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Abstract

When language models (LMs) are trained to forget (or “unlearn”) a skill,
how precisely does their behavior change? We study the behavior of trans-
former LMs in which tasks have been forgotten via fine-tuning on ran-
domized labels. Such LMs learn to generate near-random predictions for
individual examples in the “training” set used for forgetting. Across tasks,
however, LMs exhibit extreme variability in whether LM predictions change
on examples outside the training set. In some tasks (like entailment clas-
sification), forgetting generalizes robustly, and causes models to produce
uninformative predictions on new task instances; in other tasks (like physi-
cal commonsense reasoning and scientific question answering) forgetting
affects only the training examples, and models continue to perform the
“forgotten” task accurately even for examples very similar to those that
appeared in the training set. Dataset difficulty is not predictive of whether
a behavior can be forgotten; instead, generalization in forgetting is (weakly)
predicted by the confidence of LMs’ initial task predictions and the vari-
ability of LM representations of training data, with low confidence and
low variability both associated with greater generalization. Perhaps most
surprisingly, random-label forgetting appears to be somewhat insensitive
to the contents of the training set: for example, models trained on science
questions with random labels continue to answer other science questions
accurately, but begin to produce random labels on entailment classification
tasks. Finally, we show that even generalizable forgetting is shallow: linear
probes trained on LMs’ representations can still perform tasks reliably af-
ter forgetting. Our results highlight the difficulty and unpredictability of
performing targeted skill removal from models via fine-tuning.

1 Introduction

In the modern approach to training language models (LMs), neural sequence models are
first pre-trained on a large, minimally curated corpus (typically of web text), then fine-tuned
with targeted demonstrations and human feedback. The LMs that result from this procedure
often possess undesirable capabilities that creators do not wish to expose to users—for
example, the ability to generate hate speech, or to answer questions about topics unrelated
to the LM’s target application. Can these capabilities be forgotten (or “unlearned”)?

There has been widespread recent interest in developing and evaluating new techniques
for removing both skills and declarative knowledge from LMs. This work has found that,
on specific inputs of interest, LM behavior can be changed in targeted ways. But there has
been comparatively little evaluation of generalization in forgetting—when an LM is trained
not to respond (or to respond uninformatively) to a particular input, how does its behavior
change on other inputs?

This paper studies generalization behavior in forgetting. We focus on forgetting of skills
(rather than knowledge) via fine-tuning on randomly labeled data for the target task—a
simple, widely used, and often highly effective method for forgetting (see Liu et al., 2024
for a recent survey). Surprisingly, we find wide variability across tasks in the effectiveness
and generalization of random-label forgetting. When fine-tuning on randomized responses,
models will change their behavior on training inputs, but sometimes do not change their
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behavior at all for other instances of the same task—even when fine-tuning on accurate labels
does lead to generalized improvements in accuracy. In additional experiments characterizing
generalization in forgetting, we find:

1. The degree of forgetting is largely determined by the tasks that LMs are evaluated
on, not the task LMs are trained to forget.

2. Generalization in forgetting is not determined by the difficulty of the task.

3. Properties that correlate with the generalization of forgetting include LM confidence
as well as the variance of LM representations of training data.

4. Despite LMs’ inability to respond correctly to prompts after applying this method,
we are still able to recover the correct responses using linear probes. Hence, even
successful forgetting is at best shallow, and does not remove information from LMs’
representations.

Generalization of learning algorithms across problems and problem instances is a major
focus of study in machine learning research. Our results show similarly complex, structured
cross-task variability of generalization in forgetting, and underscore the need for additional
research on the relationship between the training data used for forgetting and the effect of
model predictions elsewhere.

2 Related work

Due to diverse privacy, security, and ethical concerns, machine unlearning has been con-
ceptualized in many different ways. Early approaches defined unlearning as removing
undesirable data from training sets (Cao & Yang, 2015; Bourtoule et al., 2021; Ginart et al.,
2019). These approaches often require fundamental changes to model structure and/or
training process, which is often infeasible.

Later work relaxed the requirement of removing data from the training set. Instead, models
are required to behave similarly to models trained without undesirable data points, or
are simply required to stop producing outputs with desirable features. Guo et al. (2020)
develop a framework for linear classifiers, and Golatkar et al. (2020a) develop a method
that scrubs information from linear probes. Neel et al. (2021); Sekhari et al. (2021); Thudi
et al. (2022); Golatkar et al. (2020b; 2021); Mehta et al. (2022) and Chundawat et al. (2023)
present theoretical frameworks for comparing an unlearned network to a fully-retrained
networks, and they propose optimization-based methods to find unlearned network under
additional assumptions like convexity. Foster et al. (2024) propose model editing techniques
based on estimating parameter importance using fisher information. Kurmanji et al. (2023)
distinguishe between different reasons for forgetting, arguing that distinct purposes like
protecting user privacy, resolving confusion, and removing biases require distinct metrics.
Graves et al. (2021) argue that selectively removing training data alone is insufficient, and
propose a new threat model and techniques to address them.

For language models specifically, approaches to remove specific facts include gradient
ascent on undesirable responses (Jang et al., 2023; Yao et al., 2023; Eldan & Russinovich,
2023), prompting with misinformation (Pawelczyk et al., 2023), linearly manipulating model
representations (Ilharco et al., 2023; Belrose et al., 2023), non-linearly perturbing model
representations (Li et al., 2024), and using new models to teach another model how to forget
(Wang et al., 2023).

While some of this prior work has studied generalization (e.g. Li et al., 2024), they study a
different kind of generalization: whether model behavior remains the same on non-targeted
tasks. By contrast, our work focuses on generalization between instances of a single task.

Outside of research on unlearning, some past work has studied training on incorrect or
random labels as a source of information about learning dynamics, for example finding
that models often have similar embeddings (Morcos et al., 2018), learn in a similar order
(Hacohen et al., 2020) and explaining the order of learning (Hacohen & Weinshall, 2022).
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3 Experiment setup

Method Our experiments in this paper study forgetting of capabilities (rather than factual
knowledge). In order to enable uniform comparisons across tasks, we formulate each
capability as binary multiple-choice question answering task. Each such task T is associated
with a training set Ttrain, a validation set Tval, and test set Ttest. When studying forgetting, we
first fine-tune the model on Ttrain with early stopping performed by finding the checkpoint
with the highest accuracy on Tval. Afterwards, we train the model to forget by fine-tuning
the model again on Ttrain but with labels chosen uniformly at random. This procedure is
summarized in Figure 1.

Quantifying forgetting We quantify forgetting with two metrics. The first is the gap
between the accuracy after forgetting and the expected random accuracy (50% since the
tasks are binary multiple choice), which we will call the forget gap:

Forget Gap = Task Accuracy After Forgetting → 1
2

A gap of 0 indicates that the target task has been fully forgotten (all tasks involve a binary
choice, and a random baseline obtains an accuracy of 1

2 ). Larger values indicate that models
still achieve non-trivial accuracy. We may also wish to interpret accuracy after forgetting
relative to the upper bound provided by fine-tuning—an accuracy of 55% after forgetting
might be interpreted as successful or unsuccessful if fine-tuned accuracy is 95% or 56%. To
quantify this intuition, we define the forget ratio:

Forget Ratio =
Accuracy After Fine-Tuning → Accuracy After Forgetting

Accuracy After Fine-Tuning → 1
2

Here an forget ratio of 1 corresponds to complete forgetting, while a forget ratio of 0
corresponds to no decrease relative to the best attainable supervised performance.
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Figure 1: Stylized learning and forgetting curves.
Our experiments first fine-tune a pre-trained LM,
then train it further on random labels. We call the
gap between the forget accuracy and the random
chance accuracy (50%) the forget gap. In many tasks
we find a nonzero forget gap: after training on
random labels, LMs do not generalizably learn to
produce random outputs on new task instances.

Tasks, evaluation details, and models We
experiment on 21 multiple-choice tasks
commonly found within the literature.
Commonsense Reasoning: We evaluate
PIQA (Bisk et al., 2020), ARC easy and
challenge (Clark et al., 2018), and CREAK
(Onoe et al., 2021). Reading Comprehen-

sion: We evaluate BoolQ (Clark et al.,
2019), SciQ (Welbl et al., 2017), and Pub-
MedQA (Jin et al., 2019). Math: We evaluate
MathQA (Amini et al., 2019). Toxicity: We
evaluate ToxiGen (Hartvigsen et al., 2022).
Entailment classification and other lan-

guage understanding tasks: We evaluate
CoLA, MNLP, MRPC, QNLI, RTE, WNLI,
CB, COPA, WIC and WSC (Wang et al.,
2019). We selected these tasks to cover a
broad spectrum of capabilities while also en-
suring that they are multiple choice, which
allows us to easily construct randomized
alternatives for forgetting.

We follow the Language Model Evaluation
Harness standards for 0-shot evaluation (Gao et al., 2023), including the default prompts
and evaluation through probabilities of the choices. To facilitate comparison across tasks,
we binarize the tasks by preserving two of the possible responses—the true response and
one randomly chosen distractor—for each example. We evaluate models by picking the
response with the highest average token likelihood and reporting the accuracy.
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We use the publicly provided train, validation, and test sets. However, we found some
datasets had train–test overlap. To decontaminate the datasets, we do not evaluate on
questions that appeared in the training set. We also removed samples longer than 2048
characters in the prompt and combined response. Where validation sets do not exist, we use
the test set. Unless otherwise specified, we limit each set to 1000 examples and subsample if
needed, making training results more comparable and evaluation more efficient as proposed
by Perlitz et al. (2023).

All experiments use Llama2 7-billion parameter base models (Touvron et al., 2023). Addi-
tional details may be found in Appendix A.

4 Does forgetting generalize?

Figure 2 summarizes the task accuracy without modification, after fine-tuning, and then
after running our forgetting procedure. Test accuracy almost always increases after fine-
tuning, although it could decrease slightly as the validation set is not identical to the test set.
During the forgetting phase, however, we observe several distinct categories of behavior (1)
forget accuracy is very similar to the fine-tuned accuracy, (2) forget accuracy decreases but
is still above the pre-trained accuracy, and (3) forget accuracy decreases to below the pre-
trained accuracy and possibly back to 50%. Case (2) is interesting because it demonstrates
asymmetry between the learning and forgetting process, as the model is unable to forget
what is has just learned (analogous to hysteresis in physical systems; Ewing, 1882).

Overall, we find that random-label forgetting often fails to generalizably remove the target
behavior, but with wide variability across tasks. In general, tasks involving commonsense
knowledge reasoning tasks are more resilient to forgetting, whereas lower-level linguistic
acceptability and entailment classification tasks are more effectively forgettable.

We also examine cross-task forgetting, where we fine-tune the model on random labels
from the training set of one task and then evaluate the model on the test set of another task.
As shown in Figure 3, we find that the effectiveness of the forgetting procedure is largely
determined by the tasks that the model is evaluated on—not the training task. Another
surprising observation is that many tasks are more effectively forgotten when training on
randomized labels of other tasks than from training on their own randomized labels. As
observed in the individual task evaluation, GLUE tasks focused on specific capabilities are
again more susceptible to forgetting in general, whereas commonsense reasoning tasks are
more resilient to forgetting. Training on forgetting commonsense reasoning tasks are also
generally more effective at triggering forgetting for other tasks.

5 When does generalization occur?

Does forgetting require more examples? We rule out the number of examples as the
main explanation to forgetting generalization. For example, a possible concern could be
that forgetting does not generalize because there are not enough training examples. We ran
the same experiment with 100 examples of each task as well as 1000 (above). We find that
despite an order of magnitude change, the level of forgetting is similar in both cases.

Does forgetting occur with other methods? To rule out the possibility that forgetting
fails to generalize due to our method of training on randomized labels, we run another
experiment where we train on flipped labels instead of randomized labels. The analysis is
the same as before, except now we compute the forget ratio as:

Forget Ratio =
Accuracy After Fine-Tuning → Accuracy After Forgetting

Accuracy After Fine-Tuning → (1 → Accuracy After Fine-Tuning)

since we assume the minimum accuracy achievable should be 1→Accuracy After Fine-
Tuning.
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Figure 2: Single task forgetting. Top: The blue arrow visualizes the change in held-out accuracy
after fine-tuning and the red arrow illustrates the change in accuracy after forgetting. We find that
many tasks do not return to the expected accuracy of 50% after forgetting. Bottom left: The forget
gap (difference between forgetting accuracy and the expected random accuracy of 1/2) across tasks.
Smaller values correspond to a greater degree of forgetting. Bottom right: The forget ratio (the difference
fine-tuned accuracy and the forget accuracy over the difference between fine-tuned accuracy and the
expected random accuracy of 1/2). Larger forget ratios correspond to more successful forgetting.
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Figure 3: Cross-task forgetting (higher values indicate more successful forgetting). We fine-tune the
model on random labels from one task and then evaluate the model on another task. The vertical axis
displays the task the model was trained to forget and the horizontal axis displays the task the model
was evaluated on. Surprisingly, certain capabilities are robust to forgetting even after fine-tuning on
random labels. Moreover, the effectiveness of the forgetting procedure is largely determined by the
tasks that the model is evaluated on, not the tasks that the model was trained to forget. Note that rows
and columns are presented in different orders, and clustered using the UPGMA algorithm (Sokal &
Michener, 1958)
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As shown in Figure 8, the trends are the same. The same tasks that are robust to fine-tuning
on randomized labels continue to be robust on fine-tuning on flipped labels. Thus, our
results are likely not specific to the choice of randomized labels, but rather a property of
how fine-tuning and the tasks interact.

Does forgetting occur in other models? To understanding whether this forgetting behav-
ior is unique to the LLama2 7-billion parameter model or to language models in general,
we also experiment with GPT-J-6B, which is a slightly weaker model than the LLaMA-2-7B,
and GPT-2, which is a significantly smaller model with 124M parameters (98% smaller).

As shown in Figure 8, while GPT-J and GPT-2 have lower fine-tuned accuracy, the forgetting
ratio trends are broadly the same. Thus, the behavior is not unique to LLaMA-2-7B.

Figure 4: Predictors of the Forget Ratio (y-axis).
Each point is a different task. Top: The accuracy
on the task after fine-tuning. The effectiveness of
the forgetting procedure is not determined by the
difficulty of the task (as measured by accuracy).
Middle: The variance of the hidden state of the last
token of the question in the fifth to last layer across
examples. This variance is somewhat predictive of
amount forgotten, indicating that “broader” tasks
are more difficult to forget. Bottom: Model’s confi-
dence in the correct response. Probability relative
to the distractor is predictive of forgetting, indicat-
ing that models forget more examples they were
already not confident about.

Are harder tasks harder to forget? An-
other plausible explanation for why certain
tasks are forgotten less is that harder tasks
are more difficult to forget. However, as
plotted in Figure 4, this is not consistently
true. As a selected example, the forgetting
procedure is less effective for the ARC easy
dataset in comparison to the ARC challenge
dataset, despite the significantly greater dif-
ficulty of the latter. Thus, the effectiveness
of forgetting must be determined by other
properties of the task.

Does model confidence predict which

tasks are forgotten? We hypothesize that
a model’s confidence may be predictive of
whether a task is forgotten. The reasoning
for this is that if the model has a strong pref-
erence for its answers on the task, a larger
parameter update may be needed to over-
come this “prior”.

We examine the model’s confidence in the
correct response prior to running the forget-
ting procedure. Since the probability of the
correct response is not calibrated, we mea-
sure the probability of the correct response
relative to the incorrect response.

The results are shown in Figure 4. We find
that the model’s confidence in the correct re-
sponse is partially predictive of how much
the model forgets. Note that this is dis-
tinct from the difficulty of the task, as the
model’s confidence in the correct response
is not necessarily correlated with whether
it is actually correct.

Does hidden state variance predict forgetting? We also hypothesize that “broader” tasks
are harder to forget. Since similar text is often mapped to similar regions in the latent
space (Zhang et al., 2020), we use the variance of the hidden states of the model to quantify
how much the model is able to forget. Specifically, we extract the hidden states at the last
token of the question at the penultimate layer. We find that the total variance (trace of the
covariance matrix) is predictive of how much the model is able to forget. Figure 4 shows
that the smaller the total variance, the more effective the model is in forgetting. Note that
this measure does not require access to the labels of the dataset, and it only requires access
to the inference capabilities of the model and data from the task at hand.
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Figure 5: Forgetting order vs learning order. The horizontal axis shows the forgetting time: the number
of epochs until the model forgets (assigns ¡ 60% accuracy to the correct response for a data point). The
vertical axis shows the learning time: the number of epochs until the model learns (assigns ¿ 60%
confidence to the correct label for a data point). We filter out the examples that are never learned or
never forgotten. If fewer than 100 examples fulfil the criteria, we do not plot the task. Overall, we find
that learning and forgetting orders are weakly, but consistently, anticorrelated.

Can we predict which examples will be forgotten? In contrast to the task-level trends
depicted in Fig. 4, we did not observe any correlation between any of the above metrics and
models’ behavior at the level of individual examples—for example, example-level model
confidence is not predictive of example-level forgetting. We hypothesize that different
effects may dominate in this finer-grained scope, and that focusing on a narrow scope of
same-task examples, other effects we did not yet uncover are too strong to see an effect with
the current traits, such effects can be investigated in further work.
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6 What is the relationship between learning and forgetting?

Even if extrinsic measures of difficulty cannot predict example-level learnability (as shown
in the final experiment above), is there any systematic relationship between learnability and
forgettability? Motivated by earlier work that similar architectures share consistent learning
orders (Hacohen et al., 2020; Choshen et al., 2022), we hypothesize that the learning and
forgetting orders are related.

As pre-trained models are often already partially capable of performing the tasks we study,
we analyze learning orders after “resetting” the models to either extreme of the learning
spectrum (maximum forgetting or maximum fine-tuning). Specifically, we compare the
learning order of when we (1) run the forgetting procedure after fine-tuning (the same as in
Section 4) and (2) when we run the fine-tuning procedure one more time afterwards (run
fine-tuning after procedure in Section 4). Note that to prevent the models from learning all
the examples in one epoch, we use a different fine-tuning learning rate of 3e-5 for experiment
(2).

To qualify an example as learned, we require the model have a confidence of at least 0.6
in the correct response. To qualify an example as forgotten, we require the model have
a confidence of at most 0.6 in the correct response. In preliminary experiments, we did
not find results to be sensitive to the choice of threshold. For the purpose of analysis, we
ignore examples that are never learned or forgotten. If no more than 100 examples fulfill the
criteria, we do not plot the task. We take the first time this occurs as the forget time/learn
time.

We visualize the learning orders in Figure 5. Across tasks, we find a consistent, modest
correlation between learning order and forgetting order, in which the first points to be
learned are typically the last to be forgotten and vice-versa. Overall, we hypothesize that
the lack of a stronger correlation may be due to the shallow nature of fine-tuning. Since we
are only aligning the model to the task instead of teaching it new capabilities, the learning
order may be unaffected by example-level properties like difficulty. Thus, the learning order
may be more related to the model’s initial state.

7 Are “forgotten” skills truly removed from models?

One further question is if training on random labels really erases models’ capabilities or if
it only censors the output. To examine this, we train a linear probe on the models hidden
states after performing the forgetting procedure. The probes are trained on the training
set and evaluated on the test set. ω2 regularization and early stopping on a validation set
used to prevent overfitting as the hidden state dimension is often larger than the number of
examples. We select the fifth last layer of the model as the hidden state to probe, as we find
that the accuracy of probing is mostly comparable for all layers except for the very early
layers and the very late layers.

The results are shown in Figure 6. We find that the fine-tuning procedure largely does
not influence the probing effectiveness. Thus, this procedure induces at best a shallow
forgetting. This is consistent with most work that fine-tuning is often a shallow operation
that does not significantly alter the model’s capabilities (e.g.; Yadav et al., 2023; Horwitz
et al., 2024).

8 Conclusion

In this paper, we study the effectiveness of fine-tuning models on randomized responses in
order to forget capabilities. We find that this method is effective for certain tasks, but sur-
prisingly does not generalize for others. The degree of forgetting seems mostly determined
by the tasks that the model is evaluated on, not the tasks that the model was trained to
forget. We find that dataset difficulty and model confidence are not predictive of whether a
task is forgotten. However, we find that the total variance of the hidden states of the model
is predictive of how much the model is able to forget. Finally, we show that despite the
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Figure 6: Probe accuracy. We plot the accuracy of a linear probe trained to classify (question, answer)
pairs as correct or incorrect given LM hidden representations after pre-training, after fine-tuning,
and after training on random labels. We find that forgetting largely does not influence the probing
effectiveness, indicating that tasks are not truly forgotten even in cases where models generalizably
learn to produce random outputs.

models’ inability to respond correctly to prompts after applying this method, we are still
able to recover the correct responses using linear probes. Thus, this is at best a shallow type
of forgetting and not true removal of information from the model.

Future work can focus more on understanding which specific examples are forgotten and
why. While our methods were successful in predicting which broad capabilities are forgotten,
they are not predictive of which specific examples are forgotten within a task. This suggests
that there are more mechanisms at play that can be studied further.
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A Additional fine-tuning details

Unless otherwise stated, we perform full fine-tuning in half-precision with stochastic gradi-
ent descent and a learning rate of 3e → 3 with constant learning rate scheduling and gradient
clipping of 1. Initial results with Adam were similar but required more memory. We fine-
tune for 100 epochs with early stopping based on validation accuracy. We use a batch size
of 3 which was the largest batch size that would fit in V100’s memory. We fine-tune only on
the response and never on the prompt. We fine-tune for 100 epochs or until the training set
reaches 99% accuracy.

For our forgetting procedure, we randomly select either the correct response or the distractor
before fine-tuning the model on that response in each epoch. Since allowing arbitrarily large
learning rates can always lead to forgetting, we selected a learning rate where forgetting oc-
cur gradually over multiple epochs, 1e → 4. To prevent undertraining, we run the forgetting
procedure for 100 epochs or until the model’s test accuracy drops below 50%, whichever
comes first.

B Reduced dataset size

Task Small Forget Accuracy Large Forget Accuracy
PIQA 0.71 0.69
ARC Easy 0.84 0.86
ARC Challenge 0.66 0.50
CREAK 0.71 0.77
BoolQ 0.77 0.50
SciQ 0.84 0.76
PubMedQA 0.73 0.63
MathQA 0.52 0.56
ToxiGen 0.80 0.77
CoLA 0.59 0.50
MRPC 0.77 0.80
MultiNLI 0.61 0.79
QNLI 0.71 0.50
RTE 0.57 0.50
WNLI 0.97 0.97
CB 0.61 0.50
COPA 0.51 0.50
WiC 0.62 0.50
WSC 0.63 0.66

Figure 7: Small dataset forgetting. To explore whether we have enough sample points for forgetting,
we also run an experiment where only 100 examples are used for forgetting instead of 1000 in the large
setting. We find that certain datasets exhibit less forgetting with the smaller dataset. However, the
general trends remain the same, showing that the problem is not due explained fully by dataset size.
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C Flipped-label task

Figure 8: Flipped label forgetting. Top: Forget ratios for forgetting on the flipped task (higher values
indicate more successful forgetting) vs Bottom: Forget ratios on the randomized task. We fine-tune
the model on random/flipped labels from one task and then evaluate the model on another task.
The vertical axis displays the task the model was trained to forget and the horizontal axis displays
the task the model was evaluated on. We see similar trends in forgetting generalization in both task
constructions.
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D Other language models

Figure 9: Forgetting performance of other models. Top: Forget ratios for cross task on the randomized
task for GPT-J-6B (higher values indicate more successful forgetting) vs Bottom: Forget ratios for
cross-task forgetting on the randomized task for GPT-2. The vertical axis displays the task the model
was trained to forget and the horizontal axis displays the task the model was evaluated on. We see
similar trends in forgetting generalization in both models and also the Llama2-7B model, which is
shown in the bottom of Figure 8.
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