
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.

April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Mowgli: Passively Learned Rate Control
for Real-Time Video

Neil Agarwal and Rui Pan, Princeton University;

Francis Y. Yan, University of Illinois Urbana-Champaign; Ravi Netravali, Princeton University

https://www.usenix.org/conference/nsdi25/presentation/agarwal

Mowgli: Passively Learned Rate Control for Real-Time Video

Neil Agarwal¶ Rui Pan¶ Francis Y. Yan† Ravi Netravali¶

¶Princeton University †University of Illinois Urbana-Champaign

Abstract
Rate control algorithms are at the heart of video conferenc-

ing platforms, determining target bitrates that match dynamic

network characteristics for high quality. Recent data-driven

strategies have shown promise for this challenging task, but

the performance degradation they introduce during training

has been a nonstarter for many production services, preclud-

ing adoption. This paper aims to bolster the practicality of

data-driven rate control by presenting an alternative avenue

for experiential learning: leveraging purely existing telemetry

logs produced by the incumbent algorithm in production. We

observe that these logs contain effective decisions, although

often at the wrong times or in the wrong order. To realize

this approach despite the inherent uncertainty that log-based

learning brings (i.e., lack of feedback for new decisions), our

system, Mowgli, combines a variety of robust learning tech-

niques (i.e., conservatively reasoning about alternate behavior

to minimize risk and using a richer model formulation to

account for environmental noise). Across diverse networks

(emulated and real-world), Mowgli outperforms the widely

deployed GCC algorithm, increasing average video bitrates

by 15–39% while reducing freeze rates by 60–100%.

1 INTRODUCTION

Real-time video conferencing is integral to our daily lives,

with widespread use cases across many societal pathways

including healthcare, education, gaming, and more. Key to

their functionality are the rate control algorithms (e.g., Google

Congestion Control or GCC [21]) that conferencing platforms

employ. These algorithms are tasked with quickly (e.g., every

50 ms) characterizing network performance based on recent

transmissions and selecting a target bitrate for the upcoming

frames that maximizes content quality without introducing

undue latency or stalls. This value is then shared with the

local video codec which performs best-effort compression of

the raw frames to match the target prior to transmission.

Recent years have witnessed a flurry of proposals for im-

proving conferencing quality via improved rate control. Most

notably, data-driven approaches have shown how reinforce-

ment learning (RL)-based algorithms can substantially out-

perform GCC’s hand-tuned variants [54–56]. As in other

networked-system domains [14, 35, 51, 52], the key is in mak-

ing better use of dense application- and network-layer feed-

back signals to enable bitrate changes that more closely track

rapid network fluctuations in the wild—a key challenge for

GCC [21, 54–56].

Yet, despite their promise, data-driven rate control algo-

rithms have seen minimal adoption in practice. Our con-

versations with operators of large-scale video conferencing

platforms reveal that the primary showstopper is the impact

that these schemes have on the performance or quality of

experience (QoE) observed by real users. Indeed, the experi-

ential learning that these schemes pursue in real conferenc-

ing sessions fundamentally involves exploring different rate

decisions—both good and bad for QoE—and observing their

effects in certain scenarios. Our experiments show that this

trial-and-error process can increase video freeze rates up to

79% and degrade video bitrates by up to 77%, yielding unac-

ceptable QoE (§2.2). Data-driven strategies could forego such

user-facing training by relying on simulators and emulators,

but this may jeopardize efficacy in production settings due to

the “simulation to reality” gap [12, 20, 27, 51, 55].

This paper aims to build on recent data-driven rate control

schemes, not by designing more performant algorithms, but

instead by bolstering their practicality. Our key insight is that

the fine-grained telemetry logs that production conferencing

platforms routinely capture for debugging and retrospective

optimization [1, 2, 4, 7, 10] already embed sufficient insight to

guide data-driven algorithms to outperform their hand-tuned

counterparts. The reason is that, while algorithms like GCC

struggle to quickly match fluctuating network bandwidths,

they often adjust target rates in the appropriate direction with

delay (Fig. 1). Consequently, we find that simply reorganizing

the same decisions that GCC makes during video sessions

(without exploring any alternate rate values) boosts confer-

encing bitrates by 19% and decreases freezes by 80% (§3.3).

We present Mowgli, an end-to-end system that realizes

such log-based learning to practically enhance rate control in

video conferencing. Mowgli starts by representing production

telemetry logs that reflect the behavior and performance of

a deployed algorithm (e.g., GCC) as more traditional (state,

action, reward) tuples for RL. These logs then guide Mowgli’s

experiential learning, which follows the soft actor-critic algo-

rithm [30] to develop a lightweight neural network for rate

control. Training occurs entirely offline using only logs (i.e.,

no video playback or simulation), and the resultant model is

shipped to clients for deployment.

Though conceptually straightforward, learning in this of-

fline manner faces several challenges centered around un-

certainty (§3.4). As noted above, the feasible learned im-

provements are rooted in discovering alternate sequences of

logged actions that perform better in certain scenarios. How-

ever, assessing such sequences is fundamentally risky as they

involve applying previously-seen actions to new scenarios

without guarantees that the benefits will port, i.e., unlike tra-

ditional RL, we lack direct feedback for these new sequences.

This limitation is worsened by the fact that logs in confer-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 579

encing systems (1) typically reflect singular deterministic

policies with little variation in action for a given scenario,

and (2) are inherently noisy in that observed performance can

be influenced not only by rate decisions, but also external

phenomena such as codec behavior and stochastic network

variations [28, 50, 51, 53, 56].

To manage uncertainty, Mowgli incorporates two key tech-

niques. First, when estimating the consequence of an action

in a given scenario, Mowgli takes a conservative approach—

it lowers the estimated return if no similar state-action pair

has been observed before, and proceeds only when the per-

formance improvement outweighs the risk. Second, rather

than estimating a single expected outcome, Mowgli explicitly

tackles environmental variance by learning a distribution over

all possible outcomes. This distributional perspective pro-

vides Mowgli with richer insights, enabling more informed

decision-making. We detail the concrete algorithms in §4.2.

We evaluated Mowgli on a diverse set of emulated and real-

world networks spanning 3G–5G cellular and wired broad-

band links. Overall, we observe that Mowgli consistently out-

performs GCC, increasing average video bitrates by 15–39%

while reducing freeze rates by 60–100%. Further, Mowgli’s

wins closely mimic those of recent (impractical) online RL

algorithms [27, 54, 55], falling within 0.5–13.1% and 0–19%

for average bitrates and freeze rates, respectively.

2 BACKGROUND & MOTIVATION

2.1 Prior Work

Rule-based heuristics are suboptimal. Today’s video con-

ferencing applications (e.g., Microsoft Teams, Google Hang-

outs, Zoom) rely on rule-based algorithms to provide network

bandwidth estimates and guidance as to how to tune the en-

coding and sending bitrates over time. A widely used, publicly

available algorithm is Google Congestion Control (GCC) [21].

GCC first characterizes the current network usage based on

recent packet delay and loss measurements, and then updates

the target bitrate according to a fixed set of rules (e.g., when

the observed packet loss is less than 2%, increase the target

bitrate by 5%, or when the system is in a “decrease” state,

reduce the target bitrate by 15%).

Google Congestion Control (and other rule-based heuris-

tics) have been widely observed to be suboptimal [27, 28, 54–

56]. Recent reports have found that when using state-of-the-

art rule-based heuristics, over 20% of over a million video

conferencing sessions experience poor performance [56]. Dig-

ging deeper, we find that GCC performs particularly poorly

in highly dynamic network conditions, where the available

bandwidth fluctuates (e.g., in cellular networks). The general

hardcoded set of rules fails to fully leverage dense appli-

cation/network signals that are necessary for predicting the

appropriate bitrate adjustments in highly variable regimes.

As a result, for example, when bandwidth drops, GCC can

fail to rapidly and appropriately adjust the bandwidth, un-

necessarily overshooting the available network capacity and

10 15 20 25 30
Time (s)

1

2

3

Se
nt

 B
itr

at
e

(M
bp

s)

GCC
Approx. Oracle

(a) GCC overshoots network capacity after a bandwidth drop, causing

video freezes.

5 10 15 20 25 30 35 40 45 50
Time (s)

0

1

2

3

Se
nt

 B
itr

at
e

(M
bp

s)

GCC
Approx. Oracle

(b) After an intermittent bandwidth drop, GCC ramps up slowly, leading

to suboptimal bandwidth utilization.

Figure 1: Examples of GCC’s pitfalls, which occur primarily in

dynamic networks. To illustrate potential performance improve-

ment opportunities, we plot an oracle algorithm.

incurring video freezes (Fig. 1a). Further, after an intermittent

drop in bandwidth, GCC can be unnecessarily delayed in fully

ramping up to the available bandwidth (Fig. 1b). As quality

expectations for video conferencing steadily increase with its

growing ubiquity, there is a pressing need to find improved

rate control algorithms over today’s rule-based heuristics.

Data-driven approaches are promising. In response, the

community has explored data-driven approaches to gener-

ate alternative rate control algorithms (e.g., R3Net [27],

OnRL [55], Loki [54]). Such machine learning-based ap-

proaches are particularly skilled at extracting patterns from

highly-dense information and have been shown to deliver non-

trivial improvements over today’s state-of-the-art rule-based

heuristics. Given the challenge of explicitly identifying the

exact action an algorithm should take in each scenario and

using standard supervised learning techniques to learn that

mapping, recent proposals have opted to leverage reinforce-

ment learning (RL). An RL agent learns by interacting with

an environment and leveraging feedback to iteratively adjust

its behavior to maximize cumulative reward over a horizon.

In rate control for video conferencing, the RL agent outputs

bitrate updates and leverages the transport/application layer

feedback to update its decision-making policy.

2.2 Motivations

As confirmed by prior work [27, 54, 55] and our results in

§5, data-driven methods can deliver significant wins over

rule-based heuristics and are crucial to enabling the effec-

tive rate control that today’s video conferencing applications

demand. Surprisingly, despite their potential benefits, these

solutions have yet to gain traction in production deployments.

In conversations with the operators of major production video

conferencing deployments, these solutions do not meet the

580 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

21 0
� Video Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0 25 50 75
� Video Freeze Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Distribution of changes to video QoE observed (relative

to GCC) during online RL model training. Improvements are

shaded in green; degradations are shaded in red.

practicality constraints of production environments. In par-

ticular, the biggest concern is the disruption of client video

conferencing sessions during model training.

Fundamental to existing solutions is their use of reinforce-

ment learning, a trial-and-error learning mechanism that trains

a model by iteratively interacting with an environment and

updating the model based on the interaction outcomes. For

existing solutions, randomly initialized RL agents (models)

are placed directly on client devices and are allowed to dictate

the bitrate decisions for real user-facing video conferencing

sessions. Over time, the models gain experience and converge

to a high-performing policy; however, this comes at the cost

of disruption to the quality of video conferencing calls during

the training process. Prior approaches explicitly encourage ex-

ploration of different actions and behavior during training (by

adding an entropy bonus to the learning objective); the bitrate

decisions taken during exploration may be far from the ideal

bitrate decision for that particular scenario and dramatically

degrade the quality of a video call.

Quality disruptions of online learning. To observe how

the performance of video conferencing sessions is affected

during training, we ran a series of experiments. We train

an online RL algorithm in our video conferencing testbed

and periodically record the QoE metrics of affected sessions.

More details about our video conferencing testbed, online

RL implementation, and QoE metrics can be found in §5.

Note that our implementation includes the temporary fallback

mechanism introduced by OnRL [55] which switches back to

the rule-based heuristic when overuse is detected in the hope

of reducing catastrophic behavior.

Fig. 2 shows the effects on performance (relative to GCC)

during model training for two key QoE metrics. We find

that 62% of calls experience a worse average video bitrate,

with degradations as low as −1.9 Mbps (for context, the aver-

age bitrate of a call is 1.03 Mbps). 43% of calls experience

higher video freeze rates, with freeze rate increases as much as

+79%. Intuitively, these performance degradations are due to

the exploratory nature of online RL mechanisms. Fig. 3 high-

lights some of the disruptive behavior that causes performance

degradations: repeated switching between low and high bi-

trates, bandwidth underutilization, and overaggressive bitrate

ramp-ups. Fallback mechanisms fail to resolve these issues

0 2 4 6 8 10
Time (s)

0.0

0.5

1.0

1.5

2.0

Ta
rg

et
 B

itr
at

e
(M

bp
s)

Figure 3: Example disruptive behavior observed during online

RL training; network bandwidth is shaded in yellow.

because they are only activated once catastrophic behavior is

detected. Further, these degradations are exacerbated by the

iterative development process of model optimization across

different model designs and hyperparameters—the costs of

training (e.g., QoE degradations) will be incurred every time.

2.3 Alternative Approaches

Training in simulation. Earlier work [27, 55, 56] has investi-

gated training policies in simulated or emulated environments

to avoid the user-facing quality degradations seen in previ-

ous approaches. However, they found that these models per-

form poorly in production due to the “simulation-to-reality”

gap [12, 20], where simulated environments fail to fully and

accurately capture the complexity of production systems and

any slight deviation in system dynamics can lead to cascading

performance issues. For more details, we refer readers to prior

reports [27, 55]. Improving simulation fidelity in networked

systems remains an active area of research [16, 19].

This gap also explains why starting with a “pre-trained

model” from simulation and then fine-tuning it online in pro-

duction is problematic. The disparity between simulated and

real environments, combined with the significant experience

required for fitting an RL model to a new distribution of envi-

ronments, means the model typically needs major revisions

rather than minor adjustments. This would disrupt production

services and negate the benefits of “pre-training”. Further, in

our review of related work [27, 54, 55], we found that prior

approaches always trained models from scratch in the deploy-

ment setting, starting with completely untrained models.

Tuning GCC knobs. Prior work [15] has shown the benefits

of using data-driven parameter tuning for ABR heuristic algo-

rithms. However, applying this approach to GCC faces three

main challenges. First, GCC bakes in handcrafted rules that

are inherently heuristic and suboptimal, thereby constrain-

ing the potential impact of hyperparameter tuning. Second,

GCC does not support extracting insights from a richer set of

network signals, depending instead primarily on a single, un-

reliable network signal (the gradient of queuing delay). Lastly,

its codebase includes hundreds of tunable knobs, making it

unclear how to prioritize or manage them effectively.

2.4 Summary

Recent data-driven approaches demonstrate considerable im-

provements over their rule-based counterparts. However, they

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 581

face minimal adoption in production due to the disruptive

nature of their interactive trial-and-error-based online learn-

ing approach. Alternatively, policies trained in simulation

perform poorly when deployed to production due to the “sim-

ulation to reality” gap. How to capitalize on the performance

improvements offered by data-driven approaches while adher-

ing to the constraints of production environments is an open

question faced by video conferencing system operators.

3 VISION: LEARNING BY OBSERVATION

In this paper, we claim that there is a viable path forward,

but it requires rethinking the end-to-end design of data-driven

rate control systems, from how we source the data to how we

leverage and learn from it.

3.1 The Data of Prior Approaches

Prior data-driven approaches collect training data by itera-

tively deploying and continually updating DNN-based rate

control policies in production video conferencing systems,

and logging the resulting behavior and outcomes [27, 54, 55].

These logs are shipped from users to a central server, where

they are processed and then fed to a training algorithm that

updates the weights underlying the current version of the rate

control policy. The updated weights are shipped out to the

clients and the next round of training proceeds.

At the central server, data processing of the logs involves ex-

tracting structured sequential data, i.e., series of (state, action,

reward) tuples. A (st , at , rt) tuple represents the following: at

a given time t, the rate control policy takes as input recently

observed information about application and transport layers

(captured as vector st) and outputs an updated target bitrate at .

The effect of updating the target bitrate to at on application

performance (e.g., the change in video throughput, freezes,

frame delay, etc.) is quantified as rt . Such sequences of (state,

action, reward) tuples offer a structured way to reflect the

experiences and effects of a rate control policy.

This data provides critical feedback to the training process

by reinforcing decision-making that leads to good behavior

(high reward) and penalizing decision-making that leads to

poor behavior (low reward). Recall that the training algorithm

initially knows nothing about the environment or the ideal

behavior. As a result, the initial rate control policies take ran-

dom actions. This exploratory behavior helps build a growing

set of diverse experiences, each trajectory corresponding to

a different sequence of possible decisions. Over time, as the

weights of the rate control policies are updated and additional

logs are collected, the model identifies high-potential paths

and ultimately, converges to a policy that maximizes the cu-

mulative reward. In the process, each step of deployment and

data collection provides a critical feedback loop, enabling

the training algorithm to (1) test out new behaviors, and (2)

correct any misunderstandings in the learned model.

However, as quantified in §2.2, accumulating this rich and

diverse dataset requires deploying partially trained policies to

production environments and disrupting the quality of video

conferencing sessions for users. From the perspective of a

production deployment operator, this is not a viable option.

3.2 An Alternative Source of Data

In this paper, we posit that there is a viable alternative

source of data: the experiences of the rule-based algorithm

currently deployed in production settings for rate control

(e.g., Google Congestion Control). Unlike prior approaches,

this data source can be obtained without deploying partially

trained or untested rate control policies, thereby avoiding the

disruptions outlined in §2.2. Instead, the data is collected

from a rate control heuristic already in production, where it is

logged at a fine granularity for purposes such as monitoring,

debugging, and improving the heuristic algorithm [2, 6]. Sim-

ilar to previous methods, these logs can be post-processed to

extract sequences of (state, action, reward) tuples, capturing

the experiences of the deployed rate control policy.

However, ultimately, these logs reflect the behavior of a

single, static rate control policy (production systems typically

deploy a single algorithm, e.g., the in-house rule-based heuris-

tic). The logs of prior approaches, on the other hand, reflect

the behavior of hundreds of rate control policies, learned and

deployed over hundreds of epochs of training. As previously

described, the diversity in behaviors enables the algorithm

to learn an effective rate control policy. This begs the ques-

tion: how we can learn a better rate control policy from the

experiences of a single rate control policy?

Besides the interactive RL approaches of prior work, there

exist alternative data-driven approaches such as imitation

learning (e.g., behavior cloning) [31]. However, the goal of

these methods is to learn the same behavior as reflected in the

training data; our goal is to learn a better rate control strategy.

3.3 Opportunity

In this section, we introduce a novel approach to learning from

the logs of GCC; we start by describing a key observation

about the nature of GCC’s shortcomings.

As discussed in §2.1, GCC’s suboptimal performance stems

from delayed or overly cautious responses to bandwidth

changes. During sudden bandwidth drops (Fig. 4a), GCC’s

reliance on hand-tuned thresholds of limited network signals

delays congestion detection and subsequent corrective actions.

This lag results in network overutilization and video freezes.

When network capacity increases, GCC exhibits overly cau-

tious ramp-up behavior, hesitating to increase the bitrate for

fear of overshooting the available capacity (Fig. 4b).

Notably, despite these issues, GCC eventually makes the

correct directional adjustments— ramping down after detect-

ing congestion or gradually increasing its bitrate when the

network allows. This observation is crucial: it implies that,

within the very logs where GCC performs poorly, there are

also positive examples that demonstrate how timely or more

aggressive actions could have prevented unnecessary freezes

or underutilization. These examples present a unique oppor-

tunity to develop an improved rate control algorithm directly

582 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) After the network bandwidth drops at t=22, it takes 3 seconds for

GCC’s sending bitrate to catch up. By shifting GCC’s bitrate reduction

earlier, we can reduce the degree of network overutilization.

(b) After the network bandwidth increases at t=7, it takes 40 seconds for

GCC’s sending bitrate to catch up. By shifting GCC’s bitrate ramp-up

earlier, we can increase network utilization.

Figure 4: Potential improvements by rearranging sequences of

actions within GCC’s logs.

from GCC’s logs. Instead of considering entirely new actions

or behaviors, we can improve through careful selection and

application of actions already demonstrated in the logs.

For example, in Fig. 4a, as GCC eventually reduces its bi-

trate following a bandwidth drop, the trace captures a range of

actions: initially, actions at the same bitrate and subsequently,

actions at lower bitrates. These logs also capture detailed net-

work telemetry data reflecting the state before and after each

action. Together, this data provides valuable examples that

can be analyzed and optimized. Specifically, these examples

can be used to (1) identify congestion signals more effectively

and (2) select lower target bitrates more promptly. Similarly,

as illustrated in Fig. 4b, when GCC (conservatively) increases

its bitrate in response to improved bandwidth, the teleme-

try traces capture a sequence of steadily increasing bitrate

adjustments. These actions, paired with their corresponding

telemetry signals, provide examples of different responses and

ultimately, a path to achieving improved network utilization.

Both scenarios illustrate that, despite capturing suboptimal

decisions, GCC’s logs contain valuable data for achieving

critical improvements. By systematically analyzing GCC’s

behavior alongside dense telemetry signals, it becomes possi-

ble to reorder its actions into a more optimal sequence without

the need to devise entirely new strategies. The central insight

lies in leveraging GCC’s imperfect but fundamentally direc-

tionally correct decision sequences as foundational building

blocks for constructing a more effective rate control policy.

To quantify the potential gains from this log-based learning

approach, we implemented an approximate oracle algorithm

that has access to ground-truth network dynamics but is re-

stricted to the set of actions that appear in a given GCC log.

On the network trace depicted in Fig. 4a, the oracle achieves

a 52% increase in video bitrate and a 98% reduction in freeze

rates. For the scenario in Fig. 4b, it achieves an 80% increase

in video bitrate and a 79% reduction in freeze rates. Across

our entire corpus of network traces (§5), this oracle-based

approach yields a 19% improvement in video bitrate and an

80% decrease in freeze rates compared to GCC.

3.4 Challenges

However, realizing this approach in a way that is both practical

and effective while adhering to the constraints of a production

deployment setting requires addressing two key challenges.

Challenge #1: Lack of feedback. Ultimately, the goal is to

learn an improved rate control policy without disrupting users

(the main pitfall of prior approaches). However, producing

an improved rate control policy requires learning a strategy

that deviates from the behavior seen in the GCC logs (e.g., an

alternative sequence of actions). Learning this alternative (and

better) strategy requires reasoning about (and extrapolating)

the expected outcomes of alternative behaviors. This is a

risky proposition without access to feedback (i.e., testing the

new strategy and validating the prediction). The greater the

deviation, the greater the potential risk of extrapolation error;

any errors in extrapolating will compound, as the resulting

deviation will lead to more deviation. Ultimately, this comes at

the detriment of the performance of the learned policy. In the

field of learning sequential decision-making without feedback,

this phenomenon is referred to as “distribution shift” [33]. In

our evaluation ablation studies (§5.5), we find that failing to

address distribution shift can dramatically cause performance

degradations, increasing P90 video freeze rates over 12×.

To address this issue in the context of learning improved

rate control policies, we need a way to effectively balance

decision-making deviations with risk mitigation.

Challenge #2: Environmental variance. Further complicat-

ing the ability to develop an understanding of how any given

target bitrate update affects observed outcomes (rewards) is

the presence of external phenomena outside the control of the

bitrate decision-making policy that affect application behavior

and ultimately, the outcomes of a given bitrate update. Unlike

prior work [27, 56] that leverages emulation or simulation-

based systems and can control for (or eliminate) the amount of

noise introduced, production-based deployments do not have

that luxury. Concretely, we find that this noise manifests in

two ways. First, video conferencing applications apply addi-

tional downstream application logic after consuming a target

bitrate update from the bitrate controller; this logic affects

the achieved encoding and sending bitrate [28, 56]. Second,

network conditions change rapidly (often in unpredictable

ways [50, 51, 53])—taking the same action at the same state

in two different instances could result in different outcomes

because of rapid changes in network conditions (i.e., the band-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 583

Existing GCC
Production Logs

Trajectories

Data Processing1

Policy Generation2

Policy Deployment3

Figure 5: Overview of Mowgli’s 3 phases: (1) data processing

for extracting trajectories from GCC telemetry logs, (2) policy

generation for model training, and (3) policy deployment.

width dropped). Ultimately, this makes it difficult to determine

whether differences in the observed outcomes of two bitrate

decisions arise from external factors or the effectiveness of the

target bitrate decision itself. In our evaluation studies (§5.5),

we find that failing to address the effects of environmental

variance can increase P90 video freeze rates over 10×. To

have an effective solution, we need a way to explicitly express

and account for environmental noise.

4 DESIGN

Fig. 5 describes Mowgli’s workflow. First, Mowgli consumes

existing production logs or builds on existing logging instru-

mentation to extract telemetry signals and generate trajecto-

ries of (state, action, reward) tuples that reflect the experiences

of the underlying rate control algorithm (§4.1). Then, Mowgli

uses these trajectories to train a lightweight neural network

for rate control (§4.2). Training occurs entirely offline using

only telemetry logs, i.e., no video playback or simulation is re-

quired; the resulting policy is then deployed on client devices

(§4.3). We describe implementation details in §4.4.

4.1 Data Collection & Processing

Mowgli operates on production telemetry data that reflects

the experiences of in-house rate control algorithms. These

logs are typically already captured for other purposes such

as debugging, observability, and quality assurance [2, 6]. For

example, recently released logs from Microsoft Teams capture

periodic (every 60 ms) application and transport layer metrics

(e.g., packet loss, packet delay, received bitrate, and target

bitrate) along with session-level QoE metrics (e.g., duration

of video freezes, average media bitrate received) [2]. If the

existing production logs do not provide the necessary data,

we can build on existing instrumentation platforms to extract

the additional data (e.g., Zoom, Microsoft Teams, WebRTC

have built-in logging capabilities [1, 2, 4, 7, 9, 10]). Once logs

are aggregated across clients to a central server, we apply

Mowgli’s processing logic to extract trajectories of (state,

action, reward) tuples.

We define the state vector and action based on prior

work [27, 54, 55]. The state vector is a window of period-

ically captured transport and application-level statistics (we

use a window of 1 second). We describe the state vector in

Table 1. We find that augmenting the state vector inputs with

State Vector Inputs

Sent Bitrate

Acknowledged Bitrate

Previous Action

One-Way Packet Delay

One-Way Packet Delay Jitter

Inter-packet Arrival Delay Variation

Round Trip Time

Minimum Round Trip Time Observed So Far

Timesteps since Last Transport Feedback Report

Packet Loss

Timesteps since Last Packet Loss Report

Table 1: State vector of transport and application-layer statistics

logged every ∼ 50 ms.

four additional features further improves performance: the

previous bitrate action, the minimum RTT observed so far,

the number of timesteps since the last transport feedback re-

port was received, and the number of timesteps since the last

packet loss report was received. We measure the impact of

these additional features in §5.5. The action is the updated

target bitrate that is consumed by the application. We define

the reward as a function of the achieved bitrate, the average

RTT, and the average packet loss. Inspired by prior work, we

leverage the following formulation:

R = α · throughput−β ·delay− γ · loss (1)

We normalize throughput to the range (0, 6 Mbps) and the

delay to (0, 1000 ms); we set α to 2, β to 1, and γ to 1.

4.2 Policy Generation

Next, Mowgli leverages the aggregated and preprocessed logs

to generate improved rate control policies. In §3, we described

an approach to improve upon GCC by rearranging the actions

within a GCC log. In this section, we explain how to realize

this approach in practice. First, we describe Mowgli’s use

of a lightweight neural network to represent a rate control

policy on client devices; we then detail how we overcome the

challenges of realizing this approach presented in §3.4.

Leveraging neural networks. To reason about potential

actions for a scenario, we need a way to estimate the expected

outcomes for (state, action) pairs. We turn to neural networks

that we can train offline (using GCC logs) and subsequently

deploy to client devices. In particular, we leverage a state-of-

the-art learning algorithm, Soft Actor-Critic (SAC) [30].

SAC consumes the trajectories of (state, action, reward)

tuples previously experienced by GCC and trains two com-

plementary functions (both represented by parameterizable

neural networks): the actor and the critic. The actor network

(πθ) learns a deterministic policy that maps states to actions;

the critic network (Qφ) evaluates the expected long-term re-

ward (return) for a given (state, action) pair. SAC leverages

the critic to provide a learning signal (via the Q-value) for

584 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the actor, enabling it to improve the policy by following the

gradient of expected returns.

Following standard Q-Learning [48] techniques, we train

the critic by minimizing the Mean Squared Bellman Error:

E(st ,at ,rt)∼D

[

(Qφ(st ,at)− (rt + γ ·max
a′

Qφ(st+1,a
′)))2

]

(2)

The actor network is updated by maximizing the Q-value

predicted by the critic:

max
θ

Es∼D[Qφ(s,πθ(s))] (3)

We train Qφ and πθ in tandem, repeatedly iterating through

the dataset of (state, action, reward) tuples. The pseudocode in

Algorithm 1 describes the key components of the dual training

process: updating the critic, and then updating the actor. Upon

convergence (and during inference), we only need to retain

πθ: given state s, return πθ(s).

Algorithm 1: Soft Actor Critic Algorithm

Input: Corpus of GCC Observations: D ∈ ïS,A,Rð
1 repeat until convergence:

2 Randomly sample a batch of transitions,

B = {(s,a,r,s′)} from D

3 Compute target:

4 y← r+ γ ·Qφ(s
′,πθ(s

′))
5 Update critic function:

6 ∇φ
1
|B| ∑(s,a,r,s′)∈B(Qφ(s,a)− y)2

7 Update actor network:

8 ∇θ
1
|B| ∑s∈B Qφ(s,πθ(s))

9 def update_bitrate(state s):

10 a← πθ(s)
11 return a;

Further, we prepend the actor and critic networks with a

learned embedding over the raw state vector to take advantage

of the temporal aspect of the state. Following prior work,

the state is a windowed series of metrics—we incorporate a

Gated Recurrent Unit (GRU) to extract trends over the window

and reduce the raw state to a more condensed vector [23].

Implementation details can be found in §4.4.

Conservative learning. While the rate control policies are

now trained offline in the cloud, the challenge of a lack of

feedback persists (Challenge #1). Learning an improved rate

control policy requires learning a strategy that deviates from

the behavior seen in GCC. The greater the deviation, the

greater the potential risk of extrapolation error; any errors

in extrapolating will compound and drastically harm perfor-

mance. In this section, we describe how the errors come to be

in the context of the actor and critic networks, and then we

go on to describe a risk mitigation strategy.

Recall that the learned critic function ultimately guides the

decision-making policy (actor) to select actions that optimize

for the best behavior. The critic Qφ is responsible for learn-

ing a regression to estimate the value of (state, action) pairs

observed in the dataset. It is also responsible for learning a

regression to estimate the value of (state, action) pairs not

seen in the dataset. The latter is much harder because it re-

quires extrapolating—that is, using values of observed (state,

action) pairs to estimate values for unseen (state, action) pairs.

As a result, the regressor is likely to be more error-prone for

those unseen regions of the state-action space. This is particu-

larly problematic because the actor is trained to learn actions

that maximize the critic function (Equation 3). Any mistakes

or erroneous value assignments can lead the actor astray; in

particular, the actor becomes biased toward selecting actions

that have been erroneously assigned high values. The result

is a poor-performing policy, one that can be potentially worse

than the one featured in the data used to train it.

To address this, we opt for the following approach: when

leveraging the output of the learned critic to teach the ac-

tor, trust the estimates more when the regressor is confident

(i.e., the estimate is based on (state, action) pairs seen or are

close to those observed in the dataset) and trust the estimates

less when the regressor is less confident (i.e., the estimate is

heavily extrapolated). Recall that in cases where GCC per-

forms poorly, it eventually makes adjustments in the correct

direction (§3.3)—these sequences provide a sufficient num-

ber of examples to confidently extrapolate about alternate

trajectories in areas that GCC needs improvement.

In practice, we can achieve this by penalizing the esti-

mated values for low-confidence regions and elevating those

for high-confidence regions. Consequently, when the actor

is leveraging the output of the critic, it learns to select ac-

tions that maximize the modified estimated value instead (i.e.,

one that takes into account the accuracy of the estimate) and

ultimately, avoid falling into a trap of taking actions with erro-

neously high estimates due to errors in the learned regressor.

In particular, we leverage a state-of-the-art technique

known as Conservative Q-Learning (CQL) [32]. CQL adds a

regularizer to the critic’s loss function (Equation 2):

α ·Es∼D

[

Ea∼π(a|s)Q(s,a)−Ea∼DQ(s,a)
]

(4)

The regularizer first guides the critic to learn a lower bound

on estimated values for all (state, action) pairs (i.e., a “conser-

vative” estimate); simultaneously, it “pushes up” the values

for (state, action) pairs observed in the training dataset. CQL

provides an adjustable parameter α to identify the appropriate

magnitude of the conservative penalty: too high of a penalty

creates a conservative, low-risk policy that performs similarly

to the behavior featured in the logs; too low of a penalty

negates the benefits of this approach altogether, resulting in a

risky (and potentially, low-performing) policy. We empirically

find that setting α = 0.01 achieves the best tradeoff; in our

ablation studies in §5.5, we compare different settings of α.

Distributional representation. The second main challenge

of learning from heuristic data collected in production deploy-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 585

Figure 6: Mowgli deploys its model in the sender application’s

rate control logic.

ment settings is the presence of external phenomena outside

the control of the rate control policy that ultimately compli-

cates reasoning about the observed outcomes for a given (state,

action) pair (Challenge #2). To address this, we opt to explic-

itly account for the variance in expected return for a given

(state, action) pair by modifying the way the learned value

is represented. Traditionally, the critic learns a scalar value—

i.e., the expected value of starting at state s and taking action

a. We modify the critic function to learn a distribution over

expected outcomes instead [18]. A probability distribution

explicitly accounts for the possibility of multiple different fu-

tures, despite the bitrate agent taking the same action. Directly

encoding a probability distribution into the model results in a

more detailed representation of the environment’s stochastic-

ity and a more comprehensive way of capturing the effects of

any given decision.

To implement this, we modify the output of the critic func-

tion to be a vector (representing a distribution) and update

the loss function to support a vector representation. In line

with prior work, we incorporate the Quantile Huber loss func-

tion, which compares distributions and penalizes estimates

differently depending on which quantile they belong [24].

4.3 Policy Deployment

Based on insights from our generalization study (§5.3),

Mowgli achieves performance wins across diverse network

scenarios, provided that the corresponding state/action distri-

butions are represented in the consumed telemetry logs. To

adapt to new network environments, Mowgli continuously

monitors these logs, and if a shift in the underlying state/ac-

tion distribution is detected, the system triggers model retrain-

ing. Note that, unlike models trained in simulation (§2.3),

Mowgli’s model is amenable to further fine-tuning, as it is

initially learned on the same distribution of environments and

dynamics as the deployment setting. As a result, only mini-

mal corrections are needed during online deployment (e.g., to

account for environmental drift).

Deploying Mowgli’s rate control algorithm requires modi-

fying the application’s rate control logic and sending over the

weights parameterizing the learned model (Fig. 6). Inside the

application, we spawn an additional Python process responsi-

ble for serving the model. The application code and Python

process communicate via an interprocess pipe; the Python pro-

cess consumes live telemetry data logged by the application

instrumentation code and outputs an updated bitrate.

4.4 Implementation

Inspired by OpenNetLab [26], we implement Mowgli on

top of WebRTC [8], an open-source framework for real-time

video conferencing. Our current implementation, in line with

prior work [28], targets unidirectional video without audio.

Further, to isolate the effects of rate control in WebRTC, we

set DegradationPreference=DISABLED [5]. We leverage

the PyTorch [39] and d3rlpy [44] libraries to train and deploy

Mowgli’s learned rate control algorithm. We set the conserva-

tive loss penalty hyperparameter (α) to 0.01 and the number

of quantiles (N) in our distributional value representation to

128. The actor and critic neural networks have 2 hidden layers

of size 256; the GRU has a hidden unit size of 32.

5 EVALUATION

We evaluated Mowgli on a diverse set of networks, both in

emulation and in the wild. Our key findings are:

• Mowgli delivers substantial QoE improvements over GCC

in emulated networks, increasing average video bitrates by

15–39% while reducing video freeze rates by 60–100%.

• Mowgli achieves similar performance to existing (imprac-

tical) data-driven online RL approaches, with average bi-

trates within 0.5–13.1% and freeze rates within 0–19%.

• Mowgli can achieve wins across diverse network scenarios

if sufficiently represented in consumed telemetry logs.

• We deploy and evaluate Mowgli on real cellular networks

across four U.S. cities. On target networks with high dy-

namism, Mowgli increases average video bitrates by 17.7%

while maintaining similar levels of video freezes.

5.1 Methodology

Experiment setup and testbed. For lack of access to a

production video conferencing deployment, we set up our

own testbed to collect GCC logs and evaluate Mowgli. We

extended the AlphaRTC [26] fork of WebRTC to run an end-

to-end client-to-client video conferencing workflow. We run

both clients on a single machine and use a network emulation

tool (Mahimahi [37]) to emulate the network between clients.

To evaluate Mowgli on a diverse and challenging set of

networks, we created a corpus of 87 hours of network band-

width traces from two real-world datasets: FCC [3] broadband

traces and Norway [42] cellular traces. We split each trace

into 1-minute chunks. Following prior work [35], we filtered

out traces with an average bandwidth of <0.2 Mbps or >6

Mbps. We used 60% of the traces for training, 20% for vali-

dation, and 20% for testing. Each network trace is randomly

assigned to one of the following RTTs: 40, 100, and 160 ms.

We use a queue length of 50 packets.

Similar to prior work [43], instead of recording and sending

live video, we modify the WebRTC codebase to read from a

prerecorded video. We use 9 different one-minute videos from

a video conferencing dataset [38]; we randomly assign a video

to each bandwidth trace. To create a corpus of “production

logs,” we collect logs from running GCC on the network

traces in the training dataset. We note that although production

logs from existing video conferencing platforms [2] exist, we

586 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

P10 P25 P50 P75 P90
0.0

0.5

1.0

1.5

2.0

Vi
de

o
Bi

tra
te

 (M
bp

s)

(a) Video Bitrate
P10 P25 P50 P75 P90

0

2

4

6

8

Vi
de

o
Fr

ee
ze

 R
at

e
(%

)

GCC
Mowgli
Online RL

(b) Video Freeze Rate
P10 P25 P50 P75 P90

0

10

20

30

Fr
am

e
Ra

te
 (F

PS
)

(c) Frame Rate
P10 P25 P50 P75 P90

0

100

200

300

400

Fr
am

e
De

la
y

(m
s)

(d) E2E Frame Delay

Figure 7: On emulated network traces, Mowgli consistently outperforms GCC and nearly matches the online RL baseline while

avoiding QoE degradations during training.

do not have access to their systems to perform an evaluation;

therefore, we opt to use data from our own setup.

QoE metrics. We evaluate QoE across the following metrics:

(1) average received video bitrate (Mbps), (2) video freeze

rate—fraction of session experiencing freezes (as defined by

WebRTC [13]), (3) frame rate (FPS), and (4) average end-to-

end frame delay. The first three metrics are already available

in the WebRTC application logs. To calculate the end-to-end

frame delay, we embed a QR code into each video frame

to indicate the frame ID. We then calculate the timestamp

difference between when the frame is read and when the

corresponding frame is displayed. Note that we only measure

the end-to-end frame delay for experiments done on emulated

networks because on real networks, the clients are located on

different devices and require nontrivial time synchronization.

Baseline algorithms. We compare Mowgli against the fol-

lowing baselines:

• Google Congestion Control (GCC) [21]: the de facto rate

control algorithm for video conferencing. It employs hand-

tuned rule-based heuristics to characterize network behav-

ior based on recent packet delay and loss measurements.

We use the built-in implementation of GCC in WebRTC.

• Online RL: an online reinforcement learning-based ap-

proach. We implement an in-house solution following the

design and methodology of prior work [27, 54, 55]. The de-

tails of our implementation are provided in §A.1. Note that

the reported results exclude quality degradations incurred

during training (see §2.2); instead, we only present results

from the model that performs the best on the test dataset.

• Behavior Cloning (BC) [40, 49]: an offline learning strat-

egy that trains a rate control policy by imitating the behav-

ior featured in existing logs through supervised learning.

• Critic Regularized Regression (CRR) [47]: another of-

fline learning strategy that relies exclusively on exist-

ing logs for training. It is the underlying mechanism for

Sage [52], a related work aimed at learning improved

TCP congestion control algorithms from logs generated

by dozens of different existing CC algorithms. Whereas

CQL focuses on conservatively adjusting the critic function

to avoid overestimating out-of-distribution actions, CRR

regularizes the policy by using the critic’s estimated values

to guide the actor toward high-value actions of the dataset.

5.2 Overall Performance

Main results. Fig. 7 compares Mowgli with GCC and Online

RL. There are two main takeaways. First, Mowgli consistently

improves upon GCC; across reported percentiles, Mowgli

increases the average bitrate by 14.5–39.2%, decreases the

freeze rate by 59.5–100%, and increases the frame rate by 0–

35.3%. End-to-end frame delays are within the 400 ms inter-

activity threshold [11], even with RTTs up to 160 ms. Second,

despite learning completely offline, Mowgli’s performance

nearly matches that of the online RL baseline. Across per-

centiles, Mowgli achieves an average bitrate within 0.5–13.1%

of Online RL’s average. Mowgli’s P75 and P90 video freeze

rates are 0.77% and 2.87%, respectively, only slightly higher

than Online RL’s rates of 0.66% and 2.41%. For comparison,

GCC’s P75 and P90 freeze rates are 2.09% and 7.09%.

Breakdown by dynamism. To better understand how

Mowgli performs in the network conditions where GCC per-

forms poorly, we split the dataset of network traces based on

the degree of network dynamism. Specifically, we calculate

the standard deviation of 1-second network bandwidth chunks

within each trace and split the dataset along the mean standard

deviation across traces. We observe that Mowgli achieves its

largest wins over GCC in traces with high bandwidth dy-

namism – across reported percentiles, Mowgli increases the

average video bitrate by 10.8–43.8% and decreases the video

freeze rate by 47.4–100% (Fig. 8). In contrast, for traces with

less dynamism, Mowgli increases the average video bitrate by

8.0–29.6% and decreases the video freeze rate by 26.2–100%.

Breakdown by network dataset & delay. In Fig. 9, we

break down the results from Fig. 7 based on different char-

acterizations of the underlying network traces. We find that

as network delay increases, Mowgli’s P50 video bitrate de-

creases (976 kbps→ 911 kbps→ 845 kbps) and its P75 video

freeze rates increase (0.39%→ 0.86%→ 1.09%). We report

P75 video freeze rates because P50 video freeze rates are 0%.

This is expected as higher network delays increase the time it

takes for a model to receive feedback about potential network

congestion and react appropriately; as a result, the model

is less aggressive in its bandwidth ramp-ups. When split by

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 587

High Low
Network Dynamism

0.5

1.0

1.5

2.0

Vi
de

o
Bi

tra
te

 (M
bp

s)

(a) Video Bitrate

High Low
Network Dynamism

0

2

4

6

8

Vi
de

o
Fr

ee
ze

 R
at

e
(%

)

GCC
Mowgli

(b) Freeze Rate

Figure 8: Evaluating Mowgli’s performance in network traces

of varying network dynamism, measured by the degree of band-

width variation. Whiskers show P10–P90. Mowgli’s win relative

to GCC is higher under high network dynamism.

40ms 100ms 160ms

0.5

1.0

1.5

Vi
de

o
Bi

tra
te

 (M
bp

s)

(a) Video Bitrate (Diff. RTT)

40ms 100ms 160ms
0

2

4

6

Vi
de

o
Fr

ee
ze

 R
at

e
(%

)

(b) Freeze Rate (Diff. RTT)

FCC Norway

0.5

1.0

1.5

Vi
de

o
Bi

tra
te

 (M
bp

s)

(c) Video Bitrate (Diff. Dataset)

FCC Norway
0

2

4

6

Vi
de

o
Fr

ee
ze

 R
at

e
(%

)

GCC
Mowgli

(d) Freeze Rate (Diff. Dataset)

Figure 9: Evaluating Mowgli’s performance in network traces

of varying delay (RTT) and dataset. Whiskers show P10–P90.

dataset, Mowgli performs better in the FCC dataset than in

the Norway dataset (954 kbps vs. 844 kbps P50 video bitrates,

0.39% vs. 1.13% P75 video freeze rates). The Norway dataset

was collected over 3G cellular networks and therefore, fea-

tures more network dynamism than the traces in the FCC

dataset (which were captured on wired broadband networks).

Additional baselines. In Fig. 10, we compare Mowgli with

two alternative learning strategies: Behavior Cloning (BC)

and Critic Regularized Regression (CRR). We find that BC

behaves less aggressively than Mowgli, achieving a P90 video

bitrate that is 14.4% lower than GCC, whereas Mowgli in-

creases the bitrate by 14.5% compared with GCC. This differ-

ence arises because BC only aims to imitate the behavior ob-

served in the training logs and fails to effectively extrapolate

to unseen scenarios. CRR, the underlying learning algorithm

in Sage [52], performs worse than GCC on both metrics, with

a 4.4% increase in the P90 video freeze rate and an 8.8%

decrease in the P90 video bitrate. We hypothesize that this

is due to the lack of state-action coverage featured in the

logs of Google Congestion Control; the logs of Sage, on the

other hand, contain the experience of dozens of different CC

algorithms reducing the likelihood of erroneous estimates.

0123456789
Video Freeze Rate (%)

1.0

1.2

1.4

1.6

1.8

2.0

Vi
de

o
Bi

tra
te

 (M
bp

s)

Bett
er

GCC
Mowgli

BC
CRR

Figure 10: Mowgli outperforms additional baselines in bitrate

and freezes (P90 performance is shown).

GCC Mowgli Oracle

0.5

1.0

1.5

2.0

Vi
de

o
Bi

tra
te

 (M
bp

s)

(a) Video Bitrate

GCC Mowgli Oracle
0

2

4

6

Vi
de

o
Fr

ee
ze

 R
at

e
(%

)

(b) Freeze Rate

Figure 11: Comparing Mowgli against an approximate oracle

algorithm that represents an upper bound on performance im-

provements over GCC; whiskers correspond to P10 and P90.

Comparison to approximate oracle. In §3.3, we imple-

mented an approximate oracle algorithm to estimate the maxi-

mum possible improvement over GCC. This algorithm serves

as an estimate of the (unattainable) upper bound on perfor-

mance improvements. Fig. 11 compares this oracle with

Mowgli. Across reported percentiles, Mowgli comes within

6% of the oracle’s achieved video bitrate. Compared with

GCC’s video freeze rates of 2.1% at P75 and 7.1% at P90,

Mowgli significantly reduces these rates to 0.8% and 2.9%,

while the oracle further lowers them to 0% and 0.7%. These

additional reductions are expected since the oracle algorithm

has access to ground-truth network bandwidths in advance.

5.3 Generalization & Deployment Considerations

In this section, we examine the limits of Mowgli’s ability to

generalize to network conditions and types not represented

in the production telemetry dataset. Additionally, we seek

to quantify the benefits of model specialization for specific

network conditions. To this end, we incorporate an additional

set of network traces captured on LTE and 5G networks [29].

Following our established methodology, we collected GCC

logs on these LTE/5G traces and trained a corresponding pol-

icy. We then evaluated this policy on network traces from the

primary dataset, which consists of wired and 3G traces. The

results are summarized in Fig. 12, with two key observations.

First, we find that Mowgli’s generated policies perform

poorly when evaluated on network conditions that signifi-

cantly differ from those featured in the training telemetry

logs. For instance, the LTE/5G-trained policy performs no-

tably worse than the Wired/3G-trained policy when evaluated

on Wired/3G network traces. This results in a 45.8% reduc-

tion in the P50 video bitrate and a 40.3× increase in the P75

588 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Wired/3G LTE/5G All
Training Dataset

0.5

1.0

1.5

Vi
de

o
Bi

tra
te

 (M
bp

s)

(a) Video Bitrate

Wired/3G LTE/5G All
Training Dataset

0

20

40

60

Vi
de

o
Fr

ee
ze

 R
at

e
(%

)

(b) Freeze Rate

Figure 12: Evaluating Mowgli’s performance on the Wired/3G

network dataset when varying the network telemetry dataset

consumed; whiskers show P10–P90.

Wired/3G LTE/5G All
Training Dataset

2.425

2.450

2.475

2.500

Vi
de

o
Bi

tra
te

 (M
bp

s)

(a) Video Bitrate

Wired/3G LTE/5G All
Training Dataset

20.050

20.025

0.000

0.025

0.050

Vi
de

o
Fr

ee
ze

 R
at

e
(%

)

(b) Freeze Rate

Figure 13: Evaluating Mowgli’s performance on the LTE/5G net-

work dataset when varying the content of the network telemetry

dataset consumed; whiskers show P10–P90.

video freeze rate. Importantly, this is expected due to underly-

ing state/action distribution differences in the corresponding

GCC logs (e.g., GCC’s average video bitrate is 1.6 Mbps

higher in the LTE/5G dataset). We further discuss this in §7.

Second, we observe that specializing a model for a specific

set of network traces is not strictly necessary. Instead, gen-

eral models can achieve strong performance across network

conditions, provided they are well-represented in the training

data. For example, a model trained on both network datasets

performs comparably to one trained solely on the Wired/3G

dataset. While the Wired/3G-specific model achieves slightly

better results (a 4.6% higher P50 video bitrate and a reduc-

tion in the P75 video freeze rate from 1.00% to 0.77%), the

general model still performs effectively across conditions.

We conducted a similar analysis using the LTE/5G dataset,

evaluating the same generalized model on these network

traces (Fig. 13). The observed trends persist, with the

Wired/3G-trained policy, for example, reducing the median

video bitrate by 1.8%.

5.4 Real World Experiments

We evaluated Mowgli and GCC on real cellular networks in

4 different cities (Table 2). In these experiments, we set up

conferencing sessions with a client running on a Macbook

Pro (tethered to a Google Pixel) and a server in the cloud.

Experiments were performed in several mobility scenarios

(e.g., train, bus, car, walking, and stationary). To generate a

dataset of GCC logs, we collected over 8 hours of video calls

using GCC in Princeton, NJ and San Jose, CA on a 4G/LTE

network. Once Mowgli generated a policy, we evaluated the

resulting model in 2 different scenarios: (a) the same networks

and cities and (b) different cities. During our evaluation, we

Scenario Network Cities

A 4G/LTE Princeton, NJ; San Jose, CA

B (new cities) 4G/LTE New York City, NY; Nashville, TN

Table 2: Cities and network types for in-the-wild evaluation.

0 1 2 3
Video Bitrate (Mbps)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

GCC
Mowgli

(a) Scenario A

1 2 3
Video Bitrate (Mbps)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(b) Scenario B

Figure 14: Evaluating Mowgli on real-world cellular networks;

scenarios are described in Table 2. Mowgli outperforms GCC

across bitrate percentiles, while freezes remain statistically in-

distinguishable between the two (not shown).

alternated running GCC and the generated policy, collecting

over 4 hours of data for each scenario.

We observe that Mowgli’s wins over GCC extend to cellular

networks in both scenarios, increasing video bitrates across re-

ported percentiles by 3.0%–2.1× (Fig. 14a) and 2.0%–20.8%

Fig. 14b). Video freezes—as a rare event—are inherently

challenging to measure reliably [51]. While we currently

lack sufficient evidence to draw definitive conclusions, the

observed rates across 120 runs per policy/scenario appear

statistically indistinguishable (results not shown).

5.5 Ablation Studies and Microbenchmarks

Algorithm design ablation. Fig. 15a compares Mowgli

with two variants: (1) Mowgli without the conservative learn-

ing regularizer, and (2) Mowgli without the distributional

representation. Removing the regularizer, which adjusts the

learned estimates of the critic function based on sample con-

fidence, makes the model prone to actions with erroneously

high estimated values and results in 11.3× higher P90 video

freeze rate. Without the distributional representation, which

accounts for external phenomena outside the control of the

bitrate decision-making policy, P90 video bitrates drop by

5.6% and P90 video freeze rates increase by 9.9×.

Varying state design. Fig. 15b shows the benefits of the

additional state features. Removing “Report Intervals”, which

indicates the staleness of the sender-side transport feedback

report, leads to an 8.7% lower video bitrate. Removing “Min

RTT”, which indicates how fast the client can receive (and

react to) feedback and helps control the model’s aggression,

leads to a 1.2× higher freeze rate. Removing “Prev Action”,

which enables smooth rate control, results in a 3.1× increase

in the video freeze rate.

CQL α parameter sensitivity. α dictates the relative weight

of the conservative penalty in the learning algorithm. In

Fig. 15c, a larger α creates a conservative, low-risk policy

(∼57% lower freeze rates), but lowers video bitrates by 34.9%

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 589

010203040
Video Freeze Rate (%)

1.5

1.6

1.7

1.8

1.9

2.0

Vi
de

o
Bi

tra
te

 (M
bp

s)

Bett
er

Mowgli
w/o CQL
w/o Distrib. RL

(a) Algorithm Design

0510
Video Freeze Rate (%)

1.5

1.6

1.7

1.8

1.9

2.0

Vi
de

o
Bi

tra
te

 (M
bp

s)

Bett
er

Mowgli
No Report Interval
No Min RTT
No Prev Action

(b) State Design

0246810
Video Freeze Rate (%)

0.0

0.5

1.0

1.5

2.0

Vi
de

o
Bi

tra
te

 (M
bp

s)

Bett
er

³=0.001
³=0.01 (Mowgli)
³=0.1
³=1.0

(c) Alpha Value

Figure 15: Ablation results varying the algorithm design, state design, and alpha. Markers correspond to P90. Mowgli’s design achieves

the best bitrate-freeze tradeoff.

and 72.3%, respectively. In contrast, α < 0.01 increases the

amount of deviation (and therefore risks: 1.8× higher video

freeze rate) albeit increasing bitrate by 6.6%.

System overheads. We study the compute and storage over-

head of deploying Mowgli. The compressed (state, action,

reward) logs take ∼117 kB for a 1-minute call. Mowgli’s

generated policy (weights) is 316 kB (corresponding to 79k

parameters) and takes ∼6 ms to run on the CPU.

6 RELATED WORK

Alternative designs and knobs for video conferencing. Re-

cent work has explored different optimization dimensions in

videoconferencing. Salsify [28] co-designs the video codec

and transport protocol to quickly respond to changing network

conditions and achieve low latency. Gemino [45] designs a

neural codec for high perceptual quality in low bandwidth en-

vironments. Grace [22] designs a loss-resilient neural codec.

AFR [36] adapts the frame rate for video conferencing appli-

cations with ultra-high-definition demand. Mowgli is comple-

mentary to these works and can be extended to incorporate

these alternate dimensions, which we leave for future work.

ML for networked systems. Machine learning has been

applied to various other challenges in networked systems.

For example, to improve adaptive bitrate (ABR) selection in

video streaming, Pensieve [35] trains a reinforcement learn-

ing agent in simulation, whereas Puffer [51] deploys a neural

network-based model predictive control scheme under real-

world conditions. Unlike video streaming, which deals with

discrete bitrate adaptation, video conferencing requires con-

tinuous rate control, tighter latency constraints, and frequent

(every 50 ms) decision-making for on-the-fly encoding and

compression. Beyond ABR, ML has been explored for TCP

congestion control; Orca [14] employs an online RL agent,

while Sage [52] trains offline but requires additional data

collection with multiple expert policies. In contrast, Mowgli

leverages existing logs of a single policy (e.g., GCC).

7 DISCUSSION

Pitfalls of leveraging production traces. Conceptually, the

challenges described in §3.4 align with those in recent re-

search on counterfactual reasoning in trace-driven simulations

for adaptive bitrate selection [16,17,19,46], e.g., the impact of

latent confounders (factors that impact system dynamics but

are not explicitly featured in logs). Veritas [19] addresses this

by employing advanced statistical methods to explicitly infer

these variables. While these efforts aim to refine simulations

for more reliable counterfactual reasoning, Mowgli focuses

on generating an enhanced rate control policy derived from

the behavior of an existing heuristic algorithm. Rather than

depending on accurate counterfactual reasoning universally,

Mowgli limits it to scenarios where sufficient data is available

for reliable analysis (i.e., a conservative approach—§4.2). In

cases lacking enough log data, Mowgli learns to mimic the

baseline GCC behavior. Incorporating insights from these

works into Mowgli and other video conferencing systems is a

promising avenue for future exploration, such as improving

the critic by explicitly inferring latent confounders.

Limitations of a data-driven approach. A limitation of

any data-driven approach is that if the underlying data distri-

bution shifts substantially from the one captured in training,

the model must be updated [34]. In the case of Mowgli, en-

countering previously unseen network conditions (e.g., new

bandwidth ranges) would necessitate a model update (§5.3).

This limitation reflects the inherent trade-off of data-driven

methods: Mowgli is constrained to perform well in environ-

ments it has been trained on, unlike GCC, which operates

under a broader set of pre-designed assumptions. However,

unlike models trained in simulation or from scratch, Mowgli’s

model—trained on real user interactions and dynamics—

starts on a much closer distribution to its deployment setting.

This makes it more amenable to fine-tuning, requiring only

minimal adjustments to account for environmental drift.

8 CONCLUSION

In this paper, we presented Mowgli, a system for practically

learning improved bitrate control algorithms for video confer-

encing. Whereas existing data-driven reinforcement learning-

based approaches fall short of meeting the practicality con-

straints of production settings, Mowgli demonstrates the pos-

sibility of learning from data already collected in existing

system telemetry logs (and avoiding the QoE disruptions of

prior work) to generate improved bitrate control algorithms.

Acknowledgements. We thank our shepherd, Zahaib Akhtar,

and the anonymous NSDI reviewers for their valuable feed-

back and comments. This work was supported by NSF CNS

grants 2147909, 2151630, 2140552, 2153449, and 2152313.

590 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

REFERENCES

[1] Accessing Zoom Meeting and Phone Statistics. https:

//support.zoom.com/hc/en/article?id=zm_kb&syspar

m_article=KB0070504.

[2] Bandwidth Estimation Challenge Dataset. https://www.

microsoft.com/en-us/research/academic-program/ban

dwidth-estimation-challenge/data.

[3] Measuring Broadband America. https://www.fcc.gov/

general/measuring-broadband-america.

[4] Microsoft Teams Client Diagnostic Logs. https://learn.

microsoft.com/en-us/microsoftteams/log-files.

[5] RTP Parameters. https://source.chromium.org/chromi

um/chromium/src/+/main:third_party/webrtc/api/rtp_p

arameters.h.

[6] Understanding the Consent Settings in Data & Privacy

Center. https://support.zoom.com/hc/en/article?id=zm

_kb&sysparm_article=KB0057779.

[7] Use real-time telemetry to troubleshoot poor meeting

quality. https://learn.microsoft.com/en-us/microsofttea

ms/use-real-time-telemetry-to-troubleshoot-poor-mee

ting-quality.

[8] WebRTC. https://webrtc.org/.

[9] WebRTC Logging. https://webrtc.github.io/webrtc-org

/native-code/logging/.

[10] Zoom Service Quality Logging. https://developers.zoo

m.us/docs/video-sdk/web/quality/.

[11] G.114 One-way transmission time. Technical report,

International Telecommunication Union, May 2003.

[12] Closing the Simulation-to-Reality Gap for Deep Robotic

Learning, 2017. https://research.google/blog/closing-t

he-simulation-to-reality-gap-for-deep-robotic-learnin

g/.

[13] Identifiers for WebRTC’s Statistics API, July 2018. http

s://www.w3.org/TR/webrtc-stats/.

[14] S. Abbasloo, C.-Y. Yen, and H. J. Chao. Classic Meets

Modern: a Pragmatic Learning-Based Congestion Con-

trol for the Internet. In Proceedings of the Annual con-

ference of the ACM Special Interest Group on Data

Communication on the applications, technologies, ar-

chitectures, and protocols for computer communication,

pages 632–647, 2020.

[15] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen,

E. Katz-Bassett, B. Ribeiro, J. Zhan, and H. Zhang.

Oboe: Auto-tuning video abr algorithms to network con-

ditions. In Proceedings of the 2018 Conference of the

ACM Special Interest Group on Data Communication,

pages 44–58, 2018.

[16] A. Alomar, P. Hamadanian, A. Nasr-Esfahany, A. Agar-

wal, M. Alizadeh, and D. Shah. CausalSim: A Causal

Framework for Unbiased Trace-Driven Simulation. In

20th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 23), pages 1115–1147,

2023.

[17] M. Bartulovic, J. Jiang, S. Balakrishnan, V. Sekar, and

B. Sinopoli. Biases in Data-Driven Networking, and

What to Do About Them. In Proceedings of the 16th

ACM Workshop on Hot Topics in Networks, pages 192–

198, 2017.

[18] M. G. Bellemare, W. Dabney, and M. Rowland. Distri-

butional Reinforcement Learning. MIT Press, 2023.

[19] C. Bothra, J. Gao, S. Rao, and B. Ribeiro. Veritas: An-

swering causal queries from video streaming traces. In

Proceedings of the ACM SIGCOMM 2023 Conference,

pages 738–753, 2023.

[20] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kel-

cey, M. Kalakrishnan, L. Downs, J. Ibarz, P. Pastor,

K. Konolige, S. Levine, and V. Vanhoucke. Using Sim-

ulation and Domain Adaptation to Improve Efficiency

of Deep Robotic Grasping. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), page

4243–4250. IEEE Press, 2018.

[21] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo.

Analysis and Design of the Google Congestion Con-

trol for Web Real-time Communication (WebRTC). In

Proceedings of the 7th International Conference on Mul-

timedia Systems, pages 1–12, 2016.

[22] Y. Cheng, Z. Zhang, H. Li, A. Arapin, Y. Zhang,

Q. Zhang, Y. Liu, K. Du, X. Zhang, F. Y. Yan, et al.

Grace: Loss-resilient real-time video through neural

codecs. In 21st USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’24), pages

509–531, 2024.

[23] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares,

H. Schwenk, and Y. Bengio. Learning Phrase Repre-

sentations using RNN Encoder-Decoder for Statistical

Machine Translation. CoRR, abs/1406.1078, 2014.

[24] W. Dabney, M. Rowland, M. Bellemare, and R. Munos.

Distributional Reinforcement Learning with Quantile

Regression. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 32, 2018.

[25] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,

E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb,

A. Akella, K. Wang, G. Ricart, L. Landweber, C. Elliott,

M. Zink, E. Cecchet, S. Kar, and P. Mishra. The Design

and Operation of CloudLab. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19), pages 1–14,

2019.

[26] J. Eo, Z. Niu, W. Cheng, F. Y. Yan, R. Gao, J. Kard-

hashi, S. Inglis, M. Revow, B.-G. Chun, P. Cheng, et al.

OpenNetLab: Open platform for RL-based Congestion

Control for Real-Time Communications. Proc. of AP-

Net, 2022.

[27] J. Fang, M. Ellis, B. Li, S. Liu, Y. Hosseinkashi,

M. Revow, A. Sadovnikov, Z. Liu, P. Cheng, S. Ashok,

et al. Reinforcement Learning for Bandwidth Estimation

and Congestion Control in Real-Time Communications.

arXiv preprint arXiv:1912.02222, 2019.

[28] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby,

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 591

and K. Winstein. Salsify: Low-Latency Network Video

through Tighter Integration between a Video Codec and

a Transport Protocol. In 15th USENIX Symposium on

Networked Systems Design and Implementation (NSDI

’18), pages 267–282, 2018.

[29] M. Ghoshal, Z. J. Kong, Q. Xu, Z. Lu, S. Aggarwal,

I. Khan, Y. Li, Y. C. Hu, and D. Koutsonikolas. An

In-Depth Study of Uplink Performance of 5G mmWave

Networks. In Proceedings of the ACM SIGCOMM Work-

shop on 5G and Beyond Network Measurements, Mod-

eling, and Use Cases, pages 29–35, 2022.

[30] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft

Actor-Critic: Off-Policy Maximum Entropy Deep Rein-

forcement Learning with a Stochastic Actor. In Inter-

national conference on machine learning, pages 1861–

1870. PMLR, 2018.

[31] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imi-

tation Learning: A Survey of Learning Methods. ACM

Computing Surveys (CSUR), 50(2):1–35, 2017.

[32] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conser-

vative Q-Learning for Offline Reinforcement Learning.

Advances in Neural Information Processing Systems,

33:1179–1191, 2020.

[33] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline Rein-

forcement Learning: Tutorial, Review, and Perspectives

on Open Problems. arXiv preprint arXiv:2005.01643,

2020.

[34] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang.

Learning under Concept Drift: A Review. IEEE Trans-

actions on Knowledge and Data Engineering, 2018.

[35] H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive

Video Streaming with Pensieve. In Proceedings of the

conference of the ACM special interest group on data

communication, pages 197–210, 2017.

[36] Z. Meng, T. Wang, Y. Shen, B. Wang, M. Xu, R. Han,

H. Liu, V. Arun, H. Hu, and X. Wei. Enabling High Qual-

ity Real-Time Communications with Adaptive Frame-

Rate. In 20th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI ’23), pages

1429–1450, 2023.

[37] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Win-

stein, J. Mickens, and H. Balakrishnan. Mahimahi: Ac-

curate Record-and-Replay for HTTP. In 2015 USENIX

Annual Technical Conference (USENIX ATC ’15), pages

417–429, 2015.

[38] E. Nowroozi, A. Dehghantanha, R. M. Parizi, and K.-

K. R. Choo. A Survey of Machine Learning Techniques

in Adversarial Image Forensics. Computers & Security,

page 102092, 2020.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

et al. Pytorch: An imperative style, high-performance

deep learning library. Advances in neural information

processing systems, 32, 2019.

[40] D. A. Pomerleau. Alvinn: An autonomous land vehicle

in a neural network. Advances in neural information

processing systems, 1, 1988.

[41] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernes-

tus, and N. Dormann. Stable-Baselines3: Reliable Rein-

forcement Learning Implementations. The Journal of

Machine Learning Research, 22(1):12348–12355, 2021.

[42] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen.

Commute path bandwidth traces from 3G networks:

analysis and applications. In Proceedings of the 4th

ACM Multimedia Systems Conference, pages 114–118,

2013.

[43] M. Rudow, F. Y. Yan, A. Kumar, G. Ananthanarayanan,

M. Ellis, and K. Rashmi. Tambur: Efficient loss recovery

for videoconferencing via streaming codes. In 20th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI ’23), pages 953–971, 2023.

[44] T. Seno and M. Imai. d3rlpy: An offline deep reinforce-

ment learning library. The Journal of Machine Learning

Research, 23(1):14205–14224, 2022.

[45] V. Sivaraman, P. Karimi, V. Venkatapathy, M. Khani,

S. Fouladi, M. Alizadeh, F. Durand, and V. Sze. Gemino:

Practical and Robust Neural Compression for Video

Conferencing. In 21st USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI ’24),

pages 569–590, 2024.

[46] P. C. Sruthi, S. Rao, and B. Ribeiro. Pitfalls of data-

driven networking: A case study of latent causal con-

founders in video streaming. In Proceedings of the

Workshop on Network Meets AI & ML, NetAI ’20, page

42–47, New York, NY, USA, 2020. Association for Com-

puting Machinery.

[47] Z. Wang, A. Novikov, K. Zolna, J. S. Merel, J. T. Sprin-

genberg, S. E. Reed, B. Shahriari, N. Siegel, C. Gulcehre,

N. Heess, and N. de Freitas. Critic Regularized Regres-

sion. In Advances in Neural Information Processing

Systems, volume 33, pages 7768–7778, 2020.

[48] C. J. Watkins and P. Dayan. Q-learning. Machine

learning, 8:279–292, 1992.

[49] B. Widrow. Pattern recognition and adaptive con-

trol. IEEE Transactions on Applications and Industry,

83(74):269–277, 1964.

[50] K. Winstein, A. Sivaraman, and H. Balakrishnan.

Stochastic Forecasts Achieve High Throughput and Low

Delay over Cellular Networks. In 10th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI ’13), pages 459–471, 2013.

[51] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong,

K. Zhang, P. Levis, and K. Winstein. Learning in Situ:

a Randomized Experiment in Video Streaming. In 17th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI ’20), pages 495–511, 2020.

[52] C.-Y. Yen, S. Abbasloo, and H. J. Chao. Computers

Can Learn from the Heuristic Designs and Master In-

592 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ternet Congestion Control. In Proceedings of the ACM

SIGCOMM 2023 Conference, pages 255–274, 2023.

[53] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg.

Adaptive congestion control for unpredictable cellular

networks. In Proceedings of the 2015 ACM Confer-

ence on Special Interest Group on Data Communication,

pages 509–522, 2015.

[54] H. Zhang, A. Zhou, Y. Hu, C. Li, G. Wang, X. Zhang,

H. Ma, L. Wu, A. Chen, and C. Wu. Loki: Improving

Long Tail Performance of Learning-Based Real-Time

Video Adaptation by Fusing Rule-Based Models. In Pro-

ceedings of the 27th Annual International Conference

on Mobile Computing and Networking, pages 775–788,

2021.

[55] H. Zhang, A. Zhou, J. Lu, R. Ma, Y. Hu, C. Li, X. Zhang,

H. Ma, and X. Chen. OnRL: Improving Mobile Video

Telephony Via Online Reinforcement Learning. In Pro-

ceedings of the 26th Annual International Conference on

Mobile Computing and Networking, pages 1–14, 2020.

[56] A. Zhou, H. Zhang, G. Su, L. Wu, R. Ma, Z. Meng,

X. Zhang, X. Xie, H. Ma, and X. Chen. Learning to

Coordinate Video Codec with Transport Protocol for

Mobile Video Telephony. In The 25th Annual Interna-

tional Conference on Mobile Computing and Network-

ing, pages 1–16, 2019.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 593

Hyperparameter Value

Learning Rate 5e-5

Batch Size 512

Gradient Steps 500

Replay Buffer Size 1e6

Init. Entropy Coefficient 0.5

GRU Hidden Size 32

Num Parallel Workers 30

Optimizer Adam

Table 3: Online RL Hyperparameter Values. For all other un-

specified hyperparameters, we use the default values of the im-

plementation in Stable Baselines3 [41]. The same learning rate

is used for all networks (Q-Values, Actor, and Value function).

A APPENDIX

A.1 Online RL Setup

Experiment Setup and Testbed. Similar to prior work [14,

54], our online RL baseline relies on a cloud server to sup-

port the training. The centralized server has an AMD EPYC

7543P 32-core CPU, 256 GB of RAM, and an NVIDIA RTX

A6000-48G GPU. We use 30 CloudLab [25] nodes (“work-

ers”) to emulate end users in our experiments, each with an In-

tel Xeon D-1548 8-core CPU and 64 GB of RAM. We modify

Stable Baselines3 v2.1.0 [41] to support ingesting state-action-

reward tuples from parsed traces and use PyTorch v2.0.1 to

train and serve the neural network. Similar to prior work, we

use a state-of-the-art off-policy algorithm [30]. Following

OnRL [55], we implement a fallback mechanism that allows

the sender to temporarily downgrade to the default heuristic

(GCC) if catastrophic QoE degradations are detected during

training.

In every round of online RL training, the RL server dis-

patches the latest model to all 30 worker nodes. Similar to how

we collect GCC logs in our main experiments, we run both

the sender and receiver client on the same node. Each worker

uses Mahimahi [37] to replay a random one-minute network

bandwidth trace from the same diverse dataset Mowgli uses.

At the end of every video conferencing session, each node

parses the sender/receiver logs to construct a state-action-

reward trace and sends it back to the RL server. The RL

server performs one training epoch based on the aggregated

state-action-reward tuples across all workers and repeats this

process. We enumerate the hyperparameters used by our on-

line RL baseline in Table 3.

We retain the state and action formulation as defined in

the main text. However, we observe that using the following

reward definition for training the online RL policy further

improves performance:

R = throughput ·delay · (1− γ · loss)

−ζ ·max(prev_action− sending_bitrate,0)

−use_gcc ·gcc_penalty

(5)

where γ = 2, and ζ = 3. use_gcc acts as an indicator vari-

able for whether the fallback mechanism was invoked; we set

gcc_penalty = 0.05. We normalize throughput, delay, loss,

prev_action, and sending_bitrate to (0, 4.5 Mbps), (0, 1000

ms), (0, 1), (0, 4.5 Mbps), and (0, 4.5 Mbps).

594 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background & Motivation
	Prior Work
	Motivations
	Alternative Approaches
	Summary

	Vision: Learning By Observation
	The Data of Prior Approaches
	An Alternative Source of Data
	Opportunity
	Challenges

	Design
	Data Collection & Processing
	Policy Generation
	Policy Deployment
	Implementation

	Evaluation
	Methodology
	Overall Performance
	Generalization & Deployment Considerations
	Real World Experiments
	Ablation Studies and Microbenchmarks

	Related Work
	Discussion
	Conclusion
	Appendix
	Online RL Setup

