclass of c-sortable elements: A c-sortable w is called a c-singleton if the preimage of
{w} under πc

↓ is the singleton {w} itself. We will use the following characterization of
c-singletons.

Theorem 3.2 ([4, Theorem 2.2]). A permutation w is a c-singleton if and only if some reduced
word of w is a prefix of a word in the commutation class of sortc(w0), the c-sorting word of the
longest permutation w0.

The set of c-singletons form a distributive sublattice of the right weak order due to
[4, Proposition 2.5]. We denote this lattice by L(c-singletons). By [5, Proposition 3],
L(c-singletons) is isomorphic to the lattice of order ideals of Heap(sortc(w0)), which we
denote by J(Heap(sortc(w0))).

Proposition 3.3. The following map is a poset isomorphism

f : L(c-singletons) → J(Heap(sortc(w0)))

w 7→ Heap(sortc(w))

between the c-singletons and the order ideals of the heap poset Heap(sortc(w0)).
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As we noted in Section 2.2, the vertices of the order polytope O(P) of a poset P
correspond to the order ideals of P. As a consequence, the c-singletons are in bijection
with the vertices of O(Heap(sortc(w0))).

4 c-Birkhoff polytopes

The Birkhoff polytope is the convex hull of all permutation matrices. Davis and Sagan [2]
studied a "pattern-avoiding" subpolytope of the Birkhoff polytope whose vertices corre-
spond to the permutations avoiding the pattern 132 and 312. As noted in [2, Remark
3.6], for the "Tamari" Coxeter element c = s1s2 . . . sn, the c-singletons are precisely the
permutations which avoid these same patterns 132 and 312.

4.1 A pattern-avoidance criterion for c-singletons

There is a similar classification of c-singletons for other c (see Proposition 4.1). In this
section, we generalize Davis and Sagan’s pattern-avoiding polytope coming from the
"Tamari" Coxeter element c to all Coxeter elements c in An.

Let c be a Coxeter element in An. There is exactly one commutation class for c, so
every reduced word for c has the same heap. By abuse of notation we write Heap(c)
to denote this heap. Then Heap(c) is the partial order on {1, . . . , n} obtained via the
transitive closure of the cover relations i − 1 ≺ i if i − 1 appears to the left of i in every
reduced word of c, and i − 1 ≻ i otherwise.

1

2

3

4

5

6

7
2 3

4 5 6 7

Figure 2: The heap diagram for the Coxeter element c = s1s4s3s2s6s5s7 which corre-
sponds to lower-barred numbers 2, 5, 7 and upper-barred numbers 3, 4, 6.

As described in [7, Chapter 6], we partition the integers in [2, n] into lower-barred and
upper-barred numbers [2, n] and [2, n], respectively. If i − 1 ≺ i, define i to be a lower-
barred number i ∈ [2, n]; If i − 1 ≻ i, define i to be a upper-barred number i ∈ [2, n]. For
example, see Figure 2.

We say that a permutation w avoids the pattern 312 if w contains no 312-pattern such
that the last entry "2" in the pattern is a lower-barred number. Similarly, a permutation
w avoids the pattern 231 if the one-line notation w contains no 231-pattern such that the
first entry "2" in the pattern is an upper-barred number.
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The following result of [7, Proposition 5.7] characterizes c-sortable and c-singleton
permutations using pattern-avoidance.

Proposition 4.1. A permutation w ∈ An is c-sortable if and only if the one-line notation of w
avoids the patterns 312 and 231. Furthermore, a c-sortable permutation w is a c-singleton if and
only if w avoids the patterns 132 and 213.

Definition 4.2. For a Coxeter element c in An, we define the c-singleton Birkhoff polytope, or
c-Birkhoff polytope for short, to be the convex hull of the permutation matrices corresponding
to the c-singletons, that is, the permutations avoiding the four patterns listed in Proposition 4.1.
We denote the c-Birkhoff polytope as Birk(c).

Note that our convention is that the permutation matrix of the permutation w =
w(1) . . . w(n + 1) has 1’s in entries (i, w(i)).

Remark 4.3. Davis and Sagan suggested in [2, Remark 3.6] that it would be interesting to define
pattern-avoiding polytopes for other Coxeter groups. Theorem 4.12 of [8] characterizes type B and
D c-sortable elements as signed permutations satisfying certain pattern avoidance conditions.
This can be used to give us an analog of Proposition 4.1 for type B and D c-singletons.

4.2 Relations for c-Birkhoff polytopes

The classical Birkhoff polytope of An lives in a (n+ 1)2-dimensional ambient space. Since
each of its row and column sum up to one, it is a n2-dimensional polytope. The row and
column relations for the classical Birkhoff polytope also hold in the c-Birkhoff polytope,
since the vertices still come from permutation matrices. Our goal in this section is to
exhibit (n

2) additional relations which any point in Birk(c) satisfies, so that it is in fact an
(n+1

2 )-dimensional polytope.
From the pattern avoidance criteria in Proposition 4.1, we see that if w is a c-singleton

and i ∈ [2, n], all numbers less than i or all numbers greater than i must appear after
i in the one-line notation w and similarly for upper-barred numbers. In particular, if
m = max(i + 1, n − i + 2), then i cannot appear in any of the last m spots of w.

We will consider points in Birk(c) as matrices (xi,j) for 1 ≤ i, j ≤ n + 1.

Proposition 4.4. Let c be a Coxeter element in An, and let (xi,j) be a point in the c-Birkhoff
polytope. For 2 ≤ i ≤ n, if i ∈ [2, n] and m = max(i + 1, n + 2 − i), we have

xm,i = xm+1,i = · · · = xn+1,i = 0.

Otherwise, i ∈ [2, n] and if r = min(i − 1, n + 2 − i), then

x1,i = x2,i = · · · = xr,i = 0.
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Using the pattern avoidance repeatedly puts restrictions on which numbers can ap-
pear together in the first u spots of a c-singleton for some values of u.

Theorem 4.5. Let c be a Coxeter element in An. For each 1 ≤ i ≤ n−1
2 and i + 1 ≤ u ≤ n − i,

there exists a sequence i = v0 < v1 < · · · < vd, where d ≥ 1, such that

d

∑
j=0

u

∑
i=1

xi,vj

is equal to either 1 or d (depending on i and u) for all points in the c-Birkhoff polytope.

Example 4.6. Let c = s1s2s4s3. Then the c-Birkhoff polytope has (4
2) = 6 additional relations.

Proposition 4.4 gives us four relations

x5,2 = x4,3 = x5,3 = x1,4 = 0.

Theorem 4.5 gives us two more relations. For i = 1, u = 2, the sequence is v0 = 1, v1 = 3, v2 =
4, and we have the relation

2

∑
j=0

2

∑
i=1

xi,vj = ∑
j∈{1,3,4}

2

∑
i=1

xi,j = x1,1 + x2,1 + x1,3 + x2,3 + x1,4 + x2,4 = 1.

For i = 1, u = 3, the sequence is v0 = 1, v1 = 5 and we have the relation

1

∑
j=0

3

∑
i=1

xi,vj = ∑
j∈{1,5}

3

∑
i=1

xi,j = x1,1 + x2,1 + x3,1 + x1,5 + x2,5 + x3,5 = 1.

5 Birk(c) and O(Heap(sortc(w0)))

In this section, we will prove Birk(c) is unimodularly equivalent to the order poly-
tope O(Heap(sortc(w0))). We will achieve this by first explicitly constructing a lattice-
preserving projection Πc on Birk(c), and then show the existence of a unimodular trans-
formation Uc.

5.1 A lattice-preserving projection

Let c be a Coxeter element of An. We define a projection Πc on (n+ 1)× (n+ 1)-matrices
which reads (n+1

2 ) of the entries in a specific order. We describe the reverse order by
reading entries in the matrix.

Let 1 < p1 < · · · < pr < n + 1 be the set of lower-barred numbers and q1 <
. . . qs < n + 1 be the set of upper-barred numbers for c. Let σ be the permutation
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(n + 1) pr pr−1 . . . p1 1 q1q2 . . . qs written in one-line notation. The first entries we will
read are

(p1 − 1, p1), (p1 − 2, p1), . . . , (1, p1),
. . .
(pr − 1, pr), (pr − 2, pr), . . . , (1, pr),
(n, n + 1), (n − 1, n + 1), . . . , (1, n + 1).

The remaining entries come from qs, . . . , q1. For each qi, take qi − 1 entries as follows:

• Let m = min(qi − 1, n+ 1− qi). Let σi
1, σi

2, . . . , σi
m be the m numbers of σ (in one-line

notation) immediately before qi, from right to left.

• First take the m entries (n + 1, σi
1), (n, σi

2), . . . , (n + 2 − m, σm
i ).

• Then take the additional qi − 1 − m entries (qi − 1, qi), (qi − 2, qi), . . . , (m + 1, qi).

Example 5.1. Let c = s1s4s3s2s6s5s7 be the Coxeter element whose Heap diagram and corre-
sponding upper- and lower-barred numbers are illustrated in Figure 2. Then p1, p2, p3 = 2, 5, 7
and q1, q2, q3 = 3, 4, 6. We have σ = 87521346. We compute the projection Πc in Figure 3 (left).

28 X X 24 X 18 11
X X 25 X 19 12

X 26 6 20 13
27 7 21 14

8 22 15
3 X 23 16

4 1 9 X 17
2 X 5 10 X X

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Figure 3: Left: The projection Πc of Example 5.1. Right: permutation matrix for b4 of
Example 5.5.

Theorem 5.2. Πc is a lattice-preserving projection on the c-Birkhoff polytope.

5.2 A diagonal reading word

Let c be a Coxeter element of An and let Rc denote the labeled linear extension of
Heap(sortc(w0)) which is lexicographically first, in the sense of lexicographic order on
heap labels. Observe that Rc is the word formed by concatenating the diagonals of
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11
21

12 31
22 41

13 32 51
23 42 61

14 33 52 71
24 43 62

15 34 53 72
25 44 63

16 35 54 73
26 45 64

17 36 55 74
27 46 65

18 37 56 75

11

4 6
3 5 7

2 4 6
1 3 5 7

2 4 6
1 3 5 7

2 4 6
1 3 5 7

6
7

Figure 4: Left: Algorithm for constructing the heap Heap(sortc(w0)) for [4321657]-
sorting word of the longest element w0 in A7. Right: The heap diagram for
Heap(sortc(w0)).

Heap(sortc(w0)) from left to right; within each diagonal, read from southeast to north-
west. For this reason, we refer to the reduced word Rc as the diagonal reading word of
Heap(sortc(w0)).

Thanks to [1, 5], we can give a nice algorithmic construction of Heap(sortc(w0)) using
the upper- and lower-barred numbers corresponding to c. For example, Figure 4 shows
this construction for Heap(sortc(w0)) where c = [4321657] with lower-barred numbers
5, 7 and upper-barred numbers 2, 3, 4, 6. This algorithm gives us the following lemma.

Lemma 5.3. Let c be any Coxeter element in An with s upper-barred numbers 1 < q1 < · · · <
qs < n + 1 and r lower-barred numbers 1 < p1 < · · · < pr < n + 1. Then

Rc =
[
(p1 − 1)...1

]
. . .

[
(pr − 1)...1

]
[n...1] [n...(n − qs + 2)] . . . [n...(n − q1 + 2)]

is a concatenation of n factors, where each factor is a decreasing sequence of consecutive integers.

Example 5.4. For example, the reduced word [u] = [1] [21] [4321] [432] given in Example 2.2 is
the diagonal reading word R[1243] of the heap diagram in Figure 1. The diagonal reading word of
the heap diagram given in Figure 4 is

R[4321657] = [4321] [654321] [7654321] [76543] [765] [76] [7] .
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5.3 Unimodular equivalence

Note that Rc is of length (n+1
2 ) = ℓ(w0), and write Rc =

[
r1 . . . rℓ(w0)

]
. For each 1 ⩽ i ⩽

ℓ(w0), define bi to be the length-i prefix of Rc, that is, bi = [r1 . . . ri]. Since Rc is a labeled
linear extension of Heap(sortc(w0)), Proposition 2.4 tells us that it is in the commutation
class of sortc(w0), and thus Theorem 3.2 tells us that each bi is a c-singleton.

Given a c-singleton w, let f (w) be the corresponding order ideal of Heap(sortc(w0)),
where f is as defined in Proposition 3.3. Consider the vector in Rℓ(w0) defined by the
indicator function of f (w), following the linear extension given by Rc. Let o(w) denote
this vector in reverse order. In particular, note that o(bi) is the vector whose last i entries
are 1s and whose all other entries are 0s.

Example 5.5. Let c be as in Example 5.1 with p1, p2, p3 = 2, 5, 7 and q1, q2, q3 = 3, 4, 6. We
have Rc = [1 4321 654321 7654321 76543 765 76]. Therefore b4 = s1s4s3s2 = 25134678 and
its permutation matrix is in Figure 3 (right). We can then compute

Πc(b4) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1) , and
o(b4) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1) .

Lemma 5.6. Let c be a Coxeter element of An. Then the
(
(n+1

2 )− i + 1
)

th entry of the vector
Πc(bi) is 1, and all earlier entries of Πc(bi) are zero. That is, the matrix whose columns are
Πc(bi) is a lower antidiagonal triangular matrix with 1’s along the antidiagonal.

Theorem 5.7. Fix a Coxeter element c in An. There exists a (n+1
2 ) × (n+1

2 ) lower-triangular
matrix Uc with 1’s on the main diagonal such that Uc ◦ Πc(bi) = o(bi) for all 1 ⩽ i ⩽ (n+1

2 ).
Furthermore, we have Uc ◦ Πc(w) = o(w) for any c-singleton w.

Corollary 5.8. The c-Birkhoff polytope Birk(c) is unimodularly equivalent to the order polytope
O(Heap(sortc(w0))).

Proof. This follows from the facts that the projection Πc preserves lattice points (Theo-
rem 5.2) and that the linear transformation Uc has determinant 1 (Theorem 5.7).

Corollary 5.9. The normalized volume of the c-Birkhoff polyope is equal to the number of longest
chains in the corresponding Cambrian lattice.

Corollary 5.9 recovers, and generalizes, a result of Davis and Sagan in [2].

Remark 5.10. One might ask whether our result generalizes as follows: If w ∈ An and [u] is a
reduced word for w then the order polytope of Heap[u] is unimodularly equivalent to the convex
hull of the permutations corresponding to order ideals of Heap[u]. This is not true in general;
for A4 the reduced words [2123243212] and [3432312343] are counterexamples. It would be
interesting to determine when the above statement holds.
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Abstract. Every regular matroid is associated with a sandpile group, which acts sim-
ply transitively on the set of bases in various ways. Ganguly and the second author
introduced the notion of consistency to describe classes of actions that respect deletion-
contraction in a precise sense, and proved the consistency of rotor-routing torsors (and
uniqueness thereof) for plane graphs.

In this work, we prove that the class of actions introduced by Backman, Baker, and the
fourth author, is consistent for regular matroids. This generalizes the above existence
assertion, as well as makes progress on the goal of classifying all consistent actions.
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1 Introduction

For over a century, mathematicians have been interested in enumerative properties of
the spanning trees of graphs. A remarkable and relatively recent observation is that the
set of spanning trees of a graph (and more generally, the bases of a regular matroid)
admit interesting group actions, which bestow on these sets a group-like structure. We
are curious about this mysterious algebraic structure, especially in cases where it is
surprisingly canonical.
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To be more precise, the sandpile group (also called the critical group, Jacobian, etc.)
S(G) of a graph G is a finite abelian group whose size is equal to the number of spanning
trees of G. The algebraic structure discussed in the previous paragraph is given by a
simply transitive action of S(G) on the spanning trees of G. Loosely speaking, we call
such an action a sandpile torsor. To define sandpile torsors in a systematic way, it is
necessary to work on graphs with some auxiliary data (see [19, Theorem 8.1]).

One possible setup is to work with embedded graphs (called ribbon graphs or maps).
There are at least two known ways to associate each rooted embedded graph with a
sandpile torsor: the rotor-routing model (see [13]) and the Bernardi bijections (see [5]).
While these approaches have been shown to give different actions in general [8, 18], the
situation changes dramatically when restricting to plane graphs (i.e., planar embedded
graphs): both actions are independent of the root chosen ([7, Theorem 2], [5, Theorem
5.1]), and they in fact produce the same sandpile torsor algorithm (on plane graphs) [5,
Theorem 7.1] (see [14] for an alternate definition of this action). This lead Klivans to
conjecture that this algorithm was in some sense canonical, and all “nice” sandpile torsor
algorithms on plane graphs must have the same structure [15, Conjecture 4.7.17]. This
conjecture was made precise and proven by Ganguly and the second author [10].

The first challenge to resolve this conjecture was to give a suitable definition for a
“nice” sandpile torsor algorithm. To do this, the authors introduce the notion of consis-
tency. In general, sandpile groups do not behave well with respect to contraction and
deletion: the additive relation |S(G)| = |S(G \ e)| + |S(G/e)| implies that it is almost
impossible to relate these groups directly in an algebraically meaningful way. Never-
theless, for specific combinations of group elements and spanning trees, there is a way
to make sense of the contraction and deletion operations. A consistent sandpile torsor
algorithm is essentially one which respects these operations.

A bit more precisely, fix a class of graphs G’s (e.g., planar graphs) and a class of aux-
iliary structures α’s for these graphs (e.g., planar embeddings) with a notion of deletion
and contraction. Moreover, suppose both classes are minor closed. To any pair (G, α),
a sandpile torsor algorithm associates a simply transitive action · of the sandpile group
on the spanning trees. Note that the sandpile group is generated by equivalence classes
corresponding to individual arcs (directed edges). On graphs, these arcs indicate a single
chip on a vertex and a single negative chip on an adjacent vertex.

We say that the sandpile torsor algorithm is consistent if, given (G, α) that induces ·,
and any arc f and spanning tree T of G such that f · T = T′, we have:

• for any edge e /∈ T ∪ T′ ∪ f , the pair (G \ e, α \ e) induces ·′ with f ·′ T = T′,

• for any edge e ∈ T ∩ T′ \ f , the pair (G/e, α/e) induces ·′′ with f ·′′ (T \ e) = T′ \ e,

• the action of f does not modify the part of a spanning tree falling into a different
biconnected component than f .



A Consistent Sandpile Torsor Algorithm 3

The two main results of [10] were proving the existence and the uniqueness of a
consistent sandpile torsor algorithm on plane graphs.1 The main theorem of our paper
is generalizing the existence result to a regular matroid context, proving [10, Conjecture
6.11].

Building off work from Bacher, de la Harpe, and Nagnibeda [1], Merino defined the
sandpile group of a regular matroid [16]. For regular matroids, bases play the role that
spanning trees played for graphs. In particular, the regular matroid version of a sandpile
torsor algorithm is a map from any regular matroid M (with some auxiliary data) to a
simply transitive action of the sandpile group of M on the set of bases of M.

Using the auxiliary data of acyclic circuit-cocircuit signatures, Backman, Baker, and
the fourth author defined a sandpile torsor algorithm for regular matroids which was
motivated from polyhedral geometry [2]. We call this the BBY algorithm.2 Later, the first
author [9], and the fourth author with Backman and Santos [4] independently showed
that the same definition works also for the broader class of triangulating circuit-cocircuit
signatures. We will continue to refer to this more general setting as the BBY algorithm.

The notion of consistency can be defined analogously for matroids. Moreover, dele-
tion and contraction can be defined for triangulating signatures. Our main result is the
following. (For a more formal statement, see Theorem 2.22.)

Theorem 1.1. The BBY algorithm (that associates a sandpile action to a regular matroid equipped
with a triangulating circuit-cocircuit signature) is consistent.

We note that since rotor-routing torsors on plane graphs are special cases of BBY
torsors, this theorem also implies the “existence” part from [10], i.e., that the rotor-
routing algorithm is consistent, see Section 4.2. We conjecture that a converse also holds,
namely, that for the auxiliary structure of triangulating signatures, the BBY action is the
unique consistent sandpile action. This is an modified version of [10, Conjecture 6.14]
for triangulating signatures instead of acyclic signatures.

The arguments to prove our theorem are fundamentally different from those of [10],
as [10] frequently uses the vertices of the graph in its arguments, which do not have a
matroidal analogue. Instead, we apply a framework introduced by the first author [9]
that gives an alternate definition of the BBY algorithm using fourientations, an object that
was first defined by Backman and Hopkins [3]. Our proof essentially comes down to
classifying ways that consistency could be violated and then showing that each of these
potential possibilities leads to a contradiction.

1More precisely, there is a unique collection of four sandpile torsor algorithms on plane graphs that are
all closely related.

2The (implicit) original name of the corresponding bijections was geometric bijections, which the fourth
author prefers.
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2 Background and Notation

For a set X, we write X \ x for X \ {x}, and use similar notation for other operations
with a singleton. We call elements of ZE (integral) 1-chains, where E is an index set. For
a 1-chain

−→
P , and some e ∈ E, we write

−→
P ⟨e⟩ for the coefficient of e in

−→
P . We also write

P := {e ∈ E :
−→
P ⟨e⟩ ̸= 0} for the support of

−→
P . For e ∈ E, denote by

−→
P \ e the 1-chain

in ZE\e obtained by restricting
−→
P to E \ e. A 1-chain is simple if every coefficient is in

{−1, 0, 1}. An arc is a simple 1-chain whose support has only one element. We write
arcs in the form −→e , where e ∈ E.

2.1 Oriented Matroids and Regular Matroids

We assume standard background on matroid and oriented matroid theory from the
reader. Some standard references are [17] and [6]. Let A be an r × m totally unimodular
matrix of full row rank, i.e., a matrix over the reals in which the determinant of every
square submatrix is either −1, 1, or 0. Let E be a set that indexes the columns of A. Then
A represents a regular matroid M := M(A) whose ground set is E and of rank r. Denote
by B(M), C(M), C∗(M) the set of bases, circuits, and cocircuits of M, respectively. We
fix such A and M for the rest of this paper.

We call a simple 1-chain whose support is a circuit (resp. cocircuit) a signed circuit
(resp. signed cocircuit) of M. The collections of signed circuits and signed cocircuits of M
are denoted by

−→
C (M) and

−→
C∗(M), respectively. The sets

−→
C (M) and

−→
C∗(M) give M the

structure of an oriented matroid, and it is shown in [6, Corollary 7.9.4] that all oriented
matroid structures on M are equivalent up to reorientation.

An orientation is a map from E to {−,+}. Adopting the usual convention, we write
O⟨x⟩ for the value of O at x. Denote by O(M) the set of all orientations of M.

Definition 2.1. Let O be an orientation and P be a subset of E. Then we write PO for the
orientation obtained by reversing the elements of P. In other words, for x ∈ E, we have

PO⟨x⟩ =
{
−O⟨x⟩ if x ∈ P,
O⟨x⟩ if x ̸∈ P.

Definition 2.2. Let O be an orientation and
−→
P be a simple 1-chain. We say that

−→
P is

compatible with O if for all f ∈ P, the sign of
−→
P ⟨ f ⟩ matches the sign of O⟨ f ⟩. We denote

compatibility by writing
−→
P ∼ O.

Let O ∈ O(M) and
−→
C be a signed circuit that is compatible with O. We say that CO is

a circuit reversal of O. Define cocircuit reversals analogously. Two orientations O1 and O2
differ by circuit-cocircuit reversals if O1 can be sent to O2 by a sequence of circuit and/or
cocircuit reversals. It is easy to show that this is an equivalence relation on O(M).
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f1
f3

f4

f2

 1 0 −1 −1
−1 −1 0 0
0 1 1 1



Figure 1: A graph (graphic matroid) and its corresponding representing matrix.

Example 2.3. Take the graphic matroid in Figure 1, and take the orientation O with
O⟨ f1⟩ = +, O⟨ f2⟩ = −, O⟨ f3⟩ = + and O⟨ f4⟩ = + (in short, (+,−,+,+); we will use
this shorthand throughout). The signed circuit C =

−→
f1 −

−→
f2 +

−→
f3 is compatible with O.

By reversing C, we get the orientation (−,+,−,+).

Definition 2.4. The circuit-cocircuit equivalence classes of M are the orientations of M mod-
ulo the equivalence relation defined in the previous paragraph. The set of these equiv-
alence classes is denoted G(M). For any element O ∈ O(M), we write [O] for the
equivalence class of G(M) containing O.

The set G(M) was first explored by Gioan [11, 12], and it serves as an intermediate
object to define the BBY action because of the natural torsor structure described in the
next section; in particular, we have the following enumerative fact.

Theorem 2.5. [12] For a regular matroid M, we have |G(M)| = |B(M)|.

2.2 The sandpile group and its canonical action on G(M)

Definition 2.6. Let Λ(M) ⊂ ZE be the lattice generated
−→
C (M) and Λ∗(M) ⊂ ZE be the

lattice generated by
−→
C∗(M). The sandpile group of M is defined by:

S(M) :=
ZE

Λ(M)⊕ Λ∗(M)
.

For a 1-chain
−→
P , we write [

−→
P ] for the equivalence class of S(M) containing

−→
P . Note

that the sandpile group S(M) is generated by elements {[
−→
f ] |

−→
f is an arc of M}. In [2],

the authors define a natural group action of S(M) on the set G(M), which generalizes
the additive action in the more classical graphical case where elements of S(M) and
G(M) are represented as “chip configurations”. For details on the “chip” perspective,
see [15]. This natural action is called the canonical action.

Definition 2.7. [2] The canonical action of S(M) on G(M) is defined by linearly extending
the following action of each generator [

−→
f ] on circuit-cocircuit reversal classes. Given [O],

one can prove that there exists some orientation O′ ∈ O(M) such that −
−→
f ∼ O′ and

[O′] = [O]. Define the action by [
−→
f ] · [O] = [ fO′].
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Lemma 2.8. [2, Theorem 4.3.1.] The canonical action is well-defined and simply transitive.

Example 2.9. Take the graphic matroid on Figure 1, and take the orientation O =

(−,−,+,+). Since −
−→
f1 ∼ O, we have [

−→
f1 ] · [O] = [(+,−,+,+)].

As a more interesting example, take [
−→
f3 ] · [O]. Since

−→
f3 ∼ O, we need to reverse a

signed circuit or cocircuit containing f3, and then reverse f3 again. −
−→
f1 +

−→
f3 +

−→
f4 is a

signed cocircuit containing f3. Hence [(+,−,+,−)] is the circuit-cocircuit equivalence
class of [

−→
f3 ] · [O].

As such, any bijection between G(M) and B(M) yields a simply transitive group
action of S(M) on B(M) via composing with the canonical action.

2.3 Fourientations

The notion of fourientations was introduced and systematically studied by Backman and
Hopkins [3]. The first author applied this notion in [9] to study the connection between
the BBY bijections and Lawrence polytopes. We find the language of fourientations also
helpful in the proof of our main theorem.

Definition 2.10. Given a set E, a fourientation F is a map from E to the set {∅,−,+,±}.
We denote the set of fourientations on the ground set of a matroid M by F(M).

As with orientations, for x ∈ E, we write F⟨x⟩ for the output of the map at x.
Intuitively, each element of the ground set can be oriented in either direction, bi-oriented,
or unoriented.

For F1,F2 ∈ F(M), we write F1 ∪ F2 and F1 ∩ F2 for the fourientations obtained by
taking pointwise union or intersection (treating −,+,± as {−}, {+}, {−,+}). Further-
more, we define −F1 to be F1 with − and + swapped, and F c

1 to be −F1 with ∅ and ±
swapped.

2.4 Triangulating Signatures and the Backman-Baker-Yuen Bijection

In [2], Backman, Baker, and the fourth author defined a family of explicit bijections
between G(M) and B(M). These maps were generalized in [4] and [9] to the context we
use in this paper. Below, we give their constructions in the language of fourientations.

Definition 2.11. A circuit signature σ ⊂ −→
C (M) is a collection of signed circuits of M such

that for each circuit C ∈ C(M), exactly one of the two signed circuits supported on C is
contained in σ. We write σ(C) for the circuit supported on C that is contained in σ.

Define a cocircuit signature σ∗ ⊂
−→
C∗(M) analogously. For a cocircuit C∗, we write

σ∗(C∗) for the signed cocircuit supported on C∗ that is contained in σ∗.
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f1 f2
f3
f4

f1 f2
f3
f4

f1 f2
f3
f4

f1 f2
f3
f4

f1 f2
f3
f4

f1 f2
f3
f4

Figure 2: The circuit signature of Example 2.12 (left panels) and the cocircuit signature
of Example 2.12 (right panels).

By a circuit-cocircuit signature we mean pair consisting of a circuit signature and a
cocircuit signature.

Example 2.12. For the graph of Figure 1, the signed circuits
−→
f1 −

−→
f2 +

−→
f3 ,

−→
f1 −

−→
f2 +

−→
f4

and −
−→
f3 +

−→
f4 form a circuit signature. The signed cocircuits −

−→
f1 +

−→
f3 +

−→
f4 , −

−→
f1 −

−→
f2 ,

and
−→
f2 +

−→
f3 +

−→
f4 form a cocircuit signature. See also Figure 2.

Definition 2.13. Fix a circuit-cocircuit signature (σ, σ∗) and a basis B. For each e ̸∈ B, let
Ce be the unique circuit contained in B ∪ {e} (known as the fundamental circuit of e with
respect to B). For each e ∈ B, let C∗

e be the unique cocircuit contained in (E \ B) ∪ {e}
(known as the fundamental cocircuit of e with respect to B).

We denote by F (B, σ) the fourientation where all e ∈ B are bi-oriented and all the e ∈
E \ B are oriented according to σ(Ce). Similarly, we denote by F (B, σ∗) the fourientation
where all e ∈ E \ B are bi-oriented and all e ∈ B are oriented according to σ∗(C∗

e ).

Example 2.14. For the graph of Figure 1, take the spanning tree T consisting of edges
f1 and f3. Take the circuit-cocircuit signature (σ, σ∗) of Example 2.12. Then F (T, σ) =
(±,−,±,+) and F (T, σ∗) = (−,±,+,±) respectively for edges f1, f2, f3 and f4.

The BBY bijection will depend on a circuit-cocircuit signature, but in order to obtain
a bijection, we need some “niceness” for the signatures, notably, the following.

Definition 2.15. [9] A circuit signature σ (resp. cocircuit signature σ∗) is called trian-
gulating if for any distinct B1, B2 ∈ B(M), the fourientation F (B1, σ) ∩ −F (B2, σ) is not
compatible with any

−→
C ∈ −→

C (M) (resp. F (B1, σ∗) ∩ −F (B2, σ∗) is not compatible with
any

−→
C ∗ ∈

−→
C∗(M)). A circuit-cocircuit signature (σ, σ∗) is triangulating if σ and σ∗ are

both triangulating.
Here a simple 1-chain

−→
P (for example

−→
C or

−→
C ∗) is compatible with a fourientation F

if for all f ∈ P, either F⟨ f ⟩ = ± or the sign of
−→
P ⟨ f ⟩ matches the sign of F⟨ f ⟩.

Definition 2.16. Let M be a regular matroid and (σ, σ∗) be a circuit-cocircuit signature.
An orientation O is σ-compatible (resp. σ∗-compatible) if every signed circuit (resp. cocir-
cuit) compatible with O is in σ (resp. σ∗). An orientation is (σ, σ∗)-compatible if it is both
σ-compatible and σ∗-compatible.
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Fix a triangulating signature (σ, σ∗). By [9, Proposition 1.21(1)] there is a unique
(σ, σ∗)-compatible orientation in each equivalence class in G(M). Hence the following
notion is well-defined.

Definition 2.17. Given an orientation O, let O◦ be the (unique) (σ, σ∗)-compatible ori-
entation in the same reversal class as O. Likewise, given [O] ∈ G(M), let [O]◦ = O◦.
Furthermore, let O◦(M) be the set of all (σ, σ∗)-compatible orientations.

Note that O◦ and O◦(M) both depend on the choice of circuit-cocircuit signature.
We omit a reference to this signature in the notation for readability.

We can also directly define the canonical action on the set O◦(M), namely, for g ∈
S(M) and O ∈ O◦(M), we define g · O := (g · [O])◦.

Example 2.18. Let us return to Example 2.9, and take the signature of Example 2.12. It
can be checked that this is triangulating. With this, [

−→
f1 ] · (−,−,+,+) = (+,−,+,+)

and [
−→
f3 ] · (−,−,+,+) = (+,−,−,+).

Now we are in the position to introduce the BBY bijection.

Definition 2.19 (BBY bijection). Fix a regular matroid M and a pair (σ, σ∗) of triangulat-
ing signatures. The map β(M,σ,σ∗) : B(M) → O(M) is given by B 7→ F (B, σ)∩F (B∗, σ∗).

Theorem 2.20. [4, 9] For a regular matroid M and a pair (σ, σ∗) of triangulating signatures.
The BBY map β(M,σ,σ∗) is a bijection between B(M) and O◦(M). In particular, this map induces
a bijection between B(M) and G(M).

The bijection β(M,σ,σ∗) together with the canonical action in Section 2.2 induces a
simply transitive group action of S(M) on B(M) that we call the BBY action.

Example 2.21. Take the graphic matroid M of Figure 1 with the circuit-cocircuit signature
(σ, σ∗) of Example 2.12. Let T = { f1, f3}. Then β(M,σ,σ∗)(T) = (−,−,+,+).

Let us compute the BBY action of
−→
f1 on T. We have [

−→
f1 ] · (−,−,+,+) = (+,−,+,+)

by Example 2.18. One can check that for T′ = { f2, f3} we have βM,σ,σ∗(T′) = (+,−,+,+).
Hence [

−→
f1 ] · β(M,σ,σ∗)(T) = β(M,σ,σ∗)(T′).

2.5 The Main Theorem

Before stating the main theorem, we remark that any triangulating circuit-cocircuit sig-
nature (σ, σ∗), and any e ∈ E that is not a loop or coloop naturally yields triangulating
circuit-cocircuit signatures (σ \ e, σ∗ \ e) and (σ/e, σ∗/e) on M \ e and M/e respectively.
The following theorem says that the BBY algorithm is consistent.
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(1)

(2)

f1
f3

f4

f2

−→
f1 ·

f1
f3

f4

f2 Delete f4 f1

f3

f2

−→
f1 ·

f1

f3

f2

f1
f3

f4

f2

−→
f1 ·

f1
f3

f4

f2 Contract f4 f1
f3 f2

−→
f1 ·

f1
f3 f2

Figure 3: Above are illustrations for the first two parts of Theorem 2.22. See Example
2.23 for details.

Theorem 2.22. Let M be a regular matroid and (σ, σ∗) be a triangulating circuit-cocircuit
signature. Suppose that

−→
f is an arc and B1, B2 ∈ B(M) such that

[
−→
f ] · β(M,σ,σ∗)(B1) = β(M,σ,σ∗)(B2).

1. For any e ∈ (Bc
1 ∩ Bc

2) \ f , we have

[
−→
f ] · β(M\e,σ\e,σ∗\e)(B1) = β(M\e,σ\e,σ∗\e)(B2).

2. For any e ∈ (B1 ∩ B2) \ f , we have

[
−→
f ] · β(M/e,σ/e,σ∗/e)(B1 \ e) = β(M/e,σ/e,σ∗/e)(B2 \ e).

3. If e and f are in different connected components of M, then e ∈ B1 ⇐⇒ e ∈ B2.

Theorem 2.22 is a generalization of [10, Theorem 4.6] from plane graphs to regular
matroids.

Example 2.23. Take the graphic matroid M from Figure 1 with the cycle-cocycle signature
(σ, σ∗) from Example 2.12. The first row of Figure 3 demonstrates Theorem 2.22(1) and
the second row demonstrates Theorem 2.22(2). The depicted orientations are the circuit-
cocircuit minimal orientations assigned to the spanning trees by the BBY bijection.

Let us explain the first row. The upper left panel shows action of
−→
f1 on the basis

{ f1, f3}: The action produces { f2, f3} as explained in Example 2.18. We have σ \ f4 =

{
−→
f1 −

−→
f2 +

−→
f3 }, and σ∗ \ f4 = {−

−→
f1 +

−→
f3 ,−

−→
f1 −

−→
f2 ,

−→
f2 +

−→
f3 }. One can check that

indeed [
−→
f1 ] · β(M\ f4,σ\ f4,σ∗\ f4)

({ f1, f3}) = β(M\ f4,σ\ f4,σ∗\ f4)
({ f2, f3}).



10 C. Ding, A. McDonough, L. Tóthmérész, and C. Yuen

3 Some Proof Ingredients

We now introduce one of the main tools that we used to prove our main result, Theo-
rem 2.22. The purpose of this theorem is to localize the changes in the BBY action that
we need to analyze. We include the statement here for it may be of independent interest.

Theorem 3.1. Let
−→
f be an arc and O1,O2 ∈ O◦(M) such that

−→
f · O1 = O2. Then O1 can

be transformed to O2 by the following (at most) three step process.

1. Reverse at most one signed circuit or cocircuit containing f that is compatible with O1.

2. Reverse
−→
f .

3. Reverse at most one signed circuit or cocircuit containing f that is compatible with the new
orientation.

Furthermore, the following conditions hold.

a. A reversal occurs during step 1 (respectively, step 3) if and only if
−→
f ∼ O1 (respectively,

−
−→
f ∼ O2).

b. If reversals occur during both step 1 and step 3, one of these is a circuit reversal while the
other is a cocircuit reversal.

Theorem 2.22(3) follows immediately from Theorem 3.1. For the rest, by duality,
it suffices to focus on Theorem 2.22(1). The deletion of an edge e does not affect the
cocircuit reversals that occur in Theorem 3.1 in an essential way. The case that the edge e
appears in the circuits reversed in Theorem 3.1 is the main obstacle. However, we prove
that this cannot happen using fourientations.

Here is a short illustration of how the fourientations help with the proof. Under the
assumption of Theorem 2.22, denote

O1 = F (B1, σ) ∩ F (B1, σ∗), O2 = F (B2, σ) ∩ F (B2, σ∗),
F = F (B1, σ) ∩−F (B2, σ), and F ∗ = F (B1, σ∗) ∩−F (B2, σ∗).

Theorem 3.1 describes the difference between O1 and O2. For the edges where O1
and O2 coincide, the following lemma transfers the information to fourientations.

Lemma 3.2. [9, Lemma 2.8] For any x ∈ E, if O1⟨x⟩ = O2⟨x⟩, then F⟨x⟩ = F ∗⟨x⟩.

We have a similar lemma when O1 and O2 differ, which is more technical and omit-
ted here. We also know that F (resp. F ∗) is not compatible with any

−→
C ∈ −→

C (M)

(resp.
−→
C ∗ ∈

−→
C∗(M)) from Definition 2.15. Combining all this information on the two

fourientations, we are able to prove the desired result.
We show the power of the fourientation language by giving a short proof [9, Remark

2.10] of the following result in [2], which was first proven using a geometric argument.
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Corollary 3.3. β(M,σ,σ∗) is injective.

Proof. If O1 = O2 comes from two distinct bases via β(M,σ,σ∗), then Lemma 3.2 and the
triangulating assumption of (σ, σ∗) imply that F = F ∗ is not compatible with any signed
circuit/cocircuit, which contradicts the 3-painting axiom [6, Theorem 3.4.4] in oriented
matroid theory. See [9, Lemma 2.3] for a fourientation version of the 3-painting axiom.

■

4 Special Instances of Consistency

4.1 Acyclic signatures

The notion of acyclic signatures was introduced in [20, 2]. A circuit signature σ is acyclic
if the only set of nonnegative λC values satisfying ∑−→

C ∈σ
λC

−→
C = 0 is where every λC is

zero. Acyclic cocircuit signatures are defined analogously.
The seemingly technical definition arrives naturally in the context of polyhedral ge-

ometry. By [9, Lemma 3.4], acyclic signatures are triangulating, and it can be proven that
the property of being acyclic is preserved under deletion or contraction of signatures.
Hence we have the following corollary, which was Conjecture 6.11 of [10].

Corollary 4.1. The BBY actions with respect to acyclic signatures are consistent.

4.2 The Planar Case

For a plane graph, circuits oriented counterclockwise form a triangulating circuit signa-
ture [2]. Also, for any graph, the signed cocircuits “oriented away” from a fixed vertex
v form a triangulating cocircuit signature. Notice that the circuit and cocircuit signature
given in Example 2.12 fall into the above cases.

Combining [5, Theorem 7.1] and [2, Example 1.1.3], the rotor-routing torsor action of
a plane graph is equal to the BBY action with respect to this circuit-cocircuit signature.
Moreover, it is apparent (and can be proven rigorously) that an embedding-preserving
deletion (respectively, contraction) of a plane graph induces the deletion (respectively,
contraction) of the circuit-cocircuit signature. As a final corollary of all these, we have:

Corollary 4.2. [10, Theorem 4.6] The rotor-routing torsor algorithm is consistent.
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Asymptotics of bivariate algebraico-logarithmic
generating functions
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Abstract. We derive asymptotic formulae for the coefficients of bivariate generating
functions with algebraic and logarithmic factors. Logarithms appear when encod-
ing cycles of combinatorial objects, and also implicitly when objects can be broken into
indecomposable parts. Asymptotics are quickly computable and can verify combinato-
rial properties of sequences and assist in randomly generating objects. While multiple
approaches for algebraic asymptotics have recently emerged, we find that the contour
manipulation approach can be extended to these D-finite generating functions.

Keywords: algebraic singularities, logarithms, bivariate, asymptotics, ACSV

A goal in analytic combinatorics in several variables (ACSV) is to derive asymptotic
estimates for multivariate arrays that encode combinatorial information. Asymptotic
formulae are useful for computing highly accurate estimates of sequences, determining
what large structures look like, and randomly generating objects. In contrast, even when
exact formulae can be found, they may be be cumbersome to evaluate or interpret [17].
The schema for generating asymptotic estimates follows.

Combinatorial
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Function (GF)

GF + critical
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Symbolic

method

Singularity

analysis

Read-off

results

The read-off results depend on the form of the generating function (GF). Here, we
broaden the read-off results to bivariate algebraico-logarithmic GFs, for several reasons:

1. Algebraico-logarithmic GFs appear widely, including problems involving cycles,
Pólya enumeration, Pólya urns [12], necklaces [11], and more. Logarithms also
appear in problems where a combinatorial family of objects can be described im-
plicitly as components within other objects [7, Section III.7.3].

2. Our main theorem, Theorem 1, involves D-finite GFs, while most ACSV results
have focused on rational or algebraic GFs.

3. Differing approaches for computing algebraic asymptotics have recently emerged
[9, 10, 1]. Although the direct contour manipulations of [9] are technical, here we
show that this approach is readily applied to algebraico-logarithmic GFs.
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1 Univariate asymptotics

The symbolic method is now standard [7], and it converts common combinatorial opera-
tions on sets into algebraic operations on GFs. For example, if the GF F(z) encodes the
sequence counting objects of size n from some set F as n varies, then the GF 1/(1− F(z))
encodes the numbers of ordered sequences of objects of any length from F whose total
size is n. Other common operations include taking powersets, multisets, or ordered tu-
ples from a set, or highlighting a component within a combinatorial object. Of particular
importance here is the cycle construction for ordinary or exponential GFs, which involves
sums of logarithms or a single logarithm, respectively. Once we have a GF, we aim for
asymptotics of the form

[zn]F(z) ∼ Cnr(logs n)ρn (1.1)

as n → ∞ where C, r, s, and ρ do not depend on n. The location of a GF’s closest sin-
gularities to the origin determines ρ, and the behavior of the GF near these singularities
determines C, r, and s. Example 1 below illustrates the efficiency of computing univari-
ate asymptotics.

Example 1 (Logarithms of Catalan numbers). Logarithms of the Catalan number GF
were considered in Knuth’s 2014 Christmas Tree lecture [14] and the American Mathe-
matical Monthly [15]. They have since been studied [4] and can encode cycles of Dyck
paths and families of labelled paths [13]. In particular, consider

D(m)(z) =

[
log

(
1 −

√
1 − 4z

2z

)]m

.

The singularity at z = 0 is removable. Otherwise, D(m)(z) has algebraic singularities
determined by the zero set within the square root, {z : 1 − 4z = 0}, and when the input
to the log is 0, so {z : (1 −

√
1 − 4z)/(2z) = 0}. The input to the logarithm is never zero

(since the point z = 0 is a removable singularity), so the only singularity of D(m)(z) is at
z = 1/4. Expanding near z = 1/4 reveals

D(m)(z) =
(

log 2 +
√

1 − 4z − 7
2
(1 − 4z) + O(1 − 4z)3/2

)m

= logm 2 −
(

m
1

)
[logm−1 2]

√
1 − 4z + higher order terms in (1 − 4z).

In this expansion, the next term with an algebraic singularity is O(1 − 4z)3/2, so the
transfer theorem from Flajolet and Odlyzko [6] immediately yields

[zn]D(z) =
m logm−1 2

2
√

π
· n−3/2 · 4n + O(4nn−5/2).
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2 Multivariate asymptotics background

Multivariate GFs encode arrays of numbers, useful for tracking combinatorial param-
eters. Alternatively, multivariate GFs can assist univariate analyses, including lattice
walk enumeration [3]. Let F(x, y) be the bivariate GF encoding the array ar,s, so that
F(x, y) = ∑ ar,sxrys. For a fixed direction r̂ := (r1, r2) ∈ R2

>0, we search for an asymptotic
expression for [xr1nyr2n]F(x, y) as n → ∞. As in the univariate case, asymptotics are often
in the form C · nr(logs n) · ρn for appropriate choices of constants r, s, and ρ. However,
the idea of closest singularity to the origin needs to be refined in multiple variables.

ACSV connects geometry and combinatorics, as there is a diverse set of possible
geometries of GF singularities. Our focus here is the simplest but most common scenario,
when a GF has a smooth minimal critical point. Other cases for rational GFs are covered
in [16]. Let V := {(x, y) : H(x, y) = 0} be a singular variety for a GF, defined by when
some analytic function H(x, y) is zero. For rational GFs, H is the denominator, while
for algebraico-logarithmic GFs, H may be the input of a square root, a logarithm, or the
product of several such inputs. Smooth critical points for the direction r̂ = (r1, r2) satisfy

H = 0, r2xHx = r1yHy,

where Hx and Hy represent the partial derivatives of H with respect to x and y [16]. By
design, these equations yield points minimizing the exponential growth rate in Equa-
tion (6.1) below. Additionally, a smooth critical point must be a location where V is
locally a smooth manifold. This can be checked by verifying that H, Hx and Hy never
simultaneously vanish, since the implicit function theorem guarantees a local smooth pa-
rameterization near any point where at least one partial is nonzero. When H is a polyno-
mial, all conditions for smooth critical points are also defined by polynomial equations,
which means that identifying critical points can be done efficiently with Gröbner bases.

Theorem 1 requires that the critical point (p, q) is minimal, meaning there are no
singularities coordinate-wise smaller in V . Minimality is simpler to check when a GF
has only non-negative coefficients (the combinatorial case). Minimality is crucial here to
allow an explicit Cauchy integral contour manipulation that reaches the critical point
(p, q).

3 Generating function classifications and logarithms

Multivariate rational GFs cover many combinatorial scenarios: not only do they count
arrays enumerating the output of discrete finite automata, but they are also useful when
more complicated sequences can be expressed as the diagonal of a rational GF. Nonethe-
less, there are combinatorial situations where a sequence cannot be encoded as a di-
agonal of the terms of a rational GF, such as when the asymptotics of a sequence are
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not of the form Cn−sρ−n for s ∈ Z/2. However, the dictionary of asymptotic results is
incomplete for GFs beyond the rational domain.

A GF F(z) can be classified according to what kind of equation F satisfies. Rational
GFs satisfy linear equations with coefficients in z, while algebraic GFs satisfy polynomial
equations. Even more broadly, D-finite GFs satisfy linear PDEs with coefficients in z.

Several distinct approaches recently advanced asymptotic formulae for algebraic GFs.
In [9], a change of variables and a direct contour manipulation of the Cauchy integral
formula lead to results for bivariate algebraic GFs. This technical process is currently lim-
ited to two dimensions, but could be extended to more dimensions with some additional
overhead. Another possible approach [10] embedded the coefficients of an algebraic GF
into a rational GF in more variables. Accessing the singular variety of an algebraic
GF directly from its minimal polynomial sometimes gives faster and cleaner results [1].
Finally, [2, 8, 5] give probabilistic interpretations of the coefficients of algebraic GFs.

It is less clear how to approach D-finite GFs. Here, we modify the contour approach
from [9] to attack a concrete class of bivariate D-finite GFs that include logarithms. In
contrast, it is not obvious how the other approaches could be adapted to this setting.

4 Result

Our focus is bivariate GFs of the form F(x, y) = H(x, y)−α[log H(x, y)]β, where H(x, y)
is analytic near the origin with only non-negative power series coefficients, and where
β ∈ Z≥0 and α ∈ R is not in Z≤0. This form is motivated by the results in [7].

Theorem 1. Let H(x, y) be an analytic function near the origin whose power series expansion
at (0, 0) has non-negative coefficients. Define V = {(x, y) : H(x, y) = 0}. Assume that there is
a single smooth strictly minimal critical point of V at (p, q) within the domain of analyticity of
H where p and q are real and positive. Let λ = r+O(1)

s as r, s → ∞ with r and s integers. Define
the following quantities:

χ1 =
Hy(p, q)
Hx(p, q)

=
p

λq
,

χ2 =
1

2Hx

(
χ2

1Hxx − 2χ1Hxy + Hyy

)∣∣∣∣
(x,y)=(p,q)

,

M = −2χ2

p
−

χ2
1

p2 − 1
λq2 .

Assume that Hx(p, q) and M are nonzero. Fix α ∈ R where α ̸∈ Z≤0 and β ∈ Z≥0. Then, the
following expression holds as r, s → ∞:

[xrys]H(x, y)−α logβ(H(x, y)) ∼ (−1)β (−pHx(p, q))−αrα−1

Γ(α)
√
−2πq2Mr

p−rq−s logβ r

[
1 + ∑

j≥1

Ej

logj r

]
,
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Figure 1: Start with one white bead and one black bead. Then, pick any edge in the
necklace. If both neighboring beads are black, insert a white bead on this edge. Oth-
erwise, insert a black bead. The necklace illustrated above has multiple constructions
but contributes once to the x5y2 term in the bivariate GF in Example 2.

where Ej = ∑
j
k=0 (

β
j)(

j
k) logk

(
−1

pHx(p,q)

)
Γ(α) dj−k

dtj−k
1

Γ(t)

∣∣∣
t=α

.

The theorem applies when the singularity nearest the origin is determined by a zero
in the logarithm. In other cases, the singularity may be algebraic, in which case existing
algebraic results apply (see Example 4). Also, when the closest singularity is instead due
to a pole of H, rewriting log(H) = − log(1/H) allows us to apply Theorem 1.

Theorem 1 could be extended to the case where β ̸∈ Z≥0, although this adds addi-
tional complexity because the logarithmic term in the GF then contributes an additional
branch cut. When β ∈ Z≥0, the series in Theorem 1 is finite, but in general it is infi-
nite. Also, the theorem statement is still true when α = 0 (or even α ∈ Z) by defining
(1/Γ(α)) and dj/dtj(1/Γ(t))

∣∣
t=α

by their limits at α = 0, as described in the univariate
case in [7]. The analogous asymptotic expansion for α = 0 can then be computed, still
with descending powers of log(r) and leading term given by

[xrys] logβ H(x, y) ∼ (−1)β βr−3/2p−rq−s√
−2πq2M

logβ−1 r.

5 Examples

The examples below and more are analyzed in the SageMath worksheet here:

https://cocalc.com/Tristan-Larson/FPSAC-algebraico-logarithmic/Examples

Example 2 (Necklaces). As in [11], consider necklaces with black and white beads where
no two white beads are adjacent. These are analyzed in [11] via a univariate GF, and they
can be constructed by a “necklace process” shown in Figure 1 that relates to network
communication models. Let φ be Euler’s totient function. We consider the bivariate GF

N(x, y) = ∑
k≥1

φ(k)
k

log

(
1 − xk

1 − xk − ykx2k

)
,

https://cocalc.com/Tristan-Larson/FPSAC-algebraico-logarithmic/Examples
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in which the coefficient [xrys]N(x, y) counts the number of necklaces with r total beads
and s white beads. The GF can be derived by viewing necklaces as cycles of {white
beads followed by a positive number of black beads}.

Consider seeking asymptotics in the direction (ℓ, 1) with ℓ > 2. Combinatorially, ℓ >
2 corresponds to necklaces having more than twice as many total beads as white beads.
For each k, define Hk = 1 − xk − ykx2k, which contributes k2 critical points satisfying

xk =
ℓ− 2
ℓ− 1

, yk =
ℓ− 1

(ℓ− 2)2 .

Define (pk, qk) to be the positive real solution. We verify that there are no nonsmooth
critical points by checking for each k that [Hk = 0, ∂

∂x Hk = 0, ∂
∂y Hk = 0] has no solutions.

Furthermore, the exponential growth rate near any critical point (pk, qk) is given by
|pℓkqk|−1, which can easily be verified as maximized when k = 1. Thus, we need only to
consider the contributions from the critical point (p1, q1) determined by the first term in
the sum, log

(
1−x

1−x−yx2

)
. For this, we find that

χ1 =
(ℓ− 2)3

ℓ(ℓ− 1)2 , χ2 = − (2ℓ− 1)(ℓ− 2)5

ℓ3(ℓ− 1)3 , and M = − (ℓ− 2)5

ℓ3(ℓ− 1)
.

Then the asymptotic enumeration formula of Theorem 1 gives

[xℓnyn]N(x, y) ∼ n−3/2ℓ5/2
√

2π

(ℓ− 1)(2ℓn−2n+3)/2

(ℓ− 2)(2ℓn−4n+9)/2
.

To illustrate accuracy, consider ℓ = 3. The approximation becomes [xpnyn]N(x, y) ∼
18n−3/24n

√
3/π, yielding (for instance) the estimate [x225y75]N(x, y) ≈ 6.199 × 1041. The

actual value is [x225y75]N(x, y) = 6.188 . . . × 1041, with an error of only 0.167%.

Example 3 (Cyclical Interlaced Permutations). Let C be the set of circular arrangements
of the bicolored set {1, 2, . . . , n, 1, 2, . . . , m}, with m + n ≥ 1, as illustrated in Figure 2.
For fixed m and n, there are (n + m)!/(n + m) arrangements. So, if x tracks the number
of black elements and y tracks the number of the red (barred) elements, C has the GF,

C(x, y) = log
(

1
1 − x − y

)
= ∑

n+m≥1

1
n + m

(
n + m

n

)
xnym.

Note that this GF is the logarithm of the GF in [16, Examples 2.2, 8.13, 9.10]. The
labelled objects here lead to an exponential GF with a single logarithm, in contrast to the
unlabelled objects in Example 2 that yield an ordinary GF with a sum of logarithms.

We will now compute the asymptotics in the direction (1, ℓ), where ℓ > 0. There
is a unique minimal smooth critical point at (1/(1 + ℓ), ℓ/(1 + ℓ)). For the quantities
defined in Theorem 1, we have χ1 = 1, χ2 = 0, and M = −(1 + ℓ)3/ℓ, yielding

[xryℓr]C(x, y) ∼ r−3/2ℓ−rℓ(1 + ℓ)(1+ℓ)r√
2πℓ(1 + ℓ)

.
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14

5
2 3

6

1

4
5

2

3

6

=

Contributes to x6y4

3

4
1

2

3
4

1

2

Figure 2: On the left, a cyclical interlaced permutation is drawn as enumerated in
Example 3. Because there are 6 black numbers and 4 red numbers, this contributes
to x6y4. Rotating the numbers gives the same configuration. On the right, a Dyck
path with 14 steps and 4 peaks is drawn, which contributes to z7t4 in the GF from
Example 4.

Example 4 (Logarithm of Narayana numbers). The Narayana numbers refine Example 1:
let an,s be the number of Dyck paths with length n and number of peaks s, as in Figure 2.
This example illustrates how algebraic singularities may still determine asymptotics for
a non-algebraic GF. Let N(z, t) := ∑ an,sznts be the GF for the Narayana numbers, and
let P(z, t) count the Dyck paths that never return to the x-axis except at their start and
end. Then, from the symbolic method, N and P satisfy the relations,

N(z, t) =
1

1 − P(z, t)
, P(z, t) = tz + z(N(z, t)− 1).

N(z, t) =
1 + z − tz −

√
(1 + z − tz)2 − 4z
2z

.

Consider the growth rate of the coefficients [znts] logr N(z, t) in the direction (ℓ, 1) for
any ℓ > 1. To determine the singularities of logr N(z, t), note that N has a removable
singularity at z = 0, with limit 1. Thus, logr N(z, t) has singularities from the logarithm
determined by N(z, t) = 0 (with z ̸= 0) and algebraic singularities determined by the
zero set of H(z, t) := (1 + z − tz)2 − 4z. A simple analysis determines that N(z, t) ̸= 0
for any values of z and t. Thus, we find a single smooth critical point at (p, q) :=
([1 − 1/ℓ]2, 1/[ℓ− 1]2), and there are no nonsmooth critical points.

To use the results in [9], we must also ensure that the critical point is minimal. This
is slightly more difficult here, but because N(z, t) is combinatorial, there must be a
minimal singularity with positive real coordinates by Pringsheim’s Theorem. To verify
minimality, consider points of the form (z, t) = (vp, wq) for real paramters 0 ≤ v, w ≤ 1,
and search for values of v and w where H(vp, wq) = 0. Because H is quadratic, we can
solve for v in terms of w and ℓ, and then verify that for all ℓ > 1 and all v, w ∈ [0, 1],
dw/dv < 0. Ultimately, this implies that there are no solutions where v and w are both
less than 1, so that (p, q) indeed must be minimal.
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Near the critical point (p, q) we can expand logr N(z, t) as in Example 1 to obtain

logr N(z, t) = logr
(

1 + p − pq
2p

)
− r logr−1

(
1 + p − pq

2p

) √
H

1 + p − pq
+ · · · ,

from which we conclude that the
√

H term determines the dominant asymptotics. Ap-
plying Corollary 2 of [9] yields our final result,

[zℓntn] logr N(z, t) ∼ r
2π

logr−1
(

ℓ

ℓ− 1

)
· n−2 · (ℓ− 1)−2n(ℓ−1)−1 ℓ2ℓn−1.

6 Proof sketch

We prove Theorem 1 by using the Cauchy integral formula,

[xrys]H(x, y)−α logβ(H(x, y)) =
−1
4π2

∫∫
T

H(x, y)−α logβ(H(x, y))x−r−1y−s−1dxdy, (6.1)

where T is a torus centered at (0, 0) that is small enough that it does not enclose any
singularities of H(x, y)−α logβ(H(x, y)).

6.1 Step 1: Change of variables

A key idea in [9] is to use this change of variables, with χ1 and χ2 as in Theorem 1:

u = x + χ1(y − q) + χ2(y − q)2, v = y.

Call H(x, y) := H̃(u, v). Expanding H̃(u, v) = ∑m,n≥0 dm,n(u − p)m(v − q)n, we find
d0,0 = d0,1 = d0,2 = 0. For functions of the form F(u, v) = [log H̃(u, v)]β(H̃(u, v))−α, it
turns out that having these three terms equal to zero is enough to approximate F near
(p, q) with the product of a function in u and a function in v.

6.2 Step 2: Choose a convenient contour

In order to justify that F can be written as a product, we first decide how to deform
the torus T in Equation (6.1). We focus on the details of the contour when v is near the
critical point q, since the contour away from the critical point does not contribute to the
asymptotics. We choose approximately a product contour, with a Hankel contour in the
u variable contour and a circle of radius q in the v variable.

The u variable contour will wrap around a point that shifts slightly depending on
the v variable: more precisely, since (p, q) is a smooth critical point, the zero set V :=
{(u, v) : H(u, v) = 0} can be parameterized with a smooth function G(v) such that
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Re(u)

Im(u)

p + G(v)

p

Figure 3: The torus T in the Cauchy integral is deformed so that near the critical point,
it is approximately a product contour. For v close to q, the contour is exactly a circle.
For u close to p, the contour expands beyond the critical point p by using a Hankel-like
wrapping around the zero set of H, which is parameterized in terms of v by p + G(v).

H(p + G(v), v) = 0 locally near v = q. Thus, we center the u contour at the point
p + G(v). See Figure 3 for a diagram of the u contour near the point (p, q). Because we
assume (p, q) is a unique minimal critical point of H, for v values away from q, we can
expand the contour to circles with radii larger than |p| and |q| making this portion of the
contour negligible. The transition between regimes is described in greater detail in [9].

6.3 Step 3: Approximate the integrand with a product integral

After the change of variables to (u, v) coordinates, we can estimate the resulting Cauchy
integrand with a product of a function in u and a function in v.

Lemma 1. Let Cr be the portion of the contour defined in Section 6.2 where v is close to q. Then,∫∫
T
(H̃(u, v)−α logβ(H̃(u, v)))(u − χ1(v − q)− χ2(v − 2)2)−r−1v−s−1dudv

∼
∫∫

Cr

(
[Hx(p, q)(u − p)]−α logβ(Hx(p, q)(u − p))u−r−1v−s−1×[

1 − χ1(v − q) + χ2(v − q)2

p

]−r−1 )
dudv.

The full proof of this lemma is technical, generalizing a similar proof in [9]. Near
(p, q), tedious computations reveal H̃(u, v) may be estimated by truncating its power
series. Away from (p, q), the contributions to the integral are exponentially smaller than
the parts near (p, q), and hence they may be ignored. The addition of the logarithm adds
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some new technicalities to the proof. To begin, we define correction factors K, L, and N:

K =

1 − χ1(v−q)+χ2(v−q)2

u

1 − χ1(v−q)+χ2(v−q)2

p

−r−1

, L =

(
H̃(u, v)

C(u − p)

)−α

, N =

(
log H̃(u, v)

log[C(u − p)]

)β

,

with C := Hx(p, q). The point of these factors is that the integrands of the left and right
sides in Lemma 1 are equal up to K · L · N. Thus, in a neighborhood near (p, q), the goal
is to show that K, L, N = 1 + o(1) uniformly. Lemmas 4 and 5 of [9] state the result for
K and L, so it remains to show the equivalent result for N.

Lemma 2. When u and v are sufficiently close to (p, q), the following holds uniformly as r, s →
∞ with λ = r+O(1)

s :
N(u, v) = 1 + o(1).

Proof. Again with C := Hx(p, q), we write

log H̃(u, v) = log[C(u − p)] + log
H̃(u, v)

C(u − p)
= log[C(u − p)]− 1

α
log L(u, v),

N(u, v) =

[
1 −

1
α log L(u, v)
log C(u − p)

]β

.

From Lemma 5 of [9], L(u, v) = 1 + o(1) in this region. Thus, log L(u, v) = o(1) as
r → ∞. Additionally, | log C(u − p)| is bounded away from zero as u is close to p,
implying that N(u, v) = [1 + o(1)]β = 1 + o(1) as desired.

6.4 Step 4: Evaluate the product integral

We can now split Equation (6.1) into two univariate integrals. The v integral is a standard
Fourier-Laplace type integral that is identical to the case without logarithms.

Lemma 3 (Lemma 9 of [9]). The following holds uniformly as r, s → ∞ with λ = r+O(1)
s :∫

V
v−s−1

[
1 − χ1(v − q) + χ2(v − q)2

p

]−r−1

dv = iq−s

√
2π

−q2Mr
+ o

(
q−sr−

1
2

)
.

Thus, the final step in proving Theorem 1 is to evaluate the u integral.

Lemma 4. Define Ej = ∑
j
k=0 (

β
j)(

j
k) log

(
−1

pHx(p,q)

)
Γ(α) dj−k

dtj−k
1

Γ(t)

∣∣∣
t=α

. Then, as r → ∞,

1
2πi

∫
U
(Hx(p, q)(u − p))−α

[
logβ(Hx(p, q)(u − p))

]
u−r−1du

= (−1)β (−pHx(p, q))−αrα−1

Γ(α)
p−r

[
logβ r

] [
1 + ∑

j≥1

Ej

logj r

]
,

where U is a small circle near 0 that does not enclose any other singularities of the integrand.
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Proof. We begin with some factoring:

1
2πi

∫
U
(Hx(p, q)(u − p))−α

[
logβ(Hx(p, q)(u − p))

]
u−r−1du

= (−1)β (−pHx(p, q))−α

2πi

∫
U
(1 − u/p)−α

[
log

1
1 − u/p

+ L
]β

u−r−1du,

where L = log −1
pHx(p,q) . Substitute u = pz and expand

[
log 1

1−z + L
]β

as a series:

(−1)β (−pHx(p, q))−α

2πi
p−r ∑

k≥0

(
β

k

)
Lk
∫

U
(1 − z)−α logβ−k 1

1 − z
z−r−1dz.

By [6, Theorem 3A], we have for each k that

1
2πi

∫
U
(1 − z)−α logβ−k 1

1 − z
z−r−1dz ∼ rα−1

Γ(α)
logβ−k r

1 + ∑
j≥1

c(k)j

logj r

 ,

where c(k)j := (β−k
j )Γ(α) dj

dtj
1

Γ(t)

∣∣∣
t=α

. So

(−1)β (−pHx(p, q))−α

2πi
p−r ∑

k≥0

(
β

k

)
Lk
∫

U
(1 − z)−α logβ−k 1

1 − z
z−r−1dz

∼ (−1)β (−pHx(p, q))−αrα−1

Γ(α)
p−r ∑

k≥0

(
β

k

)
Lk logβ−k r

1 + ∑
j≥1

c(k)j

logj r

 .

Letting e(k)j = (β
k)Lkc(k)j , we can rewrite the double sum as

∑
k≥0

(
β

k

)
Lk logβ−k r

1 + ∑
j≥1

c(k)j

logj r

 = logβ r ∑
k≥0

(
β

k

)
Lk

 1

logk r
+ ∑

j≥k+1

c(k)j−k

logj r


= logβ r

1 + ∑
j≥1

j

∑
k=0

e(k)j−k

logj r

 = logβ r

[
1 + ∑

j≥1

Ej

logj r

]
,

with Ej defined above. With this, we have the result as desired.
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Two-Row Set-Valued Tableaux: Catalan+k

Combinatorics
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1Département de Mathématique, Université Libre de Bruxelles, Belgique
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Abstract. Set-valued standard Young tableaux are a generalization of standard Young
tableaux due to Buch (2002) with applications in algebraic geometry. The enumeration
of set-valued SYT is significantly more complicated than in the ordinary case, although
product formulas are known in certain special cases. In this work we study the case of
two-rowed set-valued SYT with a fixed number of entries. These tableaux are a new
combinatorial model for the Catalan, Narayana, and Kreweras numbers, and can be
shown to be in correspondence with both 321-avoiding permutations and a certain
class of bicolored Motzkin paths. We also introduce a generalization of the set-valued
comajor index studied by Hopkins, Lazar, and Linusson (2023), and use this statistic to
find seemingly new q-analogs of the Catalan and Narayana numbers.

Keywords: Catalan numbers, set-valued tableaux, pattern-avoidance

1 Introduction

1.1 Set-Valued Tableaux

Let λ ` n. A set-valued Young tableau of shape λ is a filling S of the cells of the Ferrers
diagram of λ with nonempty sets of positive integers. They were introduced by Buch
[2] to study the K-theory of the Grassmannian, and have since appeared in both algebro-
geometric and combinatorial contexts (see, inter alia, [1, 4, 5, 6, 8, 11]).

A set-valued Young tableau is standard if:

1. The sets in the cells of λ form a set partition of [n + k] for some k ≥ 0, and

2. If u is (weakly) northwest of v in λ then max S(u) < min S(v).

We write SYT+k(λ) for the set of set-valued standard Young tableaux of λ with entries
in [n + k]. Intuitively, a set-valued SYT S can be thought of an integer filling of λ (filling
each cell u with min S(u)) along with k extra elements. The combinatorics of these objects

∗alexander.leo.lazar@ulb.be
†linusson@kth.se

mailto:alexander.leo.lazar@ulb.be
mailto:linusson@kth.se
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is much more intricate than in the ordinary case; there is no known analog of the hook-
length formula for counting set-valued SYT in general, although Anderson, Chen, and
Tarasca [1] proved a determinantal formula for counting them.

For the purposes of enumerating the elements of SYT+k(λ), it is sometimes useful to
view a set-valued tableaux S from a different perspective.

Proposition 1. A standard set-valued Young tableau of shape λ is equivalent to the following
data:

1. A standard Young tableau S∗ of shape λ,

2. A weak chain λ• of subshapes ∅ = λ0 ( λ1 ⊆ · · · ⊆ λk ⊆ λk+1 = λ,

3. A choice of a corner cell ui of λi for each 1 ≤ i ≤ k.

In lieu of a proof, consider the following illustrative example.

Example 2. Consider the following set-valued SYT T ∈ SYT+4(3× 4):

1 2 7 8
3 4, 5 11 13

6, 9, 10 12 14, 15 16

There are cells with extra entries at matrix coordinates (2, 2), (3, 1), and (3, 3). Among these, the
cell at (2, 2) has the smallest extra entry: 5. We define λ1 to be the subshape of 3× 4 for which
the entries of T are between 1 and 5:

?

The starred cell at matrix position (2, 2) is u1. The next extra entry is 9, at matrix position (3, 1).
We define λ2 to be the subshape for which the entries of T are between 1 and 9:

?

Then since 9 belongs to the starred cell (3, 1), we define that cell to be u2. The next extra entry is
10, which is in the same cell as the extra entry 9. Then λ3 = λ2 and u3 = u2.

The last extra entry is 15, at matrix position (3, 3). We have that λ4 is the subshape (4, 4, 3)
consisting of the cells of T whose entries are between 1 and 15.
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?

Since 15 belongs to the cell at position (3, 3), we define u4 to be that corner cell. Finally, λ5 is the
entire shape.

We obtain T∗ from T by removing the 4 extra entries from T and decrementing the remaining
entries of the cells in λi \ λi−1 by i− 1 for each i:

1 2 6 7

3 4 8 10

5 9 11 12

The entries in the yellow cells are decremented by 0; those in the blue cells are decremented by 1;
those in the red cells are decremented by 3 (notice there are no cells in λ3 \ λ2); and the entry of
the bottom right square is decremented by 4.

This construction allows us to define a version of the comajor index for set-valued
tableaux. Let S ∈ SYT+k(λ), and decompose S into ` chunks T1, . . . , T` and k additional
elements x1, . . . , xk as in Example 2. A (natural) descent of Ti is an entry j of Ti such that
j + 1 is also an entry of Ti and is in a higher row1.

We write D(Ti) for the descent set of Ti, and we define the set-valued descents of S to be

D+k(S) :=
⊔

D(Ti) t {x1, . . . , xk}.

The set-valued comajor index of S is then defined as

comaj+k(S) := ∑
x∈D+k(S)

(n + k− x).

Example 3. Continuing from Example 2: D+4(S) = {5, 6, 9, 10, 12, 15}, so comaj+4(S) = 38.

The k = 1 version set-valued comajor index was recently used by Hopkins, Lazar, and
Linusson [7] to find a product formula for ∑

S∈SYT+1(a×b)

qcomaj+1(S) analogous to Stanley’s

hook-content formula. Our generalized version is motivated by the probabilistic reasoning
used in [7] — when one attempts to extend their arguments to general SYT+k, the comaj+k

statistic emerges quite naturally and yields extensions of some of the results of [7] to the
general case (to appear in forthcoming work).

1This is different from the usual definition of a descent in a Young tableau; our definition instead comes
from the theory of P-partitions.
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1.2 Main Results

The present work considers set-valued SYT from a different perspective. Rather than
fixing the shape and the number of extra elements of a set-valued tableau S, we instead
fix the number of rows and total number of elements.

This change of perspective has proven to be fruitful; if we restrict our attention to the
case of two-row tableaux and fix the total number of elements while letting the number
of columns vary, we obtain several new results:

• For fixed n and i, exact counts of
⊔

2b−i+k=n SYT+k(b, b− i) for all 0 ≤ i ≤ b. For
i = 0, that is, rows of equal length, it is the Catalan number (Equation (2.1)) and for
general i it is a ballot number plus a binomial coefficient (Theorem 13).

• New models for the Catalan (Proposition 7), Narayana, and Kreweras (Proposition
8) numbers (proved via a bijection with 321-avoiding permutations).

• A new summation formula for the 321-avoiding permutations by the number of
peaks (Corollary 10).

• Exact counts of several families of lattice paths arising from these tableaux (Proposi-
tion 12 and Theorem 13).

• Seemingly-new families of q-Catalan and q-Narayana numbers (Section 5.1).

2 Bijection to 321-avoiding Permutations

In this section we will use a bijection to 321-avoiding permutations of length n− 1 prove
that for any n ≥ 2

∑
2b+k=n

# SYT+k(2× b) = Cat(n− 1). (2.1)

A permutation π = π1 . . . πn is called 321-avoiding if it does not have three elements
πi > πj > πk for 1 ≤ i < j < k ≤ n. Another well-known way to describe 321 avoiding
permutations is as follows. Recall that a right-to-left minimum in a permutation π is an
element πi such that πi < πj for all j > i. The right-to-left minima of any permutation
form an increasing sequence (when read from the left). The condition that a permutation
is 321-avoiding is equivalent to asking that the elements that are not right-to-left minima
also form an increasing sequence. This characterization dates back to the early 1900s;
see [10, Vol. I, Section V, Chapter III]. 2 Visualising the permutation with a permutation
matrix, the right-to-left minima will be on or below the main diagonal and the other
elements above the diagonal. Forming a lattice path around the elements on or above

2The text considers 123-avoiding permutations, which are the reverses of 321-avoiding permutations.
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3
5
1
2
7
8
4
10
11
6
9



0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0



Figure 1: The permutation matrix of π from Example 4, along with its associated lattice
path.

the diagonal gives a direct bijection to south-east lattice paths above the diagonal, which
is one of the many standard representations of Catalan objects. Alternatively, one can
draw a lattice path below the right-to left minima and then rotate the drawing by a half
turn. We also need to define an inner valley3 in a permutation π ∈ Sn as an element
πj, 1 < j < n such that πj−1 > πj < πj+1.

Example 4. The permutation π = 3 5 1 2 7 8 4 10 11 6 9 is 321-avoiding. We overline the
right-to-left-minima.

For a fixed n we now define a map

α :
⊔

2b+k=n

SYT+k(2× b) 7→ {321-avoiding permutations of [n− 1]}.

Let T ∈ SYT+k(2× b), with k + 2b = n.

(1) Remove the largest element n from T, so it contains the numbers from 1 to n− 1.

(2) The permutation α(T) starts with all except the largest element in the top left box,
followed by the entries of the box directly below it, and then the largest element of
the top left box. The permutation continues with the elements in the second box
in the top row except the largest, then all elements in the box below it, then the
largest element in the second box in the top row. We continue in this way, placing
the elements of the ith box from the left in the bottom row immediately before the
largest element of the ith box in the top row.

3An inner valley differs from an ordinary valley in that neither the first nor the last position can be an
inner valley.
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Example 5.

1, 2 3, 4, 6 7 10

5, 8 9 11, 12 13, 14

α7→ π = 1 5 8 2 3 4 9 6 11 12 7 13 10

The resulting permutation α(T) will by construction have the numbers in the top
row as its right-to-left minima. The elements in the bottom row (except n, which has
been deleted) will form another increasing sequence. The permutation formed is thus
321-avoiding. Note that the largest elements in the top boxes in columns 1, . . . , b− 1 will
be inner valleys in the permutation and there are no other inner valleys.

The inverse of α is reasonably simple; however, the full description requires checking
several cases so we omit most of the details here. Intuitively, given a 321-avoiding
permutation π, the right-to-left minima are inserted into the top row (with the first run
of right-to-left minima needing special handling), while the ith run of elements that are
not right-to-left minima is inserted into the ith box of the bottom row.

Example 6. We reuse the permutation from Example 4 to illustrate α−1.

π = 3 5 1 2 7 8 4 10 11 6 9 α−1
7→

1 2, 4 6 9

3, 5 7, 8 10, 11 12

We summarize some basic properties of α.

Proposition 7. For all n ≥ 2:

• The map α is a bijection from
⊔

2b+k=n

SYT+k(2× b) to the set of 321-avoiding permutations

of [n− 1].

• The elements in the top row of T form the sequence of right-to-left minima in α(T).

• If T has b columns, then α(T) will have b− 1 inner valleys.

An inner peak in a permutation π ∈ Sn is an element πj, 1 < j < n such that
πj−1 < πj > πj+1. For the set of 321-avoiding permutations the involution formed by
rotating the permutation matrix a half turn shows that inner peaks and inner valleys are
equidistributed for 321-avoiding permutations.4

4We thank FindStat [12], which helped us find that the refinement into columns was equidistributed
with number of inner peaks. This equidistribution was a key insight into finding the bijection α.
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Recall from the theory of Catalan numbers that the number of Dyck paths of length
2n is counted by the Catalan number Cat(n), also the number of such paths with m peaks
is enumerated by the Narayana number Nn,m = 1

m ( n
m−1)(

n−1
m−1). There is even one further

refinement. Let ci be the number of upsteps in the Dyck paths directly before peak number
i in the path, which gives a partition c = (c1, . . . , cm) of n, that is ∑i ci = n. Further let µj
be the number of ci that equals j. Thus µ (or sometimes written [1µ12µ2 . . . nµn ]) is the type
of the composition c and of the Dyck path. The number of Dyck paths with m peaks and
of type µ is known to be the Kreweras number Krew(n, m, µ) = n(n−1)...(n−m+1)

∏j µj!
[9]. In the

bijection α, a tableau with m elements in the top row will be mapped to a 321-avoiding
permutation with m right-to-left minima. As discussed above, we can draw a lattice path
under these in the permutation matrix and by rotating half a turn obtain a bijection to
Dyck paths with m peaks. The distance between two consecutive elements in the top
row is mapped to the number of upsteps ci of the Dyck path. This proves the following
proposition.

Proposition 8. For any b, k ≥ 1 we have the following refinements:

1. The number of tableaux in ∪2b+k=n SYT+k(2× b) with m elements in the top row is the
Narayana number Nn−1,m = 1

m (n−1
m−1)(

n−2
m−1)

2. The number of tableaux in ∪2b+k=n SYT+k(2× b) with elements a1, . . . , am in the top row is
the Kreweras number Krew(n, m, µ), where µ is the type of (c1, . . . , cm) with ci = ai+1− ai
and am+1 := n.

The bijection α also implies the following.

Proposition 9. For n ≥ 3

1. | ∪2b+k+1=n SYT+k(b + 1, b)| = Cat(n)−Cat(n− 1) = 3
n+1(

2n−2
n ).

2. | ∪2b+k=n SYT+k(b + 1, b)/(1)| = Cat(n)− 2 Cat(n− 1) + Cat(n− 2).

3 Enumeration According to Peaks

In [1, Corollary 5.4], Anderson, Chen, and Tarasca give a formula for the Euler charac-
teristic of a certain Brill–Noether space, which they had earlier shown to be equal to the
(signed) count of a certain class of set-valued tableaux. Specializing to the two row case
and translating into our notation, their formula becomes:

#{SYT+k(2× b)} = 1
k!

b k
2 c

∑
c=0

f (k−c,c) f (b+k−c,b+c)(b + k− c− 1)(k−c)(b + c− 2)(c), (3.1)
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where f λ is the number of SYT of shape λ, and (x)(a) is the falling factorial x(x −
1) · · · (x− a + 1).

For our purposes, it is convenient to use the hook length formula to rewrite Equation
3.1 purely in terms of factorials and binomial coefficients:

#{SYT+k(2× b)} (3.2)

=
1
k!

b k
2 c

∑
c=0

k!(k− 2c + 1)
c!(k− c + 1)!

(2b + k)!(k− 2c + 1)
(b + c)!(b + k− c + 1)!

(b + k− c− 1)!
(b− 1)!

(b + c− 2)!
(b− 2)!

=
b k

2 c

∑
c=0

(k− 2c + 1)2

(k− c + 1)(b + k− c + 1)

(
b + c− 2

c

)(
b + k− c− 1

b− 1

)(
2b + k
b + c

)
. (3.3)

In light of our bijection between SYT+k(2× b) and the set of 321-avoiding permutations
of n = 2b + k with exactly k peaks, we immediately have the following result:

Corollary 10.

#{S321
2b+k} =

b k
2 c

∑
c=0

(k− 2c + 1)2

(k− c + 1)(b + k− c + 1)

(
b + c− 2

c

)(
b + k− c− 1

b− 1

)(
2b + k
b + c

)
.

This sort of closed form expression is a somewhat pleasant surprise; in [3, Theorem 3],
the authors give the following generating function formula for the sequence apk

n,k(321) of
321-avoiding permutations of [n] with k peaks:

∑
n≥0

∑
k≥0

apk
n,k(321)qkzn = 1 + z

(
−−1 +

√
−4z2q + 4z2 − 4z + 1

2z(zq− z + 1)

)2

, (3.4)

It is not at all obvious how one would obtain Equation (3.3) from Equation (3.4) (or
vice-versa) using only elementary techniques.

4 Motzkinlike and Ballotlike Paths

In addition to 321-avoiding permutations, we can interpret the SYT+k(2× b) in terms of
a certain class of bicolored Motzkin paths.

We recall that a Motzkin path of length n is a lattice path in Z2 from (0, 0) to (n, 0)
consisting of up steps U = (1, 1), down steps D = (1,−1), and horizontal steps H = (1, 0) in
some order, with the property that the path never goes below the x-axis.

We will color the horizontal steps of the Motzkin paths with u (for upstairs or umber)
and d (downstairs or denim). We will consider the following two restrictions on the
coloring:
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(1) umber horizontal steps do not occur at height zero;

(2) denim horizontal steps do not occur before the first down step.

We use Motz(n) to denote the set of bicolored Motzkin paths of length n, and Motz1(n),
Motz2(n), and Motz1,2(n) to denote the set of paths which satisfies the restrictions (1),
(2), and both (1) and (2) respectively.

Extending the well-known bijection between two-rowed rectangular SYTs and Dyck
paths, we have the following bijection.

Proposition 11. There is a bijection β between SYTk(2× b) and Motz1,2(2b + k) with k hori-
zontal steps. A tableau S maps to the path Γ for which:

• up steps of Γ occur at the minimal entries of boxes in the first row of S;

• down-steps of Γ occur at the minimal entries in the second row;

• we color a horizontal step of Γ umber if its index is a (non-minimal) entry of a box in the
first row of S, and denim if its index is a (non-minimal) entry in the second row.

The proof of Proposition 11 is reasonably straightforward and is omitted in this
abstract.

S
1, 2 4 5

3 6 7

1 4 5, 7

2, 3 6 8, 9

β(S)
u

1 2 3 4 5 6 7
d

u
d

1 2 3 4 5 6 7 8 9

Figure 2: Examples of the bijection β between two-rowed rectangular set-valued SYTs
and birestricted bicolored Motzkin paths.

The first two equalities in the following proposition are well-known but the other two
seem to be new. We construct a bijection that, when concatenated with β in Proposition
11, gives us a second bijective proof of (2.1). The details are omitted in this extended
abstract.

Proposition 12. The Catalan numbers enumerate all four possible restriction on Motzkin
paths: |Motz(n)| = Cat(n + 1), |Motz1(n)| = Cat(n), |Motz2(n)| = Cat(n), and
|Motz1,2(n)| = Cat(n− 1), for n ≥ 2.
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4.1 Ballotlike paths

We can also consider a larger class of paths which we call ballotlike. A ballotlike path
P is a lattice path in the 1st quadrant starting at (0, 0) and ending at (n, i) which uses
the steps U = (1, 1), D = (1,−1), u = (1, 0)umber and d = (1, 0)denim, subject to the same
conditions on u and d steps from the definition of Motz1,2(n). We write Bal∗(n, i) for the
set of ballotlike paths ending at (n, i). The enumeration turns out to be the sum of a
classical ballot number and a binomial coefficient.

Theorem 13. For any (n, i) with 0 ≤ i ≤ n, we have

# Bal∗(n, i) =
(

2n− 2
n− i− 1

)
−
(

2n− 2
n− i− 2

)
+

(
n− 2
n− i

)
.

Moreover, if we take the obvious extension of the bijection between Motz1,2(n) and set-valued
SYT of shape 2× b, we have for any (n, i) with 0 ≤ i ≤ n,

#
⊔

2b+k−i=n

SYT+k(b, b− i) =
(

2n− 2
n− i− 1

)
−
(

2n− 2
n− i− 2

)
+

(
n− 2
n− i

)
.

Example 14. When n = 4 and i = 2 we have 6 set-valued SYT.

1 2 4
3

1 3 4
2

1 2 3
4

1, 2, 3 4 1, 2 3, 4 1 2, 3, 4

5 Future Work

5.1 q-Catalan and q-Narayana

Given the numerology for SYT+k(2× b), it is natural to consider the following q-analogs:

∼
Catn(q) := ∑

2b+k=n+1

 ∑
S∈SYT+k(2×b)

qcomaj+k(S)


∼

Nn,m(q) := ∑
2b+k=n+1

 ∑
S∈SYT+k(2×b)

m elts in top row

qcomaj+k(S)

 .

Using the bijection in Proposition 11 and a double recursion we can compute the

polynomials
∼

Catq and
∼

Nn,m(q) for small values of n, m (details omitted in this extended
abstract). They do not seem to match any statistic we have found in the literature.

Question 15. Are there better formulas for
∼

Catn(q) and
∼

Nn,m(q)?
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n
∼

Catn(q)
1 1
2 q + 1
3 q3 + 2q2 + q + 1
4 q6 + 2q5 + 3q4 + 3q3 + 2q2 + 2q + 1
5 q10 + 2q9 + 3q8 + 7q7 + 6q6 + 5q5 + 6q4 + 7q3 + 3q2 + q + 1

Figure 3: The first six
∼

Catn(q) polynomials.

n/m 1 2 3 4
1 1
2 1 q
3 q 2q2 + 1 q3

4 q3 2q4 + q3 + q2 + q + 1 2q5 + q4 + q3 + q2 + q q6

Figure 4:
∼

Nn,m(q) for 2 ≤ n ≤ 5.

5.2 Expected Number of Columns

The results of [7] draw heavily upon the language of probability theory. In particular, the
authors consider several families of probability distributions on subshapes of the a× b
rectangular partition, and compute the expected value of the number of corners of the
subshapes with respect to these distributions. In this spirit, we consider the number of
columns of a randomly-selected S ∈

⊔
2b+k=n

SYT+k(2× b) (equivalently, the number of

inner peaks of a randomly-selected 321-avoiding permutation).

Conjecture 16. If we sample such an S uniformly at random, we have for n ≥ 3 that

E (# of columns of S) =
((

n
2

)
+ n− 3

)/
(2n− 3).

Question 17. Is there a nice formula for the q-version? Specifically, is there a better formula for

Eq (# of columns of S) = ∑
2b+k=n+1

b ·

 ∑
S∈SYT+k(2×b)

qcomaj+k(S)

/ ∼
Catn(q)?

Acknowledgements

Both authors were supported by grant 2018-05218 from VR the Swedish Science Council.
The first author was also partially supported by ARC “From algebra to combinatorics,



12 Alexander Lazar and Svante Linusson

and back.” The second author was also supported by by 2022-03875 from VR. Note added
in proof: We thank Guillaume Chapuy, who outlined a way to prove Conjecture 16 during the
conference.

References

[1] D. Anderson, L. Chen, and N. Tarasca. “K-classes of Brill-Noether Loci and a Determinantal
Formula”. Int. Math. Res. Not. IMRN 16 (2022), pp. 12653–12698. doi.

[2] A. S. Buch. “A Littlewood-Richardson rule for the K-theory of Grassmannians”. Acta Math.
189.1 (2002), pp. 37–78. doi.

[3] M. Bukata, R. Kulwicki, N. Lewandowski, L. K. Pudwell, J. Roth, and T. Wheeland. “Distri-
butions of Statistics over Pattern-Avoiding Permutations”. J. Integer Seq. 22 (2019), p. 19.2.6.

[4] M. Chan, A. López Martín, N. Pflueger, and M. Teixidor i Bigas. “Genera of Brill-Noether
curves and staircase paths in Young tableaux”. Trans. Amer. Math. Soc. 370.5 (2018), pp. 3405–
3439. doi.

[5] M. Chan and N. Pflueger. “Euler characteristics of Brill-Noether varieties”. Trans. Amer.
Math. Soc. 374.3 (2021), pp. 1513–1533. doi.

[6] P. Drube. “Set-valued tableaux and generalized Catalan numbers”. Australas. J. Combin. 72
(2018), pp. 55–69.

[7] S. Hopkins, A. Lazar, and S. Linusson. “On the q-enumeration of barely set-valued tableaux
and plane partitions”. European J. Combin. 113 (2023), Paper No. 103760, 29. doi.

[8] J. S. Kim, M. J. Schlosser, and M. Yoo. “Enumeration of standard barely set-valued tableaux
of shifted shapes”. European J. Comb. 112.C (2023). doi.

[9] G. Kreweras. “Sur les partitions non croisées d’un cycle”. Discrete Math. 1.4 (1972), pp. 333–
350. doi.

[10] P. A. MacMahon. Combinatory analysis. Vol. I, II (bound in one volume). Dover Phoenix
Editions. Reprint of An introduction to combinatory analysis (1920) and Combinatory analysis.
Vol. I, II (1915,1916). Dover Publications Inc., New York, 2004, pp. ii+761.

[11] V. Reiner, B. E. Tenner, and A. Yong. “Poset edge densities, nearly reduced words, and
barely set-valued tableaux”. J. Combin. Theory Ser. A 158 (2018), pp. 66–125. doi.

[12] M. Rubey, C. Stump, et al. “FindStat - The combinatorial statistics database”. http:

//www.FindStat.org. Accessed: September 14, 2024. Link.

https://dx.doi.org/10.1093/imrn/rnab025
https://dx.doi.org/10.1007/BF02392644
https://dx.doi.org/10.1090/tran/7044
https://dx.doi.org/10.1090/tran/8164
https://dx.doi.org/10.1016/j.ejc.2023.103760
https://dx.doi.org/10.1016/j.ejc.2023.103727
https://dx.doi.org/10.1016/0012-365X(72)90041-6
https://dx.doi.org/10.1016/j.jcta.2018.03.010
http://www.FindStat.org
http://www.FindStat.org
http://www.FindStat.org


Séminaire Lotharingien de Combinatoire 91B (2024) Proceedings of the 36th Conference on Formal Power
Article #81, 12 pp. Series and Algebraic Combinatorics (Bochum)

Skein relations for punctured surfaces

Esther Banaian*1, Wonwoo Kang†2, and Elizabeth Kelley‡2
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2Department of Mathematics, University of Illinois Urbana Champaign

Abstract. We use a combinatorial expansion formula for cluster algebras of surface
type via order ideals of posets to give explicit skein relations for elements of a cluster
algebra arising from a punctured surfaces. An immediate corollary of this is that the
bangles and bracelets of Musiker, Schiffler, and Williams, which are known to provide
a basis in the unpunctured case, form a spanning set in the punctured case.

Keywords: skein relation, triangulated surfaces, cluster algebras

1 Introduction

Subsequent to the original introduction of cluster algebras by Fomin and Zelevinsky in
2002 [5], a significant amount of effort has been devoted to studying cluster algebras of
surface type, as defined in [3, 4]. Such cluster algebras are particularly appealing objects
of study because they admit constructions of a variety of combinatorial objects - includ-
ing snake graphs, T-paths, and posets - that can be used to prove important structural
results about positivity or the existence of bases. In this extended abstract, we use a
cluster expansion formula from [11, 13] which expresses elements of a cluster algebra
as generating functions of order ideals of certain posets. We use this expansion formula
to prove skein relations, i.e. relations used to resolve intersections or incompatibilities
of arcs. Topologically, a skein relation takes a pair of intersecting arcs or an arc with
self-intersection and replaces this configuration with two sets of arcs which avoid the
intersection in two different ways. This method gives a generalization and new perspec-
tive to snake graph calculus, as defined in [2]. Skein relations for unpunctured surfaces
were given in [10, 1]. Skein relations on punctured surfaces in the coefficient-free case
were discussed in [7] and specific forms of skein relations in the principal coefficient case
(so called “tidy exchange relations”) were given in [13]. Here, we give explicit formulae
and show all skein relations on (potentially punctured) surfaces contain a term that is
not divisible by any coefficient variable yi. Consequently, we observe that the bangles
and bracelets defined in [9] form spanning sets and are linearly independent.
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2 Background

Cluster algebras are a type of recursively generated commutative ring with distinguished
generators, called cluster variables, that appear in fixed-size subsets x = (x1, . . . , xn) called
clusters. Each cluster x has an associated set of coefficients y = (y1, . . . , yn). Clusters can
be obtained from each other via an involutive process called mutation. A single mutation
µk uniquely exchanges a cluster variable xk ∈ x for some x′k ̸∈ x. The relation between
xk and x′k is referred to as an exchange relation. Given a cluster x, it is always possible to
mutate at every xi ∈ x. A single cluster is sufficient to generate the entire cluster algebra.

Two of the most celebrated properties of cluster algebras are the Laurent phenomenon
and positivity, which together state that every cluster algebra element can be written as
a Laurent polynomial with positive integer coefficients in terms of any choice of cluster.

Triangulated surfaces provide a well-known geometric model for ordinary cluster al-
gebras of surface type [3, 4]. Let S be a surface with (potentially empty) boundary and
a non-empty set of marked points M, where there is at least one marked point on each
boundary component. Marked points in the interior of S are referred to as punctures.
Every such marked surface (S, M) has an associated cluster algebra AS. Clusters of AS
correspond to distinct triangulations of (S, M), with individual cluster variables corre-
sponding to individual arcs (i.e., curves with endpoints in M and no self-intersections).
Coefficients correspond to laminations [4], i.e. additional collections of curves on (S, M)
that meet certain conditions. Following the restrictions in [8], we do not allow (S, M) to
be a closed surface with exactly two punctures, a monogon with less than two punctures,
an unpunctured bigon or triangle, or a sphere with less than four punctures.

In the surface model, mutation at xk is represented by flipping the corresponding arc γ

in a triangulation T - that is, by replacing γ with a different arc γ′, which corresponds to
x′k, such that T − {γ} ∪ {γ′} is still a valid triangulation. To provide complete geometric
models for cluster algebras from punctured surfaces [3] introduced the more general
notion of tagged arcs. A tagged arc is an arc whose ends have been tagged either plain or
notched such that: the arc does not cut out a once-punctured monogon, any end on ∂S is
tagged plain, and both ends of a loop have the same tagging.

If η is a tagged arc with endpoints p and q, we write η0 to denote the underlying plain
arc. If we wish to emphasize the notching of η, we will write η(p) when η has a single
notched end at p and η(pq) when η is notched at both endpoints. Two tagged arcs α and
β are compatible if and only if the following properties hold: the isotopy classes of α0 and
β0 contain non-intersecting representatives; if α0 = β0 then at least one end of α has the
same tagging as the corresponding end of β; and if α0 ̸= β0 have a shared endpoint, then
α and β must have the same tagging at that endpoint. A tagged triangulation is a maximal
collection of pairwise compatible tagged arcs. We will work with clusters associated to
triangulations with only plain arcs.
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σ2

σ3
σ4

σ1
τ1

τ2
τ3

γ1

γ2

η3

η2
η1

p q

Figure 1: An example of an arc γ1 and closed curve γ2 on a triangulated surface.

3 Cluster expansion formula

3.1 The poset for an arc

Let T = {τ1, . . . , τn} be a triangulation of a surface (S, M). For any arc γ on (S, M), we
construct a corresponding poset Pγ, following [11, 13]. We note that the posets Pγ will
be exactly the poset of join-irreducibles in the lattice of perfect matchings of the snake
graph Gγ, as in [8, 14].

First, suppose that γ is an arc with both endpoints tagged plain. Fix an orientation
for γ and let τi1 , . . . τid be the list of arcs of T crossed by γ, in the order determined by
our choice of orientation of γ. We will place a poset structure on [d] in the following way.
Any two consecutive arcs crossed by γ, τij and τij+1 , border a triangle ∆j that γ passes
through between these crossings. Let sj denote the shared endpoint of τij and τij+1 which
is a vertex of ∆j. If sj lies to the right of γ (with respect to the orientation placed on
γ), then we set j ⋗ j + 1. Otherwise, we set j ⋖ j + 1. The resulting poset is sometimes
referred to as a fence poset since its Hasse diagram is a path graph. The process is the
same if γ is a generalized arc, so that it has self-intersections.

Next, suppose that γ(p) is notched at its starting point s(γ) = p. Begin by drawing
the fence poset for γ0. Suppose the first triangle γ passes through is ∆0. Necessarily,
∆0 is bordered by τi1 and two spokes at p. Label these spokes σ1, σm where σ1 is the
clockwise neighbor of τi1 . Label the remaining spokes in clockwise order. Then, we
include elements 1s, . . . , ms in the poset, and set ms ⋖ (m − 1)s ⋖ · · · ⋖ 1s, 1s ⋗ 1 and
ms ⋖ 1. If we have an arc which is instead notched at its terminal point, we repeat this
process with elements 1t, . . . , mt, and we combine these processes for an arc tagged at
both endpoints. We call the resulting posets loop fence posets as they correspond to the
loop graphs given by Wilson in [14]. We say that the elements 1s, . . . , ms are in a loop. If
we wish to refer to a loop fence poset P with the loop portion removed, we will denote
this P0, so that Pγ0 = P0

γ.
Finally, suppose that γ is a closed curve. Choose an point a of γ which is not a point

of intersection between γ and T. Treat γ like an arc with s(γ) = t(γ) = a, choose an
orientation of γ, and form the fence poset on [d] associated to this arc. It must be that
τi1 and τid share an endpoint which is an endpoint of the triangle containing a. If this
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P
γ
(pq)
1

Pγ2

σ4

σ3

σ2

σ1

τ1

τ2

τ3

η1

η2

η3

τ2

τ3

η3

η2

η1

τ3

τ2

τ1

σ4

σ3

σ2

σ1

τ1

a
γ
(pq)
1

= eσ1 + eτ2 + eη1

b
γ
(pq)
1

= eτ1 + eτ3

r
γ
(pq)
1

= 0

aγ2 = eη1 + eτ2 + eσ1

bγ2 = eη3 + eτ3 + eσ4

rγ2 = 0

Table 1: The loop fence poset P
γ
(pq)
1

and circular fence poset Pγ2 for the arcs from

Figure 1. Note that the fence poset Pγ1 = P0
γ
(pq)
1

for the plain arc γ1 appears as a

subposet of P
γ
(pq)
1

, indicated in blue, and has aγ1 = eτ2 , bγ1 = 0, and rγ1 = eσ1 + eη1 .

endpoint is to the right of γ with the chosen orientation, we set d ⋗ 1; otherwise we set
d ⋖ 1. These posets are called circular fence posets since the underlying graph of such
a Hasse diagram is a cycle. To improve readability, we will often refer to all of these
types of posets as fence posets unless the specific type is relevant, in which case we use
the specific term. See Table 1 for several examples; note here and for the remainder of
the paper, we label the poset elements with the arcs they correspond to and we conflate
these two notions when context is clear.

3.2 Minimal Terms

Let aγ = (a1, . . . , an) where aj is the number of times there is a minimal element τik ∈ Pγ

such that τik = τj. Let bγ = (b1, . . . , bn) where bj is the number of times there is an
element τik ∈ Pγ which covers at least two elements and is not in a loop such that
τik = τj. Note that one or both of the elements which τik covers can be in a loop.

Suppose γ is an plain arc and there exists τi, τj ∈ T such that τi follows τ1 in clockwise
order in ∆0, the first triangle γ passes through, and similarly τj follows τd in clockwise
order in ∆d, the last triangle γ passes through. Then we set rγ = ei + ej where ei is the
i-th standard basis vector in Rn. If γ is instead notched at an endpoint or the clockwise
neighbor of τ1 or τd is on the boundary of (S, M), then we omit its contribution.

Given any arc or closed curve γ, we define gγ := −aγ + bγ + rγ. We remark that this
notation is inspired by the notation for the g-vector of a string module, as in [12].
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Geiß, Labardini-Fragoso, and Schröer studied these g-vectors for plain arcs and
closed curves in [6]. In particular, using Proposition 10.14 and Remark 11.1, they showed
that xgγ is the unique term in xT

γ which is not divisible by any variable yi. We show the
same statement for a notched arc γ.

Lemma 1. Let T be a triangulation of a surface without self-folded triangles. The monomial xgγ

is the unique term in the expansion of xT
γ which is not divisible by any variable yi.

Given an arc τi ∈ T, let xCCW(τi) = xτj xτk if there are two arcs τj, τk ∈ T that
are counterclockwise neighbors of τi within the two triangles that it borders. If one
or both of those neighbors is a boundary arc, then we ignore its contribution. The
monomial xCW(τi) is defined analogously using the clockwise neighbors of τi. We set
ŷτi := (xCCW(τi)/xCW(τi)) yτi . Let J(P) denote the poset of lower order ideals of a poset
Pγ. Each I ∈ J(P) has an associated weight w(I) = ∏j∈I ŷτij

.

Proposition 1. Let γ be an arc or closed curve on a marked surface (S, M) with triangulation
T such that γ /∈ T. Then, the associated element xγ of the cluster algebra A(S, M) written with
respect to the cluster corresponding to T can be expressed by

xT
γ = xgγ ∑

I∈J(Pγ)

w(I).

Proof. If γ is not an arc such that γ0 ∈ T, then this follows from combining Proposition
3.2 in [11] with Lemma 1. If γ ̸= γ0 and γ0 ∈ T, we prove this expansion formula by
using the algebraic identities that relate a singly-notched arc to plain arc and Theorem
12.9 in [8], which relates a doubly-notched arc to plain and singly-notched arcs.

Example 1. Applying Proposition 1 to the arc γ
(pq)
1 from Table 1 produces

x
γ
(pq)
1

=
xτ1 xτ3

xσ4 xτ2 xη3

[
xσ3yσ4yτ2

xσ1 x2
τ1

xτ3

+
xη1yη3

xτ1 x2
τ3

xη2

+
xσ3 xη1yσ4yη3

xτ1 xσ1 xτ3 xη2

+
yη2yη3

xτ3

+
xσ2 xσ3yσ3

xσ1 xσ4

+ · · ·
]

where we have explicitly shown only the terms arising from order ideals of size two.

4 Skein Relations

Let γ1 and γ2 be two curves with a point of incompatibility s; by this, we mean that
either γ1 and γ2 intersect, or γ0

1 ̸= γ0
2 share an endpoint and have opposite taggings at

the endpoint. In some cases, γ1 and γ2 cross the same set of arcs before or after passing
through s; if s is an intersection point, as we vary the representatives of γ1 and γ2 in their
isotopy classes, the point s can lie on any of these arcs. We call such a configuration a
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crossing overlap. When the set-up is understood, we refer to this set of commonly crossed
arcs as R.

If two arcs cross and this point of intersection is near the endpoint of one arc, then
when we form some of the arcs in the resolution, these will pivot at this endpoint. For
example, in the left diagram in Table 2, the left arc C− pivots across σ2 in counterclock-
wise direction and the right arc C− pivots across σ6 in clockwise direction. Some of these
pivots will also affect the y-monomial in the resolution. For a pair of crossing curves,
we define the sweep set, denoted Sw, to be the set of arcs that an arc in the resolution
pivots past in in clockwise (resp counterclockwise) direction at a plain (resp notched)
endpoint. Now suppose we instead have two arcs with incompatible taggings at a punc-
ture p. Suppose γ

(p)
1 is tagged at p and γ2 is not. Then, we define the sweep set to be

the set of arcs from T which lie counterclockwise of γ1 and clockwise of γ2. See Table 2
for examples.

Given two arcs with an incompatibility and associated sets R∪ Sw, one can show that
one of the sets of arcs in the resolution at the incompatibility will not cross any of the
arcs in R ∪ Sw. We will label the sets of arcs (called multicurves) in the resolution as C+

and C− where C− is the set which does not cross any arcs in R and Sw.

γ1

γ2

sσ1

σ2

σ3

σ4
σ5 σ6

σ7

C+

C+

C−C−

p = s

σ1

σ2σ3
σ4

σ5

σ6

γ
(p)
1γ2

C+

C−

R = {σ3, σ4, σ5} R = ∅
Sw = {σ6} Sw = {σ1, σ2, σ3, σ4}

Table 2: Examples of R and Sw for a transverse crossing (left) and an incompatibility
at a puncture (right).

Theorem 1. 1. Let {γ1, γ2} be a multicurve of arcs or closed curves which are incompatible.
Choose one point of incompatibility and let C+ and C− be the resolution at this intersection.
Then, xγ1 xγ2 = xC+ + YRYSwxC− .

2. Let γ1 be an arc or closed curve which is incompatible with itself. Choose one point of
incompatibility and let C+ and C− be the resolution at this intersection.
Then, xγ1 = xC+ + YRYSwxC− .

We prove Theorem 1 in cases. In section 4.1, we will explain our proof method which
can be used for all cases. In Sections 4.2 and 4.3, respectively, we will explicitly prove this
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Theorem for a pair of arcs with incompatible taggings at a puncture and a pair of arcs
with a transverse crossing. The relations that we explicitly discuss in these sections are
helpful in unifying some of the cases outlined in [9]. For example, the relation discussed
in 4.2 can be used to handle cases 6-11 from [9]. For the sake of brevity, we only include
explicit proofs for these two examples.

4.1 General approach

Let γ1 and γ2 be two curves with a point of incompatibility and resolutions C+ and C−.
Set Pi := Pγi and gi := gγi . In light of Proposition 1, we can write xγ1 xγ2 as

xg1+g2 ∑
(I1,I2)∈J(P1)×J(P2)

w(I1)w(I2).

We set w(I1, I2) to be the product of the weights of the components w(I1)w(I2). If C+ =
{γ3, γ4}, then we set J(C+) = J(P3)× J(P4); otherwise, C+ is a singleton {γ3} and we
set J(C+) = J(P3). We define J(C−) similarly. Our method of proof centers on finding
a partition of J(P1)× J(P2) = A ⊔ B such that (∅, ∅) ∈ A, and bijections ΦA between
A and J(C+) and ΦB between B and J(C−). Moreover, we require that the bijection
between A and J(C+) is weight-preserving, so that w(I1)w(I2) = w(ΦA(I1, I2)) and that
the bijection between B and J(C−) is weight preserving up to a unique monomial, so that
for some monomial Z in x and y variables, w(I1)w(I2) = Zw(ΦB(I1, I2)). Let Z = XY
be the decomposition of Z into x and y variables. The final step of each proof is to show
that g1 + g2 is equal to the sum of the g-vectors for the posets in C+ (denoted gC+) and
g1 + g2 + deg(X) is equal to the the sum of the g-vectors for the posets in C− (denoted
gC−) where deg(X) = (degxτ1

(X), . . . , degxτn
(X)). Then, we can rewrite xγ1 xγ2 as

= xg1+g2 ∑
(I1,I2)∈A

w(ΦA(I1, I2)) + xg1+g2 ∑
(I1,I2)∈B

Zw(ΦB(I1, I2))

= xgC+ ∑
I∈J(C+)

w(I) + xgC−Y ∑
I∈J(C−)

w(I) = xC+ + YxC− ,

where xC+ is the product of x variables associated to the arcs in C+ In each example, Z
will be a product of ŷ-variables that corresponds to the preimage of a tuple of emptysets
in J(C−). For part (2) of Theorem 1, we have similar statements with just one poset I1.
When resolving a self-intersection, it is possible for one arc to have a contractible kink,
in which case we remove the kink and multiply the associated expression by −1; in this
case, the bijections are adjusted to account for the difference in sign.
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4.2 Incompatibility at punctures

Consider two arcs, γ
(p)
1 and γ2 which are incompatible at a puncture p as on the right

hand side of Table 2. Recall from Section 2 that this means γ
(p)
1 and γ2 have opposite

taggings at p and γ0
1 ̸= γ0

2. Orient γ
(p)
1 and γ2 to both begin at p. Let the spokes at p

from T be σ1, . . . , σm, labeled in counterclockwise order such that the first triangle that
γ
(p)
1 passes through is bounded by σ1 and σm. If γ2 /∈ T, let 1 ≤ k ≤ m be such that the

first triangle γ2 passes through is bounded by σk and σk+1, where we interpret σm+1 as
σ1. If γ2 ∈ T, then we let k be such that γ2 = σk.

Draw a small circle h that encompasses p and does not cross any arcs of T except
the spokes at p. We define γ−1

1 ◦CCW γ2 as the arc which results from following γ1 from
t(γ1) with reverse orientation until its intersection with h, following h counterclockwise
until its intersection with γ2, and then following γ2 until t(γ2). We define γ−1

1 ◦CW γ2

similarly. Set γ3 := γ−1
1 ◦CCW γ2 and γ4 := γ−1

1 ◦CW γ2 and note that γ3 crosses σ1, . . . , σk
and γ4 crosses σk+1, . . . , σm. On the right hand side of Table 2, k = 4, γ3 is the arc denoted
C+ and γ4 is the arc denoted C−.

When k = m and γ2 /∈ T, so that the first triangles γ
(p)
1 and γ2 pass through are

the same, then we have two additional cases based on whether γ
(p)
1 is clockwise or

counterclockwise of γ2 at p. Since these cases produce different sets Sw, we differentiate
them. We refer to the case where γ

(p)
1 lies clockwise from γ2 as the k = 0 case.

It is only in the k = 0 and k = m cases when γ2 /∈ T that we will have a crossing
overlap. If τi1 , . . . , τid1

and τj1 , . . . , τjd2
are the ordered sequences of arcs from T crossed

by γ1 and γ2 respectively, and w ≥ 1 is the largest number such that τir = τjr for all
1 ≤ r ≤ w, then R = {τi1 , . . . , τiw}, regarded as a multiset. When γ2 ∈ T, then there is no
possible case for k = 0, and R = ∅ in the k = m case.

Proposition 2. Let γ
(p)
1 and γ2 be arcs which are incompatible at a puncture p. For k and R as

defined above, set

YR = ∏
τ∈R

yτ and YSw = ∏
σi∈Sw

yσi =
k

∏
i=1

yσi .

Then, we have x
γ
(p)
1

xγ2 = C+ + C− where C+ and C− are defined as follows:

C+ C−

k ̸= 0, m xγ3 YSwxγ4

k = 0 xγ4 YRxγ3

k = m xγ3 YSwYRxγ4

Proof. We detail the k ̸= 0, m and γ2 /∈ T case; the special cases follow from various
modifications to these overarching ideas. The posets P

γ
(p)
1

, Pγ3 and Pγ4 are provided in

Table 3; we suppress the poset Pγ2 as its structure is not important for the proof.
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P
γ
(p)
1

Pγ3 Pγ4

· · ·τi1
σ1

σ2

...
σk

...

σm

· · · τi1
σ1

σ2
. .

.σk
τj1 · · · · · · τi1

σm

σm−1...
σk+1

τj1 · · ·

Table 3: Posets for a resolution of an incompatibility for the k ̸= 0, m cases. Recall that
τi1 is the first arc crossed by γ1 and γ2 is the first arc crossed by γ2.

Let A1 ⊆ J(P
γ
(p)
1
) × J(Pγ2) consist of all pairs (I1, I2) such that σk /∈ I1 and let A2

consist of all pairs such that σk ∈ I1, σk+1 /∈ I1, and τj1 ∈ I2. Let B be the complement of
A1 ⊔ A2; in other words, B consists of pairs (I1, I2) such that τj1 ∈ I2 only if σk+1 ∈ I1.

It is clear that A1 is in bijection with {I3 ∈ J(P3) : σk /∈ I3} and A2 is in bijection
with {I3 ∈ J(P3) : σk ∈ I3}, where this bijection sends each element to its image in Pγ3 .
Similarly, we have a bijection B ∼= Pγ4 which sends (I1, I2) ∈ B to (I1\⟨σk⟩) ∪ I2. The
description of B ensures that this set is an order ideal so that this map is well-defined.

We now compare the g-vectors. Let δτi1
>τi2

= 1 if τi2 exists and τi1 > τi2 . We have
that g

γ
(p)
1

= −eσ1 + δτi1
>τi2

eτi1
+ g′

1 where g′
1 involves contributions from τiℓ for ℓ > 1.

For simplicity, suppose τj1 < τj2 . Then, gγ2 = eσk − eτj1
+ g′

2 for similarly defined g′
2. We

see immediately that gγ3 = −eσ1 + eσk + δτi1
>τi2

eτi1
+ g′

1 − eτj1
+ g′

2 = g1 + g2. Now, we
compute gγ4 = −eσk+1 + eσm − (1 − δτi1

>τi2
)eτi1

+ g′
1 + g′

2, so that gγ4 − (g
γ
(p)
1

+ gγ2) =

eσm + eσ1 + eτj1
− eσk − eσk+1 − eτi1

. Let σ[i] denote the third arc in the triangle formed

by σi and σi+1. Then, from the definition, we have ŷσi = yσi

xσi−1 xσ[i]
xσi+1 xσ[i−1]

. One can see that

ŷσ1 · · · ŷσk = (yσ1 · · · yσk)
xσm xσ1 xσ[k]

xσk xσk+1 xσ[0]
, and the claim follows after noting that σ[k] = τj1 and

σ[0] = σ[m] = τi1 . One can repeat similar calculations if τj1 > τj2 .

4.3 Transverse Crossings

Here, we consider two arcs, γ1 and γ2 that have a point of intersection. For brevity, here
we will assume these arcs have a crossing overlap, so that R ̸= ∅. If not, we have two
more cases based on the fact that the point of intersection must occur in the first or last
triangle of one or both of the arcs.

We orient γ1 and γ2 so that they pass through the arcs in R in the same direction. With
our fixed point of intersection s, let γ1 ◦ γ2 denote the arc given by following γ1 along its
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orientation until s and then following γ2. Let γ3 = γ1 ◦ γ2, γ4 = γ2 ◦ γ1, γ5 = γ1 ◦ γ−1
2 ,

and γ6 = γ−1
2 ◦ γ1, where −1 denotes using the reverse orientation. Note that γ3 and γ4

both pass through R, though they do not have a crossing overlap here, while γ5 and γ6
avoid the intersections with the arcs in R. Therefore, C+ = {γ3, γ4} and C− = {γ5, γ6}.

Proposition 3. Let γ1 and γ2 be two arcs which intersect in a crossing overlap R. Let the
resolution be {γ3, γ4} ∪ {γ5, γ6}. Then,

xγ1 xγ2 = xγ3 xγ4 + YRYSwxγ5 xγ6

where YR = ∏τ∈R yτ and YSw = ∏τ∈Sw yτ.

In the proof, we will use a poset-theoretic version of a tool from [1]. Let posets P1 and
P2 have a crossing overlap in a region R. Index the elements in P1 ∩ R as P1(1), . . . , P1(m)
such that P1(i) only has cover relations with P1(i − 1) and P1(i + 1), when these exist,
and index the elements in P2 ∩ R analogously such that P1(i) and P2(i) are equivalent
for each i. Given I1 ∈ J(P1) and I2 ∈ J(P2), let the switching position be the smallest value
j such that P1(j) ∈ I1 if and only if P2(j) ∈ I2. One can show that a switching position
exists unless R ⊆ I1 and R ∩ I2 = ∅ or vice versa.

Proof. We say that a subset R of a poset P is on top if there is no j ∈ P\R such that j is
larger than an element in R and define a subset being on bottom similarly. One can show
that, when γ1 and γ2 have a crossing overlap, up to relabeling, R1 is on top and R2 is
on bottom. In the following, suppose that γ1 crosses arcs α1, . . . , αd1 in T and γ2 crosses
η1, . . . , ηd2 . We assume that these arcs have a crossing overlap in regions R1 ⊆ P1 and
R2 ⊆ P2. Let 1 ≤ s ≤ t ≤ d1 and 1 ≤ s′ ≤ t′ ≤ d2 be such that R1 = {αs, . . . , αt} and
R2 = {ηs′ , . . . , ηt′}.

We focus on one case which includes a nonempty set Sw as an illustrative proof. We
will omit discussion of g-vectors as the previous proof already illustrated all relevant
ideas. Suppose s′ = 1 and s(γ2) is notched. It must be that s > 1 in order for γ1
and γ2 to have an intersection. Necessarily, the arc αs−1 is a spoke incident to the
puncture s(γ2). Index this set of spokes as σ1, . . . , σm in counterclockwise order such
that αs−1 = σ1. Suppose that γ1 crosses σ1, . . . , σk and let β be the arc which γ1 crosses
right before crossing σk, if it exists. We will assume t < d1 and t′ < d2; we can repeat
these arguments two times if we also have one of these cases. Table 4 provides the posets
P1, P2, P5, and P6. If β does not exist, then P5 is the chain between σk+1 and σk−1, with
order as in the Table. The poset P3 is obtained by taking P1 and replacing R1 > αt+1 with
R3 < ηt′+1 and P4 is obtained dually from P2.

We set A to be the union of pairs (I1, I2) such that one of the following holds: (1)
there is a switching position between R1 and R2, (2) R1 ⊆ I1 and R2 ∩ I2 = ∅, (3)
R2 ⊆ I2, R1 ∩ I1 = ∅, αt+1 ∈ I1 and ηt′+1 /∈ I2, or (4) R2 ⊆ I2, R1 ∩ I1 = ∅, αt+1 /∈ I1,
σk ∈ I2 only if β ∈ I1 and σk+1 /∈ I2 if the highest element σm is in I1. If β does not exist,
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P1 P2 P5 P6

· · ·

σk
. . .

σ2
σ1

R1

αt+1

β

· · · σ1

σ2

...
σm

R2

ηt′+1 · · ·

σk+1

...
σm

σ1

...
σk

β · · · αt+1

ηt′+1

· · ·

· · ·

Table 4: Some of the posets for a resolution of a transverse crossing between γ1 and γ2

the condition involving β is removed. We define ΦA as follows. If (I1, I2) has a switching
position, which is j in R1 and j′ in R2, then we set ΦA(I1, I2) = (I3, I4) where I3 is the
result of taking all elements of I1 up to αj and all elements of I2 after ηj′ and I4 is the
result of taking all elements of I2 up to ηj′ and all elements of I1 after αj. Since αj ∈ I1
if and only if ηj′ ∈ I2, these form order ideals. If a pair (I1, I2) is from item (2) we send
R1 to R3, if from item (3) we send R2 to R4, and if from item (4) we send R2 to R3. Some
of the elements σi do not have one clear image in P3 × P4, so care is taken in these latter
items to send them to appropriate places so that the resulting sets are still order ideals.

We let B be the complement of A in J(P1) × J(P2); explicitly, B is the set of tuples
such that R1 ∩ I1 = ∅, R2 ∪ ⟨σk⟩ ⊆ I2, αt+1 ∈ I1 only if ηt′+1 ∈ I2, and β ∈ I1 only if
σk+1 ∈ I2. Our definition of B implies that the restrictions of I1 ⊔ (I2\(R2 ∪ ⟨σk⟩)) to P5
and P6 are order ideals. This defines our bijection ΦB.

5 Implications

In [9], given a surface (S, M), Musiker, Schiffler, and Williams define two sets of arcs,
bangles C◦ and bracelets C, and show that the set of elements of AS arising from each
(B◦ and B respectively) forms a basis of AS. They leave as a question whether these sets
could also give the basis of AS when (S, M) has punctures; the lack of skein relations in
the punctured setting is a large reason why they did not extend their basis to this case.

Our skein relations show that a product xγ1 xγ2 of incompatible arcs can be written
in terms of B◦ and of B, which shows that these sets are still spanning in the punctured
case. Moreover, because our relations are always of the form xγ1 xγ2 = xC+ + YxC− , we
know that Lemma 6.3 from [9] remains true. As explained in Section 8.5 of the same
article, this will show that these sets are also linearly-independent.

Lemma 2. Let γ1 and γ2 be multicurves with at least one point of incompatibility on (S, M).
Then the expansion

xγ1 xγ2 = ∑
i

Yi Mi,
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where Mi ∈ B◦ and the Yi represent monomials in the coefficient variables, has a unique index j
such that Yj = 1.

As future work, it remains for us to verify that B and B◦ are still subsets of AS.
Although we expect this to be true, it is non-trivial to prove and will, as a consequence,
complete the proof that B and B0 remain bases in the punctured setting.
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Abstract. Although both noncrossing partitions and nonnesting partitions are uni-
formly enumerated for Weyl groups, the exact relationship between these two sets of
combinatorial objects remains frustratingly mysterious. In this abstract, we give a pre-
cise combinatorial answer in the case of the symmetric group using a new definition
of charmed roots.

Résumé. Les partitions non-croisées et les partitions non-emboîtées soient uniformé-
ment énumérées pour les groupes de Weyl, la relation exacte entre ces deux ensembles
d’objets combinatoires reste frustrante. Dans cet abstrait, nous donnons une réponse
combinatoire précise dans le cas du groupe symétrique en utilisant une nouvelle défi-
nition de racines charmées.

Keywords: Catalan combinatorics, noncrossing, nonnesting, Kreweras complement

1 Introduction

1.1 Noncrossing and nonnesting partitions

Let W ⊆ GL(V) be a finite complex reflection group acting in its reflection representation
on a complex vector space V of dimension r with reflections T [10, 13]. Our results will
mostly concern the symmetric group W = Sn, where the set of reflections is the set of
all transpositions (i, j). The ring of W-invariants C[V]W is a polynomial ring generated
by invariants of degrees d1 ≤ d2 ≤ · · · ≤ dr. The Coxeter number of a well-generated W
(that is, W is generated by r reflections) is h = dr and the W-Catalan number is
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Cat(W) :=
r

∏
i=1

h + di

di
. (1.1)

The c-noncrossing partition lattice NC(W, c) is the interval [e, c]T in the absolute order.
For Sn, the absolute length of a permutation w ∈ Sn is n minus the number of cycles
of w; the cycles of w ∈ NC(W, c) are the blocks of a noncrossing partition. Until very
recently, the number of noncrossing partitions had only been computed case-by-case; a
uniform proof was found in the case of real W in [8]. For W a well-generated finite
complex reflection group with Coxeter element c, |NC(W, c)| = Cat(W).

Let now W be a Weyl group (a crystallographic real reflection group), with positive
roots Φ+. In this abstract, we will systematically replace positive roots by their corre-
sponding reflections. The positive root poset is the partial order on Φ+ defined by α ≤ β

iff β − α is a nonnegative sum of positive roots; for Sn, Φ+ is the partial order defined on
the transpositions (i, j) with covering relations (i + 1, j)⋖ (i, j)⋖ (i, j + 1) (see Figure 1
for an example). The nonnesting partitions NN(W) are the order ideals in the positive
root poset [16, Remark 2]. There are uniform proofs that |NN(W)| = Cat(W).

Despite the fact that they are both counted by Cat(W), there are at least two Incon-
gruities between NC(W, c) and NN(W):

1. NC(W, c) is defined for well-generated complex reflection groups, while NN(W)
is only defined for Weyl groups;

2. the definition of NC(W, c) requires the choice of a Coxeter element, while NN(W)
has no such dependence;

The exact relationship between noncrossing and nonnesting partitions remains frustrat-
ingly mysterious, and finding a uniform “natural” bijection is perhaps the biggest open
question in Coxeter–Catalan combinatorics. To our taste, there are two approaches to
this problem: the first approach is based on the case-by-case combinatorial models avail-
able in the classical types A, B, D [9, 19, 6, 11, 18, 3]; the second approach was pioneered
in [2] based on observations in [14, 4], and uses a mysterious coincidence of two cyclic
actions to induce a bijection. Our main theorem refines both of these approaches in the
special case of the symmetric group Sn.

1.2 Cyclic actions

For W a well-generated complex reflection group and c a Coxeter element, the c-Kreweras
complement on the noncrossing partition lattice is the anti-automorphism of NC(W, c)
defined by Krewc(π) = π−1c [1, Section 4.2], [12]. Since Krew2

c(π) = c−1πc and c has
order h, Krewc has order h if −1 ∈ W, and 2h otherwise.
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For W a Weyl group, rowmotion on nonnesting partitions is the map Row(p) =
minΦ+{α | α ̸≤ β for any β ∈ p}. Panyushev conjectured that the order of Row on
NN(W) was h if −1 ∈ W and 2h otherwise [14], and Bessis and Reiner refined Panyu-
shev’s conjecture by observing that Row had the same orbit structure on NN(W) as
Krew on NC(W, c) [4]. This was proven by Armstrong, Stump, and Thomas [2].

But Incongruity (2) remains—while the definitions of NC(W, c) and Krewc depend
on the choice of a Coxeter element, the set NN(W) and its action Row do not depend
on any such choice. We address this lack of dependence on the Coxeter element c by
modifying the definition of Row [20, 21]. It is well-known that rowmotion can be written
as a sequence of local moves as follows [5, 17]. A toggle togα(p) of a nonnesting partition
p at a positive root α either adds α to p (when α ̸∈ p) or removes α from p (when α ∈ p),
provided that the result is again a nonnesting partition. For nonnesting partitions, Row
can be computed by toggling each root of the root poset in order of height (or by row).
It is natural to modify the order of these toggles.

For c a standard Coxeter element and c a particular choice of reduced word for c, the
c-sorting word for the long element w◦ is the leftmost reduced word in simple reflections
for w◦ in c∞. Write w◦(c) = [r1, r2, . . . , rN ], with each ri ∈ S and define the inversion
sequence inv(w◦(c)) = [t1, t2, . . . , tN ], where ta := (r1r2 · · · ra−1)ra(r1r2 · · · ra−1)

−1. Then
inv(w◦(c)) totally orders the reflections of W.

We can now address Incongruity (2) by defining a modification of rowmotion to
accomodate a Coxeter element c:

Krowc : NN(W) → NN(W) (1.2)

p 7→
(

togtN
◦ · · · ◦ togt2

◦ togt1

)
(p).

We call this map the c-Kroweras complement.

1.3 Main Theorem

Our main theorem uses the c-Kreweras and c-Kroweras complements to relate non-
crossing and nonnesting partitions. Recall that the support of a noncrossing partition
π ∈ NC(W, c) is the set Supp(π) of simple reflections required to write a reduced word
in simple reflections for π; similarly, the support of a nonnesting partition p ∈ NN(W) is
the set Supp(p) of simple roots that lie in p (as an order ideal of Φ+).

Theorem 1. Let Sn be the symmetric group, and fix a standard Coxeter element c ∈ Sn. Then
there is a unique bijection Charmc : NC(Sn, c) → NN(Sn) satisfying Charmc ◦ Krewc =
Krowc ◦ Charmc and Supp = Supp ◦ Charmc.

In particular, for any standard Coxeter element c ∈ Sn, the order of Krowc on NN(W)
is 2h. The statement of the main theorem in Armstrong-Stump-Thomas [2] can be ob-
tained from the statement of our Theorem 1 by replacing Krowc by Row, and replacing
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the symmetric group by any finite Weyl group; the main difference from the result in [2]
is that we resolve Incongruity (2), constructing truly different bijections between non-
crossing and nonnesting partitions for each Coxeter element.

2 Coxeter elements and charmed roots

Recall that a (standard) Coxeter element c is a product of the simple reflections in any
order. To ease notation, we reserve the symbols ri to refer to a fixed ordering c :=
[r1, r2, . . . , rn−1] of S and define c := r1r2 · · · rn−1. We also reserve the symbol sk = r1 for
the first simple reflection in the chosen reduced word, and write c′ = r2 · · · rn−1r1.

It is easy to show that the cycle notation of any Coxeter element in the symmet-
ric group has a particularly simple form: c ∈ Sn consists of a single cycle with an
initial increasing subsequence starting at 1 and ending at n, followed by a decreas-
ing sequence of the remaining unused entries. Let c be a Coxeter element with cycle
notation (w1, w2, . . . , wm, wm+1 . . . , wn), where 1 = w1 < w2 < · · · < wm = n and
n = wm > wm+1 > · · · > wn > w1 = 1. Write

Lc := {w2, . . . , wm−1} and Rc := {wm+1, . . . , wn}.

Definition 1. For 1 < i < j < n, we say that a root (i, j) is c-charmed if i ∈ Lc and j ∈ Rc or
if i ∈ Rc and j ∈ Lc and c-ordinary otherwise. We write ♥c for the set of c-charmed roots.

In figures, we depict c-charmed roots with a ♥ and ordinary roots by a circle. The
root poset of type A8 is illustrated in Figure 1.

(12) (23) (34) (45) (56) (67) (78) (89)

(13) (24) (35) (46) (57) (68) (79)

(14) (25) (36) (47) (58) (69)

(15) (26) (37) (48) (59)

(16) (27) (38) (49)

(17) (28) (39)

(18) (29)

(19)

♥
♥
♥

♥

♥
♥
♥

♥
♥

♥
♥ ♥

Figure 1: The Hasse diagram of the positive root poset Φ+ of type A8. For c =

s2s1s3s6s5s4s8s7, the c-charmed roots from Definition 1 are marked using hearts.
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Example 1. Consider the Coxeter element c = s2s1s3s6s5s4s8s7 in S9. The element c has cycle
notation (1, 3, 4, 7, 9, 8, 6, 5, 2), so that

Lc = {3, 4, 7} and Rc = {8, 6, 5, 2}.

We visualize the cycle notation of c by drawing it as points labeled w1, w2, . . . , wn
counter-clockwise around a circle. We visualize a root (i, j) by connecting the vertices
labeled i and j by a line segment. For any a, b, c, d ∈ [n], we say that (a, b) crosses (c, d)
if and only if (a, b) and (c, d) are crossing in their interior (note that (a, b) does not cross
itself). For 1 < i < j < n, it is easy to check that a root (i, j) is c-charmed if and only if
(i, j) crosses (i − 1, j + 1). Figure 2 illustrates this visualization.

1

3
47

9

8
6 5

2

1

3
47

9

8
6 5

2

Figure 2: The visualization of the cycle notation (1, 3, 4, 7, 9, 8, 6, 5, 2) of c =

s2s1s3s6s5s4s8s7. Left: the initial c-charmed simple root (6, 7) (in red) intersecting the
root (5, 8) = (6 − 1, 7 + 1) (dashed). Right: the c-charmed root (4, 6) (in red) intersect-
ing the root (3, 7) = (4 − 1, 6 + 1) (dashed).

3 Charmed bijections

In this section, we define a general family of charmed bijections between balanced pairs
of subsets and nonnesting partitions. Our charmed bijections depend on a choice of
decoration of the roots in Φ+ = Φ+(An−1), and use certain intimate families of lattice
paths as intermediate objects. Specializing to the c-charmed roots coming from a Coxeter
element c, we obtain our c-charmed bijections between NC(Sn, c) and NN(Sn).

3.1 Balanced pairs and noncrossing partitions

Definition 2. Say that a pair of sets (O, I) with O, I ⊆ [n] is balanced if |O| = |I| and
|O ∩ [k]| ≥ |I ∩ [k]| for all 1 ≤ k ≤ n. Write Bal(n) for all balanced pairs of subsets of [n].

We first show that balanced pairs are naturally in bijection with c-noncrossing parti-
tions. Let π ∈ NC(Sn, c). We define O(π) to be the set of integers i for which there exists
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an j > i in the same block as i, and we define the set I(π) to be the set of integers j such
that there exists an i < j in the same block as j. It is immediate from the definition that
(O, I) ∈ Bal(n).

Proposition 1. The map1 π 7→ (O(π), I(π)) is a bijection between NC(Sn, c) and Bal(n).

Proof. We construct its inverse. For a given pair (O, I) ∈ Bal(n), we can construct a
π ∈ NC(Sn, c) with O(π) = O and I(π) = I as follows. The closed singletons of π

are the integers that are neither in O nor I. We place each integer in O \ I in its own
block and call these blocks open. Then we add iteratively the integers in I to the open
blocks, starting with the smallest integer, such that the intermediate partition is always
noncrossing. This is achieved by adding an integer x to the first open block we visit
when walking from x towards n via 1 in the cycle notation of c. If an integer in I \ O is
added to a block we call this block closed and thereafter do not add any integers to it. By
construction we have O(π) = O and I(π) = I.

The bijection of Proposition 1 is illustrated in Figure 3.

O \ I = {1, 3}

1

3
47

9

8

6 5
2

I = {6, 7, 8}

1

3
47

9

8

6 5
2

I = {6, 7, 8}

1

3
47

9

8

6 5
2

I = {6, 7, 8}

1

3
47

9

8

6 5
2

Figure 3: The construction of a noncrossing partition in NC(S9, c) for c =

s2s1s3s6s5s4s8s7 = (1 3 4 7 9 8 6 5 2) starting with the outgoing set O = {1, 3, 6} and
incoming set I = {6, 7, 8}. We depict open blocks in dashed teal, and closed blocks in
solid red; we circle open and closed singletons using the same color code.

3.2 Intimate families

We draw the root poset for Sn by placing the root (i, j) in the plane with coordinates
((i + j − 1)/2, (j − i)/2) and—since the label (i, j) is implied by the position—we may
omit the labels on the roots. For 1 ≤ i ≤ n, we draw n additional points labeled by i at
coordinates (i − 1/2, 0) and call these extra points integral vertices. For ♥ ⊆ Φ+, we call
a root (i, j) charmed if (i, j) ∈ ♥ and ordinary otherwise. We depict charmed roots using

1To be precise, both O and I depend on c, however since c will always be clear from the context we
omit it in the notation.
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♥ ♥ ♥ ♥ ♥ ♥

Figure 4: Left: the five allowed local configurations for charmed families. Right: the
two local configurations are forbidden for charmed families.

hearts ♥ and ordinary roots using circles—an example of c-charmed roots is illustrated
in Figure 1.

A path is a lattice path with step set {(1/2, 1/2), (1/2,−1/2)} that starts and ends
at an integral vertex and stays strictly above the x-axis. We call (1/2, 1/2)-steps up, and
(1/2,−1/2)-steps down; a peak (resp. valley) of a path is a root contained in an up step
to its left (resp. right) and a down step to its right (resp. left). Two paths are kissing
if they do not cross or share edges—they may meet at a vertex, where they are said to
kiss. (Note, though, that kisses are not required for two paths to be kissing.) A family of
paths is kissing if they are pairwise kissing. A path feints at a root (i, j) if (i, j) is a valley,
but the path does not kiss any path at (i, j). These definitions are illustrated on the right
of Figure 4: the top configuration is a feint at a charmed root, while the bottom one is a
kiss at an ordinary root.

For ♥ ⊆ Φ+, a family L of kissing paths is called ♥-charmed if:

• paths only kiss at charmed roots and

• paths only feint at ordinary roots.

In other words, a family of paths is charmed if it avoids the two local configurations
shown on the right of Figure 4.

Definition 3. A family L of ♥-charmed kissing paths is called ♥-intimate if:

• every ordinary root either lies above all paths in L or is contained in some path in L and

• no path contains a root above a charmed peak of a path in L, unless that charmed peak is
the location of a kiss.
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3.3 Balanced pairs and intimate families

We now relate balanced pairs and intimate families of paths. For a family L of paths, we
call an integral vertex on the x-axis outgoing if it is incident to an up step and incoming
if it is incident to a down step (an integral vertex can be both outgoing and incoming).
Denote by Out(L) (resp. In(L)) the set of labels of outgoing (resp. incoming) vertices of
L. It is clear that (Out(L), In(L)) is balanced.

Lemma 1. Let ♥ ⊆ Φ+ and let (O, I) ∈ Bal(n). Then there is a unique ♥-inimate family
L(O,I) with Out(L(O,I)) = O and In(L(O,I)) = I.

Proof. We first construct a well-formed word of parentheses from the subsets O and I.
For i from 1 to n, write:

• a (i parenthesis if i ∈ O \ I,

• a )i parenthesis if i ∈ I \ O, and

• )i(i parentheses if i ∈ O ∩ I.

We now construct an ♥-intimate family L recursively, starting with the empty family of
paths. At each step, we pick neighbouring parentheses of the form (i)j, delete them, and
add the path P that starts at i and ends at j that takes a down step whenever possible
without violating the condition that the family is charmed, and an up step otherwise.
Then L ∪ {P} is intimate:

• If there were an ordinary root below L ∪ {P} that wasn’t part of a path, then that
root would lie between p and L, since L was intimate. But then P took an up step
instead of a possible down step, contradicting the definition of P.

• If a previously constructed path P′ in L started at an integral vertex after i, ended
before j, and had a charmed peak which is not the location of a kiss, then our new
path P will kiss P′ at that charmed peak.

The order of choosing two neighbouring parentheses is irrelevant. The family produced
is unique, since if at any point a path uses a step different from those prescribed by
the algorithm above, then the resulting family of paths will be non-intimate. This non-
intimacy will persist, regardless of how the family is extended.

An example of the algorithm used in the proof of Lemma 1 is given in Figure 5.
Let L be an ♥-intimate family of paths. We define the order ideal J(L) of L to be the

set of all roots (i, j) which lie on or below a path in L. It is clear that J(L) is an order
ideal and hence is in NN(Sn).

Lemma 2. Let ♥ ⊆ Φ+ and J ∈ NN(Sn). Then there exists a unique ♥-intimate family LJ
with J(LJ) = J.
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♥
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Figure 5: The construction of an intimate family of paths with outgoing set {1, 3, 6}
and incoming set {6, 7, 8}. The corresponding word of parentheses is (1(3)6(6)7)8.

Proof. We construct an ♥-intimate family L recursively, starting with the empty family
of paths. At each step, we add a maximal path p to L such that all roots contained in
p lie in J. We then replace J by the order ideal generated by all ordinary roots in J not
contained in a path of L, all charmed feints of paths of L, and roots in J not lying below
a path of L. The recursion stops when J is empty. It is clear that the resulting family L
is the unique ♥-intimate family of paths with order ideal J.

An example of the algorithm used in the proof of Lemma 2 is given in Figure 6.

3.4 Charmed bijections between balanced pairs and nonnesting parti-
tions

As a direct consequence of Lemmas 1 and 2, we obtain the following family of bijections
between balanced pairs and nonnesting partitions.

Proposition 2. Fix a collection of charmed roots ♥ ⊆ Φ+. Then the map J♥ : Bal(n) →
NN(Sn) defined by J♥(O, I) = J(L(O,I)) is a bijection.

Charmed roots along the upper boundary of Φ+ do not affect the bijection of Propo-
sition 2. On the other hand, each of the 2(

n−2
2 ) charming choices for the the roots (i, j)

with 1 < i < j < n gives rise to a distinct bijection between NN(Sn) and Bal(n).
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Figure 6: The construction of the intimate family of paths with order ideal J, where
J contains the roots in the grey-shaded region of the top left picture. At each step,
the order ideal under consideration consists of the roots contained in the teal-shaded
region.

4 Charmed bijections between noncrossing and nonnest-
ing partitions

Let c ∈ Sn be a Coxeter element. Using Proposition 1 and Proposition 2, we now con-
struct a bijection between c-noncrossing partitions and nonnesting partitions that depends
on the choice of Coxeter element c, resolving Incongruity (2).

Definition 4. The c-charmed bijection between c-noncrossing partitions and nonnesting par-
titions is given by

Charmc : NC(Sn, c) → NN(Sn)

π 7→ J♥c(O(π), I(π)),

where the set ♥c of c-charmed roots is defined in Definition 1 and the map J♥c is defined in
Proposition 2.

Theorem 2. For all Coxeter elements c, the bijection Charmc is the unique support-preserving
bijection between NC(Sn, c) and NN(Sn) satisfying Krowc ◦ Charmc = Charmc ◦ Krewc.

For reasons of space, we only sketch the idea of the proof and refer the reader to the
full version of this extended abstract for the details [7]. We say that a simple reflection
s is initial in c if ℓS(sc) ≤ ℓS(c). If s = sk = (k, k + 1) is initial in c, then c′ = scs is
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also a Coxeter element of Sn, and we will denote this by writing c k−→ c′. Theorem 2
(and hence Theorem 1) are proven using Cambrian induction—that is, we show that the
theorem holds for a particular Coxeter element c1 (the base case), and then we show that

if c k−→ c′ and the theorem holds for c, then the theorem also holds for c′ (the inductive
step). Since all Coxeter elements in Sn are conjugate by a sequence of conjugations by
initial simple reflections [15, Lemma 1.7], the theorem holds for all Coxeter elements.

As a consequence of our proof, we obtain a simple description for reading the blocks
of the noncrossing partition from the corresponding intimate family.

Corollary 1. Let L be an ♥c-intimate family and π ∈ NC(Sn, c) the corresponding noncrossing
partition with (Out(L), In(L)) = (O(π), I(π)). The blocks of π consist of the integers which
are connected by paths in L after reinterpreting each kiss between a pair of paths in L at a
charmed root as a crossing.
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Fragmenting any Parallelepiped into a Signed
Tiling

Joseph Doolittle*1 and Alex McDonough†2

1Institute of Geometry, TU Graz, Graz, Austria
2Department of Mathematics, University of California, Davis, CA, USA

Abstract. It is broadly known that any parallelepiped tiles space by translating copies
of itself along its edges. In earlier work relating to higher-dimensional sandpile groups,
the second author discovered a novel construction which fragments the parallelpiped
into a collection of smaller tiles. These tiles fill space with the same symmetry as the
larger parallelepiped. Their volumes are equal to the components of the multi-row
Laplace determinant expansion, so this construction only works when all these signs
are non-negative (or non-positive).

In this work, we extend the construction to work for all parallelepipeds, without re-
quiring the non-negative condition. This naturally gives tiles with negative volume,
which we understand to mean canceling out tiles with positive volume. In fact, with
this cancellation, we prove that every point in space is contained in exactly one more
tile with positive volume than tile with negative volume. This is a natural definition
for a signed tiling.

Our main technique is to show that the net number of signed tiles doesn’t change
as a point moves through space. This is a relatively indirect proof method, and the
underlying structure of these tilings remains mysterious.

Keywords: periodic tiling, signed tiling, parallelepiped, determinant expansion

1 Introduction

To motivate our work, we begin with an illustrative two-dimensional example of our
main construction. Consider the matrices

K =
[

1 2
−1 3

]
, S{1}(K) =

[
1 0
0 −3

]
, and S{2}(K) =

[
0 2
1 0

]
.
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funded by the FWF Project I 5788.
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Figure 1: On the left is the tiling given by translations of the parallelepiped ∏(K). On
the right is the tiling given by translations of the fundamental parallelepipeds of the
fragment matrices S{1}(K) and S{2}(K).

The matrices S{1}(K) and S{2}(K) are called the fragment matrices of K. They are
obtained by negating the second row and then zeroing out a diagonal. Directly from the
Laplace expansion for determinants, we can see that

−det(K) = det(S{1}(K)) + det(S{2}(K)).

Given a matrix N, let Π(N) be the (half-open) fundamental parallelepiped of N (see
Definition 2.2 for details). It is broadly known that for any nonsingular matrix N, copies
of Π(N) can be used to form a periodic tiling of space. For example, the tiling on the
left of Figure 1 is formed by copies of the parallelepiped Π(K) that are translated by the
integer linear combinations of columns of K (see Lemma 2.4).

Curiously, there also exists a tiling on the same lattice that is formed by the paral-
lelepipeds Π(S{1}(K)), and Π(S{2}(K)). In particular, the tiling on the right of Figure 1
is formed by Π(S{1}(K)) and Π(S{2}(K)), along with their translates by all of the integer
combinations of columns of K.

This tiling is a two dimensional example of a construction which was introduced
by the second author to define matrix-tree multijections [4, 5]. This construction can be
applied to any invertible (r + k) × (r + k) matrix M, and produces a collection of (r+k

r )
fragment matrices of M. When the determinants of the fragment matrices are all non-
negative (or all non-positive), translating them by integer linear combinations of the
columns of M produces a periodic tiling of Rr+k.

In this paper, we prove that the elegant tiling structure of the fragment matrices is
still present even without the restriction on M that all the fragment matrices have non-
negative determinant. In particular, while the translates do not always form a traditional
tiling with no overlap or gaps, they always produce a signed tiling.
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Figure 2: On the left is the tiling obtained by translating the fundamental paral-
lelepipeds of S{1}(L) by integer combinations of columns of L. The darker regions
indicate where two parallelepipeds overlap, while the lighter region is the portion cov-
ered by a single parallelepiped. On the right is the tiling obtained by translating the
fundamental parallelepipeds of S{2}(L) by integer combinations of columns of L. This
time, there are no overlaps, but the white region is formed by gaps between paral-
lelepipeds. By Theorem 2.9, the shaded region on the right precisely corresponds to
the darker region on the left.

To illustrate this signed version of the tiling, we give another 2-dimensional example.
This time, the determinants of the fragment matrices have opposite signs.

Let

L =
[

1 2
1 5

]
, S{1}(L) =

[
1 0
0 −5

]
, and S{2}(L) =

[
0 2
−1 0

]
.

As in the previous example, the fragment matrices S{1}(L) and S{2}(L) are formed
by negating the second row and zeroing a diagonal. Next, we consider translates of the
fragment matrices by integer linear combinations of the columns of L. In this case, the
tiles no longer perfectly fill space, and instead overlap, see Figure 2.

In our previous example, the determinants of S{1}(K) and S{2}(K) were both negative.
In this example, S{1}(L) is negative, but S{2}(L) is positive. Moreover, the positively
signed tiles overlap. Nevertheless, an elegant tiling structure can still be found.

Consider the two partial tilings given in Figure 2. Every point in the plane is covered
by either one translate of Π(S{1}(L)) or two translates of Π(S{1}(L)) and one translate of
Π(S{2}(L)). This means that if we define translates of Π(S{1}(L)) to be positive tiles and
translates of Π(S{2}(L)) to be negative tiles, then for any point p ∈ R2, the signed total of
all tiles containing p is always 1.

This surprising alignment of positive and negative tiles works in general. Reiterating
the previous setting, we let M be an invertible (r + k) × (r + k) matrix. We break this
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matrix into two parts, the first r rows and the last k rows. The two tiles from the two
dimensional case become (r+k

r ) many tiles, indexed by which r columns are preserved in
the top r rows (see Definition 2.5 for details).

We generalize the cancellation observed in the example with L by introducing a
function f . This function counts the number of positively signed tiles at a point, minus
the number of negatively signed tiles at that point. Our main result is the following.

Theorem 2.9. The function f : Rr+k → Z, defined by

f (p) :=

(
∑

T∈T+(M)
1T(p)

)
−
(

∑
T∈T−(M)

1T(p)

)
,

is constant with value (−1)k sgn(det(M)).

In Section 2, we describe the general construction and introduce the notation nec-
essary to understand the statement of Theorem 2.9. In Section 3, we give a high level
description of the general proof argument. In Section 4, we give an example of a four
dimensional signed tiling, which we visualize in 2 dimensions. Finally, in Section 5, we
consider future extensions and pose questions we think will be interesting to explore.
For more details, see our full paper on ArXiv [3].

2 Signed Tiling Construction

Fix positive integers r and k as well as an (r + k) × (r + k) matrix M with real entries.
Additionally, fix a generic direction vector w ∈ Rr+k. More precisely, w can be anything
but a set of measure 0 that depends on N.

Remark 2.1. Even more precisely, w is sufficiently generic for our purposes if it is not
spanned by any collection of r + k− 1 column vectors of any of the (r + k)× (r + k) matrices
we will be working with. Specifically, these matrices are M along with Sσ(M) for σ ∈
([r+k]

r ) (See Definition 2.5).

In this paper, we work extensively with parallelepipeds. The vector w gives a consis-
tent way to define half-open parallelepipeds.

Definition 2.2. Let N be an (r + k) × (r + k) matrix with real entries. Define Π(N) to be
the set of p ∈ Rr+k such that for all sufficiently small ϵ > 0, the point p + ϵw is in

∑
i∈[r+k]

{xiNi : 0 ≤ xi ≤ 1} .

The set Π(N) is called the (half-open) parallelepiped of N (with respect to w).
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Although Definition 2.2 depends on w, we omit it in our notation for conciseness.

Remark 2.3. The genericity conditions for w (which are discussed in Remark 2.1) are
precisely the conditions necessary to ensure the following condition. For all matrices
N that we will be working with and all points p ∈ Rr+k, there exists some ϵ > 0 such
that the segment from p to p + ϵw does not intersect the boundary of the fundamental
parallelepiped of N (except possibly at p).

Before we get to our first lemma, let us quickly clarify some confusing notation. The
term disjoint union can be used in two different ways in mathematics, so we will denote
these with two different symbols. For sets A and B, we write A

⊔
B for the set A ∪ B

with the added restriction that A ∩ B = ∅. We use the notation A
⊎

B to indicate the
other kind of disjoint union, where A and B are considered as separate objects.

We now present a simple observation about translating parallelepipeds, which will
be the foundation of our construction.

Lemma 2.4. For any choice of M, we have

Rr+k =
⊔

z∈Zr+k

(Π(M) + Mz) .

This lemma follows from the fact that the unit cube tiles space, and the displacement
between cubes in this tiling is all Z-valued vectors. The lemma describes this same
tiling, after applying M as a linear transformation. Our main construction is of a more
complicated tiling under the same translation lattice, which is formed by fragmenting M.

Definition 2.5. Let σ ∈ ([r+k]
r ), i.e., σ ⊂ [r + k] with |σ|= r. The σ-fragment matrix of M,

written Sσ(M), is the matrix obtained from M by the following 3 step process:

1. For each i ̸∈ σ, replace the first r entries of column i with 0.

2. For each i ∈ σ, replace the last k entries of column i with 0.

3. Negate all of the entries in the last k rows.

Example 2.6. Let r = k = 2. Any (r + k) × (r + k) matrix M has 6 associated fragment
matrices corresponding to the subsets of ([4]

2 ). For example, if

M =


3 2 −4 1
1 0 2 2
2 0 −1 1
0 1 −2 3

 and σ = {1, 4}, then Sσ(M) =


3 0 0 1
1 0 0 2
0 0 1 0
0 −1 2 0

 .

To form a signed tiling, we parameterize tiles formed by translating the fundamental
parallelepiped of fragment matrices by integer combinations of the columns of M.
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Definition 2.7. For any z ∈ Zr+k and σ ∈ ([r+k]
r ), the tile parameterized by the pair (z, σ)

is defined as
T (z, σ) := Π(Sσ(M)) + Mz.

Note that since Π(Sσ(M)) depends on w, the tile T (z, σ) will depend on w as well.
Nevertheless, the precise choice of w is not important for our results as long as it remains
fixed (and sufficiently generic, see Remark 2.1). Also, note that we usually think of a tile
T (z, σ) as a polytope made up of a collection of points, not the points themselves. With
this perspective in mind, we introduce the following definition.

Definition 2.8. Consider the sets of tiles

T+(M) : =
⊎

z∈Zr+k

 ⊎
σ∈([r+k]

r ), det(Sσ(M))>0

T (z, σ)

 ,

and T−(M) : =
⊎

z∈Zr+k

 ⊎
σ∈([r+k]

r ), det(Sσ(M))<0

T (z, σ)

 .

The set T+(M) is called the set of positive tiles, while T−(M) is called the set of negative
tiles. We also write T(M) := T+(M)

⊎
T−(M). Note that we don’t include the tiles where

det(Sσ(M)) = 0, but in this case, Sσ(M) is not invertible, and Π(Sσ(M)) is empty.

Definition 2.8 allows us to cleanly state our main result. Note that we write 1T for
the indicator function of a tile T.

Theorem 2.9. The function f : Rr+k → Z, defined by

f (p) :=

(
∑

T∈T+(M)
1T(p)

)
−
(

∑
T∈T−(M)

1T(p)

)
,

is constant with value (−1)k sgn(det(M)).

When one of T+(M) or T−(M) is empty, Theorem 2.9 specializes to a result about
more traditional tilings. For this result, we will treat each T (z, σ) as a collection of
points in Rr+k. We state only the version where T−(M) is empty, but the same statement
holds if “non-negative” is replaced with “non-positive”.

Corollary 2.10. [5, Corollary 9.2.8] If the sign of det(Sσ(M)) is non-negative for each σ ∈
([r+k]

r ), then

Rr+k =
⊔

z∈Z

 ⊔
σ∈([r+k]

r )

T (z, σ)

 .
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Remark 2.11. The conditions required on M for Corollary 2.10 to apply are discussed
in [5, Section 6.7]. The original proof of the corollary relies on these properties, so we
needed different methods to prove the more general Theorem 2.9. A special case of
Corollary 2.10 was used in [4] to define a family of multijections between the sandpile
group and cellular spanning forests for a large class of cell complexes. This generalizes a
construction of Backman Baker and Yuen which used zonotopal tilings to answer ques-
tions about chip-firing on regular matroids[1].

3 An Outline of the Proof

Our proof of Theorem 2.9 is structured in the following way.

1. First, we show that the average value of f is (−1)k sgn(det(M)).

2. Next, we group the facets of the tiles into collections that lie in the same hyper-
plane.

3. After this, we imagine a particle crossing a point contained in one of these collec-
tions of facets. We show that when doing so, it crosses exactly two facets. Further-
more, in one crossing it enters a positive tile or exits a negative tile, while in the other
crossing, it exits a positive tile or enters a negative tile.

4. From these observations, we conclude that f is constant. Theorem 2.9 then follows
from our first observation.

To find the average value of f , we use the multiple row version of Laplace’s deter-
minant expansion formula as well as some basic calculus techniques. One important
observation is the following chain of equalities, which holds for any σ ∈ ([r+k]

r ).

∑
z∈Zr+k

∫
Π(M)

1T (z,σ)(x)dx =
∫

Rr+k
1T (0,σ)(x)dx =

∫
Rr+k

1Π(Sσ(M))(x)dx = |det(Sσ(M))|.

The longest and most technical part of our proof is the facet grouping result. This
argument required careful bookkeeping and several applications of Cramer’s rule.

4 Lower Dimensional Slices

While Theorem 2.9 gives a signed tiling of Rr+k, it is also possible to visualize the tiling in
Rk or Rr by fixing the first r or last k entries respectively. We conclude with an example
of a 2-dimensional slice of a 4-dimensional signed tiling.
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Example 4.1. For the matrix M from Example 2.6, the set T(M) consists of 6 families of
4-dimensional parallelepipeds, where each family contains infinitely many translations
of a single fragment.

By taking the determinant of each fragment, we find that

T+(M) =
⊔

z∈Zr+k

 ⊔
σ∈{(1,2),(1,3),(1,4),(2,3),(2,4)}

T (z, σ)

 , and

T−(M) =
⊔

z∈Zr+k

T (z, {3, 4}).

Confirming that Theorem 2.9 holds for this example is not a completely straightfor-
ward task, even with the help of a computer. Nevertheless, regardless of the choice of
w, one can show that each p ∈ R4 is contained in

• one tile in T+(M) and no tiles in T−(M),

• two tiles in T+(M) and one tile in T−(M), or

• three tiles in T+(M) and two tiles in T−(M).

In each case, the value of f (p) is 1, which is also the sign of det(M).
It is possible to visualize this tiling by taking a 2-dimensional slice which fixes the

last 2 coordinates in R4. Each of the six families of tiles are given in Figure 3. In Figure 4,
we combine the positive tiles and the negative tiles. Notice that if the negative tiles are
“subtracted” from the positive tiles, the region formed by the difference covers the plane.
This demonstrates Theorem 2.9.

5 Open Problems

The main motivation for this project was an attempt to gain a deeper understanding
of a curious phenomenon (in particular Corollary 2.10). While we were successful at
generalizing this statement to Theorem 2.9, this new result is just as surprising. We
expect that a deeper exploration of this problem will lead more surprises in the future,
and we have several specific directions in mind the explore.

Our initial approach when attempting to prove Theorem 2.9 was to consider an arbi-
trary point in Rr+k (or Π(M)) and compute which tiles contain this point. A direct proof
of this form would give additional insight about the tiling, since it would allow us to
calculate the number and type of tiles containing a given point. However, this method
was more challenging than we expected, and we ended up relying on an indirect method
by focusing on the facets and proving that f is constant.
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det(S{1,2}(M)) = 2 det(S{1,3}(M)) = 10 det(S{1,4}(M)) = 5

det(S{2,3}(M)) = 24 det(S{2,4}(M)) = 16 det(S{3,4}(M)) = −20

Figure 3: Here we show the contributions of each of the six classes of tiles in Exam-
ple 4.1 to a 2-dimensional slice of the tiling. Notice that the proportion of the plane
that is covered by a specific class of tiles (with multiplicity for any overlapping tiles)
is proportional to the magnitude of the determinant of the corresponding fragment
matrix.
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Figure 4: This image on the left is formed by overlapping the 5 positive tiles in Figure 3
while the image on the right is given by the single negative tile. By Theorem 2.9, each
point is covered by exactly one more positive tile than negative tile.

Open 5.1. What is the best algorithm to determine which tiles contain a given point? Can such
an algorithm be used to give a more direct proof of Theorem 2.9?

Another promising method to prove Theorem 2.9 is to use Fourier analysis, applying
similar methods to those used in [2] (see also [6]). Perhaps these ideas could lead to a
more elegant proof once the background is established.

Open 5.2. Is there a proof for Theorem 2.9 using Fourier analysis?

In addition to an alternate proof of the main theorem, we would also be interested in
generalizing this result. As written, our construction relies on a choice of coordinates.
While it should be possible to translate the statement into coordinate-free language, this
is not a trivial task. Nevertheless, such a generalization would likely provide additional
insight into the underlying phenomenon behind our construction.

Open 5.3. Is there a coordinate-free analogue to Theorem 2.9 or Corollary 2.10?
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Abstract. Given a lattice polytope P and a prime p, we define a function from the set
of primitive symplectic p-adic lattices to the rationals that extracts the ℓth coefficient of
the Ehrhart polynomial of P relative to the given lattice. Inspired by work of Gunnells
and Rodriguez Villegas in type A, we show that these functions are eigenfunctions of
a suitably defined action of the spherical symplectic Hecke algebra. Although they
depend significantly on the polytope P, their eigenvalues are independent of P and
expressed as polynomials in p. We define local zeta functions that enumerate the val-
ues of these Hecke eigenfunctions on the vertices of the affine Bruhat–Tits buildings
associated with p-adic symplectic groups. We compute these zeta functions by enu-
merating p-adic lattices by their elementary divisors and, simultaneously, one Hermite
parameter. We report on a general functional equation satisfied by these local zeta
functions, confirming a conjecture of Vankov.

Keywords: Ehrhart polynomials, Hecke series, affine buildings, Satake isomorphism,
symplectic lattices

1 Introduction

Let P be a fixed full-dimensional lattice polytope in Rn, i.e. the convex hull of finitely
many points V(P) in Λ0 = Zn. Given a lattice Λ such that Λ0 ⊆ Λ ⊆ Qn, we denote the
Ehrhart polynomial of P with respect to Λ by

EΛ(P) =
n

∑
ℓ=0

cΛ
ℓ (P)Tn ∈ Q[T]. (1.1)

It is of interest to describe the variation of the coefficients cΛ
ℓ (P) with Λ as compared to

cℓ(P) = cΛ0
ℓ (P); write E(P) for EΛ0(P). For g ∈ GLn(Q) ∩ Matn(Z) we define

g · P = conv{g · v | v ∈ V(P)},
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which is again a lattice polytope. We write Λg for the lattice generated by the rows of
g ∈ GLn(Q). Thus, for every g ∈ GLn(Q) ∩ Matn(Z) , we have

E(g · P) = EΛg−1 (P). (1.2)

We note that Λg ⊆ Zn ⊆ Λg−1 ⊆ Qn for g ∈ GLn(Q) ∩ Matn(Z) with |det(g)| > 1.
Gunnells and Rodriguez Villegas [3] consider how the coefficients of EΛ(P) from

Equation (1.1) relate to E(P) for lattices Λ such that Λ0 ⊆ Λ ⊆ p−1Λ0 ⊆ Qn. In
Section 2.1 we revisit these results from our perspective. In addition, we consider a
symplectic analogue of the work of Gunnells and Rodriguez Villegas.

1.1 Zeta functions of Ehrhart coefficients

For a prime p, we write Zp for the ring of p-adic integers and Qp for its field of fractions.
Below we define, for each n ∈ N = {1, 2, . . . } and ℓ ∈ [2n]0 = {0, . . . , 2n}, local zeta
functions which we call Ehrhart–Hecke zeta functions. These functions are Dirichlet series
in a complex variable s encoding the ratio of ℓth coefficients of the Ehrhart polynomial
of P, as the lattice Λ varies among symplectic lattices in Q2n

p .
Recall the group scheme GSp2n of symplectic similitudes. For a ring K its K-rational

points are, with J =
(

0 In
−In 0

)
,

GSp2n(K) =
{

A ∈ GL2n(K)
∣∣ AJAt = µ(A)J, for some µ(A) ∈ K×} .

We set Gn = GSp2n(Qp), Γn = GSp2n(Zp), and G+
n = GSp2n(Qp) ∩ Mat2n(Zp). The

set G+
n /Γn is in bijection with the set of special vertices of the affine building associated

with the group GSp2n(Qp), which is of type C̃n.
We define the (local) Ehrhart–Hecke zeta function (of type C) as

ZC
n,ℓ,p(s) = ∑

g∈G+
n /Γn

c
Λg−1

ℓ (P)
cℓ(P)

|Λg−1 : Zn
p|−s.

Informally speaking, the zeta function ZC
n,ℓ,p(s) hence encodes the average ℓth coefficient

of the Ehrhart polynomial of P across certain symplectic lattices.

1.2 Symplectic Hecke series

The zeta functions of Section 1.1 are closely connected to formal power series over the
Hecke algebra associated with the pair (G+

n , Γn). To explain this connection, we establish
additional notation. For m ∈ N we define

DC
n (m) = {A ∈ G+

n | AJAt = mJ}.
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Let HC
p = HC(G+

n , Γn) be the spherical Hecke algebra. The Hecke operator TC
n (m) is

TC
n (m) = ∑

g∈Γn\DC
n (m)/Γn

ΓngΓn.

The (formal) symplectic Hecke series is defined as

∑
α⩾0

TC
n (pα)Xα ∈ HC

pJXK. (1.3)

Shimura’s conjecture [6] that the series in (1.3) is a rational function in X was proved by
Andrianov [1]. Explicit formulae, however, seem only to be known for n ⩽ 4; see [9].

We consider the image of the Hecke series in (1.3) under the Satake isomorphism
Ω : HC

p → C[x±1
0 , . . . , x±1

n ]W mapping onto the ring of invariants of W, the Weyl group
of Gn. For variables x = (x0, . . . , xn), we define the (local) Satake generating function as

Rn,p(x, X) = ∑
α⩾0

Ω(TC
n (pα))Xα ∈ C[x±1]JXK.

and the (local) primitive local Satake generating function as

Rpr
n,p(x, X) = (1 − x0X) (1 − x0x1 · · · xnX) Rn,p(x, X). (1.4)

We write V(Xn) for the set of vertices of Xn, the affine building Xn of type Ãn−1
associated with the group GLn(Qp), viz. homothety classes of full lattices in GLn(Qp).
In [2, Section 3.3] Andrianov shows, in essence, that Rpr

n,p can be interpreted as a sum
over V(X ); see Theorem 1.1 below.

For a lattice Λ ⩽ Zn
p, set ν(Λ) = (ν1 ⩽ · · · ⩽ νn) ∈ Nn

0 if Zn
p/Λ ∼= Z/pν1 ⊕ · · · ⊕

Z/pνn . Setting ν0 = 0, we define

µ(Λ) = (µ1, . . . , µn) = (νn − νn−1, . . . , ν1 − ν0).

Having chosen a Zp-basis of Zn
p we associate to each lattice Λ ⩽ Zn

p a unique matrix

MΛ =


pδ1 m12 · · · m1n

pδ2 · · · m2n
. . . ...

pδn

 ∈ Matn(Zp), (1.5)

whose rows generate Λ and with 0 ⩽ vp(mij) ⩽ δj for all 1 ⩽ i < j ⩽ n. The matrix MΛ
in (1.5) is said to be in Hermite normal form. We set δ(Λ) = (δ1, . . . , δn). Clearly each
homothety class [Λ] contains a unique representative Λm ⩽ Zn

p such that p−1Λm ̸⩽ Zn
p.

Theorem 1.1 (Andrianov). Let n ∈ N, a = (1, 2, . . . , n) ∈ Nn, d = (n, n − 1, . . . , 1) ∈ Nn,
and let ⟨, ⟩ be the usual dot product. Then

Rpr
n,p(x, X) = ∑

[Λ]∈V(Xn)

p⟨d,ν(Λm)⟩−⟨a,δ(Λm)⟩xδ1(Λm)
1 · · · xδn(Λm)

n (x0X)νn(Λm).
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1.3 The Hermite–Smith generating function

We define a generating function enumerating finite-index sublattices of Zn
p simultane-

ously by their Hermite and Smith normal forms. For n ∈ N, let X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) be variables. The Hermite–Smith generating function is

HSn,p(X, Y) = ∑
Λ⩽Zn

p

Xµ(Λ)Yδ(Λ) = ∑
Λ⩽Zn

p

n

∏
i=1

Xµi(Λ)
i Yδi(Λ)

i ∈ ZJX, YK. (1.6)

Clearly, if Λ ⩽ Zn
p has finite index, then so does pmΛ for all m ∈ N0. This allows

us to extract a “homothety factor” from the sum defining HSn,p(X, Y). The primitive
Hermite–Smith generating function is

HSpr
n,p(X, Y) = ∑

[Λ]∈V(Xn)

Xµ(Λm)Yδ(Λm) = (1 − XnY1 · · ·Yn)HSn,p(X, Y). (1.7)

With this generating function we may obtain the primitive local Satake generating
function of Section 1.2, as follows. We define a ring homomorphism

Φ : QJX1, X2, . . . , Y1, Y2, . . .K −→ QJx0, x1, . . . , XK

Xi 7−→ p(
i+1

2 )x0X,

Yi 7−→ p−ixi (1.8)

for all i ∈ N0. By design of Φ and Theorem 1.1 we have Φ(HSpr
n,p) = Rpr

n,p.

Example 1.2. For n = 2, the Hermite–Smith generating function is

HS2,p(X, Y) =
1 − X2

1Y1Y2

(1 − X1Y1)(1 − pX1Y2)(1 − X2Y1Y2)
,

R2,p(x, X) =
1 − p−1x2

0x1x2X2

(1 − x0X)(1 − x0x1X)(1 − x0x2X)(1 − x0x1x2X)
.

2 Main results

Interpreting the ℓ-th coefficients of the Ehrhart polynomial of the polytope P as a func-
tion on a set of (homothety classes of) p-adic lattices invites the definition of an action
of the spherical Hecke algebra HC

p . The latter is generated by a set of n + 1 generators
TC

n (p, 0), TC
n (p2, 1), . . . , TC

n (p2, n). It suffices to explain how these generators act. For
k ∈ [n], define diagonal matrices in G+

n as follows:

D0 = diag(1, . . . , 1︸ ︷︷ ︸
n

, p, . . . , p︸ ︷︷ ︸
n

), Dk = diag(1, . . . , 1︸ ︷︷ ︸
n−k

, p, . . . , p︸ ︷︷ ︸
k

, p2, . . . , p2︸ ︷︷ ︸
n−k

, p, . . . , p︸ ︷︷ ︸
k

).
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Set DC
n,k = ΓnDkΓn/Γn. The set DC

n,k can be interpreted as the set of symplectic lattices
with symplectic elementary divisors equal to those of Dk. We define

TC
n (p, 0)E(P) = ∑

g∈DC
n,0

E(g · P), TC
n (p2, k)E(P) = ∑

g∈DC
n,k

E(g · P).

For ℓ ⩾ N0, we define functions

En,p,ℓ,P : G+
n /Γn → C, Γng 7→ cℓ(EΛg−1 (P)).

Lastly, for all T ∈ HC
p set

TEn,p,ℓ,P(Γng) = cℓ(TEΛg−1 (P)).

Recall that P is full-dimensional; for k ∈ [n], and ℓ ∈ [2n]0, we define

νCn,0,ℓ(p) =
cℓ(TC

n (p, 0)E(P))
cℓ(E(P))

, νCn,k,ℓ(p) =
cℓ(TC

n (p2, k)E(P))
cℓ(E(P))

.

The notation suggests that the value νCn,k,ℓ(p) is independent of the polytope P, which is
justified by Theorem A. General properties of the Ehrhart polynomial imply that

νCn,n,ℓ(p) = pℓ, νCn,k,0(p) = #DC
n,k.

Every Q-linear homomorphism λ : HC
p → C is uniquely determined by parameters

(a0, . . . , an) ∈ Cn+1 such that if ψ : C[x±1
0 , . . . , x±1

n ] → C is given by xi = ai then λ =
ψ ◦ Ω; see [2, Proposition 3.3.36].

Theorem A. The functions En,p,ℓ,P are Hecke eigenfunctions under the action defined above;
specifically, for all k ∈ [n], we have

TC
n (p, 0)En,p,ℓ,P = νCn,0,ℓ(p)En,p,ℓ,P, TC

n (p2, k)En,p,ℓ,P = νCn,k,ℓ(p)En,p,ℓ,P,

where the νCn,k,ℓ(p) are polynomials in p with integer coefficients which are independent of P.
Moreover, the parameters associated to νCn,k,ℓ(p) are (pℓ, p, p2, . . . , pn−1, pn−ℓ).

Table 1 lists the values of νCn,k,ℓ(p) for small values of n and k.
Theorem A enables us to relate ZC

n,ℓ,p(s) to Rn,p(x, X). Let ψn,ℓ be the ring homomor-
phism from CJx0, x1, . . . , XK → C[t] given by

X 7→ tn x0 7→ pℓ, xn 7→ pn−ℓ, xi 7→ pi.

Corollary B. For n ∈ N and ℓ ∈ [2n]0 we have, writing t = p−s,

(ψn,ℓ ◦ Φ)(HSpr
n,p(X, Y)) = ψn,ℓ(Rpr

n,p) = ZC
n,ℓ,p(s)

(
1 − pℓ−s

) (
1 − p(

n+1
2 )−s

)
.
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ℓ νC2,0,ℓ(p) νC2,1,ℓ(p)
4 p5 + p4 + p3 + p2 p8 + p7 + p6 + p5

3 p4 + p3 + p3 + p2 2p6 + p5 + 2p4 − p3

2 p3 + p3 + p2 + p2 p5 + 3p4 + p3 − p2

1 p3 + p2 + p2 + p1 2p4 + p3 + 2p2 − p
0 p3 + p2 + p + 1 p4 + p3 + p2 + p

Table 1: The polynomials νC2,k,ℓ(p) for k ∈ {0, 1} and ℓ ∈ [4]0.

Thanks to Corollary B, we can work with HSn,p to prove that Rn,p and ZC
n,ℓ,p satisfy a

self-reciprocity property, which proves the conjecture in [9, Remark 4].

Theorem C. Let n ∈ N. Then HSn,p(X, Y) is a rational function in X and Y . Furthermore, for
X−1 = (X−1

1 , . . . , X−1
n ) and Y−1 = (Y−1

1 , . . . , Y−1
n ), we have

HSn,p(X−1, Y−1)
∣∣∣

p→p−1
= (−1)n p(

n
2)XnY1 · · ·Yn · HSn,p(X, Y).

We prove Theorem C by writing HSn,p as a p-adic integral and applying results of
[10], where the operation of inverting p is also explained.

Corollary D. For n ∈ N and ℓ ∈ [2n]0, we have

ZC
n,ℓ,p(s)

∣∣∣
p→p−1

= (−1)n+1pn2+ℓ−2ns·ZC
n,ℓ,p(s),

Rn,p(x, X)
∣∣

p→p−1 =(−1)n+1p(
n
2)x2

0x1 . . . xnX2·Rn,p(x, X).

In the next theorem, we determine a formula for the specialization of HSpr
n,p which

yields ZC
n,ℓ,p by Corollary B. To this end we define

HSn,p(X, Y) = HSpr
n,p(X, 1, . . . , 1, Y).

We prove that HSn,p is a rational function in the n+ 1 variables X and Y and, in addition,
the prime p. In order to describe the formula, we define additional notation. For I =
{i1 < · · · < iℓ} ⊆ [n − 1], with iℓ+1 = n, k ∈ [ℓ+ 1], and a variable Z, we set

I(k) = {ij | j < k} ∪ {ij − 1 | j ⩾ k}

Gn,I,k(Z, X, Y) =

(
k−1

∏
j=1

Zij(n−ij−1)Xij

1 − Zij(n−ij−1)Xij

)(
ℓ

∏
j=k

Zij(n−ij)XijY

1 − Zij(n−ij)XijY

)
.
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Theorem E. Let n ∈ N. For I = {i1 < · · · < iℓ}< ⊆ [n − 1], set

Wn,I(Z, X, Y) =
ℓ+1

∑
k=1

Z−(n−ik)
(

n − 1
I(k)

)
Z−1

Gn,I,k(Z, X, Y)

+
ℓ

∑
k=1

(1 − Z−ij)Gn,I,k(Z, X, Y)

1 − Zij(n−ij−1)Xij

(
ℓ+1

∑
m=k+1

Z−(n−im)

)(
n − 1
I(k+1)

)
Z−1

.

Then
HSn,p(X, Y) = ∑

I⊆[n−1]
Wn,I(p, X, Y) ∈ Z(p, X, Y).

Via the various substitutions given above, Theorem E yields explicit formulae for the
functions Rn,p and, specifically,

ZC
n,ℓ,p(s) = (1 − pℓ−s)−1(1 − p(

n+1
2 )−s)−1 ∑

I⊆[n−1]
Wn,I

(
p,
(

p(
i+1

2 )+ℓ−ns
)n

i=1
, p−ℓ

)
.

In the next theorem we show that the primitive local Satake generating function can
be viewed as a “p-analogue” of the fine Hilbert series of a Stanley–Reisner ring. Let V
be a finite set. If ∆ ⊆ 2V is a simplicial complex on V, then the Stanley–Reisner ring of
∆ over a ring K is

K[∆] = K[Xv | v ∈ V]/(∏
v∈σ

Xv | σ ∈ 2V \ ∆).

Theorem F. For all n ∈ N, let ∆n be the n-simplex with vertices [n] and ∆ = sd(∂∆n), the
barycentric subdivision of boundary of ∆n, with vertices given by the nonempty subsets of [n].
Let y = (yI : ∅ ̸= I ⊆ [n]) and φ : ZJyK → ZJx, XK via yI 7→ x0X ∏i∈I xi. Then

Rpr
n,p(x, X)

∣∣
p→1 = φ(Hilb(Z[∆]; y)) = ∑

σ∈∆
∏
J∈σ

φ(yJ)

1 − φ(yJ)
.

With Theorem F, we come full circle and relate the local Satake generating function
Rn,p to the Ehrhart series of the n-cube.

Corollary 2.1. For all n ∈ N, let P be the n-cube. Then

Rn,p(1, X)
∣∣

p→1 = EhrP(X) =
En(X)

(1 − X)n+1 ,

where En(X) = ∑σ∈Sn Xdes(σ) is the Eulerian polynomial.

Proof. It follows from Theorem F that

(1 − X)2 Rn,p(1, X)
∣∣

p→1 = ∑
σ∈∆

∏
J∈σ

X
1 − X

, (2.1)
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where ∆ is the barycentric subdivision of the boundary of the n-simplex. From [5,
Theore. 9.1] and Equation (2.1) it follows that

Rn,p(1, X)
∣∣

p→1 =
En(X)

(1 − X)n+1 = ∑
k⩾0

(k + 1)nXk = EhrP(X).

2.1 The type–A story

Our work was inspired by Gunnells and Rodriguez Villegas. In [3] they considered type-
A versions of some of the questions outlined above. We paraphrase parts of [3] from the
perspective of our work in type C. For a prime p we define the (local) Ehrhart–Hecke zeta
function (of type A) as

ZA
n,ℓ,p(s) = ∑

Zn
p⩽Λ⩽Qn

p
|Λ:Zn

p|<∞

cΛ
ℓ (P)

cℓ(P)
|Λ : Zn

p|−s. (2.2)

Let ΓA
n = GLn(Z) and GA

n = Matn(Z) ∩ GLn(Q). For m ∈ N, let

DA
n (m) = {g ∈ GA

n | |det(g)| = m},

so DA
n (m) is a finite union of double cosets relative to ΓA

n . We define

TA
n (m) = ∑

g∈ΓA
n \DA

n (m)/ΓA
n

ΓA
n gΓA

n ,

where the sum runs over a set of representatives of the double cosets, which is an element
of the Hecke algebra determined by (ΓA

n , GA
n ). Moreover, if gcd(m, m′) = 1, then

TA
n (m)TA

n (m
′) = TA

n (mm′).

For k ∈ [n]0 define πk(p) = diag(1, . . . , 1,
k︷ ︸︸ ︷

p, . . . , p) and TA
n (p, k) = ΓA

n πk(p)ΓA
n , which

decomposes into a finite (disjoint) union of right cosets relative to ΓA
n .

Gunnells and Rodriguez Villegas [3] considered the following action of the Hecke
algebra on the Ehrhart polynomial E(P) = EΛ0(P) of P:

TA
n (p, k)E(P) = ∑

g∈ΓA
n πk(p)ΓA

n /ΓA
n

E(g · P), (2.3)

where the sum runs over a set of right coset representatives. The action in (2.3) is
independent of the chosen representatives since ΓA

n comprises bijections of Zn. Our
definition in (2.3) differs from [3] only cosmetically via (1.2).
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Denote by Gr(ℓ, n, p) the set of ℓ-dimensional subspaces in Fn
p. For n ∈ N, ℓ, k ∈ [n]0,

and U ∈ Gr(ℓ, n, p), define

νAn,k,ℓ(p) = ∑
W∈Gr(k,n,p)

#(U ∩ W).

Let ψA
n,ℓ : Q[x±1

1 , . . . , x±1
n ] → Q be given by xn 7→ pℓ and xi 7→ pi for all i ∈ [n − 1]. Let

further ω denote the Satake isomorphism from the p-primary part of the Hecke algebra
associated with (ΓA

n , GA
n ), written HA

p , to the symmetric subring of Q[x±1
1 , . . . , x±1

n ].
Let sn,k(x1, . . . , xn) be the (homogeneous) elementary symmetric polynomial of de-

gree k, and set sn,−1 = 0.

Theorem 2.2 ([3]). For n ∈ N, k, ℓ ∈ [n]0, and a prime p, we have

νAn,k,ℓ(p) = pk
(

n − 1
k

)
p
+ pℓ

(
n − 1
k − 1

)
p
= ψA

n,ℓ(ω(TA
n (p, k))).

Moreover,

ZA
n,ℓ,p(s) = (1 − pℓ−s)−1

n−1

∏
k=1

(1 − pk−s)−1.

Proof. First we prove the claims concerning νAn,k,ℓ(p). Therefore,

νAn,k,ℓ(p) =
(

n
k

)
p
−
(

n − 1
k − 1

)
p
+ pℓ

(
n − 1
k − 1

)
p

([3, Lem. 3.3])

= pk
(

n − 1
k

)
p
+ pℓ

(
n − 1
k − 1

)
p

(Pascal identity)

= pksn−1,k(1, p, . . . , pn−2) + pℓsn−1,k−1(1, p, . . . , pn−2) ([4, Ex. I.2.3])

= p−(k
2)ψA

n,ℓ(sn,k)

= ψA
n,ℓ(ω(TA

n (p, k))). ([2, Lem. 3.2.21])

We now tend to the last claim. Tamagawa [7] established the identity

∑
m⩾0

TA
n (pm)Xm =

(
n

∑
k=0

(−1)k p(
k
2)TA

n (p, k)Xk

)−1

∈ HA
p JXK. (2.4)

Applying ψA
n,ℓ ◦ ω to (2.4) and setting X = p−s, we have

∑
m⩾0

ψA
n,ℓ(ω(TA

n (pm)))p−ms =

(
n

∑
k=0

ψA
n,ℓ(sn,k)(−p)−ks

)−1

= (1 − pℓ−s)−1
n−1

∏
k=1

(1 − pk−s)−1.

Since νAn,k,ℓ(p) is an eigenvalue for Tn(p, k), it follows that

ZA
n,ℓ,p(s) = ∑

m⩾0
ψA

n,ℓ(ω(TA
n (pm)))p−ms.
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Corollary 2.3. Let ζ(s) be the Riemann zeta function. For n ∈ N and ℓ ∈ [n]0, we have

∏
prime p

ZA
n,ℓ,p(s) = ζ(s − ℓ)

n−1

∏
k=1

ζ(s − k).

3 Examples

3.1 Hecke eigenfunctions

We give some explicit examples, showing in Figure 3.1 that the eigenfunctions of The-
orem A depend significantly on the polytope. We do this by displaying a graph whose
vertices correspond to homothety classes of lattices. We evaluate the functions En,pℓ,P on
Λm for each homothety class [Λ].

3.2 Local Ehrhart–Hecke zeta functions

For n ∈ [3] and ℓ ∈ [2n]0, we record the rational functions Wn,ℓ(X, Y) ∈ Q(X, Y) where,
for all primes, ZC

n,ℓ,p(s) = Wn,ℓ(p, p−ns). We computed these with SageMath [8].

W1,ℓ(X, Y) =
1

(1 − XY)(1 − XℓY)

W2,ℓ(X, Y) =
1 − X2+ℓY2

(1 − X2Y)(1 − X3Y)(1 − XℓY)(1 − Xℓ+1Y)

W3,ℓ(X, Y) =
1 + (X1+ℓ + X4)Y − Aℓ(X)Y2 + (X6+2ℓ + X9+ℓ)Y3 + X10+2ℓY4

(1 − X3Y)(1 − X5Y)(1 − X6Y)(1 − XℓY)(1 − X2+ℓY)(1 − X3+ℓY)

W4,ℓ(X, Y) =
N4,ℓ(X, Y)
D4,ℓ(X, Y)

,

where Aℓ(X) = X7+ℓ + 2X6+ℓ + 2X4+ℓ + X3+ℓ,

N4,ℓ(X, Y) = 1 + (X5 + X6 + X7 + X8 + X1+ℓ + X2+ℓ + X3+ℓ + X4+ℓ)Y + (X13

− X4+ℓ − 2X5+ℓ − 2X6+ℓ − 2X7+ℓ − 2X8+ℓ − 2X9+ℓ − 3X10+ℓ

− 2X11+ℓ − 2X12+ℓ − 2X13+ℓ − X14+ℓ + X5+2ℓ)Y2 + (X14+ℓ

− X18+ℓ + X10+2ℓ − X14+2ℓ)Y3 − (X23+ℓ − X14+2ℓ − 2X15+2ℓ

− 2X16+2ℓ − 2X17+2ℓ − 3X18+2ℓ − 2X19+2ℓ − 2X20+2ℓ − 2X21+2ℓ

− 2X22+2ℓ − 2X23+2ℓ − X24+2ℓ + X15+3ℓ)Y4 − (X24+2ℓ + X25+2ℓ

+ X26+2ℓ + X27+2ℓ + X20+3ℓ + X21+3ℓ + X22+3ℓ + X23+3ℓ)Y5

− X28+3ℓY6,
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D4,ℓ(X, Y) = (1 − X4Y)(1 − X7Y)(1 − X9Y)(1 − X10Y)

× (1 − XℓY)(1 − X3+ℓY)(1 − X5+ℓY)(1 − X6+ℓY).

(0, 0) (1, 0)

(0, 1) (2, 1)

5/2

3

4

3

4

3

7

4

4

3

64
3

3

13

7
4 4

6

4

3

3

P E2,2,1,P

(0, 0) (1, 0)

(0, 1)

(1, 2)

(3, 3)

(4, 1)
3

4

4
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5

5

5

5

5

5

75
7

5

7

5
5 7

7

5

7

5

P′ E2,2,1,P′

Figure 3.1: Polytopes and some values of E2,2,1,P displayed on lattices in the affine
building of type Ã1 associated with the group GSp2(Qp) ∼= GL2(Qp). The center
vertex corresponds to the homothety class of the identity, and the values are the linear
coefficients of the Ehrhart polynomials with respect to the corresponding lattices.
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Abstract. The amplituhedron AZ
n,k,m is the image of the positive Grassmannian Gr≥0

k,n

under the map Z̃ : Gr≥0
k,n → Grk,k+m induced by a positive linear map Z : Rn → Rk+m.

It was originally introduced in physics in order to give a geometric interpretation of
scattering amplitudes. More specifically, one can compute scattering amplitudes in
N = 4 SYM by ‘tiling’ the m = 4 amplituhedron AZ

n,k,4 — that is, decomposing AZ
n,k,4

into ‘tiles’ (closures of images of 4k-dimensional cells of Gr≥0
k,n on which Z̃ is injective).

In this article we deepen both our understanding of tiles and tilings of the m = 4
amplituhedron and the connection with cluster algebras. Firstly, we prove the cluster
adjacency conjecture for BCFW tiles of AZ

n,k,4, which says that facets of tiles are cut out by
collections of compatible cluster variables for Gr4,n. Secondly, we describe each BCFW
tile as the semialgebraic set in Grk,k+4 where certain cluster variables have particular
signs. Finally, we prove the BCFW tiling conjecture, which says that any way of iterating
the BCFW recurrence gives rise to a tiling of the amplituhedron AZ

n,k,4. Along the way,
we introduce a method to construct seeds for Gr4,n comprised of high-degree cluster
variables, which may be of independent interest in the study of cluster algebras.
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1 Introduction

The (tree) amplituhedron AZ
n,k,m is the image of the positive Grassmannian Gr≥0

k,n under the
amplituhedron map Z̃ : Gr≥0

k,n → Grk,k+m. It was introduced by Arkani-Hamed and Trnka
[4] in order to give a geometric interpretation of scattering amplitudes inN = 4 super Yang
Mills theory (SYM): in particular, one can compute N = 4 SYM scattering amplitudes
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by ‘tiling’ the m = 4 amplituhedron AZ
n,k,4 — that is, by decomposing the amplituhedron

into smaller ‘tiles’ — and summing the ‘volumes’ of the tiles. While the case m = 4 is
most important for physics, the amplituhedron is defined for any positive n, k, m with
k + m ≤ n, and has a very rich geometric and combinatorial structure. It generalizes
cyclic polytopes (when k = 1), cyclic hyperplane arrangements [19] (when m = 1), and
the positive Grassmannian (when k = n− m), and it is connected to the hypersimplex
and the positive tropical Grassmanian [23, 26] (when m = 2). The amplituhedron is also
an example of a Grassmann polytope (‘Grasstope’) and conjectured to be a positive geometry
[1, 21]. The followings are two of the guiding problems about the amplituhedron.

The first is the cluster adjacency conjecture, which says that facets of tiles are cut out by
collections of compatible cluster variables. This was motivated by physics where cluster
algebras were shown to describe singularities of scattering amplitudes in N = 4 SYM
[16]. In particular, [7, 8] conjectured that the terms in tree-level amplitudes coming from
the BCFW recursions are rational functions whose poles correspond to compatible clus-
ter variables of the Grassmannian Gr4,n, see also [25]. The cluster adjacency conjecture,
formulated for the m = 2 and m = 4 amplituhedron in [22] and [17], was proved for all
tiles of the m = 2 amplituhedron in [26].

The second is the BCFW tiling conjecture, which says that any way of iterating the
BCFW recurrence gives rise to a collection of cells whose images tile the m = 4 ampli-
tuhedron AZ

n,k,4. This arose alongside the definition of the amplituhedron [4] in order
to give a geometric interpretation of the recurrence Britto–Cachazo–Feng–Witten [6] in-
troduced to compute scattering amplitudes. BCFW-like tilings of the m = 1 and m = 2
amplituhedron were proved in [19] and [5], building on [3] and [20]. Finally, extending
the work of [20], it was proved in [10] that the ‘standard’ way of performing the BCFW
recursion gives a tiling for the m = 4 amplituhedron.

Main results. In this paper we build on [26] and [10] to give a very complete picture
of the m = 4 amplituhedron. We show that arbitrary BCFW cells give tiles (Theorem 3.5)
and that they satisfy the cluster adjacency conjecture (Theorem 3.15). We strengthen
the connection with cluster algebras by associating to each BCFW tile a collection of
compatible cluster variables for Gr4,n (Definition 3.11), which we use to describe the tile
as a semialgebraic set in Grk,k+4 (Theorem 3.13). For ‘standard’ BCFW tiles, one can also
give a non-recursive description of these cluster variables and the underlying quiver,
and define an associated cluster algebra [9, Sections 8, 9]. Finally, we use these results to
prove the BCFW tiling conjecture for the m = 4 amplituhedron (Theorem 3.17).

Further motivation. From the point of view of cluster algebras, the study of tiles for
the amplituhedron An,k,m is useful because it is closely related to the cluster structure on
the Grassmannian Grm,n, as was shown for m = 2 in [26] and as this paper demonstrates
for m = 4. In particular, for m = 4, the BCFW product (Definition 3.2) used to recursively
build tiles (Definition 3.3) has a cluster quasi-homomorphism counterpart called product
promotion (Definition 3.6), that can be used to recursively construct cluster variables and
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seeds in Gr4,n (Theorem 3.7).
In the closely related field of total positivity, one prototypical problem is to give an

efficient characterization of the ‘positive part’ of a space as the subset where a certain
minimal collection of functions take on positive values [13] (‘positivity test’). For exam-
ple, for any cluster x for Grk,n [28], the positive Grassmannian Gr>0

k,n can be described as
the region in Grk,n where all the cluster variables of x are positive.

We think of Theorem 3.13 as a ‘positivity test’ for membership in a BCFW tile of
the amplituhedron. See [26, Theorem 6.8] for an analogous result for m = 2, and [9,
Conjecture 7.17] for some conjectures for general m.

From the point of view of discrete geometry, it is interesting to study tiles and more
generally Grasstopes because one can think of them as a generalization of polytopes in
the Grassmannian. In particular, the positivity tests for the positive Grassmannian and
BCFW tiles can be thought of as analogues of the hyperplane description of polytopes.
Finally, it would be interesting to show that tiles are positive geometries.

2 Background

2.1 The (positive) Grassmannian

The Grassmannian Grk,n(F) is the space of all k-dimensional subspaces of an n-dimensional
vector space Fn. Let [n] denote {1, . . . , n}, and ([n]k ) denote the set of all k-element subsets
of [n]. We can represent a point V ∈ Grk,n(F) as the row-span of a full-rank k× n matrix
C with entries in F. Then for I = {i1 < · · · < ik} ∈ ([n]k ), we let ⟨I⟩V = ⟨i1 i2 . . . ik⟩V be
the k× k minor of C using the columns I. The ⟨I⟩V are called the Plücker coordinates of V,
and are independent of the choice of matrix representative C (up to common rescaling).
The Plücker embedding V 7→ {⟨I⟩V}I∈([n]k )

embeds Grk,n(F) into projective space1 . If C

has columns v1, . . . , vn, we may also identify ⟨i1 i2 . . . ik⟩ with vi1 ∧ vi2 ∧ · · · ∧ vik , hence
e.g. ⟨i1 i2 . . . ik⟩ = −⟨i2 i1 . . . ik⟩. In this paper we will often be working with the real
Grassmannian Grk,n = Grk,n(R). We will also denote by Grk,N the Grassmannians of
k-planes in a vector space with basis indexed by a set N ⊂ [n].

Definition 2.1 (Positive Grassmannian). [24, 27] We say that V ∈ Grk,n is totally nonneg-
ative if (up to a global change of sign) ⟨I⟩V ≥ 0 for all I ∈ ([n]k ). Similarly, V is totally
positive if ⟨I⟩V > 0 for all I ∈ ([n]k ). We let Gr≥0

k,n and Gr>0
k,n denote the set of totally

nonnegative and totally positive elements of Grk,n, respectively. Gr≥0
k,n is called the totally

nonnegative Grassmannian, or sometimes just the positive Grassmannian.

1We will sometimes abuse notation and identify C with its row-span; we will also drop the subscript V
on Plücker coordinates when it does not cause confusion.
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If we partition Gr≥0
k,n into strata based on which Plücker coordinates are strictly posi-

tive and which are 0, we obtain a cell decomposition of Gr≥0
k,n into positroid cells [27]. Each

positroid cell S gives rise to a matroidM, whose bases are precisely the k-element sub-
sets I such that the Plücker coordinate ⟨I⟩ does not vanish on S;M is called a positroid.

There are many ways to index positroid cells in Gr≥0
k,n [27], such as plabic graphs:

Definition 2.2. Let G be a plabic graph, i.e. a planar bipartite graph2 embedded in a disk,
with black vertices 1, 2, . . . , n on the boundary of the disk. An almost perfect matching M of
G is a collection of edges which covers each internal vertex of G exactly once. The bound-
ary of M, denoted ∂M, is the set of boundary vertices covered by M. The positroid asso-
ciated to G is the collectionM =M(G) := {∂M : M an almost perfect matching of G}.

Both Grk,n and Gr≥0
k,n admit the following set of operations, which will be useful to us.

Definition 2.3 (Operations on the Grassmannian). We define the following maps on
Matk,n, which descends to maps on Grk,n and Gr≥0

k,n, which we denote in the same way:

• (cyclic shift) We define the cyclic shift as the map cyc : Matk,n → Matk,n which sends
v1 7→ (−1)k−1vn and vi 7→ vi−1, 2 ≤ i ≤ n, and in terms of Plückers: ⟨I⟩ 7→ ⟨I − 1⟩.

• (reflection) We define reflection as the map refl : Matk,n → Matk,n which sends vi 7→
vn+1−i and rescales a row by (−1)(

k
2), and in terms of Plückers: ⟨I⟩ 7→ ⟨n + 1− I⟩.

• (zero column) We define the map prei : Matk,[n]\{i} → Matk,n which adds a zero
column at i, and in terms of Plückers: ⟨I⟩ 7→ ⟨I⟩.

Here, I − 1 is obtained from I ∈ ([n]k ) by subtracting 1 (mod n) from each element of I
and n + 1− I is obtained from I by subtracting each element of I from n + 1.

2.2 The amplituhedron

Building on [2, 18], Arkani-Hamed and Trnka [4] introduced the (tree) amplituhedron,
which they defined as the image of the positive Grassmannian under a positive linear
map. Let Mat>0

n,p denote the set of n× p matrices whose maximal minors are positive.

Definition 2.4 (Amplituhedron). Let Z ∈ Mat>0
n,k+m, where k + m ≤ n. The amplituhedron

map Z̃ : Gr≥0
k,n → Grk,k+m is defined by Z̃(C) := CZ, where C is a k × n matrix repre-

senting an element of Gr≥0
k,n, and CZ is a k× (k + m) matrix representing an element of

Grk,k+m. The amplituhedron AZ
n,k,m ⊂ Grk,k+m is the image Z̃(Gr≥0

k,n).

In this article we will be concerned with the case where m = 4.
2We will always assume that plabic graphs are reduced [27, Definition 12.5].
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Definition 2.5 (Tiles). Fix k, n, m with k + m ≤ n and choose Z ∈ Mat>0
n,k+m. Given a

positroid cell S of Gr≥0
k,n, we let Z◦S := Z̃(S) and ZS := Z̃(S) = Z̃(S). We call ZS and Z◦S a

tile and an open tile for AZ
n,k,m if dim(S) = km and Z̃ is injective on S.

Definition 2.6 (Tilings). A tiling of AZ
n,k,m is a collection {ZS | S ∈ C} of tiles, such that

their union equals AZ
n,k,m and the open tiles Z◦S, Z◦S′ are pairwise disjoint.

There is a natural notion of facet of a tile, generalizing the notion of facet of a polytope.

Definition 2.7 (Facet of a cell and a tile). Given two positroid cells S′ and S, we say that
S′ is a facet of S if S′ ⊂ ∂S and S′ has codimension 1 in S. If S′ is a facet of S and ZS is a
tile of AZ

n,k,m, we say that ZS′ is a facet of ZS if ZS′ ⊂ ∂ZS and has codimension 1 in ZS.

Definition 2.8 (Twistor coordinates). Fix Z ∈ Mat>0
n,k+m with rows Z1, . . . , Zn ∈ Rk+m.

Given Y ∈ Grk,k+m with rows y1, . . . , yk, and {i1, . . . , im} ⊂ [n], we define the twistor coor-
dinate ⟨⟨i1i2 · · · im⟩⟩ to be the determinant of the matrix with rows y1, . . . , yk, Zi1 , . . . , Zim .

Note that the twistor coordinates are defined only up to a common scalar multiple.
An element of Grk,k+m is uniquely determined by its twistor coordinates [19]. Moreover,
Grk,k+m can be embedded into Grm,n so that the twistor coordinate ⟨⟨i1 . . . im⟩⟩ is the
pullback of the Plücker coordinate ⟨i1, . . . , im⟩ in Grm,n.

Definition 2.9. We refer to a homogeneous polynomial in twistor coordinates as a func-
tionary. For S ⊆ Gr≥0

k,n, we say a functionary F has a definite sign s ∈ {±1} (or vanishes)
on Z◦S if for all Z ∈ Mat>0

n,k+4 and for all Y ∈ Z◦S, F(Y) has sign s (or 0, respectively).

Functionaries will be crucial to describe tiles of the amplituhedron, to prove the main
theorems about cluster adjacency and BCFW tilings, and to connect with cluster algebras.

2.3 Cluster Algebras

Cluster algebras were introduced by Fomin and Zelevinsky in [14], motivated by the
study of total positivity; see [12] for an introduction. We give a quick definition of
cluster algebras from quivers. All cluster algebras here will be of geometric type.

A quiver Q is an oriented graph given by a finite set of vertices. For a quiver without
oriented cycles of length 1 and 2, one can define a quiver mutation µk(Q) at each vertex k
of Q. This operation, described in [14], is an involution: µ2

k(Q) = Q.

Definition 2.10. Choose s ≥ r positive integers. Let F be an ambient field of rational
functions in r independent variables over C(xr+1, . . . , xs). A labeled seed in F is a pair
(x, Q), where x = (x1, . . . , xs) forms a free generating set for F and Q is a quiver with
vertices 1, 2, . . . , r called mutable, and vertices r + 1, . . . , s called frozen.

We call x a cluster and its elements {x1, . . . , xs} cluster variables. The variables x1, . . . , xr
are called mutable, and the variables c = {xr+1, . . . , xs} are called frozen.
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Figure 1: The rectangle seed Σ4,7.
Mutable variables are in the

colored box.

Definition 2.11 (Seed mutations). Let (x, Q) be a labeled seed in F , and let k ∈ {1, . . . , r}.
The seed mutation µk in direction k transforms (x, Q) into the labeled seed µk(x, Q) =
(x′, µk(Q)), where the cluster x′ = (x′1, . . . , x′s) is defined as follows: x′j = xj for j ̸= k,
whereas x′k ∈ F is determined by the exchange relation

x′k xk = ∏
i: i→k

xi + ∏
i: i←k

xi . (2.1)

Where i → k (or i ← k) denotes an edge oriented from vertex i to k (or k to i). Note
that one omits arrows between two frozen vertices as they do not affect seed mutation.

Definition 2.12. Let Tr be an r-regular tree whose edges are labeled by 1, . . . , r, so that
edges emanating from each vertex receive different labels. A cluster pattern is an assign-
ment of a labeled seed Σt = (xt, Qt) to every vertex t ∈ Tn, such that the seed assigned
to the endpoint of an edge k emanated from t is obtained by mutating Σt in direction k.

Definition 2.13 (Cluster algebra). Given a cluster pattern, we denote as X the union of all
mutable variables of all the seeds in the pattern. Let C[c±1] be the ground ring consisting
of Laurent polynomials in the frozen variables. The cluster algebra A associated with a
given pattern is the C[c±1]-subalgebra of the ambient field F generated by all mutable
variables, with coefficients which are Laurent polynomials in the frozen variables: A =
C[c±1][X ]. We denote A = A(x, Q), where (x, Q) is any seed in the underlying cluster
pattern. We say that A has rank r because each cluster contains r mutable variables.
Cluster variables that belong to a common cluster are said to be compatible.

The Grassmannian Grk,n(C) has a cluster structure [28], defined starting from partic-
ularly nice seeds called rectangles seed Σk,n, see Figure 1 and the exposition of [11].

Theorem 2.14 ([28]). Let Gr◦k,n be the open subset of the Grassmannian where the frozen vari-
ables don’t vanish. Then the coordinate ring C[Ĝr

◦
k,n] of the affine cone over Gr◦k,n is the cluster

algebra A(Σk,n).

Moreover, the operations on the Grassmannian cyc, refl, pre in Definition 2.3 induce
maps on C[Ĝr

◦
k,N ] which are compatible with the cluster structure of Theorem 2.14:

Proposition 2.15. The maps cyc, refl : C[Ĝr
◦
k,n] → C[Ĝr

◦
k,n], prei : C[Ĝr

◦
k,[n]\{i}] → C[Ĝr

◦
k,n]

take cluster variables to cluster variables and preserve compatibility and exchange relations.
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Figure 2: The BCFW product SL ▷◁ SR of SL and SR in terms of their plabic graphs.

3 Results

Our first main result is proving that a class of cells called BCFW cells give tiles for AZ
n,k,4.

We will build BCFW cells recursively using the BCFW product. Let us first introduce
some notation we will use throughout this section.

Notation 3.1. Choose integers 1 ≤ a < b < c < d < n with a, b and c, d, n consecutive.
Let3 NL = {n, 1, 2, . . . , a, b}, NR = {b, . . . , c, d, n} and D = (a, b, c, d, n). Also fix k ≤ n
and two nonnegative integers kL ≤ |NL| and kR ≤ |NR| such that kL + kR + 1 = k. Note
that, for any set of indices N ⊂ [n], our results hold with N instead of [n], by replacing
1 and n in the definition with the smallest and largest elements of N, respectively.

Definition 3.2 (BCFW product). Let SL ⊆ GrkL,NL , SR ⊆ Gr≥0
kR,NR

as in Notation 3.1 and
GL, GR be the respective plabic graphs. The BCFW product of SL and SR is the positroid
cell SL ▷◁ SR ⊆ Grk,n corresponding the plabic graph in the right-hand side of Figure 2.
When it is not clear from the context, we will say ▷◁ is performed ‘with indices D’.

We now introduce the family of BCFW cells to be the set of positroid cells which is
closed under the operations in Definitions 2.3 and 3.2:

Definition 3.3 (BCFW cells). The set of BCFW cells is defined recursively. For k = 0,
let the trivial cell Gr>0

0,n be a BCFW cell. If S is a BCFW cell, so is the cell obtained by
applying cyc, refl, pre to S. If SL, SR are BCFW cells, so is their BCFW product SL ▷◁ SR.

Example 3.4. For k = 1, the BCFW cells in Gr≥0
1,n are as in Figure 3 (left). They have

Plücker coordinates ⟨a⟩, ⟨b⟩, ⟨c⟩, ⟨d⟩, ⟨e⟩ > 0 and all others zero. In Figure 3 (right),
Sex ⊂ Gr≥0

2,7 is obtained as SL ▷◁ SR, with SL, SR BCFW cells in Gr≥0
1,NL

, Gr≥0
0,NR

respectively,
with NL = {7, 1, 2, 3, 4}, NR = {4, 5, 6, 7} and D = (3, 4, 5, 6, 7).

Theorem 3.5 (BCFW tiles). The amplituhedron map is injective on each BCFW cell. That is,
the closure ZS := Z̃(S) of the image of a BCFW cell S is a tile, which we refer to as a BCFW tile.

3Note that we will overload the notation and let n index an element of a vector space basis for different
vector spaces; however, in what follows, the meaning should be clear from context.
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Figure 3: Plabic graphs of: a BCFW cell in
Gr≥0

1,n (left); a BCFW cell Sex ⊂ Gr≥0
2,7 (right).

A key ingredient to prove Theorem 3.5 is inverting the amplituhedron map on BCFW
tiles [9, Theorem 7.7] by using product promotion – an operation which interacts nicely
both with the cluster structure on the Grassmannian and with the BCFW product.

Definition 3.6. Using Notation 3.1, product promotion is the homomorphism

ΨD = Ψ : C(Ĝr4,NL)×C(Ĝr4,NR)→ C(Ĝr4,n),

induced by the following substitution:

on Ĝr4,NL : b 7→ (ba) ∩ (cdn)
⟨a c d n⟩ , on Ĝr4,NR : n 7→ (ba) ∩ (cdn)

⟨a b c d⟩ , d 7→ (dc) ∩ (abn)
⟨a b c n⟩ .

The vector (ij)∩ (rsq) := vi⟨j r s q⟩− vj⟨i r s q⟩ = −vr⟨i j s q⟩+ vs⟨i j r q⟩− vq⟨i j r s⟩ is in
the intersection of the 2-plane and the 3-plane spanned by vi, vj and vr, vs, vq, respectively.

We show4 that Ψ is in fact a quasi-homomorphism (see [15]) from the cluster algebra5

C[Ĝr
◦
4,NL

]×C[Ĝr
◦
4,NR

] to a sub-cluster algebra of C[Ĝr
◦
4,n]. See [15, Definition 3.1, Propo-

sition 3.2] for the precise definition of a quasi-homomorphism.

Theorem 3.7. Product promotion Ψ is a quasi-homomorphism of cluster algebras. In particular,
Ψ maps a cluster variable (respectively, cluster) of C[Ĝr

◦
4,NL

]× C[Ĝr
◦
4,NR

], to a cluster variable
(respectively, sub-cluster) of C[Ĝr

◦
4,n], up to multiplication by Laurent monomials in T ′ :=

{⟨a b c n⟩, ⟨a b c d⟩, ⟨b c d n⟩, ⟨a c d n⟩}.

Remark 3.8. Definition 3.6 and Theorem 3.7 extend also to the degenerate cases, e.g. for
a = 1 (upper promotion), where Ψ : C(Ĝr4,NR)→ C(Ĝr4,n), see [9, Section 4.3].

Definition 3.9. Let x be a cluster variable of C[Ĝr
◦
4,NL

] or C[Ĝr
◦
4,NR

]. We define the rescaled
product promotion Ψ(x) of x to be the cluster variable of Gr4,n obtained from Ψ(x) by
removing6 the Laurent monomial in T ′ (c.f. Theorem 3.7).

4We will sometime omit the dependence on the indices D = {a, b, c, d, n} in Ψ (and Ψ) for brevity.
5C[Ĝr

◦
4,NL

]×C[Ĝr
◦
4,NR

] is a cluster algebra where each seed is the disjoint union of a seed of each factor.
6If x = ⟨bcdn⟩, then Ψ(x) = Ψ(x) = x.
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The fact that product promotion is a cluster quasi-homomorphism may be of inde-
pendent interest in the study of the cluster structure on Gr4,n. Much of the work thus far
on the cluster structure of the Grassmannian has focused on cluster variables which are
polynomials in Plücker coordinates with low degree; by constrast, the cluster variables
we obtain can have arbitrarily high degree in Plücker coordinates (e.g. see the chain
polynomials in [9, Theorem 8.3]). We introduce the following notation:

⟨a b c | d e | f g h⟩ := ⟨a, b, c, (d e) ∩ ( f g h)⟩ = ⟨a b c d⟩ ⟨e f g h⟩ − ⟨a b c e⟩ ⟨d f g h⟩. (3.1)

Example 3.10. For NL and NR as in Example 3.4, the only Plücker which changes is:
Ψ(⟨1 2 4 7⟩) = ⟨1 2 7|3 4|5 6 7⟩/⟨3 4 6 7⟩, and Ψ(⟨1 2 4 7⟩) = ⟨1 2 7|3 4|5 6 7⟩ which is a
quadratic cluster variable in Gr4,7, e.g. obtained by mutating ⟨2367⟩ in Σ4,7 of Figure 1.

Using rescaled product promotion and the operations in Proposition 2.15, we asso-
ciate to each BCFW tile ZS a collection of compatible cluster variables x(S) for Gr4,n.

Definition 3.11 (Cluster variables for BCFW tiles). Let S ⊂ Gr≥0
k,n be a BCFW cell. We

define the set of coordinate cluster variables x(S) for S recursively as follows:

• If S = SL ▷◁ SR with indices Dk = (ak, bk, ck, dk, nk), then

x(S) = ΨDk(x(SL) ∪ x(SR)) ∪ {⟨I⟩, I ∈
(

Dk
4

)
}, (3.2)

• If S =


prei(S

′)

cyc(S′)
refl(S′)

then x(S) =


x(S′)
cyc−1(x(S′))
refl(x(S′))

,

and for the base case k = 0, we set x(S) = ∅. Here, cyc−1 = cycn−1.
For a BCFW cell S, x(S) depends on the sequence of operations in Definition 3.3 used

to build S, but we will drop this dependence for brevity.
Note that x(S) is a collection of compatible cluster variables for Gr4,n [9, Lemma 7.6].

Example 3.12. From Example 3.4, Sex = SL ▷◁ SR and x(SL) = {⟨I⟩, I ∈ (DL
4 )}, x(SR) = ∅,

where DL = {1, 2, 3, 4, 7}. Then by Example 3.10 the coordinate cluster variables x(Sex)
are: Ψ(x(SL)) = x(SL) \ {⟨1247⟩} ∪ {⟨127|34|567⟩} together with {⟨I⟩, I ∈ (D

4 )}.

Given a cluster variable x in Gr4,n, we will denote as x(Y) the functionary on Grk,k+4
(cf. Definition 2.9) obtained by identifying Plücker coordinates ⟨I⟩ in Gr4,n with twistor
coordinates ⟨⟨I⟩⟩ in Grk,k+4 (cf. Definition 2.8). Then interpreting each cluster variable as
a functionary, we describe each BCFW tile as the semialgebraic subset of Grk,k+4 where
the coordinate cluster variables take on particular signs.

Theorem 3.13 (Sign description of BCFW tiles). Let ZS be a BCFW tile. For each element x
of x(S), the functionary x(Y) has a definite sign sx on Z◦S and

Z◦S = {Y ∈ Grk,k+4 : sx x(Y) > 0 for all x ∈ x(S)}.
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Figure 4: BCFW tiling for An,k,4. On the right: the first term is obtained by tiling
A[n]\{d},k,4 (from Tpre); the second term is the union over b, kL, kR as in Definition 3.16
of the collections of tiles obtained by tiling ANL,kL,4 and ANR,kR,4 (from TkL,kR,b,n).

Example 3.14. The open tile Z◦ex := Z̃(Sex), with Sex from Example 3.4, is the semial-
gebraic set in Gr2,6 where the functionaries x(Y), with x ∈ x(Sex) of Example 3.12 are
positive, except when x ∈ {⟨3567⟩, ⟨3457⟩, ⟨2347⟩, ⟨3567⟩}, for which x(Y) are negative.

One can study facets of tiles (see Definition 2.7) by describing associated functionaries
which vanish on them. Given a functionary F(⟨⟨I⟩⟩) on Grk,k+4, we can obtain a polyno-
mial F(⟨I⟩) in the Plücker coordinates in Gr4,n. Then the coordinate cluster variables in
Definition 3.11 are a key tool in the proof of cluster adjacency conjecture for BCFW tiles:

Theorem 3.15 (Cluster adjacency for BCFW tiles). Let ZS be a BCFW tile of AZ
n,k,4. Each

facet ZS′ of ZS lies on a hypersurface cut out by a functionary FS′(⟨⟨I⟩⟩) such that FS′(⟨I⟩) is in
x(S). Thus {FS′(⟨I⟩) : ZS′ a facet of ZS} is a collection of compatible cluster variables of Gr4,n.

Finally, we show how to use BCFW tiles to tile AZ
n,k,4 (Definition 2.6). Theorems 3.5

and 3.13 are important ingredients to prove our last main result Theorem 3.17. We use
Notation 3.1, fix n ≥ k + 4, and define bmin := 2 if kL = 0 and otherwise bmin := kL + 3.

Definition 3.16 (BCFW collections). We say that a collection T of 4k-dimensional BCFW
cells in Gr≥0

k,n is a BCFW collection of cells for An,k,4 if it has the following recursive form:

• If k = 0 or k = n− 4, T is the single BCFW cell Gr>0
0,n or Gr>0

n−4,n, respectively.
• If T = {S} is a BCFW collection of cells, so is {refl S}S∈T and {cyc S}S∈T .
• Otherwise T = Tpre

⊔
b,kL,kR

TkL,kR,b,n, where

– b ranges from bmin to n− 3− kR, and kL, kR as in Notation 3.1;

– Tpre = {pred(S)}S∈C , where C is a BCFW collection of cells for A[n]\{d},k,4;

– TkL,kR,b,n = {SL ▷◁ SR}(SL,SR)∈CL×CR
where CL and CR are BCFW collections of

cells for ANL,kL,4 and ANR,kR,4.

Theorem 3.17 (BCFW tilings). Every BCFW collection of cells T = {S} as in Definition 3.16
gives rise to a tiling {ZS}S∈T of the amplituhedron AZ

n,k,4, which we refer to as a BCFW tiling.
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See Figure 4 for an illustration. This generalizes the main result of [10], which proved
the same result for the standard BCFW cells, and proves the main conjecture of [4].

Non-BCFW tiles are also expected to satisfy cluster adjacency, have a sign description
in terms of cluster variables, and appear in tilings of AZ

n,k,4, see [9, Section 12.2].
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Abstract. In our previous works we introduced a q-deformation of the generating func-
tions for enriched P-partitions. We call the evaluation of this generating functions on
labelled chains, the q-fundamental quasisymmetric functions. These functions inter-
polate between Gessel’s fundamental (q = 0) and Stembridge’s peak (q = 1) functions,
the natural quasisymmetric expansions of Schur and Schur’s Q-symmetric functions.
In this paper, we show that our q-fundamental functions provide a quasisymmetric
expansion of Hall-Littlewood S-symmetric functions with parameter t = −q.

Résumé. Dans nos travaux précédents, nous avons introduit une q-déformation des
fonctions génératrices pour les P-partitions enrichies. Nous nommons l’évaluation de
ces fonctions génératrices sur les chaînes étiquetées, les fonctions quasisymétriques
q-fondamentales. Ces fonctions interpolent entre les fonctions fondamentales de Ges-
sel (q = 0) et les fonctions de pics de Stembridge (q = 1) qui sont les expansions
quasisymétriques naturelles des fonctions symétriques de Schur et Q Schur. Dans cet
article, nous montrons que nos fonctions q-fondamentales fournissent une expansion
quasisymétrique des fonctions symétriques Hall-Littlewood S avec paramètre t = −q.

Keywords: Hall-Littlewood, quasisymmetric functions, enriched P-partitions

1 Introduction

We define the q-fundamental quasisymmetric functions as the q-deformed generating
functions for enriched P-partitions on labelled chains [5, 6]. These functions naturally
interpolate between I. Gessel’s fundamental ([1], q = 0) and J. Stembridge’s peak ([12],
q = 1) quasisymmetric functions and exhibit most of the nice properties of these two
classical families. In particular, when q is not a complex root of unity they span the
ring of quasisymmetric functions (QSym). When q is a root of unity, a subfamily of our
q-fundamentals is the basis of the algebra of extended peaks [6], a proper subalgebra
of QSym that coincides with Stembridge’s algebra of peaks when q = 1. Fundamental
and peak functions indexed by standard Young tableaux of shape λ are respectively the
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†katya@lix.polytechnique.fr
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quasisymmetric expansions of Schur and Schur’s Q-symmetric functions indexed by λ.
Finding the analogous families of symmetric functions for general q appears as a natural
question. We find out that q-fundamental functions provide a similar quasisymmetric
expansion of the family (Sλ(X; t))λ, the Hall-Littlewood S-symmetric functions with
parameter t = −q. After recalling the required definitions, we state and prove our main
result. Finally, we look at some important consequences regarding the quasisymmetric
extension of the classical homorphism between Λ, the algebra of symmetric functions
and the subalgebra of Λ spanned by Hall-Littlewood functions as well as some Cauchy
like formulas for the Sλ(X; t)’s.

1.1 Integer partitions, Young tableaux and permutation statistics

Let P be the set of positive integers and P± be the set of positive and negative integers
ordered by −1 < 1 < −2 < 2 < −3 < 3 < . . . . We embed P into P± and let −P ⊆ P± be
the set of all −n for n ∈ P. For n ∈ P write [n] = {1, . . . , n} and Sn the symmetric group
on [n]. A partition λ of an integer n, denoted λ ⊢ n is a sequence λ = (λ1, λ2, . . . , λp) of
ℓ(λ) = p parts sorted in decreasing order such that |λ| = ∑i λi = n. We denote the one
part partition (n) simply n. A partition λ is represented as a Young diagram of n = |λ|
boxes arranged in ℓ(λ) left justified rows so that the i-th row from the top contains λi
boxes. Given a second partition µ with ℓ(µ) ≤ ℓ(λ) such that µi ≤ λi, (i ≤ ℓ(µ)) delete
the µi leftmost boxes of the i-th row to get the diagram of shape λ/µ. A Young diagram
whose boxes are filled with positive integers such that the entries are increasing along
the rows and strictly increasing down the columns is called a semistandard Young tableau.
If the entries are consecutive and strictly increasing along the rows, we call it a standard
Young tableau and we denote SYT(λ/µ) (resp. SSYT(λ/µ)) the set of standard (resp.
semistandard) Young tableaux of shape λ/µ. A marked semistandard Young tableau is a
Young diagram filled with integers in P± such that the entries are increasing along rows
and columns and such that each row contains at most once each negative integer and
that each column contains at most once each positive integer. Denote SSYT±(λ/µ) the

T1 =

3

1

1 5

3 3

10

6

2

12

12

T2 =

-3

2

-4 -9

3 3

9

-9

-4

18

18

T3 =

4

1

2 7

5 6

9

8

3

10

11

Figure 1: A semistandard, marked semistandard and standard tableau of shape
(6, 4, 2, 1, 1)/(2, 1). The descent set of T3 is {2, 6, 7, 9} while its peak set is {2, 6, 9}.
T2 has neg(T2) = 5 negative entries.
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set of marked semistandard Young tableaux of shape λ/µ. Define the descent set of a
standard Young tableau T as Des(T) = {1 ≤ i ≤ n − 1 | i is in a strictly higher row than
i + 1} and it peak set as Peak(T) = {2 ≤ i ≤ n − 1 | i ∈ Des(T) and i − 1 /∈ Des(T)}.
Finally, denote the number of negative entries of a marked tableau T as neg(T).

Example 1. Figure 1 depicts a semistandard, a marked semistandard and a standard Young
tableau with their shape and descent and peak set.

Similarly, the descent set and peak set of a permutation π in Sn are the subsets of
[n − 1] defined as Des(π) = {1 ≤ i ≤ n − 1 | π(i) > π(i + 1)} and Peak(π) = {2 ≤ i ≤
n − 1|π(i − 1) < π(i) > π(i + 1)}. Finally the Robinson-Schensted (RS) correspondence ([9,
10]) is a bijection between permutations π in Sn and ordered pairs of standard Young
tableaux (P, Q) of the same shape λ ⊢ n. This bijection is descent preserving in the sense
that Des(π) = Des(Q), and Des(π-1) = Des(P).

1.2 Hall-Littlewood symmetric functions

Consider the set of indeterminates X = {x1, x2, x3, . . .}. Let Λ denote the ring of sym-
metric functions over C. We use notations consistent with [7]. Namely, for λ ⊢ n, denote
mλ(X), hλ(X), eλ(X), pλ(X) and sλ(X) the monomial, complete homogeneous, elementary,
power sum and Schur symmetric functions over X indexed by λ. Fix a parameter t ∈ C

and define qn(X; t) ∈ Λ as q0(X; t) = 1 and for any positive integer n as:

qn(X; t) = (1 − t)∑
i

xn
i ∏

j ̸=i

xi − txj

xi − xj
. (1.1)

The generating function for the qn is given by

∑
n≥0

qn(X; t)un = ∏
i

1 − xitu
1 − xiu

. (1.2)

The family (qn(X; t))n generates a subalgebra of Λ that we denote Λt. In particular, Λt
is a proper subalgebra of Λ when t is a root of unity.

Definition 1 (Hall-Littlewood S-symmetric functions). Let λ/µ be a skew shape, define the
Hall-Littlewood S-symmetric functions indexed by λ/µ as

Sλ/µ(X; t) = det
(

qλi−µj−i+j(X; t)
)

i,j
(1.3)

As a direct consequence of Definition 1, setting t = 0 yields Sλ/µ(X; 0) = sλ/µ(X). When
t = −1, Sλ/µ(X;−1) is a variant of Schur’s Q-function indexed by λ/µ. We end this
section with the definition of a classical ring homomorphism.
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Definition 2 (Ring homomorphism). Define a ring homomorphism θt: Λ −→ Λt by setting
for any non-negative integer n,

θt(hn)(X) = qn(X; t).

In particular, one has θt(en)(X) = qn(X; t), θt(pn)(X) = (1 − tn)pn(X) and, as a consequence
of Definition 1,

θt(sλ/µ)(X) = Sλ/µ(X; t).

1.3 Enriched P-partitions and q-deformed generating functions

We recall the main definitions regarding weighted posets, enriched P-partitions and their
q-deformed generating functions. See [1, 4, 5, 11, 12] for more details.

Definition 3 (Labelled weighted poset, [4]). A labelled weighted poset is a triple P =
([n],<P, ϵ) where ([n],<P) is a labelled poset, i.e., an arbitrary partial order <P on the set [n]
and ϵ : [n] −→ P is a map (called the weight function). If ϵ(i) = 1 for all i ∈ [n], we may
simply omit it.

Each node of a labelled weighted poset is marked with its label and weight (Figure 2).

2, ϵ(2) = 5

3, ϵ(3) = 2 1, ϵ(1) = 1 4, ϵ(4) = 2

5, ϵ(5) = 2

Figure 2: A 5-vertex labelled weighted poset. Arrows show the covering relations.

Definition 4 (Enriched P-partition, [12]). Given a labelled weighted poset P = ([n],<P, ϵ),
an enriched P-partition is a map f : [n] −→ P± that satisfies the two following conditions:

(i) If i <P j and i < j, then f (i) < f (j) or f (i) = f (j) ∈ P.

(ii) If i <P j and i > j, then f (i) < f (j) or f (i) = f (j) ∈ −P.

We let LP±(P) denote the set of enriched P-partitions.

Definition 5 (q-Deformed generating function, [5]). Consider the ring C [[X]] of formal
power series on X and let q ∈ C be an additional parameter. Given a labelled weighted poset
([n],<P, ϵ), define its generating function Γ(q)([n],<P, ϵ) ∈ C [[X]] as

Γ(q)([n],<P, ϵ) = ∑
f∈L

P± ([n],<P,ϵ)
∏

1≤i≤n
q[ f (i)<0]xϵ(i)

| f (i)|,

where [ f (i) < 0] = 1 if f (i) < 0 and 0 otherwise.
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Finally, let X± = {x−1, x1, x−2, x2, . . .}. In the sequel we denote ϖ the homomorphism
ϖ : C[[X±]] −→ C[[X]] defined by setting ϖ(xi) = q[i<0]x|i| for xi ∈ X±.

1.4 q-fundamental quasisymmetric functions

We recall results from [5] and [6].

Definition 6 (q-Fundamental quasisymmetric functions). Given a permutation π = π1 . . . πn
of Sn, we let Pπ = ([n],<π, 1n) be the labelled weighted poset on the set [n], where the order
relation <π is such that πi <π πj if and only if i < j and where all the weights are equal to 1
(see Figure 3). Define the q-fundamental quasisymmetric function

L(q)
π = Γ(q)([n],<π, 1n).

π1 π2 · · · · · · · · · πn

Figure 3: The labelled weighted poset Pπ.

The q-fundamental quasisymmetric functions belong to the subalgebra of C [[X]] called
the ring of quasisymmetric functions (QSym), i.e. for any strictly increasing sequence of
indices i1 < i2 < · · · < ip the coefficient of xk1

1 xk2
2 · · · xkp

p is equal to the coefficient of

xk1
i1

xk2
i2
· · · xkp

ip
. The specialisations of L(q)

π to Lπ = L(0)
π and Kπ = L(1)

π are respectively the
Gessel’s fundamental [1] and Stembridge’s peak [12] quasisymmetric functions indexed
by permutation π. We have the following explicit expression.

L(q)
π = ∑

i1≤i2≤···≤in;
j∈Peak(π)⇒ij−1<ij+1

q|{j∈Des(π)|ij=ij+1}|(q + 1)|{i1,i2,...,in}|xi1 xi2 . . . xin . (1.4)

Furthermore q-fundamental quasisymmetric functions admit a closed-form product and
coproduct.

Proposition 1. Let q ∈ C, let π and σ be two permutations in Sn and Sm. The product of L(q)
π

and L(q)
σ is given by

L(q)
π L(q)

σ = ∑
τ∈π σ

L(q)
τ , (1.5)

where σ = n + σ1 n + σ2 . . . n + σm. Moreover, the coproduct ∆ : QSym → QSym⊗QSym
of the Hopf algebra QSym (see [3, §5.1]) acts on the q-fundamental quasisymmetric functions as
follows:

∆(L(q)
π ) =

n

∑
i=0

L(q)
std(π1π2...πi)

⊗ L(q)
std(πi+1πi+2...πn)

.
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Here, if γ is a sequence of non-repeating integers, std(γ) is the permutation whose values are in
the same relative order as the entries of γ.

According to Equation (1.4), L(q)
π depends only on the descent set of π. We reindex

our q-fundamentals by an integer n and a subset of [n − 1]. We recall two significant
results.

Proposition 2 ([5]). (L(q)
n,I )n≥0,I⊆[n−1] is a basis of QSym if and only if q ∈ C is not a root of

unity.

Proposition 3 ([6]). Let p ∈ P and ρp ∈ C such that −ρp is a primitive p + 1-th root of unity.
For a subset I of [n − 1], write I ⊆p [n − 1] if I ∪ {0} does not contain more than p consecutive

elements. Then (L(ρp)
n,I )n≥0,I⊆p[n−1] is a basis of a proper subalgebra P p of QSym.

For general q ∈ C denote P (q) the subalgebra of QSym spanned by the (L(q)
n,I )n,I . If q

is not a root of unity then P (q) = QSym. If q = ρp for some p ∈ P then P (q) = P p.

2 Relating Hall-Littlewood and q-fundamentals functions

The ring of symmetric functions Λ is a subalgebra of QSym and any symmetric function
may be expanded in quasisymmetric bases. The relation between Schur functions (i.e
Hall-Littlewood S-functions with parameter t = 0) and fundamental quasisymmetric
functions is of particular interest. Let λ/µ be a skew shape, Gessel shows in [1]

Sλ/µ(X; 0) = sλ/µ(X) = ∑
T∈SYT(λ/µ)

L(0)
Des(T)(X). (2.1)

On the other hand, Stembridge shows in [12] that

Sλ/µ(X;−1) = ∑
T∈SYT(λ/µ)

L(1)
Des(T)(X). (2.2)

As a result, understanding how these relations generalise for general q seems to be a
very legitimate question. We state our result and some significant consequences.

2.1 Computing the q-deformed generating functions on skew diagrams

Let n ∈ P and λ and µ be two partitions such that λ/µ is a skew shape and |λ| − |µ| = n.
Label the skew Young diagram of shape λ/µ with the successive integers of [n] from left
to right and bottom to top. Define the partial order <λ/µ on [n] as i <λ/µ j if and only
if i lies northwest of j and denote the labelled poset Pλ/µ = ([n],<λ/µ). As a direct
consequence the set of enriched Pλ/µ-partitions are precisely the marked semistandard
Young tableaux of shape λ/µ, i.e. LP±(Pλ/µ) = SSYT±(λ/µ).
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8 9 10 11

5 6 7

3 4

2

1

Figure 4: The labelled weighted poset P(6,4,2,1,1)/(2,1).

Theorem 1. Let n ∈ P and λ/µ be a skew shape such that |λ| − |µ| = n. The q-deformed
generating function of Pλ/µ is exactly the Hall-Littlewood S-symmetric function with parameter
t = −q.

Sλ/µ(X;−q) = Γ(q)([n],<λ/µ). (2.3)

The proof is postponed to Section 3. As a consequence to Theorem 1, we give an
explicit quasisymmetric expansion of the Hall-Littlewood S-symmetric functions that is
a natural generalisation of Equations (2.1) and (2.2).

Theorem 2. Let λ/µ be a skew shape. The Hall-Littlewood S-symmetric function with parameter
t = −q is related to q-fundamental quasisymmetric functions through

Sλ/µ(X;−q) = ∑
T∈SYT(λ/µ)

L(q)
Des(T)(X). (2.4)

Proof. Let n = |λ| − |µ|. Given a marked semistandard Young tableau T ∈ SSYT±(λ/µ),
define its standardisation as the standard tableau T0 ∈ SYT(λ/µ) obtained by relabelling
the boxes of T with the integers in [n] such that:

• The entries of T and T0 are in the same relative order

• Identical negative entries of T are relabelled from top to bottom

• Identical positive entries of T are relabelled from left to right.

Denote Tst = T0. For instance, in Figure 1, Tst
1 = Tst

2 = T3. Further denote X|T| =

∏i∈P± xti
|i| where ti is the number of entries equal to i in T. Finally, use Theorem 1 to get

Sλ/µ(X;−q) = Γ(q)(Pλ/µ) = ∑
T∈SSYT±(λ/µ)

qneg(T)X|T|

= ∑
T0∈SYT(λ/µ)

 ∑
T∈SSYT±(λ/µ), Tst=T0

qneg(T)X|T|


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End the proof by noticing that the part between parentheses is exactly L(q)
Des(T)(X).

Recall the ring homomorphism θt of Definition 2. The following result is a conse-
quence of Theorem 2.

Theorem 3. There is a ring homomorphism Θq: QSym −→ P (q) such that for any positive

integer n and any subset I ⊆ [n − 1], Θq

(
L(0)

n,I

)
= L(q)

n,I . Then the restriction of Θq to Λ is
exactly θ−q and the ring map diagram of Figure 5 is commutative.

QSym P (q)

Λ Λ−q

Θq

θ−q

Figure 5: Map diagram relating QSym, P (q), Λ and Λ−q. Vertical maps are inclusion.

Proof. The existence and proper definition of Θq is a consequence of Equation (1.5). To
end the proof, it suffices to show that for any n non-negative integer, Θq(hn)(X) =
qn(X;−q). Indeed, one has

Θq(hn)(X) = Θq(sn)(X) = Θq(L(0)
n,∅)(X)

= L(q)
n,∅(X) = Sn(X;−q)

= qn(X;−q)

This is the desired result.

Remark 1. Applying the morphism Θq to both the left-hand and right-hand sides of Equation
(2.1) gives an alternative proof that θt

(
sλ/µ

)
(X) = Sλ/µ(X; t). Indeed

Θq
(
sλ/µ

)
(X) = ∑

T∈SYT(λ/µ)

Θq

(
L(0)

Des(T)

)
(X) = ∑

T∈SYT(λ/µ)

L(q)
Des(T)(X) = Sλ/µ(X;−q)

2.2 Cauchy like formula for Hall-Littlewood symmetric functions

We use Theorem 2 to provide an alternative proof of a classical Cauchy like formula for
Hall-Littlewood S-symmetric functions. Denote Y = {y1, y2, . . . , } an additional alphabet
of commutating indeterminate independent of and commuting with X and denote the
product alphabet XY = {xiyj}i,j. We first show the following proposition.
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Proposition 4. Let π ∈ Sn be a permutation. Extend the definition of Γ(q) to the alphabet XY
by considering Pπ-partitions ( f , g) : i 7→ ( f (i), g(i)) with value in P × P± that we equip with
the lexicographic order. Assume also that for (i, j) ∈ P × P±, (i, j) is negative if and only if j is
negative. We have

Γ(q)(Pπ)(XY) = ∑
( f ,g)∈L

P×P± ([n],<π)
∏

1≤i≤n
q[g(i)<0]x f (i)y|g(i)|

The q-fundamental indexed by π on the product of indeterminate XY satisfies

L(q)
π (XY) = Γ(q)(Pπ)(XY) = ∑

σ◦τ=π

L(0)
σ (X)L(q)

τ (Y). (2.5)

Proof. The proof is similar to the one in [8, thm 6.11] and not detailed here.

In [7, III. 4. Eq. (4.7)], Macdonald provides a Cauchy like formula for Hall-Littlewood
symmetric functions.

qn(XY; t) = ∑
λ⊢n

sλ(X)Sλ(Y; t). (2.6)

Proposition 5. Equation (2.6) is a direct consequence of Proposition 4 and Theorem 2.

Proof. Fix q ∈ C and use Proposition 4 to write

qn(XY;−q) = L(q)
idn

(XY) = ∑
σ∈Sn

L(0)
σ−1(X)L(q)

σ
(Y),

where idn ∈ Sn is the identity permutation. The RS correspondence allows to reindex
the sum over standard Young tableaux.

qn(XY;−q) = ∑
λ⊢n

∑
T,U∈SYT(λ)

L(0)
Des(T)(X)L(q)

Des(U)
(Y)

= ∑
λ⊢n

 ∑
T∈SYT(λ)

L(0)
Des(T)(X)

 ∑
U∈SYT(λ)

L(q)
Des(U)

(Y)


Applying Theorem 2 yields Equation (2.6).

3 Proof of Theorem 1

Let ≺ be a total order on P±. Define the binary relation R as follows. For any two
elements i, j ∈ P±, set

(i R j) ⇐⇒ (i ≼ j but not i = j ∈ −P) .

We define a formal power series on the alphabet X± = {x−1, x1, x−2, x2, . . . }.
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Definition 7. For each non-negative integer n, define the formal power series

Hn(X±) = ∑
(i1,i2,...,in)∈(P±)

n
;

i1 R i2 R ··· R in

xi1 xi2 · · · xin .

Moreover, set Hn = 0 for all n < 0.

Define an alternative version of the generating function for enriched P-partitions
Γ±([n],<P) ∈ C [[X±]] as

Γ±([n],<P) = ∑
f∈L

P± ([n],<P)
∏

1≤i≤n
x f (i).

Recall the homomorphism ϖ : C [[X±]] −→ [[X]], such that ϖ(xi) = q[i<0]x|i| for xi ∈ X±.
Clearly

ϖ(Γ±([n],<P)) = Γ(q)([n],<P).

Proposition 6. Let λ and µ be two partitions such that λ/µ is a skew shape. We have

Γ±([n],<λ/µ) = det
(

Hλi−µj−i+j

)
i,j∈[k]

(3.1)

Proof. We want to apply [2, §7]. To this end, we introduce a new relation. Let R be the
complement of the binary relation R. (Thus, R is the binary relation on P± defined by(
i R j

)
⇐⇒ (not i R j).) It is easy to see that both relations R and R are transitive.

Hence, the relation R is semitransitive (meaning that if a, b, c, d ∈ P± satisfy a R b R c,
then a R d or d R c). Therefore, [2, Theorem 11] yields that the power series sR

λ/µ (defined
in [2, §7]) counts R-tableaux of shape λ/µ. But the R-tableaux of shape λ/µ are precisely
the enriched Pλ/µ-partitions.

In order to prove Theorem 1 from Equation (3.1), we need to show that for any non-
negative integer n, ϖ(Hn(X±)) = qn(X;−q). We proceed in three steps. First we have
the following proposition.

Proposition 7. Let n ∈ N. Then,

Hn =
n

∑
k=0

∑
U is a size-k
subset of −P

∑
V is a size-(n−k)
multisubset of P

(
∏
u∈U

xu

)(
∏
v∈V

xv

)

(where the product over v ∈ V takes each element with its multiplicity). In particular, Hn does
not depend on the order ≺.

Secondly, we express qn(X;−q) in terms of elementary and complete homogeneous
symmetric functions.
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Lemma 1. Let n be a non-negative integer and q ∈ C.

qn(X;−q) =
n

∑
k=0

qkekhn−k. (3.2)

Proof. We have

∑
n

qn(X;−q)un = ∏
i≥1

1 + qxiu
1 − xiu

=

(
∏
i≥1

(1 + qxiu)

)
︸ ︷︷ ︸

=∑n qnentn

(
∏
i≥1

1
1 − xiu

)
︸ ︷︷ ︸

=∑n hnun

=

(
∑
n

qnenun

)(
∑
n

hnun

)
= ∑

n

(
n

∑
k=0

qkekhn−k

)
un.

Extracting coefficients in un on both sides yields the desired result.

Finally, use Proposition 7 and Lemma 1 to relate Hn and qn.

Proposition 8. Let n ∈ Z. Then,

ϖ
(

Hn(X±)
)
= qn(X;−q)

Proof. From Proposition 7, we know that

Hn =
n

∑
k=0

∑
U is a size-k
subset of −P

∑
V is a size-(n−k)
multisubset of P

(
∏
u∈U

xu

)(
∏
v∈V

xv

)
.

Applying the map ϖ to both sides of this equality, we obtain

ϖ (Hn) =
n

∑
k=0

∑
U is a size-k
subset of −P

∑
V is a size-(n−k)
multisubset of P

∏
u∈U

ϖ (xu)︸ ︷︷ ︸
=qx−u

(since u∈−P)


∏

v∈V
ϖ (xv)︸ ︷︷ ︸
=xv

(since v∈P)


(since ϖ is a continuous k-algebra homomorphism)

=
n

∑
k=0

∑
U is a size-k
subset of −P

∑
V is a size-(n−k)
multisubset of P

(
∏
u∈U

(qx−u)

)
︸ ︷︷ ︸
=qk(∏u∈U x−u)

(since |U|=k)

(
∏
v∈V

xv

)

=
n

∑
k=0

qk

 ∑
U is a size-k
subset of −P

∏
u∈U

x−u


︸ ︷︷ ︸
=∑U is a size-k

subset of P

∏u∈U xu

=ek

 ∑
V is a size-(n−k)
multisubset of P

∏
v∈V

xv


︸ ︷︷ ︸

=hn−k
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As a result ϖ (Hn) = ∑n
k=0 qkekhn−k = qn(X;−q) by Equation (3.2).
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Geometry of C-Matrices for Mutation-Infinite
Quivers
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Abstract. The set of forks is a class of quivers introduced by M. Warkentin, where
every connected mutation-infinite quiver is mutation equivalent to infinitely many
forks. Let Q be a fork with n vertices, and w be a fork-preserving mutation sequence.
We show that every c-vector of Q obtained from w is a solution to a quadratic equation
of the form

n

∑
i=1

x2
i + ∑

1≤i<j≤n
±qijxixj = 1,

where qij is the number of arrows between the vertices i and j in Q. From the proof of
this result, when Q is a rank 3 mutation-cyclic quiver, every c-vector of Q is a solution
to a quadratic equation of the same form.

Keywords: quivers, c-vectors, forks, quadratic equations

1 Introduction

The mutation of a quiver Q was discovered by S. Fomin and A. Zelevinsky in their sem-
inal paper [12] where they introduced cluster algebras. It also appeared in the context
of Seiberg duality [10]. The c-vectors (and C-matrices) of Q were defined through mu-
tations in further developments of the theory of cluster algebras [13], and together with
their companions, g-vectors (and G-matrices), played fundamental roles in the study
of cluster algebras (for instance, see [7, 14, 19, 20, 22]). When Q is acyclic, positive c-
vectors are actually real Schur roots, that is, the dimension vectors of indecomposable
rigid modules over Q [5, 15, 25]. Moreover, they appear as the denominator vectors of
non-initial cluster variables of the cluster algebra associated to Q [4].

Due to the multifaceted appearance of c-vectors in important constructions, there
have been various results related to the description of c-vectors (or real Schur roots)
∗tjervin@crimson.ua.edu
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§sdnguyen1@crimson.ua.edu
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of an acyclic quiver [1, 15, 16, 23, 24, 25]. In [18], K.-H. Lee and K. Lee conjectured
a correspondence between real Schur roots of an acyclic quiver and non-self-crossing
curves on a Riemann surface and proposed a new combinatorial/geometric description.
The conjecture is now proven by A. Felikson and P. Tumarkin [9] for acyclic quivers with
multiple edges between every pair of vertices. Recently, S. D. Nguyen [21] proved the
conjecture for an arbitrary acyclic (valued) quiver.

For a given (not necessarily acyclic) quiver Q, the set of quivers that are mutation
equivalent to Q is called the mutation equivalence class of Q and denoted by Mut(Q).
The quiver Q is said to be mutation-infinite if |Mut(Q)| is not finite, and mutation-finite if
|Mut(Q)| < ∞. The mutation-finite quivers are completely classified, and relatively well
studied. On the other hand, mutation-infinite quivers still await further investigations.

A reader-friendly version of our main theorem may be stated as follows.

Theorem 1.1. Let n be any positive integer. Let P be a mutation-infinite connected quiver with n
vertices. Then there exist an infinite number of pairs of a quiver Q ∈ Mut(P) and k ∈ {1, ..., n}
such that every c-vector of Q obtained from any mutation sequence not starting with k is a
solution to a quadratic equation of the form

n

∑
i=1

x2
i + ∑

1≤i<j≤n
±qijxixj = 1, (1.2)

where qij is the number of arrows between the vertices i and j in Q. There does not seem to be a
simple way of determining the exact signs of the xixj terms.

To state a more precise theorem, we need to recall the definition of forks. An abundant
quiver is a quiver such that there are two or more arrows between every pair of vertices.

Definition 1.3. [26, Definition 2.1] A fork is an abundant quiver F, where F is not acyclic
and where there exists a vertex r, called the point of return, such that

• For all i ∈ F−(r) and j ∈ F+(r) we have f ji > fir and f ji > frj, where F−(r) is the
set of vertices with arrows pointing towards r and F+(r) is the set of vertices with
arrows coming from r.

• The full subquivers induced by F−(r) and F+(r) are acyclic.

An example of a fork is given by

r

i j

3 4

5

,

where r is the point of return.
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It is known that "most" quivers in Mut(Q) of any connected mutation-infinite quiver
Q are forks, as Theorem 1.4 and Proposition 1.5 imply.

Theorem 1.4. [26, Theorem 3.2] A connected quiver is mutation-infinite if and only if it is
mutation-equivalent to a fork.

Proposition 1.5. [26, Proposition 5.2] Let G be the exchange graph of a connected mutation-
infinite quiver. A simple random walk on G will almost surely leave the fork-less part and never
come back.

A fork-preserving mutation sequence is a reduced sequence of mutations that starts
with a fork and does not mutate at its point of return. A more precise version of our
main theorem is as follows.

Theorem 1.6. Let Q be a fork, and let w be a fork-preserving mutation sequence. Every c-vector
of Q obtained from w is a solution to a quadratic equation of the form (1.2).

A quiver Q is called mutation-acyclic if it is mutation-equivalent to an acyclic quiver,
else it is called mutation-cyclic. Notably, we have discovered a counterexample to Theo-
rem 1.6 for truly arbitrary mutation-sequences w in the case of quivers on four vertices
(to appear in the full version of this abstract [8]), but the proof of the theorem provides
a stronger corollary in the three vertex case. Ahmet Seven informed us that he had
independently discovered this result.

Corollary 1.7. Let Q be a mutation-cyclic quiver with 3 vertices. Then every c-vector of Q is a
solution to a quadratic equation of the form (1.2) with n = 3.

As a byproduct of our proof, we also obtain the following theorem, which is closely
related to a result of Fomin and Neville [11, Lemma 6.14].

Theorem 1.8. Let w be a fork-preserving mutation sequence. The sign-vector (see Definition 2.3)
of Cw depends only on the signs of entries of initial exchange matrix B. In other words, the sign-
vector is independent of the number of arrows between vertices of the initial quiver Q.

Corollary 1.9. Let n be any positive integer, and let Q be a fork with n vertices. For each fork-
preserving mutation sequence w from Q, the corresponding n-tuple of reflections (rw

1 , rw
2 , . . . , rw

n )
(see Definition 2.6) depends only on the signs of entries of the initial exchange matrix B.

From this, we are able to prove that the product of reflections is equal to a Coxeter
element. More precisely, we have the following.

Theorem 1.10. Let n be any positive integer, and let Q be a fork with n vertices. For each
fork-preserving mutation sequence w from Q, we have

rw
λ(1)...r

w
λ(n) = rρ(1)...rρ(n)

for some permutations λ, ρ ∈ Sn, where Sn is the symmetric group on {1, ..., n} and r1, ..., rn
are the initial reflections, where λ is determined by w and ρ is fixed by the first mutation of w.
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Corollary 1.11. Let n be any positive integer, and let Q be a fork with n vertices. For each fork-
preserving mutation sequence w from Q, there exist pairwise non-crossing and non-self-crossing
admissible curves ηw

i (see Definition 2.10) such that rw
i = ν(ηw

i ) for every i ∈ {1, ..., n}.
The above results are explored more thoroughly in our forthcoming paper [8], and

they all rely heavily on our use of l-vectors and generalized intersection matrices.

2 Preliminaries

2.1 C-matrices

Let n be a positive integer. If B = [bij] is an n× n skew-symmetric matrix, then B is in
correspondence with a quiver Q on n vertices: if bij > 0 and i 6= j, then Q has bij arrows
from vertex i to vertex j. The statements of some theorems have been formulated in
terms of Q; however, we prefer to work with B since the description of c-vectors is more
clear in this setting. Also, for a nonzero vector c = (c1, . . . , cn) ∈ Zn, we write c > 0 if
all ci are non-negative, and c < 0 if all ci are non-positive.

Assume that M = [mij] is an n× 2n matrix with integer entries. Let I := {1, 2, . . . , n}
be the set of indices. For w = [i1, i2, . . . , i`], ij ∈ I , we define the matrix Mw = [mw

ij ]

inductively: the initial matrix is M for w = [ ], and assuming we have Mw, define the
matrix Mw[k] = [mw[k]

ij ] for k ∈ I with w[k] := [i1, i2, . . . , i`, k] by

mw[k]
ij =

{
−mw

ij if i = k or j = k,

mw
ij + sgn(mw

ik ) max(mw
ik mw

kj , 0) otherwise,
(2.1)

where sgn(a) ∈ {1, 0,−1} is the signature of a. The matrix Mw[k] is called the mutation
of Mw at index (or label) k, w and w[k] are called mutation sequences, and n is the rank.

Let B be a n× n skew-symmetric matrix. Consider the n× 2n matrix
[
B I

]
and a mu-

tation sequence w = [i1, . . . , i`]. After the mutations at the indices i1, . . . , i` consecutively,
we obtain

[
Bw Cw]. Write their entries as

Bw =
[
bw

ij

]
, Cw =

[
cw

ij

]
=

cw
1
...

cw
n

 , (2.2)

where cw
i are the row vectors.

Definition 2.3. The matrix Cw is called a C-matrix of B for any w 1. The row vectors cw
i

are called c-vectors of B for any i and w. Each non-zero entry of cw
i will share the same

sign [6], allowing us to define the sign-vector of Cw, where the i-th entry is 1 if cw
i > 0

and −1 if cw
i < 0.

1This is slightly different from the original definition by Fomin and Zelevinsky
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2.2 Reflections and L-matrices

In order to prove Theorem 1.6, we needed to study the L-matrices arising from reflections
and a particular generalized intersection matrix associated to our exchange matrix.

Definition 2.4. A generalized intersection matrix (GIM) is a square matrix A = [aij] with
integral entries such that (1) for diagonal entries, aii = 2; (2) aij > 0 if and only if aji > 0;
(3) aij < 0 if and only if aji < 0.

Let A be the (unital) Z-algebra generated by si, ei, i = 1, 2, . . . , n, subject to the fol-
lowing relations:

s2
i = 1,

n

∑
i=1

ei = 1, siei = −ei, eisj =

{
si + ei − 1 if i = j,
ei if i 6= j,

eiej =

{
ei if i = j,
0 if i 6= j.

Let W be the subgroup of the units of A generated by si, i = 1, . . . , n. Note that W is
(isomorphic to) the universal Coxeter group. An element r ∈ W is called a reflection if
r2 = 1. Let R ⊂ W be the set of reflections.

From now on, let A = [aij] be an n× n symmetric GIM. Let Γ = ∑n
i=1 Zαi be the lattice

generated by the formal symbols α1, ..., αn. Define a representation π : A → End(Γ) by

π(si)(αj) = αj − ajiαi and π(ei)(αj) = δijαi, for i, j ∈ {1, ..., n}.

We suppress π when we write the action of an element of A on Γ.
Given a skew-symmetric matrix B, for each linear ordering ≺ on {1, ..., n}, we define

the associated GIM A = [aij] by

aij =


bij if i ≺ j,
2 if i = j,
−bij if i � j.

(2.5)

An ordering ≺ provides a certain way for us to regard the skew-symmetric matrix B as
acyclic even when it is not.

Definition 2.6. When w = [ ], we let ri = si ∈ R for each i ∈ {1, ..., n}. For each mutation
sequence w and each i ∈ {1, ..., n}, define rw

i ∈ R inductively as follows:

rw[k]
i =

{
rw

k rw
i rw

k if bw
ik cw

k > 0,
rw

i otherwise.
(2.7)

Clearly, each rw
i is written in the form

rw
i = gw

i si(gw
i )−1, gw

i ∈ W , i ∈ {1, ..., n}.
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Definition 2.8. Let sgn = {1,−1} be the group of order 2, and consider the natural
group action sgn×Zn −→ Zn, where we identify Γ with Zn. Choose an ordering ≺ on
{1, ..., n} to fix a GIM A, and define

lw
i = gw

i (αi) ∈ Zn/ sgn, i ∈ {1, ..., n},

where we set α1 = (1, 0, ..., 0), ..., αn = (0, ..., 0, 1). Then the L-matrix Lw associated to A

is defined to be the n× n matrix whose ith row is lw
i for i ∈ {1, ..., n}, i.e., Lw =

lw
1
...

lw
n

,

and the vectors lw
i are called the l-vectors of A. Note that the L-matrix and l-vectors

associated to a GIM A implicitly depend on the representation π which is suppressed
from the notation.

With the above machinery, we show the following, which further implies Theorem
1.6.

Theorem 2.9. Let Q be a fork with n vertices, and let w be a fork-preserving mutation sequence.
For each i ∈ {1, ..., n}, there exists a diagonal matrix Dw

i such that (Dw
i )2 = 1 and lw

i = cw
i Dw

i .
In other words, the entries of l-vectors are equal to the entries of c-vectors up to sign.

2.3 Geometry of reflections

Here we review the definition of admissible curves [18, 17].
Let Q be a fork with n vertices labeled by I := {1, ..., n} and point of return r. Let σ

be the linear ordering given by r ≺ an−1 ≺ an−2 ≺ · · · ≺ a1, where a1, a2, . . . , an−1 are the
vertices of Q \ {r} and ai ≺ aj if and only if there is an arrow from j to i.

We define a labeled Riemann surface Σσ
2 as follows. Let G1 and G2 be two identical

copies of a regular n-gon. Label the edges of each of the two n-gons by Tσ(1), . . . , Tσ(n)
counter-clockwise. Fix the orientation of every edge of G1 (resp. G2) to be counter-
clockwise (resp. clockwise) as in the following picture.

σ(n)

σ(2)

σ(1)

σ(n− 1)

σ(3)

...

σ(3)

σ(n− 1)

...

σ(2)

σ(n)

2The punctured discs appeared in Bessis’ work [3]. For better visualization, here we prefer to use an
alternative description using compact Riemann surfaces with one or two marked points.
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•

•

•

•

•

•

•

•

•

•

•

•

V
Tγ

TβTα

Figure 1: This picture illustrates a portion of the universal cover Σσ, and the three arcs
Tα, Tβ, and Tγ.

Let Σσ be the (compact) Riemann surface of genus bn−1
2 c obtained by gluing together

the two n-gons with all the edges of the same label identified according to their ori-
entations. The edges of the n-gons become N different curves in Σσ. If n is odd, all
the vertices of the two n-gons are identified to become one point in Σσ and the curves
obtained from the edges are loops. If n is even, two distinct vertices are shared by all
curves. Let T be the set of all curves, i.e., T = T1 ∪ · · · ∪ Tn ⊂ Σσ, and V be the set of
the vertex (or vertices) on T .

For simplicity, here we give a precise definition of an admissible curve for rank 3
quivers only, but it is straightforward to generalize to quivers of higher rank. For our ge-
ometric model on rank 3 quivers, we consider the (triangulated) torus with one marked
point along with admissible curves (see Definition 2.10). The key point here is that there
is a map from the set of admissible curves to R.

For each σ ∈ S3, let Σσ be the closed Riemann surface of genus 1 with a single marked
point V, and let Σ̃σ be the universal cover of Σσ, which can be regarded as R2. Let
α = σ(1), β = σ(2), and γ = σ(3). Fix three arcs Tα, Tβ, and Tγ on Σσ and the projection
p : Σ̃σ −→ Σσ such that p−1(Tα) = Z× R ⊂ R2, p−1(Tβ) = {(x, y) : x + y ∈ Z} ⊂ R2,
p−1(Tγ) = R×Z ⊂ R2, and p−1(V) = Z2 ⊂ R2. Hence Tα is the vertical line segment, Tβ

is the diagonal, and Tγ is the horizontal line segment. Let T = T1 ∪ T2 ∪ T3. See Figure
1.

Definition 2.10. An admissible curve is a pair consisting of a continuous function η :
[0, 1] −→ Σσ and a sequence {i`}k

`=1 of entries with in i` ∈ {1, 2, 3} such that
1) η(x) = V if and only if x ∈ {0, 1};
2) if η(x) ∈ T \ {V} then η([x− ε, x + ε]) meets T transversally for sufficiently small

ε > 0;
3) η(x`) ∈ Ti` and ` ∈ {1, ..., k}, where

{x1 < · · · < xk} = {x ∈ (0, 1) : η(x) ∈ T}
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4) υ(η) ∈ R, where υ(η) := ri1 · · · rik ∈ W .

Example 2.11. In Example 3.5, when w = [1, 2, 3], the admissible curve ηw
2 has

υ(ηw
2 ) = r2r1r3r1r2r1r3r1r2.

Note that ηw
2 crosses T2, T1, T3, T1, T2, T1, T3, T1, T2 in this order.

3 Examples

In this section, we will consider the following two quivers to demonstrate our theorems:

P =

2

1 3

3 3

6

and Q =

2

1 3

3 4

5

Both quivers are mutation-cyclic [2]. Also, P and Q are forks and are mutation-equivalent
to only forks. In this section, we will consider the c-vectors of both P and Q under three
mutation sequences, namely, w = [1], w = [1, 2], and w = [1, 2, 3].

Example 3.1. An example of Theorem 1.8 is given in the table below:

Mutation Sequence [Bw|Cw]-matrix for P [Bw|Cw]-matrix for Q

w = [1]

 0 −3 6 −1 0 0
3 0 −15 0 1 0
−6 15 0 6 0 1

  0 −3 5 −1 0 0
3 0 −11 0 1 0
−5 11 0 5 0 1


w = [1, 2]

 0 3 −39 −1 0 0
−3 0 15 0 −1 0
39 −15 0 6 15 1

  0 3 −28 −1 0 0
−3 0 11 0 −1 0
28 −11 0 5 11 1


w = [1, 2, 3]

 0 −582 39 −1 0 0
582 0 −15 90 224 15
−39 15 0 −6 −15 −1

  0 −305 28 −1 0 0
305 0 −11 55 120 11
−28 11 0 −5 −11 −1


For each quiver, the sign vector of the C-matrix for w = [1], w = [1, 2], and w =

[1, 2, 3] is (−1, 1, 1), (−1,−1, 1), and (−1, 1,−1)).

Example 3.2. The quadratic equation for the quiver P is given by

x2 + y2 + z2 − 3xy− 6xz + 3yz = 1.

and the quadratic equation for Q is given by

x2 + y2 + z2 − 3xy− 5xz + 4yz = 1.
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It is easy to verify that the c-vectors

(x, y, z) = (90, 224, 15) and (x, y, z) = (−6,−15,−1)

both satisfy the quadratic equation for P and that the c-vectors

(x, y, z) = (55, 120, 11) and (x, y, z) = (−5,−11,−1)

both satisfy the quadratic equation for Q.

Example 3.3. In this example, we demonstrate Corollary 1.9. If we mutate the reflections
for both of P and Q with w = [1], then we arrive at

rw
1 = r1, rw

2 = r2, rw
3 = r1r3r1.

If we mutate both of them with w = [1, 2], then we arrive at

rw
1 = r1, rw

2 = r2, rw
3 = r2r1r3r1r2.

If we mutate both of them with w = [1, 2, 3], then we arrive at

rw
1 = r1, rw

2 = r2r1r3r1r2r1r3r1r2, rw
3 = r2r1r3r1r2.

We can see that both of these are fork-preserving mutation sequences with the same
initial orientation for the B matrix.

Example 3.4. In this example, we demonstrate Theorem 1.10. If we take the three mu-
tated reflections from Example 3.3 for w = [1], then

rw
1 rw

3 rw
2 = r3r1r2.

For w = [1, 2], we have
rw

1 rw
2 rw

3 = r3r1r2.

Finally, for w = [1, 2, 3], we have

rw
1 rw

3 rw
2 = r3r1r2.

Example 3.5. In this example, we demonstrate Corollary 1.11. If we take the three mu-
tated reflections from Example 3.3 for w = [1], then we get the following admissible
curves:

ηw
1

ηw
2

ηw
3

T3

T1T2
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For w = [1, 2] and w = [1, 2, 3], we get the following admissible curves respectively:

ηw
1

ηw
2

ηw
3

ηw
1

ηw
2

ηw
3

Note that these curves are pairwise non-crossing as well as non-self-crossing. Also,
using the labeling of the 3 arcs from the picture for the first set of non-crossing curves,
we can recover the sequence of reflections from the curves in each picture and confirm
the correspondence.

Example 3.6. To demonstrate how to calculate l-vectors, we consider lw
2 for the quiver Q

with w = [1, 2, 3] and linear ordering 2 ≺ 1 ≺ 3. First, construct the GIM

A =

 2 −3 −5
−3 2 4
−5 4 2

 .

Then consider the following matrices in M3×3(Z).

S1 =

−1 0 0
3 1 0
5 0 1

 , S2 =

1 3 0
0 −1 0
0 −4 1

 , S3 =

1 0 5
0 1 −4
0 0 −1

 .

Using the sequence of reflections from Example 3.3 and the definition of l-vectors, we
know that

lw
2 = s2s1s3s1(α2)

= (ST
2 ST

1 ST
3 ST

1 (α
T
2 ))

T

= α2S1S3S1S2

= (α2)S1S3S1S2

= (3α1 + α2)S3S1S2

= (3α1 + α2 + 11α3)S1S2

= (55α1 + α2 + 11α3)S2

= 55α1 + 120α2 + 11α3.

These calculations can then be used to demonstrate Theorem 2.9. Compare the table
below with the one given in Example 3.1.



Geometry of C-Matrices 11

Mutation Sequence L-matrix for P L-matrix for Q

w = [1]

1 0 0
0 1 0
6 0 1

 1 0 0
0 1 0
5 0 1


w = [1, 2]

1 0 0
0 1 0
6 15 1

 1 0 0
0 1 0
5 11 1


w = [1, 2, 3]

 1 0 0
90 224 15
6 15 1

  1 0 0
55 120 11
5 11 1


Acknowledgements
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Higher Specht Polynomials and Tableaux
Bijections for Hessenberg Varieties

Kyle Salois*1

1Department of Mathematics, Colorado State University, Fort Collins, CO, USA

Abstract. The cohomology rings of regular semisimple Hessenberg varieties are only
completely understood in some cases. One such case is when the Hessenberg func-
tion is h = (h(1), n, . . . , n), and is described by Abe, Horiguchi, and Masuda in 2017.
We define an alternative basis for the cohomology ring in this case, which is a higher
Specht basis. We give combinatorial bijections between the monomials in this basis
and sets of P-tableaux, motivated by the work of Gasharov in 2008 and Shareshian
and Wachs in 2016. This bijection illustrates the connection between the symmetric
group action on these cohomology rings and the Schur expansion of chromatic sym-
metric functions. We further use the inversion formula for P-tableaux to give a new
combinatorial proof of the known Poincaré polynomial for these Hessenberg varieties.

Keywords: Hessenberg varieties, P-tableaux, higher Specht bases

1 Introduction

In this extended abstract, we exhibit new connections between the combinatorics of Hes-
senberg varieties, P-tableaux, and chromatic symmetric functions, and illustrate their
use in proving geometric results using combinatorial tools. In particular, when S is a
regular semisimple matrix and h = (h(1), n, . . . , n), we construct a higher Specht basis
for the cohomology ring H∗(Hess(S, h)), display combinatorial bijections between these
higher Specht basis elements and sets of tableaux, and use a new combinatorial method
to find the Poincaré polynomial for Hess(S, h). Full proofs of the results in this paper
are forthcoming in [13].

Hessenberg varieties, initially defined and studied in [11, 12], are linear subvarieties
of the full flag variety Fl(Cn). They are connected to chromatic symmetric and qua-
sisymmetric functions due to the action of the symmetric group Sn on their cohomology
rings defined by Tymozcko in [18]. The geometry of Hessenberg varieties has been – and
continues to be – extensively studied, including in [1, 9, 7, 8, 10, 17].

*kyle.salois@colostate.edu. Partially supported by NSF DMS award number 2054391.
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1.1 Background on Hessenberg Varieties and Specht Modules

Given a proper coloring κ : V → N of a finite simple graph G = (V, E) on a totally-
ordered vertex set V, define an ascent to be an edge {v, w} such that v < w and κ(v) <
κ(w). Define asc(κ) to be the total number of ascents in κ. In this paper, we consider
graphs with V = [n] = {1, 2, . . . , n}. In [14], Shareshian and Wachs defined the chromatic
quasisymmetric function, a graded analogue of Stanley’s chromatic symmetric function
[15], using the ascent statistic:

Definition 1.1. Given a finite simple graph G = (V, E), the chromatic quasisymmetric
function for G is

XG(x; q) = ∑
κ:V→N

(
∏
i∈V

xκ(i)

)
qasc(κ)

where the sum ranges over all proper colorings κ of the vertices of G.

Recall that the (full) flag variety of Cn is the variety Fl(Cn) whose points are flags
F• = F0 ⊂ F1 ⊂ · · · ⊂ Fn such that dim(Fi) = i. We will define Hessenberg varieties to
be a subvariety of the flag variety, given a matrix X : Cn → Cn and a function h. First, a
Hessenberg function is a function h : [n] → [n] such that for all i, we have i ≤ h(i), and
h(i) ≤ h(i + 1). We usually denote this as a vector h = (h(1), h(2), . . . , h(n)).

Definition 1.2. Given a matrix X : Cn → Cn and a Hessenberg function h : [n] → [n], define
the Hessenberg variety to be:

Hess(X, h) =
{

F• ∈ Fl(Cn) | X(Fi) ⊆ Fh(i) for all 1 ≤ i ≤ n
}

(1.1)

In [18], Tymoczko defined an action of the symmetric group on the cohomology ring
H∗(Hess(S, h)) when S is a regular semisimple matrix, allowing us to study the structure
of this ring as an Sn-module. For each Hessenberg function, we can also construct a poset
Ph on [n], using h to determine which elements are comparable: We say that i <Ph j if
and only if h(i) < j. Let Gh be the incomparability graph of Ph, which has an edge {i, j}
whenever i and j are incomparable in Ph. Notably, posets formed by this construction
are (3 + 1)- and (2 + 2)-avoiding, so their incomparability graphs are relevant to the
following conjecture of Stanley and Stembridge on chromatic symmetric functions.

Conjecture 1.3 ([16] Conjecture 5.1). If P is a (3 + 1)-free poset, then Xinc(P)(x) is e-positive,
that is, it can be written with positive coefficients when expanded in the elementary basis of
symmetric functions.

In [5], Guay-Paquet proved that it suffices to prove the conjecture for posets which
are (3 + 1)- and (2 + 2)-avoiding. Shareshian and Wachs conjectured that there is a con-
nection between chromatic quasisymmetric functions and the graded cohomology ring
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Figure 1: On the left, the poset Ph for h = (3, 4, 4, 5, 5). On the right, three Ph-
tableaux (in French notation). The leftmost tableau has 4 inversions given by the pairs
(1, 3), (2, 3), (2, 4), and (4, 5), but does not have the inversion (2, 5) since 2 <Ph 5.

of regular semisimple Hessenberg varieties, using the ascent formula for the incompara-
bility graph Gh. This connection, stated below, was proven by Brosnan and Chow in [2]
and separately by Guay-Paquet in [6].

Proposition 1.4 ([2, 6]). Let S be a regular semisimple n × n matrix and h : [n] → [n] be a
Hessenberg function. Let Gh be the incomparability graph for Ph. Then

ωXGh(x; q) =
|E|

∑
k=0

Frob(H2k(Hess(S, h)))qk

Above, ω is the standard involution on symmetric functions which sends the Schur
function sλ to sλ′ , where λ′ is the transpose of λ, and Frob is the Frobenius characteristic
map which sends the irreducible Sn-module Vλ to the Schur function sλ.

Definition 1.5 ([3]). Let P be a poset and λ be a partition of n. A P-tableau of shape λ is a
filling of the Young diagram of λ with entries from P such that:

• Each entry in P is used at most once.

• Adjacent entries in rows are P-increasing from left to right.

• Adjacent entries in columns are P-nondecreasing from bottom to top.

We say a P-inversion in a P-tableau is a pair of entries (i, j) such that i < j as integers,
i is in a higher row than j, and i and j are incomparable in P. Define inv(T) to be the
number of P-inversions in T. In [3], Gasharov used P-tableaux to show that the chromatic
symmetric functions of incomparability graphs of (3 + 1)-free posets are Schur-positive.
Using this inversion statistic on P-tableaux, Shareshian and Wachs extended this result
to the chromatic quasisymmetric case, as stated below.
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Proposition 1.6 ([14] Theorem 6.3). Let G be the incomparability graph of a (3 + 1)-free poset
P, and let PT(λ) be the set of P-tableaux of shape λ. Then we have:

XG(x; q) = ∑
λ⊢n

 ∑
T∈PT(λ)

qinv(T)

 sλ

Combining the results of Propositions 1.4 and 1.6, we can connect the graded coho-
mology of Hess(S, h) with P-tableaux in the following way. If S is a regular semisimple
matrix, and h is a Hessenberg function with poset Ph and incomparability graph Gh, then

|E|

∑
k=0

Frob(H2k(Hess(S, h)))qk = ωXGh(x; q) = ∑
λ⊢n

 ∑
T∈PT(λ)

qinvh(T)

 sλ′ (1.2)

where λ′ is the transpose partition of λ, and invh is the inversion statistic for Ph.
The formula above gives us a nice way of understanding the decomposition of the

Sn-module H∗(Hess(S, h)) into irreducible modules. Irreducible Sn-modules are isomor-
phic to the Specht modules, which have a basis indexed by standard tableaux:

Definition 1.7. Given a standard tableau T of shape λ, define the Specht polynomial to be

FT = ∏
C∈λ

(
∏

i<j∈C
(xj − xi)

)

where the first product is over all columns in the Young diagram, and the second product is over
all pairs of entries i < j in the column C. If SYT(λ) is the set of all standard tableaux of shape
λ, then the Specht module Vλ is the subspace of Q[x1, . . . , xn] generated by {FT}T∈SYT(λ).

An immediate consequence of this definition is that the dimension of the Specht
module Vλ is the number of standard tableaux of shape λ, which we denote #SYT(λ).
We define a higher Specht basis for an Sn-module as follows.

Definition 1.8 ([4], Definition 1.5). If R is an Sn-module which decomposes into irreducible
Sn-modules as

R =
⊕

λ

cλVλ ,

then a higher Specht basis of R is a set of elements B with a decomposition B =
⋃

λ
⋃cλ

i=1 Bi,λ
such that the elements of Bi,λ are a basis of the i-th copy of Vλ in the decomposition of R.

Hence, higher Specht bases of Sn-modules are a natural way to understand the action
of Sn, and allow us to more easily identify the decomposition into irreducible modules.
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2 Higher Specht basis for the cohomology ring

In this section, let S be a regular semisimple n × n matrix, and h = (h(1), n, . . . , n)
be a Hessenberg function. In [9] (Theorem 4.3), Abe, Horiguchi, and Masuda give a
presentation of the cohomology ring H∗(Hess(S, h)) as a quotient of a polynomial ring
in 2n variables. Further, in Remark 4.5, they describe a set of basis elements for this ring.
We name the two sets of different types of elements below:

B1 =

{
xi1

1 xi2
2 · · · xin

n not containing the factor
h(1)

∏
ℓ=1

xℓ

}
(2.1)

B2 =

xℓ1
n xℓ2

n−1 · · · xℓn−1
2 yk not containing the factor

n

∏
ℓ=h(1)+1

xℓ

 (2.2)

over all 0 ≤ ij ≤ n − j in B1, and over all 0 ≤ ℓj ≤ n − 1 − j, and 1 ≤ k ≤ n − 1 in B2.
The symmetric group Sn acts on the above monomials by fixing the set of xi and

permuting the set of yi in the natural way. This group action gives a representation
of Sn, which decomposes into the direct sum of trivial representations (corresponding
to the Specht module V(n)) and standard representations (corresponding to the Specht
module V(n−1,1)).

We define B3 to be the following set of monomials:

B3 =

xℓ1
n xℓ2

n−1 · · · xℓn−1
2 (yk+1 − y1) not containing the factor

n

∏
ℓ=h(1)+1

xℓ

 (2.3)

over all 0 ≤ ℓj ≤ n − 1 − j and 1 ≤ k ≤ n − 1.
Notice that there are natural projections from B1 to the Specht module V(n) and from

B3 to the Specht module V(n−1,1) given by forgetting the xi variables.

Theorem 2.1 ([13]). The set B1 ∪ B3 forms a higher Specht basis of H∗(Hess(S, h)).

The proof (see [13] for full details) uses the fact that B1 ∪ B2 forms a Z−basis of
H∗(Hess(S, h)), and constructs the transition matrix from B1 ∪ B2 to B1 ∪ B3 using the
relations given in [9] to express the new elements in terms of the old basis. Then, we
prove that this transition matrix is invertible, which requires the following lemma.

Lemma 2.2 ([13]). If f (x1, . . . , xn) is a homogeneous polynomial in the ring H∗(Hess(S, h)),
then f can be expressed solely in terms of basis elements from B1.

Knowing that B1 ∪ B3 forms a higher Specht basis of H∗(Hess(S, h)) allows us to
obtain a more direct proof of the following fact, by counting the number of monomials
of each type in B1 and B3.

Corollary 2.3. The dot action of Sn on H∗(Hess(S, h)) decomposes into h(1)(n − 1)! copies of
the trivial representation, and (n − h(1))(n − 2)! copies of the standard representation.
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3 Bijections between basis elements and P-tableaux

As seen in Section 1.1, there is a bijection between the set of standard tableaux of shape
λ with basis elements of the Specht module Vλ, given by the construction of the basis
elements. Further, from Equation 1.2, we have an explicit connection between the num-
ber of basis elements of H∗(Hess(S, h)) of each degree and the set of Ph-tableaux with
each number of inversions. In particular, there should be bijections between the higher
Specht basis elements and the sets of Ph-tableaux with shape corresponding to the Specht
polynomials in the basis.

3.1 Regular Nilpotent Hessenberg Varieties

In the case of regular nilpotent Hessenberg varieties, a polynomial presentation of the
cohomology ring is known for any Hessenberg function h.

Proposition 3.1 ([7], Corollary 7.3). Let N be a regular nilpotent matrix, and let h : [n] →
[n] be a Hessenberg function. Then the following set of monomials form an additive basis for
H∗(Hess(N, h)):

Nh :=
{

xi1
1 · · · xin

n | 0 ≤ ik ≤ h(k)− k for 1 ≤ k < n
}

In [1], Abe et al. show that the cohomology rings of regular nilpotent Hessenberg va-
rieties are isomorphic to the fixed points of the cohomology rings for regular semisimple
Hessenberg varieties. In particular, these are the pieces of H∗(Hess(S, h)) which decom-
pose into trivial Sn-modules, corresponding to the Specht module V(n).

Define PT(h, λ) to be the set of Ph-tableaux of shape λ. Taking the transpose partition
for λ = (n) (because of Equation 1.2), we form a map φ between Nh and PT(h, (1n)) for
any Hessenberg function h.

Definition 3.2. Let xi1
1 · · · xin

n ∈ Nh.

• Begin with a Ph-tableau T of a single box whose entry is n.

• For each k = n − 1, . . . 1:

– If ik = 0, insert k into a new box at the bottom of T, so that k occurs directly below
some ℓ > k.

– If ik > 0, then since ik ≤ h(k)− k, we have k < h(k). List the entries k+ 1, . . . , h(k),
which already exist in T, in order from the lowest to highest row position in T. Insert
k in a new box directly above the ik-th lowest entry of this list.

Define φ(xi1
1 · · · xin

n ) ∈ PT(h, (1n)) to be the resulting tableau from this process.
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Example 3.3. Let h = (2, 3, 5, 5, 5), and consider the monomial x1x3x4 ∈ Nh. We construct
φ(x1x3x4) as follows.

5

4

5

4

3

5

4

3

5

2

4

3

5

1

2

We start with a single box containing a 5. Then, to insert 4 with i4 = 1 Ph-inversion, we insert
the 4 above the 5. To insert 3 with i3 = 1 Ph-inversion, we insert the 3 above the 5 but below the
4. Notice that at each step, the number of elements in Ph greater than k that are incomparable to
k is h(k)− k, which is also the largest possible power ik.

In [13], we prove that φ is a bijection, which is weight preserving in the following
way: If m is a monomial of degree d, then φ(m) has d Ph-inversions.

Theorem 3.4 ([13]). The map φ is a well-defined, weight-preserving bijection.

3.2 Regular Semisimple Hessenberg Varieties

Now we turn our attention to regular semisimple Hessenberg varieties. In this section,
S is a regular semisimple matrix and h = (h(1), n, . . . , n). Recall the partial set of basis
elements B1 defined in Equation 2.1, and recall that Sn fixes these monomials, since
they contain no yi variable. These correspond to basis elements of the trivial Specht
module V(n). Again, we take the transpose partition, and define a map ψ between B1
and PT(h, (1n)) as follows.

Definition 3.5. Let xi1
1 · · · xin

n ∈ B1.

• Begin with a Ph-tableau T of a single box whose entry is n.

• For each k = n − 1, . . . , 1, insert k into T above exactly ik of the existing entries.

• Let k′ be the smallest index in 1, . . . , h(1) such that ik′ = 0, which exists by the definition
of B1. By this construction, after inserting n through 1, k′ will be on the bottom of T.

– If k′ = 1, then define ψ(xi1
1 · · · xin

n ) to be T.

– If 1 < k′ ≤ h(1), then slide the entry k′ up until it is directly below the 1, and define
ψ(xi1

1 · · · xin
n ) to be T after this slide.



8 Kyle Salois

Example 3.6. Let h = (3, 5, 5, 5, 5), and consider the monomial x2
1x3x4 ∈ B1. We construct

φ(x2
1x3x4) as follows.

5

4

5

4

3

5

4

3

5

2

4

3

1

5

2

4

3

1

2

5

We start with a single box containing a 5. Then we insert the 4 above one existing entry, the 3
above one existing entry, the 2 above no existing entries, and the 1 above two existing entries.
Since 1 <Ph 5 are comparable, the resulting tableau is not a Ph-tableau, so we shift the 2 (which
is incomparable to the 1) to be directly below the 1. In the second-to-last tableau, the number of
PN-inversions with each k as the smaller entry is exactly ik, so reading these inversions returns
the monomial x2

1x3x4.

In [13], we find the inverse map of ψ to prove the following theorem.

Theorem 3.7 ([13]). The map ψ is a well-defined bijection.

We now construct a map for the set of basis elements B3 defined in Equation 2.3.
Define PSPT(h, λ) to be the set of pairs (S, T) where S is a standard tableau and T is a
Ph-tableau, both of shape λ. Since the monomials in B3 correspond to the Specht polyno-
mials in the Specht module V(n−1,1), we construct the map τ to the set PSPT(h, (2, 1n−2),
with the xi variables corresponding to the Ph-tableau and the yi variables corresponding
to the standard tableau.

Definition 3.8. Let xℓ1
n · · · xℓn−1

2 (yk − y1) ∈ B3.

• Define S to be the unique standard tableau of shape (2, 1n−2) with entries 1 and k in the
bottom row.

• Let j be the largest entry among {h(1) + 1, . . . , n} such that the exponent ℓn−j+1 on xj is
zero, which exists by the definition of B3.

• Initialize a tableau T with a single row of two boxes, containing a 1 and j.

• For each i = 2, . . . , n, other than j, insert i into the left column so that it is under exactly
(i − 2)− ℓn−i+1 of the current entries in the left column.

Define τ(xℓ1
n · · · xℓn−1

2 (yk − y1)) ∈ PSPT(h, (2, 1n−2) to be the pair (S, T) resulting from this
construction.
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Example 3.9. Let h = (3, 5, 5, 5, 5), and consider the monomial x2
5x3(y3 − y1) ∈ B3. Note that

j = 4 is the largest index where xj has an exponent of zero. We construct τ(x2
5x3(y2 − y1)) as

follows.

S = 5

4

2

1 3 1 4

2

1 4

3

2

1 4

3

5

2

1 4

= T

S is defined to be the unique standard Young tableaux of shape (2, 1n−2) with a 1 and 3 in the
bottom row. Then, to form T, we start with a single row containing a 1 and a 4. We then insert
a 2 in the left column underneath (2 − 2) − 0 = 0 entries, a 3 in the left column underneath
(3 − 2)− 1 = 0 entries, and a 5 in the left column underneath (5 − 2)− 2 = 1 entry.

In [13], we again find the inverse map to prove the following theorem.

Theorem 3.10 ([13]). The map τ is a well-defined bijection.

This map is almost weight-reversing, since the exponents on the xi terms correspond
to inversions that are missing in the tableaux, since we insert i so that it forms (i − 2)−
ℓn−i+1) inversions. In future work, we hope to use bijections like these to extrapolate
potential bases for H∗(Hess(S, h)) in other cases.

4 Poincaré polynomials of Hessenberg varieties

Given a graded vector space V over a field k, if V =
⊕

i∈N Vi with each subspace Vi
consisting of vectors of degree i being finite dimensional, then the Poincaré polynomial
of V is

Poin(V, q) = ∑
i∈N

dimk(Vi)qi

Then, for an algebraic variety X with graded cohomology ring H∗(X), we define the
Poincaré polynomial of X to be Poin(X, q) := Poin(H∗(X), q). From Equation 1.2, we
can write the Poincaré polynomial of a regular semisimple Hessenberg variety in the
following way:

Poin(Hess(S, h), q) = ∑
λ⊢n

 ∑
T∈PT(h,λ)

qinvh(T)

 #SYT(λ) (4.1)

since the dimension of the irreducible Specht module Vλ is the number of standard
tableaux of shape λ. We use this formula to provide an alternate proof of the formula of
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the Poincaré polynomial for Hess(S, h) when h = (h(1), n, . . . , n), originally calculated
by Abe, Horiguchi, and Masuda in [9]. Recall that the q-analogue of n is (n)q = (1 + q +
· · ·+ qn−1), and the q-analogue of n! is (n)q! = (n)q(n − 1)q · · · (1)q. We present the full
proof here, as it illustrates the new combinatorial method using Ph-tableaux.

Theorem 4.1 ([9], Lemma 3.2). If h = (h(1), n, . . . , n), then the Poincaré polynomial of
Hess(S, h) is given by

Poin(Hess(S, h), q) =
1 − qh(1)

1 − q

n−1

∏
j=1

1 − qj

1 − q
+ (n − 1)qh(1)−1 1 − qn−h(1)

1 − q

n−2

∏
j=1

1 − qj

1 − q

= h(1)q(n − 1)q! + (n − 1)qh(1)−1(n − h(1))q(n − 2)q!

Proof. From above, we know that

Poin(Hess(S, h), q) = ∑
λ⊢n

 ∑
T∈PT(h,λ)

qinvh(T)

 #SYT(λ).

Let h = (h(1), n, . . . , n). All chains in Ph have length two and include the element 1.
Since distinct rows in a Ph tableaux need to contain entries from distinct chains in Ph,
the only shapes λ with a nonzero number of Ph-tableaux are λ = (1n) and µ = (2, 1n−2).
Further, we have that #SYT(λ) = 1 and #SYT(µ) = n − 1.

For λ = (1n), we need to count the Ph-inversions in the Ph tableaux of this shape.
Since the element 1 is incomparable to 2 through h(1), it can form between 0 and h(1)− 1
inversions as the smaller entry. For each i = 2, . . . , n, the entry i can form up to n − i
inversions as the smaller entry. Hence, we get that

∑
T∈PT(h,λ)

qinvh(T) = (1 + q + · · ·+ qh(1)−1)(1 + q + · · ·+ qn−2)! = h(1)q(n − 1)q!.

For µ = (2, 1n−2), the bottom row of any Ph-tableaux of shape µ must be filled with
entries from a chain in Ph, so it contains a 1 and an i for some i = h(1) + 1, . . . , n. Then,
since i > 1, it is incomparable with all other j ̸= 1, so the entry i in the bottom row forms
inversions as the larger entry with the entries 2, . . . , i − 1, of which there are i − 2. So this
entry contributes between h(1)− 1 and n − 2 inversions to the Ph-tableaux as the larger
entry. Then, for the column entries of j = 2, . . . , n and j ̸= i, if j < i, then j forms an
inversion with i where j is the smaller entry (which was already counted), and can form
an inversion as the smaller entry with the other n − j − 1 entries larger than j. If j > i,
then j does not form an inversion with i, and can form an inversion as the smaller entry
with any of the n − j entries larger than j. In each case, there is a unique placement for j
giving each set of inversions. Hence we have

∑
T∈PT(h,µ)

qinvh(T) = (qh(1)−1 + · · ·+ qn−1)(1 + · · ·+ qn−3)! = qh(1)−1(n − h(1))q(n − 2)q!
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Therefore, for λ = (1n) and µ = (2, 1n−2), we have the Poincaré polynomial of
Hess(S, h) as follows:

Poin(Hess(S, h), q) = ∑
T∈PT(h,λ)

qinvh(T) + (n − 1) ∑
T∈PT(h,µ)

qinvh(T)

= h(1)q(n − 1)q! + (n − 1)qh(1)−1(n − h(1))q(n − 2)q!

This completes the proof.

These methods provide a new, combinatorial means of finding Poincaré polynomials
of regular semisimple Hessenberg varieties, which may be useful in further understand-
ing the basis decomposition of their cohomology rings.
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Charge formulas for Macdonald polynomials at
t = 0 from multiline queues and diagrams
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Abstract. Multiline queues are combinatorial objects coming from probability theory
that give formulas for the q-Whittaker specialization Pλ(X; q, 0) of the Macdonald poly-
nomials. We define a charge statistic and an RSK-esque procedure on multiline queues
that naturally recovers the Schur expansion of Pλ(X; q, 0). We extend these results to
generalized multiline queues, which are in bijection with binary matrices, and obtain a
new family of formulas for Pλ(X; q, 0) in terms of these objects. Multiline diagrams are
the plethystic analogs of multiline queues that were recently found to give a formula
for the modified Hall–Littlewood polynomials H̃λ(X; q, 0). We obtain formulas for the
latter through a cocharge statistic and an RSK-esque procedure on multiline diagrams.

Keywords: multiline queues, multiline diagrams, Macdonald polynomials, q-Whittaker,
Hall–Littlewood, crystal operators, RSK, charge, cocharge.

1 Introduction

Macdonald polynomials Pλ(X; q, t) [10] are symmetric functions in the variables X =
x1, x2, . . . with coefficients in Q(q, t). They are indexed by partitions, and character-
ized as the unique basis satisfying certain triangularity and orthogonality axioms. They
contain as specializations the q-Whittaker polynomials Pλ(X; q, 0), the Hall–Littlewood
polynomials Pλ(X; 0, t), the Schur functions sλ = Pλ(X; 0, 0), and are connected to
many other important families of symmetric functions. The modified Macdonald poly-
nomials H̃λ(X; q, t) were introduced by Garsia and Haiman [6] as a combinatorial ver-
sion of Pλ(X; q, t). They are obtained through plethysm from a scaled form Jλ of Pλ as
H̃λ(X; q, t) = tn(λ) Jλ[X/(1− t−1); q, t−1] (see [7] for details). The modified Hall–Littlewood
polynomial is the specialization H̃λ(X; q, 0) (which is equal to H̃λ′(X; 0, q)).

Expanding the q-Whittaker and the modified Hall–Littlewood polynomials in the
Schur basis yields Kotska–Foulkes and modified Kotska–Foulkes coefficients:

Pλ(X; q, 0) = ∑
µ≤λ

Kλµ(q, 0)sµ(X) and H̃λ(X; q, 0) = ∑
µ≤λ

K̃λµ(q, 0)sµ(X). (1.1)

∗omandels@uwaterloo.ca. O.M. was supported by NSERC RGPIN-2021-02568 and NSF DMS-1953891.
†j2valencia@uwaterloo.ca
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At q = 0, Lascoux and Schützenberger [8] gave a charge formula for Kλµ(0, t) as a
sum over semistandard tableaux of shape λ and content µ. The relation to the Kotska–
Foulkes coefficients is given by the following set of formulas (see Definition 2.3):

Kλµ(0, t) = ∑
T∈SSYT(λ,µ)

tcharge(T), Kλµ(q, 0) = Kλ′µ′(0, q),

K̃λµ(0, t) = K̃λµ′(t, 0) = tn(µ)Kλµ(0, 1/t) = ∑
T∈SSYT(λ,µ)

tcocharge(T).

In this abstract, we study Pλ(X; q, 0) and H̃λ(X; q, 0) through multiline queues and
multiline diagrams. Our constructions recover classical results, and provide variations
and simplifications of formulas for these polynomials. This abstract is based on [11].

In Section 3, we introduce a weight-preserving RSK-esque procedure on multiline
queues from which several classical results immediately follow, including (1.1) and
the Cauchy identities. In Section 4, we obtain a new formula for the modified Hall–
Littlewood polynomials via a cocharge statistic on multiline diagrams.

Theorem 1.1. Let λ be a partition. The modified Hall–Littlewood polynomial is given by

H̃λ(x1, . . . , xn; q, 0) = ∑
D∈MLD(λ,n)

qm̃aj(D)xD = ∑
D∈MLD(λ,n)

qcocharge(c̃w(D))xD. (1.2)

We also get new formulas for Kλµ(q, 0) and K̃λµ(q, 0), bypassing the charge statistic.

Theorem 1.2. For a partition ν, let Bν ∈ MLQ0(ν, `(ν)) be the multiline queue with all balls
left-justified and let B̃ν ∈ MLD0(ν, `(ν)) be the diagonal multiline diagram of type ν. Then

Kλµ(q, 0) = ∑
M∈MLQ(µ′,λ′)

ρN(M)=Bλ′

qmaj(M) and K̃λµ(q, 0) = ∑
D∈MLD(µ′,λ)

ρ̃N(D)=B̃λ

qm̃aj(D).

Finally, in Section 5 we extend our results to generalized multiline queues, obtaining
a new family of formulas, indexed by compositions, for the q-Whittaker polynomials.

Theorem 1.3. Let λ be a partition, n an integer, and let α be a composition with α+ = λ′. Then

Pλ(x1, . . . , xn; q, 0) = ∑
M∈GMLQ(α,n)

qmajG(M)xM.

2 Preliminaries

Definition 2.1. The charge of a permutation σ ∈ Sn is charge(σ) = ∑i/∈Des(σ)(n− i), where
Des(σ) = {i : σ−1(i) > σ−1(i− 1)}. The cocharge is cocharge(σ) = (n

2)− charge(σ).
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This definition generalizes to words with partition content by splitting the word
into charge subwords. Let w be a word with content µ = (µ1, µ2, . . . , µk). Extract the
first subword w(1) by scanning w from left to right and finding the first occurrence
of its largest letter k := µ′1, then k − 1, . . . , 2, 1, looping back around the word when-
ever needed. This subword w(1) is then extracted from w, and the remaining charge
subwords are obtained recursively from the remaining letters, which now have content
(µ1 − 1, µ2 − 1, . . . , µk − 1). For each i, w(i) can be thought of as permutations in Sµ′i

.

Definition 2.2. For a word w with partition content µ = (µ1, µ2, . . . , µk), its charge is given
by charge(w) = charge(w(1)) + charge(w(2)) + . . . + charge(w(k)).

Definition 2.3. For a semistandard Young tableau T (in French notation), define its row read-
ing word, denoted by rrw(T), to be the word obtained by recording the entries of the rows of T
from top to bottom and from left to right within each row. If T has partition content, the charge
of T is given by charge(T) = charge(rrw(T)).

We will make use of two types of related operations acting on words, described below.
See [11] for details on how charge(w) can be restated in terms of these operations.

Definition 2.4 (Classical and cylindrical matching operators). Let n be a positive integer
and let w be a word in the alphabet {1, . . . , n}. For 1 ≤ i < n, define πi(w) to be a word in open
and closed parentheses {(, )} that is obtained by reading w from left to right and recording a “(”
for each i + 1 and a “)” for each i. The signature rule (see, e.g. [3]) is the procedure of iteratively
matching pairs of open and closed parentheses whenever they are adjacent or whenever there are
only matched parentheses in between. Then πi(w) contains the data of which instances of i and
i + 1 in w are matched or unmatched following the signature rule applied to πi(w).

Let πc
i (w) represent the word πi(w) on a circle, so that open and closed parentheses may

match by wrapping around the word. Then the cylindrically unmatched i + 1’s and i’s in w
correspond respectively to the (cylindrically) unmatched open and closed parentheses in πc

i (w),
according to the signature rule executed on a circle. The wrapping i + 1’s and i’s in w corre-
spond respectively to the cylindrically matched open and closed parentheses in πc

i (w) that are
unmatched in πi(w).

Example 2.5. For w = 312214342131232, the unmatched parentheses are show in red in
π1(w) = ) ( ( ) ( ) ) ( ( and πc

1(w) =) ( ( ) ( ) ) ( (. This corresponds to the unmatched 1’s
and 2’s indicated by ˆ and the cylindrically unmatched 2 underlined: w = 31̂22143421312̂32̂.

3 Multiline queues and charge

The multiline queues we study are the t = 0 specialization of the multiline queues
and their statistics defined by Corteel, Williams, and the first author in [4], and are in
correspondence with the classical multiline queues introduced by Ferrari and Martin [5].
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Definition 3.1. Fix a partition λ, an integer n ≥ `(λ), and set L := λ1. A multiline queue
of shape (λ, n) is an arrangement of balls on an array with L rows numbered 1 through L from
bottom to top and n columns numbered 1 through n from left to right, such that row j contains
λ′j balls. Denote the set of multiline queues of shape (λ, n) by MLQ(λ, n).

A multiline queue can be viewed as a binary matrix by corresponding balls to 1’s and
vacancies to 0’s. We represent a multiline queue as a tuple M = (B1, . . . , BL) of L subsets
of {1, . . . , n} where Bj = (b1, . . . , bλ′j

) is the set of labels of columns containing balls in

row j of M. A site (r, j) of M refers to the cell in column j of row r of M; we say the site
is empty if j /∈ Br, and contains a ball otherwise.

Definition 3.2. The column word of a multiline queue M, denoted cw(M), is obtained by
recording the row number of each ball by scanning the columns of M from left to right and from
top to bottom within each column. For M in Example 3.14, cw(M) = 421|3|41|521|32.

Definition 3.3. Let n > 0 and S, T ⊆ [n], where we shall consider (S, T) as rows 1 and 2 of a
multiline queue. Then π(S, T) = π1(cw(S, T)). Unmatched open parenthesis are referred to as
unmatched above elements, and unmatched closed parenthesis are unmatched below.

Example 3.4. Let S = {2, 3, 5} and T = {1, 4, 5, 6} corresponding to rows 1 and 2 from
B in Example 3.18. Then π(S, T) = ( ) ) ( ( ) ( where the unmatched parentheses are in red,
corresponding to 4, 6 ∈ T unmatched above and 3 ∈ S unmatched below.

The Ferrari–Martin pairing process is an algorithm that deterministically assigns a
label to each ball in a multiline queue M to obtain a labelled multiline queue L(M).

Definition 3.5 (Ferrari–Martin algorithm). Let M = (B1, . . . , BL) be a multiline queue of
shape (λ, n). Define the labelled multiline queue L(M) by replicating M and sequentially
labelling the balls, as follows. For each row r for r = L, L− 1, . . . , 2, each unlabelled ball in Br is
labelled r. Next, for ` = L, L− 1, . . . , r, let cw(M)(r,`) be the restriction of cw(M) to the balls
labelled ` in Br and the unlabelled balls in Br−1. The balls in row i − 1 that are cylindrically
matched in πc

r−1(cw(M)(r,`)) acquire the label `. To complete the process, all unpaired balls in
row 1 are labelled "1". Such a labelling is shown in Example 3.14.

Definition 3.6. Let M ∈ MLQ(λ, n) with labelling L(M), and let mr,` be the number of
wrapping balls labelled ` when cylindrically matched from row r to row r− 1 in L(M). Then

maj(M) = ∑
2≤r≤L

∑
r≤`≤L

mr,` (`− r + 1).

When we restrict to multiline queues with major index equal to zero we obtain a set
of objects that is in bijection with semistandard tableaux [11].

Definition 3.7. If M satisfies maj(M) = 0, we call it non-wrapping. We will denote the set of
non-wrapping multiline queues of shape (λ, n) by MLQ0(λ, n).
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We have an expression for Schur functions in terms of multiline queues [4].

sλ(x1, . . . , xn) = ∑
M∈MLQ0(λ,n)

xM. (3.1)

Theorem 3.8. Let M be a multiline queue. Then maj(M) = charge(cw(M)).

Notably, the theorem above eliminates the need for the Ferrari–Martin algorithm to
determine maj(M). Thus we obtain the following formula for Pλ(X; q, 0).

Theorem 3.9. Let λ be a partition. The q-Whittaker polynomial is given by

Pλ(x1, . . . , xn; q, 0) = ∑
M∈MLQ(λ,n)

qmaj(M)xM = ∑
M∈MLQ(λ,n)

qcharge(cw(M))xM (3.2)

where the first equality is due to [4].

3.1 Collapsing on multiline queues via row operators

LetM(2) be the set of binary matrices with finite support, and letM(2)(L, n) be the set
of such matrices with size L× n. For B ∈ M(2)(L, n) and every 1 ≤ j ≤ L, let Bj ⊆ [n]
be the set of column labels of the balls (1’s) of row j of B.

Definition 3.10. Let B ∈ M(2). The dropping operator ei acts on B by dropping the ball
corresponding to the leftmost unmatched above element in π(Bi, Bi+1) from Bi+1 to Bi. Define
e?i (B) to drop all balls that are unmatched above from Bi+1 to Bi. By definition, ei(e?i ) = e?i .

For M ∈ MLQ(λ, n), the operators ei act on M as the classical crystal operators Ei
(the standard lowering crystal operators in type A on words; see [3]) act on cw(M),
so that cw(ei(M)) = Ei(cw(M)). Moreover, the operators e?i , which maximally apply
ei, satisfy the braid relations (i) e?i e?i+1e?i = e?i+1e?i e?i+1, and (ii) e?i e?j = e?j e?i whenever
|i − j| ≥ 2. Applying the operators e?i from bottom to top defines a procedure that we
call collapsing.

Definition 3.11. For a pair of integers a and b with a ≤ b, let [a, b] be the interval of integers.
Define e?[a,b] := e?a e?a+1 · · · e?b , where we use multiplicative notation for composition.

Definition 3.12 (Collapsing). Let L, n > 0. Define the collapsing map onM(2)(L, n) as

ρ : M(2)(L, n) −→
⋃
µ

MLQ0(µ, n)× SSYT(µ′) (3.3)

B 7−→ (ρN(B), ρQ(B)) (3.4)
where ρN(B) is given by ρN(B) = e?[1,L−1]e

?
[1,L−2] · · · e

?
[1,2]e

?
[1,1](B), and ρQ(B) is the semistan-

dard tableaux whose entries i record the difference in row content between e?[1,i]e
?
[1,i−1] · · · e

?
[1,1](B)

and e?[1,i−1]e
?
[1,i−2] · · · e

?
[1,1](B) for 2 ≤ i ≤ L− 1, and between e?[1,1](B) and B for i = 1.
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Restricting the previous map to the set of multiline queues MLQ(λ, n) yields a bi-
jection to pairs of a non-wrapping multiline queue on n columns and a semistandard
tableau of the conjugate shape with content λ′. By taking the preimage of {Bλ′} ×
SSYT(λ, µ) under this map we obtain Theorem 1.2 using the following result.

Theorem 3.13. Let M ∈ MLQ(λ, n) be a multiline queue. Then maj(M) = charge(ρQ(M)).

Example 3.14. We show the collapsing ρ(M) = (N, Q) of a multiline queue M ∈ MLQ(λ, 5)
with λ = (5, 4, 2).

λ = (5,4,2)

maj(M)=4

−→

µ= (4,3,2,2)

maj(N)=0

,
4
3 4
2 2 3 5
1 1 1 2

charge(Q)=4

The step-by-step collapsing of the rows from bottom to top is shown, where the black balls
are collapsed particles and the red/shaded balls are the remaining rows of the starting multiline
queue, along with the recording tableaux corresponding to each step.

∅ 1 1 1 2 2
1 1 1 2

3
2 2 3
1 1 1 2

4
3 4
2 2 3
1 1 1 2

4
3 4
2 2 3 5
1 1 1 2

3.2 Multiline queue RSK

In [9], commuting crystal operators on rows and columns of integer matrices are intro-
duced to recover some classical tableaux operations such as the RSK correspondence and
jeu de taquin. These operators correspond to bi-directional collapsing in the setting of
multiline queues (and in Section 4.2, multiline diagrams).

Definition 3.15. For a matrix B ∈ M(2), define rot(B) to be the rotation of B by 90◦ coun-
terclockwise. We use the same notation to describe the rotation of a multiline queue M by
identifying it with its associated binary matrix. We define e↓i = ei from Definition 3.10 and
e←i = rot−1 ◦ ei ◦ rot as the operator that drops unmatched balls to the left. We also define
ρ↓(B) := ρN(B), and ρ←(B) := rot−1(ρN(rot(B))). See Example 3.18.
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Theorem 3.16. Let P(L, n) be the set of partitions λ with `(λ) ≤ n and `(λ′) ≤ L. The map

mRSK : M(2)(L, n) −→
⋃

λ∈P(L,n)

MLQ0(λ, n)×MLQ0(λ
′, L)

given by mRSK(B) = (ρ↓(B), ρ←(B)) is a bijection.

The following fact can be obtained from [9, Lemma 1.3.7].

Lemma 3.17. Let B ∈ M(2). Then e↓i (e
←
j (B)) = e←j (e↓i (B)) for all i and j. Moreover, if B is a

multiline queue, maj(e←i (B)) = maj(B).

The previous lemma implies that ρ↓(ρ←(B)) = ρ←(ρ↓(B)). Since the major index is
preserved while collapsing to the left when M ∈ MLQ(λ), examining the construction of
the recording tableau ρQ(ρ

←(M)) leads to a simple proof of Theorem 3.13. Furthermore,
Theorem 3.16 gives a bijective proof of the dual Cauchy identity in view of Equation (3.1):
∑λ sλ(X)sλ′(Y) = ∏i,j(1 + xiyj).

Example 3.18. For the matrix B ∈ M(2)(5, 6) in the upper left, we show ρ←(B) in the upper
right, ρ↓(B) in the bottom left, and the double collapsing in the bottom right.

B = = ρ←(B)

ρ↓(B) = = ρ↓(ρ←(B))

ρ←

ρ↓

ρ←

ρ↓

4 Multiline diagrams and cocharge

A multiline diagram is a configuration of balls on a rectangular grid with no restriction on
the number of balls occupying each cell, and such that the number of balls in each row is
weakly decreasing from bottom to top. Multiline diagrams have appeared in the context
of a family of statistical mechanics processes called the totally asymmetric zero range process
(see [2]). They are also in bijection with inversion-free Haglund–Haiman–Loehr tableaux
[7] and in (weight preserving) bijection with queue-inversion-free tableaux [2], which
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give formulas for the modified Hall–Littlewood polynomials. Thus, as a reference to
the plethystic correspondence between the q-Whittaker polynomials Pλ(X; q, 0) and the
modified Hall–Littlewood polynomials H̃λ(X; q, 0), we think of multiline diagrams as
the plethystic analog of multiline queues.

Definition 4.1. Let λ be a partition and n > 0. A multiline diagram of shape (λ, n) is
a configuration of particles on a λ1 × n grid, such that each site can contain any number of
particles, and row j contains λ′j particles (labelled from bottom to top). Denote the set of multiline
diagrams of type (λ, n) by MLD(λ, n).

We represent a multiline diagram by the tuple D = (D1, . . . , Dλ1), where each Di is a
multiset of [n] of size λ′i

Definition 4.2. For a word w = w1 . . . wn, define rev(w) = wn . . . w1. Define the multiline
diagram column reading word as c̃w(D) := rev(cw(D)), where cw(D) is given by the multiline
queue reading order. See Example 4.11 for reference.

Definition 4.3. Let n > 0 and let S, T be multisets in [n]; we shall consider (S, T) as rows 1
and 2 of a multiline diagram. Then π̃(S, T) = π(c̃w(S, T)).

Example 4.4. Let S = {2, 3, 3, 3} and T = {1, 3, 4, 4}, corresponding to the second and third
rows of Example 4.11. Then π̃(S, T) = ( ( ) ) ) ( ) ( where the unmatched parentheses are in red,
corresponding to 1 ∈ T unmatched above and 3 ∈ S unmatched below.

There is a pairing process on multiline diagrams, where particles are paired strictly
to the left, that is analogous to the Ferrari–Martin algorithm and produces a major index
statistic. See Example 4.11.

Definition 4.5 (Major index for multiline diagrams). The major index of a multiline dia-
gram D, denoted by m̃aj(D), is determined by the non-wrapping pairings. Let mr,`(D) be the
number of balls labelled ` that wrap when matched from row r to row r− 1. Then

m̃aj(D) = ∑
r,`
(λ′r −mr,`)(r− `+ 1).

The following lemma implies one of our main results, Theorem 1.1.

Lemma 4.6. Let D = (D1, . . . , DL) be a multiline diagram. Then m̃aj(D) = cocharge(c̃w(D)).

The lemma follows from the same argument as the proof of Theorem 3.8 with an
appropriate modification to the parentheses matching algorithm.
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4.1 Collapsing on multiline diagrams via row operators

Definition 4.7. A multiline diagram D ∈ MLD(λ, n) is called non-wrapping if there are no
wrapping pairings between any pair of rows. Denote the set of non-wrapping multiline diagrams
by MLD0(λ, n). Note that these multiline diagrams satisfy m̃aj(D) = n(λ′).

For each non-wrapping multiline diagram D ∈ MLD0(λ, n), there is a unique semis-
tandard tableau in SSYT(λ′, n) whose row contents match those of D, implying that

sλ(x1, . . . , xn) = ∑
D∈MLD0(λ′,n)

xD. (4.1)

Definition 4.8. Let D = (D1, . . . , DL) be a multiline diagram. The dropping operator ẽi acts
on D by moving the rightmost element unmatched above in π̃(Di, Di+1) from Di+1 to Di. The
operator ẽ ?

i is defined as the operator that maximally applies ẽi, as an analog to Definition 3.10.

Let M denote the set of nonnegative matrices with finite support, and let M(L, n)
be the subset of such matrices of on L rows and n columns.

Definition 4.9 (Collapsing). Let L, n be positive integers. In analogy to Definition 3.12, define
collapsing for nonnegative integer matricesM(L, n) by ρ̃(D) = (ρ̃N(D), ρ̃Q(D)):

ρ̃ : M(L, n) −→
⋃
µ

MLD0(µ, n)× SSYT(µ′). (4.2)

Restricting the collapsing map to the set of multiline diagrams MLD(λ, n), ρ̃ yields a
bijection to pairs of non-wrapping multiline diagrams and semistandard tableau of the
conjugate shape with content λ. By taking the preimage of {B̃λ}× SSYT(λ, µ), we obtain
the formula for K̃λµ(q, 0) from Theorem 1.2 using the following theorem.

Theorem 4.10. Let D ∈ MLD(λ, n) be a multiline diagram. Then m̃aj(D) = cocharge(ρ̃Q(D)).

Example 4.11. The collapsing of D = ({1, 1, 4, 4}, {2, 3, 3, 3}, {1, 3, 4, 4}, {2}) ∈ MLD(λ, 4)
with λ = (4, 3, 3, 3) is shown, with integers representing the number of particles at each site.

m̃aj(D)=9
c̃w(D)=1133.2223.24.113

−→

µ = (3, 3, 2, 2, 1, 1, 1)

,
3 3
2 2 3 4
1 1 1 1 2 2 3

cocharge(ρ̃Q(D)) = 9
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4.2 Multiline diagram RSK

Recall that multiline diagram pairing is done strictly to the left. With the appropriate
modification on the construction of the parenthesis word π̃(S, T) we can set the pairing
direction to be strictly to the right to get an equivalent set of objects.

Definition 4.12. Let P ∈ {L, R} (left or right) be a direction of pairing. The set of multiline
diagrams of shape (λ, n) with pairing direction P is denoted by MLDP(λ, n). Similarly, the set
of non-wrapping multiline diagrams with pairing in direction P is denoted by MLD0,P(λ, n).

Definition 4.13. For a pairing direction P ∈ {L, R}, let ẽ↓P,i be the operator acting on matrices
D ∈ M that drops the ball that is furthest in the opposite direction of P among balls in row i + 1
that are unmatched above. Extending the definition of the rotation operators rot on matrices, we
similarly define leftward operators ẽ←P,i = rot−1 ◦ ẽ↓P,i ◦ rot.

The interplay between the pairing and collapsing directions plays an important role
when defining the RSK analog for multiline diagrams. In particular, opposite pairing
directions are required for the following crucial lemma to hold.

Lemma 4.14. Let D ∈ M. Then ẽ↓L,i(ẽ
←
R,j(D)) = ẽ←R,j(ẽ

↓
L,i(D)) for all i and j.

From the definition of ẽ↓P,i and in analogy to the presented collapsing procedures,
collapsing downwards and leftwards with pairing direction left and right can be defined
from these operators and from the rotation operator.

Theorem 4.15. Let L, n be positive integers, and letM(L, n) represent the set of L× n nonneg-
ative integer matrices. The following map, given by dRSK(B) = (ρ̃ ↓L (B), ρ̃←R (B)), is a bijection:

dRSK : M(L, n) −→
⋃

λ : λ1≤min{L,n}
MLD0,L(λ, n)×MLD0,R(λ, L).

This theorem, together with Equation (4.1), gives a bijective proof, using multiline
diagrams, of the Cauchy identity ∑λ sλ(X)sλ(Y) = ∏i,j(1− xiyj)

−1. Moreover, by Theo-
rem 4.15 and the fact that multiline queues and diagrams are in bijection [11], we have
the following formulations of the (q, t)-Kostka polynomials at t = 0 in terms of multiline
queues and multiline diagrams.

Corollary 4.16. The (modified) Kostka polynomial at t = 0 is given by

Kλµ(q, 0) = ∑
M∈MLQ0(λ,µ)

qmaj(rot(M)) and K̃λµ(q, 0) = ∑
D∈MLD0(λ′,µ)

qm̃aj(rot(D)).
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5 Generalized multiline queues

A generalized multiline queue is a multiline queue in which we relax the condition that
the number of balls in each row must be weakly decreasing from bottom to top.

Denote by α+ the partition obtained by rearranging the parts of the composition α.

Definition 5.1. Let λ be a partition, α a composition such that α+ = λ′, and n > `(λ) a positive
integer. A generalized multiline queue of type (α, n) is a tuple of subsets (B1, . . . , BL) such
that Bj ⊆ [n] and |Bj| = αj for 1 ≤ j ≤ L. Denote the set of generalized multiline queues
corresponding to a composition α by GMLQ(α, n). Then MLQ(λ, n) = GMLQ(λ′, n).

In generalized multiline queues we consider the vacancies to be “anti-particles”.
There is a pairing algorithm that generalizes the Ferrari–Martin procedure by sequen-
tially assigning labels to both the particles and the anti-particles in M, by pairing sites
between adjacent rows from top to bottom such that particles are paired weakly to the right,
while anti-particles are paired weakly to the left, and propagating the labels upon pairing.
This is done in a certain priority order: see [1, Section 2] for the details of the procedure.
When applied to a (regular) multiline queue, the labelling of the particles coincides with
that in Definition 3.5.

Definition 5.2. Let M ∈ GMLQ(α, n) with an associated labelling. For 1 ≤ r, ` ≤ L, let mr,`
(resp. ar,`) be the number of particles (resp. anti-particles) of type ` that wrap when pairing to
the right (resp. left) from row r to row r− 1, as shown in Example 5.5. Define

majG(M) = ∑
1≤r,`≤L

mr,`(`− r + 1)− ar,`(`− r + 1).

When M ∈ MLQ(λ, n), every anti-particle at row r is labelled r− 1, so majG(M) = maj(M).

In [1], a row-swapping involution acting on GMLQ is defined to show that certain
statistics and distributions are preserved between the set GMLQ(α) and the set MLQ(λ),
where α+ = λ. We generalize the result of [1] by showing that the distribution of the
majG statistic is also preserved, thus recovering Theorem 1.3, which is a formula for
Pλ(x1, . . . , xn; q, 0) as a sum over GMLQ(α, n) where α+ = λ′.

Definition 5.3. For (B1, . . . , BL) ∈ GMLQ(α, n) and 1 ≤ i ≤ L− 1, define the involution σi
by exchanging cylindrically unmatched particles in πc

i (cw(Bi, Bi+1)) between Bi and Bi+1.

Proposition 5.4. Let α be a composition with α+ = λ′, L := `(α), M ∈ GMLQ(α), and let
1 ≤ i ≤ L− 1. Then ρ↓(M) = ρ↓(σi(M)) and majG(M) = majG(σi(M)).

Since the σi’s satisfy the Moore–Coxeter relations and majG(M) = maj(M) when
M ∈ MLQ(λ), we obtain Theorem 1.3.
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Example 5.5. We show the labelled anti-particles (squares) and particles (circles) corresponding
to M = ({2, 3}, {1, 4}, {2, 3, 4}) ∈ GMLQ((2, 2, 3), 4), σ2(M) = ({2, 3}, {1, 2, 4}, {3, 4})
∈ GMLQ((2, 3, 2), 4) and σ1(σ2(M)) = ({2, 3, 4}, {1, 2}, {3, 4}) ∈ GMLQ((3, 2, 2), 4). We
show the positive and negative contributions to majG for each, totalling majG = 2 in each case.

2-3+1

2-2+1

3-3+1

3-2+1
0 3 3 1

3 2 1 3

2 3 3 3
σ2

0 3 3 1

3 2 1 3

2 2 3 3
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2 2 3 32-3+1
2-3+1

3-3+1
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If M is a multiline queue, maj(M) can be computed directly from charge(cw(M)),
bypassing the Ferrari–Martin procedure. There is a natural question of whether one
could compute charge directly from a GMLQ without the anti-particles, and without
the operators σi. This would allow us to define charge on generalized MLDs to get
analogous results for H̃λ(X; q, 0).
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Slit-slide-sew bijections for constellations and
quasiconstellations

Jérémie Bettinelli*1 and Dimitri Korkotashvili†1

1Laboratoire d’Informatique de l’École polytechnique, Institut Polytechnique de Paris, France

Abstract. We extend so-called slit-slide-sew bijections to constellations and qua-
siconstellations. We present an involution on the set of hypermaps given with an
orientation, one distinguished corner, and one distinguished edge leading away from
the corner while oriented in the given orientation. This involution reverts the orienta-
tion, exchanges the distinguished corner with the distinguished edge in some sense,
slightly modifying the degrees of the incident faces in passing, while keeping all the
other faces intact.

The involution specializes into a bijection interpreting combinatorial identities and
allows to recover the counting formula for constellations or quasiconstellations with a
given face degree distribution.

Keywords: bijection, plane map, hypermap, constellation, map enumeration.

1 Introduction

In the present work, we pursue the investigation of so-called slit-slide-sew bijections,
introduced in [1] on forests and plane quadrangulations, and then further developed in
[2, 3] on plane bipartite and quasibipartite maps. Here, we focus on a generalization of
the latter, called constellations and quasiconstellations.

Hypermaps. Recall that a plane map is an embedding of a finite connected graph (pos-
sibly with multiple edges and loops) into the sphere, considered up to orientation-
preserving homeomorphisms. Now fix an integer p ≥ 2. A (plane) p-hypermap is a
plane map whose faces are shaded either dark or light in such a way that

• adjacent faces do not have the same shade (one is dark, the other light);

• each dark face has degree p.

These actually generalize maps, which correspond to 2-hypermaps. In the terminology
of hypermaps, light faces generalize faces and might be called hyperfaces, whereas dark
faces generalize edges and are called hyperedges. We do not use this terminology here.
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Figure 1: A quasi-3-constellation of
type (9, 6, 2, 6, 3, 3, 4, 3, 3). The two
flawed faces, highlighted in orange,
are f3 and f7. Every light face has
a marked corner, always represented
by a red arrowhead.

A (plane) p-constellation is a p-hypermap
such that the degrees of its light faces are
all multiples of p. In a p-hypermap, a
light face whose degree is not a multiple
of p will be called a flawed face. A p-
constellation is thus a p-hypermap without
flawed faces. A quasi-p-constellation is a p-
hypermap with exactly two flawed faces.
Note that, in a p-hypermap, the sum of the
degrees of the light faces is necessarily a
multiple of p, since it is equal to the sum
of the degrees of the dark faces, which are
all p. As a result, a p-hypermap cannot
have a single flawed face and, in a quasi-
p-constellation, the two flawed faces have,
modulo p, degrees +k and −k for some
0 < k < p.

Enumeration. For an r-tuple a = (a1, . . . , ar) of positive integers, let us denote by
C(a) the number of p-hypermaps with exactly r light faces, numbered f1, . . . , fr and of
respective degrees a1, . . . , ar, each bearing a marked corner1. The r-tuple a will be called
the type of such p-hypermaps. See Figure 1. By elementary considerations and Euler’s
characteristic formula, the integers

E(a) :=
r

∑
i=1

ai , D(a) :=
E(a)

p
, and V(a) := E(a) − D(a)− r + 2

are respectively the numbers of edges, dark faces, and vertices of p-hypermaps of type a.
Generalizing Tutte’s so-called formula of slicings [6], it has been computed that, when at
most two ai’s are not in pN, that is, for p-constellations [4] or quasi-p-constellations [5],
it holds that

C(a) = ca

(

E(a) − D(a)− 1
)

!
V(a) !

r

∏
i=1

α(ai), where α(x) :=
x!

⌊

x/p
⌋

!
(

x − ⌊x/p⌋ − 1
)

!

and ca =

{

1 if p divides every ai

p − 1 otherwise
.

(1.1)
1Recall that a corner is an angular sector delimited by two consecutive edges around a vertex.
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Combinatorial identities. In the present work, we give a bijective interpretation for the
following combinatorial identity, which transfers one degree from one face to another.

Proposition 1 (Transferring one degree from f1 to f2). Let a = (a1, . . . , ar) be an r-tuple of
positive integers such that a1 ≥ 2, and with coordinates equal modulo p to

(i) either (k,−k, 0, . . . , 0) for some k ∈ {0, . . . , p − 1},

(ii) or (1, 0, . . . , 0,−1, 0, . . . , 0), with the −1 in any position from 3 to r.

Let also ã = (ã1, . . . , ãr) := (a1 − 1, a2 + 1, a3, . . . , ar). Then the following identity holds:(
a1 − ⌈a1/p⌉

) (
a2 + 1

)
C(a) =

(
ã1 + 1

) (
ã2 − ⌈ã2/p⌉

)
C(ã) . (1.2)

To obtain (1.2) from (1.1), one might first observe that, for any x ∈ N,

α(x)
α(x − 1)

= dx
x

x − ⌈x/p⌉ where dx =

{
p − 1 if p | x
1 if p ∤ x

,

and then that, in both cases (i) and (ii), cada1 = cãdã2 = p − 1.
We furthermore treat the case of a degree 1-face, which may easily be obtained as

above.

Proposition 2 (Transferring the degree of a degree 1-face f1 to f2). Let a = (1, a2, . . . , ar)
and ã = (ã2, . . . , ãr) := (a2 + 1, a3, . . . , ar) be respectively an r-tuple and an r − 1-tuple of
positive integers, both having at most two coordinates not lying in pN. Then the following
identity holds: (

a2 + 1
)

C(a) = V(ã)
(
ã2 − ⌈ã2/p⌉

)
C(ã) . (1.3)

It is easy to see that the number of p-constellations with exactly one light face of
degree pn is equal to the known number of p-ary trees with n nodes. Using this as
initial condition, Propositions 1 and 2 provide yet another proof of (1.1).

Methodology. In order to bijectively interpret (1.2) and (1.3), the idea is to distinguish
elements, such as edges, vertices, faces, corners, etc., in such a way that each side of
an equation of interest counts maps given with such distinguished elements. Remark
that we will always use the word “distinguished” to designate these extra elements,
keeping the word “marked” only for the marked corners, which we see as inherent to
the hypermaps into consideration.

Once both sides of the considered equation are properly interpreted as cardinalities
of sets of maps with distinguished elements, we bijectively go from one set to the other
as follows. Using the distinguished elements, we construct a directed path in the map,
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called sliding path. We then slit the map along this sliding path and sew back together
the sides of the slit after sliding by one unit, in the sense that the left side of the i-th edge
is sewn back on the right side of the i ± 1-th edge (the ±1 being the same for all edges
and determined by some rule). This mildly modifies the map along the path but does
not affect its faces, except the two that are around the extremities of the sliding path.
In the process, new distinguished elements naturally appear in the resulting map; these
allow us to recover the sliding path in order to slide back.

Organization of the paper. The remainder of the document is structured in the fol-
lowing manner. We start by giving in Section 2 the definitions and conventions we use,
as well as a combinatorial interpretation of the prefactor

(
a − ⌈a/p⌉

)
appearing in the

identities (1.2) and (1.3). We then present in Section 3 our bijective interpretation of these
identities through a more general involution on the set of maps given with an orienta-
tion, a distinguished corner, and a distinguished edge satisfying an extra constraint.

2 Preliminaries
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Figure 2: Distinguishing a corner around
the marked corner.

Distinguishing a corner. Following
previous works on slit-slide-sew bijec-
tions, we use the convention, depicted
in Figure 2, that the marked corner of
a face creates two possible corners to
distinguish. One might think of the marked corner as a dangling half-edge, with one
corner on each side. As a result, a face of degree a bearing its marked corner has a + 1
possible corners to distinguish.

Edge orientation. As is customary, we will orient the edges of the hypermaps we con-
sider, in such a way that light faces always lie to the same side of the oriented edges (and
thus dark faces always lie to the same other side). These orientations will be called the
light-left orientation when the light faces2 all lie to the left, and the light-right orientation
when the light faces all lie to the right. In other words, in the light-right orientation,
the edges are oriented clockwise around light faces and counterclockwise around dark
faces. See Figure 3. We will need to use both orientations in the present paper. We will
always clearly mention which orientation we use whenever it matters. Without specific
mention, both orientations can be used. Once one of the two possible orientations is

fixed, we will use the following conventions.

2Recall that the light faces are the main objects of focus.
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Figure 3: Edge orientation and
definitions. Here, the light-right
orientation is depicted.

Given an edge e, we will respectively de-
note by e− and e+ the origin and end of the
edge e, oriented as convened. The corner pre-
ceding e is defined as the corner ce delimited
by e and the edge that precedes e in the con-
tour of the incident light face, in the convened
orientation. Similarly, we denote by c+ the ver-
tex incident to a corner c.

Paths. A path from a vertex v to a vertex v′ is
a finite sequence ℘ = (e1, e2, . . . , ek) of edges
such that e−1 = v, for 1 ≤ i ≤ k − 1, e+i = e−i+1,
and e+k = v′. Its length is the integer k, which we denote by [℘] := k. A path is called
simple if the vertices it visits are all distinct.

Beware that a path is only made of edges oriented in the convened orientation. In
other words, edges cannot be used “backward.” In particular, this means that all the
faces lying to the left of a path are of the same shade (either all light or all dark), whereas
all the faces lying to its right are of the other shade. The side of the path where the faces
are all light will be called its light side, whereas the other side will be called its dark side.

Directed metric and geodesics. We will use the directed metric associated with the
convened orientation: given two vertices v, v′ in a p-hypermap, we denote by~d(v, v′) the
smallest k for which there exists a path from v to v′ of length k. (We put an arrow on
top in the notation to keep in mind that this is only a directed metric.) A geodesic from v
to v′ is such a path.

ek ek+1

Figure 4: Definition
of the lightest geodesic.
The edges going closer
to v′ are in red.

There are generally several geodesics from a given
vertex v to a target vertex v′. Among all of these, one
will be of particular interest in this work: the lightest
geodesic, constructed as follows. It is only well defined
from a starting edge or corner e0 such that e+0 = v. (The
starting element e0 does not belong to the path.) Then,
provided e0, e1, . . . , ej have already been constructed
and the path is not complete (that is, e+j 6= v′), we set
the subsequent edge ej+1 as the one, among the edges e
such that e− = e+j and ~d(e+, v′) = ~d(e+j , v′) − 1, that

comes first while turning around e+j in the direction
incoming edge, light face. See Figure 4. In other words, the lightest geodesic is the left-
most geodesic if the convened orientation is the light-left orientation and the rightmost
geodesic if the convened orientation is the light-right orientation.
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Edge types. Given a fixed vertex v in a p-hypermap, we may differentiate three types
of edges: an edge e is said to be

• leaving v if d⃗(v, e+) = d⃗(v, e−) + 1;

• approaching v if d⃗(v, e+) = d⃗(v, e−) + 1 − p;

• irregular with respect to v if d⃗(v, e+)− d⃗(v, e−) ̸≡ 1 mod p.

Observe that 1 − p ≤ d⃗(v, e+) − d⃗(v, e−) ≤ 1 since there is always a path of length 1,
namely the path consisting of the single edge e, as well as a path from e+ to e− of length
p − 1, made of all the other edges incident to the dark face incident to e. As a result, if e
is irregular with respect to v, then it holds that d⃗(v, e+)− d⃗(v, e−) ∈ {2− p, 3− p, . . . , 0}.
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Edge types. Given a fixed vertex v in a p-hypermap, we may differentiate three types
of edges: an edge e is said to be

• leaving v if~d(v, e+) =~d(v, e−) + 1;

• approaching v if~d(v, e+) =~d(v, e−) + 1 − p;

• irregular with respect to v if~d(v, e+)−~d(v, e−) 6≡ 1 mod p.

Observe that 1 − p ≤ ~d(v, e+) −~d(v, e−) ≤ 1 since there is always a path of length 1,
namely the path consisting of the single edge e, as well as a path from e+ to e− of length
p − 1, made of all the other edges incident to the dark face incident to e. As a result, if e
is irregular with respect to v, then it holds that~d(v, e+)−~d(v, e−) ∈ {2− p, 3− p, . . . , 0}.
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Figure 5: The different types of edges incident to a flawed face.The distances to v are
written in the vertices. Around f , the
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= 7 red edges are leaving v; the
⌊10/4⌋ = 2 blue edges are approaching v; the green edge is irregular with respect to v.

The following proposition gives the number of each type among edges incident to
a given face in a p-constellation or a given flawed face in a quasi-p-constellation; this
provides an interpretation to the prefactor

(

a − ⌈a/p⌉
)

appearing in (1.2) and (1.3). We
refer the reader to the extended version of this paper for a proof.

Proposition 3. We consider a vertex v and a light face f of degree a in a p-hypermap.

(1) If the p-hypermap is a p-constellation then, among the a edges incident to f , a − a/p are
leaving v; a/p are approaching v; none are irregular with respect to v.

(2) If the p-hypermap is a quasi-p-constellation and f a flawed face then, among the a edges
incident to f ,

(

a − ⌈a/p⌉
)

are leaving v; ⌊a/p⌋ are approaching v; one is irregular with
respect to v.
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3 Bijective interpretation

3.1 Slit slide sew

Let us first describe the operation at the heart of our construction. See Figure 6. Assume
that, on some p-hypermap m, we have a simple path ℘ = (e1, e2, . . . , ek) linking some
corner c in some light face f to a different corner c′ in some light face f ′ (which may
possibly be equal to f ), that is, such that e−1 = c+ and e+k = c′+. We may then follow ℘,
entering from the corner c and exiting through the corner c′. This creates a simple
path on the sphere, starting inside the face f and finishing inside f ′. We may slit the
sphere along this path, thus doubling the sides of the path. In the hypermap m, this
doubles the path ℘, making up two copies, one incident to light faces and the slit, and
one incident to dark faces and the slit. We denote by ℓ = (ℓ1, . . . , ℓk) the former and by
d = (d1, . . . , dk) the latter.
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Figure 6: The slit-slide-sew operation on a p-hypermap.

Note that the data of ℘ is not sufficient to properly define this operation; one needs to
know from which corner to enter ℘ in order to decide if an edge incident to e−1 becomes
incident whether to ℓ

−
1 or to d−1 . Similarly, one needs to know through which corner to

exit ℘.
We then sew back ℓ onto d but only after sliding by one unit, in the sense that we

match ℓi+1 with di, for every 1 ≤ i ≤ k − 1. For further reference, we denote by ℓi+1 ⋊⋉ di
the resulting edge. Observe that, except from f and f ′, the faces are not altered by the
process. Observe also that ℓ1 and dk are not matched with anything:

• dk is still incident to the original dark face and is now also incident to f ′;

• ℓ1 is still incident to the original light face and is now also incident to f .
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Note that the data of ℘ is not sufficient to properly define this operation; one needs to
know from which corner to enter ℘ in order to decide if an edge incident to e−1 becomes
incident whether to ℓ−1 or to d−1 . Similarly, one needs to know through which corner to
exit ℘.

We then sew back ℓ onto d but only after sliding by one unit, in the sense that we
match ℓi+1 with di, for every 1 ≤ i ≤ k − 1. For further reference, we denote by ℓi+1 ⋊⋉ di
the resulting edge. Observe that, except from f and f ′, the faces are not altered by the
process. Observe also that ℓ1 and dk are not matched with anything:

• dk is still incident to the original dark face and is now also incident to f ′;

• ℓ1 is still incident to the original light face and is now also incident to f .
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Consequently, the result is no longer a p-hypermap since ℓ1 is incident to light faces
from both sides. However, in the case where ℓ1 is actually a dangling edge (an edge
with one extremity of degree 1), removing it provides a p-hypermap. This happens if
and only if c is the corner preceding e1 ; this will always be the case in the present work.

3.2 Face of degree two or more

We now present the bijective interpretation for the identity (1.2) of Proposition 1.

Involution. We define a mapping Φ on the set H of quadruples (O, m, c, e), where

• O is an orientation (either light-left or light-right);

• m is a p-hypermap;

• c is a distinguished corner of some light face;

• e is a distinguished edge leaving c+ in the orientation O.

We break down the process into the following steps. See Figure 7.

1. Reorientation
From now on, we convene to use the reverse orientation, which we denote by Õ.

2. Sliding path
We consider the corner ce preceding e and the lightest geodesic γ from ce to c+.

3. Slitting, sliding, sewing
We slit, slide, sew along γ from ce to c as described in the previous section: along γ,
the light side of an edge is now matched with the dark side of the previous edge.

4. Output
The unmatched light side of the first edge of γ yields a dangling edge; we remove
it and denote the resulting corner by c̃. We denote the edge corresponding to the
unmatched dark side of the final edge of γ by ẽ. We let m̃ be the resulting map.
Finally, the output of the construction is the quadruple Φ(O, m, c, e) := (Õ, m̃, c̃, ẽ).

Theorem 4. The mapping Φ : H → H is an involution.

We refer the reader to the extended version of this work for the proof of Theorem 4.
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Figure 7: The involution Φ : H → H. Only the orientation around the faces of interest
and along γ are depicted. Top left. The input. Top right. We changed the orientation
and defined the sliding path γ. Bottom left. We slit along the path. The dashed lines
indicate to sew back after sliding. Bottom right. The output.

Specialization. We now see how Φ specializes into a bijection interpreting (1.2). We let

a = (a1, . . . , ar) and ã = (ã1, . . . , ãr) := (a1 − 1, a2 + 1, a3, . . . , ar)

be as in the statement of Proposition 1. Note that this means that p-hypermaps of type a

are either p-constellations or quasi-p-constellations whose first face is flawed. Similarly,
p-hypermaps of type ã are either p-constellations or quasi-p-constellations whose second

face is flawed.
We fix an orientation O and define the following sets, whose cardinalities are respec-

tively the left-hand side and the right-hand side of (1.2), by Proposition 3 (recall also the
convention at the begining of Section 2 for distinguishing corners).

• We let M be the set of p-hypermaps
of type a carrying

– one distinguished corner c in
the second face,

– one distinguished edge e inci-
dent to the first face and leav-
ing c+, for the orientation O.

• We let M̃ be the set of p-hypermaps of
type ã carrying

– one distinguished corner c̃ in the
first face,

– one distinguished edge ẽ incident
to the second face and leaving c̃+,
for Õ.
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Specialization. We now see how Φ specializes into a bijection interpreting (1.2). We let

a = (a1, . . . , ar) and ã = (ã1, . . . , ãr) := (a1 − 1, a2 + 1, a3, . . . , ar)

be as in the statement of Proposition 1. Note that this means that p-hypermaps of type a
are either p-constellations or quasi-p-constellations whose first face is flawed. Similarly,
p-hypermaps of type ã are either p-constellations or quasi-p-constellations whose second
face is flawed.

We fix an orientation O and define the following sets, whose cardinalities are respec-
tively the left-hand side and the right-hand side of (1.2), by Proposition 3 (recall also the
convention at the begining of Section 2 for distinguishing corners).

• We let M be the set of p-hypermaps
of type a carrying

– one distinguished corner c in
the second face,

– one distinguished edge e inci-
dent to the first face and leav-
ing c+, for the orientation O.

• We let M̃ be the set of p-hypermaps of
type ã carrying

– one distinguished corner c̃ in the
first face,

– one distinguished edge ẽ incident
to the second face and leaving c̃+,
for Õ.
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Here, p = 3, we are in the case (ii) of Proposition 1, and O = light-left.

The pictograph above summarizes the definitions of M and M̃. The red ±1 on the
right shows the increase or decrease of the degree of the face in M̃ in comparison with
the one of the corresponding face in M. In order to avoid confusion, we denote the first
and second faces of maps in M by f1 and f2 as before, and use f̃1 and f̃2 instead, for
maps in M̃. The paths symbolize the fact that the edges are leaving the corners.

Remark 1. Note that the convention on the orientation of edges is not the same in the
definitions of the sets M and M̃. This clearly bears no effects from an enumeration
point of view but is of crucial importance for our bijections.

Corollary 5. The mapping Φ specializes into a bijection from {(O, m, c, e) : (m, c, e) ∈ M}
onto {(Õ, m̃, c̃, ẽ) : (m̃, c̃, ẽ) ∈ M̃}, thus providing a bijection between M and M̃.

3.3 Face of degree one

We proceed to the bijective interpretation for the identity (1.3) of Proposition 2, which
works in a similar fashion as before.

Setting. Let a = (1, a2, . . . , ar) and ã = (ã2, . . . , ãr) := (a2 + 1, a3, . . . , ar) be tuples of
positive integers, both with at most two coordinates not lying in pN. In order not to
be confused by the index shift in ã2, we denote the faces of p-hypermaps of type ã

by f̃2, . . . , f̃r. In particular, p-hypermaps of type ã are either p-constellations, or are
quasi-p-constellations whose face f̃2 (the one with degree ã2) is flawed. We fix an orien-
tation O and define the following sets, whose cardinalities are the sides of (1.3), again by
Proposition 3 for the right-hand side.

• We let N be the set of p-hypermaps
of type a carrying

– one distinguished corner c in
the face f2.

• We let Ñ be the set of p-hypermaps of
type ã carrying

– one distinguished vertex ṽ,

– one distinguished edge ẽ incident
to f̃2 and leaving ṽ for Õ.
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We put f1 on the pictograph since we think of it as the “missing” distinguished
element for N . Note that we do not need to specify an orientation for maps in N ; we
will however use the orientation O for these maps in due time. The bijections between N
and Ñ can be thought of as degenerate versions of the one of the previous section. Here,
we do not have an involution; we need to describe both mappings. We break them down
into similar steps as above. See Figure 8.

Suppressing a face. We consider (m, c) ∈ N .

1. From this point on, we use the reverse orientation Õ.

2. We consider the lightest geodesic γ from the unique corner of f1 to c+.

3. We denote by d0 the unique edge incident to f1. We slit, slide, sew along γ from the
unique corner of f1 to c as described in Section 3.1, while furthermore matching
the unmatched light side of the first edge with d0.

4. We set Ψ
−
(m, c) := (m̃, ṽ, ẽ), where m̃ is the resulting map, ẽ is the edge correspond-

ing to the unmatched dark side of the final edge of γ, and ṽ is the origin of γ.
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f̃2
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3. m̃
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ẽ

d0

ṽ

γ

Figure 8: The bijection in the case of a degree 1-face, from N to Ñ .
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will however use the orientation O for these maps in due time. The bijections between N
and Ñ can be thought of as degenerate versions of the one of the previous section. Here,
we do not have an involution; we need to describe both mappings. We break them down
into similar steps as above. See Figure 8.
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1. From this point on, we use the reverse orientation Õ.

2. We consider the lightest geodesic γ from the unique corner of f1 to c+.

3. We denote by d0 the unique edge incident to f1. We slit, slide, sew along γ from the
unique corner of f1 to c as described in Section 3.1, while furthermore matching
the unmatched light side of the first edge with d0.

4. We set Ψ−(m, c) := (m̃, ṽ, ẽ), where m̃ is the resulting map, ẽ is the edge correspond-
ing to the unmatched dark side of the final edge of γ, and ṽ is the origin of γ.
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Adding a face. We consider (m̃, ṽ, ẽ) ∈ Ñ .

1. From this point on, we use the orientation O.

2. We consider the lightest geodesic γ̃ from the corner cẽ preceding ẽ to ṽ.

3. We slit m̃ along γ̃, entering from cẽ and stopping at ṽ, without disconnecting the
map at ṽ, slide by one unit, and sew back as before. Now the unmatched dark side
of the final edge creates a loop enclosing an extra face, which we denote by f1 and
mark at its unique corner.

4. We replace ℓ̃1 with a corner c, let m be the resulting map, and set Ψ+(m̃, ṽ, ẽ) := (m, c).

Theorem 6. The mappings Ψ− : N → Ñ and Ψ+ : Ñ → N are well defined and inverse
bijections.
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Abstract. Schubert polynomials represent a basis for the cohomology of the com-
plete flag variety and thus play a central role in geometry and combinatorics. In this
context, Schubert polynomials are generating functions over various combinatorial ob-
jects, such as rc-graphs or reduced pipe dreams. By restricting Bergeron and Billey’s
chute moves on rc-graphs, we define a Demazure crystal structure on the monomials
of a Schubert polynomial. As a consequence, we provide a method for decomposing
Schubert polynomials as sums of key polynomials, complementing related work of
Assaf and Schilling via reduced factorizations with cutoff, as well as Lenart’s coplactic
operators on biwords.

Keywords: Schubert polynomial, pipe dream, rc-graph, chute move, Demazure crystal

1 Introduction

Schubert polynomials are fundamental objects which lie at the intersection of geometry,
representation theory, and algebraic combinatorics. By a classical theorem of Borel, the
cohomology of the manifold of complete flags in Cn with integer coefficients is canoni-
cally isomorphic to the quotient of Z[x1, . . . , xn] by the ideal generated by the symmetric
polynomials without constant term [5]. The geometry of the flag variety is best captured
by the cohomology classes of the Schubert varieties, which correspond to Schubert poly-
nomials under Borel’s isomorphism, generalizing the role of the Schur polynomials in
the cohomology of the Grassmannian. In addition to encoding geometric information
about the flag variety, individual Schubert polynomials also exhibit rich combinatorial
and representation theoretic structures, as developed in [16, 14, 21, 17, 1] and explored
further in the present work.

1.1 Schubert and key polynomials

Given any permutation w ∈ Sn, the Schubert polynomial Sw ∈ Z[x1, . . . , xn] can be cal-
culated recursively using a sequence of divided difference operators, by the original
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definition of Lascoux and Schützenberger [15], inspired by the work of Demazure [7]
and Bernstein–Gel′fand–Gel′fand [3]. Based on a conjecture of Stanley, the first combi-
natorial formula for Schubert polynomials was given by Billey, Jockusch, and Stanley
using the language of rc-graphs [4], with an alternate proof by Fomin and Stanley [9].
An equivalent combinatorial description for Schubert polynomials was later provided
by Fomin and Kirillov [10], rebranded by Knutson and Miller as reduced pipe dreams [13],
following the conventions of Bergeron and Billey [2]. Besides being attractive ways to vi-
sually represent Schubert polynomials, pipe dreams generalize to flag manifolds the role
of the semistandard Young tableaux for Grassmannians, while admitting generalizations
to other cohomological contexts.

Many combinatorial models for Schubert polynomials also involve a family of op-
erators, which permute the individual monomials. To highlight several examples most
closely related to this work, Bergeron and Billey define chute and ladder moves on rc-
graphs [2], the inspiration for which they attribute to Kohnert’s thesis [14]. Miller pro-
vides a mitosis algorithm which lists reduced pipe dreams recursively by induction on
the weak order on Sn [19]. Lenart develops operations on biwords which correspond to
the coplactic operators on tableaux [17]. Morse and Schilling define a family of operators
on reduced factorizations in [20], which restricts to an action on Schubert polynomials via
the semi-standard key tableaux of Assaf and Schilling [1].

All of the operators mentioned above encode useful combinatorics about Schubert
polynomials; however, some of them additionally carry representation-theoretic infor-
mation. The most natural approach to track the representation theory is often through
Kashiwara’s crystals [11], which are graphical models for the irreducible representations
of a complex semisimple Lie algebra. Lenart summarizes many results in [17] using the
language of crystal operators rooted in a pairing process on rc-graphs, though the details
are carried out via jeu de tacquin on biwords, most naturally associated with the com-
binatorics of semistandard Young tableaux. More explicitly, Assaf and Schilling prove
in [1, Theorem 5.11] that the set of all reduced factorizations for w ∈ Sn satisfying an
additional cutoff criterion decomposes as a union of Demazure crystals.

The decomposition of a combinatorial model for Schubert polynomials into a union
of Demazure crystals thus also yields a description of how Sw is expressed as a sum
of key polynomials κa, as in [1, Corollary 5.12]. Tableaux versions of such formulas
include the original of Lascoux and Schützenberger [16], a related result of Reiner and
Shimozono [21] on factorized row-frank words, and so on. The main goal of this paper is
to provide such a decomposition for Schubert polynomials as sums of key polynomials,
expressed in terms of reduced pipe dreams.
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1.2 Main results

Inspired by the chute moves of [2] on rc-graphs, we develop a crystal structure on the
monomials of a Schubert polynomial, giving a method for decomposing Schubert poly-
nomials as sums of key polynomials, complementing the closely related works [1, 17].
Our crystal chute moves on reduced pipe dreams are either raising or lowering operators,
denoted ei and fi, respectively. If the raising operator ei(D) applied to a reduced pipe
dream D for the given permutation w ∈ Sn equals zero for all 1 ≤ i < n, then we say
D ∈ RP(w) is a highest weight pipe dream. We direct the reader to Section 2 for precise
definitions of all relevant terminology.

The highest weight pipe dreams naturally index the key polynomials in the decom-
position below, as they are in bijection with a pair consisting of a partition λD having n
parts and a permutation πD ∈ Sn, such that aD = πD(λD) for a unique composition aD.

Theorem 1. Given any w ∈ Sn, the Schubert polynomial may be expressed as

Sw(x1, . . . , xn) = ∑
D∈RP(w)

ei(D)=0, ∀1≤i<n

κaD(x1, . . . , xn),

where the composition aD = wt(D̃) for a diagram D̃ constructed from the highest weight pipe
dream D; see Algorithm 1 for details.

Figure 1 on the next page shows how S[21543] decomposes as the sum of three key
polynomials, indexed by the three pipe dreams with no incoming lowering edges, having
weights λD ∈ {(2, 1, 1, 0), (2, 2, 0, 0), (3, 1, 0, 0)} recording the number of crosses in each
row, with respective truncating permutations πD ∈ {s2s1s3, s2, s3s2} read from the edges.

2 A Crystal Structure on Pipe Dreams

In this section, we review the combinatorics of Schubert polynomials in the language of
reduced pipe dreams. We then define crystal chute moves by restricting the chute moves
of [2] on rc-graphs via a pairing process.

2.1 Schubert polynomials and pipe dreams

Reduced pipe dreams index the monomials of Schubert polynomials, as we review in
Theorem 2. Fix an n ∈ N and consider the n × n grid, indexed such that the box in row
i from the top and column j from the left is labeled by (i, j), as for matrix entries. A pipe
dream is a diagram D obtained by covering each box on the grid with one of two square
tiles: a cross or an elbow . Further, crosses are only permitted in boxes (i, j) such
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f2

f2

f1f2

f2

f3 f2

f2

f3 f1

f3

Figure 1: The Demazure crystal structure on reduced pipe dreams for w = [21543].
Crosses that will be moved by the lowering operators fi are in shown green.
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that i + j ≤ n, so we will typically only draw the portion of D which lies on or above the
main anti-diagonal.

By connecting the crosses and elbows on each tile in the unique possible way, as
shown in Figure 1, we can view the resulting diagram as a network of pipes moving
north and east, with water flowing in from the left of the grid and out at the top. The
water in each pipe enters and exits from a unique pair of row and column indices, so
that each pipe dream corresponds to a permutation on the set [n] = {1, . . . , n} as follows.
The one-line notation for a permutation w ∈ Sn records the action of w on [n] in the form
w = [w1 · · · wn], where we write wi = w(i) for brevity. A diagram D is a pipe dream
for the permutation w = [w1 · · · wn] if the pipe entering row i exits from column wi for all
i ∈ [n]. For example, each of the diagrams in Figure 2 below is a pipe dream for the
same permutation w = [21543] ∈ S5.

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

Figure 2: Several reduced pipe dreams for w = [21543] ∈ S5.

A pipe dream is reduced if each pair of pipes crosses at most once, as in Figure 2.
Denote by RP(w) the set of all reduced pipe dreams for a given permutation w. We
denote by D+ the set of all boxes of D which are covered by a cross; note that D+

uniquely determines D. Provided that the pipe dream is reduced, [13, Lemma 1.4.5]
says that the number of crosses in D ∈ RP(w) equals the length of the permutation, or
the number of its inversions, given by |D+| = ℓ(w) = #{i < j | wi > wj}.

The weight of a pipe dream D ∈ RP(w), denoted by wt(D), is the weak composition
of ℓ(w) whose ith coordinate equals the number of crosses in row i of D. For example,
the three weight vectors corresponding to the pipe dreams from Figure 2 below are
(2, 1, 1, 0), (2, 2, 0, 0), and (3, 1, 0, 0) recorded from left to right, all of which happen to be
partitions in this example.

Schubert polynomials are generating functions over reduced pipe dreams, as illus-
trated by the following result, originally proved by Billey, Jockusch and Stanley [4], later
reproved by Fomin and Stanley [9], and recorded here in the language of pipe dreams.

Theorem 2 (Corollary 2.1.3 [13]). Let w ∈ Sn. Then

Sw(x1, . . . , xn) = ∑
D∈RP(w)

xwt(D). (2.1)

We use x to denote a monomial in the variables x1, . . . , xn. Given any vector v =
(v1, . . . , vn) ∈ Zn

≥0, the notation xv = xv1
1 · · · xvn

n is used throughout.
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2.2 Crystal chute moves

In this section, we describe a family of operators on the set RP(w) of reduced pipe
dreams for a given permutation, which we show in our main theorem produces a De-
mazure crystal structure on the monomials of Sw.

Definition 1. Given a reduced pipe dream D for a permutation in Sn, fix a row index i ∈ [n].
Denote the rightmost cross in row i by c. (Since crosses only occur in boxes (i, j) such that
i + j ≤ n, then D has no crosses in row n.) We define a pairing process on row 1 ≤ i < n of
D as follows:

1. Look for an unpaired cross c+ in row i + 1 such that c+ lies weakly to the right of c in D.
If there are multiple such c+, choose the leftmost c+.

(a) If such c+ exists, we say that c and c+ are paired.

(b) If no such c+ exists, we say that c is unpaired.

2. Denote by c′ the cross in row i which is both closest to c and lies to the left of c.

(a) If such c′ exists, we reset c := c′ and start again from step (1).

(b) If no such c′ exists, the pairing process on row i is complete.

We illustrate the pairing process on the righthand pipe dream from Figure 2 below.

Example 1. Fix i = 1 and identify c = (1, 4) as the rightmost cross in row 1. Since there are no
crosses in row 2 which lie weakly right of c, then c+ does not exist and c is unpaired in step (1b).

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

Figure 3: The pairing process applied to row 1 of a reduced pipe dream. We color
paired crosses green and unpaired crosses red.

In step (2), we identify c′ = (1, 3) as the cross in row 1 closest to and left of the original
c = (1, 4). We thus return to step (1) applied to c = (1, 3). We identify c+ = (2, 3) as a cross
in row 2 which is weakly right of c = (1, 3), and so these crosses get paired in step (1a).

The only remaining cross c′ = (1, 1) is unpaired since all crosses in row 2 are now paired.
The pairing process is complete, having analyzed all crosses in row 1.

After running the pairing process on row i of D ∈ RP(w), we define an operator fi
on D which produces another element of RP(w) whenever it is nonzero.
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Definition 2. Let D ∈ RP(w) for w ∈ Sn. Fix an 1 ≤ i < n and run the pairing process on row
i of D. If all crosses in row i are paired, then set fi(D) = 0. Otherwise, denote by (i, j) ∈ D+

the leftmost unpaired cross in row i.
If (i, k) ∈ D+ for all 1 ≤ k ≤ j, then set fi(D) = 0. Otherwise, define m ∈ N such that:

(a) (i, j − m), (i + 1, j − m) /∈ D+ and

(b) (i, j − k), (i + 1, j − k) ∈ D+ for all 1 ≤ k < m.

Define a new diagram fi(D) by

fi(D)+ = {D+\(i, j)} ∪ {(i + 1, j − m)}.

The family of operators fi for 1 ≤ i < n are called (lowering) crystal chute moves.

In words, the crystal chute move fi exchanges the leftmost unpaired cross at (i, j) and
the elbow at (i + 1, j − m), where m is chosen such that the rectangle strictly between
this pair of tiles is filled by crosses.

We now illustrate how to apply the crystal chute moves on a reduced pipe dream.

Example 2. Consider the sequence shown in Figure 4, in which we instead begin with the
lefthand pipe dream D for w = [21543] from Figure 2. If we run the pairing process on row
1, the leftmost unpaired cross is (1, 4) ∈ D+. Properties (a) and (b) hold for m = 1, and the
corresponding rectangle of crosses between (1, 4) ∈ D+ and the elbow at (2, 3) is empty in this
case. To apply f1, the red cross in (1, 4) moves to the blue elbow in position (2, 3), resulting in
the middle diagram in Figure 4.

1 2 3 4 5
1
2
3
4
5

f1−→

1 2 3 4 5
1
2
3
4
5

f2−→

1 2 3 4 5
1
2
3
4
5

Figure 4: Applying a sequence of crystal chute moves to a reduced pipe dream.

Running the pairing process next on row 2 of the middle pipe dream, (2, 3) is the leftmost
unpaired cross, and m = 2, corresponding to the tile of paired crosses in rows 2 and 3 which are
preserved under applying f2. Here instead, the red cross at (2, 3) jumps over this rectangle of
crosses to the blue elbow in position (3, 1), resulting in the third diagram in Figure 4.

We now define a second family of operators ei to be precisely the inverse of the crystal
chute moves from Definition 2.
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Definition 3. Let D ∈ RP(w) for w ∈ Sn. Fix an 1 ≤ i < n and run the pairing process
on row i of D. If all crosses in row i + 1 are paired, then set ei(D) = 0. Otherwise, denote by
(i + 1, ℓ) ∈ D+ the rightmost unpaired cross in row i + 1.

Let n > ℓ be minimal such that (i + 1, n) /∈ D+. Define a new diagram ei(D) by

ei(D)+ = {D+\(i + 1, ℓ)} ∪ {(i, n)}.

The family of operators ei for 1 ≤ i < n are called (raising) crystal chute moves.

We now have well-defined raising and lowering operators on reduced pipe dreams.

Proposition 1. The raising crystal chute move ei : RP(w) → RP(w) ∪ {0} is well-defined for
all 1 ≤ i < n, satisfying wt(ei(D)) = wt(D) + αi for any D ∈ RP(w). Moreover, the raising
and lowering crystal chute moves are mutually inverse.

The pipe dreams D on which ei(D) = 0 for all 1 ≤ i < n play a distinguished role in
the statement of Theorem 3 below, so we highlight them here.

Definition 4. If ei(D) = 0 for all 1 ≤ i < n, then D is a highest weight pipe dream.

2.3 Demazure crystals and the main theorem

We refer the reader to [6] for more background on crystals. Given a partition λ with n
parts, the type An−1 crystal of highest weight λ is denoted by B(λ), and the character of
the crystal B(λ) is the Schur polynomial sλ(x1, . . . , xn).

Demazure crystals are subsets of B(λ) truncated by a permutation which restricts the
set of raising and lowering operators. More precisely, for any subset X ⊆ B(λ) and any
index 1 ≤ i < n, we define Di in terms of lowering operators as

Di(X) = {b ∈ B(λ) | b ∈ f k
i (X) for some k ≥ 0}.

Now given any π ∈ Sn, write π = si1 · · · sip as a product of simple transpositions si =
(i, i + 1) where the expression for π is reduced, meaning that p = ℓ(π) is minimal. If uλ

denotes the highest weight element of B(λ), the Demazure crystal associated to the pair
(λ, π) is defined by

Bπ(λ) = Di1 · · ·Dip(uλ).

The character of the Demazure crystal Bπ(λ) generalizes the Demazure characters of
[8], as conjectured by Littelmann [18] and proved by Kashiwara [12]. Moreover, the
character of the Demazure crystal Bπ(λ) is the key polynomial κa(x1, . . . , xn) indexed by
the composition a such that a = π(λ).

Our main theorem says that the set of reduced pipe dreams for a permutation admits
a Demazure crystal structure determined by the crystal chute moves from Section 2.2.
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Theorem 3. Given any w ∈ Sn, the operators ei and fi for 1 ≤ i < n define a type An−1
Demazure crystal structure on RP(w). That is,

RP(w) ∼=
⋃

D∈RP(w)
ei(D)=0, ∀1≤i<n

BπD(wt(D)),

where the truncating permutation πD is the shortest permutation such that wt(D̃) = πD(wt(D)),
for a diagram D̃ constructed algorithmically from the highest weight pipe dream D; see Theorem 4.

Theorem 3 is the pipe dream analog of [1, Theorem 5.11], phrased there in terms of
reduced factorizations for w meeting a cutoff condition. Refer to Figure 1 in the intro-
duction to see how RP([21543]) decomposes into the union of three Demazure crystals.

3 Permutation Indexing the Demazure Crystal

This section explains the algorithm for identifying the truncating permutation from a
highest weight pipe dream, equivalently the composition defining the corresponding
key polynomial. We begin by describing how to obtain a new diagram D̃ from any
highest weight pipe dream D.

Algorithm 1. Let D be a highest weight pipe dream.

1. For each cross in row i, shift it to the right by i − 1.

2. For each row, beginning in the lowest row, move the leftmost cross down to the row such
that its row and column index match. Fix these crosses.

3. Set ℓ = 2.

(a) Beginning at the bottom row containing unfixed crosses, consider the leftmost unfixed
cross. Move that cross down to the lowest possible row, remaining in its current
column, such that:

i. The cross may not move through other crosses;
ii. The cross is the ℓth cross from the left in its new row; and

iii. The cross does not have any previously fixed crosses to its right in the new row.

(b) Fix this moved cross.

(c) Repeat steps (a) and (b) untill all rows with unfixed crosses have been considered.

4. Increment ℓ by 1, and repeat step (3).

Once all crosses are fixed, the algorithm terminates. Denote the resulting diagram by D̃.
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We illustrate Algorithm 1 on an example.

Example 3. Consider the permutation w = [4726315] ∈ S7. One of its highest weight pipe
dreams D is depicted in Figure 5. The result after applying steps (1) and (2) of Algorithm 1 to D
is in Figure 6, with fixed crosses marked in red.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

+ + + + +

+ + +

+ + +

+

+

· ·

· · ·

· ·

· · ·

· ·

· ·

·

Figure 5: A highest weight pipe
dream D for w = [4726315] ∈ S7.
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4

4

5

5

6
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7

+ + + ++

+ ++

+ ++

+

+

Figure 6: The result of applying steps
(1) and (2) of Algorithm 1 to D.

We now move to the iterative step (3). Set ℓ = 2. We begin on the lowest row with an unfixed
cross, that being row 3. We move the leftmost unfixed cross in this row, that being the cross at
(3, 5), down in its column to a position that meets criteria (i) through (iii). We first observe that
there is a cross at (5, 5), meaning that we are unable to move our cross to row 5 or any row below
it. Our only option is to move this cross to row 4. Observe that a cross at (4, 5) would be the
second cross in its row. Thus, we move the cross at (3, 5) to (4, 5) and fix it there.

The two crosses at (2, 3) and (1, 2) cannot move lower without violating (i). These two crosses
are thus also fixed, completing the round of moves for ℓ = 2. At the end of this round, we obtain
the diagram shown in Figure 7. We then increment ℓ to 3, and repeat the process. We omit the
details, but the final result D̃ is shown in Figure 8.

Finally, the truncating permutation πD is obtained from the diagram D̃ as follows.

Theorem 4. Let D ∈ RP(w) be a highest weight pipe dream for w ∈ Sn. Then πD ∈ Sn from
Theorem 3 is the unique shortest permutation such that wt(D̃) = πD(wt(D)). In addition,
the composition aD = wt(D̃) from Theorem 1 indexes the key polynomial corresponding to
(πD, wt(D)).

We conclude by extracting the truncating permutation πD and the composition aD
from Example 3 via Theorem 4.
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Figure 7: The diagram after complet-
ing the first iteration of step (3).
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Figure 8: The diagram D̃ after com-
pleting Algorithm 1.

Example 4. For the highest weight pipe dream D in Example 3, we have wt(D) = (5, 3, 3, 1, 1, 0).
After applying Algorithm 1, we obtained the diagram D̃ in Figure 8 such that aD = wt(D̃) =
(3, 5, 1, 3, 1, 0). The shortest permutation πD such that aD = πD(wt(D)) equals πD = s1s3,
since (3, 5, 1, 3, 1, 0) = s1s3(5, 3, 3, 1, 1, 0).
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A Regular Unimodular Triangulation of the
Matroid Base Polytope
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Abstract. We produce the first regular unimodular triangulation of an arbitrary ma-
troid base polytope. We then extend our triangulation to integral generalized per-
mutahedra. Prior to this work it was unknown whether each matroid base polytope
admitted a unimodular cover.

Keywords: matroid, polytope, triangulation

1 Introduction

Despite considerable interest, very little is known about triangulations of matroid base
polytopes. There are a few motivations for wanting to have nice triangulations of ma-
troid base polytopes. The first motivation comes from White’s conjecture whose weakest
version states that the toric ideal of a matroid base polytope is quadratically generated
[34][26]. Herzog and Hibi asked whether the toric ideal of every matroid base polytope
has a quadratic Gröbner basis [20]. It follows by a result of Sturmfels [33] combined
with an observation of Ohsugi and Hibi [27] that the existence of a quadratic Gröbner
basis is equivalent to the existence of a quadratic triangulation, i.e. a regular unimodular
flag triangulation. The existence of a quadratic triangulation is known for base sortable
matroids, e.g. positroids [31, 33, 6, 24, 25]. For transversal matroids, a result of Conca
[9] establishes that the toric ring is Koszul, which is stronger than quadratic generation
of the toric ideal but weaker than a quadratic triangulation.

The second motivation comes from Ehrhart theory. A formula for the volume of a
matroid base polytope was calculated by Ardila–Doker–Benedetti [1], but no formula is
currently known which is cancellation free, i.e. involves no subtraction. If a polytope
P admits a unimodular triangulation T , then the volume of P is equal to the number
of maximal simplices in T . The volume of a polytope occurs as the leading coefficient
of the Ehrhart polynomial. Several researchers have investigated Ehrhart polynomials

*sbackman@uvm.edu
†gakuliu@uw.edu

mailto:sbackman@uvm.edu
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for matroid base polytopes [8][21] [16] largely motivated by the conjecture of De Loera–
Haws–Köppe [11] that matroid base polytopes are Ehrhart positive—this conjecture was
recently disproven by Ferroni [13], but various other questions about these polynomials
remain open. The volume of a polytope P is also given by the evaluation of the h∗-
polynomial at 1. Another conjecture by De Loera–Haws–Köppe, which remains open, is
that the h∗-vectors of matroid base polytopes are unimodal [11]. Ferroni further conjec-
tures that the h∗-polynomial of a matroid polytope (more generally an integral general-
ized permutahedron) is real-rooted [16, 14]. It has been conjectured that if a polytope P
has the integer decomposition property (is IDP), then P has a unimodal h∗-vector [30],
and it is known that every matroid base polytope is IDP [20]. We note that the property
of admitting a unimodular triangulation is strictly stronger than the property of being
IDP [7]. We refer the reader to [15] for a comprehensive survey of results in this area. It
is known that the h∗-vector of a polytope is equal to the h-vector of any unimodular tri-
angulation of the polytope [32][5], thus one might hope that such a triangulation could
shed some light on this conjecture.

A natural question which sits in between these various results and conjectures is
whether each matroid base polytope admits a (not necessarily flag) regular unimodular
triangulation. That the matroid base polytope admits a (not necessarily regular) uni-
modular triangulation was conjectured by Haws in their 2009 thesis [19]. In this paper
we give an affirmative answer to this question by providing a regular unimodular tri-
angulation of an arbitrary matroid base polytope. We then apply this result to produce
a regular unimodular triangulation of an arbitrary integral generalized permutahedron,
and explain how this gives a regular unimodular triangulation of the matroid indepen-
dence polytope. We emphasize that prior to this work it was unknown whether every
matroid base polytope admitted a unimodular cover (this was also conjectured by Haws
[19]) let alone a unimodular triangulation. Our construction produces many different
triangulations, but at the time of writing we do not know if any of them are flag. We in-
vite other researchers to try their hand at applying our triangulation to the topics above.
See Remark 3.6.

2 Preliminaries

We recommend the following texts for an introduction to matroids [28], polytope theory
[35], and triangulations [10][18]. Let [n] denote the set of integers {1, . . . , n}. Given
S ⊆ [n] we will employ the notation xS := ∑i∈S xi. We identify {0, 1}n with the collection
of all subsets of [n]. We denote the standard basis vectors for Rn by ei for 1 ≤ i ≤ n.

Definition 2.1. A matroid is a pair M = (E,B) where E is a finite set called the ground
set, and B is a nonempty collection of subsets of E called the bases which satisfy the
following basis exchange condition:
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• For any B1, B2 ∈ B and x ∈ B1 \ B2, there exists some y ∈ B2 \ B1 such that
(B1 \ {x}) ∪ {y} ∈ B.

A set I ⊆ E is independent if there exists some basis B ∈ B such that I ⊆ B. The
collection of independent sets is denoted I . The rank of a set S ⊆ E, written r(S), is the
maximum cardinality of an independent set contained in S.

Matroid independence polytopes and the matroid base polytopes were introduced
by Edmonds [12].

Definition 2.2. Given a matroid M on ground set E = [n], the matroid base polytope PM is
the convex hull of the indicator vectors for the bases of M, and the matroid independence
polytope PI is the convex hull of the indicator vectors of the independent sets. More
explicitly, given S ⊆ E, we define the indicator vector χS ∈ Rn by

χS(i) =

{
1 i ∈ S
0 i /∈ S

Thus PM = conv{χB : B ∈ B} and PI = conv{χI : I ∈ I}.

The matroid base polytope is the distinguished face of the matroid independence
polytope where the sum of the coordinates is maximized. The matroid independence
polytope will be discussed at the end of this article (see Corollary 3.4).

Gelfand–Goresky–MacPherson–Serganova uncovered a connection between matroid
base polytopes and the geometry of the Grassmannian [17]. They showed that torus orbit
closure of a linear space L in the Grassmannian is a normal toric variety whose weight
polytope is the matroid base polytope PM(L), where M(L) is the matroid determined
by L. See Katz [22] for an overview of this story. By standard toric theory, our regular
unimodular triangulation of PM gives a projective Crepant resolution of the toric variety
associated to the cone over a matroid base polytope.

Matroid bases polytopes allow for a polytopal characterization of matroids.

Theorem 2.3. [12][17] A polytope P is a matroid base polytope for some matroid M if and only
if P is a 0-1 polytope whose edge directions are of the form ei − ej.

Polymatroids are a generalization of matroids described by monotonic submodular
fuctions taking values in the nonnegative reals. Their base polytopes are equivalent
by translation to the generalized permutahedra of Postnikov [29]. See [2] for a careful
treatment of the following definition.

Definition 2.4. A generalized permutahedron P ⊆ Rn is a polytope defined by any one of
the following equivalent conditions:

1. The edge directions for P are all of the form ei − ej,
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2. The normal fan of P is a coarsening of the braid arrangement,

3. P is defined by inequalities xS ≤ f (S) where f : {0, 1}n → R is a submodular
function, together with a single equation x[n] = f ([n]).

An integral generalized permutahedron P is a generalized permutahedron whose vertices
have integer coordinates. The following is well-known, and follows from the unimodu-
larity of the set of primitive ray generators of each chamber in the braid arrangement.

Lemma 2.5. Let P be a generalized permutahedron determined by a submodular function f as in
condition (3) of Definition 2.4. If f is an integer-valued function then P is an integral generalized
permutahedron. Moreover, if P is an integral generalized permutahedron then f may be chosen
to be integer-valued.

In our proof, we will use condition (2) from Definition 2.4 as this allows us to describe
the affine span of a face of a matroid base polytope.

Lemma 2.6. Let P be an integral generalized permutahedron and aff(P) its affine span. Then

aff(P) =
j⋂

i=1

{xSi = bi}

for some flag of subsets ∅ = S0 ⊊ S1 ⊊ · · · ⊊ Sj = [n] and some bi ∈ Z.

We note that when P is a matroid base polytope, the bi in the lemma above is equal
to the rank of the set Si viewed as a subset of the ground set of the matroid.

Definition 2.7. A subdivision of a polytope P is a collection of polytopes S = {P1, . . . , Pk}
such that

1.
⋃k

i=1 Pi = P

2. for each Pi ∈ S and F a face of Pi, there exists some j such that F = Pj

3. for any i and j with 1 ≤ i, j ≤ k, the intersection Pi ∩ Pj is a face of both Pi and Pj.

A maximal polytope in S is a cell of S .

Definition 2.8. A triangulation of a polytope P is a subdivision T = {T1, . . . , Tk} of P
such that each polytope Ti is a simplex.

Definition 2.9. Let P ⊂ Rn be a polytope and S a finite subset of P containing the vertices
of P. Given a function f : S → R, the subdivision induced by f is the subdivision of P
formed by projecting the lower faces of the polytope

conv{(x, f (x)) : x ∈ S} ⊂ Rn+1.

A subdivision is regular if it is induced by some function f .
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Given a set S ⊆ Rn, let aff(S) denote the affine span of S. Let lin(S) denote the linear
subspace of Rn with the same dimension and parallel to aff(S).

Definition 2.10. A lattice simplex T is unimodular if it has normalized volume 1. Equiv-
alently, if T has vertices v0, . . . , vn ∈ Zn, then T is unimodular whenever a maximal
linearly independent set of edge vectors {vi − vj} form a lattice basis for lin(T) ∩ Zn.

Definition 2.11. The resonance arrangement An is the hyperplane arrangement in Rn con-
sisting of all hyperplanes HS = {x ∈ Rn : xS = 0} where ∅ ⊊ S ⊆ [n].

For an introduction to the resonance arrangement (also called the all subsets arrange-
ment) we refer the reader to [23]. A flat of a hyperplane arrangement H is an intersection
of hyperplanes in H.

Definition 2.12. We say that an affine functional ℓ : Rn → R is generic if it is non constant
on each positive dimensional flat of the resonance arrangement.

We note that a generic point p on the n-th moment curve

Cn = {(t, t2, . . . , tn) : t ∈ R}

produces a generic linear functional x 7→ ⟨x, p⟩.

3 A deletion-contraction triangulation

In this section we establish the main result of this paper.

Theorem 3.1. Every matroid base polytope has a regular unimodular triangulation.

Before providing a proof, we briefly give some context for our construction. Two
fundamental operations on a matroid are the deletion and contraction of an element,
and many important constructions in matroid theory proceed by an inductive appeal to
these operations. If e is a loop or coloop, then the matroid base polytope PM is translation
equivalent to PM/e and PM\e. If e is neither a loop nor a coloop then PM is the convex
hull of PM/e and PM\e. In this way, our recursive construction fits into the paradigm of
deletion-contraction.

Let M = (E,B) be a matroid with ground set E = [n], and PM ⊂ Rn its matroid
base polytope. We will use verti(PM) to denote the vertices of PM. We show PM has a
unimodular triangulation by induction on n. If n = 1, then PM is a point and we are
done.

Assume n ≥ 2. Let P0 and P1 be the polytopes in Rn−1 such that P0 × {0} = PM ∩
{x1 = 0} and P1 × {1} = PM ∩ {x1 = 1}. Note that P0 or P1 may be empty, which occurs
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if 1 is a loop or coloop. If P0 is nonempty then it is the matroid base polytope of M \ 1,
and if P1 is nonempty then it is the matroid base polytope of M/1.

By the inductive hypothesis, P0 and P1 have regular unimodular triangulations. (We
assume an empty polytope has a regular unimodular triangulation induced by a function
with empty domain.) Let f0 : verti(P0) → R and f1 : verti(P1) → R be functions which
induce these triangulations. Let ℓ0, ℓ1 : Rn−1 → R be affine functionals such that ℓ0 − ℓ1
is generic. Let ϵ > 0 be sufficiently small, and define f : verti(PM) → R to be the
function

f (x) =

{
ℓ0(x2, . . . , xn) + ϵ f0(x2, . . . , xn) if x1 = 0
ℓ1(x2, . . . , xn) + ϵ f1(x2, . . . , xn) if x1 = 1.

In our full paper [4], we prove that f induces a unimodular triangulation of PM.
The following theorem is more explicit version of Theorem 3.1.

Theorem 3.2. Let P ∈ Rn be a matroid base polytope. For each string s ∈ ⊔n−1
k=1{0, 1}k, let ℓs :

Rn−|s| → R be an affine functional, where |s| is the length of s. Assume that ℓs′0 − ℓs′1 is generic
for all strings s′. Then for 1 ≫ ϵ1 ≫ ϵ2 ≫ · · · ≫ ϵn−1 > 0, the function f : verti(P) → R

defined by

f (x) =
n−1

∑
k=1

ϵkℓx1...xk(xk+1, . . . , xn)

induces a regular unimodular triangulation on PM.

Proof. This is obtained by unwinding the induction in the proof of Theorem 3.1.

We now explain how to extend our triangulation to all integral generalized permuta-
hedra.

Corollary 3.3. Every integral generalized permutahedron has a regular unimodular triangula-
tion.

Proof. Let P ∈ Rn be an integral generalized permutahedron. By translating P if nec-
essary, we may assume without loss of generality that there is some positive integer R
such that P ⊂ {x : 0 ≤ xk ≤ R for all 1 ≤ k ≤ n}. It is known that dicing P by the
hyperplanes {xk = c} where c and k are integers with 1 ≤ k ≤ n and 0 ≤ c ≤ R gives a
regular integral subdivision X of P, and every cell of the subdivision is a translation of
a matroid base polytope1. Let g : P ∩ Zn → R be a function which induces X .

For each s ∈ ⊔n−1
k=1{0, . . . , R}k, choose an affine functional ℓs : Rn−|s| → R so that

ℓs′i − ℓs′(i+1) is generic for all strings s′ and integers i. For 1 ≫ ϵ1 ≫ ϵ2 ≫ · · · ≫ ϵn−1 >
0, define the function f : P ∩ Zn → R by

f (x) = g(x) +
n−1

∑
k=1

ϵkℓx1...xk(xk+1, . . . , xn).

1 This can be verified by appealing to the submodularity description of generalized permutahedra,
Lemma 2.5, and Theorem 2.3.
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Then f induces a subdivision of P which refines X . Moreover, by Theorem 3.2, the
restriction of f to each cell of X induces a unimodular triangulation.

Corollary 3.4. Every matroid independence polytope has a regular unimodular triangulation.

Proof. Each matroid independence polytope PI is unimodularily equivalent to an in-
tegral generalized permutahedron: given a point v = (v1, . . . vn) ∈ PI , let ψ(v) =
(v0, v1, . . . vn) ∈ Rn+1, where v0 = r(E) − ∑n

i=1 vi. The map ψ is unimodular and its
image is an integral generalized permutahedron2. We can apply our triangulation to
ψ(PI) and then map this triangulation back to PI to obtain a regular unimodular trian-
gulation of the latter.

Example 3.5. We provide an example of our triangulation for the cycle matroid of the
complete graph K4. Let verti(K4) = {v0, v1, v2, v3}. To simplify notation we denote the
edges of K4 by integers:

v0v1 = 0, v1v2 = 1, v0v1 = 2, v1v3 = 3, v0v3 = 4, v2v3 = 5.

The bases are in the following order:

0. {0 1 3}

1. {1 2 3}

2. {1 3 4}

3. {0 1 4}

4. {0 1 5}

5. {1 2 5}

6. {1 4 5}

7. {1 2 4}

8. {0 2 4}

9. {2 3 4}

10. {0 2 3}

11. {0 2 5}

12. {2 3 5}

13. {0 3 5}

14. {3 4 5}

15. {0 4 5}

We take the height function described in Theorem 3.2 as follows: if s is a string ending
is 0, the function ℓs is 0. If a string ends in 1, and the string has length k, the function
ℓs = (−3n−k−1,−3n−k−2, . . . , 1). The cells of the associated triangulation are

{3 7 8 9 12 14}
{3 5 7 8 12 14}
{3 5 6 7 8 14}
{3 5 8 11 12 14}
{3 5 6 8 11 14}
{3 4 6 11 14 15}

{3 4 5 6 11 14}
{3 4 5 11 12 14}
{3 6 8 11 14 15}
{0 3 8 11 14 15}
{0 3 4 5 11 12}
{0 3 4 5 12 14}

{0 3 4 11 12 14}
{0 3 4 5 6 14}
{0 3 4 11 14 15}
{0 4 11 12 13 14}
{0 4 11 13 14 15}
{0 3 5 8 11 12}

2 It is implicit in [3] that the independence polytope is unimodularily equivalent to a generalized per-
mutahedron.
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{0 3 8 11 12 14}
{0 3 5 6 7 14}
{0 10 11 12 13 14}
{0 8 10 11 14 15}
{0 8 10 11 12 14}
{0 8 9 10 12 14}
{0 10 11 13 14 15}
{0 3 5 7 12 14}

{0 3 5 7 8 12}
{0 2 3 6 7 14}
{0 2 3 7 9 14}
{0 1 7 9 10 12}
{0 1 5 7 10 12}
{0 5 8 10 11 12}
{0 7 8 9 10 12}
{0 5 7 8 10 12}

{0 1 2 6 7 14}
{0 1 2 7 9 14}
{0 1 7 9 12 14}
{0 1 5 7 12 14}
{0 1 5 6 7 14}
{0 3 7 9 12 14}
{0 3 8 9 12 14}
{0 3 7 8 9 12}.

Remark 3.6. The authors, Matt Larson, and Sam Payne attempted to apply the construc-
tion of this article to produce quadratic triangulations of graphic matroid base polytopes,
i.e. spanning tree polytopes. We convinced ourselves that it not possible to do so us-
ing only ℓs above which are exponential. We welcome others to attempt to apply our
triangulation to White’s conjecture.
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Analogues of two classical pipedream results on
bumpless pipedreams
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Abstract. Schubert polynomials are distinguished representatives of Schubert cycles in
the cohomology of the flag variety. Pipedreams (PD) and bumpless pipedreams (BPD)
are two combinatorial models of Schubert polynomials. There are many classical results
on PDs. For instance, Fomin and Stanley represented each PD as an element in the
nil-Coexter algebra. Lenart and Sottile converted each PD into certain chains in the
Bruhat order. This paper establishes the BPD analogues of both viewpoints. Our results
lead to a bijection between PDs and BPDs via Lenart’s growth diagram.

1 Introduction

Fix n P Zě0. For a permutation w P Sn, Lascoux and Schützenberger [12] recursively
define the Schubert polynomial Sw. The base case is Sw0 :“ xn´1

1 xn´2
2 ¨ ¨ ¨ xn´1 where w0

is the permutation with one-line notation rn, n ´ 1, ¨ ¨ ¨ , 1s. To compute Sw for other
w P Sn, we need the divided difference operator Bip f q :“ f´ f p¨¨¨ ,xi`1,xi,¨¨¨ q

xi´xi`1
. Let si P Sn denote

the transposition that swaps i and i ` 1. Then for any w P Sn and i P rn ´ 1s:

BipSwq “

#

Swsi if wpiq ą wpi ` 1q,
0 if wpiq ă wpi ` 1q.

The Schubert polynomials represent Schubert cycles in flag varieties and have been
extensively investigated. Schubert polynomials have two distinct combinatorial formulas
involving “pipes”: pipedreams (PD) [1, 3] and bumpless pipedreams (BPD) [11]. Both
are fillings of grids with certain tiles. When we refer to cells of a grid, we use the matrix
coordinates: row 1 is the topmost row and column 1 is the leftmost column. A pipedream
is a filling of a staircase grid: The grid has a cell in row i column j for each i ` j ď n ` 1.
The rightmost cell in each row is . The rest of the cells can be (crossing) or
(bump), but two pipes cannot cross more than once. A bumpless pipedream (BPD) is a
consistent filling of an n ˆ n grid with six types of cells: , , , , and (blank).
Pipes enter from each cell on the bottom and exit on the right edge. In addition, two

*tiy059@ucsd.edu
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pipes cannot cross more than once. The permutation associated to each PD (resp. BPD)
can be read off as follows: Label the pipes 1, 2, . . . , n along the top (resp. bottom) edge,
follow the pipes, and read the labels from top to bottom on the left (resp. right) edge.

Example 1.1. When n “ 5, we present a PD and a BPD associated with r2, 5, 1, 4, 3s:

Let PDpwq (resp. BPDpwq) be the set of all PDs (resp. BPDs) associated with w P Sn.
For P P PDpwq (resp. P P BPDpwq), the weight of P, denoted as wtpPq, is a sequence of
n ´ 1 integers where the ith entry is the number of (resp. ) on row i. For instance,
the PD and BPD in Example 1.1 both have weight p2, 2, 0, 1q. If α “ pα1, ¨ ¨ ¨ , αn´1q is a
sequence of n ´ 1 non-negative integers, we use xα to denote the monomial xα1

1 ¨ ¨ ¨ xαn´1
n´1 .

Theorem 1.2. [1, 3, 11] For w P Sn, Sw “
ř

PPPDpwq xwtpPq “
ř

DPBPDpwq xwtpDq.

There is a recent surge of research connecting BPDs with PDs and finding BPD
analogue of classical PD apparatus [7, 10, 8, 17]. This paper establishes the BPD analogue
of two classical stories on PDs:

• The nil-Coexter algebra Nn is generated by u1, ¨ ¨ ¨ , un´1. Fomin and Stanley [6]
defined the following elements in Qrx1, ¨ ¨ ¨ , xn´1s bNn:

Aipxiq :“ p1 ` xiun´1qp1 ` xiun´2q ¨ ¨ ¨ p1 ` xiuiq and SPD :“ A1px1q ¨ ¨ ¨ An´1pxn´1q.

Combinatorially, after expanding SPD, each term xαui1 ¨ ¨ ¨ uik naturally corresponds
to a P P PDpwq with α “ wtpPq and i1 ¨ ¨ ¨ ik is a reduced word of w. Algebraically,
Fomin and Stanley proved SPD “

ř

wPSn
Swui1 ¨ ¨ ¨ uil where i1 ¨ ¨ ¨ il is any reduced

word of w. Consequently, they obtain an operator theoretic proof of the PD fomula.

• The Bruhat order is a partial order on Sn. Lenart and Sottile [14] defined a bijection
from PDpwq to chains pw1, w2, ¨ ¨ ¨ , wnq in the Bruhat order where w1 “ w, wn “ w0
and there is an increasing i-chain from wi to wi`1 for i P rn ´ 1s (See Section 2.2).

Since the introduction of BPDs, finding a BPD analogue of the Fomin-Stanley con-
struction has been an open problem. Instead of the nil-Coexter algebra, we consider the
Fomin-Kirillov algebra En [4]. It is generated by di,j for 1 ď i ă j ď n and has a right
action on QrSns denoted as d. Define the following elements in Qrx1, ¨ ¨ ¨ , xn´1s b En:

Ripxiq :“ pxi ` d1,i`1 ` ¨ ¨ ¨ ` di,i`1qpxi ` d1,i`2 ` ¨ ¨ ¨ ` di,i`2q ¨ ¨ ¨ pxi ` d1,n ` ¨ ¨ ¨ ` di,nq, and
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SBPD :“ w0 d pR1px1qR2px2q ¨ ¨ ¨ Rn´1pxn´1qq.

Combinatorially, after expanding SBPD, we show each term xαw naturally corresponds
to a D P BPDpwq with α “ wtpDq. Algebraically, we establish Theorem 4.3, obtaining an
operator theoretic proof of the BPD formula.

Theorem 4.3. We have SBPD “
ř

wPSn
Sww.

A crucial tool to understand SBPD is a novel encoding algorithm Φ that encodes each
element of BPDpwq as partial fillings of a staircase grid which we call flagged tableaux. We
denote the image of BPDpwq under Φ as FTpwq. Each T P FTpwq corresponds to a chain
in the Bruhat order denoted as chainpTq “ pwn, ¨ ¨ ¨ , w1q. Then we establish Theorem 3.9,
obtaining a BPD analogue of Lenart and Sottile’s work.

Theorem 3.9. The map chainp¨q is a bijection from FTpwq to chains pwn, ¨ ¨ ¨ , w1q in the Bruhat
order where wn “ w, w1 “ w0 and there is an increasing i-chain from wi`1 to wi. Consequently,
chain ˝ Φ is a bijection from BPDpwq to such chains.

In other words, PDs and BPDs can both be viewed as certain chains in the Bruhat
order, exhibiting a duality. Finally, we use Lenart’s growth diagram [13] to obtain a
bijection between these chains, obtaining a bijection between PDpwq and BPDpwq. We
conjecture this bijection agrees with the existing bijection of Gao and Huang [7]. This
conjecture has been verified on S7.

Organization: In §2, we cover some necessary background. In §3, we define the
encoding map Φ : BPDpwq Ñ FTpwq and establish Theorem 3.9. In §4, we construct our
BPD analogue of the Fomin-Stanley construction. In §5, we use Lenart’s growth diagram
to build a bijection between PDpwq and BPDpwq. In §6, we describe one conjecture that
extends the chain formulas of Sw to double Schubert polynomials.

2 Background

2.1 Fomin-Stanley construction

A reduced word of w P Sn is a word i1i2 ¨ ¨ ¨ il such that w “ si1 ¨ ¨ ¨ sil and l is minimized.
One can read off a reduced word of w from every P P PDpwq as follows: Go through its
crossings from top to bottom and right to left in each row. For a crossing in row r column
c, read off r ` c ´ 1. For instance, the PD in Example 1.1 gives 41324 which is a reduced
word of r2, 5, 1, 4, 3s.



4 Tianyi Yu

The nil-Coexter algebra Nn is generated by u1, ¨ ¨ ¨ , un´1 satisfying:

$

’

&

’

%

u2
i “ 0,

uiuj “ ujui if |i ´ j| ě 2 ,
uiui`1ui “ ui`1uiui`1 if i P rn ´ 2s.

Consider a “ ui1 ¨ ¨ ¨ uil P Nn, we have a ‰ 0 if and only if i1 ¨ ¨ ¨ il is a reduced word of
some w P Sn. In this case, a “ uj1 ¨ ¨ ¨ ujl1 if and only if j1 ¨ ¨ ¨ jl1 is a reduced word for the
same w. Fomin and Stanley [6] defined the following elements in Qrx1, ¨ ¨ ¨ , xn´1s bNn:

Aipxiq :“ p1 ` xiun´1qp1 ` xiun´2q ¨ ¨ ¨ p1 ` xiuiq for i P rn ´ 1s, and

SPD :“ A1px1qA2px2q ¨ ¨ ¨ An´1pxn´1q.

Combinatorially, SPD “
ř

P xwtpPqui1 ¨ ¨ ¨ uil where the sum runs over all PD and i1 ¨ ¨ ¨ il is
the reduced word read off from the PD. Algebraically, Fomin and Stanley showed that

SPD
“

ÿ

wPSn

Swui1 ¨ ¨ ¨ uil , (2.1)

where i1 ¨ ¨ ¨ il is an arbitrary reduced word of w. This formula would imply the PD
formula in Theorem 1.2. Fomin and Stanley proved (2.1) by showing BipS

PDq “ SPDui for
any i P rn ´ 1s. This equation then reduces to BipRipxiqRi`1pxi`1qq “ RipxiqRi`1pxi`1qui.
In §4, we present the BPD analogue of (2.1) and establish our equation in a similar way.

2.2 Bruhat order

For 1 ď i ă j ď n, we use ti,j to denote the permutation that swaps i and j. For w P Sn,
let ℓpwq :“ |tpi, jq : i ă j, wpiq ą wpjq|. Let ď be the Bruhat order on Sn, where the cover
relation is given by u Ì w if w “ uti,j and ℓpwq “ ℓpuq ` 1. We say C “ pw1, w2, ¨ ¨ ¨ , wdq is
a Bruhat chain from w1 to wd if w1 ď w2 ď ¨ ¨ ¨ ď wd. The length of C is d ´ 1. The weight
of C, denoted as wtpCq, is a sequence of length d ´ 1 where the ith entry is ℓpwi`1q ´ ℓpwiq.
The chain is saturated if w1 Ì w2 Ì ¨ ¨ ¨ Ì wd. We may represent a saturated chain as

w1
ta1,b1
ÝÝÝÑ w2

ta2,b2
ÝÝÝÑ ¨ ¨ ¨

tad´1,bd´1
ÝÝÝÝÝÝÑ wd,

where ai ă bi and wi`1 “ witai,bi .
Take k P rn ´ 1s. We use ďk to denote the k-Bruhat order on Sn. Its cover relation

is given by u Ìk w if u Ì w and w “ uti,j for some i ď k ă j. Similarly, we can define
k-Bruhat chains and saturated k-Bruhat chains. For simplicity, we say “k-chains” in place
of “k-Bruhat chains”. The k-Bruhat order can be used to describe the Monk’s rule [15]:
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Swpx1 ` ¨ ¨ ¨ ` xkq “
ř

wÌku Su for any w P Sn and k P rn ´ 1s such that wpjq “ n for some
j ą k. Sottile generalized the Monk’s rule by considering multiplying Sw with

hdpx1, ¨ ¨ ¨ , xkq :“
ÿ

1ďi1ď¨¨¨ďidďk

xi1 ¨ ¨ ¨ xid ,

where k P rn ´ 1s and d P Zą0. Say a saturated k-chain w1
ta1,b1
ÝÝÝÑ w2

ta2,b2
ÝÝÝÑ ¨ ¨ ¨

tad´1,bd´1
ÝÝÝÝÝÝÑ wd

is increasing if w1pa1q ă w2pa2q ă ¨ ¨ ¨ ă wd´1pad´1q. In other words, the smaller number
swapped is increasing. It is not hard to show for any u, w P Sn and k P rn ´ 1s, there is at
most one increasing k-chain from u to w.

Theorem 2.1. [16] Take u P Sn and d P Zě0. For any k P rn ´ 1s such that n, n ´ 1, ¨ ¨ ¨ , n ´

d ` 1 are among wpk ` 1q, ¨ ¨ ¨ , wpnq, then

Su ˆ hdpx1, ¨ ¨ ¨ , xkq “
ÿ

w
Sw.

The sum is over all w such that there is an increasing k-chain from u to w with length d.

Lenart and Sottile [14] view PDs as certain Bruhat chains. We introduce the following
definition to describe their chains in a more general way.

Definition 2.2. We say a Bruhat chain C “ pw1, w2, ¨ ¨ ¨ , wl, wl`1q is compatible with a
sequence pk1, ¨ ¨ ¨ , klq if there exists an increasing ki-chain from wi to wi`1 for each i P rls.

Lenart and Sottile [14] described a bijection from PDpwq to chains from w to w0
compatible with p1, 2, ¨ ¨ ¨ , n ´ 1q: Take P P PDpwq. For i P rns, let Pi be the pipedream
obtained from P by changing all bumps above row i into crossings. Let wi be the
permutation associated with Pi. Then pw1, ¨ ¨ ¨ , wnq is the resulting chain. In addition, if
we change bumps in row i of Pi into crossings from left to right, permutations of the
intermediate pipedreams will form the increasing i-chain from wi to wi`1.

Example 2.3. Let P be the pipedream in Example 1.1. Then its corresponding chain is
pr2, 5, 1, 4, 3s, r5, 3, 1, 4, 2s, r5, 4, 1, 3, 2s, r5, 4, 3, 2, 1s, r5, 4, 3, 2, 1sq. The increasing 1-chain from

r2, 5, 1, 4, 3s to r5, 3, 1, 4, 2s is given by: r2, 5, 1, 4, 3s
t1,5
ÝÝÑ r3, 5, 1, 4, 2s

t1,2
ÝÝÑ r5, 3, 1, 4, 2s.

If a pipedream P is sent to the chain C, then wtpCq “ pn ´ 1, ¨ ¨ ¨ , 1q ´wtpPq where the
subtraction is entry-wise. Thus, this bijection recovers a result of Bergeron and Sottile:

Corollary 2.4. [2] For w P Sn, Sw “
ř

C xpn´1,¨¨¨ ,1q´wtpCq, where the sum is over all chains
from w to w0 compatible with p1, 2, ¨ ¨ ¨ , n ´ 1q.

We end this section by extending Corollary 2.4 using the following observation:

Proposition 2.5. Pick u, w P Sn, k1, k2 P rn ´ 1s and d1, d2 P Zě0. The number of chains from
u to w compatible with pk1, k2q and has weight pd1, d2q matches the number of chains from u to w
compatible with pk2, k1q and has weight pd2, d1q.



6 Tianyi Yu

Proof. By Theorem 2.1, the number of chains pu, v, wq compatible with pk1, k2q and has
weight pd1, d2q is the coefficient of Sw in Su ˆ hd1px1, ¨ ¨ ¨ , xk1qˆ hd2px1, ¨ ¨ ¨ , xk2q. The proof
is finished by the commutativity of polynomial multiplication.

Since we have two sets with the same size, it would be natural to ask:
Problem 2.6. Find an explicit bijection between the two set of chains in Proposition 2.5.

In §5, we show Lenart’s growth diagram [13] solves Problem 2.6 in a special case.
Combining Corollary 2.4 and Proposition 2.5, we deduce:

Corollary 2.7. Take w P Sn and γ P Sn´1. If pd1, ¨ ¨ ¨ , dn´1q is a sequence of numbers, let
γ´1pd1, ¨ ¨ ¨ , dn´1q :“ pdγ´1p1q, ¨ ¨ ¨ , dγ´1pn´1qq. We also view γ as a sequence of numbers. Then

Sw “
ř

C xpn´1,¨¨¨ ,1q´γ´1pwtpCqq, summing over all chains from w to w0 compatible with γ.

This corollary implies that we have a combinatorial formula of Sw involving Bruhat
chains for each choice of γ P Sn´1. Under Lenart and Sottile’s bijection, the PD formula is
identified with the Bruhat chain formula when γ “ r1, 2, ¨ ¨ ¨ , n ´ 1s. In §3, we identify the
BPD formula with the Bruhat chain formula when γ “ rn ´ 1, n ´ 2, ¨ ¨ ¨ , 1s.

3 Encoding BPDs as flagged tableaux and chains

We first encode each BPD as the following combinatorial object.
Definition 3.1. A flagged tableau is a staircase grid with a cell in row i column j if i ` j ď n.
Moreover, each cell in row i is empty or filled with a number in ris.

We define an encoding map Φ from BPDpwq to the set of flagged tableaux.
Definition 3.2. Take D P BPDpwq for some w P Sn. For i P rns, there are pi ´ 1q pipes exiting
from the top from row i of D, so there are pi ´ 1q , and . We mark these cells, and
then mark the rightmost unmarked cell in row i. There will be n ´ i unmarked cells. To

fill the cell in row i column j of ΦpDq, we look at the j
th

leftmost unmarked cell in row i
of D. If it is a blank, we leave the cell in ΦpDq unfilled. Otherwise, it contains a pipe that
ends in row p for some p ď i. We fill the cell in ΦpDq by p.
Example 3.3. Assume n “ 6. Take D P BPDpr2, 1, 6, 5, 3, 4sq as depicted on the left. Then
we perform the encoding algorithm and mark certain cells red. Finally, we obtain ΦpDq.

ΦpDq =

1 1

1 2

2 2 2

1

5
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To precisely describe the image of BPDpwq under Φ, we need the following definition.
Definition 3.4. The reading word of a flagged tableau T, denoted as wordpTq, is a sequence
of pairs obtained as follows. Go through entries of T from top to bottom, and right to left
in each row. When we see the number i in column c, we write the pair pi, n ` 1 ´ cq.

By the definition of flagged tableaux, for each pair in the reading word, the first entry
is smaller than the second.
Example 3.5. In Example 3.3, wordpΦpDqq “ p1, 2qp1, 3qp2, 3qp1, 4qp2, 4qp2, 5qp2, 6qp1, 6qp5, 6q.

Let T be a flagged tableau with reading word pa1, b1q, ¨ ¨ ¨ , pad, bdq. For i P rds, we let
wi “ w0ta1,b1 ¨ ¨ ¨ tai,bi . Then we say T is associated with the permutation wd if

wd
tad ,bd
ÝÝÝÑ wd´1

tad´1,bd´1
ÝÝÝÝÝÝÑ ¨ ¨ ¨

ta2,b2
ÝÝÝÑ w1

ta1,b1
ÝÝÝÑ w0

is a saturated Bruhat chain. Let FTpwq consist of all flagged tableaux associated with w.
Example 3.6. In Example 3.3, ΦpDq is associated with r2, 1, 6, 5, 3, 4s because:

r2, 1, 6, 5, 3, 4s
t5,6
ÝÝÑ r2, 1, 6, 5, 4, 3s

t1,6
ÝÝÑ r3, 1, 6, 5, 4, 2s

t2,6
ÝÝÑ r3, 2, 6, 5, 4, 1s

t2,5
ÝÝÑ r3, 4, 6, 5, 2, 1s

t2,4
ÝÝÑr3, 5, 6, 4, 2, 1s

t1,4
ÝÝÑ r4, 5, 6, 3, 2, 1s

t2,3
ÝÝÑ r4, 6, 5, 3, 2, 1s

t1,3
ÝÝÑ r5, 6, 4, 3, 2, 1s

t1,2
ÝÝÑ r6, 5, 4, 3, 2, 1s

is a saturated Bruhat chain from r2, 1, 6, 5, 3, 4s to w0. Notice that D P BPDpr2, 1, 6, 5, 3, 4sq.
For a flagged tableau T, define the weight of T, denoted as wtpTq, to be a sequence of

n ´ 1 numbers whose ith entry is the number of blanks in row i. Then we have:

Proposition 3.7. For w P Sn, Φ is a weight-preserving bijection from BPDpwq to FTpwq.

We may turn T into a chain compatible with pn ´ 1, ¨ ¨ ¨ , 2, 1q as follows. Suppose
T has reading word pa1, b1q, ¨ ¨ ¨ , pad, bdq and set wi “ w0ta1,b1 ¨ ¨ ¨ tai,bi for i P rds. Let mi
be the number of non-empty cells above row i ` 1 of T for i “ 0, 1. ¨ ¨ ¨ , n ´ 1. Clearly,
pwmi , wmi´1, ¨ ¨ ¨ , wmi´1q is an i-chain. Moreover, we can check it is an increasing i-chain.
Then define chainpTq :“ pwmn´1 , ¨ ¨ ¨ , wm1 , w0q, which is compatible with pn ´ 1, ¨ ¨ ¨ , 2, 1q.
Example 3.8. Let T be the ΦpDq in Example 3.3. Then chainpTq is

pr2, 1, 6, 5, 3, 4s, r2, 1, 6, 5, 4, 3s, r3, 1, 6, 5, 4, 2s, r3, 5, 6, 4, 2, 1s, r4, 6, 5, 3, 2, 1s, r6, 5, 4, 3, 2, 1sq.

Theorem 3.9. The map chainp¨q is a bijection from FTpwq to Bruhat chains from w to w0
compatible with pn ´ 1, ¨ ¨ ¨ , 2, 1q. Consequently, chain ˝ Φ is a bijection from BPDpwq to such
chains.

The bijection chain ˝ Φ is an analogue of Lenart and Sottile’s bijection [14] on PDpwq.
Notice that for D P BPDpwq, if wtpDq “ pα1, ¨ ¨ ¨ , αn´1q then

wtpchainpΦpDqqq “ p1 ´ αn´1, ¨ ¨ ¨ , n ´ 2 ´ α2, n ´ 1 ´ α1q.

Thus, we have identified the BPD formula of Sw with the Bruhat chain formula in
Corollary 2.7 with γ “ rn ´ 1, ¨ ¨ ¨ , 2, 1s.
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4 Analogue of Fomin-Stanley construction on BPDs

We now construct SBPD, our analogue of SPD, as a generating function of the flagged
tableaux, or equivalently BPDs. Instead of the nil-Coexter algebra Nn, our construction
uses the Fomin-Kirillov algebra [5] En, generated by tdi,j : 1 ď i ă j ď nu satisfying:

$

’

’

’

’

&

’

’

’

’

%

d2
i,j “ 0 if i ă j ,

di,jdj,k “ di,kdi,j ` dj,kdi,k if i ă j ă k ,
dj,kdi,j “ di,jdi,k ` di,kdj,k if i ă j ă k ,
di,jdk,l “ dk,ldi,j if i ă j, k ă l and i, j, k, l distinct.

Fomin and Kirillov described an action of En on QrSns. In this paper, we adopt a
slightly different convention and consider a right action of En on QrSns. For w P Sn,

w d di,j :“

#

wti,j if wti,j Ì w
0 otherwise.

Define A :“ Qrx1, ¨ ¨ ¨ , xn´1s b En. It acts on Qrx1, ¨ ¨ ¨ , xn´1srSns from the right: p f wq d

pg b eq “ p f gqpw d eq for any f , g P Qrx1, ¨ ¨ ¨ , xn´1s, w P Sn and e P En. We may identify
En and Qrx1, ¨ ¨ ¨ , xn´1s as subalgebras of A.

Definition 4.1. Take i P rn ´ 1s. For i ă j, define Bi,j P En as Bi,j :“ d1,j ` ¨ ¨ ¨ ` di,j.
Define Ripxiq P A as Ripxiq :“ pxi ` Bi,i`1qpxi ` Bi,i`2q ¨ ¨ ¨ pxi ` Bi,nq. Finally, define SBPD

P Qrx1, ¨ ¨ ¨ xn´1srSns as SBPD :“ w0 d pR1px1qR2px2q ¨ ¨ ¨ Rn´1pxn´1qq.

We show SBPD is a generating function of flagged tableaux, or equivalently all BPDs:

Proposition 4.2. We have

SBPD
“

ÿ

wPSn

ÿ

TPFTpwq

xwtpTqw “
ÿ

wPSn

ÿ

DPBPDpwq

xwtpDqw.

Proof. If we expand Ripxiq, each term corresponds to one way of filling row i of a flagged
tableau. The expression pxi ` Bi,jq in Ripxiq corresponds to ways of filling the cell at row i
and column n ` 1 ´ j: xi means to leave the box empty and dp,j means to fill it with p. If
we expand R1px1q ¨ ¨ ¨ Rn´1pxn´1q, for each term xαda1,b1 ¨ ¨ ¨ dak,bk

, there is a flagged tableau
T with wtpTq “ xα and wordpTq “ pa1, b1q ¨ ¨ ¨ pak, bkq. Let w “ w0 d da1,b1 ¨ ¨ ¨ dak,bk

. If w “ 0,
we know T is not associated with any permutation. Otherwise, T P FTpwq. Thus, we have
the first equation. The second equation follows from Proposition 3.7.

Now we establish the BPD analogue of (2.1).

Theorem 4.3. We have SBPD “
ř

wPSn
Sww.
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Our proof is similar to the arguments of Fomin and Stanley. Consider a right action
of Nn on Sn with w d ui “ wti,i`1 if wpiq ă wpi ` 1q and w d ui “ 0 otherwise. We may
extend this action to Qrx1, ¨ ¨ ¨ , xn´1srSns by setting f d ui “ f for all f P Qrx1, ¨ ¨ ¨ , xn´1s.
Similar to Fomin and Stanley’s approach, Theorem 4.3 reduces to:

Proposition 4.4. For each i P rn ´ 1s, BipSq “ Sd ui.

Proof Sketch. The left hand side is just w0 d R1px1q ¨ ¨ ¨ BipRipxiqRi`1pxi`1qq ¨ ¨ ¨ Rn´1pxn´1q.
We turn the right hand side into w0 d R1px1q ¨ ¨ ¨ Ripxiq ui,i`1 Ri`1pxi`1q ¨ ¨ ¨ Rn´1pxn´1q.
Then we show w0 d R1px1q ¨ ¨ ¨ Ri´1pxi´1q is in the span of terms xαw where xα is a
monomial involving x1, ¨ ¨ ¨ , xi´1 and w P Sn satisfies wpi ` 1q ą ¨ ¨ ¨ ą wpnq. We just need

xαw d BippRipxiqRi`1pxi`1qq “ xαw d Ripxiq ui,i`1 Ri`1pxi`1q for such xαw.

We then establish this equation via a complicated but routine computation.

Fomin and Kirillov [4] defined the Dunkl element θi :“ ´
ř

jăi dj,i `
ř

jąi di,j P En for
i P rns. They showed the Dunkl elements θ1, ¨ ¨ ¨ , θn commute with each other. We end
this subsection by providing an alternative way to write SBPD using Dunkl elements.

Proposition 4.5. We have SBPD “ w0 d
ś

1ďiăjďnpxi ´ θjq. Notice that terms multiplied on
the right hand side commute with each other, so the

ś

notation makes sense.

Remark 4.6. Sergey Fomin kindly informed the author that w0 d
ś

1ďiăjďnpxi ´ θjq seems
related to the following variation of Cauchy identity of Schubert polynomials:

ź

1ďiăjďn

pxi ´ yjq “
ÿ

wPSn

Swpx1, ¨ ¨ ¨ , xn´1qSww0p´yn, ¨ ¨ ¨ ,´y2q. (4.1)

Indeed, by the Monk’s rule, (4.1) is equivalent to w0 d
ś

1ďiăjďnpxi ´ θjq “
ř

wPSn
Sww. In

other words, Theorem 4.3 and Proposition 4.5 form an alternative proof of (4.1).

5 Bijection between pipedreams and bumpless pipedreams

In this section, we present a weight preserving bijection between PDpwq and BPDpwq.
By [14] and Theorem 3.9, we just need a weight reversing bijection between chains from
w to w0 compatible with p1, ¨ ¨ ¨ , n ´ 1q and those compatible with pn ´ 1, ¨ ¨ ¨ , 1q.

This task can be done by Lenart’s growth diagram [13], which can be viewed as the
following algorithm. Given k1, k2 P rn ´ 1s and chains C1, C2, where C1 (resp. C2) is a
saturated k1-chain from u to v (resp. k2-chain from v to w), the algorithm outputs a
saturated k2-chain from u to v1 and a saturated k1-chain from v1 to w. Moreover, the
k1-chain (resp. k2-chain) in the output has the same length as C1 (resp. C2).
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Assume C1 “ pu1, ¨ ¨ ¨ , ud1q and C2 “ pw1, ¨ ¨ ¨ , wd2q where ud1 “ w1. We first draw:

u1
k1
ÝÑ u2

k1
ÝÑ ¨ ¨ ¨

k1
ÝÑ ud1´1

k1
ÝÑ w1

k2
ÝÑ w2

k2
ÝÑ ¨ ¨ ¨

k2
ÝÑ wd2 .

We start from this labeled chain and apply a local move: Find a part of the chain that

looks like a k1
ÝÑ b k2

ÝÑ c. We must have a Ìk1 b Ìk2 c. There exists a unique b1 P Sn such that

b1 ‰ b and a Ì b1 Ì c. If a Ìk2 b1 Ìk1 c, we replace this part of the chain by a k2
ÝÑ b1 k1

ÝÑ c.

Otherwise, we must have a Ìk2 b1 Ìk1 c and we replace this part by a k2
ÝÑ b k1

ÝÑ c. We keep
applying this local move until the labeled chain looks like:

u1
1

k2
ÝÑ u1

2
k2
ÝÑ ¨ ¨ ¨

k2
ÝÑ u1

d2´1
k2
ÝÑ w1

1
k1
ÝÑ w1

2
k1
ÝÑ ¨ ¨ ¨

k1
ÝÑ w1

d1
.

Then we output the k2-chain pu1
1, ¨ ¨ ¨ , u1

d2´1, w1
1q and the k1-chain pw1

1, ¨ ¨ ¨ , w1
d1
q.

Example 5.1. Say the inputs are: k1 “ 2, k2 “ 3, C1 “ pr2, 1, 4, 3s, r2, 4, 1, 3s, r3, 4, 1, 2sq, and
C2 “ pr3, 4, 1, 2s, r3, 4, 2, 1sq. We start from the following labeled chain and apply local
moves:

r2, 1, 4, 3s 2
ÝÑ r2, 4, 1, 3s 2

ÝÑ r3, 4, 1, 2s 3
ÝÑ r3, 4, 2, 1s.

r2, 1, 4, 3s 2
ÝÑ r2, 4, 1, 3s 3

ÝÑ r2, 4, 3, 1s 2
ÝÑ r3, 4, 2, 1s,

r2, 1, 4, 3s 3
ÝÑ r2, 3, 4, 1s 2

ÝÑ r2, 4, 3, 1s 2
ÝÑ r3, 4, 2, 1s.

Therefore, the outputs are pr2, 1, 4, 3s, r2, 3, 4, 1sq and pr2, 3, 4, 1s, r2, 4, 3, 1s, r3, 4, 2, 1sq.

We may use Lenart’s growth diagram to define a map growthk1,k2
.

Definition 5.2. Take a chain pu, v, wq that is compatible with pk1, k2q. Let C1 (resp. C2) be
the increasing k1-chain (resp. k2-chain) from u to v (resp. v to w). Input C1, C2, k1, k2 to
Lenart’s growth diagram, obtaining a k2-chain from u to v1 and a k1-chain from v1 to w.
Then define growthk1,k2

pu, v, wq as pu, v1, wq.

The map growthk1,k2
does not solve Problem 2.6. When pu, v, wq is compatible with

pk1, k2q, growthk1,k2
pu, v, wq might not be compatible with pk2, k1q: By Example 5.1, we have

growth2,3pr2, 1, 4, 3s, r3, 4, 1, 2s, r3, 4, 2, 1sq “ pr2, 1, 4, 3s, r2, 3, 4, 1s, r3, 4, 2, 1sq,

which is not compatible with p3, 2q, but pr2, 1, 4, 3s, r3, 4, 1, 2s, r3, 4, 2, 1sq is compatible with
p2, 3q. Nevertheless, growthk1,k2

solves Problem 2.6 in the following special case.

Lemma 5.3. Take 1 ď k2 ă k1 ď n ´ 1 and u, w P Sn such that wpk1 ` 1q ą wpk1 ` 2q ą ¨ ¨ ¨ ą

wpnq and wpjq “ n ` 1 ´ j for each j P rk2s. Then growthk1,k2
is a weight reversing bijection from

chains pu, v, wq compatible with pk1, k2q to chains pu, v1, wq compatible with pk2, k1q.
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Now we use growthk1,k2
to derive a map Growth. This map is defined on a chain

C “ pwn, ¨ ¨ ¨ , w1q from w to w0 compatible with pn ´ 1, ¨ ¨ ¨ , 2, 1q. It first applies growth2,1,
growth3,1, ¨ ¨ ¨ , growthn´1,1 to get a chain compatible with p1, n ´ 1, ¨ ¨ ¨ , 2q. Then it applies
growth3,2, ¨ ¨ ¨ , growthn´1,2 to get a chain compatible with p1, 2, n ´ 1, ¨ ¨ ¨ , 3q. Eventually, it
produces a chain compatible with p1, 2, ¨ ¨ ¨ , n ´ 1q defined as GrowthpCq. We can check
when we apply each growthk1,k2

, the condition in Lemma 5.3 is satisfied.

Proposition 5.4. For w P Sn, the map Growth is a weight-reversing bijection from tchains from
w to w0 compatible with pn ´ 1, ¨ ¨ ¨ , 1qu to tchains from w to w0 compatible with p1, ¨ ¨ ¨ , n ´ 1qu.

By [14] and Theorem 3.9, Growth leads to a weight preserving bijection between PDpwq

and BPDpwq, which we conjecture agrees with the bijection of Gao-Huang [7].

Example 5.5. Consider the chain pr2, 1, 4, 3s, r2, 3, 4, 1s, r2, 4, 3, 1s, r4, 3, 2, 1sq which is com-
patible with p3, 2, 1q and has weight p1, 1, 2q. We apply growth2,1 and then growth3,1 to
get pr2, 1, 4, 3s, r4, 1, 3, 2s, r4, 2, 3, 1s, r4, 3, 2, 1sq which is compatible with p1, 3, 2q and has
weight p2, 1, 1q. Finally, use growth3,2 to get pr2, 1, 4, 3s, r4, 1, 3, 2s, r4, 3, 1, 2s, r4, 3, 2, 1sq which
is compatible with p1, 2, 3q and has weight p2, 1, 1q.

6 Extending Corollary 2.7 to double Schubert polynomials

The double Schubert polynomial Swpx, yq is in x1, ¨ ¨ ¨ , xn´1 and y1, ¨ ¨ ¨ , yn´1. It recovers Sw
after setting each yi to 0 and can be computed using PDs and BPDs: For P P PDpwq (resp.
BPDpwq), let WTpPq be the product over (resp. ) in P, where the tile in row i column
j gives pxi ´ yjq. By [9, 17], Swpx, yq “

ř

PPPDpwqWTpPq “
ř

PPBPDpwqWTpPq.
Take γ P Sn´1 and let C “ pw1, ¨ ¨ ¨ , wnq be a chain compatible with γ. Define WTγpCq

as
śn´1

i“1
ś

tpxγi ´ ywiptqq, where t runs over all t ą γi such that wiptq “ wi`1ptq. After
setting all yi to 0, WTγpCq recovers xpn´1,¨¨¨ ,1q´γ´1pwtpCqq. The following conjecture extends
Corollary 2.7 and has been checked for all w P Sn for n ď 8 and all γ P Sn´1:

Conjecture 6.1. For γ P Sn´1, we have Sw px, yq “
ř

C:chain from w to w0 compatible with γ WTγpCq.

This conjecture agrees with the PD and BPD formula when γ “ r1, ¨ ¨ ¨ , n ´ 1s and
γ “ rn ´ 1, ¨ ¨ ¨ , 1s respectively via the bijections in [14] and Theorem 3.9.
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Abstract. Björner and Ekedahl [Ann. of Math. (2), 170.2(2009), pp. 799-817] pioneered
the study of length-counting sequences associated with parabolic lower Bruhat inter-
vals in crystallographic Coxeter groups. In this extended abstract, we study the asymp-
totic behavior of these sequences in affine Weyl groups. Let W be an affine Weyl group
with corresponding Weyl group W f , and f W be the set of minimal representatives for
the right cosets W f \W. Let tλ be the translation by a dominant coroot lattice element
λ and f btλ

i be the number of elements of length i below tλ in the Bruhat order on
f W, which is the 2i-dimensional Betti number of a Schubert variety in a certain affine
Grassmannian. We show that the sequence { f btλ

i }i is “asymptotically log-concave” in
the following sense: the “shape” of the k-fold dilated sequence { f btkλ

i }i, as k tends to
infinity, converges to a continuous function obtained from a certain polytope Pλ; by
the Brunn–Minkowski inequality, this function is log-concave.

Keywords: asymptotic log-concavity, affine Weyl group, dominant Bruhat intervals,
dominant lattice formula, Brunn–Minkowski inequality

1 Background

Studying classes of Schubert varieties in the cohomology ring of the generalized flag
variety leads to important results in enumerative geometry (the classical “Schubert cal-
culus”), while the study of their intersection cohomology plays a fundamental role in
representation theory (the “Kazhdan–Lusztig theory”). Following Björner and Ekedahl
[1], we are interested in the behavior of the Betti numbers of Schubert varieties.

More precisely, consider a complex Kac–Moody group G with Borel subgroup B and
maximal torus T. The corresponding Weyl group W has the structure of a crystallo-
graphic Coxeter system (W, S), where S is the generating set, and we denote by ` : W →
N the length function. For any J ⊂ S, there is a parabolic subgroup WJ := 〈s ∈ J〉 of W
and a corresponding subgroup PJ := BWJ B of G.

The quotient PJ\G is a projective (ind-)variety called the generalized (partial) flag va-
riety. We have the well-known Bruhat decomposition PJ\G =

⊔
w∈JW PJ\PJwB, where

∗huhongsheng@amss.ac.cn

mailto:huhongsheng@amss.ac.cn
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JW is the set of minimal representatives for the right cosets WJ\W. The component
Cw := PJ\PJwB is called the Schubert cell associated with w ∈ JW. Topologically, Cw is an
`(w)-dimensional affine space A`(w). Its closure Xw := Cw is called the Schubert variety
associated with w. There is a partial order ≤ on JW called the Bruhat–Chevalley order
defined by v ≤ w if Cv ⊆ Xw. Furthermore, we have the decomposition

Xw =
⊔

v∈JW,v≤w
PJ\PJvB. (1.1)

Question 1. How many complex i-dimensional cells occur in the decomposition (1.1) of Xw?

Let us denote this number by Jbw
i . Equation (1.1) gives the equality

Jbw
i = Card

{
v ∈ JW

∣∣ v ≤ w and `(v) = i
}

, (1.2)

which also equals the 2i-dimensional Betti number of Xw (the odd dimensional Betti
numbers of Xw are 0).

Question 1 is difficult to answer in general. If Xw is smooth, the Poincaré duality
implies that Jbw

i = Jbw
`(w)−i. While the hard Lefschetz theorem implies that the sequence

{Jbw
i }i is unimodal, that is, it goes up and then goes down. But Xw is singular in general,

hence Poincaré duality and hard Lefschetz theorem usually fail. By means of deep re-
sults in Hodge theory, Björner and Ekedahl [1] showed that the sequence {Jbw

i }i satisfies
the following two sets of inequalities

Jbw
i ≤

Jbw
`(w)−i for i ≤ `(w)

2
, and Jbw

0 ≤ Jbw
1 ≤ · · · ≤

Jbw⌈
`(w)

2

⌉
−1
≤ Jbw⌈

`(w)
2

⌉. (1.3)

The first set of inequalities is rephrased as the sequence being top-heavy, while the second
is the fact that the sequence is weakly increasing in the “lower half part”.

Some variants of Question 1 have been studied. By Equation (1.2), one can formulate
an analog of Question 1 for general Coxeter groups. Using Soergel bimodules and the
Hodge theory established by Elias and Williamson in [11], it is proven that the inequali-
ties in (1.3) hold for a general Coxeter group W in the non-parabolic case (that is, J = ∅,
see [15]). For the parabolic case, we believe that a proof of these inequalities should
follow from the Hodge theory of singular Soergel bimodules [18]. On the other hand, in
the context of Schubert varieties of hyperplane arrangements, Huh and Wang [14], and
Braden et al. [3] proved Dowling and Wilson’s “Top-Heavy conjecture” for matroids.

Despite these great achievements, the unimodality of {Jbw
i }i for the “upper half part”

remains an interesting open problem. To the best of our knowledge, there is no partial
result yet. However, conjectures related to this problem have been made. Before we get
into these, let us recall that a sequence a0, a1, . . . , an of positive real numbers is said to be
log-concave if

ai−1ai+1 ≤ a2
i for all 0 < i < n.
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This notion is stronger than unimodality: a log-concave sequence is always unimodal.
Regarding log-concavity of Bruhat intervals, Brenti conjectured the following:

Conjecture 2 ([4, Conjecture 2.11]). Let W be a (finite) Weyl group, and u, v ∈ W. The
sequence {b[u,v]

i }i is log-concave, where b[u,v]
i := Card {w ∈W | u ≤ w ≤ v and `(w) = i}.

It is known that the parabolic analog of Conjecture 2 does not hold. For example, the
Betti numbers of the Schubert variety X(8,8,4,4) inside the Grassmannian Gr(4, 12) gives
a non-unimodal sequence. See [20] for details.

2 Our results

Let W = ZΦ∨oW f be an affine Weyl group with finite Weyl group W f and root system
Φ of rank r. Let (E, (−|−)) be the r-dimensional Euclidean space where Φ lives in. Let
f W be the set of minimal representatives for the right cosets W f \W. Denote by C+ the
dominant Weyl chamber. Let λ ∈ ZΦ∨ ∩ C+ be a dominant coroot lattice element, and
tλ ∈ W be the translation by λ. Let f [e, tλ] := {w ∈ f W | w ≤ tλ} be the dominant lower
Bruhat interval. For 0 ≤ i ≤ `(tλ), we define

f btλ
i := Card

{
w ∈ f [e, tλ]

∣∣ `(w) = i
}

.

This is the 2i-dimensional Betti number of a (spherical) Schubert variety in the affine
Grassmannian Gr := G(F)/G(O), where F = C((t)), O = C[[t]], and G is the semisim-
ple and simply connected complex algebraic group with root system Φ. We prove that
the sequence { f btλ

i }i is asymptotically log-concave in the following sense:

• The “shape” of the length-counting sequences of the dilated intervals f [e, tkλ] con-
verges to a continuous function when k tends to infinity (Theorem 3).

• This continuous function is log-concave (Corollary 7).

2.1 Asymptotic convergence

Let λ ∈ ZΦ∨ ∩ C+ be a fixed dominant lattice element. We define the convex polytope

Pλ := Conv{wλ | w ∈W f } ∩ C+ ⊂ E,

where Conv{−} is the convex hull of a set of points. Let ht : Pλ → R be the height
function ht(x) := (2ρ|x), where ρ is the half sum of positive roots. In particular, ht(λ) =
`(tλ). We denote by Volr the Lebesgue measure on E and by ht∗Volr the corresponding
push-forward measure on R. That is, for any Borel set U ⊆ R,

(ht∗Volr)(U) := Volr(ht−1 U) = Volr
({

x ∈ Pλ
∣∣ (2ρ|x) ∈ U

})
.
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We also denote by Volr−1 the Lebesgue measure on affine hyperplanes of E. Then, the
density function of ht∗Volr is

g(z) = ‖2ρ‖−1 Volr−1(ht−1(z)).

Let δx denote the Dirac measure (that is, point mass) at the point x ∈ R. For any
positive integer k, we define a discrete measure mk supported on [0, `(tλ)] by

mk := k−r ∑0≤i≤k`(tλ)
f btkλ

i δ i
k
. (2.1)

Intuitively, we distribute the sequence { f btkλ
i }i evenly on the interval [0, `(tλ)]. We also

define a step function Sk : [0, `(tλ)] → R as follows. For any x ∈ [0, `(tλ)], there exists a
unique i ∈ {0, 1, . . . , k`(tλ)} such that x ∈ [ i

k , i+1
k ). We define

Sk(x) := k−(r−1) · f btkλ
i .

The function Sk records the numbers { f btkλ
i }i and behaves like the “density function” of

mk. The following is our main theorem.

Theorem 3. Let Volr(A+) be the volume of the fundamental alcove A+.

(1) (Weak convergence of measures) The sequence of measures {mk}k, as k tends to infinity,
converges weakly to 1

Volr(A+)
ht∗Volr.

(2) (Uniform convergence of functions) The sequence of functions {Sk}k, as k tends to
infinity, converges uniformly to the function 1

Volr(A+)
g.

See Section 3 for an explicit example.

Remark 4. If λ is strongly dominant, that is, λ ∈ C+, then Pλ is combinatorially equivalent to
a hypercube (see [5]).

2.2 The dominant lattice formula

We define the Poincaré polynomial πtλ(q) of the sequence { f btλ
i }i by

πtλ(q) := ∑0≤i≤`(tλ)
f btλ

i qi = ∑w∈ f [e,tλ]
q`(w).

Let {α1, . . . , αr} be the set of simple roots of Φ, and {s1, . . . , sr} be the set of correspond-
ing simple reflections. For any µ ∈ ZΦ∨, we denote by Wµ the standard parabolic
subgroup of W f generated by {si | 1 ≤ i ≤ r, (µ|αi) = 0} and by µW f the set of minimal
representatives for the right cosets Wµ\W f . We also define the Poincaré polynomial µπ f (q)
of the set µW f by µπ f (q) := ∑w∈µW f

q`(w).
The following theorem is one of our most important results, and plays an important

role in the proof of Theorem 3.
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Theorem 5 (Dominant lattice formula). Let λ ∈ ZΦ∨ ∩ C+ as before. Then

πtλ(q) = ∑µ∈Pλ∩ZΦ∨ q(2ρ|µ) · µπ f (q−1). (2.2)

This formula serves as a bridge between the discrete nature of { f btλ
i }i and the con-

tinuous nature of the geometry of Pλ. See Figure 1 for an illustration.

Description of two of the summands of the dominant lat-
tice formula when W is of affine type A2 and λ = 2α+ 3β,
where α := α∨1 and β := α∨2 . The yellow points are the lat-
tice points inside Pλ. The alcoves of the interval f [e, tλ]
are colored with dark blue. There are 6 dominant alcoves
arranged around the strongly dominant lattice point µ :=
2α + 2β, and 3 around ν := α + 2β which is on the wall.
The summand corresponding to µ in the formula is given
by q8 · µπ f (q−1) = q5 + 2q6 + 2q7 + q8. The terms of this
polynomial are colored orange and placed inside their
corresponding alcoves in the picture. The summand cor-
responding to ν is given by q6 · νπ f (q−1) = q4 + q5 + q6,
whose terms are colored with brown.

Figure 1: Illustration for the dominant lattice formula.

2.3 Log-concavity and a conjecture on unimodality

The following theorem taken from [17, p. 270] can be deduced from the classical Brunn–
Minkowski inequality.

Theorem 6 (Brunn–Minkowski, see [17, p. 270]). Let L1 be a real vector space and let M ⊂ L1
be a convex body. Let p : L1 → L2 be a linear transformation. Then

x 7→
(
Vol
(

p−1(x) ∩M
))1/(dim M−dim p(M))

is a concave function on p(M).

Applying the above theorem to the map ht : Pλ → R and taking logarithm (which is
a concave function), we have immediately the following corollary.

Corollary 7. The density function g of the measure ht∗Volr is log-concave, that is, log g is a
concave function.

Remark 8. The sequence { f btλ
i }i is not necessarily log-concave. For example, from the step

function in Figure 2a, we observe that the sequence contains the consecutive terms (4, 4, 5).
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We propose the following conjecture:

Conjecture 9. The sequence { f btλ
i }i is unimodal.

This conjecture has been tested for different choices of λ in affine Weyl groups of
rank ≤ 4 (and also type Ã5) with the help of SageMath.

3 An example of Theorem 3

Let W be the affine Weyl group associated with the root system Φ of type C3 and simple
roots ∆ = {α1, α2, α3}. Then, r = 3. Following [2, Plate III], we write α1 = ε1 − ε2,
α2 = ε2 − ε3, and α3 = 2ε3. Let

λ = 3α∨1 + 6α∨2 + 7α∨3 .

We have that ht(λ) = 32. For convenience, we define (a, b, c)Φ := aα∨1 + bα∨2 + cα∨3 . The
polytope Pλ is the convex polyhedron with six vertices given by

{(0, 0, 0)Φ, (3, 3, 3)Φ, (3, 5, 7)Φ, (3, 6, 6)Φ, (7/3, 14/3, 7)Φ, (3, 6, 7)Φ},

which is an example of a non-lattice polytope. Since ρ = (3, 5, 3)Φ, we get ||ρ|| =√
14. From [8, Equation 2.4], or by direct computations, we have that Vol3(A+) = 1/48.

In view of Theorem 3, the only missing ingredient to compute the limit function is
to determine the area function Vol2(ht−1(x)). From the theory of convex polytopes,
this function is a piece-wise quadratic polynomial and its exact form can be obtained
by Lagrange interpolation. We omit the details and just give a graph of the function
g/ Vol3(A+) in Figure 2d.

We can use Theorem 3 to give quick estimates of the terms in the sequence { f btkλ
i }i

when k is big enough. For instance, when k = 8, the value of f bt8λ
196 is virtually impossible

to obtain in a computer directly from definitions. Let us pick x = 24.5(= 196/8). From
our theorem we have

S8(24.5) = f bt8λ
196/82 ∼ 48g(24.5) = 389/30

giving f bt8λ
196 ∼ 829.86.

On the other hand, Theorem 5 gives the exact values of the terms in the sequence
{ f btkλ

i }i. We can compute the value of the function S8 (which takes a considerable time
to get in a computer.) In particular, we have f bt8λ

196 = 863. Our quick estimate of 829.86
from before was off by 3.84%. In various examples, we observed that the error of the
estimation decreases roughly linearly with the growth of k. See Figure 2 for the graphs
of the step functions S1, S2, and S8.
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(a) Graph of S1. (b) Graph of S2.

(c) Graph of S8. (d) Graph of g/ Volr(A+).

Figure 2: In the affine Weyl group W of affine type C3, we consider λ = 3α∨1 + 6α∨2 +

7α∨3 . These pictures illustrate how the sequence of step functions Sk : [0, `(tλ)] → R

converges uniformly to the continuous function g/ Volr(A+).

4 Connections with asymptotic representation theory

The formulation of Theorem 3(1) borrows ideas from the construction of the now-called
Duistermaat–Heckman measure [13] and Okounkov’s work [16] on the asymptotic log-
concavity for multiplicities of representations. Let G be a compact connected Lie group
and λ be a dominant weight. In [13], Heckman constructed a discrete measure

∑µ dim V(kλ)µδµ
k

∑µ dim V(kλ)µ

supported on the weight polytope Conv{wλ | w ∈W f }, where dim V(kλ)µ is the weight
multiplicity of the irreducible representation of G with highest weight kλ. He proved that
this sequence of discrete measures, as k tends to infinity, converges weakly to the push-
forward of the Liouville measure of the coadjoint orbit of λ under the moment map. The
density function of the limit measure is a piecewise polynomial function [9] and Graham
proved that it is log-concave via Hodge–Riemann inequalities [12]. Later, Okounkov [16]
introduced the now-called Newton–Okounkov bodies to prove, in a similar weak limit



8 Gaston Burrull, Tao Gui, and Hongsheng Hu

sense, that for any reductive group G and any representation V of G, the multiplicities
of irreducible G-modules in the homogeneous coordinate ring of a G-stable irreducible
subvariety of P(V) are log-concave.

It is not hard to see the similarity between our construction (2.1) and the one of
Heckman, and it is indeed similar to the one of Okounkov. However, our proof technique
is quite different from theirs. Moreover, it is not obvious that our original cell-counting
problem has such a critical relation to the geometry of a convex polytope. Theorem 3(1)
is the analog of theirs, while a result like Theorem 3(2) is novel in this kind of setting.

5 Relation with Ehrhart’s theory

For an r-dimensional lattice polytope P (that is, all vertices of P are points of a given
lattice L), the Ehrhart polynomial [10] is a polynomial in k that counts the number of lattice
points in the k-fold dilation kP of P. The leading coefficient is equal to the r-dimensional
volume Volr(P) of P, divided by the volume d(L) of the fundamental region of the lattice
L. This implies that

Volr(P) = lim
k→∞

d(L) ·Card{lattice points in kP}
kr . (5.1)

If X is the toric variety corresponding to the normal fan of P, then P defines an ample
line bundle on X. The Ehrhart polynomial of P coincides with the Hilbert polynomial
of this line bundle, and the asymptotic result (5.1) is a consequence of the asymptotic
Riemann-Roch theorem [19, Tag 0BJ8].

The problem in our work is analogous to the one in Ehrhart’s theory, while we count
alcoves in each length rather than all lattice points in the polytope Pλ. When the polytope
Pλ is not a lattice polytope, it has no Ehrhart polynomial. We want to raise the following
question related to Theorem 3(2):

Question 10. Is f btkλ
ki a quasi-polynomial in k of degree (r− 1) for k sufficiently large, with

Volr−1(ht−1(i))
Volr(A+) · ‖2ρ‖

as the leading coefficient?

6 Main ideas in the proofs of Theorem 3 and Theorem 5

For complete proofs, see [6].

https://stacks.math.columbia.edu/tag/0BJ8
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6.1 Theorem 5

Our cell-counting problem can be translated into “counting alcoves” thanks to the nat-
ural bijection between the affine Weyl group W and the set of alcoves. In particular,
w ∈ f W if and only if the corresponding alcove Aw is dominant, that is, it is contained
in C+. On the other hand, we have the following well-known result.

Lemma 11. Suppose λ, µ ∈ ZΦ∨ ∩ C+. The following are equivalent:

(1) tµ ≤ tλ in the Bruhat–Chevalley order.

(2) µ ∈ Conv{wλ | w ∈W f }.

These facts motivate the definition of the polytope Pλ = Conv{wλ | w ∈ W f } ∩ C+.
They also lead to a description of the interval f [e, tλ] in terms of the lattice points in Pλ:

f [e, tλ] = {tµw ∈W | µ ∈ Pλ ∩ZΦ∨, w ∈ µW f }.

Then, the dominant lattice formula (Theorem 5) follows from comparing the lengths of
the elements on both sides of this equality.

6.2 Theorem 3

The following is the main geometric intuition in our proof of Theorem 3: a dominant
Bruhat interval can be realized as a bounded region—a union of finitely many alcoves—
inside C+; after dilating the lattice element λ of the interval f [e, tλ] and re-scaling the
region back, the alcoves in the region get smaller and smaller, and the region approaches
Pλ. This is illustrated in Figure 3. Other works relating Euclidean geometry and Bruhat
intervals in affine Weyl groups can be found in [8, 7].

The following corollary of Theorem 5 is crucial in the proof of Theorem 3:

Corollary 12. We define

π f (q) := ∑w∈W f
q`(w), πλ(q) = ∑µ∈Pλ∩ZΦ∨ q(2ρ|µ), πλ

+(q) = ∑µ∈Pλ∩ZΦ∨∩C+
q(2ρ|µ).

Then we have
πλ
+(q) · π f (q−1) ≤ πtλ(q) ≤ πλ(q) · π f (q−1), (6.1)

where the inequalities between these Laurent polynomials mean to be coefficient-wise.

Considering the coefficients in the inequality (6.1), we are able to approximate f btkλ
i

using the numbers

Card
(

Pλ ∩ 1
k

ZΦ∨ ∩ ht−1(y)
)

, (6.2)
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(a) The interval f [e, t2λ]. (b) The interval f [e, t6λ]. (c) The polytope Pλ.

Figure 3: Behavior of the intervals f [e, tkλ] when W is of affine type A2 and λ = 3α+ 4β,
where α := α∨1 and β := α∨2 . In each picture, the set of small triangles corresponds to
the set of alcoves. The coroot lattice is indicated by black bullets and the dominant
Weyl chamber is colored blue. In the first two pictures, the alcoves corresponding to
the elements in the intervals are filled with darker blue. So is the polytope Pλ in the
third picture.

where y runs over a particular set of numbers near i/k. For these y, it turns out that
(1

k ZΦ∨) ∩ ht−1(y) is a lattice of rank r− 1 in the affine hyperplane ht−1(y).
We construct a Riemann sum using the numbers from (6.2). As k tends to infinity,

this sum converges to a quantity related to the volume of a part of Pλ. From basic results
about weak convergence, this leads to a proof of Theorem 3(1).

The proof of Theorem 3(2) is more technical than the proof of Theorem 3(1). First of
all, it suffices to prove that Sk(x) converges uniformly for x ∈ [0, `(tλ)] of the form i/k,
because of the definition of Sk and the continuity of g. For this, we need to estimate the
value of the step function Sk at those x = i/k, which is k1−r · f btkλ

i . As before, we switch
this estimation to the estimation of the numbers in (6.2). Let y be as before.

We choose a fundamental domain Bk of the lattice (1
k ZΦ∨) ∩ ht−1(0) containing the

origin point of 1
k ZΦ∨. If we join all the translations of Bk by points in Pλ ∩ (1

k ZΦ∨) ∩
ht−1(y), we obtain the region

R :=
⊔{

l + Bk

∣∣∣∣ l ∈ Pλ ∩ 1
k

ZΦ∨ ∩ ht−1(y)
}

in the hyperplane ht−1(y).
Because we can compute the volume of Bk directly from Φ, estimating the value of

(6.2) is equivalent to estimating the value of Volr−1(R). The proof of the convergence
is then achieved by comparing Volr−1(R) with Volr−1(Pλ ∩ ht−1(x)). This, as well as
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the uniformity, requires the use of some “Euclidean geometries” to carefully estimate
the volume of some open neighborhood of the boundary of Pλ ∩ ht−1(x) (see Figure
4 for an example of such a neighborhood). When k is large enough, for any x and y,
the boundary of R is contained in such a neighborhood. Because the volume of such a
neighborhood can be sufficiently small, this implies that Volr−1(R) is sufficiently close
to Volr−1(Pλ ∩ ht−1(x)). This leads to the proof of the uniform convergence.

δ
δ

Figure 4: A triangle T and the neighbourhood N (∂T, δ).
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Abstract. Boundary algebras are an important tool in the categorification, by Jensen–
King–Su and by Pressland, of cluster structures on positroid varieties, defined by Scott
and by Galashin–Lam. Each connected positroid has a corresponding boundary alge-
bra. We give a combinatorial way to recover a positroid from its boundary algebra.
We then describe the set of algebras which arise as the boundary algebra of some
positroid. Finally, we give the first complete description of the minimal relations in the
boundary algebra. We expect this description to be helpful in extending results known
for Grassmannian boundary algebras to more general settings.

Keywords: Categorification, Positroids, Cluster Algebras

1 Introduction

An open positroid variety, defined by Knutson–Lam–Speyer [8], is the variety of points in
the Grassmannian realizing a given positroid. They broaden the positroid stratification
of the nonnegative Grassmannian [11] to the full Grassmannian. As conjectured in [10,
9] and proven in [14, 15, 6], the coordinate ring of an open positroid variety has the
structure of a cluster algebra. Such a cluster structure is a combinatorially rich algebraic
structure that in particular interacts well with nonnegativity [5]. For instance, the posi-
tivity of the cluster variables in a single cluster is enough to guarantee the positivity of
all the other, possibly infinitely many, cluster variables.

Boundary algebras appear in the context of categorification of the cluster structure on
an open positroid variety. Categorification is a process by which structures from other
areas of math are realized using category theory, often through module categories. In
2006, Scott [14] showed that the Grassmannian has a cluster structure, which was cate-
gorified by Jensen–King–Su [7] as the category of Gorenstein-projective modules over the
circle algebra. In 2016, Baur–King–Marsh [4] connected this with dimer models by realiz-
ing the circle algebra as a completed boundary algebra of a Grassmannian dimer model.
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Pressland [12] extended this setup in 2022 by showing that the cluster structure defined
by Galashin–Lam on an arbitrary connected positroid variety [6] is categorified by the
Gorenstein-projective category of the completed boundary algebra of an appropriate
dimer model.

This categorification has proven useful in understanding the Galashin–Lam clus-
ter structure on positroid varieties. Pressland [13] used it to prove a conjecture of
Muller–Speyer that two a priori different cluster are closely related [10]. In particular,
he shows that the source-labelled and target-labelled cluster structures on a positroid
variety quasi-coincide. Much work is being done on the cluster structures on Grass-
mannians, including studying the Gorenstein-projective modules over the circle algebra
corresponding to rank 2 and 3 cluster variables [2, 3]. This work is difficult to extend to
all positroid varieties because there is no generators-and-relations description in the liter-
ature for boundary algebras of general positroid varieties. Forthcoming work of the first
author and Khrystyna Serhiyenko contains a combinatorial construction of the boundary
algebra, but only describes the relations up to an operation called cancellative closure. We
build on this construction and give a combinatorial description of the boundary algebra
of a connected positroid variety, including a minimal set of relations. We isolate com-
binatorial data which determines the boundary algebra, and call it a boundary chart.
We characterize boundary charts of connected positroids and provide an explicit bijec-
tion between realizable boundary charts and connected positroids. This gives us a new
cryptomorphism of connected positroids.

Our new description of boundary algebras gives additional tools for studying the
Gorenstein-projective modules over these algebras. We expect our results to be useful
in generalizing the work mentioned above from the Grassmannian setting to general
positroid varieties.

2 Background

2.1 Positroids

A positroid is a special type of realizable matroid which reflects the combinatorial struc-
ture of the totally nonnegative Grassmannian. See [11] for background on positroids. In
this section, we introduce perfect orientations and decorated permutations, which are two of
many equivalent descriptions of positroids.

Definition 2.1. A plabic graph (planar bi-colored graph) is an undirected planar graph embed-
ded in a disc with n vertices on the boundary, labelled bi for i ∈ [n] in clockwise order. Plabic
graphs may have additional vertices in the interior of the disc which are each assigned one of two
colors, either white ( ) or black ( ). Boundary vertices must be incident to exactly one edge. We
consider plabic graphs modulo homotopy.
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There are moves and reductions that can be applied to plabic graphs which preserve
the key combinatorial properties we are interested in. Using these, we may, and will, as-
sume that our plabic graphs are bipartite (for this purpose, we ignore boundary vertices)
and reduced [11, Def. 12.5]. An example of such a graph is illustrated in Figure 1.

We may define positroids in terms of perfect orientations of plabic graphs. These are
orientations O of the edges of the plabic graph such that each white internal vertex
is incident to exactly one incoming edge and each black internal vertex is incident to
exactly one outgoing edge. The source set of O is then {i | bi is a source in O}. Fix a
plabic graph G on n boundary vertices. All perfect orientations have source sets of the
same size k. We say such a plabic graph is of type (k, n). The set consisting of the source
sets of all perfect orientations forms a positroid P(G) of rank k on [n] [11].

Move equivalent plabic graphs give the same positroid. One way to distinguish
move equivalence classes of plabic graphs is by using their trip permutations. These are
permutations π defined as follow: For each i ∈ [n], construct a trip which starts from bi
and follow the edges of the plabic graph according to the "rules of the road": At each
white vertex turn right, and at each black vertex turn left. This trip will end at some
boundary vertex bj and we define π(i) = j. We obtain a fixed point π(i) = i if and
only if bi is connected by a single edge to a leaf. At fixed points, we additionally keep
track of the color of this leaf. With this additional data, we refer to π as a decorated
permutation. Decorated permutations of [n] are in bijection with positroids on [n]. We
denote by Pπ the positroid corresponding to a decorated permutation π. In this abstract,
we will be primarily concerned with connected positroids, in which case the decorated
permutations are stabilized-interval-free permutations [1]. These have no fixed points and
so, in particular, are undecorated permutations.

Consider Grk,n, the Grassmannian of k-planes in Cn, embedded in CP(n
k)−1 by Plücker

coordinates ∆I , where I is a k-element subset of [n]. To define open positroid varieties, we
will need to label faces F of a plabic graph G of type (k, n) by the set of i ∈ [n] such that
F lies to the left of the trip terminating at i. One can show that each such label will have
size k and, if P(G) = P(G′), then the boundary faces of G and G′ will have the same
labels [10].

Definition 2.2. Fix a positroid P of rank k on [n]. Let G be a reduced plabic graph such that
P = P(G). Label the faces of G as above. The open positroid variety Π◦

P is the subset of Grk,n
where ∆I = 0 for all I /∈ P and ∆I ̸= 0 for all I which label a boundary face of G.

Finally, we construct the quiver of a plabic graph.

Definition 2.3. A quiver Q = (Q0, Q1) is a directed graph with vertices Q0 and arrows Q1,
with no loops or oriented 2-cycles. Some vertices F0 ⊂ Q0 may be marked as frozen.

For a bipartite plabic graph G, define the quiver Q(G) as follows: Place a vertex at
each internal face of the plabic graph. Faces incident to the boundary contain frozen
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3

21

5 4

Figure 1: A plabic graph on 5 boundary vertices, with its quiver indicated in red,
where frozen vertices are squares and unfrozen vertices are circles. The decorated
permutation, obtained by following the rules of the road, is π = 45123.

vertices. For each edge e of G which is incident to a white vertex, add an arrow α to the
quiver between the faces on either side of e such that the white endpoint of e is to the
right of α. The only other edges of G are those which connect boundary vertices to black
vertices. In this case, add an arrow α such that the black vertex is to the left of α. The
quiver of a plabic graph is illustrated in Figure 1.

Galashin and Lam have shown that the coordinate ring of an open positroid variety
Π◦

P(G) is isomorphic to the cluster algebra with quiver Q(G) [6].

2.2 Boundary Algebras

We now introduce the boundary algebra, which is important for the categorification of the
cluster structure on an open positroid variety introduced by Pressland [12].

Definition 2.4. For a quiver Q, the path algebra CQ is spanned by finite paths in Q, including
empty paths at each vertex. The product in the algebra between paths p and q is the concatenation
of p and q, if p ends at the start of q, and 0 otherwise.

Fix a stabilized-interval-free permutation π. Let G be any plabic graph with trip
permutation π, and let Q = Q(G). Each internal face of Q is bounded by an oriented
cycle. Each edge d not between two frozen boundary vertices is incident to two faces
and thus part of oriented cycles c+d and c−d bounding those faces. Say c+d factors as dp+d
and c−d factors as dp−d . Let ei be the empty path at the boundary vertex vi of Q(G), and
let e = ∑n

i=1 ei.

Definition 2.5. The dimer algebra AQ is CQ modulo the relations p+d = p−d for all edges d of
Q which are not between two frozen vertices.

Definition 2.6. The boundary algebra of the positroid Pπ is Bπ = eAQ(G)e for any G such
that P = P(G).

It is not obvious, but if P(G) = P(G′), then eAQ(G)e = eAQ(G′)e, so this is well
defined. Multiplication by e on both sides discards each path which neither originates
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from nor terminates at a boundary vertex. Thus, Bπ can be thought of as the algebra of
paths between boundary vertices, modulo the relations p+d = p−d .

We define the following elements of Bπ: For each i ∈ [n], let xi be a minimal path
from vi to vi+1 and let yi be a minimal path from vi+1 to vi, where all indices are taken
modulo n. Let x = ∑n

i=1 xi and y = ∑n
i=1 yi. Let t = xy; then t is central in Bπ. Let p be a

path in Bπ between two nonadjacent vertices. Define τ(p) and η(p) by the condition that
p is directed from vτ(p) to vη(p). Suppose p does not factor as a product of other paths.
We then say p is a nonadjacent arrow and define reachp = η(p)− τ(p) taken modulo n
so that reachp ∈ [n]. One can show that p satisfies ptXp = xτ(p)xτ(p)+1 · · · xη(p)−1 for a
suitable positive integer Xp. We represent the boundary algebra by putting the vertices vi
in clockwise order around a circle and drawing in the nonadjacent arrows. For example,
the second subfigure of Figure 2 shows the representation of a boundary algebra. with a
nonadjacent arrow from v4 to v1 in black. In this figure, the arrows xi and yi are shown
in gray.

In forthcoming work, the first author and Khrystyna Serhiyenko prove the following
two results showing how to calculate the boundary algebra Bπ directly from a stabilized-
interval-free permutation π. In order to state these results, we must represent the per-
mutation π as a directed graph on vertices wi with directed edges from wi to wπ(i)
for i ∈ [n]. We will draw the permutation graph such that wi lies between vertices vi
and vi+1. We refer to edges of the permutation graph as strands. Figure 2 shows three
examples of permutation graphs, in red.

Definition 2.7. For i ∈ [n], we define the i-shifted linear order <i on [n] by i <i i + 1 <i
· · · <i n <i 1 <i · · · <i i − 1. We say (a1 ≤ · · · ≤ am) ∈ [n]m is a cyclic ordering if there
exists some i ∈ [n] such that a1 ≤i a2 ≤i · · · ≤i am. We will allow ourselves to replace some or
all of the inequalities with strict inequalities if consecutive terms are not allowed to be equal.

Definition 2.8. Define [i, j] = {l | (i ≤ l ≤ j) is a clockwise ordering} to be the (closed)
clockwise interval between i and j. We similarly define the clockwise intervals (vi, vj], [vi, vj),
and (vi, vj) by excluding one or both of the endpoints.

Definition 2.9. Let vj be a boundary vertex of Q. Consider a strand α from r to π(r) in the
permutation graph of π. We say that vj is to the right of α if j ∈ [π(r), r) and otherwise vj
is to the left of α. Let p be an arrow between nonadjacent vertices vi and vj. We say that α is
left-supporting to p if (π(r) ≤ r ≤ η(p) ≤ τ(p)) is a cyclic ordering. We say that the strand
α is right-supporting to p if (r ≤ π(r) ≤ τ(p) ≤ η(p)) is a cyclic ordering. In either case, we
say that this strand is supporting to p.

Informally, a strand left (resp. right) supports an arrow p if it points in the opposite
direction of p and lies to its left (resp. right).

Theorem 2.10. Fix a connected positroid P with permutation π. Fix distinct nonadjacent
boundary vertices vi and vj. The arrow p from vi to vj is a nonadjacet arrow of Bπ if and only if
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1. for all l ∈ (j, i), there is a right-supporting strand α of p with vl to its left, and

2. for all l ∈ (i, j), there is a left-supporting strand α of p with vl to its right.

In this case, the relations ptXp = xixi+1 · · · xj−1 and ptYp = yi−1yi−2 · · · yj hold in Bπ, where
Xp is the number of left-supporting strands and Yp is the number of right-supporting strands of
p. We call Xp the left relation number of p, and we call Yp the right relation number of p.

Definition 2.11. An ideal I of a path algebra CQ (generated by commutation relations) is can-
cellative if, for any a, p, q, b ∈ I with η(a) = τ(p) = τ(q) and η(p) = η(q) = τ(b), we have
apb − aqb ∈ I ⇐⇒ p − q ∈ I. The cancellative closure of an ideal I, denoted CancClos(I),
is the smallest cancellative ideal containing I.

Theorem 2.12. Let Q◦
π be the quiver on vi, for i ∈ [n], whose arrows are xi, yi and the nonadja-

cent arrows of Bπ. Let I◦π be the cancellative closure of the ideal I generated by the relations given
in Theorem 2.10, the relations xy − yx and xk − yn−k:

I◦π = CancClos

(〈
xy − yx, xk − yn−k, ∑

p nonadjacent arrow
ptXp − xτ(p)xτ(p)+1 · · · xη(p)−1

〉)
.

Then Bπ ≡ CQ◦
π/I◦π.

Together, Theorem 2.10 and Theorem 2.12 give a way to calculate the boundary al-
gebra of a positroid from its decorated permutation. However, this is obfuscated by the
necessity of taking a cancellative closure. We address this in Section 3.3.

Example 2.13. Let π be the permutation depicted in the middle of Figure 2. We see that there
is an arrow p from v1 to v4. Since p has one left-supporting strand (from 6 to 4) and one right-
supporting strand (from 1 to 3), it is labelled with Xp : Yp = 1 : 1. By Theorem 2.12, the
boundary algebra is Bπ

∼= CQ◦
π/I◦π, where the arrows of Q◦

π are p along with the greyed-out
arrows (representing xi and yi) and the ideal I◦π is generated up to cancellative closure by

{xy − yx, xk − yn−k, pt − x4x5x6}.

3 Combinatorial construction of the boundary algebra

3.1 From Boundary Algebras to Permutations

Our work involves a new combinatorial object, which we call a boundary chart.

Definition 3.1. A boundary chart consists of data C = (k, n, S, X) as follows, where k and n
are integers satisfying 1 ≤ k ≤ n and S is a set of arrows on vertices vi, for i ∈ [n], such that
arrows are not between vi and vi±1, with indices taken cyclically, and there is at most one arrow
from vi to vj for any i, j ∈ [n]. Finally, X ∈ Z

|S|
>0 gives a positive integer for each arrow.
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Figure 2: Three boundary charts on six vertices with k = 3 and their corresponding
decorated permutations depicted in red. The arrows xi and yi are greyed out. For
clarity, we use a red i in place of wi and a black i in place of vi.

Given a positroid, the boundary chart is precisely the data determined in Theo-
rem 2.10. Here, we start with a connected positroid of rank k on [n] with permutation
π, and the set S consists of the nonadjacent arrows of Bπ. The numbers Xp are as in
the theorem. Observe that it is implicit in Theorem 2.10 that there is at most one arrow
between any two vertices. By Theorem 2.12, this information fully determines Bπ.

Definition 3.2. A boundary chart is realizable if it is obtained from a positroid via this process.

We introduce the following auxiliary piece of data for a boundary chart: Let Y ∈ Z
|S|
>0

be a vector of positive integers, indexed by the arrows in S, such that Yp = Xp + k −
reachp for each p ∈ S. Using xy = yx and xk = yn−k from Theorem 2.12, one can show
that the Yp here coincide with the Yp in Theorem 2.10.

We represent the data in a boundary chart by placing the vertices vi around a circle,
in clockwise order. We draw in the arrows and mark each arrow p ∈ S with the pair of
integers (Xp : Yp). We refer to these as the left and right relation numbers of p, respec-
tively. Note that knowing Xp and Yp suffices to recover k when the set S of nonadjacent
arrows is nonempty. Three examples are illustrated in black in Figure 2 (the red and grey
parts are not in the boundary chart). For the realizable boundary chart obtained from
P = Pπ, this coincides with the representation of Bπ described in section Section 2.2.
We will need the following terminology:

Definition 3.3. Let p and q be two arrows in S.

• If (τ(p) < τ(q) < η(p) < η(q)) is a cyclic ordering, we say p and q cross.

• If (τ(p) ≤ τ(q) < η(q) ≤ η(p)) is a cyclic ordering, then p lies to the right of q. We say
that p and q are parallel, with p right-parallel of q. Define left-parallel similarly.

• If (η(p) ≤ τ(q) < η(q) ≤ τ(p)) is a cyclic ordering, then p lies to the right of q. We
say p and q are antiparallel, with p right-antiparallel of q. Define left-antiparallel
similarly.
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Visually, crossing arrows are arrows that intersect on their interiors, like the arrow
from 9 to 4 and the arrow from 7 to 2 in Figure 3. Parallel arrows are, roughly, arrows
that go in the "same direction", like the arrow from 9 to 4 and the arrow from 10 to 1 in
Figure 3, while antiparallel arrows are arrows which neither cross nor are parallel.

Given a realizable boundary chart C = (k, n, S, X), we describe how to recover the
permutation of its associated boundary algebra. We will construct the permutation as a
permutation graph on vertices wi such that wi lies between vertices vi and vi+1. We refer
to the vertices wi as strand vertices. First, we must discuss the ideas of visibility and of
influence in a boundary chart. We do this inductively. We will give an example of these
definitions in Example 3.8. We start with a reformulation of the right and left relation
numbers which will make the following construction easier to state.

Definition 3.4. Let C be a boundary chart with left and right relation numbers X and Y, respec-
tively. For p ∈ S, let L(p) (resp. R(p)) be the set of arrows left-parallel (resp. right-parallel) to
p. Then the adjusted left relation numbers are defined inductively by X′

p = Xp − ∑q∈L(p) X′
q

and the adjusted right relation numbers are defined inductively by Y′
p = Yp − ∑q∈R(p) Y′

q.

Definition 3.5. Let α be an arrow of a realizable boundary chart C = (k, n, S, X). Inductively
define the following:

1. The right-head-visible strand vertices to α are those strand vertices to the right of α

which are not right-head-influenced by a right-parallel arrow of α or left-head-influenced by
a right-antiparallel arrow of α (this condition is vacuous if there are no arrows to the right
of α). The right-head-influenced strand vertices of α are the Y′

α right-head-visible strand
vertices most immediately clockwise of η(α).

2. The left-head-visible strand vertices of α are those strand vertices to the left of α which
are not left-head-influenced by a left-parallel arrow of α or right-head-influenced by a left-
antiparallel arrow of α. The left-head-influenced strand vertices of α are the X′

α left-head-
visible strand vertices most immediately counterclockwise of η(α).

We will use the phrase head-influenced to mean either left- or right-head-influenced. We define
left-tail visible and right-tail-visible strand vertices as above, swapping “head” with “tail,”
“η(α)” with “τ(α),” and “clockwise” with “counter-clockwise.”

Construction 3.6. Let C = (k, n, S, X) be a realizable boundary chart. Let α be an arrow of
C. Let wσ1 , . . . , wσX′(α) be the right-head-influenced strand vertices of α, ordered clockwise so
that wσ1 is most immediately clockwise of η(α). Let wσ′

1
, . . . , wσ′

X′(α)
be the right-tail-influenced

strand vertices of α, ordered clockwise so that wσX′(α) is most immediately counter-clockwise of
τ(α). Then define ϕα(σj) = σ′

j for j ∈ X′(α). Symmetrically define ϕα on the left-head-influenced
vertices of α. We define a function (indeed, we will see, a permutation) π on [n] by

π(j) =

{
ϕα(j) wj is head-influenced by an arrow α ∈ C
j − k otherwise.
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Figure 3: Application of Construction 3.6 to a boundary chart with 12 vertices and
k = 5. For clarity, we use a red i in place of wi and a black i in place of vi.

It is not immediately obvious that π is well-defined; for example, some strand vertex
wj may be head-influenced by two arrows α and β. In fact, whenever this happens,
ϕα(j) = ϕβ(j).

Theorem 3.7. The map π is a well-defined stable-interval-free permutation, and C is the bound-
ary chart of Bπ.

This process is most easily understood visually, in an example. We denote nonadja-
cent arrows in the boundary algebra from vi to vj by pi→j.

Example 3.8. We look at Figure 3. The first subfigure shows a boundary chart on 12 vertices.
We have Y′

p7→2
= 1, hence the only right-head-influenced strand vertex of p7→2 is w2 and its

only right-tail-influenced strand vertex is w6 and we see that π(2) = 6. Similarly, the right-
influence of p9→4 induces π(4) = 8. We have Y′

p10→1
= Yp10→1 − Yp7→2 − Yp9→4 = 2, so the

right-head-influence of p10→1 is {w1, w3} (skipping over w2, which is right-head-influenced by
the right-parallel arrow p7→2) and the right-tail-influence of p10→1 is {w7, w9} (skipping over
w8, which is right-tail-influenced by p9→4). Then we see π(1) = 7 and π(3) = 9. The middle
of Figure 3 shows in red all strands induced by the influence of an arrow; the right completes the
permutation graph by adding in blue the remaining strands from wj to wj−k.

3.2 Realizable Boundary Charts

We next classify realizable boundary charts.

Theorem 3.9. Let C = (k, n, S, X) be a boundary chart with left and right relation numbers X
and Y, respectively, and with adjusted left and right relation numbers X′ and Y′, respectively. For
p ∈ S, let R∦(p) and L∦(p) denote the sets of arrows right and left-antiparallel to p, respectively.
Then C is realizable if and only if the following hold.

1. For all p ∈ S, Xp + ∑q∈L∦(p) Y′
q < reachp and Yp + ∑q∈R∦(p) X′

q < n − reachp.
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Figure 4: Four nonrealizable boundary charts violating the conditions of Theorem 3.9.
For clarity, we use a red i in place of wi and a black i in place of vi.

2. For all p ∈ S, X′
p ≥ 0 and Y′

p ≥ 0.

(a) If X′
p = 0 (resp. Y′

p = 0), there must be crossing arrows q and r, both left (rep. right)
parallel to p, such that τ(p) = τ(q) and η(p) = η(r).

3. Let p, q ∈ S be crossing such that (vi = η(p) < vj = η(q) < τ(p) < τ(q)) is a cyclic or-
dering. Let Ap denote the set of arrows r right-parallel to p such that η(r) ∈ [η(p), η(q)).
Let Aq denote the set of arrows r left-parallel to q such that η(r) ∈ (η(p), η(q)]. Then
Y′

p + X′
q + ∑r∈Ap Y′

r + ∑r∈Aq X′
r ≤ j − i, where the right side is taken modulo n so that it

lies in [n].

4. If p, q ∈ S form an oriented digon, then Xp + Xq + Yp + Yq < n.

One may attempt to apply Construction 3.6 to general boundary algebras. However,
the conditions of Theorem 3.9 are necessary in order for the result to be a well-defined
stable-interval-free permutation. For example, condition 1 ensures that there are enough
strand vertices to the right of any p ∈ S to count out Y′

p right-influenced strand vertices.
In the first subfigure of Figure 4, there are not enough red vertices for p4→1 to have
three left-supporting strands. The second subfigure in Figure 4 violates condition 2, as
X′(p6→2) = −1. The left-supporting strands of p8→12 also left-support p6→2, so p6→2 has
too many left-supporting strands. Condition 3 ensures that, if p and q are arrows of C
which both influence wj, then ϕp(j) = ϕq(j). See the third subfigure of Figure 4, where
the two crossing arrows are pulling the strand starting at w1 in different directions.
Condition 4 ensures the permutation constructed in Construction 3.6 is stable-interval-
free; see the fourth subfigure of Figure 4, where the permutation fixes [1, 3].

The sufficiency of these conditions is more surprising. We prove sufficiency by show-
ing that Construction 3.6 and the map of Theorem 2.10 compose to the identity on the
boundary charts satisfying the conditions of Theorem 3.9. Hence, we may view the com-
binatorial conditions of Theorem 3.9 as a new cryptomorphism for connected positroids.
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3.3 Minimal relations

Recall the presentation of the boundary algebra Bπ
∼= CQ◦

π/I◦π given in Theorem 2.12,
which has the drawback of the ideal I◦π being defined using a cancellative closure. In
this section, we give a description of the minimal relations of the ideal I◦π using the
information of the permutation π and the boundary chart C = (k, n, S, X).

Definition 3.10. Given an arrow p ∈ S of C, let Rp (respectively Tp) be the vertex wi of the
permutation graph most immediately clockwise of η(p) (resp. τ(p)) which is the start (resp. end)
of a strand which crosses p (i.e., which starts to the right of p and ends to the left, or vice versa).

• Two (necessarily parallel) arrows p and q are stitch-equivalent if Rp = Rq and Tp = Tq.

• A strand is relation-defining if it does not travel from Rp to Tp for any arrow p.

Example 3.11. In Figure 3, the arrows p10→1 and p9→4 are stitch-equivalent to each other with
T10→1 = T9→4 = 12 and R10→1 = R9→4 = 5, but not to the arrow from 7 to 2, with T7→2 = 8
and R7→2 = 3. Every strand is relation-defining with the exception of the strand from 5 to 12.

Definition 3.12. For va and vb boundary vertices of Bπ, define the aggressive clockwise path
ACL(va, vb) from va to vb by starting at va and repeatedly taking the non-yj arrow which ends
most immediately counter-clockwise of vb. Similarly define the aggressive counter-clockwise
path ACC(va, vb). When these paths are equivalent, we say that the aggressive relation from
va to vb is [ACL(va, vb)]− [ACC(va, vb)].

Theorem 3.13. The following relations of CQ◦
π, along with the relation xiyi = yi−1xi−1 for each

i ∈ [n], form a minimal generating set for I◦π:

1. For every relation-defining strand from wa to wb, take the aggressive relation from vb to va.

2. Let {p1, . . . , pm} be a stitch-equivalence class, ordered left to right, with Tpi = T and
Rpi = R for all i ∈ [m]. Define vam+1 := T, vb0 := R, and vai := τ(pi), vbi := η(pi) for
i ∈ [m]. Then, take the aggressive relation from vai to vbi−1

for each i ∈ [m + 1].

Example 3.14. Consider the boundary chart of Figure 3. The strand from w1 to w7 is relation-
defining and yields the relation p7→2y1 = x7x8x9p10→1. All of the strands wj 7→ wj−k, drawn
in blue, give relations composed only of x’s and y’s. For example, the strand from w5 to w12
gives x12x1 · · · x4 = y11y10 · · · y5. There are two stitch-equivalence classes {p10→1, p9→4} and
{p7→2}. The former gives {y11y10p10→1 = x12, p10→1x1x2x3 = y9p9→4, p9→4x4 = y8y7y6}
and the latter gives {p7→2x2 = y6y5y4y3, x8x9p10→1x1 = y7p7→2}. These five relations and
those given by relation-defining strands make up all minimal relations of I◦π.

Note that Theorem 3.13 uses both the boundary chart and the permutation obtained
from it by Construction 3.6. It would be hard to rephrase the theorem in terms of one or
the other. This indicates that boundary charts and stabilized-interval-free permutations,
while both cryptomorphisms of connected positroids, highlight different information.
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Abstract. In [5, 12, 13] are studied certain operators on polynomials and power series
that commute with all divided difference operators ∂i. We introduce a second set
of “martial” operators ♂i that generate the full commutant, and show how a Hopf-
algebraic approach naturally reproduces the operators ξν from [12]. We then pause to
study Klyachko’s homomorphism H∗(Fl(n)) → H∗(the permutahedral toric variety),
and extract the part of it relevant to Schubert calculus, the “affine-linear genus”. This
genus is then re-obtained using Leibniz combinations of the ♂i. We use Nadeau-
Tewari’s q-analogue of Klyachko’s genus to study the equidistribution of ℓ and comaj
on ([n]k ), generalizing known results on Sn.

Keywords: divided difference operators, Schubert calculus, comaj statistic

1 The martial operators ♂π

1.1 The ring of Schubert symbols

Given a Dynkin diagram D with Weyl group W(D), define the ring of Schubert sym-
bols H(D) as the cohomology ring of the associated (possibly infinite-dimensional) flag
variety, with the usual Schubert basis {Sw : w ∈ W(D)}. The Dynkin diagrams that will
interest us are primarily the semi-infinite AZ+ and the biinfinite AZ. In these type A
cases W(D) is the group of finite permutations of Z+ or of Z. An important difference
between the two is that H(AZ+) is generated by {Sri : i ∈ Z+}, where ri is a sim-
ple transposition, so the multiplication is entirely determined by Monk’s rule, whereas
H(AZ) requires additional generators {Sr1r2···rk} and determining its multiplication in-
volves also the flag Pieri rule. With all that in mind we largely abandon the geometry
and work with these rings symbolically.
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For each vertex α of D hence generator rα ∈ W(D), we have an operator ∂α ⟳ H(D),
pronounced “partial α”:

∂α Sπ :=

{
Sπrα if πrα < π

0 if πrα > π

from which we can well-define ∂π for any π ∈W(D) using products.

Theorem 1 (Lascoux-Schützenberger). There is an isomorphism H(AZ+) → Z[x1, x2, . . .]
taking the Schubert symbol Sπ to its “Schubert polynomial” Sπ(x1, x2, . . .). On the target ring,
∂α acts by Newton’s divided difference operation.

Call a ring homomorphism from H(D) to some other ring a genus,1 making the
above isomorphism the Lascoux-Schützenberger genus.

It was observed in [5, 13] that the operator ∇ := ∑i
d

dxi
on the target ring has two nice

properties: it commutes with each ∂i, and its application to any Schubert polynomial is a
positive combination of Schubert polynomials. Our goal in this section is to characterize
operations of the first type, with an eye toward the second. To study this commutant it
will be handy to work with algebra actions.

1.2 Two commuting actions of the nil Hecke algebra

Let Nil(D) denote formal (potentially infinite) linear combinations of elements {dπ : π ∈

W(D)}, with a multiplication defined by dπdρ :=

{
dπρ if ℓ(πρ) = ℓ(π) + ℓ(ρ)

0 if ℓ(πρ) < ℓ(π) + ℓ(ρ).
This

multiplication extends to infinite sums in a well-defined way, insofar as any w ∈ W(D)
has only finitely many length-additive factorizations. Slightly abusing2 terminology, we
call this Nil(D) the nil Hecke algebra. The association dπ 7→ ∂π gives an action of the
opposite algebra Nil(D)op on H(D); the infinitude of the sums in Nil(D) is again not
problematic, because H(D)’s elements are finite sums of Schubert symbols.

Define ♂α (pronounced “martial α”) by

♂αSπ :=

{
Srαπ if rαπ < π

0 if rαπ > π

We can well-define ♂∏ Q := ∏q∈Q♂q for each reduced word Q.

1This terminology is stolen from the study of various cobordism rings of a point, e.g. the “Hirzebruch
genus” and “Witten genus” are ring homomorphisms to Z.

2One ordinarily considers only finite linear combinations, but we have need of certain infinite ones,
and this simplifies the statement of Theorem 2.
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Theorem 2. The map dπ 7→ ♂π defines an action of Nil(D) on H(D) (unspoiled by the
potential infinitude), commuting with the Nil(D)op-action by the operators ∂α. Conversely, each
operator on H(D) that commutes with all operators ∂α arises as the action of a unique element of
Nil(D).

In short, Nil(D) and Nil(D)op are one another’s commutants in their actions on H(D).

This then characterizes the operators that commute with all ∂i; we don’t know any
significance of the resulting algebra again being Nil(D).

Proof. For h ∈ H(D), let
∫

h denote the coefficient of Se in h. Each h = ∑π hπSπ is
determined by the values∫

(∂ρh) =
∫

∑
π

hπ∂ρSπ = ∑
π

hπ

∫
∂ρSπ = ∑

π

hπδπ,ρ = hρ

We’ll make use of the easy fact
∫
♂π ∂ρ Sσ =

{
1 if σ = π−1ρ and ℓ(σ) = ℓ(π) + ℓ(ρ)

0 otherwise.
Now let C be an operator on H(D) commuting with all ∂π. For each π ∈ W(D), let

cπ :=
∫

C(Sπ−1). We then confirm C = ∑π cπ♂π using the determination above:∫
∂ρC(Sσ) =

∫
C(∂ρSσ) =

∫
C
(
Sσρ−1

[
ℓ(σρ−1) = ℓ(σ)− ℓ(ρ)

])
=

[
ℓ(σρ−1) = ℓ(σ)− ℓ(ρ)

]
cρσ−1∫

∂ρ

(
∑
π

cπ♂π

)
(Sσ) = ∑

π

cπ

∫
♂π ∂ρ Sσ = ∑

π

cπ

[
σ = π−1ρ

] [
ℓ(σ) = ℓ(π) + ℓ(ρ)

]
= cρσ−1

[
ℓ(ρσ−1) = ℓ(σ)− ℓ(ρ)

]
Here [P] = 1 if P is true, [P] = 0 if P is false, for a statement P.

Example. The action of ∇ := ∑i
d

dxi
on polynomials, pulled back to an action on

H(AZ+), is given by the operator ∑n∈N+
n♂n. What is particularly special about ∇ is

that it is a differential (i.e. satisfies the Leibniz rule), and is of degree −1.

Theorem 3. Let ∑α cα♂α ∈ Nil(D) be an operator of degree −1. If it is a differential (and D is
simply-laced, for convenience) then each cα is 1

2 ∑β cβ where the βs are α’s neighbors in D.
In particular if D is of finite type ADE, the only system of coefficients (cα) is zero. If

D = AZ+ , the only options are multiples of ci ≡ i. If D = AZ, the space of such systems is
two-dimensional, spanned by ci ≡ i and ci ≡ 1.

Hence the ∇ discovered in [5] in the AZ+ case was the only such operator available.
In [12] it is explained that ξ = ∑i∈Z ♂i is special to the back-stable situation of AZ; here
we see that it is the only new option. (The result [12, Theorem 6] is very similar.)

Proof sketch. The proof amounts to applying ∑α cα♂α to (Srα)
2 = ∑β Srβrα (computed

using the Chevalley-Monk rule).
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2 Not-quite-Hopf algebras and Nenashev operators

2.1 The dual algebras

Define a pairing Nil(D)⊗Z H(D)→ Z by

p⊗ s 7→ coefficient of Se in p(s)

and from there a map Nil(D)→ H(D)∗ := HomZ(H(D), Z).
The following is well-known to the experts, if not usually expressed exactly this way

(see e.g. [2], [9, §7.2]).

Theorem 4. This map Nil(D) → H(D)∗ is an isomorphism. Unfortunately the induced co-
multiplication H(D) → H(D) ⊗ H(D) is not a ring homomorphism (example below), so the
two are not thereby dual Hopf algebras. (There is an alternative statement explored in [10].)

There is an analogue of Theorem 1 for H(AZ), taking each Sπ to its back-stable Schu-
bert function BSπ invented by the third author (and independently by Buch and by Lee),
which were studied in [9, 12]. Define a back-stable function p ∈ Z[[. . . , x−1, x0, x1, x2, . . .]]
to be a power series

• of finite degree, such that

• p depends only on the variables {xk, k < N} for some N ≫ 0, and

• for some M≪ 0, p is symmetric in the variables {xi, i ≤ M}.

One way (as appears in [12]) to think of the ring of back-stable functions is as the image
of the injection

Symm⊗Z Z[. . . , x−1, x0, x1, . . .] → Z[[. . . , x0, . . .]]/⟨elementary symmetric functions⟩
p⊗ q 7→ p(. . . , x−2, x−1, x0) q

For π ∈ W(AZ) considered as a finite permutation of Z, and shi f tN(i) := i + N,
observe for N ≫ 0 that π[N] := shi f tN(i) ◦ π ◦ shi f t−N(i) is a permutation of Z that
leaves −N in place, and thus has a well-defined Schubert polynomial. Define the back-
stable Schubert function

BSπ := lim
N→∞

Sπ[N](x1−N, x2−N, . . .)

where the limit is computed coefficient-wise (note that any single coefficient settles down
to a constant value for all large enough N).

Theorem 5. [9, Theorem 3.5] The back-stable Schubert functions lie in, and are a Z-basis of,
the ring of back-stable functions.
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In this coördinatization we can compute the comultiplication on H(AZ) and bound
its failure to be a ring homomorphism. Transposing the multiplication from §1.2 of dπdρ,
we obtain ∆(BSσ) = ∑{BSπ ⊗ BSρ : σ = πρ, ℓ(σ) = ℓ(π) + ℓ(ρ)}. Then, alas,

∆(BS2
r2
) = ∆(BSr1r2 + BSr3r2) = (BSr1r2⊗1) + (BSr1⊗BSr2) + (1⊗BSr1r2)

+(BSr3r2⊗1) + (BSr3⊗BSr2) + (1⊗BSr3r2)

̸= ∆(BSr2)∆(BSr2) = (BSr2⊗1 + 1⊗BSr2)
2 = (BSr1r2⊗1) + (BSr3r2⊗1) + (BSr2⊗BSr2)

+(BSr2⊗BSr2) + (1⊗BSr1r2) + (1⊗BSr3r2)

Luckily ∆(BSπBSρ[N]) = ∆(BSπ◦(ρ[N])) = ∆(BSπ)∆(BSρ[N]) for N ≫ 0. Call this prop-
erty “separated Hopfness”, to be used below.

2.2 The Fomin-Greene–Nenashev operators ξν

With these identifications, and the self-duality of the Hopf algebra Symm of symmetric
functions, we can interpret some results of Nenashev [12]:

H(AZ)
∼−→ {back-stable functions} ∼←− Symm⊗Z Z[. . . , x−1, x0, x1, . . .] ↠ Symm

Nil(AZ) ←− Symm

The map ↠ is the Stanley genus: it takes Sπ to its Stanley symmetric function
Stπ = ∑λ aλ

π Schurλ. The lower map, its transpose, takes Schurλ to ∑π aλ
π dπ. If we

let this operator act on H(AZ) under the dπ 7→ ♂π action, we get the Fomin-Greene–
Nenashev operator ξλ := ∑π aλ

π ♂π [3, 12]. (See also the jλ operators in the “Peterson
subalgebra” defined in [9, §9.3], which are a double version of the ξλ.)

Let m denote the kernel of the map H(AZ) ↠ Symm. Using the separated Hopfness
and the fact that BSπ[N] − BSπ ∈ m, one shows that each ∆(pq) − ∆(p)∆(q) (which
serves as a measure of non-Hopfness) lies in m⊗ H(AZ) + H(AZ)⊗m. Hence the map
H(AZ) → Symm factors through a map of Hopf algebras. Dually, the transpose map is
a Hopf map to a Hopf sub-bialgebra of Nil(AZ). In particular this Hopf map explains
Nenashev’s formulæ [12, §4.4]

ξλξµ = ∑
ν

cν
λµ ξν ξν(pq) = ∑

λ,µ
cν

λµ ξλ(p) ξµ(q)

2.3 Interlude (not used elsewhere): topological origin of the {BSπ}
The stability property underlying Lascoux-Schützenberger’s definition of Schubert poly-
nomials is the fact that each Sπ ∈ H∗(Fl(n)) is the pullback ι∗n+1(Sπ⊕1) along a map
ιn+1 : Fl(n) ↪→ Fl(n + 1) taking (E•) to (F• : Fi≤n = Ei ⊕ 0, Fn+1 = En ⊕ C). Chaining
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these together, one builds an element of the inverse limit of the cohomology rings, a ring
Z[[x1, x2, . . .]]/⟨elementary symmetric functions ei⟩. It was then Lascoux-Schützenberger’s
pleasant surprise that these “inverse limit Schubert classes” lie in (and exactly span) the
image of the injective ring homomorphism Z[x1, x2, . . .] into this algebra.

This admits of a parallel story, based on a different map ι1+2n+1 : Fl(2n) ↪→ Fl(2n+ 2)
taking (E•) to (F• : Fi∈[1,2n+1] = C ⊕ Ei−1 ⊕ 0, F2n+2 = C ⊕ C2n ⊕ C). Now, in order
to achieve a coherent labeling (as n varies) we index the classes in H∗(Fl(2n)) using
permutations of [1− n, n] rather than of [1, 2n]. Once again the inverse limit is a power
series ring modulo elementary symmetrics, but it is no longer true that the inverse limit
Schubert classes are representable by polynomials; rather, they can be represented by
back-stable functions. (And again, they form a basis thereof.)

One advantage of ι1+2n+1 is that it is equivariant w.r.t. the duality endomorphism of
Fl(2n), which takes (E•) to (E⊥• ), defined w.r.t. the symplectic form pairing coördinates i
and 1− i, for i ∈ [1, n]. On the level of classes, this takes BSπ 7→ BSw0πw0 where w0(i) :=
1− i. On the level of back-stable functions, it takes xi 7→ −x1−i, ei(x≤0) 7→ ei(x≤0).

Since this duality respects Schubert classes and the alphabet (xi), it takes Monk’s
rules to Monk’s rules. In particular it turns the transition formula (a specific Monk’s
rule)

BSπ = xiBSπ′ + ∑
certain π′′

BSπ′′ into BSρ = −xjBSρ′ + ∑
certain ρ′′

BSρ′′

which implies (unstably) the cotransition formula xjSρ′ = −��Sρ + ∑certain ρ′′ Sρ′′ of [8].

3 Relation to Klyachko’s genus

3.1 Klyachko’s ideal and its prime factors

Let T ≤ GLn(C) denote the group of diagonal matrices, and TVperm ⊆ Fl(n) be the
permutahedral toric variety obtained as the closure of a generic T-orbit on the flag
manifold Fl(n). This subvariety arises as a Hessenberg variety (see e.g. [1]) and is of key
importance in [6, 11].

The inclusion ι : TVperm ↪→ Fl(n) induces a map backwards on cohomology, which
is neither injective nor surjective. Klyachko [7] presented its image im(ι∗) (with rational
coefficients), and a formula for ι∗ evaluated on Schubert symbols:

H∗(Fl(n); Q) → im(ι∗) ∼= Q[k0, . . . , kn]

/〈
ki(−ki−1 + 2ki − ki+1) = 0, 1 ≤ i ≤ n− 1

k0 = kn = 0

〉
Sπ 7→ 1

ℓ(π)! ∑
Q∈RW(π)

∏
q∈Q

kq where RW(π) is the set of reduced words
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Taking forward- and back-stable limits, while leaving behind geometry, we get the

Klyachko genus H(AZ) → Q[. . . , k−1, k0, k1, . . .]
/
⟨ ki(−ki−1 + 2ki − ki+1) = 0 ∀i ∈ Z ⟩

whose map on Schubert symbols is given by the same formula. We use this to recover a
result of Nenashev, foreshadowing some results in §5:

Theorem 6. [12, Proposition 3 and discussion after] Let RW(π) denote the set of reduced words
for π. There must exist (but the proof doesn’t find one) a “rectification” map

{shuffles of any word in RW(π) with any word in RW(ρ)} →⨿
σ

RW(σ)

whose fiber over any reduced word for σ has size cσ
πρ, the coefficient from SπSρ = ∑σ cσ

πρ Sσ.

Proof. Apply the Klyachko genus to that last equation, then set all ki = 1, obtaining

1
ℓ(π)! ∑

P∈RW(π)
∏

P
1

1
ℓ(ρ)! ∑

R∈RW(ρ)
∏
R

1 = ∑
σ

cσ
πρ

1
ℓ(σ)! ∑

S∈RW(σ)
∏

S
1

Since cσ
πρ = 0 unless ℓ(σ) = ℓ(π) + ℓ(ρ), we can restrict to those σ. Multiplying through:

#RW(π) #RW(ρ)

(
ℓ(π) + ℓ(ρ)

ℓ(π)

)
= ∑

σ

cσ
πρ #RW(σ)

Let Cσ
πρ be a set with cardinality cσ

πρ (and wouldn’t you like to know one?). Then we can
interpret the above as

#{shuffles of any word in RW(π) with any word in RW(ρ)} = # ⨿
σ

(Cσ
πρ × RW(σ))

Hence there exists a bijection; compose it with the projection to ⨿σ RW(σ).

We can further simplify the target of this genus by modding out by each of the
minimal prime ideals that contain the Klyachko ideal. We get ahold of these using the
Nullstellensatz,3 i.e. by looking at the components of the solution set to Klyachko’s
equations.

Proposition 1. Consider Z-ary tuples (ki)i∈Z of complex numbers satisfying the Klyachko
equalities. This set is the (nondisjoint) union of the following countable set of 2-planes:

• For a, b ∈ C, let km = am + b.

• For i ≤ j each in Z, and x, y ∈ C a pair of “slopes”, let km =


x(m− i) if k ≤ i
0 if k ∈ [i, j]
y(m− j) if k ≥ j.

3This isn’t quite fair, in that we are working in infinite dimensions, but we won’t worry about it. All
we’re really trying to do here is choose, for each i, which factor of ki(−ki−1 + 2ki − ki+1) to mod out.
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After completing this work, we learned of a very similar calculation in [11, §3.4], so
we omit the proof of proposition 1 (obtainable as a sort of q→ 1 limit of theirs).

Each component defines a quotient of the Klyachko ring, namely

Q[. . . , k−1, k0, k1, . . .]
/
⟨−km−1 + 2km − km+1 = 0 ∀m ∈ Z⟩

∀i ≤ j, Q[. . . , k−1, k0, k1, . . .]
/〈

km = 0 ∀m ∈ [i, j]
−km−1 + 2km − km+1 = 0 ∀m /∈ [i, j]

〉
Call the map of H(AZ) to the first quotient the affine-linear genus.

There is a slight subtlety in that the Klyachko ideal is not radical, and as such, the
map from the Klyachko ring to the direct sum of these quotients is not injective. We will
return to this minor matter below.

3.2 Dropping the other genera

The other components (besides the one giving the affine-linear genus) are useless, in the
following senses. Say km = 0 for some m; then there are three situations.

1. Some reduced word for a permutation π uses the letter m. Then all reduced words do,
with the effect that Sπ 7→ 0 in the quotient ring.

2. Each reduced word for π uses some letters > m and some < m. Then π = π<mπ>m
where each uses only letters < m, > m respectively. In this case Sπ = Sπ<mSπ>m .

3. Each reduced word for π only uses letters on one side of m. At this point there is nothing
to be gained by setting km = 0; we could work with just the affine-linear genus.

Our principal interest in genera is to study Schubert calculus, the structure constants cσ
πρ

of the multiplication of Schubert symbols. That is hard to do if the symbols map to zero
(situation #1), silly to do directly if the symbols are are themselves products (situation
#2), and in situation #3 might as well be done using the affine-linear genus. As such, at
this point we cast aside the Klyachko genus in favor of the affine-linear genus γ:

γ : H(AZ) → Q[a, b], Sπ 7→
1

ℓ(π)! ∑
P∈RW(π)

∏
i∈P

(ai + b)

The assiduous reader might be guessing now that the information lost when passing
from the Klyachko ideal to its radical is similarly negligible for Schubert calculus pur-
poses. And indeed: if we factor the Klyachko ideal as an intersection of primary instead
of prime components, we run into the ideals

∀i ≤ j, Q[. . . , k−1, k0, k1, . . .]
/〈 k2

m = 0 ∀m ∈ [i + 1, j− 1]
ki = k j = 0

−km−1 + 2km − km+1 = 0 ∀m /∈ [i, j]

〉
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These would let us study π, ρ, σ whose reduced words use only the letters in the range
[i + 1, j− 1], and each at most once. This is an extremely limited case.

4 The affine-linear genus γ from the martial derivations

Recall the derivations
∇ = ∑

m
m♂m ξ = ∑

m
♂m

Being derivations, they exponentiate to automorphisms of Q⊗Z H(AZ) (where the Q is
necessitated by the denominators in the exponential series).

Theorem 7. The following triangle commutes:

H(AZ)
ea∇+bξ ↙ ↘ γ

Q[a, b]⊗Z H(AZ) ↠ Q[a, b]
Sπ 7→ δπ,e

Proof. The proof is not conceptual; we compute both sides and compare. Indeed, we find
the statement intriguing exactly because we know of no geometric reason the two maps
should be related.

ea∇+bξ · Sπ = ∑
n

1
n!
(a∇+ bξ)n · Sπ 7→

(a∇+ bξ)ℓ(π) · Sπ

ℓ(π)!
=

(
∑i(ai + b)♂i

)ℓ(π) · Sπ

ℓ(π)!

Expanding
(
∑i(ai + b)♂i

)ℓ(π), the nonvanishing terms correspond to reduced words of
length ℓ(π), and only those that multiply to π−1 survive application to Sπ.

In particular the proof of Theorem 6 essentially amounts to applying exp(ξ). (Oddly,
the original proof in [12] is closer to an application of exp(∇).)

There is a fascinating q-Klyachko genus introduced in [11, §3.4]:

γq : H(AZ) → Q(q)[α, β]

Sπ 7→ 1
ℓ(π)q

•
∑

Q: ∏ Q=π

qcomaj(Q) ∏
i∈Q

(
αqi + β

)
Here mq

• is the q-torial ∏m
j=1[j]q, and comaj(Q) is the sum of the positions of the ascents.

We looked for a long time for a q-analogue of Theorem 7, to no avail: it would provide
an automorphism of H(AZ)(q)[α, β] whose ℓ = 0 part is the q-Klyachko genus.
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5 Rectification and the q-statistic

We pursue a q-analogue of (Nenashev’s) Theorem 6. Applying Nadeau-Tewari’s q-
Klyachko genus to SπSρ = ∑σ cσ

πρ Sσ we get

1
ℓ(π)q

•
∑

P∈RW(π)

qcomaj(P) ∏
i∈P

(αqi + β)
1

ℓ(ρ)q
•

∑
R∈RW(ρ)

qcomaj(Q) ∏
i∈R

(αqi + β)

= ∑
σ

cσ
πρ

1
ℓ(σ)q

•
∑

S∈RW(σ)

qcomaj(S) ∏
i∈S

(αqi + β)

Multiplying through, we get(
ℓ(π) + ℓ(ρ)

ℓ(π)

)
q

∑
P∈RW(π)
R∈RW(ρ)

q
comaj(P)
+comaj(R) ∏

i∈P ⨿ R
(αqi + β) = ∑

σ

cσ
πρ ∑

S∈RW(σ)

qcomaj(S) ∏
i∈S

(αqi + β)

Let’s interpret both sides at α = β = q = 1, again using a mystery set Cσ
πρ with

cardinality cσ
πρ. Define a barred word for π as a reduced word in which some letters are

overlined, e.g. 121 for (13). Then the left side of the above equation counts pairs (P, R)
of barred words, shuffled together, where the barring indicates “use the αqi term” rather
than the β term. Meanwhile, the right side counts pairs (τ, S) where S is a barred word
for some σ, and τ is in Cσ

πρ.

Theorem 8. Define the q-statistic of a barred word as the sum of the locations of the ascents,
plus the sum of the barred letters.

Define the q-statistic of a shuffle x of a pair (P, R) of barred words as the sum of the two
q-statistics, plus the number of inversions in the shuffle (letters in R leftward of letters in P).

Then there exists (but the proof doesn’t find one) a “rectification” map

{shuffles of pairs (P, R) of barred words for π, ρ} → ⨿
σ

{barred words for σ}

preserving the number of bars and the q-statistic, whose fiber over each word for σ is of size cσ
πρ.

We note that the affine-linear genus doesn’t let one produce such a combinatorial
result, insofar as the factors ai + b can involve i < 0 (in the back-stable setting of AZ).

Example. These examples get large very quickly, so we restrict to the fully barred
case. Let π = ρ = 12463578, chosen to give a cσ

πρ > 1 (and chosen stably enough that
the terms in the product don’t move −N). Each of π and ρ have two reduced words
(354 and 534, comajs 1 and 2, each of total 12), and there are (6

3) ways to shuffle, for
a total of 2 · 2 · (6

3) = 80; the resulting q-statistics range from 26 = 1 + 12 + 1 + 12 + 0
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to 37 = 2 + 12 + 2 + 12 + 3 · 3. There are 7 terms Sσ in the product SπSρ (one with
coefficient 2) with various numbers of reduced words.

q-statistic: 26 27 28 29 30 31 32 33 34 35 36 37
1 3 5 8 11 12 12 11 8 5 3 1 total = 80

σ

23561478 1 1 2 1 2 1 1
14562378 1 1 1 1 1
13572468 1 2 2 3 3 2 2 1
13572468 1 2 2 3 3 2 2 1 again
23471568 1 1 2 2 2 1 1
13482567 1 1 2 2 2 1 1
12673458 1 1 1 1 1
12583467 1 1 2 1 2 1 1

In the line with “total = 80”, we count the number of fully barred shuffles with given
q-statistic. In each of the lower lines, we put σ on the left, and on the right we list the
number of fully barred words for it with given q-statistic. Then the theorem asserts that
each number atop a column is the sum of the numbers below. There is a silly rotational
near-symmetry tracing to the fact that π and ρ are Grassmannian permutations for self-
conjugate partitions.

6 Equidistribution of inversion number vs. comaj on ([n]m )

Let J ⊆ Z be a set of n numbers, no two adjacent. Then the product ∏j∈J rj is well-
defined i.e. is independent of the order; indeed, the reduced words for ∏j∈J rj are in
correspondence with permutations of J. The same holds when multiplying subsets of J.

Fix K ⊆ J and let ρ = ∏K rk, π = ∏J\K rj. Then SπSρ = Sπρ, and Theorem 8 (again
in the fully barred case) predicts a bijection

{insertions of reduced words R for ρ into reduced words P for π} → RW(πρ)

such that
[
comaj(P) + comaj(R) + the inversion number of the shuffle

]
matches comaj

of the resulting word x. Note that the obvious map (just insert R where the shuffle
suggests) does not correspond these two statistics!

If we break J not into two subsets, but all the way down into individual letters, this
recovers the equidistribution on Sn of the statistics ℓ and comaj (or maj); see e.g. [14,
Proposition 1.4.6].

This hints at a stronger result: that for any two strings P, R such that PR has no
repeats, on the set {shuffles x} the distributions of the statistic comaj(P) + comaj(R) +
ℓ(x) and the statistic comaj(x) match. (Theorem 8 only guarantees this after summing
over all P ∈ RW(π), R ∈ RW(ρ).) And indeed, this stronger claim holds [4].
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Jack Derangements
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Abstract.

For each integer partition λ ⊢ n we give a simple combinatorial expression for the sum
of the Jack character θλ

α over the integer partitions of n with no singleton parts. For
α = 1, 2 this gives closed forms for the eigenvalues of the permutation and perfect
matching derangement graphs, resolving an open question in algebraic graph theory.
A byproduct of the latter is a simple combinatorial formula for the immanants of the
matrix J − I where J is the all-ones matrix, which might be of independent interest.
Our proofs center around a Jack analogue of a hook product related to Cayley’s Ω–
process in classical invariant theory, which we call the principal lower hook product.

Keywords: Symmetric Functions, Jack Polynomials, Derangements, Algebraic Graph
Theory, Young Tableaux, Umbral Calculus.

1 Introduction

Let λ ⊢ n be an integer partition and consider the power sum expansion of the Jack
polynomials, i.e., Jλ = ∑µ⊢n θλ

α (µ)pµ [32]. The θλ
α ’s are often called the Jack characters

because they are a deformation of a normalization of the irreducible characters χλ of the
symmetric group Sn. In particular, the Jack polynomials at α = 1, 2 recover the integral
forms of the Schur and Zonal polynomials respectively. These specializations have been
widely studied in algebraic combinatorics due to their connections with Sn and the set
M2n of perfect matchings of the complete graph K2n, but for arbitrary α ∈ R many open
questions remain [2, 32, 22]. This state of affairs has led to an investigation of the
Jack characters since they provide dual information about Jack polynomials that may
shed light on these open questions; however, the dual path towards understanding Jack
polynomials is paved with its own conjectures [10, 16, 17]. We make some progress in
this vein by taking sums of θλ

α (µ)’s rather than single θλ
α (µ)’s.

Let fp(µ) be the number of singleton parts of µ. Define the λ-Jack derangement sum

ηλ
α := ∑

µ⊢n
fp(µ)=0

θλ
α (µ)

*lindzeyn@gmail.com. For the full version of this extended abstract, see https://doi.org/10.48550/
arXiv.2304.06629. All proofs in this extended abstract have been deferred to the full version.

mailto:lindzeyn@gmail.com
https://doi.org/10.48550/arXiv.2304.06629
https://doi.org/10.48550/arXiv.2304.06629
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to be the sum of the Jack character θλ
α over the derangements, i.e., partitions µ ⊢ n with

no singleton parts. To motivate this definition, recall that if λ ⊢ n is the cycle type of a
permutation π ∈ Sn, then π is a derangement if and only if fp(λ) = 0. Let Dn ⊆ Sn be the
set of derangements of Sn. One can show that ηλ

1 is a scaled character sum over Dn, i.e.,

ηλ
1 = ∑

µ⊢n
fp(µ)=0

θλ
1 (µ) = ∑

µ⊢n
fp(µ)=0

|Cµ|
χλ(1)

χλ(µ) =
1

χλ(1) ∑
π∈Dn

χλ(π)

where Cµ ⊆ Sn is the conjugacy class corresponding to µ ⊢ n. For α = 2, an analogous
result holds for the so-called perfect matching derangements of M2n (see [18], for example).
We are unaware of combinatorial models for α ̸= 1, 2, but it is natural to view ηλ

α as the
α-analogue of the character sum over derangements, which is our main focus.

While little is known about the Jack derangement sums for arbitrary α ∈ R, the α =
1, 2 cases have received special attention in algebraic graph theory because they are in
fact the eigenvalues of the so-called derangement graphs. The set {ηλ

1 }λ⊢n is the spectrum
of the permutation derangement graph: Γn,1 := (Sn, E) where πσ ∈ E ⇔ σπ−1 ∈ Dn, i.e.,
the normal Cayley graph of Sn generated by Dn. See [7, Ch. 14] or [29] for more details
on the permutation derangement graph. The set {ηλ

2 }λ⊢n is the spectrum of the perfect
matching derangement graph: Γn,2 := (M2n, E) where mm′ ∈ E ⇔ m ∩ m′ = ∅. For more
details on the perfect matching derangement graph, see [7, Ch. 15] or [18].

These graphs made their debut in Erdős–Ko–Rado combinatorics, a branch of extremal
combinatorics that studies how large families of combinatorial objects can be subject to
the restriction that any two of its members intersect. By design, the independent sets (sets
of vertices that are pairwise non-adjacent) of Γn,α are in one-to-one correspondence with
the so-called intersecting families of permutations and perfect matchings for α = 1, 2, and
the spectra of these graphs have been used to give tight upper bounds and characteriza-
tions of the largest intersecting families of Sn and M2n. We refer the reader to [7] for a
comprehensive account of algebraic techniques in Erdős–Ko–Rado combinatorics.

The derangement graphs are interesting in their own right since they are natural
analogues of the celebrated Kneser graph, a cornerstone of algebraic graph theory [9].
Because the algebraic combinatorics of permutations and perfect matchings are more
baroque than that of subsets, the eigenvalues of the derangement graphs have proven to
be far more challenging to understand. We briefly overview the results in this area.

The first non-trivial recursion for the eigenvalues of the permutation derangement
graph was derived by Renteln [29] using determinantal formulas for the shifted Schur
functions [26], which he used to calculate the minimum eigenvalue of the permutation
derangement graph. Using different techniques, Ellis [5] later computed the minimum
eigenvalue of the permutation derangement graph. Deng and Zhang [4] determined the
second largest eigenvalue. In [13], Ku and Wales investigated some interesting properties
of the eigenvalues of the permutation derangement graph. In particular, they proved
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The Alternating Sign Theorem, namely, that sgn ηλ
1 = (−1)|λ|−λ1 for all λ, and they offered

a conjecture on the magnitudes of the eigenvalues known as the Ku–Wales Conjecture.
In [14], Ku and Wong proved this conjecture by deriving another recursive formula using
shifted Schur functions that led to a simpler proof of the Alternating Sign Theorem.

It was soon noticed that the algebraic properties of the perfect matching derangement
graph parallel those of the permutation derangement graph. The minimum eigenvalue
of the perfect matching derangement graph was computed by Godsil and Meagher [8]
and later by Lindzey [19, 20]. An analogue of the Alternating Sign Theorem was conjec-
tured in [18, 7] which was recently proven by both Renteln [30] and Koh et al [12]. In
an earlier effort to prove this conjecture, Ku and Wong [15] give recursive formulas for
ηλ

2 and a few closed forms for select shapes. In [31], Srinivasan gives more computation-
ally efficient formulas for the eigenvalues of the perfect matching derangement graph.
Godsil and Meagher ask whether an analogue of the Ku–Wales conjecture holds for the
perfect matching derangement graph [7, pg. 316]. The latter has remained open since
the eigenvalues of the perfect matching derangement graph have defied nice recursive
expressions akin to permutation derangement graph. This is because the aforemen-
tioned determinantal formulas for shifted Schur functions do not exist for shifted Zonal
polynomials or shifted Jack polynomials.

The main shortcoming of the known eigenvalue formulas for the derangement graphs
is that they cannot be evaluated efficiently, i.e., they lack “good formulas". Indeed,
finding closed forms was deemed a difficult open problem [7, pg. 316], perhaps due to
the formal hardness of evaluating the irreducible characters of the symmetric group [28,
11, 27]. Our results show that good formulas do in fact exist.

To state our main results we need a few definitions. Let hλ
∗ (i, j) := αaλ(i, j) + lλ(i, j) +

1 be the lower hook length of the cell (i, j) ∈ λ where aλ(i, j) and lλ(i, j) denote arm length
and leg length respectively. We define H1

∗(λ) := hλ
∗ (1, 1)hλ

∗ (1, 2) · · · hλ
∗ (1, λ1) to be the

principal lower hook product of the integer partition λ. For α = 1, the lower hook length
is just the usual notion of hook length, in which case we call H1

∗(λ) the principal hook
product. Note that the principal hook product for λ = (n) is simply n!.

It turns out that the principal hook product for arbitrary λ arises naturally in classical
invariant theory, namely, in the evaluation of a differential operator known as Cayley’s Ω–
process (see [3]). Independently, Filmus and Lindzey [6] observe a similar phenomenon
in their study of harmonic polynomials on perfect matchings, wherein they show that
the principal lower hook product appears in the evaluation of a family of differential
operators acting polynomial spaces associated with perfect matchings. From the results
of [6], we show in Section 3 that the principal hook product H1

∗(λ) counts an interesting
class of colored permutations Sλ, defined as follows.

For each i ∈ [n] := {1, 2, . . . , n}, we assign a list of colors L(i) ⊆ [m] for some m ∈ N.
We define a colored permutation (c, σ) to be an assignment of colors c = c1, c2, . . . , cn such
that ci ∈ L(i) and a permutation σ ∈ Sym([n]) such that σ(i) = j ⇒ ci = cj, i.e., each
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cycle of the permutation is monochromatic. Any partition λ defines a color list on each
element i of the symbol set [λ1] by setting L(i) := [λ′

i] where λ′ denotes the transpose
or conjugate partition of λ. We define Sλ to be the set of all such colored permutations,
formally, Sλ := {(c ∈ [λ′

1]× · · · × [λ′
λ1
], σ ∈ Sλ1) : σ(i) = j ⇒ ci = cj for all i ∈ [λ1]}.

We say that a colored permutation (c, σ) ∈ Sλ is a derangement if σ(i) = i ⇒ ci ̸= 1
for all 1 ≤ i ≤ λ1. In other words, these are the colored permutations that have no
colored cycles in common with (1, . . . , 1, ()) ∈ Sλ. Let Dλ be the set of derangements
of Sλ, and let Dλ

k be the set of derangements of Sλ with exactly k disjoint cycles. We
define Dλ := |Dλ| and dλ

k := |Dλ
k |, so that Dλ = dλ

1 + dλ
2 + · · ·+ dλ

λ1
. For any α ∈ R, let

Dλ
α := ∑λ1

k=1 dλ
k αλ1−k be the λ-Jack derangement number. Our first main result is Theorem 1,

that the Jack derangement sums equal the Jack derangement numbers (up to sign).

Theorem 1. For all α ∈ R, we have ηλ
α = (−1)|λ|−λ1 Dλ

α

Theorem 1 gives cleaner and more general proofs of all the previous results on the
derangement graphs.

Corollary 1 (Alternating Sign Theorem). For all α ≥ 0, we have sgn ηλ
α = (−1)|λ|−λ1 .

Corollary 2 (Ku–Wales Theorem). For all µ, λ ⊢ n such that µ1 = λ1 and α ≥ 0, we have
µ ⊴ λ ⇒ |ηµ

α | ≤ |ηλ
α |.

Setting α = 2 in Corollary 2 answers Godsil and Meagher’s question on the Ku–Wales
conjecture for the perfect matching derangement graph [7, pg. 316].

Corollary 3. For all α ≥ 1 and n ≥ 6, we have (n) = arg maxλ⊢n ηλ
α , (n − 1, 1) =

arg minλ⊢n ηλ
α , and (n − 1, 1) = arg max λ⊢n

λ ̸=(n)
|ηλ

α |.

Our second main result is a closed-form expression for the eigenvalues of Γn,1 and Γn,2.

This work can be seen as a companion paper to [21], where less explicit but more general
formulas for a variety of different "disjointness" and derangement graphs are given.

2 Shifted Jack Polynomials

We overview standard terminology associated with Jack polynomials. For any cell
(i, j) ∈ λ, the leg length lλ(i, j) of (i, j) is the number of cells below (i, j) in the same col-
umn of λ, and the arm length aλ(i, j) of (i, j) is the number of cells to the right of (i, j) in
the same row of λ, i.e., aλ(i, j) = |{(i, k) ∈ λ : k > j}| and lλ(i, j) = |{(k, j) ∈ λ : k > i}|.
Note that arm length and leg length remain well-defined even when λ is replaced by a
set of cells that does not form an integer partition. Let hλ

∗ (i, j) := αaλ(i, j) + lλ(i, j) + 1
and h∗λ(i, j) := α(aλ(i, j) + 1) + lλ(i, j) be the lower hook length and upper hook length of
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α+1 1

α+1 1

1

1

Figure 1: Let µ = (4, 3, 2) ⊢ 9. The colored cells S = {(2, 1), (1, 2), (2, 3), (1, 4)} on
the left is a 4-transversal of µ with α-weight wα(S) = (α + 1)2. The colored cells
S′ = {(1, 1), (3, 2)} on the right is a 2-transversal of µ with α-weight wα(S′) = 1. Each
colored cell is labeled with its lower hook length with respect to S and S′.

(i, j) ∈ λ, respectively. Let Hλ
∗ = ∏(i,j)∈λ hλ

∗ (i, j) and H∗
λ = ∏(i,j)∈λ h∗λ(i, j) be the lower

hook product and upper hook product of λ, respectively. Note that the lower and upper
hook product remain well-defined even when λ is replaced by a set of cells that does not
form an integer partition.

Theorem 2 is a simple but opaque expression for ηλ
α in terms of the (integral form)

shifted Jack polynomials J⋆λ(x; α) (see [25], for example). These expressions are already
known for ηλ

1 and ηλ
2 in terms of the determinantal formula for the shifted Schur poly-

nomials [29] and more recently for the shifted Zonal polynomials [30]. Theorem 2 is
simply the Jack analogue of these results.

Theorem 2. For all λ and α ∈ R, we have ηλ
α = ∑|λ|

k=0(−1)|λ|−k J⋆k (λ)/k!.

3 Tableau Transversals and Principal Hook Products

We now leverage some combinatorial results of [1, 6] to give a more tractable combina-
torial formulation of Theorem 2, which we use to prove Theorem 1 for α = 1, 2.

A k-transversal T of λ is a set of k cells of T which forms a partial transversal of
the columns of λ, that is, no two cells of T lie in the same column of λ. Define the
α-weight of a k-transversal T to be the lower hook product of T, i.e., wα(T) = HT

∗ , with
the convention that wα(∅) = 1 (see Figure 1 for examples). Let T k

λ be the collection of
k-transversals of λ.

In [1, Theorem 5.12], Alexandersson and Féray show that J⋆k (λ)/k! = ∑T∈T k
λ

wα(T).
Independently, Filmus and Lindzey [6] prove the following identity: J⋆λ1

(λ)/λ1! =

∑T∈T λ1
λ

wα(T) = H1
∗(λ). For α = 1, we note that this identity can be deduced from

Naruse’s hook-length formula for standard skew-tableaux [23]. We write µ ⪯k λ if µ is
a subshape λ obtained by removing k columns of λ. There are (λ1

k ) such subshapes, and
we let the sigma notation ∑µ⪯kλ denote the sum over all (λ1

k ) subshapes µ of λ obtained
by removing k columns.
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Theorem 3. For any shape λ and α ∈ R, we have ηλ
α = (−1)|λ|−λ1 ∑λ1

k=0(−1)k ∑µ⪯kλ H1
∗(µ).

Theorem 3 and Theorem 4 can now already be used to give an elementary combinatorial
proof of Theorem 1 for α = 1, 2 via the principle of inclusion-exclusion. This is because
λ-colored permutations Sλ (see Section 1) and λ-colored perfect matchings Mλ (see full
version) are bona fide combinatorial objects, and their sizes are counted by the principal
hook product H1

∗(λ).

Theorem 4. [6] For any shape λ, we have |Sλ|, |Mλ| = H1
∗(λ) for α = 1, 2, respectively.

In Section 5 we generalize this proof of Theorem 1 to all α ∈ R, but along the way we
collect several results concerning principal lower hook products, perhaps of independent
interest, that allow us to give more explicit expressions of Theorem 1. Specializing these
expressions to α = 1, 2 yields closed-form expressions for the eigenvalues of derange-
ment graphs, our second main result.

4 Minors of the Principal Hook Product

In this section we prove a few technical lemmas concerning the principal hook product
that are needed for closed-form expressions of Theorem 1. Let λ−i be the shape obtained
by removing the ith column of λ. Let λ−i1−i2−···−ik be the shape obtained by removing
(distinct) columns i1, i2, . . . , ik of λ. It is useful to think of the H1

∗(λ
−i)’s as the first minors

of λ, and the H1
∗(λ

−i1−···−ik)’s as k-minors of λ. The ordering of the ij’s is immaterial,
i.e., λ−i1−i2−···−ik = λ−iσ(1)−iσ(2)−···−iσ(k) for all σ ∈ Sk. Let λk be the shape obtained by
removing the last k columns of λ. We adopt the shorthand hj := hλ

∗ (1, j) henceforth.
Lemma 1 gives a Laplace-like expansion that relates the principal lower hook product to
its first minors.

Lemma 1 (Laplace Expansion). We have ∑λ1
i=1 H1

∗(λ
−i) = 1

α

(
H1
∗(λ) + (α − hλ1)H1

∗(λ
1)
)
,

equivalently, H1
∗(λ) = ∑λ1−1

i=1 αH1
∗(λ

−i) + hλ1 H1
∗(λ

−λ1).

For α ≥ 1, we are now in a position to give a short proof of both the Alternating Sign
Theorem and a useful upper bound on the magnitudes of the Jack derangement sums.

Proposition 1. For all α ≥ 1, we have sgn ηλ
α = (−1)|λ|−λ1 . Moreover, |ηλ

α | ≤ H1
∗(λ).

For any λ and integer 0 ≤ j ≤ λ1 − 1, let f ∗λ(j) := ∏
j
i=0((j + 1)α − hλ1−i), and define

f ∗λ(j) := 1 for all negative integers j. Lemma 2 is a generalization of Lemma 1 that we
will be needed in order to give a more explicit version of [1, Theorem 5.12].

Lemma 2. For all shapes λ and 0 ≤ j ≤ λ1 − 1, we have ∑λ1
i=1 f ∗

λ−i(j − 1) H1
∗((λ

−i)j) =
1
α

(
f ∗λ(j − 1) H1

∗(λ
j) + f ∗λ(j) H1

∗(λ
j+1)

)
.
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Theorem 5 is a more explicit form for [1, Theorem 5.12], perhaps of independent interest.

Theorem 5. For all α ∈ R, we have
J⋆λ1−k(λ)

(λ1−k)! = ∑µ⪯kλ H1
∗(µ) = 1

αk ∑k
j=0(−1)j ∏

λ1
i=1(hi−jα)
(k−j)!j! ,

equivalently, H∗
k

(λ1−k)! J⋆λ1−k(λ) = ∑k
j=0(−1)j(k

j)∏λ1
i=1(hi − jα).

Those familiar with the umbral calculus or the calculus of finite differences may recog-
nize the right-hand side of the second equation in Theorem 5 as essentially the kth-order
forward difference ∆k of the univariate degree-λ1 polynomial H1

∗(λ, x) := ∏λ1
i=1(hi − xα)

in x at the origin, i.e., H∗
(k) J⋆λ1−k(λ)/(λ1 − k)! = (−1)k∆k[H1

∗(λ, x)](0) where we de-

fine ∆k[ f ](x) := ∑k
i=0(−1)k−i(k

i) f (x + i) for any function f (x). Forward differences
of this kind are connected to polynomial interpolation in the falling factorial basis
xk := x(x − 1)(x − 2) · · · (x − k + 1), in particular, the Newton (interpolation) polynomial
N(x) of a set of points S = {(xi, p(xi))}d

i=0:

N(x) := [p(x0)]x0 + [p(x0), p(x1)]x1 + · · ·+ [p(x0), p(x1), . . . , p(xd)]xd

where [p(x0), . . . , p(xj)] is the notation for the so-called jth divided difference. Note that if
p(x) is a degree-d polynomial and |S| > d + 1, then [p(x0), . . . , p(xj)] = 0 for all j > d.

Finally, we recall the fact that if xi = i for all 0 ≤ i ≤ d, then [p(x0), p(x1), . . . , p(xj)] =

∆j[p](0)/j!, and the Newton interpolation polynomial is of the form

N(x) =
p(0)
0!

x0 +
∆1[p](0)

1!
x1 + · · ·+ ∆d[p](0)

d!
xd. (4.1)

See Stanley [33, Ch. 1.9] for a more in-depth discussion of the calculus of finite differ-
ences and its connections to combinatorics. In the next section, we show that each Jack
derangement number is the sum of the coefficients of a Newton polynomial (Theorem 6).

5 Proof of Theorem 1

Building off the results of the previous sections, we sketch a proof of Theorem 1 in this
section. For all j > 0, define H1

∗(λ, j) := ∏λ1
i=1(hi − jα) to be the j-shifted principal lower

hook product. It will be convenient to think of the shifted principal lower hook product
as a univariate polynomial in x, i.e., H1

∗(λ, x) := ∏λ1
i=1(hi − xα). We let d(α)n,k denote the

α-generalization of the rencontres numbers, that is, d(α)n,k := αnn!
αkk! ∑n−k

i=0
(−1)i

αii! .

Theorem 6. For all λ, α ∈ R, and n ≥ λ1, we have ηλ
α = (−1)|λ|−λ1 1

αnn! ∑n
j=0 d(α)n,j H1

∗(λ, j).

Theorem 6 allows us to connect the Jack derangement sums to the Poisson distribution.
For all α ∈ R, a simple induction shows that ∑n

j=0 d(α)n,j /αnn! = 1, and moreover, that
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limn→∞ d(α)n,k /αnn! = e−1/α/αkk!. For α > 0, the limiting distribution is the Poisson
distribution with expected value 1/α. After taking limits, for all α ∈ R, we have

ηλ
α = (−1)|λ|−λ1e−1/α

∞

∑
x=0

H1
∗(λ, x)
αxx!

. (5.1)

For α > 0, we may interpret the Jack derangement sum as some type of “generalized fac-
torial moment" of the Poisson distribution (up to sign), i.e., ηλ

α = (−1)|λ|−λ1E[H1
∗(λ, x)].

A combinatorial interpretation of these moments will follow as a corollary of Theorem 1.
Recall that the factorial moments of the Poisson distribution have a remarkably simple
form, namely, for all α ∈ R, we have limx→∞ xkα /αxx! = e1/α where xkα := αkxk. In light
of Equation (5.1), the foregoing suggests that we should express the polynomial H1

∗(λ, x)
in the α-falling factorial basis {xkα}, which we determine below for λ such that λ1 = 1, 2, 3.
Let λ′ denote the transpose of λ. If λ1 = 1, then we have H1

∗(λ, x) = −x1α + λ′
1x0α . If

λ1 = 2, then we have H1
∗(λ, x) = x2α − (λ′

2 + λ′
1)x1α + λ′

2(α + λ′
1)x0α . If λ1 = 3, then we

may write H1
∗(λ, x) as

-x3α +(λ′
3 +λ′

2 +λ′
1)x2α-((α+λ′

1)λ
′
3 +(α+λ′

1)λ
′
2 +(α+λ′

2)λ
′
3)x1α +λ′

3(α+λ′
2)(2α+λ′

1).

Indeed, the following proposition shows that each coefficient of H1
∗(λ, x) expressed in the

α-falling factorial basis is a polynomial cλ
k (α) that admits a combinatorial interpretation.

Proposition 2. Let λ̂ be the partition obtained by removing the first column of λ, and let #cyc(σ)
denote the number of cycles of a permutation σ. For all shapes λ and α ∈ R, we have H1

∗(λ, x) =
∑λ1

k=0 cλ
k (α)xkα where cλ

k (α) = (α(λ1 − 1 − k) + λ′
1)c

λ̂
k (α) − cλ̂

k−1(α), cλ
k (α) := 0 if k > λ1,

cλ
−1(α) := 0. Moreover, we have

(−1)k[αλ1−k−j]cλ
k (α) = ∑

I⊆[λ1]
|I|=k

| {(c, σ) ∈ Sλ : #cyc(σ) = k + j and ci = 1, σ(i) = i ∀i ∈ I} |.

Upon expressing Equation (5.1) in the α-falling factorial basis via the Proposition 2, the
proof of Theorem 1 becomes straightforward (see the full version for more details).

6 Eigenvalues of the Permutation Derangement Graph

The known recursive expressions for the eigenvalues of the permutation derangement
graph originate from [34, Ex. 7.63a], where Stanley considers the sum dλ := ∑π∈Dn χλ(π)
and shows it can be written in terms of the complete homogeneous symmetric functions:

∑
λ⊢n

dλsλ =
n

∑
k=0

(−1)n−knkhn−k
1 hn−k.
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For hook shapes, both Stanley [34, Ex. 7.63b] and Okazaki [24, Corollary 1.3] prove that

d(j,1n−j) = (−1)n−j
(

n
j

)
|Dj|+ (−1)n−1

(
n − 1

j

)
= (−1)n−j

(
n − 1

j

)
((n − j)|Dj−1|+ |Dj|).

Recalling that ηλ
1 = dλ/ f λ where f λ := χλ(1) is the number of standard Young tableaux

of shape λ, the following generalizes Stanley and Okazaki’s results to all partitions λ.

Corollary 4. dλ = (−1)|λ|−λ1 f λDλ.

This suggests a natural combinatorial interpretation of |dλ| in terms of standard
Young tableaux t of shape λ and colored derangements (c, σ) ∈ Dλ. Indeed, the set
Dλ is in bijection with permutations σ′ defined on λ1 cells of a fixed Young diagram
t of shape λ that satisfy the following criteria: if σ′(i) = j, then the cells containing
i and j belong to the same row of t; no two cells involved in the permutation σ′ lie
in the same column of t; and if σ′(i) = i, then the cell containing i does not belong
to the first row of t. We obtain the desired count by letting t vary over all standard
Young tableaux of shape λ. For λ = (1n) this gives a notably different proof of the well-
known identity d1n = ∑π∈Dn sgn(π) = ∑π∈Dn(−1)inv(π) = (−1)n−1(n − 1), i.e., that the
number of odd derangements versus even derangements differ by ±(n − 1). More gen-
erally, for any integer partition λ ⊢ n, we define the immanant of a n × n matrix A to
be Immλ(A) := ∑π∈Sn χλ(π)Ai,π(i). If we consider the adjacency matrix of the complete
graph Kn = Jn − In where Jn is the n × n all-ones matrix, then we see that the immanants
of the complete graph admit an elegant combinatorial interpretation:

Immλ(Kn) = ∑
π∈Sn

χλ(π)
n

∏
i=1

(Kn)i,π(i) = ∑
π∈Dn

χλ(π) = dλ.

Recall that Theorem 1 gives an expression for the Jack derangement numbers as
a polynomial in α with non-negative coefficients Dλ

α = dλ
1 αλ1−1 + dλ

2 αλ1−2 + · · · + dλ
λ1

where dλ
k is the number of colored permutations of Dλ that have precisely k disjoint

cycles. One issue with this formula is that the dλ
k ’s are hard to compute for general

shapes λ, as they are at least as difficult as the associated Stirling numbers of the first
kind. Theorem 6 offers a more concrete but less combinatorial form, which for arbitrary
α seems to be as good as it gets; however, for α = 1, 2, we show that Theorem 6 can be
massaged into an explicit combinatorial closed form in terms of what we call extended
hook products. Before we begin, we require a few more tableau-theoretic definitions.

Let λc := (λ1 − λ1, λ1 − λ2, · · · , λ1 − λℓ(λ)) be the complement of λ. In other words,
the complement of λ is the subset of cells of the shape (λ1)

ℓ(λ) that do not lie in λ. For
λ = (10, 6, 3, 1), the complement λc = (0, 4, 7, 9) is the set of dots below:

0
◦ ◦ ◦ ◦ 4

◦ ◦ ◦ ◦ ◦ ◦ ◦ 7
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 9.
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Let rev(λc) be the partition obtained by reversing the order of the rows of λc. We also
let rev : λc → rev(λc) denote the natural bijection defined on their cells, e.g.,

rev

(
u t s r

q p o n m l k
j i h g f e d c b a

)
= a b c d e f g h i j

k l m n o p q
r s t u

.

For any cell □ ∈ λc, we define its upper hook length to be h∗λc(□) = h∗rev(λc)(rev(□)),
and similarly for lower hook lengths. For example, we have the following upper hook
lengths for α = 1 and µ = (10, 6, 3, 1):

13 11 10 8 7 6 4 3 2 1

8 6 5 3 2 1 1 2 3 4

4 2 1 1 2 3 5 6 7 8

1 1 2 4 5 6 8 9 10 11

.

Let H∗
i (λ) be the ith principal upper hook product, i.e., the product of the upper hook

lengths along the ith row of λ. We define the extended ith principal upper hook product
to be H+

i (λ) := H∗
i (λ)H∗

i (λ
c). Continuing the example above, we see that H+

3 (µ) =
4 · 2 · 1 · 8!/4 = 80640. Note that H∗

1 (λ) = H+
1 (λ) for all λ since (λc)1 = 0.

Let dn,k be the kth rencontres number, i.e., the number of permutations of Sn with
precisely k fixed points. Let pn,k = dn,k/n! be the probability of drawing a permutation
(uniformly at random) from Sn with precisely k fixed points. The Frobenius coordinates
of λ are given by λ = (a1, . . . , ad | b1, . . . , bd) where ai := λi − i is the number of boxes
to the right of the diagonal in row i, and bi := λ′

i − i is the number of boxes below the
diagonal in column i. By default, we define ad+1 := −1. We are finally in a position to
state our second main result, namely, good closed forms for the eigenvalues of Γn,1.

Theorem 7 (Eigenvalues of Γn,1). For all λ = (λ1, . . . , λℓ) = (a1, . . . , ad | b1, . . . , bd) ⊢ n,
we have ηλ

1 = (−1)n ∑i≤λi+1(−1)λi pλ1,a1−ai H+
i (λ).

Explicit closed-form expressions for the eigenvalues of the perfect matching derange-
ment graph Γn,2 can be derived in a similar manner, which we defer to the full version.
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Framing lattices and flow polytopes

Matias von Bell*1 and Cesar Ceballos1

1 Institute of Geometry, Graz University of Technology, Austria

Abstract. We introduce the framing lattice of a framed graph, a new lattice whose
Hasse diagram is the dual graph of a framed triangulation of a flow polytope. We
show that every framing lattice is an HH lattice, hence polygonal, semidistributive,
and congruence uniform. We also study lattice congruences determined by simple
operations called M-moves. Framing lattices provide a unifying framework for the
study of many remarkable lattice structures, and several well known results about
them are straight forward corollaries of our results.

Keywords: Flow polytope, framed triangulation, Tamari lattice, weak order, Cambrian
lattice, cross-Tamari lattice.

1 Introduction

Flow polytopes of acyclic oriented graphs are fundamental objects in the study of com-
binatorial optimization. In recent years, there has been an explosion of interest in these
objects due to their connections with other areas such as representation theory [1], di-
agonal harmonics [7], and Grothendieck polynomials [8]. From the combinatorial and
geometric perspective, a special focus on flow polytopes concentrates on their volumes
and triangulations. A novel method for triangulating flow polytopes using a framing of
the graph was developed in [4].

Since then, various families of combinatorial objects have revealed tight connections
with triangulations of flow polytopes. Examples of this include the Boolean lattice,
the Tamari lattice, and the weak order on permutations, each of which is a partially
ordered set whose Hasse diagram appears as the dual graphs of a framed triangulation
of a flow polytope. On the other hand, flow polytopes serve as a powerful tool to
approach open problems about the combinatorial objects involved. For instance, certain
framed triangulations of flow polytopes were used in [5] to solve an open conjecture
about geometric realizations of s-permutahedra. These recent developments motivate
the following question:

Is the dual graph of any framed triangulation the Hasse diagram of a lattice?

*matias.vonbell@gmail.com. Both authors were supported by the Austrian Science Fund FWF,
Project P 33278, and by the ANR-FWF International Cooperation Project PAGCAP, FWF Project I 5788.

mailto:matias.vonbell@gmail.com


2 Matias von Bell and Cesar Ceballos

In this paper, we give a positive answer to this question. For any directed graph G and
any framing F of G, we define a lattice structure called the framing lattice LG,F, whose
Hasse diagram is the dual graph of the corresponding framed triangulation. The family
of framing lattices captures many important lattices appearing in the literature, including
those shown in Figure 1. Four explicit examples are shown in Figure 2, including a new
family of lattices that we call cross-Tamari lattices.

Framing lattices

Boolean lattices
Multipermutation

lattices

The s-weak order

The weak order on Sn

Grid-Tamari
lattices

Grassmann-Tamari
lattices

(ε, I, J)−Cambrian
lattices

Type A
Cambrian
lattices

Alt ν-Tamari lattices

ν-Tamari
lattices

Tamari lattices

ν-Dyck
lattices

Dyck lattices

Figure 1: Some lattices captured by the theory of framing lattices.

We prove several structural results about framing lattices. We show that every fram-
ing lattice is an HH lattice, hence polygonal, semidistributive, and congruence uniform,
and study lattice congruences determined by simple operations on framed graphs called
M-moves. We remark that these properties are usually non-trivial results proven in sev-
eral research works for the special classes outlined in Figure 1; and they all follow from
our global uniform results.

2 Framed triangulations of flow polytopes

Let G be a directed acyclic graph on vertex set V(G) = [n] and edge multiset E(G) such
that all edges are directed from smaller vertices to larger vertices and G has a unique
source s = 1 and sink t = n. We call such a graph G a flow graph. A path from the
source to the sink is said to be a route. For a vertex v in a flow graph G with vertex
set [n], let In(v) and Out(v) respectively denote the (possibly empty) incoming and
outgoing edges at v. A unit flow on G is then a tuple (xe)e∈E(G) ∈ R

|E(G)|
≥0 satisfying
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Figure 2: Four framed graphs and the Hasse diagrams of their framing lattices. The
first is the Boolean lattice B3. The second is the lattice of multipermutations of 12223.
The third is the ε-cambrian lattice with ε = − − +−. The fourth is a cross-Tamari
lattice of the cross-shaped grid shown below the right-most graph.

∑e∈Out(j) xe − ∑e∈In(j) xe = uj, where u1 = 1, un = −1, and uj = 0 for 1 < j < n.
The flow polytope of G is the set FG of unit flows on G and its dimension is given by
|E(G)| − |V(G)| + 1. The vertices of FG can be characterized as the unit flows on G
which have value one on the edges of a route and value zero on the remaining edges.
Thus FG can be described as the convex hull of the indicator vectors of the routes of G.

Example 2.1 (The oruga graph and the cube). Let Gn = Oruga(n) be the oruga graph on
the vertex set [n + 1] containing two edges e2i−1 and e2i between i and i + 1 for i ∈ [n].

e1

e2

e3

e4

G2 = Oruga(2) FG2

1010 1001

0110 0101

Figure 3: An example of the oruga graph, its flow polytope, and a framed triangula-
tion.

The flow polytope FGn is combinatorially a cube of dimension n, whose vertices are of
the form ei1 + · · ·+ ein , where ei ∈ R2n denote the standard basis vectors and ik = 2k − 1
or ik = 2k, for each value k ∈ [n]. These are the indicator vectors of the routes of Gn.

We now recall the framed triangulations of flow polytopes introduced in [4]. A
framing at the vertex v is a pair of linear orders (≤In(v),≤Out(v)) on the incoming and



4 Matias von Bell and Cesar Ceballos

outgoing edges at v. A framed graph, denoted (G, F), is a flow graph with a framing F
at every vertex. An example of a framing of the Oruga(2) graph is shown in Figure 4,
where the labels indicate the order of the incoming and outgoing edges at every vertex.

For a path P containing a vertex v, let Pv (resp. vP) denote the maximal subpath
of P ending (resp. beginning) at v. Furthermore, let I (v) (resp. O(v)) denote the set of
paths in G ending (resp. beginning) at v. Our notation I stands for “incoming” and O
for “outgoing”. We define the relations ≤I (v) and ≤O(v) on I (v) and O(v) as follows.

Given paths Pv, Qv ∈ I (v), let w ≤ v be the first vertex after which Pv and Qv
coincide. If w is the first vertex of Pv or Qv, we say that Pv =I (v) Qv. Otherwise let eP
be the edge of P entering w and let eQ be the edge of Q entering w. Then Pv <I (v) Qv
if and only if eP <In(w) eQ. The relation O(v) is defined similarly.

Note that if Pv is a subpath of Qv, then Pv =I (v) Qv. But, if they do not start at the
same vertex, then they are different paths. Therefore, the relation ≤I (v) is not even a
partial order. However, if we restrict ≤I (v) (resp. ≤O(v)) to the set of paths starting at
the source s (resp. v) and ending at v (resp. the sink t), then it is a linear order.

We say that a vertex v of a path P is an inner vertex if v is not the first or last vertex
of the path. If v is an inner vertex of paths P and Q, we say that P and Q are incoherent
at v if Pv <I (v) Qv and vQ <O(v) vP, or if Qv <I (v) Pv and vP <O(v) vQ, and we say
that they are coherent at v otherwise. Paths P and Q are then said to be coherent if they
are coherent at each common inner vertex and they are incoherent otherwise. A set of
pairwise coherent routes is called a clique. We denote by C the collection of maximal
cliques. Examples of these concepts are illustrated in Figure 4.

1

2

1

2

1

2

1

2

Coherent Incoherent
A maximal clique

Figure 4: Examples of coherent and incoherent routes, and a maximal clique for the
given framing of the Oruga(2) graph.

The motivation for the definition of a framed graph is that the maximal cliques de-
termined by the framing induce a triangulation of the flow polytope. We denote by ∆C
the convex hull of the indicator vectors of the routes in a maximal clique C.

Proposition 2.2 (Danilov et al. [4]). Let (G, F) be a framed graph. The set {∆C | C ∈ C} is
the set of the top-dimensional simplices in a regular unimodular triangulation of FG.

A triangulation of FG whose facets are the maximal cliques of (G, F) for some fram-
ing F is called a framed triangulation of FG. The framed triangulation of the framing
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in Figure 4 is shown in Figure 3. The following lemma gives properties about adjacent
facets of the triangulation.

Lemma 2.3. Let C ̸= C′ be maximal cliques satisfying C ∖ {R} = C′ ∖ {R′}. Then,

(i) The routes R and R′ incoherent at some vertex v. Furthermore, they are incoherent at every
vertex in the maximal path Pv in R ∩ R′ that contains v, and coherent everywhere else.

(ii) The routes RvR′ and R′vR are contained in C ∩ C′.

From now on, unless otherwise specified, we draw the framed graphs (G, F) in such
a way that the order of the framing of the incoming and outgoing edges at every vertex is
increasing from top to bottom. This has two advantages: we do not need to include the
labels of a framing for the incoming and outgoing edges to the figure, and the coherence
relation becomes very intuitive because two paths are coherent at a vertex v if they “do
not cross” at v, as illustrated in Figure 5.

v

R

R′

R

R′

coherent at v

v

R

R′

R′

R

incoherent at v = crossing at v

R is cw from R′ at v

Figure 5: The coherence and cw relation between two routes at v.

This convention motivates the following definition. We say that a route R is clock-
wise (cw) from R′ at v if Rv <I (v) R′v and vR′ <O(v) vR. We use the notation R <cw

v R′

when R is cw from R′ at v. In particular, R and R′ are incoherent at v if and only if
R <cw

v R′ or R′ <cw
v R. Note also that <cw

v is a transitive relation, i.e. if R <cw
v R′ and

R′ <cw
v R′′, then R <cw

v R′′.

Example 2.4 (A framed triangulation of the oruga graph). Let Gn = Oruga(n) be the
oruga graph from Example 2.1, and let F be the framing that orders the incoming and
outgoing edges of Gn from top to bottom. The maximal cliques of (G, F) are in bijective
correspondence with permutations of [n] as follows.

Given a permutation [i1, . . . , in] of [n], construct a maximal clique consisting of n + 1
routes R0, . . . , Rn, where Rk is the route containing the top edges e2ij−1 for 1 ≤ j ≤ k, and
the bottom edges e2ij for k < j ≤ n. That is, Rk is the route with top edges at positions
i1, . . . , ik and bottom edges at the positions ik+1, . . . , in.

The resulting set of routes is a maximal clique, and all the maximal cliques are of this
form. Moreover, two facets are adjacent if and only if the corresponding permutations
can be obtained from each other by swapping two consecutive numbers. Thus, the dual
graph of this framed triangulation of FGn is the Hasse diagram of the classical weak
order of permutations of [n].
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3 Framing lattices

The weak order from the previous example is known to be a lattice. The purpose of this
section is to introduce a lattice structure whose Hasse diagram is the dual graph of a
framed triangulation of a flow polytope for any framed graph.

Let C ̸= C′ be maximal cliques satisfying C ∖ {R} = C′ ∖ {R′}. By Lemma 2.3, the
routes R and R′ are incoherent at some point v. If R <cw

v R′, then we say that R′ is
obtained from R by a ccw rotation at v. In this case, we say that C′ is obtained from C
by a ccw rotation. The framing poset LG,F = (C,≤ccw

rot ) is the poset on maximal cliques
where C ≤ccw

rot C′ if C′ can be obtained from C by a sequence of ccw rotations. We simply
write C ≤ C′ when the partial order is clear from context.

A polygon in a lattice is an interval [x, y] that is the union of two finite maximal
chains from x to y that are disjoint except at x and y. A lattice is said to be polygonal
if the following two conditions hold: (1) If y1 and y2 are distinct and cover an element
x, then [x, y1 ∨ y2] is a polygon; and (2) if y1 and y2 are distinct and are covered by an
element x, then [y1 ∧ y2, x] is a polygon.

Theorem 3.1. If (G, F) be a framed graph then LG,F is a poset. Moreover, it is a polygonal
lattice whose polygons consist of squares, pentagons, or hexagons.

Given a lattice L , let E(L ) denote the set of covering relations of L . We say that
L is an HH-lattice if it is finite, semidistributive, polygonal, and there exist a labeling
function ℓ : E(L ) → L where L is a set of labels, and a ranking function r : L → N

satisfying the following condition on every polygon [x, y] of L . Let x1 and x2 denote
the two elements covering x, and let y1 and y2 denote the two elements covered by y,
such that x1 and y1 (resp. x2 and y2) belong to the same maximal chain. The labeling ℓ
and rank function r must satisfy: (1) ℓ(x, x1) = ℓ(y2, y) and ℓ(x, x2) = ℓ(y1, y); and (2) if
t1, . . . , tk is a maximal chain in a polygon, then

r(t1), r(tk) < r(t2), r(tk−1) < · · · < r(t k+1
2
) if k is odd; and

r(t1), r(tk) < r(t2), r(tk−1) < · · · < r(t k
2
), r(t k

2+1) if k is even.

It is known that every HH-lattice is congruence uniform [2], i.e. it can be obtained
from the one element lattice by a sequence of doublings of intervals, a simple operation
introduced by Alan Day in the seventies, see [2] and the references therein.

Theorem 3.2. The framing poset LG,F is an HH lattice. In particular, it is semidistributive and
congruence uniform.

The following lemma due to Björner, Edelman, and Ziegler and the tools developed
below are central to prove the above results. We skip most of the details due to space
constraints.
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Lemma 3.3. (BEZ Lemma [6, Lemma 9-2.2]) Let P be a finite poset with 0̂. If the join x ∨ y
exists for every x, y ∈ P such that x and y cover a common element z, then P is a lattice.

To apply the BEZ lemma, we need a characterization of comparability in LG,F. We
say that C is cw from C′ if for all R ∈ C, R′ ∈ C′, and v ∈ R ∩ R′ we have that R and R′

are coherent at v or R <cw
v R′.

Proposition 3.4. Let C and C′ be maximal cliques. Then C ≤ C′ if and only if C is cw from C′.

Given two maximal cliques covering a common maximal clique, we construct their
join algorithmically. Given a set S of pairwise coherent routes, we construct a maximal
clique Cmax(S) containing S and the ccw-most routes that are coherent with the routes
in S. Informally, Cmax(S) is obtained by adding the ccw-most routes at each vertex
until a maximal clique is formed. The formal construction is described in Algorithm 1,
where ≤rev

I (v) denotes the reverse order of the linear order ≤I (v). Similarly, we construct
a maximal clique Cmin(S) containing S whose routes are as clockwise as possible.

Algorithm 1 The construction of Cmax(S)
1: Cmax(S) := S
2: for v ∈ V(G) (in increasing order) do
3: for Pv ∈ I (v) (in the order ≤rev

I (v)) do ▷ Pv possibly empty
4: for vQ ∈ O(v) (in the order ≤O(v)) do ▷ vQ possibly empty
5: if PvQ is coherent with all routes of Cmax(S) then
6: Cmax(S) := Cmax(S) ∪ {PvQ}
7: break ▷ This terminates the innermost loop
8: end if
9: end for

10: end for
11: end for

Lemma 3.5. The clique Cmax(S) is the unique maximal clique with the following property. If a
route R /∈ S is coherent with all routes in S, then for any R′ ∈ Cmax(S) and v ∈ R ∩ R′ either
R and R′ are coherent at v or R′ <cw

v R. The dual statement holds for Cmin(S).

When S = ∅, we abbreviate Cmin = Cmin(∅) and Cmax = Cmax(∅). The maximal
cliques Cmin and Cmax are respectively the 0̂ and 1̂ of LG,F. The proof of Theorem 3.1
follows from the next lemma together with the BEZ lemma.

Lemma 3.6. Let C1 and C2 be distinct maximal cliques covering a maximal clique Q in LG,F
and let S = C1 ∩ C2. Then, the following statements hold.

(i) The set of maximal cliques containing S is an interval IS = [Cmin(S), Cmax(S)], with
Q = Cmin(S), C1 ̸= Cmax(S), and C2 ̸= Cmax(S).
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(ii) The interval IS is a square, pentagon, or a hexagon.

(iii) C1 ∨ C2 exists and is Cmax(S).

Remark 3.7. The join of two arbitrary maximal cliques C and C′ in LG,F is not Cmax(S) for
S = C ∩C′. However, it is possible to compute it with a modified version of Algorithm 1.

Our proof of Theorem 3.2 relies on a characterization of semidistributive lattices and
HH lattices based on the polygons of the lattice. The congruence uniform property
follows from being an HH lattice.

The following result concerns lattice quotients of the framing lattice. It is based on
an operation discovered by Yip called an M-move, and was proved independently by
González D’León and Yip1. Given a framed graph (G, F) and an oriented edge (v, w)
such that v ̸= s and w ̸= t, an M-move applied to (v, w) is the framed graph (Gv,w, Fv,w)
obtained by replacing the edge (v, w) by the two edges (s, w) and (v, t), while keeping
the order of the incoming edges at w and the outgoing edges at v.

Theorem 3.8. The framing lattice LGv,w,Fv,w is a lattice quotient of LG,F.

We finish this section with the following enumerative conjecture, which is motivated
by Section 4.4 and a result in [3], and is supported by computational evidence.

Conjecture 3.9. Let F1 and F2 be two framings of G. Then, the framing lattices LG,F1

and LG,F2 have the same number of linear intervals of length k for every k ≥ 0.

4 Examples

4.1 The Boolean lattice

The Boolean lattice Bn is the lattice on the subsets of [n] ordered by inclusion. We now
describe how to obtain Bn as a framing lattice. Let GBn be the flow graph with vertex
set {s, t} ∪ [n] and edge set constructed as follows. For each vertex i ∈ [n] we add a pair
of edges (s, i) and (s, i)′ and a pair of edges (i, t) and (i, t)′. All framing lattices of GBn

will be isomorphic, so the choice of framing does not matter. However, for convenience
we choose F to be a framing with (s, i) <I (i) (s, i)′ and (s, i) <O(i) (s, i)′ at each i ∈ [n].
See the left-most graph and lattice in Figure 2 for an example of GB3 and B3.

A maximal clique of (GBn , F) contains the routes {(s, i), (i, t)} and {(s, i)′, (i, t)′}, and
either the route Ri := {(s, i), (i, t)′} or the route R′

i := {(s, i)′, (i, t)} for each i ∈ [n]. For a
set S ⊆ [n], define the maximal clique CS to be the unique maximal clique with routes R′

i
with i ∈ S, and Ri with i /∈ S. The map S 7→ CS is an order preserving bijection between
Bn and LGBn ,F. Therefore, the framing lattice LGBn ,F is the Boolean lattice Bn.

1Personal communication.
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4.2 The lattice of multipermutations

Given n positive integers m1, . . . , mn, the set of multipermutations [a1, . . . , am1+···+mn ] of
1m1 · · · nmn forms a lattice whose cover relations are given by interchanging two consec-
utive values ak < ak+1. The special case mi = 1 for all i recovers the classical weak order
on permutations.

We define the multioruga graph Gm1,...,mn as the graph on the vertex set [n + 1] con-
taining mi + 1 edges ei,0, . . . , ei,mi which are drawn from bottom to top between i and i+ 1
for i ∈ [n]. The framing F is induced by this drawing (edges ordered from top to bottom).

The associated flow polytope is a product of simplices FGm1,...,mn
= ∆m1 × · · · × ∆mn

where ∆mi = conv{ei,0, . . . , ei,mi}. Maximal cliques of the framed triangulation are in
bijection with multipermutation as follows.

Given a multipermutation [a1, . . . , am1+···+mn ] of 1m1 · · · nmn and an integer k satisfying
0 ≤ k ≤ m1 + · · ·+ mn, we let Rk be the route consisting of the edges e1,j1(k), . . . , en,jn(k),
where ji(k) := |{k′ ≤ k : ak′ = i}|. In other words, ji(k) counts the number of ap-
pearances of i up to position k in the multipermutation. The collection of routes R0,. . . ,
Rm1+···+mn is a maximal clique, and all maximal cliques are of this form. A counterclock-
wise rotation of a route Rk in a maximal clique corresponds to interchanging two con-
secutive values ak < ak+1 in the multipermutation. Thus, the framing lattice LGm1,...,mn ,F
is the lattice of multipermutations of 1m1 · · · nmn . An example is shown in Figure 2.

4.3 The Cambrian lattice

Reading’s type A ε-Cambrian lattices [10] are lattices on triangulations of a polygon.
The parameter ε is a map ε : [n] → {±} that assigns a positive or negative sign to
each element of [n]. We define the polygon Pε(n) as a convex (n + 2)-gon with vertices
0, 1, . . . , n+ 1 ordered from left to right, such that 0 and n+ 1 are on a horizontal line and
i is above this line if ε(i) = +, or below if ε(i) = −. The ε-Cambrian lattice is the poset
on triangulations of Pε(n) whose cover relations are increasing slope diagonal flips.

0

1−

2+

3−

4

s 0 1 2 3 t

−
+

−

Figure 6: The polygon Pε(3) and the Cambrian caracol graph Gε for ε = −+−.

Let the Cambrian caracol graph Gε be the graph with vertex set {s, 0, 1, . . . , n, t} and
the following three kinds of edges:
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• horizontal edges (s, 0), (0, 1), (1, 2), . . . , (n − 1, n), (n, t),

• positive edges (s, a)+, (a − 1, t)+ when ε(a) = + (above the horizontal line), and

• negative edges (s, a)−, (a − 1, t)− when ε(a) = − (below the horizontal line).

The graph Gε is independent of ε. The framing Fε is the one induced by the drawing,
which depends on ε. The routes of Gε are in bijection with the diagonals of the poly-
gon Pε(n). More precisely, diagonal ij corresponds to the route entering at i exiting
at j − 1. Under this bijection, two routes are coherent if and only if the corresponding di-
agonals do not cross; see Figure 6. Moreover, the framing lattice LGε,Fε

is the ε-Cambrian
lattice. An example is shown in Figure 2.

4.4 The cross-Tamari lattice

The cross-Tamari lattice is a new poset structure introduced in this paper which gener-
alizes the alt ν-Tamari lattices of Ceballos and Chenevière [3].

Let D be a set lattice points in Z2. We say that D is horizontally connected if for any
pair of points (x, y) and (x′, y) in D we have (z, y) ∈ D for all x < z < x′. Let rowD(z)
denote the set of points in D with y-coordinate z. We say that D is horizontally nested
if the x-coordinates of the points in rowD(v) are a subset of the x-coordinates of the
points in rowD(w) whenever | rowD(v)| ≤ | rowD(w)|. Similarly, we define vertically
connected and vertically nested. A set of lattice points D ⊆ Z2 is a cross-shaped grid if
it is both horizontally and vertically connected, and horizontally and vertically nested.

If D has a columns and b rows, it is convenient to assign positions to the points in D
according to a relabeling of the columns with the numbers 1, . . . , a and the rows with
1, . . . , b, in some order. We identify a point p ∈ D with its position p = (v, w) where
v is the label of column and w is the label of the row of the point. We denote by ℓ(v)
(resp. ℓ(w)) the number of elements of D in column v (resp. row w). A proper labeling
of the rows and columns of D is a labeling satisfying the following conditions:

• the column labels form a unimodular sequence2 and ℓ(v) < ℓ(v′) implies v < v′

• the row labels form a unimodular sequence and ℓ(w) < ℓ(w′) implies w < w′

Intuitively, this means that we label the rows and columns from shortest to longest
from the outside towards the center. Such a labeling is not unique if D has rows or
columns of the same length, but any proper labeling will be good for our purposes. An
example of a cross-shaped grid and a proper labeling of its rows and columns is shown
in Figure 7. In this example, the bottom-left corner (colored blue) has position (4, 2).

2increases and then decreases
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3 4 5 6 2 1

2

4

5

3

1

b

b

b

−→ s 6 5 1 4 2 3 3 2 4 1 5 t

Figure 7: A cross-shaped grid D with a proper labeling L of its rows and columns (left).
The (D, L)-caracol graph GD,L with the routes corresponding to the marked points in
D highlighted (right).

Let D be a cross-shaped grid. Two distinct points p, p′ ∈ D are incompatible if one
of them is strictly north-east of the other and every lattice point in the smallest rectangle
containing p and p′ belongs to D. Two points are compatible if they are not incompatible.
A maximal filling of a cross-shaped grid is a maximal set of pairwise compatible points.
If two maximal fillings M ̸= M′ differ by one single element M ∖ {p} = M′ ∖ {p′}
where p′ is located strictly north-east of p, then we say the M′ is obtainable from M by
an increasing flip. The cross-Tamari order Tam(D) is the poset of maximal fillings of D
where M ⪯D M′ if M′ can be obtained from M by a sequence of increasing flips.

The case where D is the set of lattice points weakly above a staircase shape recovers
the classical Tamari lattice. If D is the set of lattice points weakly above a given lattice
path ν then we recover of ν-Tamari lattice of Préville-Ratelle and Viennot [9]. Cross-
Tamari lattices also include the alt ν-Tamari lattices [3] and the ε-Cambrian lattices [10].

Next, we will show that the cross-Tamari order can be obtained as a framing lattice.
In particular, this implies that it is a lattice, a non-trivial fact.

Let D be a cross-shaped grid and L be a proper labeling of its columns and rows with
the numbers [a] and [b]. We define the (D, L)-caracol graph GD,L as the graph on the
vertex set {s, t} ⊔ [a] ⊔ [b], whose edges are given as follows.

First we define a linear order ≺ on the vertices, whose minimal element is s, maximal
element is t, and the following three relations hold: i2 ≺ i1 when i1 < i2, j1 ≺ j2
when j1 < j2, and x ≺ y when (x, y) ∈ D. The fact that ≺ is a linear order follows
from the conditions on D and L. We place the vertices {s, t} ⊔ [a] ⊔ [b] in a horizontal
line following the linear order ≺ and draw an edge between each pair of consecutive
elements. This looks like s − a − · · · − b − t. We add additional edges (s, i) and (j, t) as
follows. For i ∈ [a − 1], we draw an edge (s, i) below the horizontal line if column label
i is on the right of column label a, and above if it is on the left. For j ∈ [b − 1], we draw
an edge (j, t) below the horizontal line if row label j is below of row label b, and above
if it is above. The resulting graph is GD,L, and the framing FD,L is the framing induced
by our drawing; see Figure 7 for an example.
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The points in D are in bijection with the routes of GD,L. More precisely, the point (i, j)
corresponds to the route entering at i and exiting at j. Under this bijection, two points
in D are incompatible if and only if the corresponding routes are incoherent. Moreover,
the framing lattice LGD,L,FD,L is the cross-Tamari lattice Tam(D). An example is shown
in Figure 2.

4.5 Other examples

The previous examples are only a small selection of well studied lattices that appear as
examples of framing lattices. Other examples include the Grassmann-Tamari lattices of
Santos, Stump, and Welker, the grid Tamari lattices of McConville, the (ε, I, J)-Cambrian
lattices of Pilaud, the permutree lattices of Pilaud and Pons, the s-weak order of Ceballos
and Pons, and tau-Tilting posets for certain gentle algebras. The description of these
lattices as framing lattices essentially follows from bijections presented in other works,
and will be discussed in more detail in a longer version of this manuscript.
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On the sum of the entries in a character table
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Abstract. In 1961, Solomon proved that the sum of all the entries in the character table
of a finite group does not exceed the cardinality of the group. We state a different and
incomparable property here – this sum is at most twice the sum of dimensions of the
irreducible characters. We establish the validity of this property for all finite irreducible
Coxeter groups. The main tool we use is that the sum of a column in the character
table of such a group is given by the number of square roots of the corresponding
conjugacy class representative. We then show that the asymptotics of character table
sums is the same as the number of involutions in symmetric, hyperoctahedral and
demihyperoctahedral groups. Finally, we derive generating functions for the character
table sums for these latter groups as well as generalized symmetric groups as infinite
products of continued fractions.

Keywords: finite group, irreducible Coxeter group, character table, symmetric group,
hyperoctahedral group, demihyperoctahedral group, absolute square roots, general-
ized symmetric group, asymptotics, continued fractions

1 Introduction

For any finite group, it is natural to consider the sum of the entries of the character table.
Solomon [18] proved that this is always a nonnegative integer by proving something
stronger, namely that all row sums are nonnegative integers. He did so by showing
that the sum of a row indexed by an irreducible representation is the multiplicity of
that representation in the group algebra with respect to the conjugacy action. He then
deduced that the sum of the entries in the character table of a finite group is at most the
cardinality of the group.

In this extended abstract, we take a different approach to estimating the sum of the
entries of the character table by considering column sums instead. It is well known that
the column sums are always integers, though not necessarily non-negative [10, Proposi-
tion 3.14]. However, for groups whose irreducible characters are real, the column sums
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are given by the number of square roots of conjugacy class representatives by a classi-
cal result by Frobenius and Schur [11]. Weyl groups are well-known examples of such
groups. However, this is not the case for generalized symmetric groups G(r, 1, n), r ≥ 3.
For G(r, 1, n), column sums are given by so-called absolute square roots [2].

From extensive computations, we observe the following upper bound for the sum of
the entries of the character table for many but not all groups.

Property S . The sum of the the entries of the character table of a finite group is at most twice
the sum of dimensions of its irreducible representations.

We know Property S will not hold in general, but it seems to hold for a large class
of natural groups. The smallest counterexamples are of order 64. Our main result is for
the following important class of finite groups.

Theorem 1.1. Property S holds for all finite irreducible Coxeter groups.

Note that this also settles the issue for Weyl groups. The proof of Theorem 1.1 follows
by a case analysis. By analysing the square roots, it is easy to prove the result for
dihedral groups. We will prove Property S for the symmetric, hyperoctahedral and
demihyperoctahedral groups in the later sections. By explicit computations, we have
verified the result for exceptional irreducible finite Coxeter groups. Details will appear
in [4]. It is tempting to believe that Property S holds for all finite simple groups. We have
not yet done a systematic study in that direction, but we certainly believe the following.

Conjecture 1.2. Property S holds for all alternating groups.

Property S holds for abelian groups H because the orthogonality of rows in a charac-
ter table leads to the vanishing of row sums of all representations except the trivial one.
Using this fact, we prove that G × H satisfies the property if it is true for G. It turns out
that Property S holds for any finite group whose all irreducible representations have
dimensions at most 2. This class includes generalized dihedral groups and generalized
quaternion groups.

It is natural to consider the sequence of these sums for the infinite familes of irre-
ducible Coxeter groups. In Section 2, we consider this sum sn for the symmetric group
Sn. We compute its generating function in Section 2.1. In Section 2.2, we sketch the
proof of Property S for Sn and show that the asymptotics of sn is the same as the num-
ber of involutions in Sn. We state similar results for the hyperoctahedral groups Bn in
Section 3 and for the demihyperoctahedral groups Dn in Section 4. Since the main ideas
are similar, we only state the results. We then extend the generating function result to
the generalized symmetric groups G(r, 1, n) in two ways. We give generating functions
for the sum of the number of square roots as well as column sums for conjugacy class
representatives in Section 5. The proofs of these results will appear in an upcoming
article [4].
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2 Symmetric groups

2.1 Generating function for the total sum of character table

Let Sn be the symmetric group on n letters. The set of irreducible representations and
the conjugacy classes of Sn are indexed by the set of integer partitions λ = (λ1 ≥ λ2 ≥
· · · ≥ λn) of n, denoted λ ⊢ n. Write a partition in frequency notation as

λ = ⟨1m1 , . . . , nmn⟩, (2.1)

where mi denote the number of parts of length i in λ. We are interested in sn, the sum
of the entries of the character table of Sn [17, Sequence A082733]. The first few terms of
(sn) are given by

1, 2, 5, 13, 31, 89, 259, 842, 2810, 10020, 37266, 145373.

No formula is given for this sequence. Let Γλ be the sum of entries of the column
indexed by λ ⊢ n in the character table of Sn. By applying the following classical result
of Frobenius and Schur for the symmetric group, we obtain a formula for column sums
in terms of square root counting function.

Theorem 2.1 ([11, Theorem 4.5]). Given a finite group G, let Irr(G) denote the set of irreducible
characters of G. Then

|{x ∈ G | x2 = g}| = ∑
χ∈Irr(G)

σ(χ)χ(g) for each g ∈ G,

where σ(χ), known as the Frobenius-Schur indicator of χ, is 1, 0 or −1 if χ is real, complex
or quaternionic, respectively.

Remark 2.2. It is a standard fact [9, Section 8.10] that all irreducible characters of any Weyl
group (for example, symmetric, hyperoctahedral and demihyperoctahedral groups) have Frobenius-
Schur indicator 1. Thus, column sums of the character table of any Weyl group are given by the
number of square roots of conjugacy class representatives.

Therefore, Γλ = |{x ∈ Sn : x2 = wλ}|, where wλ is some fixed element of cycle type
λ. Recall that the double factorial of an integer n is given by n!! = n(n − 2) · · · ending at
either 2 or 1 depending on whether n is even or odd respectively. Define

or(m) =
⌊m/2⌋

∑
k=0

(
m
2k

)
(2k − 1)!! rk. (2.2)

Proposition 2.3 ([1, Corollary 3.2]). The column sum Γλ is 0 unless m2i is even for all i ∈
{1, . . . , ⌊n/2⌋}. If that is the case,

Γλ =
⌊n/2⌋

∏
i=1

(m2i − 1)!! (2i)m2i/2
⌊n/2⌋

∏
j=0

o2j+1(m2j+1).
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Let S(x) be the (ordinary) generating function of the sequence (sn), i.e.

S(x) = ∑
n≥0

snxn. (2.3)

To give a formula for S(x), we recall that generating functions which are expressed as
continued fractions have a long history beginning with the influential work of Flajolet [8].
There are two kinds of continued fractions which appear commonly. The Stieltjes contin-
ued fraction, or S-fraction has linear terms and the Jacobi continued fraction, or J-fraction has
quadratic terms.

Recall that an involution in Sn is a permutation w which squares to the identity. Let
in be the number of involutions in Sn. A well-known result due to Flajolet [8, Theorem
2(iia)] gives the generating function I(x) of involutions in Sn as the J-fraction

I(x) = ∑
n≥0

inxn =
1

1 − x − x2

1 − x − 2x2

. . .

. (2.4)

Flajolet also showed in the same theorem [8, Theorem 2(iib)] that the generating
function of odd double factorials is the S-fraction

D(x) = ∑
n≥0

(2n − 1)!! xn =
1

1 − x

1 − 2x
. . .

. (2.5)

The quantity or(m) (defined in (2.2)) and its generalizations have been studied in [12].
Setting t = 0, m = 0 and u1 = 1 in the same theorem [8, Theorem 2] we obtain the
generating function for or(m) as the J-fraction

Rr(x) = ∑
n≥0

or(n)xn =
1

1 − x − rx2

1 − x − 2rx2

. . .

. (2.6)

Bessenrodt–Olsson [5] found an explicit bijection between the number of columns in
the character table of Sn that have sum zero and the number of partitions of n with at
least one part congruent to 2 (mod 4). They also computed the generating function for
the number partitions whose associated column sum is nonzero.

Let x, x1, x2, . . . be a family of commuting indeterminates. The following result an-
swers a question of Amdeberhan [3].
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Theorem 2.4. The number of square roots of a permutation with cycle type λ written as (2.1) is
the coefficient of xm1

1 xm2
2 . . . xmn

n in

∏
i≥1

D(2ix2
2i)R2i−1(x2i−1).

Consequently, the generating function of the character table sum is

S(x) = ∏
i≥1

D(2ix4i)R2i−1(x2i−1).

2.2 Proof of Property S for Sn

Recall that derangements are permutations without fixed points. We define another se-
quence (gn) by

gn := ∑
λ⊢n

m1(λ)=0

Γλ, n ≥ 1 and g0 = 1.

Then gn counts the sum of those columns of the character table of Sn which are indexed
by the conjugacy classes corresponding to derangements. The next result is a convolution
type statement involving sn, gn, and in.

Proposition 2.5. For a positive integer n, we have

sn =
n

∑
k=0

ikgn−k.

We next prove the following lemma which gives us control over the sequence sn.

Lemma 2.6. For n ≥ 2, we have 2in−1 ≤ in ≤ nin−1. Further, for n ≥ 4, we have ikgn−k ≤
in−1/(n − 2) for all 0 ≤ k ≤ n − 3.

Using Lemma 2.6, we show that sn ≤ in + in−1, which helps to prove the following:

Theorem 2.7. Property S holds for all symmetric groups.

Using the asymptotics of (in) derived by Chowla–Herstein–Moore [6, Theorem 8], we
confirm the observation of user Lucia [3].

Corollary 2.8. The total sum sequence (sn) grows asymptotically as fast as (in) and hence

sn ∼
(n

e

)n/2 e
√

n−1/4
√

2
.
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3 Weyl groups of type B

The group Z2 ≀ Sn is called the hyperoctahedral group Bn. It can also be written as the
generalized symmetric group G(2, 1, n). But following [16], we can define it in a more
elementary way. But of course, some of these statements here can be seen directly from
Section 5 using that language.

Definition 3.1. Regard S2n as the group of permutations of the set {±1, . . . ,±n}. For an integer
n ≥ 2, the hyperoctahedral group of type Bn is defined as

Bn := {w ∈ S2n | w(i) + w(−i) = 0, for all i, 1 ≤ i ≤ n}

Every element w ∈ Bn can be uniquely expressed as a product of cycles

w = w1w1 · · · wrwrv1 · · · vs,

where for 1 ≤ j ≤ r, wjwj = (a1, . . . , aλj)(−a1, . . . ,−aλj) for some positive integer λj and
for 1 ≤ t ≤ s, vt = (b1, . . . , bµt ,−b1, . . . ,−bµt) for some positive integer µt. An element
wjwj is called a positive cycle of length λj and vt is called a negative cycle of length µt.
This cycle decomposition of w determines a unique pair of partitions (λ | µ) called the
cycle type of w, where λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs).

Theorem 3.2 ([16, Theorem 7.2.5]). The set of conjugacy classes of Bn is in natural bijection
with the set of ordered pairs of partitions (λ | µ) such that |λ|+ |µ| = n.

Let sB
n denote the total sum of the entries of the character table of Bn. The generating

function of sB
n can be obtained from the more general results in Section 5; see Remark 5.9.

Let ΓB
(λ|µ) be the column sum corresponding to the conjugacy class (λ | µ). To find the

asymptotics of sB
n , we define the following

gB
n :=

′
∑
(λ|µ)

ΓB
(λ|µ)

where the sum runs over all ordered pairs of partitions (λ | µ) of total size n such that λ

has no part of size 1. Moreover, let iB
n denote the number of involutions in Bn. Here, we

have the following counterpart of Proposition 2.5.

Proposition 3.3. For positive integers n, we have

sB
n =

n

∑
k=0

iB
k gB

n−k.

Following similar ideas as in the case of the symmetric group, we prove the next two
results, where we use a result of Lin [13, Eq. (5)] for the asymptotics of iB

n .
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Theorem 3.4. Property S holds for all hyperoctahedral groups.

Corollary 3.5. The total sum sequence (sB
n) grows asymptotically as fast as (iB

n ) and hence

sB
n ∼ e

√
2n

√
2e

(
2n
e

)n/2

.

4 Weyl groups of type D

The Weyl group of type D, also known as the demihyperoctahedral group Dn, is defined as
the following index two subgroup of Bn:

Dn := {w ∈ Bn | w(1) · · · w(n) > 0}.

Proposition 4.1 ([15, Lemma 2.3]). Let π ∈ Bn have cycle type (λ | µ). Then π ∈ Dn if and
only if ℓ(µ) is even.

The following results gives a description of the conjugacy classes in Dn and charac-
terize the existence of square roots.

Proposition 4.2 ([16, Theorem 8.2.1]). Given a pair of partitions (λ | µ) of n, if an element
π ∈ Dn has cycle type (λ | µ), the associated conjugacy class Cλ,µ in Bn splits into two Dn
conjugacy classes if and only if µ = ∅ and all the parts of λ are even. The class Cλ,µ remains a
Dn conjugacy class if and only if either µ ̸= ∅ or else one of the parts of λ is odd. In particular,
for an odd n, any conjugacy class of Bn does not split.

Proposition 4.3. A pair of partitions (λ | µ) of n (such that ℓ(µ) is even) is the cycle type of a
square element of Dn if and only if the following holds:

1. all even parts of λ have even multiplicity,

2. all parts of µ have even multiplicity, and

3. either λ has an odd part or 4 | ℓ(µ).

Using Proposition 4.3, we then obtain the following.

Theorem 4.4. The generating function for the number of conjugacy classes in Dn with non-zero
column sum is

∞

∏
i=1

1
1 − q4i

[(
∞

∏
j=1

1
1 − q2j

)(
∞

∏
k=0

1
1 − q2k+1 − 1

)
+

1
2

(
∞

∏
j=1

1
1 − q2j +

∞

∏
k=1

1
1 + q2k

)
+ 1

]
− 1.
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Recall the generating function for double factorials in (2.5). To find the generating
function for the sum of the entries in the character table of Dn, we generalize Rr(x) by
the J-fraction

R′
r(x, y) =

1

1 − (1 + y)x − rx2

1 − (1 + y)x − 2rx2

. . .

. (4.1)

Theorem 4.5. The generating function of the sum of the entries in the character table of Dn is
obtained by setting all even powers of y to 1 and odd powers of y to 0 in the formal power series

∏
i≥0

(
D(4ix4i)D(2iyx2i)R′

2i+1(x2i+1, y)
)
+ ∏

i≥0
D(4ix4i)− 1.

Let sD
n denote the sum of the entries of the character table of Dn and iD

n denote the
number of involutions in Dn. The following lemma relates the quantities sD

n and iD
n .

Lemma 4.6. For positive integers n, sD
n ≤ iD

n + (sB
n − iB

n ) + gB
n . Moreover, for odd positive

integers n, iD
n = iB

n /2 and sB
n = 2sD

n . When n is even, 2iD
n − iB

n = 2n/2 (n − 1)!!. Therefore, for
all positive integers n, iD

n ≤ iB
n ≤ 2iD

n .

The main result here follows now from Lemma 4.6.

Theorem 4.7. Property S holds for all demihyperoctahedral groups.

Corollary 4.8. The total sum sequence (sD
n ) grows asymptotically as fast as (iD

n ) and hence

sD
n ∼ e

√
2n

2
√

2e

(
2n
e

)n/2

.

5 Generalized symmetric groups

We follow [15, Section 2] for the notational background used in this section. For non-
negative integers r, n, let Z/rZ ≡ Zr = {0, 1, . . . , r − 1} be the additive cyclic group of
order r, where we use bars to distinguish these elements from those in the symmetric
group. Then define the generalized symmetric group

G(r, 1, n) = Zr ≀ Sn := {(z1, . . . , zn; σ) | zi ∈ Zr, σ ∈ Sn}.

If π = (z1, z2, . . . , zn; σ) and π′ = (z′1, z′2, . . . , z′n; σ′), then their product is given by

π π′ = (z1 + z′σ−1(1), . . . , zn + z′σ−1(n); σσ′),

where σσ′ is the standard product of permutations in Sn.
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The group G(r, 1, n) can also be realized as a subgroup of the symmetric group Srn.
In this interpretation G(r, 1, n) consists of all permutations π of the set {k + i | 0 ≤ k ≤
r − 1, 1 ≤ i ≤ n} satisfying π(k + i) = k + π(i) for all allowed k and i. For convenience,
we identify the letters 0 + i with i for 1 ≤ i ≤ n. Given a permutation π ∈ G(r, 1, n), its
values at 1, . . . , n determine π uniquely.

The two definitions above are identified using the bijective map ϕ defined on the
window [1, . . . , n] by

ϕ((z1, . . . , zn; σ)) =

[
1 2 · · · n

zσ(1) + σ(1) zσ(2) + σ(2) · · · zσ(n) + σ(n).

]
This map satisfies ϕ(π π′) = ϕ(π) ◦ ϕ(π′), where ◦ is the usual composition of permu-
tations in Srn.

Let π = (z1, . . . , zn; σ) ∈ G(r, 1, n) and (u1), . . . , (ut) be the cycles of σ. Let (ui) =
(ui,1, . . . , ui,ℓi) where ℓi is the length of the cycle (ui). Define the color of the cycle (ui) as
z(ui) := zui,1 + zui,2 + . . . + zui,ℓi

∈ Zr. For j ∈ {0, . . . , r − 1}, let λj be the partition formed
by the lengths of cycles of color j of σ. Note that ∑j |λj| = n. The r-tuple of partitions
λ = (λ0 | λ1 | . . . | λr−1) is called the cycle type of π. We refer to such an r-tuple of
partitions as an r-partite partition of size n, denoted λ |=r n. For example, the cycle type
of the element

(2, 1, 1, 1, 0, 2; (123)(45)(6)) ∈ G(3, 1, 6)

is (∅ | (3, 2) | (1)). The following theorem asserts that the conjugacy classes of G(r, 1, n)
are indexed by r-partite partitions of n.

Theorem 5.1. [14, p. 170] Two elements π1 and π2 in G(r, 1, n) are conjugate if and only if
their corresponding cycle types are equal.

Recall the function D(x) from (2.5) and R(x) from (2.6). The following result gener-
alizes Theorem 2.4.

Theorem 5.2. The generating function (in n) for the sum of the number of square roots of all the
conjugacy class representatives in G(r, 1, n) is

∏
i≥0

(
D(2irx4i)r Rr(2i+1)(x2i+1)r

)
r odd,

∏
i≥0

(
D(2irx4i)r D((2i + 1)rx4i+2)r/2 R r(2i+1)

4
(2x2i+1)r/2

)
r even.

In contrast with the case of Sn, the square root function does not give column sums
for character table of G(r, 1, 3), r > 2 as the group has non-real irreducible charac-
ters [2]. Given π = (z1, z2, . . . , zn; σ) ∈ G(r, 1, n), define the bar operation as π :=
(−z1, . . . ,−zn; σ). An element g ∈ G(r, 1, n) is said to have an absolute square root if
there exists π ∈ G(r, 1, n) such that ππ = g. The next result describes columns sum for
G(r, 1, n) in terms of absolute square roots.
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Theorem 5.3. [2, Theorem 3.4] Let {χλ | λ is a r-partite partition of n} be the set of irreducible
characters of G(r, 1, n). Then

∑
λ

χλ(g) = |{π ∈ G(r, 1, n) | ππ = g}| ∀g ∈ G(r, 1, n),

where the sum runs over all r-partite partitions λ.

By analyzing the absolute square roots we will provide generating functions for num-
ber of columns with zero sums and the total sum of the character table of G(r, 1, n).

Lemma 5.4. 1. The absolute square of a cycle of odd length d (of any color) is a cycle of the
same length of color 0.

2. The absolute square of a cycle of even length d (of any color) is a product of two cycles, each
of length d/2, such that sum of their colors is zero.

The following results extend Bessenrodt–Olsson’s theorems [5] from Sn to G(r, 1, n).

Proposition 5.5. An r-partite partition λ = (λ0 | λ1 | . . . | λr−1) is the cycle-type of an
absolute square in G(r, 1, n) if and only if the following hold:

1. each even part in λ0 has even multiplicity,

2. λi = λr−i for all i ≥ 1, and

3. each part in λr/2 has even multiplicity when r is even.

Theorem 5.6. The generating function for r-partite partitions which are cycle-types of absolute
squares in G(r, 1, n) is:

(
∞

∏
i=0

1
1 − q2i+1

)(
∞

∏
j=1

1
1 − q4j

)(
∞

∏
k=1

1
1 − qk

)(r−1)/2

r odd,(
∞

∏
i=0

1
1 − q2i+1

)(
∞

∏
j=1

1
(1 − q4j)(1 − q2j)

)(
∞

∏
k=1

1
1 − qk

)(r−2)/2

r even.

Using [2, Observation 4.2], we obtain the number of absolute square roots for cycles
of a single length and color.

Proposition 5.7. Given a positive integer r, the following holds.

1. The number of absolute square roots of an element of cycle type λ0 = ((2k)2m2k) ( and all
other λi is zero) is (2m2k − 1)!! (2kr)m2k .
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2. The number of absolute square roots of an element of cycle type λ0 = ((2k + 1)m2k+1) ( and
all other λi is zero) is

⌊m2k+1
2 ⌋

∑
j=0

(
m2k+1

2j

)
(2j − 1)!! (2k + 1)j rm2k+1−j.

3. The number of absolute square roots of an element of cycle type λa = λr−a = (kmk) ( and
all other λi is zero) is mk! (kr)mk .

4. For even r, the number of absolute square roots of an element of cycle type λr/2 = (k2mk) (
and all other λt is zero) is (2mk − 1)!! (kr)mk .

Adin–Postnikov–Roichman [2, Corollary 4.3] also give a formula to count the number
of absolute square roots of any element in G(r, 1, n). Using Proposition 5.7, we generalize
their result to determine the sum of the character table in terms of generating functions.
To do so, we also need the classic generating function for the factorials due to Euler [7]
given by

F (x) = ∑
n≥0

n!xn =
1

1 − x

1 − x

1 − 2x
1 − 2x

. . .

. (5.1)

Theorem 5.8. The generating function (in n) of the total sum of the character table of G(r, 1, n)
is 

∏
i≥0

(
F (irx2i)(r−1)/2 D(2irx4i)R(2i+1)/r(rx2i+1)

)
r odd,

∏
i≥0

(
F (irx2i)(r−2)/2 D(2irx4i)D(rix2i)R(2i+1)/r(rx2i+1)

)
r even.

Remark 5.9. When r = 2, absolute square roots are exactly the usual square roots. Thus
the generating function for (sB

n) can be obtained by setting r = 2 in either Theorem 5.2 or
Theorem 5.8.
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Vertex models for the product of a Schur and
Demazure polynomial

Timothy C. Miller*1

1Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON N2L
3G1, Canada

Abstract. The product of a Schur polynomial and Demazure atom or character ex-
pands positively in Demazure atoms or characters, respectively. The structure coeffi-
cients in these expansions have known combinatorial rules in terms of skyline tableaux.
We develop alternative rules using the theory of integrable vertex models, inspired by
a technique introduced by Zinn-Justin. We apply this method to coloured vertex mod-
els for atoms and characters obtained from Borodin and Wheeler’s models for non-
symmetric Macdonald polynomials. The structure coefficients are then obtained as
partition functions of vertex models that are compatible with both Schur (uncoloured)
and Demazure (coloured) vertex models.

Keywords: Demazure atoms, Demazure characters, Schur polynomials, vertex models,
structure coefficients, key polynomials

1 Introduction

Demazure atoms, also called standard bases, are a family of non-symmetric polynomials
indexed by weak compositions. Demazure characters, also called key polynomials, are
a closely related family of polynomials which are also indexed by weak compositions;
they may be written as a sum of Demazure atoms. Denote the Demazure atom and
character on a weak composition α = (α1, . . . , αn) in the variables x = (x1, . . . , xn) by
Aα(x) and Kα(x), respectively. The set of Demazure atoms or characters over all weak
compositions of length n are a basis for Z[x1, . . . , xn]. It is known that the products of a
Schur polynomial sλ(x) and a Demazure polynomial have positive expansions:

sλ(x)Aα(x) = ∑
β

cβ
λ,αAβ(x),

sλ(x)Kα(x) = ∑
β

dβ
λ,αKβ(x),

where the structure coefficients cβ
λ,α and dβ

λ,α are non-negative integers.

*tcmiller@uwaterloo.ca

mailto:tcmiller@uwaterloo.ca
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In [3], Haglund, Luoto, Mason and van Willigenburg give formulas to calculate cβ
λ,α

and dβ
λ,α in terms of skyline tableaux. Here, we use the theory of integrable vertex models

to derive alternative rules where the structure coefficients are calculated as the number
of fillings of “diamond” vertex models. We emulate the technique developed in [11]
where Zinn-Justin reproves the puzzle rule of [4, 5] for the product of two double Schur
polynomials. Wheeler and Zinn-Justin later use the same technique to find structure
coefficients for double Grothendieck polynomials [10]. Knutson and Zinn-Justin also
employ techniques from integrability in a series of papers computing puzzle rules for
products of Schubert classes in d-step flag varieties (for d ≤ 4) [6, 7, 8].

The proofs in [10, 11] are completely combinatorial, gluing vertex models together in
two different ways and showing both are equivalent. One side of the equation is mani-
festly a product and the other side is manifestly a summation. Applying a Yang–Baxter
equation to the model for the product transforms it into the model for the summation.
Both of these results concern products of symmetric polynomials, whereas our results
involve the non-symmetric Demazure polynomials. Our results follow from a variant of
the Yang–Baxter equation stated in Lemma 1.

In this extended abstract, we define Demazure atoms and characters as the parti-
tion function of a vertex model. Our conventions for atoms match those of Mason [9]
who defines Aα(x) in terms of semi-skyline augmented fillings; reversing the order of
the composition and basement in Mason’s diagrams yields Kα(x). Our model is derived
from setting q = t = 0 in Borodin and Wheeler’s [1] vertex model for permuted basement
non-symmetric Macdonald polynomials f ρ

α (x; q, t), where ρ is a permutation. In our con-
ventions, we have Aα(x) = f id

(αn,...,α1)
(xn, . . . , x1; 0, 0) and Kα(x) = f w0

α (xn, . . . , x1; 0, 0).
Significant modifications are made to make the vertices compatible with the Schur poly-
nomial model in [11]. Our model for Aα(x) bears more resemblance to that of Brubaker,
Buciumas, Bump and Gustafsson [2] with differing weights and boundary.

A benefit of this approach is that vertex models may be developed independently
and then fit into this framework, allowing one to test rules assuming an analogue of
Lemma 1 holds. Our results are suggestive of further applications such as extensions to
the Grothendieck model in [10].

2 Vertex models for Schur and Demazure polynomials

A weak composition α = (α1, . . . , αn) is a sequence of non-negative integers. The integer
αi is the part of α at index i and the length of α is its number of parts; the largest part
in α is denoted max(α). A partition λ = (λ1, . . . , λn) is a weak composition sorted in
descending order. Throughout this extended abstract, α and β are weak compositions, λ

is a partition and all weak compositions have length n.
We describe two strings, αA and αK, that re-encode a weak composition α. Let λ =
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sort(α) be the partition with the same parts as α sorted in descending order. Enclose the
Young diagram of λ between the top left corner of a rectangle and a North-East lattice
path as depicted in Example 1. East steps are labelled 0 and North steps are labelled
with the integers 1 through n so that i occurs after precisely αi East steps. If North steps
occur in the same vertical, then moving North, we label them in descending order for αA
and ascending order for αK. We then obtain either string by reading labels off the lattice
path from South-West to North-East.

We also specify two strings, λ− and λ+, that re-encode a partition λ. For λ−, East
steps are labelled 0 and North steps are labelled 1. For λ+, East steps are labelled with
the symbol + and North steps are labelled 0. Strings are read off the lattice path as
before.

Example 1. We depict our labelling procedure below with α = (0, 3, 0, 1, 3) and λ = sort(α) =
(3, 3, 1, 0, 0), assigning each label a colour as a visual aid. Darker shades of blue correspond to
larger integers.

3

1

4

5

2

0

0 0

αA

1

3

4

2

5

0

0 0

αK

1

1

1

1

1

0

0 0

λ−

0

0

0

0

0

+

+ +

λ+

Reading the labels from South-West to North-East produces the strings:

αA = = 31040052
αK = = 13040025
λ− = = 11010011
λ+ = = 00+0++00

The model for Demazure atoms consists of a lattice filled with the tiles in Figure 1.
This is a coloured vertex model where the tiles are “vertices” much like those in [2].
Labels of tiles must match along adjacent edges and along the boundary of the lattice.
We label the left boundary with the string αA and label the bottom edges 1 through
n from left to right; the other boundary edges are labelled 0. All tiles in the model
have weight 1 except for the tiles of weight xc where c is the column number where the
tile occurs; columns are numbered 1 through n from left to right. A filling’s weight is
the product of its tile weights and the sum of all filling weights is called the partition
function.
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0

0

0

0

0

i

i

0

i

0

0

i

i

i

i

i

j

i

i

j

i

j

i

j

i

0

i

0

weight: xc

Figure 1: Tiles for the Demazure atom vertex model where 1 ≤ i < j. The rightmost
tile has weight xc where c is the column number where the tile occurs.

The partition function of this vertex model is the Demazure atom on n variables,
depicted diagrammatically:

αA

1 2 3 · · · n

Aα(x) =

Example 2. Let α = (0, 2, 2, 0), so that αA = 410032 = labels the left boundary.
There are three fillings of the atom model, showing Aα(x1, x2, x3, x4) = x1x2

2x3 + x1x2x2
3 + x2

2x2
3.

1 2 3 4
4

1

3
2

1 2 3 4
4

1

3
2

1 2 3 4
4

1

3
2

x1x2
2x3 x1x2x2

3 x2
2x2

3

+ +

Zinn-Justin considers a similar model for Schur polynomials in [11] which may be
thought of as the “uncoloured” version of the model for atoms. Using the same tiles
with only colour 1, we label the left boundary with the string λ− and label all bottom
edges with 1, which we denote as n = 1n:

λ−

n

sλ(x) =
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Example 3. Let λ = (2, 2, 1). There are three fillings of the Schur model, showing that
sλ(x1, x2, x3) = x2

1x2
2x3 + x2

1x2x2
3 + x1x2

2x2
3.

1

1
1

1 1 1

1

1
1

1 1 1

1

1
1

1 1 1

x2
1x2

2x3 x2
1x2x2

3 x1x2
2x2

3

+ +

Lastly, as noted in [2], Remark 4.5, the model for Demazure characters uses the same
tiles rotated 180 degrees, which only alters the fifth tile in Figure 1. We can obtain
Demazure characters as a partition function for the following vertex model filled with
these new tiles:

αK

1 2 3 · · · n

Kα(x) =

3 Vertex models for cβ
λ,α and dβ

λ,α

In this section we build two “diamond” vertex models filled with the tiles below where
1 ≤ i < j < k. If a blue line of shade b shares an edge with a red line, the edge is labelled
b+. Two shades of blue a and b with a < b may share an edge labelled ab. All tiles have
weight 1.

0 i

0i

+ i+

0i

0 i

+i+

+ i+

+i+

ij j

ijj

ik k

ijj

ij j

ikk

0 i

ijj

ij j

0i

0 0

00

+ 0

+0

i+ i

+0

+ 0

i+i

i+ i

i+i

j+ j

i+i

i+ i

j+j

+ i+

ijj

ij j

+i+

Further, we do not allow two adjacent tiles to form an internal banned rhombus as
depicted in Figure 2. These restrictions are still local and can be imposed with additional
labels, but we exclude them to avoid clutter. We may now state our theorem.
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i j i+ j+

(a) Banned rhombi for atom model.

j i j+ i+

(b) Banned rhombi for character model.

Figure 2: Restrictions on adjacent diamond tiles where 1 ≤ i < j.

Theorem 1. The structure coefficients cβ
λ,α and dβ

λ,α respectively count the number of fillings of
the vertex models

cβ
λ,α

αA

βAλ+

k n

dβ
λ,α

αK

βKλ+

k n

where k = max(β) and the restrictions in Figure 2a and Figure 2b apply respectively within each
model.

Example 4. For α = (1, 3, 1, 0), λ = (3, 1, 0, 0) and β = (1, 4, 3, 1), we have that k =

max(β) = 4. There are two fillings of the corresponding Schur–atom model and thus cβ
λ,α = 2.

1

2

3

4

1

2

3

4

+

+
+

+

+
+

+
+ 1

2

3

4

1

2

3

4

+

+
+

+

+
+

+
+
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We call the vertex model for cβ
λ,α the Schur–atom model and the vertex model for dβ

λ,α
the Schur–character model. Recall that we assume α, β and λ all have length n, but we
may append zeros to make their lengths match if needed. Similarly, we may append
zeros to the end of the strings αA, αK and λ− and append + symbols to the end of λ+

so that these strings all have length n + k and fit in the diagram.

4 Proof of Theorem 1

In this section, we only explain the proof of the Schur–atom model, but the proof of the
Schur–character model is analogous. In Figure 3, we have tiles in three orientations with
a new orientation in the second row containing a tile of weight −xc. We call the tiles in
the first row right-sheared and the tiles in the second row left-sheared. We again depict
vertex models with grey diagrams where tiles must have the same orientation as the
grey region they are placed within. In our configurations, right- and left-sheared tiles
are in the same column, say c, if one is on top of the other; hence these tiles may have
weight xc or −xc, respectively.

Note red lines may now share the same path as blue lines; these tiles facilitate the
proof and do not appear in the final Schur–atom model. We still ban rhombi between
diamond tiles as in Figure 2a, but there are no such restrictions between tiles that are not
both diamonds. The key to the proof is the following lemma equating columns of tiles.

Lemma 1. Let q1, . . . , qm, r, s, t1, . . . , tm, u and v be fixed labels where u and r are in { , } =
{0,+}. The following column configurations have the same weight:

q1

q2

qm

t1

t2

tm

v

s

r

u

q1

q2

qm

t1

t2

tm

v

s

r

u

=

Proof. Proving this lemma is the main difficulty of this work. The proof is by induction
with manual checking of several edge cases.

Remark 1. In [10, 11] the authors proceed similarly with a Yang–Baxter equation that equates
unit hexagons with unrestricted boundaries. In contrast, our equation requires that we restrict
the labels on the South-West and North-East edges, suggesting a more general framework to
explore.
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0

0

0

0

0

i

i

0

i

0

0

i

i

i

i

i

j

i

i

j

i

j

i

j

+

i

+

i

+

0

+

0

+

i+
i

0

i

0

+

i+

i

i+
i

i+

j

i+
i

j+

i

j+
i

j+

i

0

i

0

weight: xc

i

0

i

0

i

i+

+

0

+

0

i

i+
+

i+

+

i+
i

+

i

+

0

0

0

0

0

+

+

0

+

0

0

+

+

+

+

+

+

0

+

0

weight: −xc

0 0

00

+ 0

+0

i+ i

+0

+ 0

i+i

i+ i

i+i

j+ j

i+i

i+ i

j+j

0 i

0i

0 i

ijj

ij j

0i

ij j

ijj

ik k

ijj

ij j

ikk

+ i+

0i

+ i+

ijj

ij+ j+
0i

ij+ j+

ijj

ik+ k+

ijj

ij+ j+
ikk

0 i

+i+

0 i

ij+j+

ij j

+i+

ij j

ij+j+

ik k

ij+j+

ij j

ik+k+

+ i+

+i+

+ i+

ij+j+

ij+ j+

+i+

ij+ j+

ij+j+

ik+ k+

ij+j+

ij+ j+
ik+k+

Figure 3: The full set of tiles where 1 ≤ i < j < k.
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Example 5. We consider two examples of Lemma 1. In the first example, both sides of the
equation have weight xc. In the second example, there are two ways to fill the column on the
left-hand side which sum to a weight of 0 and there is no way to fill the column on the right-hand
side.

2+

3+5+

1

1

2

4 4
3

5

+

xc

=

2+

3+5+

1

1

2

4 4
3

5

+

xc

3+

3+

1

1

2
2

4 4

+

+

x3
c

+
3+

3+

1

1

2
2

4 4

+

+

−x3
c

= 0

Note that rotating columns 180 degrees gives an analogous column lemma used to
prove correctness of the Schur–character model. Interpreting the next lemma proves our
result.

Lemma 2. Set k = max(α) + max(λ). The configurations below have the same weight:

αA

λ+

1 2 3 · · · n

n

k n

k n
αA

λ+

1 2 3 · · · n

n

k n

k n=

Proof. Repeatedly applying Lemma 1 to internal columns transforms the left-hand side
into the right-hand side. First apply the lemma to the column of length 2(k + n) contain-
ing the left-sheared tile most to the North-East and then repeat with the next left-sheared



10 Timothy C. Miller

1 1 1

1
1

11

2

3

1 2 3

+
+

+

+

+
+

+
+

A

B

C

D

E

1 1 1

1
1

11

2

3

1 2 3

+
+

+

+

+
+

+
+

K

I

J
G

H

Figure 4: Two fillings of weight x3
1x2

2x4
3 from the configurations in Lemma 2 where

λ = (2, 2, 1) and α = (2, 1, 2), so that n = 3 and k = 4. Regions are labelled to facilitate
exposition.

tile, moving right-to-left and top-to-bottom. The boundary conditions ensure that the
South-West and North-East labels of columns we equate are always in { , } at every
stage in this process.

The proof now follows from examining both sides of the equation in Lemma 2. In
short, the left-hand side is manifestly the product sλ(x)Aα(x) and the right-hand side
is manifestly the summation ∑β cβ

λ,αAα(x) where cβ
λ,α counts fillings of the Schur–atom

model.

Proof of Theorem 1. We examine both sides of the equation in Lemma 2, which is better
illustrated with the example fillings in Figure 4. Within region A, all red lines must
move East and blue lines must move North-West. Those red lines must move straight
North-East through B, transmitting the string λ+ to the South-West boundary of C.
From Lemma 9 in [11], there is only one way to fill C, which forces the shared boundary
between C and E to be the string λ− upside-down. Thus, regions A, B and C have
weight 1.

Next, we recognize region D as our vertex model for the Demazure atom Aα(x).
From the previous paragraph, we have that λ− is upside-down on the South-East bound-
ary of E. Rotating region E by 180 degrees, we see that it is the vertex model for sλ(x)
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with the variables in reverse order; since sλ(x) is symmetric, the weight of the left-hand
side is the product sλ(x)Aα(x). We summarize pictorially:

αA

λ+

1 2 3 · · · n

n

k n

k n

1

1

1
=

αA

1 2 3 · · · n

n

λ−sλ

Aα

= sλ(x)Aα(x)

Considering the right-hand side, we have that regions G, H and I always have weight
1 and follow the same pattern as in Figure 4, transmitting the string k n to the North-
East boundary of region K. Within region J, all blue lines must exit the North-West
boundary if they are to reach the North-West boundary of K. This follows from our
choice of k = max(λ) + max(α). The blue lines then travel through the boundary be-
tween J and K, varying over strings βA that encode weak compositions. Fixing a par-
ticular βA along this boundary, we recognize region J as Aβ(x) and region K as the
Schur–atom model from Theorem 1. Thus, the right-hand side is a summation over
compositions β where each summand is a product of our Schur–atom model and Aβ(x).
We give another pictorial summary:

αA

λ+

1 2 3 · · · n

n

k n

k n

1

1

1 = ∑
β

αA

λ+

1 2 3 · · · n

k n

Aβ

∑
β

αA

λ+

k n

βA

cβ
λ,α

Aβ(x)=

By Lemma 2, we can equate both sides, completing the proof. As a final note, we used
that k = max(λ) + max(α) in our proof, but when considering the filling of a particular
diamond where β is given, it suffices to set k = max(β) as we do in Theorem 1.
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On the f -vectors of flow polytopes
for the complete graph

William T. Dugan*1

1Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst
MA, USA

Abstract. The Chan-Robbins-Yuen polytope (CRYn) of order n is a face of the Birkhoff
polytope of doubly stochastic matrices that is also a flow polytope of the directed
complete graph Kn+1 with netflow (1, 0, 0, . . . , 0,−1). The volume and lattice points of
this polytope have been actively studied, however its face structure has received less
attention. We give generating functions and explicit formulas for computing the f -
vector by using Hille’s (2003) result bijecting faces of a flow polytope to certain graphs,
as well as Andresen-Kjeldsen’s (1976) result that enumerates certain subgraphs of the
directed complete graph. We extend our results to flow polytopes over the complete
graph having arbitrary (non-negative) netflow vectors and recover the f -vector of the
Tesler polytope of Mészáros–Morales–Rhoades (2017).

Keywords: Chan-Robbins-Yuen polytope, flow polytopes, complete graphs, Fishburn
matrices

1 Introduction

The Chan-Robbins-Yuen polytope (CRYn) of order n is defined as the convex hull of n
by n permutation matrices π for which πi,j = 0 for j ≥ i + 2 [6]. This polytope has been
the object of much interest in the research community, as it possesses many interesting
traits. For example, Zeilberger proved in [17] using a variation of the Morris constant
term identity that CRYn has normalized volume equal to the product of the first n − 2
Catalan numbers. A second algebraic proof was provided in [2], though a combinatorial
proof of this fact remains elusive. CRYn is also a face of the Birkhoff polytope of doubly
stochastic matrices having dimension (n2) and 2n−1 vertices [6].

CRYn is also an example of a more general family of polytopes, namely those which
are flow polytopes of the complete (transitively directed) graph Kn+1 on vertex set
{v1, . . . , vn+1}, which include the family of Tesler polytopes [11].

*wdugan@umass.edu. This project was partially supported by NSF grants DMS-1855536 and DMS-
2154019.

wdugan@umass.edu
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Definition 1.1. For n ∈ N and a ∈ Nn, we denote the flow polytope FKn+1(a,−∑n
i=1 ai)

as Flown(a). We will denote the f -vector of FKn+1(a,−∑n
i=1 ai) by f (n)(a) or ( f (n)(a; x)

if written as a Laurent polynomial, where the coefficient of xi gives the number of i-
dimensional faces for i ≥ −1).

In particular, CRYn is realized as an instance of Flown(a) by setting a = (1, 0, . . . , 0).
Flown(a) has also been studied by Mészáros–Morales–Rhoades [11] in the context of
Tesler polytopes, in which they show that the case of all ai > 0, such as a = (1, 1, . . . , 1),
is combinatorially equivalent to a product of simplices ∆n × ∆n−1 × . . . × ∆1. This was
later generalized to other graphs by Mészáros–Simpson–Wellner [12]. Part of the diffi-
culty in obtaining the f -vector of Flown(a) for more general a arises from the fact that
Flown(1, 1, . . . , 1) is simple, whereas general instances of Flown(a) (including the case of
CRYn) are not.

In this manuscript, we give an explicit formula for the f -vector of Flown(a) for any
non-negative a as a sum over certain compositions. Namely, given a netflow vector a, let
revcomp(a) be the composition obtained by reading the entries of a from right to left,
inductively creating blocks whenever a new nonzero entry is encountered, and recording
the tuple of sizes coming from the list of blocks (see Example 2.10). Furthermore, let ⪰
be the partial order of refinement on compositions, and let ℓ(α) be the number of parts
of composition α.

Theorem 1.2. Given a netflow vector (a,−∑n
i=1 ai) = (a1, . . . an,−∑n

i=1 ai) with ai ∈N, let α be
the integer composition of n given by α = revcomp(a). Then the f -vector Laurent polynomial of
Flown(a) is given by:

f (a; x) =
1
x
+

1
xn ∑

β⪰α

(−1)ℓ(α)−ℓ(β)πℓ(β)(x)xβ−1∣xi=(x+1)i−(x+1) (1.1)

where πn(x) ∶= xn[n]x+1! =∏n
i=1((x + 1)i − 1).

The reader may notice that equation (1.1) looks almost like an evaluation of a qua-
sisymmetric function. We will discuss this viewpoint in Section 2.2.

Note that in the case of ai > 0 for all i, we recover the results of [11, Thm 1.7] that
f (a; x) = [n]x+1!, a consequence of Flown(a) being combinatorially equivalent to a prod-
uct of simplices ∆n ×∆n−1 × . . . ×∆1 as referenced above. In the case that a = (1, 0, . . . , 0),
we obtain a succinct formula for the previously-unknown f -vector of CRYn as a sum
over complete homogeneous symmetric functions hm(x) ∶= ∑1≤i1≤...≤in xi1⋯xin .

Corollary 1.3. Let f (n)(x) be the f -vector of CRYn = Flown(1, 0, . . . , 0) written as a Laurent
polynomial. Then for all n ≥ 1:

f (n)(x) =
1
x
+

1
xn

n−2
∑
m=0
(−1)m(1+ x)mπn−m(x) ⋅ hm((x+1)1 −1, (x+1)2 −1, . . . , (x+1)n−m−1 −1)

(1.2)
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This is a direct generalization of a theorem due to Andresen–Kjeldsen [1, Prop. 3.3]
(which is recovered by setting x = 1) enumerating certain subgraphs of Kn+1. In their
paper, the authors of [1] study two families of subgraphs originating from their prior
work in automata theory:

Ωn ∶= {H ⊆ Kn+1 ∣ every v ∈ V(H) lies along a direct path from v1 to vn+1}

and the following set of primitive subgraphs:

Ω′n ∶= {H ∈ Ωn ∣V(H) = {v1, . . . , vn+1}} .

They then give formulas for the cardinalities ψn ∶= ∣Ωn∣ (c.f. [16, A005016]) and ξn ∶= ∣Ω′n∣
(c.f. [16, A005321]). For example, they show that:

ψn =
n−2
∑
m=0
(−2)mπn−m ⋅ hm(21 − 1, 22 − 1, . . . , 2n−m−1 − 1) (1.3)

where πn ∶=∏
n
i=1(2i −1). One may actually recover ψn from ξn (and vice versa), as shown

in [1, eq. 1], which is a special case of our Corollary 3.2.
The connection between Corollary 1.3 and equation (1.3) is made explicit via the

following powerful theorem of Hille [8], originally introduced in the context of quivers.
Here a subgraph H ⊆ G is a-valid if H is the support of an a-flow on G, and the first Betti
number of H is β1(H) ∶= ∣E(H)∣− ∣V(H)∣+ c(H), where c(H) is the number of connected
components of H. See also [7].

Theorem 1.4 ([8]). Let FG(a) be a flow polytope such that ai ≥ 0 for all i. Then for d ≥ 0, the
d-dimensional faces of FG(a) are in one-to-one correspondence with subgraphs H ⊆ G such that
H is a-valid and β1(H) = d. The empty face of FG(a) corresponds to the empty subgraph of G.

In this way, we see that the f -vector of CRYn is exactly a generating function over Ωn,
where variable x keeps track of the first Betti number of H ∈ Ωn. This connection leads
us to define the new notion of primitive f -vector of Flown(a) as follows.

Definition 1.5. The primitive f -vector of Flown(a), denoted f̃ (n)(a) (or as f̃ (n)(a; x) if
written as a polynomial) is a generating function over the set of a-valid subgraphs of
Kn+1 that are primitive (use the entire vertex set) keeping track of the first Betti number.

Note that it follows immediately from the definition that f̃ (n)(1, 0, . . . , 0; x)∣x=1 = ξn in
the same way that f (n)(1, 0, . . . , 0; x)∣x=1 = ψn from Theorem 1.4. See also Figure 1.

Later in the text, we describe closed-form expressions for the primitive f -vector of
Flown(a) (Lemma 2.5 and Lemma 2.11) and describe a relationship between f (n)(a) and
f̃ (n)(a) for arbitrary (non-negative) a (Lemma 2.6), as well as the special case of CRYn
(Corollary 3.2). Data for f (n)(1, 0 . . . , 0) and f̃ (n)(1, 0 . . . , 0) are included in Table 1 and
Table 2, respectively.

A second, special relationship exists between the f -vector and primitive f -vector in
the case of CRYn, and specializes to [1, Prop. 4.1 ] of Andresen–Kjeldsen by setting x = 1:

https://oeis.org/A005016
https://oeis.org/A005321
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Lemma 1.6. For all n ≥ 1, the f -vector and primitive f -vector of CRYn are related as:

x f (n)(x) = (1+ x)n−1 f̃ (n)(x). (1.4)

Finally, we remark that Jelínek [10] observed that Ω′n is in fact in bijection with the
set of primitive Fishburn matrices (upper triangular, 0-1 matrices such that no row nor
column is the zero vector) , and consequently is related to the enumeration of interval
orders [5], by interpreting H ∈ Ω′n as the upper-triangular matrix determined by its
edges. As discussed in [9], the bijections continue, as the more general notion of Fishburn
matrices are in bijection with Stoimenow matchings, ascent sequences, and more [5, 15].
See [9, 10] for a more comprehensive list of related combinatorial objects.

Either from Corollary 1.3 or from a multivariate generating function of Fishburn
matrices due to Jelínek [10, Thm. 2.1] one obtains the following nice generating function
for d-dimensional faces of CRYn for varying d and n.

Corollary 1.7. The number of d-dimensional faces of CRYn is given by the coefficient f (n)d =

[tnxd]F(t, x), where F(t, x) is defined by:

F(t, x) ∶=
1

x − xt
+
∞
∑
n=0

tnx−n
n
∏
i=1

(1+ x)i − 1
1+ ((1+ x)i − 1− x)tx−1 . (1.5)

The rest of this paper is organized as follows: In Section 2, we derive our main
result Theorem 1.2 as well as results for general primitive f -vectors (Lemma 2.5 and
Lemma 2.11) needed in the proof. We conclude in Section 3 by specializing our results
to CRYn.

2 Main Results

Remark 2.1. Notations and conventions: Our vector a used in this paper is often de-
noted ã in the flow polytope literature, as it does not account for the last vertex whose
netflow is predetermined by the first n entries. Moreover, we note that in the case of
ai ≥ 0 for all i as we are assuming in this manuscript, a consequence of Theorem 1.4 is
that the combinatorial equivalence class of FG (a,−∑n

i=1 ai) is completely determined by
the support of a. Hence we may assume for the rest of the paper that a ∈ {0, 1}n. An
excellent source for any other unexplained terms and notation is [3].

We now describe various results that build towards Theorem 1.2.

2.1 Formulas as sums over subsets

In [1], the authors define certain sequences of numbers which prove useful for the exact
enumeration of the sets Ωn and Ω′n (here we require a change of convention to non-
increasing sequences instead of non-decreasing sequences).
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Figure 1: The elements of Ω3 grouped by first Betti number, corresponding to the f -
vector (1, 4, 6, 4, 1) of CRY3 (but excluding the empty face which would correspond to
the empty graph). The primitive f -vector (0, 1, 4, 4, 1) corresponds to the number of
graphs in each grouping which use all vertices.

n f -vector of CRYn
1 1, 1
2 1, 2, 1
3 1, 4, 6, 4, 1
4 1, 8, 26, 45, 45, 26, 8, 1
5 1, 16, 98, 327, 681, 944, 897, 588, 262, 76, 13, 1
6 1, 32, 342, 1943, 6982, 17326, 31236, 42198, 43521, 34601, 21249, 10020, 3571, 933, 169, 19, 1

Table 1: The first few f -vectors of CRYn.

Definition 2.2 ([1]). Let Sn,m be the set of all sequences (i1, . . . in) having length n such
that:

(i) i1 = n −m, (ii) in = 1, (iii) ij ≥ ij+1 ≥ ij − 1 for all j < n.

For our purposes, it will be simpler to think of the sequences in Sn,m as subsets of
[n] ∶= {1, . . . , n} through the following correspondence, of which we omit the proof.

Lemma 2.3. The map desc ∶ Sn,m → (
[n−1]

m ) mapping a sequence in Sn,m to the set of indices of
its descents is a bijection.

From here on we will be more interested in the inverse bijection of Lemma 2.3, and
hence will denote by seqn ∶ [n] → ⊔

n
m=0 Sn+1,m the map that takes takes a subset of [n] to

its corresponding non-increasing sequence of length n + 1.

Example 2.4. The following is an example of seq4 applied to subsets of the set [4] of
cardinality 2:

seq4({1, 2}) = (3, 2, 1, 1, 1), seq4({1, 3}) = (3, 2, 2, 1, 1), seq4({1, 4}) = (3, 2, 2, 2, 1),
seq4({2, 3}) = (3, 3, 2, 1, 1), seq4({2, 4}) = (3, 3, 2, 2, 1), seq4({3, 4}) = (3, 3, 3, 2, 1).
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n f̃ -vector of CRYn
1 0, 1
2 0, 1, 1
3 0, 1, 4, 4, 1
4 0, 1, 11, 33, 42, 26, 8, 1
5 0, 1, 26, 171, 507, 840, 865, 584, 262, 76, 13, 1
6 0, 1, 57, 718, 4017, 12866, 26831, 39268, 42211, 34221, 21184, 10015, 3571, 933, 169, 19, 1

Table 2: The first few primitive f -vectors of CRYn.

These are all the ingredients we need to write down a first formula for f̃ (n)(a; x).

Lemma 2.5. For all n ∈N and non-negative a of length n, a formula for f̃ (n)(a; x) (that is, the
primitive f -vector of Flown(a) written as a polynomial in x) is given by:

f̃ (n)(a; x) =
1
xn ∑

S∈[supp(a′),[n−1]]
(−1)∣S∣+n+1

∏
j∈[n]
((x + 1)seqn−1(S)j − 1) (2.1)

where a′ = (a2, a3, . . . an), supp is the support function ( namely supp(a′) returns the set of
indices j such that aj+1 ≠ 0), and [supp(a′), [n − 1]] is the interval of the Boolean lattice from
supp(a′) to [n − 1].

Proof sketch. The idea of the proof is to start with the set of all primitive subgraphs of
Kn+1 (not just a-valid ones) and apply the principle of inclusion and exclusion in order
to obtain the set of primitive subgraphs that are also a-valid.

Associate to T ⊆ {v2, . . . vn} its indicator set ST ⊆ [n − 1] in the canonical way (namely
i ∈ ST if and only if vi+1 ∈ T). For each such S, define RS to be the set of primitive
subgraphs of Kn+1 such that i ∈ Sc implies indeg(vi+1) = 0, where indeg(vi+1) is the in-
degree of vertex vi+1. Then S1 ⊆ S2 implies RS1 ⊆ RS2 , and so the set Prima of a-valid
primitive subgraphs of Kn+1 may be found via inclusion-exclusion:

∣Prima∣ = ∑
S∈[supp(a′),[n−1]]

(−1)∣S∣+n+1∣RS∣, (2.2)

where the lowest set in the interval is supp(a′) since the elements of any subset of
Rsupp(a′) are a-valid. Finally, if we let rS(x) be the generating function over the set RS
that keeps track of the sum of all outdegrees of each graph in RS, then a modified
argument as that appearing in the proof of [1, Prop 3.2] gives that:

rS(x) = ∏
j∈[n]
((x + 1)seqn−1(S)j − 1). (2.3)
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Combining equations (2.2) and (2.3) gives a generating function over the set Prima keep-
ing track of the sum of all outdegrees of each graph. Finally, since our graphs are
primitive, the first Betti number of each graph is exactly the sum of all outdegrees minus
n, from which the final formula follows.

The next result describes how the f -vector of Flown(a) may be obtained easily as a
sum of primitive f -vectors.

Lemma 2.6. For all n ∈N and non-negative a of length n:

f (n)(a; x) =
1
x
+∑

b⪯a
f̃ (∣b∣)(b; x) (2.4)

where b ⪯ a if b can be obtained from a by deleting some subset (possibly empty) of the zeros in
a and where ∣b∣ is the length of b.

Proof sketch. Let F be a face of Flown(a). If F is the empty face, then it does not corre-
spond to a primitive graph and hence contributes a term of 1

x to f (n)(a; x). Otherwise, F
is non-empty and hence corresponds to an a-valid subgraph H ⊆ Kn+1 by Theorem 1.4.
Let SH ⊆ {v1, . . . , vn+1} be the set of vertices which are part of the support of a flow de-
termining H. Then H is a primitive graph when restricted to the vertex set SH, hence is
counted by f̃ (∣b∣)(b; x) for some b determined by SH. The possible b’s that can appear
are exactly those described in the lemma statement.

Example 2.7. As an example, Lemma 2.6 would give us the following equivalence:

f (6)(1, 0, 0, 1, 1, 0; x) =
1
x
+ f̃ (6)(1, 0, 0, 1, 1, 0; x)+ 2 f̃ (5)(1, 0, 1, 1, 0; x)+ f̃ (5)(1, 0, 0, 1, 1; x)

+ f̃ (4)(1, 1, 1, 0; x)+ 2 f̃ (4)(1, 0, 1, 1; x)+ f̃ (3)(1, 1, 1; x)

where the coefficient 2 arises in front of f̃ (5)(1, 0, 1, 1, 0; x), for example, as there are two
ways to delete zeros that result in this input vector.

2.2 Formulas as evaluations of sums of quasisymmetric polynomials

We can rewrite Lemma 2.5 as an evaluation of a certain polynomial by using the standard
bijection of subsets of [n−1]with integer compositions of n. Indeed, given a composition
α and corresponding set Sα we define the multivariate polynomial:

Pα(x1, . . . , xn) ∶= ∑
β⪰α

(−1)ℓ(β)−ℓ(α)xβ (2.5)

where xβ ∶= xβ1
1 ⋯x

βℓ(β)
ℓ(β) , and where the relation ⪰ is the standard relation of refinement on

compositions.
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Remark 2.8. The polynomial Pα may look familiar to the reader. Indeed, we recall that
the monomial quasisymmetric functions, Mα, and Gessel’s fundamental quasisymmetric
functions, Fα, are defined in infinitely many variables xi respectively via:

Mα ∶= ∑
i1<i2<...<ik

xα1
i1

xα2
i2
⋯xαk

ik
, Fα ∶= ∑

i1≤i2≤...≤ik
ij<ij+1 if j∈Sα

xi1 xi2⋯xik .

A standard result of quasisymmetric functions describes how to write the monomial
quasisymmetric functions in terms of Gessel’s fundamental quasisymmetric functions
and vice versa. Namely we have the equations (c.f. [14, 13]):

Fα = ∑
β⪰α

Mβ, Mα = ∑
β⪰α

(−1)ℓ(β)−ℓ(α)Fβ. (2.6)

Hence, the polynomial Pα(x1, . . . xn) from above is exactly the expansion of Mα into
the fundamental basis, except that we only keep the first term of each Fβ; that is:

Pα(x1, . . . , xn) = ∑
β⪰α

(−1)ℓ(β)−ℓ(α)Fβ(x1, . . . , xℓ(β)). (2.7)

The polynomials Pα capture all of the data needed to compute the primitive f -vector
f̃n(a; x).

Definition 2.9. For a subset S ⊆ [n − 1], let the reverse of S, denoted rev(S), be defined
as:

rev(S) = {n − i ∣ i ∈ S} (2.8)

For a natural number vector a ∶= (a1, . . . , an), we define the reverse composition, denoted
revcomp(a), as the composition corresponding to the set rev(supp(a)). Computation-
ally, revcomp(a) may be obtained quickly by reading the entries of a from right to left,
inductively creating blocks whenever a new nonzero entry is encountered, and recording
the tuple of sizes coming from the list of blocks.

Example 2.10. If a = (1, 1, 0, 0, 1, 0, 1, 0), then when we read a right to left, we first en-
counter the block (0, 1), followed by (0, 1), followed by (0, 0, 1) and finally (1). The
reverse composition of a is then obtained by writing down the sizes of these blocks,
hence revcomp(a) = (2, 2, 3, 1). For a non 0-1 vector, we may first replace every nonzero
entry with a 1 and then perform the same procedure described here.

Lemma 2.11. For all n ∈N and non-negative a of length n, let α be the composition of n given
by α = revcomp(a). Then the primitive f -vector of Flown(a) written as a polynomial is given
by:

f̃ (n)(a; x) =
1
xn Pα(x, (x + 1)2 − 1, . . . , (x + 1)n − 1) (2.9)
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Figure 2: The composition poset (C,≤) of [4] with lassos indicating the downsets de-
termined by ⩿1 (left) and the coarsening (C,≤1) (right).

Proof sketch. The proof follows from Lemma 2.5 by applying the standard bijection be-
tween sets of size n − 1 and compositions of n and interpreting all quantities involved.
Each term of equation (2.1) translates to a term of P, and subset inclusion translates
under this bijection to refinement of compositions.

We may combine Lemma 2.6 and Lemma 2.11 to obtain an explicit formula for the
f -vector of Flown(a) for a non-negative, but first we need one more definition.

Aside from the refinement partial order on the set of integer compositions for some
fixed n, recall that the set of all compositions (of all positive integers) forms a poset
C ∶= (C,≤) where there are two types of cover relations (which we will denote ⩿1 and ⩿2).
For compositions α and β, these are described by ([4]):

• α ⩿1 β if β can be obtained from α by adding 1 to a part, and
• α ⩿2 β if β can be obtained from α by adding 1 to a part and then splitting this part

into two parts.

Definition 2.12. Define C̃ ∶= (C,≤1) to be the coarsening of C by taking only the transitive
closure of ⩿1. See Figure 2 for an example.

Lemma 2.13. For all n ∈ N and non-negative a ∈ Nn, let α be the composition of n given by
α = revcomp(a). Then the f -vector of Flown(a) written as a Laurent polynomial is given by:

f (n)(a; x) =
1
x
+

1
xn ∑

β≤1α

x∣α∣−∣β∣
⎛

⎝

ℓ(α)
∏
i=1
(

αi − 1
αi − βi − 1

)
⎞

⎠
Pβ(x, (x + 1)2 − 1, . . . , (x + 1)∣β∣ − 1) (2.10)

Proof sketch. Combining the results of Lemma 2.6 and Lemma 2.11 we obtain:

f (n)(a; x) =
1
x
+∑

b⪯a

1
x∣b∣

Pβ(x, (x + 1)2 − 1, . . . , (x + 1)∣β∣−1)
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where ≤ is the partial order on 0-1 vectors described in Lemma 2.6 and β = revcomp(b).
Translating both a and b into compositions via revcomp, we find that the resulting partial
order is exactly that of (C,≤1) (see Figure 2). Indeed, the number of parts of revcomp(a)
corresponds to the number of 1’s appearing in a, and deleting a 0 in a corresponds
to decreasing the corresponding part of revcomp (a) by 1. In Lemma 2.6 we are only
able to delete 0’s and not 1’s, hence the number of parts of revcomp(b) must be the
same as the number of parts of revcomp(a). Finally, the product of binomial coefficients
(∏

ℓ(α)
i=1 (

αi−1
αi−βi−1)) keeps track of the number of ways of deleting 0’s from a that result in

the same b, and the factor of x∣α∣−∣β∣ arises as a result of taking the common denominator
of all terms.

All of the work has now been done in order to prove our main result, Theorem 1.2.

Proof sketch of Theorem 1.2. Lemma 2.13 gives f (n)(a; x) as a linear combination of Pβ’s
coming from downsets of the poset (C,≤1). However, each Pβ is also a sum over compo-
sitions (equation (2.5)). The result follows from expanding the Pβ’s, keeping track of all
indices, and cancelling sums that telescope; see the upcoming full version of this text for
more details.

3 Formulas for CRYn

Given the significance of CRYn in the research community, we dedicate this section to the
explicit formulas for CRYn obtained by specializing the results in the previous section.
We first obtain the following result by setting a = (1, 0, . . . , 0) in Lemma 2.11. We remark
that it is a generalization of [1, Prop. 3.2] which one can recover by setting x = 1.

Corollary 3.1. Let f̃ (n)(x) be the primitive f -vector of CRYn written as a polynomial. Then for
all n ≥ 1:

f̃ (n)(x) =
1
xn

n−1
∑
m=0
(−1)mπn−m(x) ⋅ hm((x + 1)1 − 1, (x + 1)2 − 1, . . . , (x + 1)n−m − 1). (3.1)

Proof sketch. In the case of CRYn, a = (1, 0, . . . , 0), hence revcomp(a) = (n). Hence
Pα(x1, . . . , xn) in Lemma 2.11 has a term for every integer composition of n. Factor-
ing out x1⋯xn−m from the terms coming from level n −m in the poset of compositions
by refinement leaves hm(x1, . . . , xn−m). We then evaluate each xi in the same way as
Lemma 2.11.

We omit the proof of Corollary 1.3, as it follows similarly, except by specializing to
a = (1, 0, . . . , 0) in Theorem 1.2 instead of Lemma 2.11.

The following result is a specialization of Lemma 2.6 to the case of a = (1, 0, . . . , 0)
and further gives [1, eq. (1)] by summing over all d:
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Corollary 3.2. The f -vector and primitive f -vector of CRYn satisfy f (n)d = ∑
n−1
i=0 (

n−1
i ) f̃ (n−i)

d .

Proof. By Lemma 2.6, we can obtain f (n)(a; x) from f̃ (n)(a; x) by summing over all sub-
sets of zeros in a. For CRYn, a = (1, 0, . . . , 0), so all possible subsets of 0’s occur.

We conclude with a proof sketch of the intriguing relationship between f (n) and f̃ (n)
described in Lemma 1.6.

Proof sketch of Lemma 1.6. The proof is analogous to that of [1, Prop. 4.1]. We have:

(1+ x)n
x

f̃ (n−1) − f (n)(x) = (1+ x)n
x

⋅ 1
xn−1

n−2

∑
m=0
(−1)mπn−m−1(x)hm((x + 1)1 − 1, . . . , (x + 1)n−m−1 − 1))

−1
x
− 1

xn

n−2

∑
m=0
(−1)m(1+ x)mπn−m(x)hm((x + 1)1 − 1, . . . , (x + 1)n−m−1 − 1).

Which after algebraic manipulations simplifies to:

(1+ x)n
x

f̃ (n−1) − f (n(x) = −1
x
+ 1

xn

n−2

∑
m=0

πn−m−1(x)hm(−(x + 1)2 + x + 1, . . . ,−(x + 1)n−m + x + 1)

We may use the path model for the complete homogeneous symmetric functions to rewrite this
expression as:

(1+ x)n
x

f̃ (n−1) − f (n(x) = −1
x
+ 1

xn

∞

∑
i=0
(N(x))n−1

1,i (3.2)

where N(x) is the weighted adjacency matrix for the infinite path graph having a self loop at
each vertex, with loop at vertex i (i ≥ 2) having weight (x + 1)i − 1 and with edge (i, i + 1) having
weight −(x + 1)i+1 + (x + 1). In other words, N(x) has the following form:

N(x) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x 0 ⋯ 0
0 −(x + 1)2 + (x + 1) (x + 1)2 − 1 ⋯ 0 ⋯
⋮ ⋮ ⋮ ⋱ 0 ⋯
0 0 0 −(x + 1)i + (x + 1) (x + 1)i − 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A simple induction shows that ∑∞i=0(N(x))n−1
1,i = xn−1, and after plugging into equation (3.2), gives

the result.
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Counting unicellular maps under cyclic
symmetries

Theo Douvropoulos*1

1Department of Mathematics, Brandeis University, Waltham USA

Abstract. We count unicellular maps (matchings of the edges of a 2n-gon) of arbitrary
genus with respect to the 2n-rotation symmetries of the polygon. An associated gen-
erating function that keeps track of the number of symmetric vertices of the resulting
map generalizes the celebrated Harer-Zagier formula.

The answer to this enumerative question is not in the form of the usual cyclic siev-
ing phenomenon (CSP), but does recover in the leading terms (genus-0 maps) a well
known CSP for the Catalan numbers. The approach is representation theoretic, in that
we relate symmetric unicellular maps with factorizations of the Coxeter element in a
reflection group of type G(m, 1, n).

Keywords: Harer-Zagier formula, unicellular maps, reflection groups, cyclic sieving

1 Introduction

Unicellular maps are the 3-constellations of the form σαc = 1 where σ, α, c ∈ S2n, σ is a
fixed point free involution, α an arbitrary permutation, and c := (1, 2, . . . , 2n) the long
cycle. This corresponds to gluing the edges of a 2n-gon (the gluing pattern is encoded
in the involution σ).

The genus g of a unicellular map is given as 2g = n + 1 − cyc(α) (see also [6, p. 23]).
The Harer-Zagier numbers εg(n) count the unicellular maps with n edges and genus g
and they have a very nice generating function formula:

1
(2n − 1)!! ∑

g
εg(n)Φn+1−2g(X) =

(1 + X)n

(1 − X)n+2 , (1.1)

where the polynomials Φn(X) are essentially the Eulerian polynomials; they are defined
as follows:

Φn(X) =
∑n−1

k=0 A(n, k)Xk

(1 − X)n+1 or equivalently Φn(X) =
∞

∑
k=0

(k + 1)nXk, (1.2)

where A(n, k) is an Eulerian number (i.e., the number of permutations in Sn with k
descents).

*tdouvropoulos@brandeis.edu

mailto:tdouvropoulos@brandeis.edu
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Definition 1.1 (Rotation of constellations). There is a natural cyclic action Ψ of order 2n
on unicellular maps that corresponds to rotating the polygon. In terms of the constella-
tion, the action is given as

Ψ
[
(σ, α, c)

]
= (c−1σc, c−1αc, c).

To count symmetric 3-constellations, we essentially need to count the factorizations
σαc = 1 that are fixed by simultaneous conjugation by some power cN of c. Equivalently
this means counting factorizations σαc = 1 in S2n all of whose factors σ, α, c also belong
to the centralizer ZS2n(c

N). Now, the centralizer ZS2n(c
N) is just the reflection group1

G(m, 1, 2n/m) where m is the order of cN (i.e. m = 2n/ gcd(2n, N)). From now on, we
will always assume that N divides 2n and we will always have mN = 2n.

That is, the problem of counting 3-constellations fixed under Ψr is equivalent to
counting factorizations σαc = 1 in G(m, 1, N) = ZS2n(c

r) where σ belongs to the con-
jugacy classes of G(m, 1, N) ≤ S2n into which the class S2n of fixed point free involu-
tions has been decomposed. This problem turns out to be particularly easy because
c = (1, 2, . . . , 2n) is a Coxeter element also in G(m, 1, N).

There is however a caveat: In the Harer-Zagier formula (1.1), the genus is directly
related to the reflection length of α so we can keep track of it with representation theory.
Here, the genus of a symmetric constellation is related to the length of α as an element
in S2n but this is not the same as (or a multiple of) its length as an element in G(m, 1, N).
There are two natural approaches here; track the length as an element in G(m, 1, N) and
interpret it as a combinatorial statistic on the map (this succeeds with Theorem 3.8) or
define a new length function to track the genus and attempt to express it representation-
theoretically (a first attempt here fails; we discuss it in Section 4).

We present the first approach in Section 3, where we interpret the usual length func-
tion for G(m, 1, N) as a combinatorial (but sadly not topological) statistic on the maps.
Then, Zagier’s proof [14] of the Harer-Zagier formula (1.1) generalizes essentially out of
the box; we have existing theorems that replace all the ingredients of the proof and we
prove Theorem 3.8 which is a direct generalization of (1.1).

In Section 4 we define a new length function for G(m, 1, N) that corresponds to the
topological genus; it is a class invariant and is even somewhat compatible with a factor-
ization in the group algebra of G(m, 1, N) which gives us some control over the formulas
coming from the Frobenius lemma. It is not clear though what the analog of the Eulerian
polynomials Φn(X) of (1.2) should be in this case (nor whether such an analog should a
priori exist!).

We first start with a mini review of Zagier’s proof of the Harer-Zagier formula (1.1)
to set up a pattern of how the proofs would go in these two approaches.

1Note that the reflections of G(m, 1, N) do not come from transpositions of S2n; they come from some
elements of type

(
2m, 12n−2m) (the transposition-like ones) and some other ones –multiple cycle types– for

the diagonal-like reflections; see Example 3.3 and Remark 3.4.
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2 Main ingredients of Zagier’s proof of the Harer-Zagier
formula

We give in this section the main ingredients in Zagier’s proof (or a re-imagining of
Zagier’s proof relying more on Jucys-Murphy elements). We will generalize each of
them in the next section.

The first is a direct application of the Frobenius lemma from representation theory
(recall: n + 1 − 2g = cyc(α) = 2n − ℓR(α)).

∑
g

εg(n)Xn+1−2g =
(2n − 1)!!
(2n)!

· ∑
χ∈Ŝ2n

χ(σ)χ(c) · χ̃

(
∑

w∈S2n

wX2n−ℓR(w)

)
, (A)

where σ is any fixed point free involution in S2n, c any fixed long cycle, and χ̃ denotes
the normalized character χ (i.e. χ̃(a) := χ(a)/χ(1) for an element a ∈ C[S2n]).

The second ingredient is a well known factorization in the symmetric group algebra:

∑
w∈S2n

wX2n−ℓR(w) = X(X + J2)(X + J3) · · · (X + J2n), (B1)

where Ji := (1i) + · · ·+ (i − 1i) is the i-th Jucys-Murphy element. As an application of
this factorization we know for instance that the normalized traces appearing in (A) are
just binomials:

1
(2n)!

· χ̃k

(
∑

w∈S2n

wX2n−ℓR(w)

)
=

(
X + 2n − 1 − k

2n

)
, (B2)

where χk is the k-th exterior power of the reflection representation of S2n (it is a direct
application of the Murnaghan-Nakayama rule that only these irreducible characters are
non-zero on the long cycle c).

The third ingredient is that the eulerian polynomials of (1.2) give exactly the change-
of-basis between the binomials in X that appear above and the monomials Xn:

n

∑
k=1

εkXk =
n

∑
k=1

bk

(
X + n − k

k

)
if and only if (1 − X)n+1

n

∑
k=1

εkΦk(X) =
n

∑
k=1

bkXk−1.

(C)
This has many proofs but it is very conveniently stated in Theorems 2.5 and 2.10 in [8].

The final ingredient is the usual relation (as in [2] or [3]) between the characters χ

such that χ(c) ̸= 0, the Coxeter numbers cχ = k(2n), the exterior powers χk, and hence
the matrix of an element in the reflection representation of S2n:

∑
χ∈Ŝ2n

χ(σ)χ(c)X
cχ
2n =

2n−1

∑
k=0

χk(σ)(−1)kXk =
p(σ; X)

1 − X
, (D)
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where p(σ; X) is the characteristic polynomial of σ in the standard (2n)-dimensional
representation of S2n. Together (A),(B2),(C),(D) give us the Harer-Zagier formula (1.1)
because p(σ; X) = (1 − X2)n.

3 Counting symmetric maps keeping track of G(m, 1, N)-
length

In this section we generalize the Harer-Zagier formula (1.1) in a way that has all of
the ingredients of Zagier’s proof from the previous section working out of the box. To
have a meaningful interpretation of the theorem however we will give first a combinatorial
interpretation of the G(m, 1, N)-length.

Recall that the for the 3-constellation π = (σ, α, c) the number cyc(α) of cycles of α

equals the number of vertices v(π) of the combinatorial map π and also that

n + 1 − 2g = 2n − ℓS2n(α) = cyc(α) = v(π).

So, then the Harer-Zagier formula (1.1) can be rephrased as

1
(2n − 1)!! ∑

v
Ev(n)Φv(X) =

(1 + X)n

(1 − X)n+2 , (3.1)

where Ev(n) = ε(n+1−2v)/2(n) counts the number of unicellular maps π witn n edges
and v vertices.

Now, we will give an explicit definition of unicellular maps with rotational symmetry
at least m:

Definition 3.1. Let n, m, N be positive integers such that mN = 2n. We denote by Cm(N)
the number of 3-constellations π = (σ, α, c) with factors from S2n that are fixed by the
operation ΨN (i.e. have symmetry at least m):

Cm(N) =
{
(σ, α) ∈ S2

2n | σαc = σ2 = 1, ℓS2n(σ) = n, c−NσcN = σ, c−Nαc = α
}

.

As we mentioned earlier, we can enumerate Cm(N) by counting certain factoriza-
tions in G(m, 1, N). The factors σ, α, c are still elements of G(m, 1, N) and c is its Coxeter
element, but the class in S2n of fixed point free involutions σ breaks into multiple conju-
gacy classes (see Remark 3.4) and the new length ℓG(m,1,N)(α) is not a function of g (or
equivalently v(π)). For this reason we define these two statistics:

Definition 3.2. Let n, m, N be positive integers such that mN = 2n and let σ be a fixed
point free involution of S2n such that c−NσcN = σ. We write dm(σ) for the number of
ΨN-orbits of centrally symmetric 2-cycles of σ. (A centrally symmetric transposition is one
of the form (i, n + i).)
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Figure 1: For the involution σ of the figure, we have d4(σ) = 1 but d2(σ) = 2.

Example 3.3. Consider the involution σ := (1, 12)(2, 8)(3, 4)(5, 11)(6, 7)(9, 10) of S12.
There are two centrally symmetric 2-cycles: (2, 8) and (5, 11). The involution is symmetric
both under Ψ3 (conjugation by c3 or rotation of order m = 4) and under Ψ6 (conjugation
by c6 or rotation of order m = 2). But the cycles (2, 8) and (5, 11) form two orbits under
Ψ6 but only one orbit under Ψ3. See Figure 1.

Remark 3.4 (dm detects conjugacy class in G(m, 1, N)). The point of this definition is that
it detects the conjugacy class of the involution σ as an element of G(m, 1, N). The num-
ber dm(σ) counts on how many indices from 1 to N the involution σ acts diagonally-
like (maps i to −i). For Example 3.3 above, the centralizer ZS2n(c

3) is isomorphic to the
group G(4, 1, 3) where the coordinates of the (3-dimensional ambient space) correspond
to the three sets {1, 4, 7, 10}, {2, 5, 8, 11}, {3, 6, 9, 12}. In this case σ becomes (1, 3−i)(2, 2̄):
the first 2-cycle (1, 3−i) corresponds to the part (1, 12)(4, 3)(7, 6)(10, 9) and the 2-cycle
(2, 2̄) corresponds to the part (2, 8)(5, 11). Then, the d4 value here is d4(σ) = 1 because
the involution σ has a single diagonal position in G(4, 1, 3).

Similarly the centralizer ZS2n(c
6) is isomorphic to the group G(2, 1, 6) with coordi-

nates corresponding to the three sets {1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}, {6, 12}. In
this case σ becomes (1, 6̄)(2, 2̄)(3, 4)(5, 5̄) and thus d2(σ) = 2 since σ has two diagonal
positions in G(2, 1, 6).

We need to also replace the quantity v(π) (the number of vertices of the map π) with
a new object that keeps track of the rotational symmetry of the vertices of the polygon
that were identified into vertices of the map.

Definition 3.5. For any 3-constellation π = (σ, α, c) in S2n, and any numbers m, N such
that mN = 2n, we define vm

free(π) to be the number of vertices of π (equivalently cycles
of α) that are not fixed by any power of ΨN (apart from of course ΨNm = Id).

Proposition 3.6. If a 3-constellation π = (σ, α, c) in S2n is fixed under some power ΨN, then if
m is such that mN = 2n,

ℓG(m,1,N)(α) =
2n − vm

free(π)

m
.
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Before finally stating the main theorem of this section, we need to define the general-
izations of the polynomials Φn(X) of (1.2). We will be using a well known generalization
of Eulerian polynomials for G(m, 1, N) that encodes the notion of descent due to Stein-
grímsson [12].

Definition 3.7. For any two positive integers m, N we define the polynomials

Φm,N(X) =
∑N

k=0 A(m, N, k)Xk

(1 − X)N+1 or equivalently Φm,N(X) =
∞

∑
k=0

(mk + 1)NXk,

where A(m, N, k) is the number of elements in G(m, 1, N) with k descents, see [12,
Thm. 17].

With these interpretations, we are ready to state and give a (sketch of the) proof of the
following generalization of the Harer-Zagier theorem (1.1) that counts maps that remain
invariant under a given rotation of the initial polygon.

Theorem 3.8. For any n, m, N, k ∈ Z>0 such that 2n = mN, the numbers Ek,v(m, N) of 3-
constellations π = (σ, α, c) in S2n with dm(σ) = k and vm

free(π) = mv (see Defn. 3.2 and
Defn. 3.5) such that ΨN(π) = π (see Defn. 1.1) can be calculated via:

1

(N
k ) · (N − k − 1)!! · m

N−k
2

∑
v
Ek,v(m, N) · Φm,v(X) =

1
1 − X

·
(

1 + X
1 − X

) N−k
2

,

where the polynomials Φm,v(X) are as in Defn. 3.7.

Sketch. All the ingredients (A),(B2),(C),(D) are readily available. (A) is just the Frobenius
lemma. For (B2) see [8, Prop. 3.2] but it can also be shown using the following version
of (B1):

∑
w∈G(m,1,N)

wXN−ℓG(m,1,N)(w) = (X + J1)(X + J2) · · · (X + Jn),

where Ji = (1, i) + · · ·+ (i − 1, iξ̄) + (i, iξ) + . . . + (i, iξ̄) are a version of the JM elements.
The approach of [10, Prop. 4.8] expresses the character values on these generalized Jucys-
Murphy elements as certain content calculations, see also [9, Section 4.2] or [15].

The change-of-basis (C) is in Theorems 3.17 and 3.18 of [8]. The final ingredient
(D) comes from our previous work, joint with Chapuy, in [2, Section 9.5.2] where we
prove an equality in G(m, 1, N) between ∑ χ(c)χ and a virtual character that involves
the exterior powers of certain N-dimensional representations that are analogues of the
standard representation of SN.

Remark 3.9. The genus 0 case, or equivalently cyc(α) = n + 1, appears only if vfree(π) =
n + 1 (no symmetry) or vfree(π) = n (π has some symmetry). In this way, Theorem 3.8
recovers the known symmetry count in the form of a CSP [11, §7] in the genus-0 case
(there the matchings must be non-crossing and determine a (different) noncrossing par-
tition of the odd vertices 1, 3, . . . 2n − 1; it is this object that is studied in [11]).
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Remark 3.10. The approach described above can give a complete version of Zagier’s
main theorem from [14] (i.e. for any conjugacy class of G(m, 1, N) not just the fixed
point free involutions).

Remark 3.11. The approach of this section can be generalized to other factorization
counting questions, where conjugation by the long cycle is a natural symmetry. For in-
stance, in works of Goupil-Schaeffer [4] and Bernardi-Morales [1], one could try to count
symmetric factorizations by transfering the question to some G(m, 1, n) group. Factor-
izations of the Coxeter element c ∈ G(m, 1, n) have been extensively studied by Lewis-
Morales, where the authors also observe [7, §8.2] in their setting that the G(m, 1, n)-
factorizations cannot keep track of the topological genus of a corresponding map.

4 Counting symmetric maps keeping track of genus

The main disadvantage of Theorem 3.8 is that the enumeration cannot keep track of the
topological genus of the map π. We discuss in this section a partial attempt to resolve
this. We define a new length function in G(m, 1, N) given as

ℓsp(w) := ℓSmN(w),

that is the symmetric length of w ∈ G(m, 1, N) is its length as an element of SmN. Notice
that this is a class function since if two elements are conjugate in G(m, 1, N) then they
are also conjugate in SmN hence have the same length.

Then, a generalization of (1.1) in the spirit of Theorem 3.8 but using ℓsp(w) instead
of ℓG(m,1,N)(w) would rely on understanding

∑
χ∈ ̂G(m,1,N)

χ(σk)χ(c) · ∑
w∈G(m,1,N)

χ(w)

χ(1)
Xℓsp(w),

where σk is any involution with dm(σk) = k.
It is not difficult to see that there is a factorization

∑
w∈G(m,1,N)

wXℓsp(w) =
[
1 + Xm−1(11ξ) + . . . + Xm−1(11ξ̄)

]
×

×
[
1 + Xm(12) + . . . + Xm(12ξ) + . . . + Xm−1(22ξ̄)

]
· · ·

where each reflection τ contributes the term Xℓsp(τ).
This factorization might be seen as an analogue of (B1) and we can certainly calculate

the corresponding traces for irreducible characters (either manually or by the techniques
of [13, Lemma 3.7], or even by following Jucys original argument [5, Section 4] and
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relying on existing determinations of the eigenvalues of these generalized Jucys-Murphy
elements on eigenvectors indexed by tuples of Young tableau as for instance [10]).

However, we have no analogue of (B2): Even though Sage experiments suggest that
we always have nice formulas for ∑

w∈G(m,1,N)

χ̃(w)Xℓsp(w), it is not clear that there exists

a change of basis analogous to (C) (or even that one might exist: we need to transform
more than n polynomials; the corresponding polynomials with XℓG(m,1,N) depend only on
the Coxeter number of χ when χ(c) ̸= 0 but with ℓsp this is no longer true.
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Weak Bruhat interval 0-Hecke modules in finite
type

Joshua Bardwell∗ and Dominic Searles†1

1Department of Mathematics and Statistics, University of Otago, Dunedin 9016, New Zealand

Abstract. We extend the weak Bruhat interval modules, defined for 0-Hecke algebras
in type A, to arbitrary finite types. We determine structural properties, with a main
focus on projective covers and injective hulls, for certain general families of these mod-
ules in a type-independent way. As an application, we recover a number of results for
type A 0-Hecke modules in a uniform manner. We also obtain some further results
relating to recently-introduced type A 0-Hecke modules.

Keywords: 0-Hecke algebra, Coxeter group, projective cover, quasisymmetric func-
tions

1 Introduction

The 0-Hecke algebra HW(0) associated to a finite Coxeter group W is a certain defor-
mation of the group algebra of W. Norton [20] classified the projective indecomposable
modules and the simple modules over HW(0) up to isomorphism. Subsequently, Fayers
[12] proved that HW(0) is a Frobenius algebra, and Huang [14] provided combinatorial
interpretations of the projective indecomposable modules for each classical type.

In type A, the quasisymmetric characteristic [11] provides an isomorphism between
the Grothendieck group of type A 0-Hecke modules and the ring of quasisymmetric
functions. Due to this connection, the past decade has seen significant activity related
to constructing 0-Hecke modules in type A that correspond to various notable bases of
quasisymmetric functions; examples include [2, 5, 19, 21, 22]. There has also been a focus
on understanding the structure of such modules, especially regarding indecomposability,
projective covers and injective hulls, for example, Choi, Kim, Nam and Oh [8] applied
the ribbon tableau model of [14] to obtain the projective covers of modules in [5, 21, 22,
23]. A notable development in this regard was the introduction of weak Bruhat interval
modules by Jung, Kim, Lee and Oh [15]. These modules, defined in terms of intervals
in the left weak Bruhat order on symmetric groups, provided a uniform approach to
understanding modules associated to quasisymmetric functions. It was also determined
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in [15] how these modules behave under certain equivalences of categories introduced
in [12]. This was applied in [15] to determine structural properties of certain families of
modules by realising them as images under these functors of other families of modules
for which corresponding properties were known.

In this extended abstract, we summarise results from [3]. We extend the definition of
weak Bruhat interval modules to all Coxeter types, and we show the projective indecom-
posable HW(0)-modules are weak Bruhat interval modules, as proven in type A in [15].
Throughout, we use a type-independent description of the projective indecomposable
HW(0)-modules in terms of right descents of elements of W. We extend certain results
of [15] regarding equivalences of categories to all types and to quotients and submod-
ules of weak Bruhat interval modules, and identify a type-independent indecomposabil-
ity criterion that covers a number of the type A modules associated to quasisymmetric
functions. We determine projective covers of a significant family of HW(0)-modules in
a type-independent way, and use our results concerning the equivalences of categories
to obtain injective hulls of a related family of HW(0)-modules. Our approach works
directly with elements of W, and our results are stated in terms of right descent sets.
Finally, we apply this approach to recover a number of results on indecomposability,
projective covers and injective hulls for type A families of HW(0)-modules in a uniform
manner. We also obtain some new results for certain modules recently introduced in
[19].

2 0-Hecke algebras and weak Bruhat interval modules

A finite Coxeter system (W, S) is a finite group W with generating set S satisfying the
relations s2 = 1 for all s ∈ S, and (st)m(s,t) = (ts)m(s,t) for all pairs of distinct elements
s, t ∈ S, where m(s, t) = m(t, s) ∈ Z≥2 and (st)m(s,t) denotes the alternating product of
s and t with m(s, t) factors. For w ∈ W, the length `(w) of w is the minimal number
of terms appearing in a product of elements of S equal to w; any such product with
minimal number of terms is a reduced word for W.

An element s ∈ S is a left descent of w ∈ W if `(sw) = `(w)− 1, and a right descent
of w if `(ws) = `(w)− 1. Let DL(w) denote the set of left descents of w, and DR(w) the
set of right descents of w. For I ⊆ S, the right descent class DI consists of the elements
w ∈ W such that DR(w) = I. Denote the union of right descent classes DX such that
I ⊆ X ⊆ J by D J

I .
The parabolic subgroup WI is the subgroup of W generated by I. Let w0(I) denote the

longest element in WI , that is, `(w) < `(w0(I)) for all w ∈ WI \ {w0(I)}. Let w0 denote
the longest element in W, i.e., w0 = w0(S).
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2.1 0-Hecke algebras

Let K be any field. The 0-Hecke algebra HW(0) of a finite Coxeter system (W, S) is the
associative K-algebra generated by {πs : s ∈ S} with relations

π2
s = πs and (πsπt)m(s,t) = (πtπs)m(s,t)

for all distinct s, t ∈ S.
Let πs denote πs− 1. The algebra HW(0) is also generated by {πs : s ∈ S}. Given w ∈

W with reduced word w = s1 . . . sk, define πw to be the product πs1 · · ·πsk , and define
πw to be πs1 · · ·πsk ; note πw and πw are well-defined. The projective indecomposable
HW(0)-modules have the following description due to Norton [20].

Theorem 2.1. [20, Theorem 4.12(2)] Let (W, S) be a finite Coxeter system and let I ⊆ S. The left
ideal PI := HW(0)πw0(I)πw0(S\I) is a projective indecomposable HW(0)-module with K-basis
{πwπw0(S\I) : w ∈ DI}.

The set {PI : I ⊆ S} is a complete list of non-isomorphic projective indecomposable
HW(0)-modules. For I ⊆ J ⊆ S, let P J

I denote the HW(0)-module HW(0)πw0(I)πw0(S\J).

The following result on P J
I is analogous to [14, Theorem 3.2], and proved similarly.

Modules isomorphic to P J
I will play a significant role in our work.

Theorem 2.2. Let I ⊆ J ⊆ S. Then P J
I has a K-basis

{πwπw0(S\J) : w ∈W with I ⊆ DR(w) ⊆ J},

and decomposes as a direct sum of projective indecomposable modules via the formula

P J
I
∼=

⊕
I⊆X⊆J

PX.

2.2 Weak Bruhat interval modules

The left weak Bruhat order ≤L on W is the partial order defined by u ≤L v if some reduced
word for u appears as a terminal segment in some reduced word for v. Given u, v ∈ W
with u ≤L v, the left weak Bruhat interval is the set [u, v]L = {w ∈W : u ≤L w ≤L v}.

Definition 2.3. Let [u, v]L ⊆W. The weak Bruhat interval module B(u, v) is the vector space
K[u, v]L with HW(0)-action defined by

πsw =


w if s ∈ DL(w),
sw if s /∈ DL(w) and sw ∈ [u, v]L,
0 if s /∈ DL(w) and sw /∈ [u, v]L

(2.1)

for all s ∈ S and w ∈ [u, v]L.
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The type A case of Definition 2.3 is precisely [15, Definition 1(1)]. That (2.1) defines
an action of HW(0) follows from Theorems 3.1 and 3.3 in [10].

Example 2.4. Let W = S4; we write elements of symmetric groups in one-line/list nota-
tion, e.g. s2 = 1324 and s2s3s2 = 1432. Figure 1 shows the action of π1, π2 and π3 (where
πi denotes πsi) on the basis [1324, 1432]L of B(1324, 1432) and the basis [3142, 4231]L
of B(3142, 4231). Following [15] we draw Hasse diagrams from top to bottom, so the
0-Hecke operators move elements downwards (or send them to zero).

1432

1423

1324

0

0

0

π2

π3

π2, π3

π3

π2

π1

π1

π1

4231

4132 3241

3142

0

π3

π1

π1

π2, π3 π1, π2

π2

π2

π1, π3

π3

Figure 1: The HS4(0)-action on K-bases for B(1324, 1432) and B(3142, 4231).

For I ⊆ J ⊆ S, the union D J
I of right descent classes is an interval in left weak Bruhat

order [6, Theorem 6.2]. In particular, each right descent class DI itself is an interval in
left weak Bruhat order.

Example 2.5. Figure 2 shows the poset (S4,≤L), in which we colour DI using distinct
colours for each I other than I = ∅ and I = {1, 2, 3}.

We now realise the HW(0)-modules PI and P J
I as weak Bruhat interval modules.

Denote the shortest element in DI by uI and the longest element in DI by vI . Note that
uI = w0(I) and vI = w0 w0(S \ I).

Theorem 2.6. Let I ⊆ J ⊆ S. Then P J
I
∼= B(uI , vJ).

We henceforth denote B(uI , vJ) by PJ
I and B(uI , vI) by PI , to emphasise their nature

as (direct sums of) projective indecomposable HW(0)-modules.

Example 2.7. Consider the HS4(0)-module B(2134, 4231), and let i denote si. Since
2134 = u{1} and 4231 = v{1,3}, we have P{1,3}

{1}
∼= B(2134, 4231) = P{1,3}

{1}
∼= P{1} ⊕ P{1,3}

by Theorems 2.2 and 2.6. Figure 3 depicts the basis elements for P{1,3}
{1} ; the orange/pink
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1234

2134 1324 1243

3124 2314 2143 1423 1342

4123 3214 2413 3142 2341 1432

4213 4132 3412 3241 2431

4312 4231 3421

4321

Figure 2: The poset (S4,≤L) and the right descent classes DI .

colour (cf. Figure 2) indicates P{1,3}
{1} is isomorphic to the direct sum of P{1} and respec-

tively P{1,3}. Note however the basis elements of P{1} do not span a submodule of P{1,3}
{1} .

4123

3124

2134

4132

3142

2143

4231

3241

Figure 3: The HS4(0)-module B(2134, 4231) = P{1,3}
{1}
∼= P{1} ⊕ P{1,3}.

The following indecomposability criterion follows from the algebraic structure of
HW(0); in particular since HW(0) is a Frobenius algebra [12] it is self-injective, and so
the projective indecomposable modules are also injective indecomposable.

Proposition 2.8. Every submodule and quotient of PI is indecomposable.

Specialising Proposition 2.8 to weak Bruhat interval modules obtains the following.

Proposition 2.9. The weak Bruhat interval modules B(w, vI) and B(uI , w) are indecomposable
for all w ∈ DI , and all submodules of B(w, vI) and quotients of B(uI , w) are also indecomposable.
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Several of the families of 0-Hecke modules for bases of quasisymmetric functions
are isomorphic to weak Bruhat interval modules that are either submodules or quotient
modules of some PI . Applications of Proposition 2.9 will be given in Section 4.

2.3 Equivalences of categories

Fayers [12] introduced certain (dual) equivalences of the category HW(0)-mod, as fol-
lows. Define involutions φ, θ and an anti-involution χ on HW(0) by

φ : πs 7→ πw0sw0 , θ : πs 7→ 1− πs, χ : πs 7→ πs.

Let M be a HW(0)-module. Define φ[M] and θ[M] to be the HW(0)-modules whose
underlying space is M, and whose actions ·φ and ·θ are given by πs ·φ m = φ(πs) ·m and
πs ·θ m = θ(πs) ·m, for m ∈ M. Define χ[M] to be the HW(0)-module whose underlying
space is the dual space M∗ of M, with action given by (πs ·χ f )(m) = f (χ(πs) · m), for
f ∈ M∗ and m ∈ M. The functors M 7→ φ[M] and M 7→ θ[M] are self-equivalences of
HW(0)-mod, and the functor M 7→ χ[M] is a dual equivalence of HW(0)-mod.

Jung, Kim, Lee and Oh [15] determined the images of type A weak Bruhat interval
modules under φ, θ and χ and their compositions; see [15, Table 1] for a summary.
We extend this result on φ, θ̂ := θ ◦ χ , and ω̂ := φ ◦ θ ◦ χ to arbitrary finite type,
and moreover to quotients and submodules of weak Bruhat interval modules defined
by upper order ideals in intervals in weak Bruhat order. The cases for the other com-
positions can be extended similarly by introducing negative weak Bruhat interval modules
in arbitrary type: the type A definition is given in [15, Definition 1(2)], and the natural
extension of this to finite type is well-defined by [10]. In this work, we do not use the
negative analogue of weak Bruhat interval modules. For Y ⊆ W, let w0Yw0 denote the
set {w0yw0 : y ∈ Y}. Similarly, Yw0 := {yw0 : y ∈ Y}, and w0Y := {w0y : y ∈ Y}. Note
that if Y is an upper order ideal in [u, v]L, then KY is a submodule of B(u, v).

Theorem 2.10. Let Y be an upper order ideal in [u, v]L. Then we have the following isomor-
phisms of HW(0)-modules.

φ[B(u, v)/KY] ∼= K([w0uw0, w0vw0]L \ w0Yw0),

θ̂ [B(u, v)/KY] ∼= K([vw0, uw0]L \Yw0),

ω̂[B(u, v)/KY]∼= K([w0v, w0u]L \ w0Y).

We use Theorem 2.10 to determine the images of the modules PJ
I .

Corollary 2.11. Let I ⊆ J ⊆ S. Then

φ[PJ
I ]
∼= Pw0 Jw0

w0 Iw0
, θ̂[PJ

I ]
∼= PS\w0 Iw0

S\w0 Jw0
and ω̂[PJ

I ]
∼= PS\I

S\J .

Corollary 2.11 will be applied in Sections 3 and 4.
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3 Projective covers and injective hulls

In this section, we determine the projective covers and injective hulls for significant fam-
ilies of HW(0)-modules. A projective cover of a HW(0)-module M is a projective HW(0)-
module P such that there is an epimorphism f : P→ M whose kernel is contained in the
radical of P. Projective covers exist since HW(0) is Artinian, and the projective module
P is unique up to isomorphism. In [8, Section 5], Choi, Kim, Nam and Oh constructed
projective covers for the 0-Hecke modules introduced by Tewari and van Willigenburg
in [23], in terms of generalised compositions, using the ribbon tableau model of [14]. Our
approach, similarly to [8], involves directly establishing radical membership; we work
with and state results in terms of right descent sets.

The morphism f : PJ
I → PJ

I/KY given by f (w) = w + KY is an epimorphism with
kernel equal to KY.

Theorem 3.1. Let Y be an upper order ideal in D J
I with uJ /∈ Y. Then PJ

I is the projective cover
of PJ

I/KY.

Specialising Theorem 3.1 to weak Bruhat interval modules obtains the following.

Corollary 3.2. Let I ⊆ J and w ∈ DJ . Then PJ
I is the projective cover of B(uI , w).

Remark 3.3. The type A case of Corollary 3.2 has been obtained independently, in the
language of generalised compositions, by Kim, Lee and Oh in [16, Lemma 5.2].

Example 3.4. Consider the HS4(0)-module B(2134, 4132), and let i denote si. Since
2134 = u{1} and 4132 ∈ D{1,3}, by Corollary 3.2 we have that P{1,3}

{1} is the projective

cover of B(2134, 4132). The projective module P{1,3}
{1} is depicted in Figure 3; note the

appearance of the interval [2134, 4132]L in this figure.

An injective hull of a HW(0)-module M is an injective HW(0)-module Q together with
a monomorphism g : M → Q such that the image of g has nontrivial intersection with
every non-zero submodule of Q. The injective module Q is unique up to isomorphism.

Since M 7→ ω̂[M] is a dual equivalence of categories, P is the projective cover of
M if and only if ω̂[P] is the injective hull of ω̂[M]. The analogous statement holds for
M 7→ θ̂[M]. As an application of Theorem 2.10, we obtain the injective hulls of another
significant family of HW(0)-modules from Theorem 3.1.

Theorem 3.5. Let Y be an upper order ideal in D J
I with vI ∈ Y. Then PJ

I is the injective hull of
KY.

The specialisation of Theorem 3.5 to weak Bruhat interval modules is as follows.

Corollary 3.6. Let I ⊆ J and w ∈ DI . Then PJ
I is the injective hull of B(w, vJ).
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4 Applications to modules for quasisymmetric functions

Much recent work has been devoted to constructing HSn(0)-modules whose images
under the quasisymmetric characteristic [11] are important families of quasisymmetric
functions. In this section, we apply results from Sections 2 and 3 to uniformly recover a
number of results on indecomposability, projective covers, and injective hulls for various
such modules. We also obtain new results concerning the modules associated to the
recently-introduced row-strict dual immaculate functions and row-strict extended Schur
functions of Niese, Sundaram, van Willigenburg, Vega, and Wang [18].

The HSn(0)-modules associated to quasisymmetric functions are usually stated in
terms of compositions of n: sequences of positive integers that sum to n. Compositions
of n are in bijection with subsets of [n − 1]: if α = (α1, . . . , αk) is a composition of n,
then the associated subset set(α) is {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk−1}. We denote the
complement of set(α) by set(α)c. The reversal of α, denoted by αr, is the composition
obtained by reversing the sequence α.

Example 4.1. Let α = (1, 3, 2). Then set(α) = {1, 4} and αr = (2, 3, 1).

As done in previous examples, we index projective indecomposable HSn(0)-modules
by subsets of [n− 1], where i is understood to denote si. We first consider modules for
the dual immaculate [4] and extended Schur [1] bases of quasisymmetric functions, and
their row-strict analogues [19]. These modules are defined in terms of certain families of
tableaux of shape α.

The diagram D(α) associated to a composition α is the left-justified array of boxes
with αi boxes in the ith row from the top. A standard immaculate tableau of shape α is a
labelling of the boxes of D(α) by the integers 1, . . . , n, each used once, such that entries
increase from left to right along rows and from top to bottom in the first column. A
standard immaculate tableau is a standard extended tableau if the entries increase from
top to bottom in every column. The set of standard immaculate tableaux of shape α, and
its subset of standard extended tableaux, are denoted by SIT(α) and SET(α) respectively.

For T ∈ SIT(α), the reading word rw(T) of T is the permutation obtained from read-
ing the entries in each row in T from right to left, starting with the topmost row and
iterating downwards. Let Tα

0 and Tα
1 be the elements of SIT(α) with shortest, respec-

tively, longest (Coxeter length) reading words, and let T α
1 be the element of SET(α) with

longest reading word.

Example 4.2. The standard immaculate tableaux SIT(2, 2) are shown in Figure 4. The
standard extended tableaux SET(2, 2) are the middle and rightmost tableaux. The left-
most tableau is Tα

1 , the middle tableau is T α
1 , and the rightmost tableau is Tα

0 . Their
reading words, from left to right, are 4132, 3142, and 2143.

In [5], Berg, Bergeron, Saliola, Serrano and Zabrocki define a HSn(0)-action on the
K-span of SIT(α), and show the quasisymmetric characteristics of the resulting modules
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1 4

2 3

1 3

2 4

1 2

3 4

Figure 4: The three standard immaculate tableaux of shape (2, 2).

Vα are the dual immaculate functions of [4]. In [21], Searles defines an HSn(0)-action
on the K-span of SET(α), and shows the quasisymmetric characteristics of the resulting
modules Xα are the extended Schur functions of [1].

In [15, Theorem 5], Jung, Kim, Lee and Oh prove the isomorphisms

Vα
∼= B(rw(Tα

0 ), rw(Tα
1 )) and Xα

∼= B(rw(Tα
0 ), rw(T α

1 )). (4.1)

It is also shown in the proof of [15, Theorem 5] that reading words of SIT(α) belong to
Dset(α)c , and that rw(Tα

0 ) is the shortest element of Dset(α)c .
Indecomposability of Vα and Xα were proved in [5, Theorem 3.12] and, respectively,

[21, Theorem 3.13]. Combining (4.1) and Proposition 2.9 we recover these results, and
additionally that all quotients of these modules are also indecomposable.

Theorem 4.3. For any composition α, the modules Vα, Xα, and all quotients of these modules
are indecomposable.

The projective covers for Vα and Xα were established in [8, Theorem 3.2] and [8,
Theorem 3.5]. One can recover these results by combining (4.1) and Corollary 3.2.

Theorem 4.4. For any composition α, the projective cover of Vα and of Xα is Pset(α)c .

In [19], Niese, Sundaram, van Willigenburg, Vega and Wang define a HSn(0)-action
on the K-span of SIT(α) (different from that of [5]), and obtain HSn(0)-modules Wα

whose quasisymmetric characteristics are the row-strict dual immaculate functions of
[18]. The same action is defined on the K-span of SET(α) in [19], obtaining HSn(0)-
modules Zα whose quasisymmetric characteristics are the row-strict extended Schur
functions of [18].

Remark 4.5. We use Vα to denote the modules for dual immaculate functions, following
[5] and [15]. On the other hand, in [19], these modules are denotedWα and the modules
for row-strict dual immaculate functions are denoted Vα. Therefore, our use of Vα and
Wα is the reverse of that in [19].

To apply the results of Sections 2 and 3, we need to identify Wα and Zα as weak
Bruhat interval modules. For T ∈ SIT(α), define the row-strict reading word rwR(T) of T
to be the permutation obtained by reading the entries of T from left to right along rows,
beginning at the bottom row and proceeding to the top row. For example, the row-strict
reading words of the tableaux in Example 4.2 from left to right are 2314, 2413 and 3412.
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Theorem 4.6. For any composition α,

Wα
∼= B(rwR(Tα

1 ), rwR(Tα
0 )) and Zα

∼= B(rwR(T α
1 ), rwR(Tα

0 )),

and these Bruhat interval modules are submodules of Pset(αr).

The indecomposability of Wα and Zα were proved in [19, Theorem 6.15] and [19,
Theorem 7.13]. One can recover this via Theorem 4.6 together with Proposition 2.9,
which additionally shows that any submodule of these modules is indecomposable.

Corollary 4.7. For any composition α, the modulesWα, Zα, and all submodules of these modules
are indecomposable.

Using Corollary 3.2, we determine the injective hulls ofWα and Zα.

Corollary 4.8. For any composition α, the injective hull ofWα and Zα is Pset(αr).

Remark 4.9. In [3], we prove Theorem 4.6 by showing directly that {rwR(T) : T ∈ SIT(α)}
is an interval in left weak Bruhat order, and then showing the action on SIT(α) defined
in [19] agrees with the action on this weak Bruhat interval module. Alternatively one
can show these permutations form an interval in left weak Bruhat order by noting that
rwR(T) = rw(T)w0 and appealing to (4.1). It also follows that Wα

∼= θ̂[Vα] and Zα
∼=

θ̂[Xα]. We note the fact that the modules Wα and Zα can be obtained by applying θ̂ to
Vα and Xα is observed in [9, Table 1].

For completeness, we also provide the projective cover of Wα. Choi, Kim, Nam, and
Oh showed that the injective hull of Vα is ⊕β∈[α]Pset(β)c [7, Theorem 4.1], where [α] is a
particular set of compositions obtained from α; see [7, Section 4] for a full definition of
[α]. Applying θ̂ to this formula obtains the following.

Theorem 4.10. For any composition α, the projective cover ofWα is ⊕β∈[α]Pset(βr).

As far as we are aware, the injective hull of Xα and projective cover of Zα are not
currently known.

Finally, we consider a family of modules defined on standard permuted composition
tableaux by Tewari and van Willigenburg in [23]. These modules are denoted Sσ

α , where α

is a composition and σ a permutation (see [23, Section 3] for a full definition); and when
σ is the identity it was shown in [22] that these correspond to the quasisymmetric Schur
functions of [13]. These modules have a direct sum decomposition Sσ

α = ⊕ESσ
α,E, where

each E is an equivalence class of standard permuted composition tableaux. Jung, Kim,
Lee, and Oh define a reading word rwS on the standard permuted composition tableaux
([15, Definition 6]). Let τE (respectively, τ′E) denote the standard permuted composition
tableau in E that has shortest (respectively, longest) reading word. It is proved in [15,
Theorem 6] that

Sσ
α,E
∼= B(rwS(τE), rwS(τ′E)), (4.2)
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and that rwS(τE) is the shortest element of some right descent class.
The projective cover of Sσ

α,E was determined in [8, Theorem 5.11] in terms of a gen-
eralised composition associated to E. Combining (4.2) with Corollary 3.2 recovers this
result, with a different statement in terms of right descent sets.

Theorem 4.11. Let rwS(τE) ∈ DI and rwS(τ′E) ∈ DJ . Then PJ
I is the projective cover of Sσ

α,E.

The images of the modules Sσ
α and Sσ

α,E under ω̂ are a family of modules that gener-
alise the modules introduced in [2] for the Young row-strict dual immaculate functions
of [17]. Specifically, denoting these modules by Rσ

α and Rσ
α,E, one has Rσ

α
∼= ω̂[Sw0σw0

αr ],
and for E an equivalence class of standard permuted composition tableaux correspond-
ing to αr and w0σw0, Rσ

α,E
∼= ω̂[Sw0σw0

αr,E ] ([15, Proposition 1]). The injective hull of Rσ
α,E

was determined in [15, Corollary 2], using ω̂. Applying ω̂ to Theorem 4.11 gives a
description of the injective hull in terms of right descent sets.

Corollary 4.12. Let E be an equivalence class of standard permuted composition tableaux cor-
responding to αr and w0σw0. Suppose rwS(τE) ∈ DI and rwS(τ′E) ∈ DJ . Then PS\I

S\J is the
injective hull of Rσ

α,E.
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Abstract. In this paper, we establish a bijection between finitary colored upho posets
and left-cancellative invertible-free monoids. This bijection maps N-graded colored
upho posets to left-cancellative homogeneous monoids. We use this bijection and the
new concept of semi-upho posets to prove that every totally positive power series is the
rank-generating function of some upho poset, resolving a conjecture of Gao et al.
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positive, log-concavity

1 Introduction

A poset is called upper homogeneous, abbreviated as upho, if each principal order filter is
isomorphic to the poset itself. This concept was introduced by Richard Stanley during his
research on the enumeration properties of Stern’s triangle and its poset [13, 14].

The study of Stern’s poset, particularly regarding enumeration problems, has been
a focal point of numerous research efforts [15, 10]. Upho posets, as a generalization of
Stern’s poset, preserve the attribute of self-similarity, and hence exhibit many intriguing
structural and enumeration properties. For example, in [4], Gao et al. give a concise
characterization of N-graded planar upho posets using their rank-generating functions;
in [5], Hopkins proves that the characteristic generating functions of upho posets are
the inverse of their rank-generating functions. Moreover, the breadth of applications for
upho posets spans several domains, including lattice theory [5, 6], commutative algebra
[4, Conjecture 1.1], and finite geometry [6, Theorem 1.3].

For simplicity, we say a formal power series is an upho function if it is the rank-
generating function of some upho poset. A fundamental problem is:

Is there a criterion to determine if a formal power series is an upho function?
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In [4], Gao et al. prove that there are uncountably many different upho functions, and
a straightforward corollary is that almost all upho functions are not rational functions.
Hence, the complete characterization of upho functions is anticipated to be challenging.

In this paper, we prove the main conjecture proposed by Gao et al. in [4].

Theorem 1 ([4, Conjecture 3.3]). A formal power series f (x) ∈ 1 + xZ≥0[[x]] is the rank-
generating function of an upho poset P whose Ehrenborg quasi-symmetric function is a Schur-
positive symmetric function if and only if f (x) is totally positive.

In Section 3, we introduce the notion of colored upho posets and establish the following
correspondence, which is explained in detail later.

Theorem 2. There is a bijection between finitary colored upho posets and left-cancellative
invertible-free monoids. Moreover, this bijection maps N-graded colored upho posets to left-
cancellative homogeneous monoids, and maps finite type N-graded colored upho posets to finitely
generated left-cancellative homogeneous monoids.

This correspondence plays an important role in understanding the self-similarity
of upho posets: On one hand, we can do concrete calculations on upho posets using
monoids from an algebraic perspective; on the other hand, we can get an intuition for the
enumeration problems of left-cancellative monoids from a combinatorial perspective.

In Section 4, we explore the relationship between upho functions and total positivity.

Definition 1 ([8]). A formal power series ∑∞
n=0 anxn is totally positive if all finite minors of the

infinite Toeplitz matrix 
a0 0 0 0 · · ·
a1 a0 0 0 · · ·
a2 a1 a0 0 · · ·
...

...
...

...
. . .


are nonnegative.

Our working definition of totally positive function follows from Theorem 3.

Theorem 3 ([1, 9]). A formal power series f (x) ∈ 1 + xZ≥0[[x]] is totally positive if and only if
f (x) is of the form of g(x)

h(x) , where g(x), h(x) ∈ 1 + xZ[x] such that all the complex roots of g(x)
are real and negative, and all the complex roots of h(x) are real and positive.

By employing Theorem 2 and analyzing the rank-generating function of the newly
defined concept of semi-upho posets, we prove the following theorem.

Theorem 4. Let f (x) ∈ 1 + xZ≥0[[x]] be totally positive. Then f (x) is an upho function.

And finally, we show that Theorem 1 is a corollary of Theorem 4.
The paper is structured as follows: Section 2 provides necessary background on upho

posets and introduces the concept of semi-upho posets. Section 3 and Section 4 are
dedicated to the exposition and proof of the aforementioned results.
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2 Background on Upho Posets

2.1 Upho Posets

In this paper, we employ the standard terminology used in order theory. For a more
detailed exposition, readers are referred to [12, Chapter 3]. In this subsection, we introduce
several concepts related to upho posets, along with some illustrative examples.

Definition 2. A poset P is upper homogeneous, abbreviated as upho, if for every s ∈ P we
have VP,s

∼= P, where VP,s := {p ∈ P | s ≤P p} is the principal order filter generated by s.

Note that each principal order filter has a unique minimal element, so every upho
poset P has a unique minimal element, denoted 0̂P. We abbreviate VP,s to Vs and 0̂P to 0̂
when the poset P referred to is clear.

A poset P is said to be N-graded if P can be written as a disjoint union P = P0 t P1 t
P2 t . . . such that every maximal chain has the form p0 lP p1 lP p2 lP · · · , where pi ∈ Pi
for all i ∈ N. The rank function ρ : P → N of P is defined by ρ(p) = i for all p ∈ Pi. We
refer to Pi as the i-th layer of P.

An N-graded poset P is said to be of finite type if |Pi| is finite for all i ∈ N. The rank-
generating function of a finite type N-graded poset P is defined to be FP(x) := ∑∞

k=0 |Pk| xk.
The Ehrenborg quasi-symmetric function [3] of a finite type N-graded poset P is defined

to be EP := ∑n≥0 EP,n, where EP,0 = 1, and

EP,n (x1, x2, · · · , xn) := ∑
0̂=t0≤Pt1≤P···≤Ptk−1<Ptk

ρ(tk)=n

xρ(t1)−ρ(t0)
1 xρ(t2)−ρ(t1)

2 · · · xρ(tk)−ρ(tk−1)
k , n ≥ 1.

In this paper, we define the following two finiteness conditions.

Definition 3. A poset P is Noetherian if its principal order filters satisfy ascending chain
condition, that is, for every element s ∈ P, there is no infinite strictly ascending chain Vs ⊆
Vs1 ⊆ Vs2 ⊆ · · · (or equivalently, s >P s1 >P s2 >P · · · ).

Definition 4. The height of an element s in a poset P is the maximal length of chains in P with
s as its maximum. A poset P is finitary if every element in P has finite height.

All N-graded posets are finitary, and all finitary posets are Noetherian. Moreover, in
a Noetherian upho poset P, a finitary upho poset P′ ⊆ P can be obtained by selecting all
elements of finite height in P, with P′ inheriting the order of P.

In a poset P, we define EP := {(r, s) | r, s ∈ P, r l s}, which corresponds to the edges
in the Hasse diagram of P if P is finitary. If a poset P has a unique minimum 0̂, we define
AP := {s ∈ P | 0̂ l s}, and elements in AP are called atoms of P. In a Noetherian poset,
each maximal chain includes exactly one atom. However, both AP and EP can be empty
if P is non-Noetherian. See Example 1.
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A formal power series f (x) ∈ 1 + xZ[[x]] is said to be an upho function if it is the
rank-generating function of an upho poset. An important property of upho function is:

Lemma 1 ([4, Lemma 2.3]). Let P and Q be upho posets. Then P × Q is an upho poset.
Furthermore, FP×Q = FPFQ, and EP×Q = EPEQ.

We list below some examples of upho posets and upho functions.

Example 1. Nonnegative real numbers R≥0 with usual order is a non-Noetherian upho poset,
and there are no atoms in R≥0. Let R≥0×N be the poset product of R≥0 and N, both with usual
order. Then R≥0 ×N is also a non-Noetherian upho poset, and (0, 1) is its only atom.

Example 2. The poset N×N with lexicographical order forms a Noetherian upho poset which
is not finitary. For every (m, n) ∈ N×N, the isomorphism τ : V(m,n)

∼= N×N is given by
τ(m, n + s) = (0, s), τ(m + t, s) = (t, s) for all s ∈ N, t ∈ N>0.

Example 3. The upho poset PM is defined by the following data: The elements in PM are those in
the monoid M = 〈x1, x2 | x3

1 = x2x1〉; The partial order of PM is defined by left divisibility in M,
that is, a ≤PM b if and only if there exists c ∈ M such that ac = b in M.

It can be shown that PM is a finitary upho poset, yet not N-graded.

Example 4. The upho poset PM1 and PM2 are defined as follow: PM1 consists of elements in the
free monoid M1 generated by [0, 1] ⊆ R, with a partial order defined by left divisibility. Similarly,
PM2 consists of elements in the free commutative monoid M2 generated by [0, 1] ⊆ R, with its
partial order also defined by left divisibility.

Both PM1 and PM2 are N-graded upho posets that are not of finite type. The d-th layer
of PM1 can be thought of as a cube of dimension d, while the d-th layer of PM2 can be
thought of as a simplex of dimension d.

Example 5. Figure 1 shows the Hasse diagrams of N (with usual order), full binary tree,
Stern’s poset, and bowtie poset from left to right. Their rank-generating functions are 1

1−x , 1
1−2x ,

1
(1−x)(1−2x) , and 1+x

1−x , respectively. All of them are N-graded upho posets of finite type.

..

.
..
.

..

.
..
.

Figure 1: The Hasse diagrams of Example 5.
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Example 6. Fei’s poset F is the upho poset that satisfies the generating rules depicted in the
left two components of Figure 2. This poset is a finite type N-graded upho poset, with its rank-
generating function given by FF (x) = 1−x

1−2x−x2 . The first three layers of the Hasse diagram of
Fei’s poset are shown in the rightmost component of Figure 2.

Figure 2: The generating rules and the first several layers of Fei’s poset.

On one hand, Example 6 shows that not all upho functions are log-concave, as
|F1| · |F3| = 51 > 49 = |F2|2. On the other hand, it illustrates potential connections
between upper homogeneity and linear recurrence, inspiring our proof of Proposition 4.

2.2 Semi-upho Posets

In this subsection, we define semi-upho posets which have partial self-similarity. The
motivation for introducing semi-upho posets is to explore formal power series g(x)
that, when multiplied by any upho function f (x), yield an upho function. As shown
in Lemma 1, upho functions are optimal choices for g(x). Moreover, in Theorem 6, we
generalize this result to the rank-generating functions of tree-like semi-upho posets.

Given posets P′ and P with unique minima 0̂P′ and 0̂P respectively, an injection
η : P′ ↪→ P is said to be an induced saturated order embedding, abbreviated as isoembedding,
if η(0̂P′) = 0̂P, and furthermore, for every chain C in P′ with given maximum a and
minimum b, C is a maximal chain with given maximum a and minimum b if and only if
η(C) is a maximal chain with maximum η(a) and minimum η(b).

Definition 5. A poset S is semi-upho if for every s ∈ S, there exists an isoembedding Vs ↪→ S.

Upho posets are semi-upho posets. Moreover, a semi-upho poset can be thought of as
an upho poset with some parts cut off. Figure 3 is an example of tree-like semi-upho posets,
defined as finitary semi-upho posets whose Hasse diagrams are trees.

Figure 3: A tree-like semi-upho poset. The red part is a principal order filter that can
be isoembedded into the poset itself.
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3 Monoid Representation

In this section, we establish a bijection between finitary colored upho posets and left-
cancellative invertible-free monoids, and associate the bijection to upho posets.

3.1 Colored Upho Posets

The motivation for introducing colored upho posets is to designate a unique isomorphism
between each given principal order filter and the upho poset itself.

Definition 6. A colored upho poset P̃ consists of the data (P, colP): The poset P is an upho poset,
and the color mapping colP : EP → AP satisfies the following conditions:

• colP(0̂, t) = t for all t ∈ AP;
• For every s ∈ P, there exists an isomorphism φs : Vs

∼−→ P such that colP(u, v) =
colP(φs(u), φs(v)) for all (u, v) ∈ EVs .

It can be shown that such φs is unique for a given s ∈ P.
Finitary colored upho posets can be conceptualized as structures in which each edge

extending upward from the same vertex in their Hasse diagrams is assigned a distinct
color. Moreover, there exists a unique isomorphism between each principal order filter
and the poset itself, which maps edges to identically colored ones.

Similarly, we introduce the concept of colored semi-upho posets.

Definition 7. A colored semi-upho poset S̃ consists of the data (S, colS): The poset S is a
semi-upho poset, and the color mapping colS : ES → AS satisfies the following conditions:

• colS(0̂, t) = t for all t ∈ AS;
• For every s ∈ S, there exists an isoembedding ψs : Vs ↪→ S such that colS(u, v) =

colS(ψs(u), ψs(v)) for all (u, v) ∈ EVs .

It can also be shown that such ψs is unique for a given s ∈ S.

3.2 Correspondence with Monoids

In this subsection, we build the bijection between finitary colored upho posets and left-
cancellative invertible-free monoids explicitly. First, we recall some terminology of monoids,
and readers may see [7] for a more detailed exposition.

The identity element of a monoid M, denoted e, is an element satisfying ex = xe = x
for every x ∈ M. A zero element of a monoid M, denoted 0, is an element satisfying
0x = x0 = 0 for every x ∈ M. An element x ∈ M is said to be left-invertible if there exists
an element y ∈ M such that yx = e, and right-invertible if there exists an element y ∈ M
such that xy = e. An element x ∈ M is said to be inveritible if it is both left-invertible
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and right-invertible. A monoid M is said to be invertible-free if it has no left-invertible or
right-invertible elements other than e; equivalently, ab = e implies a = b = e. An element
a of M is said to be irreducible if it is not invertible and is not the product of any two non-
invertible elements. The set of all irreducible elements of M is denoted IM. A monoid M
is said to be left-cancellative if for every a, x, y ∈ M, ax = ay implies x = y. An invertible-
free monoid M is said to be homogeneous if for every a1a2 · · · an = b1b2 · · · bm ∈ M, where
a1, a2, . . . , an, b1, b2, . . . , bm ∈ IM, we have n = m. We define the length of this element to
be n, and denote the set of all distinct elements of length n by WM

n .
We define a mappingM which maps finitary colored upho posets to left-cancellative

invertible-free monoids (abbreviated as LCIF monoids) by the following rule. For a given
finitary colored upho poset P̃ = (P, colP), the elements ofM(P̃) are the elements of P.
For every s, t ∈ P, we define the multiplication st by st := φ−1

s (t). It can be verified that
suchM(P̃) is a well-defined LCIF monoid, and AP = IM(P̃).

Conversely, we define a mapping P̃ = (P , C) which maps LCIF monoids to finitary
colored upho posets by the following rule. The elements of P(M) are the elements of M.
The partial order ≤P in P(M) is defined by the left divisibility in M, as is explained in
Example 3. Then we have for every a, b ∈ M, alP b if and only if there exists c ∈ IM such
that ac = b. So the unique minimum in P(M) is e, and AP(M) = IM. For every ordered
pair (a, b) ∈ EP(M), define C(M)(a, b) to be c ∈ IM such that ac = b (such c is unique by
the left cancellative property of M). It can be verified that such P̃(M) := (P(M), C(M))
is a well-defined finitary colored upho posets.

Furthermore, P̃(M(P̃)) ∼= P̃, andM(P̃(M)) ∼= M. Hence we have:

Theorem 5. The mutually inverse mappingsM and P̃ give a bijection between finitary colored
upho posets and left-cancellative invertible-free monoids.

Restrict to N-graded colored upho posets, we have:

Corollary 1. The mutually inverse mappings M and P̃ give a bijection between N-graded
colored upho posets and left-cancellative homogeneous monoids (abbreviated as LCH monoids).
Moreover, finite type N-graded colored upho posets correspond to finitely generated LCH monoids.

Furthermore, the bijection can be generalized to semi-upho posets.
An LCIF 0-monoid is defined to be an LCIF monoid with an additional zero element

0 and some relations Xi = 0, where Xi is an element of the original LCIF monoid. We
denote these relations Xi = 0 as 0-defining relations. Similarly, an LCH 0-monoid is defined
to be an LCH monoid added by a zero element 0 and some 0-defining relations. It is
worth mentioning that, in general, LCIF 0-monoids are not left-cancellative, and LCH
0-monoids are neither left-cancellative nor homogeneous. The mutually inverse mappings
M0 and S̃ between finitary colored semi-upho posets and LCIF 0-monoids are defined
similarly toM and P̃ , respectively. The only difference is that the elements in the posets
now correspond to non-zero elements in the monoids.
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Corollary 2. The mutually inverse mappingsM0 and S̃ give a bijection between finitary colored
semi-upho posets and LCIF 0-monoids. Moreover, N-graded colored semi-upho posets correspond
to LCH 0-monoids, and finite type N-graded colored semi-upho posets correspond to finitely
generated LCH 0-monoids.

3.3 The Forgetful Mapping and Regularity of Upho Posets

Through the forgetful mapping, we establish an association between monoids and finitary
colored upho posets with finitary upho posets.

The forgetful mapping F maps a finitary colored semi-upho poset S̃ = (S, colS) to S.
This mapping is well-defined on upho posets since upho posets are semi-upho.

Figure 4 demonstrates that F is not injective, while the surjectivity of F remains open.

... ...

Figure 4: The forgetful mapping is not injective.

Now we define regular semi-upho posets to be the semi-upho posets in imF, and regular
upho posets to be the upho posets in imF. Moreover, an upho function is said to be regular
upho if it is the rank-generating function of a regular upho poset.

By the correspondence established in Section 3.2, on one hand, the properties of upho
posets can be used to address enumeration problems in left-cancellative monoids. For
instance, in an upho poset P, it is straightforward to show that |Pk| = |Pk+1| implies
|Pn| = |Pk| for all n ≥ k. Converting this fact into monoids, we then prove that in an LCH
monoid M, |WM

k | = |W
M
k+1| implies |WM

n | = |WM
k | for all n ≥ k.

On the other hand, we can use monoids to construct a variety of well-defined upho
posets and semi-upho posets, as illustrated in Example 3 and Example 4. Furthermore,
our proof of Theorem 4 in Section 4 is entirely based on this method.

4 Totally Positive Upho Functions

In this section, we use Theorem 3 to characterize total positivity, and we split our proof
of Theorem 4 into three parts. In Section 4.1, we address the case where the numerator is
1 and the denominator has two roots that are not less than 1. In Section 4.2, we address
the case where the numerator is 1 and the denominator has only one root not less than 1.
In Section 4.3, we prove the remaining parts of Theorem 4.
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4.1 Type I Unitary Totally Positive Functions

We first give a simple yet useful recast of semi-upho posets.

Lemma 2. A poset P is semi-upho if and only if for every atom s ∈ AP, there exists an
isoembedding Vs ↪→ P.

In the following text, we say a formal power series g(x) = ∑ bixi is log-concave if
the coefficient sequence {bi}∞

i=0 consists solely of nonnegative numbers and contains no
internal zeros, moreover, b2

i+1 ≥ bibi+2 for every i ∈ N. Using Lemma 2, we have:

Proposition 1. Let g(x) ∈ 1 + xZ≥0[[x]] be a log-concave function, then there exists a tree-like
semi-upho poset Q whose rank-generating function equals g(x).

Sketch of proof. Given a log-concave function g(x) = ∑∞
i=0 bixi, where b0 = 1, we construct

the semi-upho poset layer by layer. We construct the (k + 1)-th layer from the first k layers
by first constructing a canonical maximum case, and then deleting points from right to

left. It can be shown that bmax
k+1 ≥

b2
k

bk−1
≥ bk+1.

Example 7. Given g(x) = 1 + 3x2 + 7x3 + 13x3 + bmax
4 x4, Figure 3 is the Hasse diagram of

the poset we construct in the procedure above.

We further use monoids to show that multiplying a regular upho function by the
rank-generating function of a tree-like semi-upho poset yields a regular upho function.

Proposition 2. Let M1 = 〈IM1 | RM1〉 be a finitely generated LCH monoid, where RM1 is its
defining set of relations. Let M2 = 〈{0} ∪ IM2 | RM2〉 be a finitely generated LCH 0-monoid,
where RM2 only has 0-defining relations. We define M := 〈IM1 ∪ IM2 | RM〉, where RM consists
of the following relations:
• RM1 ⊆ RM;
• If yi ∈ IM2 , Yj ∈ M2, and yiYj = 0 is in RM2 , then yiYj = x1Yj is in RM;
• yixj = x1xj ∈ RM for all elements xj ∈ IM1 , yi ∈ IM2 .

Then M is a finitely generated LCH monoid. Moreover, FP(M) = FP(M1)
FP(M2).

Figure 5 depicts how to "convolve" a tree-like semi-upho poset and an upho poset.

..

.

1
3
6
6
6
..
.

1
3
6
6
6
..
.

P S R

Figure 5: Construction of an upho poset R by "convolving" a regular upho poset P and
a tree-like semi-upho poset S.
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Rewriting Proposition 2 in terms of formal power series yields the following result:

Theorem 6. Let f (x) ∈ 1 + xZ≥0[[x]] be regular upho and g(x) ∈ 1 + xZ≥0[[x]] be the
rank-generating function of a tree-like semi-upho poset, then f (x)g(x) is regular upho.

By employing Proposition 1 and Theorem 6, we obtain the following corollary:

Corollary 3. Let f (x) ∈ 1 + xZ≥0[[x]] be regular upho and g(x) ∈ 1 + xZ≥0[[x]] be log-
concave, then f (x)g(x) is regular upho.

Notice that multiplication preserves log-concavity [11, Proposition 2], hence we have:

Proposition 3. If a formal power series f (x) ∈ 1 + xZ≥0[[x]] is of type I, that is:

f (x) =
1

h(x)
=

n

∏
i=1

1
(1− λix)

, 0 < λ1 ≤ λ2 ≤ · · · ≤ λn,

where h(x) is irreducible over Z[X], deg h(x) ≥ 2, and 1 ≤ λn−1 ≤ λn, then f (x) is a regular
upho function.

Proof. Note that 1
1−λix

for 1 ≤ i ≤ n− 2 and 1−x
(1−λn−1x)(1−λnx) are log-concave, and 1

1−x is
a regular upho function, so by Lemma 1 and Corollary 3, f (x) is an upho function.

4.2 Type II Unitary Totally Positive Functions

In this subsection, we consider formal power series f (x) ∈ 1 + xZ≥0[[x]] of type II:

f (x) =
1

h(x)
=

1
1 + ∑∞

i=1 hixi =
n

∏
i=1

1
(1− λix)

= 1 +
∞

∑
i=1

cixi, 0 < λ1 ≤ λ2 ≤ · · · ≤ λn,

where h(x) is irreducible over Z[X], deg h(x) ≥ 2, and λn−1, λn satisfies λn−1 < 1 ≤ λn.
We prove that f (x) of type II is regular upho by explicitly constructing an LCH monoid
whose rank-generating function equals f (x). A technical lemma we use is:

Lemma 3. There exist li ∈ Z for 1 ≤ i ≤ n with l1 ≥ l2 ≥ · · · ln ≥ 0 such that

ci =
(
1 1 1 · · · 1

)


l1 l2 l3 · · · ln
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1



i
1
0
0
...
0

 .

Example 8. For n = 5, we have l1 = h1 − 4, l2 = h1 − h5 − 4, l3 = h1 − h4 + 3h5 − 3, l4 =
h1 − h3 + 2h4 − 3h5 − 2 and l5 = h1 − h2 + h3 − h4 + h5 − 1.
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Proposition 4. A formal power series f (x) of type II is a regular upho function.

Sketch of proof. Let M be a monoid generated by xj
i , 1 ≤ j ≤ n, 1 ≤ i ≤ rj, where r1 = l1

and ri = 1 for i > 1. And we let the defining relations of M be:

xj
1x1

k = x1
1x1

k , 2 ≤ j ≤ n, 1 ≤ k ≤ l1 − lj;

xj
1xi

1 = x1
1xi

1, 2 ≤ i < j ≤ n.

By Proposition 2 and Lemma 3, we then prove that M is a well-defined LCH monoid and
it rank-generating function equals f (x).

4.3 Total Positivity Implies Upho

In this subsection, we use the results obtained earlier to prove Theorem 4 and Theorem 1.
We first divide the totally positive functions into the "denominator part" and the

"numerator part" using Theorem 3. The result on the "denominator part" can be obtained
directly from combining Lemma 1, Proposition 3, Proposition 4, and the fact that 1

1−nx is
a regular upho function for all n ∈ N.

Proposition 5. If a formal power series f (x) ∈ 1 + xZ≥0[[x]] is of the form f (x) = 1
h(x) , where

all the complex roots of h(x) ∈ 1 + xZ≥0[x] are real and positive, then f (x) is regular upho.

To deal with the "numerator part", we just need to use the lemma below.

Lemma 4. g(x) ∈ 1 + xZ[x] is log-concave if all its complex roots are real and negative.

Proof of Theorem 4. Combine Corollary 3, Theorem 3, Proposition 5, and Lemma 4.

Before proving Theorem 1, we state the Thoma–Kerov–Vershik theorem as follows.

Theorem 7 ([2]). A formal power series f (x) ∈ 1 + xZ≥0[[x]] is totally positive if and only if
f (t1) f (t2) · · · is Schur positive.

Proof of Theorem 1. For a finite type N-graded upho poset P, according to [4, Lemma
2.2], the Ehrenborg quasi-symmetric function EP(x1, x2, . . . ) = ∏∞

i=1 FP(xi). Combining
Theorem 4 and Theorem 7, the proof of Theorem 1 is completed.
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Shards for the affine symmetric group
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Abstract. The poset of “biclosed sets” in a root system has received attention as a nat-
ural extension of the weak Bruhat order on the associated Coxeter group. We will dis-
cuss these ideas in the context of the simplest infinite Coxeter groups, the affine sym-
metric groups. Using the combinatorial model introduced in (Barkley–Speyer 2022),
we show that many constructions for the weak order on the symmetric group have
analogs for the extended weak order on the affine symmetric group. In particular,
shards in the affine braid arrangement biject with completely join-irreducible elements
of the extended weak order, and there is a parametrization of both objects by “type-Ã
arc diagrams”.

Keywords: Coxeter groups, weak order, shards

1 Introduction

The weak Bruhat order is a partial order on a Coxeter group which is studied for its con-
nections to generalized permutahedra [6], Coxeter arrangements [4], pattern avoidance
[3], preprojective algebras [5], and Catalan combinatorics [10]. Some of these connec-
tions fail to be complete or do not make sense when applied to infinite Coxeter groups.
Motivated by this failure in the context of Hecke algebras [8], Matthew Dyer introduced
a different but related poset associated to each Coxeter group, which is now called the
extended weak order. In general the extended weak order strictly contains the weak
Bruhat order as an order ideal, but for finite Coxeter groups the two posets coincide.
There are many fascinating conjectures [7] suggesting that, often, the extended weak
order is a more natural object than the usual weak Bruhat order. For example, weak
Bruhat order is a lattice for any finite Coxeter group, but is never a lattice for an infinite
Coxeter group (of finite rank). In contrast, the extended weak order is conjectured to
always be a complete lattice. This conjecture has recently been proven for affine Coxeter
groups in [2].

In this extended abstract, we will focus on the combinatorics and geometry of ex-
tended weak order in type Ã, using combinatorial models introduced in [1]. Our focus
will be on shards, certain cones in a Coxeter arrangement which, for finite Coxeter
groups, govern the combinatorics of lattice quotients of the weak order. Our main theo-
rem is the following.
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Theorem 1. There is a canonical bijection between shards in the Coxeter arrangement of type
Ãn and completely join-irreducible elements in the extended weak order of type Ãn.

The analogous result is known to be true for all finite Coxeter groups [9]. Importantly,
the result is false for the weak Bruhat order of type Ãn: there is an injection from
completely join-irreducible elements of weak Bruhat order to the set of shards, but it
is not a bijection. The weak Bruhat order is “missing” some join-irreducibles, and the
extended weak order provides them.

We prove this theorem by parametrizing both shards and complete join-irreducibles
by cyclic arc diagrams. Arc diagrams were introduced by Nathan Reading [11] as a
way of encoding the combinatorics of shards in type A. Our results can be viewed as a
type-Ã analog of his. Analogs in type B and type D have also been recently introduced
by Ashley Tharp in her thesis [12].

The Coxeter group of type An is the symmetric group Sn+1, and the Coxeter group of
type Ãn is the affine symmetric group S̃n+1. The corresponding Coxeter arrangements
are the braid and affine braid arrangements, respectively. Because we are working in
a context where we have explicit combinatorial models, we have attempted to avoid
Coxeter-theoretic language in the body of the paper, and have included an introduc-
tion to the relationship between arc diagrams, weak order, and the geometry of these
arrangements for the unfamiliar reader.

2 Weak order and the symmetric group

We begin by recalling the combinatorics of the weak Bruhat order on the symmetric
group. Let Sn denote the group of permutations of the set {1, . . . , n}. We say that the
pair (a, b) is an inversion of π if a < b and π−1(a) > π−1(b). If we write a permutation
in one-line notation, then the inversions are the pairs which are out of order. For instance,
the inversions of the permutation 51423 are (1, 5), (4, 5), (2, 5), (3, 5), (2, 4), (3, 4). Write
N(π) for the set of inversions of π. This set determines π uniquely. The weak order on
Sn is the partial ordering such that u ≤ v if and only if N(u) ⊆ N(v). Figure 1 depicts
the weak order on S3.

2.1 The poset of regions

In this section, we will consider the relationship between the weak order and convex
geometry. To see this, consider the braid arrangement Bn. The braid arrangement
consists of hyperplanes Hab in Rn, for 1 ≤ a < b ≤ n, where Hab := {(x1, . . . , xn) ∈ Rn |
xa = xb}. In Figure 2, we’ve depicted (a slice through) B3. As illustrated in the figure,
two points are in the same region (connected component of Rn \⋃

a<b Hab) if and only if
their coordinates are in the same order. Hence regions correspond to total orderings of
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123

213

231

321

312

132

x1 < x2 < x3

x2 < x1 < x3

x2 < x3 < x1

x3 < x2 < x1

x3 < x1 < x2

x1 < x3 < x2

H12 H23

H13

Figure 1: The Hasse diagram of weak
order on S3.

Figure 2: The intersection of B3 with
a two-dimensional subspace of R3.

the coordinates x1, . . . , xn. We can think of these total orderings as the one-line notation
of a permutation, so that for instance the permutation 231 corresponds to the region
whose points have coordinates satisfying x2 < x3 < x1. This gives a bijection between
elements of Sn and regions of Bn.

There’s another perspective on where this bijection comes from: there is a group
action of Sn on Rn, where π acts via (x1, . . . , xn) 7→ (xπ−1(1), . . . , xπ−1(n)). This induces
an action on the regions of Bn, and this action is simply transitive. So if we fix a “base
region”, then the group action induces a bijection between regions and elements of Sn.
If we use as a base region the region of points such that x1 < · · · < xn, then we get the
bijection outlined above.

For our purposes, the weak order is more naturally viewed as a partial order on
regions of the braid arrangement than it is as a partial order on Sn. Given regions R1
and R2, their separating set is

S(R1, R2) := {Hab | R1 and R2 are in different components of Rn \ Hab}.

Now if B denotes the region with x1 < · · · < xn, then πB is the region associated to
π via the bijection above. In this case, S(B, πB) = {Hab | (a, b) is an inversion of π}.
Hence weak order can be identified with the order on regions of the braid arrangement
so that R1 ≤ R2 if S(B, R1) ⊆ S(B, R2). This is called the poset of regions of Bn.

2.2 Lattice structure

The weak order on Sn is a complete lattice, meaning that it admits meets (greatest lower
bounds) and joins (least upper bounds) for any collection of elements. To compute the
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join of a list of permutations, we introduce a closure operator on sets of inversions. Write
T := {(a, b) | 1 ≤ a < b ≤ n}. If N ⊆ T, then we define the closure of N to be the minimal
set N ⊇ N such that if a < b < c and (a, b), (b, c) are both in N, then (a, c) is in N. The
join of two permutations π1 and π2, denoted π1 ∨ π2, is the unique permutation with
inversion set N(π1) ∪ N(π2). More generally, the join of a family {πi}i∈I has inversion
set

⋃
i∈I N(πi). One can compute the meet of a family {πi}i∈I dually: it has inversion

set (
⋂

i∈I N(πi))
◦, where N◦ := T \ T \ N is the interior of N.

For an example, let’s compute the join of 213 and 132. Then N(213) = {(1, 2)} and
N(132) = {(2, 3)}. We need to compute the closure of N(213)∪ N(132) = {(1, 2), (2, 3)}.
The closure is forced to contain (1, 3), since (1, 2) and (2, 3) are both elements. Hence
N(213) ∪ N(132) = {(1, 2), (2, 3), (1, 3)}. The join 213∨ 132 should be the unique permu-
tation with this inversion set, which is the permutation 321. As can be seen in Figure 1,
we indeed have 213 ∨ 132 = 321.

2.3 Shards and arc diagrams

A permutation π is join-irreducible if it cannot be written as a join of elements strictly
below π. Equivalently, π covers a unique element π∗ in the weak order. The join-
irreducible elements (JIs) in S3 are 213, 132, 231, and 312. Each JI has a unique lower
wall: an inversion (a, b) such that π−1(a) = 1 + π−1(b). If (a, b) is the lower wall of a JI
π, then (a, b) · π = π∗. The lower walls of the JIs listed above are (1, 2), (2, 3), (1, 3), and
(1, 3), respectively. Nathan Reading introduced in [11] an elegant way of parametrizing
the JIs in Sn via arc diagrams.

Definition 1. A shard arc for Sn is the data of:

• an initial value i and a terminal value j, such that 1 ≤ i < j ≤ n, and

• for each intermediate value k with i < k < j, a choice of “left” or “right”.

We will depict shard arcs using arc diagrams, where an arc is drawn connecting the
initial value to the terminal value, and where “left” or “right” at k indicates whether the
arc passes over or under k, respectively. (There are many ways to draw such a diagram;
we use diagrams only as an abbreviation for the data of a shard arc, so different diagrams
indicating the same shard arc should be treated as equivalent.) The four shard arcs in
S4 with initial value 1 and terminal value 4 are shown in Figure 3. For space purposes,
we have drawn the arcs horizontally, though the “left/right” terminology more clearly
applies to arcs drawn vertically. To each shard arc for Sn, we assign a JI of the weak
order on Sn. This JI is the unique permutation π with the following properties:

• If the shard arc has initial value i and terminal value j, then the unique lower wall
of π is (i, j), and
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1 2 3 4

2341

1 2 3 4

3412

1 2 3 4

2413

1 2 3 4

4123

Figure 3: The arc diagrams for shard arcs in S4 with initial value 1 and terminal value
4. Below each diagram, we have indicated the associated JI in S4.

• For each intermediate value k, if we have chosen “left” at k, then π−1(k) < π−1(j),
and if we have chosen “right” at k, then π−1(k) > π−1(i).

In other words, the pair j, i should appear consecutively in the one-line notation for π,
and an intermediate value k should appear to the left or right of j, i according to whether
we have chosen “left” or “right”, respectively. The positions of non-intermediate values,
and the relative ordering of intermediate values, are determined by the requirement that
(i, j) is the unique lower wall of π. In Figure 3, we have indicated the JI associated to
each shard arc.

Shard arcs are also related to the geometry of the braid arrangement. Given a shard
arc for Sn, we will associate a convex polyhedral cone in the braid arrangement Bn. To
do so, define the half-spaces

H+
ab := {(x1, . . . , xn) | xa ≤ xb} H−

ab := {(x1, . . . , xn) | xa ≥ xb}.

Consider a shard arc with initial value i and terminal value j. For each intermediate
value k, we pick a sign for Hik and for Hkj, as follows:

“left” at k ⇒ H−
ik and H+

kj
“right” at k ⇒ H+

ik and H−
kj

.

The polyhedral cone is defined to be the intersection of Hij with the correctly signed
H±

ik for all intermediate k. The resulting cone Σ is called a shard of Bn. Shards are
characterized as (the closures of) the connected components of Hij \

⋃
i<k<j Hik. In B3,

there are four total shards: H12 and H23 are themselves shards, and H13 is the union of
two shards. In Figure 2, the two shards in H13 are the left and right halves of H13, which
intersect at the origin.

We have constructed bijections shards ⇔ shard arcs ⇔ JIs. Let’s discuss how to go
directly between JIs and shards. Given any permutation π, we can consider the region
of the braid arrangement πB. The lower walls (a, b) of π correspond to the hyperplanes
Hab in S(B, πB) which are incident to πB. (Hence the term “wall”.) We can refine this
further: if (a, b) is a lower wall of π, then there is a unique shard Σ contained in Hab
which is incident to the region πB. We say that Σ is a lower shard of πB. Hence there
is a bijection between the lower walls of π and the lower shards of πB. If π is a JI, then
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there is a unique lower wall of π, and the corresponding lower shard of πB comes from
the shard ⇔ JI bijection. As an example, consider the JI π = 231. Then the unique
lower wall of π is (1, 3), so the unique lower shard of πB should be contained in H13.
Examining Figure 2, we see that the unique lower shard of πB is the left half of H13,

which has shard arc 1 2 3. As expected, this is the shard arc associated to 231.
We have focused on JIs, but the notion of lower shards makes sense for any region of

the braid arrangement. For a general region, there will be multiple lower shards. We can
record the set of lower shards of πB in a diagram by overlaying the arc diagrams for each
shard arc. For instance, the permutation 321 has diagram 1 2 3 and the permutation
123 has the empty diagram 1 2 3. Reading showed [11] that any permutation can be
recovered from its arc diagram, and that the collections of shard arcs arising from this
construction are exactly the non-crossing arc diagrams: those collections that can be
drawn so no two shard arcs intersect or share an initial or terminal value.

3 Extended weak order and the affine symmetric group

Definition 2. The affine symmetric group S̃n is the group of bijections π̃ : Z → Z

satisfying:

(a) π̃(i + n) = π̃(i) + n for all i ∈ Z, and

(b)
n

∑
i=1

π̃(i) =
n

∑
i=1

i.

Elements of S̃n are affine permutations. The one-line notation of an affine permuta-
tion is defined similarly to a usual permutation, so that for instance the one-line notation
of the identity is: . . . ,−1, 0, 1, 2, 3, 4, 5, . . . . Condition (b) in Definition 2 lets us recover
an affine permutation from its one-line notation. We abbreviate affine permutations via
window notation: given a sequence of n integers x1, . . . , xn which have distinct residue
classes mod n, we write [x1x2 · · · xn] for the unique affine permutation whose one-line
notation contains x1, . . . , xn as a consecutive subsequence. For instance, in S̃3, the win-
dows [123] and [012] both represent the identity permutation, whereas [102] represents
the permutation . . . ,−3,−1, 1, 0, 2, 4, 3, 5, . . . .

The window notations for the elements of S̃2 are shown in black in Figure 4.

3.1 Extended weak order

Let (≺) be a total ordering of the integers (a relation which is transitive, asymmetric,
irreflexive, and so that for all distinct a, b ∈ Z, either a ≺ b or a ≻ b). The symbol < will
always denote the usual total ordering on the integers. If a, b ∈ Z are distinct modulo n,
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then we say that the pair (a, b) is an inversion of (≺) if a < b and b ≺ a. We write N(≺)
for the set of inversions of (≺).

Definition 3 ([1]). The extended weak order for S̃n is the poset whose elements are the
total orders (≺) of Z satisfying the following properties:

• For all i, j ∈ Z, we have i ≺ j if and only if i + n ≺ j + n, and

• For all i ∈ Z, if i + n ≺ i then there exists a k with i + n ≺ k ≺ i.

We say that (≺1) ≤ (≺2) in extended weak order if N(≺1) ⊆ N(≺2).

We call an element of extended weak order a translationally invariant total order
(TITO). Because we do not count the pair (0, n) as an inversion, the second condition in
Definition 3 is necessary to make it so any TITO is determined by its inversion set. To
see the issue, consider the following two total orderings which satisfy the first condition
of Definition 3 with n = 2:

· · · ≺ 0 ≺ 2 ≺ 4 ≺ · · · ≺ · · · ≺ −1 ≺ 1 ≺ 3 ≺ · · · (3.1)

· · · ≺ 4 ≺ 2 ≺ 0 ≺ · · · ≺ · · · ≺ −1 ≺ 1 ≺ 3 ≺ · · · .

These two total orders have the same inversion set. We resolve this by declaring the first
to be a TITO and the second to be not a TITO; alternatively, we could declare the two
total orders equivalent, and the resulting theory would be the same.

Because (a, b) is an inversion of (≺) if and only if (a + n, b + n) is an inversion of (≺),
we will identify the pairs (a, b) and (a + n, b + n). Hence

· · · ≺ −3 ≺ −4 ≺ −1 ≺ −2 ≺ 1 ≺ 0 ≺ 3 ≺ 2 ≺ 5 ≺ 4 ≺ 7 ≺ 6 ≺ · · · (3.2)

is a TITO for S̃4 with two inversions, (0, 1) and (2, 3). We note that using the window
notation [1, 0, 3, 2] is a reasonable way to encode this TITO. We will now extend window
notation to allow us to encode any TITO.

Observe that any TITO (≺) splits up into blocks: subintervals which are order-
isomorphic to the usual ordering on Z. The blocks of (3.1) are · · · ≺ 0 ≺ 2 ≺ 4 ≺ · · ·
and · · · ≺ −1 ≺ 1 ≺ 3 ≺ · · · , while there is a unique block for (3.2). The residue classes
mod n of integers appearing in distinct blocks are necessarily distinct. If a block con-
tains k residue classes, then we will use a window listing any k consecutive entries of the
block. We give each block its own window and separate them by the symbol ≺. So, for
instance, (3.1) has window notation [2] ≺ [1] and (3.2) has window notation [1, 0, 3, 2].
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[1, 2]

[2, 1]

[−1, 4]
[4,−1]

[0, 3]

[3, 0]
[−2, 5]

[2] ≺ [1][1] ≺ [2]

[2, 1]

[3, 0]

[0, 3]
[5,−2]

[1, 2]

[4,−1]
[−1, 4]

H̃01 H̃12

H̃03 H̃14

H̃05 H̃16

Figure 4: The Hasse diagram for ex-
tended weak order. Elements of weak
Bruhat order are shown in black, and
new elements from extended weak or-
der are in orange.

Figure 5: The intersection of the affine
braid arrangement B̃2 with a two-
dimensional subspace of R3.

There is one subtlety we haven’t yet addressed, which is blocks appearing “in reverse
order”. For example, consider the following TITO for S̃4:

· · · ≺ −3 ≺ −1 ≺ 1 ≺ 3 ≺ 5 ≺ 7 ≺ · · · ≺ · · · ≺ 6 ≺ 4 ≺ 2 ≺ 0 ≺ −2 ≺ −4 ≺ · · · . (3.3)

Based on what we have stated so far, the window notation of this TITO would be [1, 3] ≺
[2, 0]. However, this does not distinguish (3.3) from the TITO

· · · ≺ −3 ≺ −1 ≺ 1 ≺ 3 ≺ 5 ≺ 7 ≺ · · · ≺ · · · ≺ −2 ≺ −4 ≺ 2 ≺ 0 ≺ 6 ≺ 4 ≺ · · · .

To distinguish these, we will write the window notation for (3.3) as [1, 3] ≺ [2, 0]. What’s
going on here? It turns out there are exactly two ways to extend the consecutive sequence
2 ≺ 0 to a TITO block: either 0 is covered by 2 + 4, or 0 is covered by 2 − 4. Once we
make that choice, the rest of the block is uniquely determined. In general, we underline
a window to indicate that elements i of its block satisfy i ≺ i − n. If a window is not
underlined, then elements of its block satisfy i ≺ i + n. The TITOs for S̃2 are shown in
Figure 4.

3.2 The affine braid arrangement

The affine braid arrangement B̃n consists of hyperplanes H̃ab in Rn+1, for a < b integers
that are distinct modulo n. We write a general element of Rn+1 as (y, x1, . . . , xn). Then

H̃ab := {(y, x1, . . . , xn) ∈ Rn+1 | xa = xb},
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where we take the convention that xa+kn = xa + ky for any k ∈ Z. So for instance, in B̃3,
we have H̃−1,9 = {(y, x1, x2, x3) ∈ R4 | x2 − y = x3 + 2y}.

When we were studying the the symmetric group, there was a bijection between
elements of Sn and regions of Bn. This is no longer true for S̃n: we can see by comparing
Figure 4 and Figure 5 that there are more regions than elements of S̃n. One might wonder
if elements of the extended weak order biject with regions of B̃n. This fails in general.
To see the problem, let’s introduce the half-spaces

H̃+
ab := {(y, x1, . . . , xn) | xa ≤ xb} H̃−

ab := {(y, x1, . . . , xn) | xa ≥ xb}.

Given a TITO (≺), we say that H̃+
ab contains (≺) if a ≺ b, and similarly we say H̃−

ab
contains (≺) if a ≻ b. We write H(≺) for the collection of half-spaces containing (≺).
The geometry in Figures 4 and 5 suggests that the region associated to (≺) should be
the intersection of all the half-spaces in H(≺). When this intersection has points in
its interior, then this is a reasonable definition. But this is not always the case: for
instance, the S̃2 TITO with window notation [1] ≺ [2] is contained in the half-spaces
H̃−

01, H̃−
03, H̃−

05, . . . and the half-spaces H̃+
12, H̃+

14, . . .. The intersection of these half-spaces
is the line y = 0, which has empty interior. However, in this case every finite subset of
H(≺) has intersection with nonempty interior. (We say the TITO is weakly separable
in this case; see [1].) A more serious problem arises for the S̃4 TITO [0, 1] ≺ [3, 2]. This
is contained in the half-spaces H̃+

01, H̃+
14, H̃−

23, H̃−
36, whose intersection is contained in the

hyperplane y = 0. This TITO is not weakly separable.
We see that not every TITO has an associated region. However, every region does

have an associated TITO. Given a region R of B̃n, let H(R) be the collection of half-
spaces H̃±

ab such that R ⊆ H̃±
ab. Then H(R) is equal to H(≺) for a unique TITO (≺).

Uniqueness follows since we can recover the inversion set of (≺) from its set of containing
hyperplanes: N(≺) = {(a, b) | H̃−

ab ∈ H(≺)}. This is the analog of the fact that we can
recover the inversion set of a permutation π from the separating set S(B, πB).

3.3 Lattice structure

Like the weak order on Sn, the S̃n extended weak order is a complete lattice [1, 2]. We
can compute the join of a collection of TITOs in a similar fashion. Write T̃ := {(a, b) |
a < b, a ̸≡ b mod n} and T̃aug := {(a, b) | a < b}. If N ⊆ T̃aug, then we define the
augmented closure of N to be the minimal set Naug ⊇ N such that if a < b < c and
(a, b), (b, c) are both in Naug, then (a, c) is in Naug. If N ⊆ T̃ is a union of inversion sets,
then the closure of N is the set N := Naug ∩ T̃. Now, the join of a family of TITOs {≺i}i∈I

is the unique TITO with inversion set
⋃

i∈I N(≺i). Analogously, the meet of {≺i}i∈I has
inversion set (

⋂
i∈I N(≺i))

◦, where N◦ := T̃ \ (T̃ \ N) is the interior of N.
For example, let’s compute the join of [0, 3] and [2, 1] in the extended weak or-

der of S̃2. We have N([0, 3]) = {(0, 1)} and N([2, 1]) = {(1, 2)}. The augmented
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closure of the union {(0, 1), (1, 2)} contains (0, 2) since (0, 1), (1, 2) are both elements,
and it contains (1, 3) since (1, 2), (2, 3) are both elements. (Recall our convention that
(a, b) = (a + n, b + n).) Hence the augmented closure contains every pair, since it con-
tains (0, 1), (1, 3), (3, 5), . . . and (1, 2), (2, 4), (4, 6), . . . .

It follows that the closure N([0, 3]) ∪ N([2, 1]) is T̃. Hence the join [0, 3] ∨ [2, 1] is the
unique TITO with inversion set T̃, which is [2, 1].

3.4 Shards and arc diagrams

A TITO (≺) is completely join-irreducible if it cannot be written as a join of elements
strictly below (≺). This implies that (≺) covers a unique element, but is a stronger
condition in general. The only TITOs for S̃2 which are not completely join-irreducible
are [12], [1] ≺ [2], [2] ≺ [1], and [2, 1]. In this section JI will abbreviate “completely
join-irreducible element”.

The lower walls of a TITO (≺) are the inversions (a, b) so that b and a are consecutive
in the total order ≺. There exist TITOs, like [1] ≺ [2], which have no lower walls.
However, each JI has a unique lower wall. The goal of this section is to describe the
analog of arc diagrams which parametrizes the JIs.

Definition 4. A shard arc for S̃n is the data of:

• an initial value i and a terminal value j, such that 1 ≤ i ≤ n and i < j and i ̸≡ j
mod n, and

• for each intermediate value k with i < k < j, a choice of “left” or “right”.

These data are required to satisfy a condition which will be explained below.

We can depict these shard arcs in two ways. One is to simply draw an arc diagram
for Sj, where j is the terminal value of the arc. This would fully encode the data of the
shard arc. However, the conditions on the data are more well-motivated by drawing a
cyclic arc diagram: we arrange the numbers 1, . . . , n in a circle, and draw an arc starting
at i, proceeding clockwise around the circle until it is of length j − i, then terminating (at
a value congruent to j modulo n). At each intermediate value k, the arc passes k on the
outside or inside of the circle depending on whether we have chosen “left” or “right”,
respectively. Now we can state the condition on S̃n shard arc data: we must be able to
draw the cyclic arc diagram in this way without self-crossing.

The JI associated to a shard arc is the unique weak order-minimal TITO with lower
wall (i, j) and such that each intermediate value k satisfies k ≺ j if we chose “left” and
satisfies i ≺ k if we chose “right”. The TITOs associated to the shard arcs in Figure 6 are
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Figure 6: Two shard arcs. The arc
on the left starts at 2, ends at 5, and
passes 3 and 4 on the inside and out-
side, respectively. The arc on the right
starts at 1 and ends at 11.

Figure 7: On the left, a cyclic arc dia-
gram. On the right, a “straightened”
version of the diagram encoding the
same data. (Note that not all Sj arc di-
agrams give valid S̃n shard arcs.)

· · · ≺ 0 ≺ 1 ≺ −2 ≺ −1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 8 ≺ 9 ≺ 6 ≺ 7 ≺ · · ·
· · · ≺ 2 ≺ 7 ≺ −3 ≺ 0 ≺ 6 ≺ 11 ≺ 1 ≺ 4 ≺ 10 ≺ 15 ≺ 5 ≺ · · ·

and the TITO for the shard arc in Figure 7 is

· · · − 3 ≺ 1 ≺ 5 ≺ 9 ≺ · · · ≺ 6 ≺ 7 ≺ 2 ≺ 3 ≺ −2 ≺ −1 ≺ · · · ≺ −4 ≺ 0 ≺ 4 ≺ 8 ≺ · · · .

To construct the shard associated to a shard arc, for each intermediate value k, we
pick a sign for H̃ik and for H̃kj as follows:

“left” at k ⇒ H̃−
ik and H̃+

kj
“right” at k ⇒ H̃+

ik and H̃−
kj

.

The shard associated to the shard arc is then defined to be the cone Σ which is the
intersection of H̃ij with H̃±

ik for all intermediate k. Shards are characterized as (the
closures of) the connected components of H̃ij \

⋃
i<k<j H̃ik.

The map sending a JI to its associated shard has a geometric description. Let (≺) be a
JI with lower wall (a, b). If H(≺) = H(R) for some region R of H, then the hyperplane
H̃ab is incident to R. The shard Σ associated to (≺) is the unique shard contained in H̃ab
which is incident to R: we say Σ is a lower shard of R. However, there exist JIs which
do not come from regions, such as [1, 2] ≺ [3, 4]. Even in this case, Σ is characterized as
the unique shard of H̃ab which, for each intermediate k, is contained in H̃−

ak if and only
if (≺) is contained in H̃−

ak. Hence, despite the lack of a literal region to go with (≺), the
geometry still behaves as if Σ is the lower shard of a “quasi-region” associated to (≺).
The existence of such exotic JIs makes the following result even more surprising.

Theorem 2. These correspondences set up bijections

shards ⇔ shard arcs ⇔ JIs.
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Let i and j be the initial and terminal values of a shard arc datum. The JIs which are elements of
weak Bruhat order are those with shard arc data having either i < j < i + n, or else j > i + n
and we have chosen “right” at i + n.

In particular, the shard arc in Figure 7, or any shard with arc data having a choice
of “left” at i + n, does not have an associated join-irreducible element of weak Bruhat
order: we truly need to go to the extended weak order to explain these shards.
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Kromatic quasisymmetric functions
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Abstract. We provide a construction for the kromatic symmetric function XG of a
graph introduced by Crew, Pechenik, and Spirkl using combinatorial (linearly com-
pact) Hopf algebras. As an application, we show that XG has a positive expansion into
multifundamental quasisymmetric functions. We also study two related quasisym-
metric q-analogues of XG, which are K-theoretic generalizations of the quasisymmetric
chromatic function of Shareshian and Wachs. We classify exactly when one of these
analogues is symmetric. For the other, we derive a positive expansion into symmetric
Grothendieck functions for graphs G that are natural unit interval orders.

Keywords: Chromatic symmetric functions, combinatorial Hopf algebras, linearly
compact modules, multifundamental quasisymmetric functions

1 Introduction

The purpose of this note is to re-examine the algebraic origins of the kromatic symmetric
function of a graph that was recently introduced by Crew, Pechenik, and Spirkl [3], and
to study two quasisymmetric analogues of this power series.

Let N = {0, 1, 2, . . . }, P = {1, 2, 3, . . . }, and [n] = {1, 2, . . . , n} for n ∈ N. All graphs
are undirected by default, and are assumed to be simple with a finite set of vertices. We
do not distinguish between isomorphic graphs.

If G is any graph then we write V(G) for its set of vertices and E(G) its set of edges.
A proper coloring of G is a map κ : V(G)→ P with κ(u) 6= κ(v) for all {u, v} ∈ E(G). For
maps κ : V → P let xκ = ∏i∈V xκ(i) where x1, x2, . . . are commuting variables.

Definition 1.1 (Stanley [12]). The chromatic symmetric function of G is the symmetric
power series XG := ∑κ xκ where the sum is over all proper colorings κ of G.

Example 1.2. If G = Kn is the complete graph with V(G) = [n] then XG = n!en for the
elementary symmetric function en := ∑1≤i1<i2<···<in xi1 xi2 · · · xin .

A poset is (3 + 1)-free if it does not contain a 3-element chain a < b < c whose ele-
ments are all incomparable to some fourth element d. The Stanley–Stembridge conjecture
[13] proposes that if G is the incomparability graph of a (3 + 1)-free poset then XG has a

∗emarberg@ust.hk. This work was supported by Hong Kong RGC grants 16306120 and 16304122.
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positive expansion into elementary symmetric functions. This conjecture has several re-
finements and generalizations, and has been resolved in a number of interesting special
cases, but remains open in general.

Let G be an ordered graph, that is, a graph with a total order < on its vertex set V(G).
An ascent (resp., descent) of a map κ : V(G) → P is an edge {u, v} ∈ E(G) with u < v
and κ(u) < κ(v) (resp., κ(u) > κ(v)). Let ascG(κ) and desG(κ) be the number of ascents
and descents. Shareshian and Wachs [10] introduced the following q-analogue of XG:

Definition 1.3 ([10]). The chromatic quasisymmetric function of an ordered graph G is
XG(q) = ∑κ qascG(κ)xκ ∈ N[q]Jx1, x2, . . .K where the sum is over all proper colorings.

Example 1.4. If G = Kn then XG(q) = [n]q!en where [i]q =
1−qi

1−q and [n]q! = ∏n
i=1[i]q.

Let Set(P) be the set of finite nonempty subsets of P. For a map κ : V → Set(P)
define xκ = ∏i∈V ∏j∈κ(i) xj. A proper set-valued coloring is a map κ : V(G)→ Set(P) with
κ(u) ∩ κ(v) = ∅ for all {u, v} ∈ E(G). There is also a “K-theoretic” analogue of XG:

Definition 1.5 (Crew, Pechenik, and Spirkl [3]). The kromatic symmetric function of a graph
G is the sum XG = ∑κ xκ ∈ ZJx1, x2, . . .K over all proper set-valued colorings of G.

Example 1.6. XKn = n! ∑∞
r=n {r

n}er where {r
n} is the Stirling number of the second kind.

Remark 1.7. Given α : V → N, let Clα(V) be the set of pairs (v, i) with v ∈ V and
i ∈ [α(v)]. If G is a graph and α : V(G) → N is any map, then the α-clan graph Clα(G)
has vertex set Clα(V(G)) and edges {(v, i), (w, j)}whenever {v, w} ∈ E(G) or both v = w
and i 6= j. As observed in [3], one has XG = ∑α:V(G)→P

1
α! XClα(G) where α! := ∏v α(v)!.

Many properties of XG extend to XG via this identity, but some interesting features of
XG cannot be explained by this formula alone.

Our main results provide a natural construction for XG using the theory of combina-
torial Hopf algebras. This approach requires some care, as XG is not a symmetric function
of bounded degree. We explain things precisely in terms of linearly compact Hopf algebras
after reviewing a similar, simpler construction of XG in Section 2, following [1].

As an application of our approach, we show that XG has a positive expansion into
multifundamental quasisymmetric functions. We also study two related q-analogues of XG,
which give K-theoretic generalizations of XG(q). We classify exactly when one of these
analogues is symmetric. For the other, we extend a theorem of Crew, Pechenik, and
Spirkl (also lifting a theorem of Shareshian and Wachs) to derive a positive expansion
into symmetric Grothendieck functions for graphs G that are natural unit interval orders.

2 Background

Let K be an integral domain; in practice, one can assume this is Z, Q, Z[q], or Q(q).
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2.1 Hopf algebras

Write ⊗ = ⊗K for the tensor product over K. A K-algebra is a K-module A with K-linear
product ∇ : A⊗ A → A and unit ι : K → A maps. Dually, a K-coalgebra is a K-module
A with K-linear coproduct ∆ : A→ A⊗ A and counit ε : A→ K maps. The (co)product
and (co)unit maps must satisfy several associativity axioms; see [5, §1].

A K-module A that is both a K-algebra and a K-coalgebra is a K-bialgebra if the
coproduct and counit maps are algebra morphisms. A bialgebra A =

⊕
n∈N An is graded

if its (co)product and (co)unit are graded maps; in this case A is connected if A0 = K.
Let End(A) denote the set of K-linear maps A → A. This set is a K-algebra for the

product f ∗ g := ∇ ◦ ( f ⊗ g) ◦ ∆. The unit of this convolution algebra is the composition
ι ◦ ε of the unit and counit of A. A bialgebra A is a Hopf algebra if id : A → A has a
two-sided inverse S : A→ A in End(A). When it exists, we call S the antipode of A.

Example 2.1. Let Graphsn for n ∈ N be the free K-module spanned by all isomorphism
classes of undirected graphs with n vertices, and set Graphs =

⊕
n∈N Graphsn. One views

Graphs as a connected, graded Hopf algebra with product ∇(G ⊗ H) = G t H and
coproduct ∆(G) = ∑StT=V(G) G|S ⊗ G|T for graphs G and H, where t denotes disjoint
union and G|S denotes the subgraph of G induced on S.

A lower set in a directed acyclic graph D = (V, E) is a set S ⊆ V such that if a directed
path connects v ∈ V to s ∈ S then v ∈ S. An upper set is the complement of a lower set.

Example 2.2. Let DAGsn for n ∈ N be the free K-module spanned by all isomorphism
classes of directed acyclic graphs with n vertices, and set DAGs =

⊕
n∈N DAGsn. One

views DAGs as a connected, graded Hopf algebra with product ∇(C⊗ D) = C t D and
coproduct ∆(D) = ∑ D|S ⊗ D|T for directed acyclic graphs graphs C and D, where the
sum is over all disjoint unions S t T = V(D) with S a lower set and T an upper set.

A labeled poset is a pair (D, γ) consisting of a directed acyclic graph D and an injective
map γ : V(D) → Z. We consider (D, γ) = (D′, γ′) if there is an isomorphism D ∼−→ D′,
written v 7→ v′, such that γ(u) − γ(v) and γ′(u′) − γ′(v′) have the same sign for all
edges u → v ∈ E(D). If (D1, γ1) and (D2, γ2) are labeled posets then let γ1 t γ2 :
V(D1 t D2) → Z be any injective map such that (γ1 t γ2)(u) − (γ1 t γ2)(v) has the
same sign as γi(u)− γi(v) for all u, v ∈ V(Di).

Example 2.3. Let LPosetsn be the free K-module spanned by all labeled poset with n
vertices, and set LPosets =

⊕
n∈N LPosetsn. This is a connected, graded Hopf algebra

with product ∇((D1, γ1) ⊗ (D2, γ2)) = (D1 t D2, γ1 t γ2) and coproduct ∆((D, γ)) =

∑(D|S, γ|S)⊗ (D|T, γ|T) where the sum is over all disjoint decompositions St T = V(D)
with S a lower set and T an upper set.

A (strict) composition α = (α1, α2, . . . , αl) is a finite sequence of positive integers, called
its parts. We say that α is a composition of |α| := ∑i αi ∈ N.
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Example 2.4. Fix a composition α and let x1, x2, . . . be a countable sequence of com-
muting variables. The monomial quasisymmetric function of α is the power series Mα =

∑1≤i1<i2<···<il xα1
i1

xα2
i2
· · · xαl

il
. Let QSym = K-span{Mα : α any composition} be the ring of

quasisymmetric functions of bounded degree. This ring is a graded connected Hopf al-
gebras for the coproduct ∆(Mα) = ∑α=α′α′′ Mα′ ⊗Mα′′ where α′α′′ denotes concatenation
of compositions, and the counit that acts on power series by setting x1 = x2 = · · · = 0.

A partition is a composition sorted into decreasing order. We write λ = 1m12m2 · · · to
denote the partition with exactly mi parts equal to i.

Example 2.5. The elementary symmetric function of a partition λ is the product eλ :=
eλ1eλ2 · · · where en := M1n . These power series are a basis for the Hopf subalgebra
Sym ⊂ QSym of symmetric functions of bounded degree.

2.2 Combinatorial Hopf algebras

Following [1], a combinatorial Hopf algebra (H, ζ) is a graded, connected Hopf algebra H
of finite graded dimension with an algebra homomorphism ζ : H → K.

Example 2.6. The pair (QSym, ζQ) is an example of a combinatorial Hopf algebra, where
ζQ : QSym → K is the map ζQ( f ) = f (1, 0, 0, . . . ), which sends M(n) 7→ 1 and Mα 7→ 0
for all α with at least two parts.

For a graph G define ζGraphs(G) = 0|E(G)| where throughout we interpret 00 := 1.
For a directed acyclic graph D likewise set ζDAGs(D) = 0|E(D)| for each directed acyclic
graph D. These formulas extend to linear maps on Graphs and DAGs. Finally let ζLPosets :
LPosets → K be the linear map with ζLPosets((D, γ)) = 1 if γ(u) < γ(v) for all edges
u→ v ∈ E(D) with ζLPosets((D, γ)) = 0 otherwise.

Example 2.7. The pairs (Graphs, ζGraphs), (DAGs, ζDAGs), and (LPosets, ζLPosets) are all com-
binatorial Hopf algebras.

A morphism Ψ : (H, ζ) → (H′, ζ ′) is a graded Hopf algebra morphism Ψ : H → H′

with ζ = ζ ′ ◦ Ψ. Results in [1] show that there exists a unique morphism from any
combinatorial Hopf algebra to (QSym, ζQ). Moreover, the image of Ψ is contained in the
Hopf subalgebra Sym ⊂ QSym if H is cocommutative. There is an explicit formula for
this morphism in [1], which translates to the following maps for our examples above.

For a graph G, let AO(G) be its set of acyclic orientations. For a directed acyclic graph
D, let (D, γop) be the labeled poset with γop(u) > γop(v) for all edges u → v ∈ E(D).
Also set Γ(D) = ∑κ xκ ∈ NJx1, x2, . . .K where the sum is over all maps κ : V(D) → P

with κ(u) < κ(v) whenever u→ v ∈ E(D).
More generally, for a labeled poset (D, γ) define Γ(D, γ) = ∑κ xκ where the sum is

over all maps κ : V(D)→ P with κ(u) ≤ κ(v) whenever u→ v ∈ E(D) and γ(u) < γ(v),
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and with κ(u) < κ(v) whenever u→ v ∈ E(D) and γ(u) > γ(v). Such maps κ are called
P-partitions for P = (D, γ) [11].

Proposition 2.8. There is a commutative diagram of combinatorial Hopf algebras

(Graphs, ζGraphs) (DAGs, ζDAGs) (LPosets, ζLPosets)

(QSym, ζQ)

in which the horizontal maps send G 7→ ∑D∈AO(G) D and D 7→ (D, γop), and the QSym-
valued maps send G 7→ XG, D 7→ Γ(D), and (D, γ) 7→ Γ(D, γ), respectively.

3 K-theoretic generalizations

We now explain how the results in the previous can be extended “K-theoretically” to con-
struct interesting quasisymmetric functions of unbounded degree, including XG. This
requires a brief discussion of monoidal structures on linearly compact modules.

3.1 Linearly compact modules

Let A and B be K-modules with a K-bilinear form 〈·, ·〉 : A× B → K. Assume A is free
and 〈·, ·〉 is nondegenerate in the sense that b 7→ 〈·, b〉 is a bijection B→ HomK(A, K).

Fix a basis {ai}i∈I for A. For each i ∈ I, there exists a unique bi ∈ B with 〈ai, bj〉 = δij
for all i, j ∈ I, and we identify b ∈ B with the formal linear combination ∑i∈I〈ai, b〉bi. We
call {bi}i∈I a pseudobasis for B.

We give K the discrete topology. Then the linearly compact topology [4, §I.2] on B is the
coarsest topology in which the maps 〈ai, ·〉 : B → K are all continuous. This topology
depends on 〈·, ·〉 but not on the choice of basis for A. For a basis of open sets in the
linearly compact topology, see [9, Eq. (3.1)].

Definition 3.1. A linearly compact (or LC for short) K-module is a K-module B with a
nondegenerate bilinear form A× B → K for some free K-module A, given the linearly
compact topology; in this case we say that B is the dual of A. Morphisms between such
modules are continuous K-linear maps.

Let B and B′ be linearly compact K-modules dual to free K-modules A and A′. Let
〈·, ·〉 denote both of the associated forms. Every linear map φ : A′ → A has a unique
adjoint ψ : B → B′ such that 〈φ(a), b〉 = 〈a, ψ(b)〉. A linear map B → B′ is continuous
when it is the adjoint of some linear map A′ → A.

Definition 3.2. Define B⊗ B′ := HomK(A⊗ A′, K) and give this the LC-topology from
the pairing (A⊗ A′)×HomK(A⊗ A′, K)→ K.
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If {bi}i∈I and {b′j}j∈J are pseudobases for B and B′, then we can realize the completed
tensor product B⊗ B′ concretely as the linearly compact K-module with the set of tensors
{bi ⊗ b′j}(i,j)∈I×J as a pseudobasis.

Suppose ∇ : B ⊗ B → B and ι : B → K are continuous linear maps which are the
adjoints of linear maps ε : K → A and ∆ : A → A⊗ A. We say that (B,∇, ι) is an LC-
algebra if (A, ∆, ε) is a K-coalgebra. Similarly, we say that ∆ : B → B⊗ B and ε : B → K

make B into an LC-coalgebra if ∆ and ε are the adjoints of the product and unit maps of
a K-algebra on A. We define LC-bialgebras and LC-Hopf algebras analogously; see [9]. If
B is an LC-Hopf algebra then its antipode is the adjoint of the antipode of A.

3.2 Combinatorial LC-Hopf algebras

Following [9], we define a combinatorial LC-Hopf algebra to be a pair (H, ζ) consisting of
an LC-Hopf algebra H with a continuous linear map ζ : H → KJtK such that ζ(·)|t 7→0 is
the counit of H. A morphism of combinatorial LC-Hopf algebras Ψ : (H, ζ) → (H′, ζ ′)
is a LC-Hopf algebra morphism Ψ : H → H′ with ζ = ζ ′ ◦Ψ.

Example 3.3. Let mQSym be the set of all quasisymmetric power series in KJx1, x2, . . . , K
of possibly unbounded degree. The (co)product, (co)unit, and antipode QSym all extend
to continuous K-linear maps that make mQSym into an LC-Hopf algebra, with {Mα} as
a pseudobasis. Then (mQSym, ζQ) is a combinatorial LC-Hopf algebra when ζQ is the
map ζQ : f 7→ f (t, 0, 0, . . . ).

The preceding example is an instance of a general construction. If A is a free K-
module with basis S, then its completion A is the set of arbitrary K-linear combinations
of S. We view A as a linearly compact K-module with S as a pseudobasis, relative to the
nondegenerate bilinear form A× A→ K making S orthonormal.

If (H, ζ) is a combinatorial Hopf algebra then then there is a unique way of extending
its (co)unit and (co)product to continuous linear maps on H. As the Hopf algebra H =⊕

n∈N is graded, we can also extend ζ : H → K to a continuous linear map ζ : H → KJtK
by the formula ζ(h) = ζ(h)tn for n ∈ N and h ∈ Hn.

Proposition 3.4. If (H, ζ) is combinatorial Hopf algebra then the extended structures
just given make (H, ζ) into a combinatorial LC-Hopf algebra, and the unique morphism
(H, ζ)→ (QSym, ζQ) extends to a morphism (H, ζ)→ (mQSym, ζQ).

The pair (mQSym, ζQ) is a final object in the category of combinatorial LC-Hopf alge-
bras, meaning there is a unique morphism (H, ζ)→ (mQSym, ζQ) for any combinatorial
LC-Hopf algebra. More specifically, if H has coproduct ∆, then define ∆(0) = idH and
∆(k) = (∆(k−1) ⊗ id) ◦ ∆ : H → H⊗(k+1) for k ∈ P. For compositions α = (α1, α2, . . . , αk),
let ζα : H → K be the map sending h ∈ H to the coefficient of tα1 ⊗ tα2 ⊗ · · · ⊗ tαk in
ζ⊗k ◦ ∆(k−1)(h) ∈ KJtK. When α = ∅ is empty let ζ∅ = ζ(·)|t 7→0 be the counit of H.
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Theorem 3.5 ([8]). If (H, ζ) is a combinatorial LC-Hopf algebra then the map ΨH,ζ : h 7→
∑α ζα(h)Mα is the unique morphism (H, ζ)→ (mQSym, ζQ).

Let mSym be the LC-Hopf subalgebra of symmetric functions in mQSym. When H
cocommutative, the morphism ΨH,ζ evidently has its image in mSym.

3.3 Set-valued P-partitions

For a directed acyclic graph D, let Γ(D) = ∑κ xκ where the sum is over all maps κ :
V(D)→ Set(P) with κ(u) ≺ κ(v) whenever u→ v ∈ E(D).

Example 3.6. If D = (1 → 2 → 3 → · · · → n) is an n-element chain then define
en := Γ(D) = ∑∞

k=0 (
n−1+k

n−1 )en+k. For each partition λ let eλ := eλ1eλ2 · · · . These functions
are a pseudobasis for mSym.

For a labeled poset (D, γ) define Γ(D, γ) = ∑κ xκ where the sum is over all maps
κ : V(D) → Set(P) with κ(u) � κ(v) whenever u → v ∈ E(D) and γ(u) < γ(v), and
with κ(u) ≺ κ(v) whenever u → v ∈ E(D) and γ(u) > γ(v). Such maps κ are called
set-valued P-partitions for P = (D, γ) in [7, 8].

Example 3.7. If D = (1 → 2 → 3 → · · · → n) is an n-element chain and S is the set
of i ∈ [n − 1] with γ(i) > γ(i + 1) then the we define Ln,S := Γ(D, γ). Following [7],
the multifundamental quasisymmetric function of a composition α is defined by Lα := Ln,S
where n = |α| and S = I(α) := {α1, α1 + α2, α1 + α2 + α3, . . . } \ {n}. These power series
form another pseudobasis for mQSym [7]. An element of mQSym is multifundamental
positive if its expansion in this pseudobasis involves only nonnegative coefficients.

A multilinear extension of a directed acyclic graph D with n vertices is a sequence
w = (w1, w2, . . . , wN) with V(D) = {w1, w2, . . . , wN} such that i < j whenever wi →
wj ∈ E(D), and wi 6= wi+1 for all i ∈ [N − 1]. If M(D) is the set of all multilinear
extensions of D and γ : V(D) → Z is injective, then Γ(D, γ) = ∑w∈M(D) L`(w),Des(w,γ)
where Des(w, γ) := {i ∈ [`(w)− 1] : γ(wi) > γ(wi+1)} for w ∈ M(D) [7].

3.4 Acyclic multi-orientations

Let G be a graph. An acyclic multi-orientation of G is an acyclic orientation of the α-clan
graph Clα(G) from Remark 1.7 for some α : V(G)→ P, such that for each v ∈ V(G) both
(a) if i, j ∈ [α(v)] have i > j then (v, i)→ (v, j) is a directed edge; and (b) if i ∈ [α(v)− 1]
then there exists a directed path involving no edges of the form (v, j) → (v, k) that
connects (v, i + 1) to (v, i). Let mAO(G) be the set of all acyclic multi-orientations of G.

One can relate the e-expansion of the symmetric function XG to the source counts of
its acyclic multi-orientations, generalizing a result of Stanley [12, Thm. 3.3].
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Theorem 3.8. Let G be a graph and suppose XG = ∑λ cλeλ for some coefficients cλ ∈ Z.
Then the number of acyclic multi-orientations of G with exactly j sources and k vertices
is ∑`(λ)=j,|λ|=k cλ ∈ N.

As noted in [3], in general, the coefficients cλ appearing in XG = ∑λ cλeλ can be
negative, even when G = inc(P) is the incomparability graph of a (3 + 1)-free poset P.

3.5 Morphisms

For each graph G let N(G) = ∑S∪T=V(G) G|S ⊗ G|T. This only differs from our other
coproduct in allowing vertex decompositions that are not disjoint. Likewise, for each
directed acyclic graph D and labeled poset P = (D, Γ), define N(D) = ∑ D|S ⊗ D|T and
N(P) = ∑(D|S, γ|S)⊗ (D|T, γ|T), where both sums are over all (not necessarily disjoint)
vertex decompositions S ∪ T = V(D) in which S is a lower set, T is an upper set, and
S ∩ T is an antichain.

Use the continuous linear extensions of these operations to replace the coproducts
in the completions of Graphs, DAGs, and LPosets, and denote the resulting structures as
mGraphs, mDAGs, and mLPosets to distinguish them from Graphs, DAGs, and LPosets.

Theorem 3.9. The pairs (mGraphs, ζGraphs), (mDAGs, ζDAGs), and (mLPosets, ζLPosets) are
all combinatorial LC-Hopf algebras, and there is a commutative diagram

(mGraphs, ζGraphs) (mDAGs, ζDAGs) (mLPosets, ζLPosets)

(mQSym, ζQ)

in which the horizontal maps send G 7→ ∑D∈mAO(G) D and D 7→ (D, γop), and the
mQSym-valued maps send G 7→ XG, D 7→ Γ(D), and (D, γ) 7→ Γ(D, γ).

Corollary 3.10. The unique morphism (mGraphs, ζGraphs)→ (mQSym, ζQ) assigns a graph
G to its kromatic symmetric function, which is symmetric as mGraphs is cocommutative.
One can express XG = ∑D∈mAO(G) Γ(D) and thus XG is multifundamental positive.

Fix a directed acyclic graph D. When α : V(D) → N is any map, define Cldagα (D)
to be the directed acyclic graph with vertices Clα(V(D)) and with edges (v, i) → (w, j)
whenever v → w ∈ E(D) or both v = w and i < j. When γ : V(D) → Z is injective, so
that (D, γ) is a labeled poset, define Cldagα (D, γ) = (Cldagα (D), γ̃) to be the labeled poset
where γ̃(v, i) < γ̃(w, j) if and only if γ(v) < γ(w) or both v = w and i > j.
Theorem 3.11. Assume Q ⊆ K. Then there is a commutative diagram

(mGraphs, ζGraphs) (mDAGs, ζDAGs) (mLPosets, ζLPosets)

(Graphs, ζGraphs) (DAGs, ζDAGs) (LPosets, ζLPosets)

∼= ∼= ∼=
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with horizontal maps extending Proposition 2.8 and Theorem 3.9, where the vertical
isomorphisms are the continuous linear maps sending G 7→ ∑α:V(G)→P

1
α!Clα(G), D 7→

∑α:V(D)→P Cldagα (D), and (D, γ) 7→ ∑α:V(D)→P Cldagα (D, γ), respectively.

3.6 Kromatic quasisymmetric functions

For the rest of this note we assume K ⊇ Z and let q be a formal parameter. We will
consider the polynomial and power series rings Sym[q] ⊂ mQSym[q] ⊂ mQSymJqK.

Let G be an ordered graph, that is, a graph with a total order < on its vertex set
V(G). One can think of the ordering on V(G) as defining an acyclic orientation on the
edges of G, and we do not distinguish between G and another ordered graph H if the
corresponding directed acyclic graphs are isomorphic. The following power series is a
K-theoretic generalization of XG(q) and q-analogue of XG:

Definition 3.12. For an ordered graph G define LG(q) = ∑κ qascG(max ◦κ)xκ ∈ mQSym[q]
where the sum is over all proper set-valued colorings.

Example 3.13. If G = Kn is the complete graph on the vertex set [n] then LG(q) =
[n]q! ∑∞

r=n {r
n}er = [n]q! ∑∞

r=n {r−1
n−1}er where {r

n} is the Stirling number of the second kind.

Let us clarify the apparent asymmetry in Definition 3.12. Define Ldes,min
G (q) by re-

placing “asc” by “des” and “max” by “min” in Definition 3.12. Construct Lasc,min
G (q)

and Ldes,max
G (q) analogously. Let ρ be the continuous involution of mQSym[q] sending

M(α1,...,αk)
7→ M(αk,...,α1)

. Let τ be the involution of mQSym[q] sending f 7→ qdegq( f ) f (q−1).

Proposition 3.14. We have LG(q) = ρ
(

Ldes,min
G (q)

)
= τ

(
Ldes,max

G (q)
)
= ρ ◦ τ

(
Lasc,min

G (q)
)

.

Recall that a cluster graph is a disjoint union of complete graphs.

Theorem 3.15. We have LG(q) ∈ mSym[q] if and only if G is a cluster graph.

Fix D ∈ mAO(G). Each vertex in D has the form (v, i) for some v ∈ V(G) and i ∈ P.
Define align(D) := |{(u, i)→ (v, j) ∈ E(D) : u < v and i = j = 1}|.
Proposition 3.16. If G is an ordered graph then LG(q) = ∑D∈mAO(G) qalign(D)Γ(D). This
power series is multifundamental positive in the sense of being a possibly infinite N[q]-
linear combination of multifundamental quasisymmetric functions.

We can make this more explicit, generalizing a result in [10]. Following [7], a multi-
permutation of n ∈ N is a word w = w1w2 · · ·wm with {w1, w2, . . . , wm} = {1, 2, . . . , n}
and wi 6= wi+1 for all i ∈ [m− 1]. Let Sn be the set of all multipermutations of n.

For each w = w1w2 · · ·wm ∈ Sn let Inv(w) be the set of pairs (wi, wj) with i < j and
wi > wj and {w1, w2, . . . , wi−1} ∩ {wi} = {w1, w2, . . . , wj−1} ∩ {wj} = ∅. If P is a poset
on [n] and G = inc(P) is its incomparability graph, then we set invG(w) := |{(a, b) ∈
Inv(w) : {a, b} ∈ E(G)}| and S(w, P) := {m− i : i ∈ [m− 1] and wi 6>P wi+1}.



10 Eric Marberg

Theorem 3.17. If G = inc(P) for a poset P on [n] then LG(q) = ∑
w∈Sn

qinvG(w)L`(w),S(w,P).

The homogeneous component of LG(q) of lowest x-degree recovers XG(q). The latter
power series, like XG, naturally arises as the image of a morphism of combinatorial Hopf
algebras. In detail, assume K = Z[q] and let OGraphsn be the free K-module spanned
by all isomorphism classes of ordered graphs with n vertices. Then the direct sum
OGraphs :=

⊕
n∈N OGraphsn has a graded connected Hopf algebra structure in which the

product is disjoint union and the coproduct ∆q satisfies

∆q(G) = ∑StT=V(G) qascG(S,T)G|S ⊗ G|T for each ordered graph G, (3.1)

where ascG(S, T) := |{(s, t) ∈ S × T : {s < t} ∈ E(G)}|. If ζOGraphs is the algebra
morphism OGraphs→ K sending G 7→ 0|E(G)|, then (OGraphs, ζOGraphs) is a combinatorial
Hopf algebra and the morphism (OGraphs, ζOGraphs)→ (QSym, ζQ) sends G 7→ XG(q).

We do not know how to give the completion mOGraphs ⊃ OGraphs a combinatorial
LC-Hopf algebra structure that lets us construct LG(q) in a similar way. In particular,
we have not been able to find a K-theoretic generalization of the coproduct ∆q. Unlike
the q = 1 case, simply replacing t in (3.1) by arbitrary union ∪ does not lead to a co-
associative map. This problem remains if we change the q-power exponent ascG(S, T) to
other forms like ascG(S− T, T), ascG(S, T − S), or ascG(S− T, T − S).

3.7 Another quasisymmetric analogue

The preceding results indicate that LG(q) is an interesting quasisymmetric q-analogue of
XG and K-theoretic extension of XG(q). However, there is another natural candidate for
such a generalization. Continue to let G be an ordered graph. Following [6], an ascent
of a set-valued map κ : V(G)→ Set(P) is a tuple (u, v, i, j) with {u, v} ∈ E(G), i ∈ κ(u),
j ∈ κ(v), and both u < v and i < j. Let ascG(κ) denote the number of such ascents.

Definition 3.18. For an ordered graph G, define XG(q) = ∑κ qascG(κ)xκ ∈ mQSymJqK
where the sum is over all proper set-valued colorings κ : V(G)→ Set(P).

This definition is closely related to the quasisymmetric functions XG(x, q, µ) studied
in [6]. For each map µ : V(G)→ N, Hwang [6] defines XG(x, q, µ) := ∑κ qascG(κ)xκ where
the sum is over all proper set-valued colorings κ of G with |κ(v)| = µ(v). Evidently
XG(q) = ∑µ:V(G)→P XG(x, q, µ), and as noted in [6, Rem. 2.2] one has XG(x, q, µ) =

1
[µ]q! XClµ(G)(q) where [µ]q! := ∏v∈V(G)[µ(v)]q!. Here, we view Clµ(G) as an ordered

graph with (v, i) < (w, j) if either v < w or v = w and i < j.
Using these observations, various positive or alternating expansions of XG(q) (e.g.,

into fundamental quasisymmetric functions [10, Thm. 3.1], Schur functions [10, Thm. 6.3],
power sum symmetric functions [2, Thm. 3.1], or elementary symmetric functions [10,
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Conj. 5.1]) can be extended in a straightforward way to XG(x, q, µ) and XG(q). See
Hwang’s results [6, Thms. 3.3, 4.10, and 4.19] and his conjecture [6, Conj. 3.10].

Some of these statements require G to be isomorphic to the incomparability graph of
a natural unit interval order, meaning a poset P on a finite subset of P such that if x <P z
then x < z and every y incomparable in P to both x and z has x < y < z [10, Prop. 4.1].1

If G has this property, then so do all of its α-clans. Therefore XG(q) is symmetric if G is
the incomparability graph of a natural unit order interval [6, Thm. 3.8].

Example 3.19. If Kn is the complete graph on [n] then XKn(q) = ∑∞
r=n F(n)

r er for F(n)
r :=

∑ k1,k2,...,kn∈P
k1+k2+···+kn=r

( r
k1,k2,...,kn

)
q

where (q)n := ∏i∈[n](1− qi) and ( r
k1,k2,...,kn

)
q
= (q)r

(q)k1
(q)k2

···(q)kn
.

When q is a prime power, F(n)
r counts the strictly increasing flags of Fq-subspaces

0 = V0 ( V1 ( · · · ( Vn = Fr
q. Vinroot [14] derived a recurrence for the generalized Galois

numbers G(n)
r := ∑n

i=0 (
n
i )F(i)

r . This can be used to show (setting F(n)
r = 0 if r < 0) that:

Proposition 3.20. One has F(n)
r+1 = ∑n−1

i=0 ∑n
j=n−1−i (

n
j)(

j
n−1−i)(−1)i (q)r

(q)r−i
F(j)

r−i.

Like LG(q), the power series XG(q) also does not seem to arise naturally as the image
in mQSym of a combinatorial LC-Hopf algebra. Unlike LG(q), however, XG(q) is not gen-
erally multifundamental-positive (or e-positive). However, XG(q) does have a nontrivial
positivity property that is not shared by XG(x, q, µ) or LG(q).

A set-valued tableau T of shape λ is an assignment of sets Tij ∈ Set(P) to the cells (i, j)
in Dλ = {(i, j) ∈ P×P : 1 ≤ j ≤ λi} of a partition λ. We write (i, j) ∈ T to indicate that
(i, j) belongs to the shape of T. A set-valued tableau T is semistandard if Tij � Ti,j+1 and
Tij ≺ Ti+1,j for all relevant positions. Let xT := ∏(i,j)∈T ∏k∈Tij

xk and |T| := ∑(i,j)∈T |Tij|.

Definition 3.21. The symmetric Grothendieck function of a partition λ is the power series
sλ := ∑T∈SetSSYT(λ)(−1)|T|−|λ|xT ∈ ZJx1, x2, . . .K where SetSSYT(λ) is the set of all semi-
standard set-valued tableaux of shape λ.

Each sλ is in mSym and the set of all symmetric Grothendieck functions is another
pseudobasis for mSym. We write µ ⊆ λ for two partitions with Dµ ⊆ Dλ and set Dλ/µ :=
Dλ \Dµ. A semistandard tableau of shape λ/µ is a filling of Dλ/µ by positive integers such
that each row is weakly increasing and each column is strict increasing.

Definition 3.22 ([3, Def. 3.8]). Suppose P is a finite poset and λ is a partition. A
Grothendieck P-tableau of shape λ is a pair T = (U, V) with these two properties: (a)
U is a filling of Dµ by elements of P for some partition µ ⊆ λ, such that each element of
P is in at least one cell, and for each (i, j) ∈ Dµ one has Uij <P Ui,j+1 if (i, j+ 1) ∈ Dµ and
Uij 6>P Ui+1,j if (i + 1, j) ∈ Dµ; and (b) V is a semistandard tableau of shape λ/µ, whose
entries in each row i are all less than i (so Dλ/µ must have no cells in the first row).

1A finite poset is isomorphic to one with these properties iff it is (3 + 1)- and (2 + 2)-free [10, §4].
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Let GP be the set of Grothendieck P-tableaux. Let λ(T) be the shape of T ∈ GP. One
of the main results of [3] establishes that if G = inc(P) is the incomparability graph a
(3 + 1)-free poset P then XG = ∑T∈GP

sλ(T). This theorem has a q-analogue.
Suppose P is a finite poset on a subset of P, and let G = inc(P). Choose some

T = (U, V) ∈ GP and let µ be the partition shape of the tableau U. Define a G-inversion
of T to be a pair of cells (i, j), (k, l) ∈ Dµ with i > k such that Uij < Ukl but Uij 6<P Ukl
and Uij 6>P Ukl. Finally, let invG(T) be the number of all G-inversions of T.

Theorem 3.23. If P is a natural unit interval order then XG = ∑T∈GP
qinvG(T)sλ(T).
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