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Abstract

We present a new distribution-free conformal pre-
diction algorithm for sequential data (e.g., time
series), called the sequential predictive conformal
inference (SPCI). We specifically account for the
nature that time series data are non-exchangeable,
and thus many existing conformal prediction al-
gorithms are not applicable. The main idea is
to adaptively re-estimate the conditional quantile
of non-conformity scores (e.g., prediction resid-
uals), upon exploiting the temporal dependence
among them. More precisely, we cast the prob-
lem of conformal prediction interval as predicting
the quantile of a future residual, given a user-
specified point prediction algorithm. Theoreti-
cally, we establish asymptotic valid conditional
coverage upon extending consistency analyses in
quantile regression. Using simulation and real-
data experiments, we demonstrate a significant
reduction in interval width of SPCI compared to
other existing methods under the desired empiri-
cal coverage.

1. Introduction

Uncertainty quantification for prediction algorithms is es-
sential for statistical and machine learning models. Sequen-
tial prediction or time-series prediction aims to predict the
subsequent outcome based on past observations. Uncer-
tainty quantification in the form of prediction intervals is of
particular interest for high-stake domains such as finance,
energy systems, healthcare, and so on (Harries et al., 1999;
Dı́az-González et al., 2012; Cochran et al., 2015). Clas-
sic approaches for prediction interval are typically based
on strong parametric assumptions of time-series models
such as autoregressive and moving average (ARMA) mod-
els (Brockwell et al., 1991), which impose strong distri-
bution assumptions on the data-generating process. There
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need to be principled ways to perform uncertainty quan-
tification for complex prediction models such as random
forests (Breiman, 2001) and neural networks (Lathuilière
et al., 2019).

Conformal prediction (CP) has become a popular
distribution-free technique to perform uncertainty quantifi-
cation for complex machine learning algorithms. However,
conformal prediction for time series has been a challenging
case because such data do not satisfy the exchangeability as-
sumption in conformal inference, and thus we need to adjust
existing or even develop new sequential CP algorithms with
theoretical guarantees. The challenges also arise in real-
world applications where time series data tend to have sig-
nificant stochastic variations and strong correlations. These
challenges are illustrated via a real-data example for solar
energy prediction, as shown in Figure 1, where the predic-
tion residuals (using random forest as prediction algorithm)
are still highly correlated. Besides the temporal correlation
in the prediction residuals (or conformity scores in general),
we observe that a notable feature of sequential conformal
prediction is that the prediction residuals can be obtained
as “feedback” to the algorithm. For instance, for one-step
ahead prediction, the prediction accuracy of the prediction
algorithm is revealed immediately after one-time step. Thus,
the recent prediction residuals reveal whether or not the
predictive algorithm is performing well for that segment
of data. Such feedback structure is illustrated in Figure 2,
which highlights the conceptual difference between tradi-
tional conformal and sequential conformal prediction meth-
ods. We specifically exploited such feedback structure in
designing the sequential conformal prediction algorithms.

More precisely, both the traditional conformal inference
and the sequential conformal inference considered in this
paper are general-purpose wrappers that can be used around
any predictive model for any data and proceed by defining
“non-conformity scores”. However, there are also signifi-
cant differences: Traditional conformal prediction assumes
exchangeable training and test data to obtain performance
guarantees, which leads to exchangeable non-conformity
scores, and cannot receive feedback during prediction. In
contrast, sequential CP observes non-exchangeable data
sequences and leverages feedback during prediction.

In this work, we propose a sequential predictive confor-
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mal inference (SPCI) framework for time series with scalar
outputs. The idea is to utilize the feedback structure of
prediction residuals in the sequential prediction problem to
obtain desired coverage. We specifically exploit the serial
dependence across prediction residuals (conformity score)
by performing quantile regression using past residuals for
the future prediction intervals.; thus, the most recent past
residuals contain information about the immediate future
ones. Similar to most existing conformal prediction liter-
ature, we make no assumptions about the data-generating
process or the quality of estimation by the point estimator.
Our main contributions are

• The main novelty of SPCI is the time-adaptive re-
estimation of residual quantiles over time, upon leveraging
the temporal dependency among residuals. We use Random
Forest for quantile regression here, but SPCI is applicable
to other quantile regression methods.

• Theoretically, we obtain asymptotic conditional coverage
of the constructed intervals for dependent data, based on
prior results for random forest quantile regression. When
data are exchangeable, we show that SPCI enjoys the same
finite-sample and distribution-free marginal coverage guar-
antee as traditional conformal prediction methods.

• Experimentally, we demonstrate competitive and/or im-
proved empirical performance against baseline CP methods
on sequential data. In particular, SPCI can obtain signifi-
cantly narrower intervals on real data without coverage loss.
We further demonstrate the benefit of SPCI in multi-step
predictive inference.

1.1. Literature review

Conformal prediction has been an increasingly popular
framework for distribution-free uncertainty quantification.
Initially proposed in (Shafer & Vovk, 2008), CP methods
generally proceed as follows. First, one designs a type of
“non-conformity score” based on the given point estimator
f̂ , where the score measures how different a potential value
of the response variable Y is to existing observations. A
common choice for such scores in regression problems is
the prediction residual. Second, one computes these scores
on a hold-out set not used to train the estimator f̂ . Third,
the prediction interval is defined as all potential values of
Y whose non-conformity score is less than 1 → ω fraction
of these scores over the hold-out set. Many existing works
such as (Papadopoulos et al., 2007; Gupta et al., 2021; An-
gelopoulos et al., 2021; Romano et al., 2020) utilize this
idea for uncertainty quantification in regression or classifica-
tion problems. Comprehensive surveys and tutorials can be
found in (Fontana et al., 2023; Angelopoulos & Bates, 2021).
CP framework are distribution-free and model-free: they
require neither distributional assumptions on data nor spe-
cial classes of prediction functions, hence being particularly

Figure 1: Solar power radiation prediction for downtown At-
lanta, Georgia, USA (further explanation in Section 5.2). We
use random forest for one-step-ahead prediction. The his-
togram of prediction residuals (left) shows that residual dis-
tribution is highly skewed, and the partial auto-correlation
between residuals (right) shows a significant serial correla-
tion among residuals. Thus, it is essential to consider serial
dependency when constructing prediction intervals: the se-
rial dependence means that the most recent past residuals
contain information about the immediate future ones.

attractive in practice. Nevertheless, the desired performance
guarantee of CP methods relies on exchangeability (e.g., the
simplest case is when data are i.i.d.), which hardly holds for
time series.

Recently, significant efforts have been made to extend CP
methods beyond exchangeable data; several are towards
building sequential conformal prediction methods. They
typically do so via updating non-conformity scores (e.g.,
prediction residuals) (Xu & Xie, 2021a;b) and/or adjust
significance level ω based on rolling coverage of Yt. This in-
clude (Gibbs & Candes, 2021; Zaffran et al., 2022; Feldman
et al., 2022; Lin et al., 2022) and specifically, the AdaptCI al-
gorithm, which adjusts the significance level ω based on real-
time coverage status during prediction—the significance
level is lower when the prediction interval at time t fails to
contain the actual observation Yt. The prediction intervals
thus have adaptive width based on the updated significance
levels and maintain coverage on stock market data in prac-
tice. Furthermore, (Barber et al., 2022) proves the coverage
gap for non-exchangeable data based on the total variation
(TV) distance between the non-conformity scores. The work
then proposes NEX-CP, a general re-weighting scheme for
non-exchangeable data, where the weights should ideally be
chosen to be inversely proportional to the TV distances. The
authors demonstrate the robustness of NEX-CP on datasets
with change points and/or distribution shifts. For sequential
data, (Xu & Xie, 2021b) proposes EnbPI, which updates
residuals of ensemble predictors during prediction to more
accurately calibrate prediction intervals. In practice, EnbPI
can maintain desired 1 → ω coverage for different types of
time series. Despite the existing efforts, these sequential CP
methods have not exploited serial correlation among non-
conformity scores (cf. Figure 1)—they only use empirical
quantiles (possibly with fixed weights) of past residuals to
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compute intervals, which is a drastic difference from SPCI.

Besides conformal prediction, probabilistic forecasting ap-
proaches have also been widely used when building pre-
dicting intervals. These approaches typically train a single
model to minimize the pinball loss, including the MQ-CNN
(Wen et al., 2017), DeepAR (Salinas et al., 2020), Temporal
Fusion Transformer (TFT) (Lim et al., 2021), etc. However,
comparing to SPCI and related CP works, these approaches
have two major limitations. First, they are not “model-free”:
special designs of the predictive model and hyper-parameter
tuning are required for satisfactory performances. Second,
they are not “distribution-free”: distributional assumptions
on time-series are often imposed, such as Gaussianity (Sali-
nas et al., 2020). Corresponding theoretical guarantees on
constructed prediction intervals are also often lacking. In
our experiments, we demonstrate the improved performance
of SPCI against DeepAR and TFT.

1.2. Connection with related works

Through theoretical analysis, we find that when using ran-
dom forest quantile regression, SPCI can be viewed as adap-
tively learning the (data-dependent) weights of the predic-
tion residuals/non-conformity scores when constructing the
prediction intervals using weighted quantile values. Hence,
it has an interesting connection to the recent work (Barber
et al., 2022), which develops a general conformal prediction
framework for non-exchangeable data. In that work, weights
are pre-determined and non-adaptive (such as geometrically
decaying weights), and the authors also pointed out that
“how to choose weights optimally ... is an interesting and
important question that we leave for future work” and “leave
a more detailed investigation of data dependent weights for
future work” (Barber et al., 2022). So our work is a step
towards this direction.

We further remark on several key differences of SPCI with
prior works. Method-wise, our prediction intervals are con-
structed using conditional quantile regression functions on
non-conformity scores (e.g., residuals). In contrast, exist-
ing quantile-regression-based conformal prediction methods
(Romano et al., 2019; Gupta et al., 2021) directly fit con-
ditional quantile functions on the response variables Y ,
after which the intervals are constructed using empirical
quantiles of non-conformity scores. Theory-wise, we obtain
similar asymptotic conditional coverage for dependent resid-
uals as in (Xu & Xie, 2021b). However, different from that
work, we do not assume a particular functional form of the
conditional distribution of the scalar output given feature
variables.

2. Problem setup

Assume a sequence of observations (Xt, Yt), t = 1, 2, . . .,
where Yt are continuous scalar variables and Xt ↑ Rd
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Figure 2: Differences between traditional and sequential
Conformal Prediction (CP) methods. In traditional CP,
residuals are exchangeable, and the same set of residuals is
used throughout the prediction. In contrast, sequential CP
assumes an ordering of the potentially non-exchangeable
residuals; residuals are available feedback to the prediction
algorithms: past residuals are updated to include the new
prediction residual ε̂t+1 during prediction.

denote features, which may either be the history of Yt or
contain exogenous variables helpful in predicting the value
of Yt. We can allow observations to be highly correlated
under an unknown conditional distribution Yt|Xt, . . . , X1,
and do not assume a particular functional form of the con-
ditional distribution Yt|Xt, . . . , X1. Let the first T samples
{(Xt, Yt)}T

t=1 be the training data.

Our goal is to construct prediction intervals sequentially
starting from time T + 1 such that the prediction intervals
will contain the true outcome with a pre-specified high prob-
ability 1 → ω while the prediction interval is as narrow as
possible. Here the significance level ω is user-specified.
The prediction intervals Ĉt→1(Xt), which depend on ω, are
around point predictions Ŷt := f̂(Xt) for a given predic-
tive model f̂ . A commonly used conformity score is the
prediction residual:

ε̂t = Yt → Ŷt.

We emphasize that our algorithm provides prediction inter-
vals for an arbitrary user-chosen predictive algorithm. Here
the subscript t→1 indicates the interval is constructed using
previous up to t → 1 many observations.

There are two types of coverage guarantees to be satisfied
by Ĉt→1(Xt). The first is the weaker marginal coverage:

P(Yt ↑ Ĉt→1(Xt)) ↓ 1 → ω, ↔t, (1)

while the second is the stronger conditional coverage:

P(Yt ↑ Ĉt→1(Xt)|Xt) ↓ 1 → ω, ↔t. (2)

If Ĉt→1(Xt) satisfies (1) or (2), it is called marginally or
conditionally valid, respectively. In terms of the interval
width, to avoid vacuous prediction interval Ĉt→1(Xt) (in
the extreme case, if one chooses the entire real line for all t,
it will always contain the true outcome Yt with high proba-
bility), we should construct intervals with width |Ĉt→1(Xt)|
as narrow as possible.
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Figure 3: Unlike traditional CP methods, sequential CP
methods leverage feedback (in red arrow) during prediction.
In this work, we use prediction residual ε̂t = Yt → Ŷt as an
example of the non-conformity score.

A natural approach in developing sequential CP methods is
constructing sequential prediction intervals using the most
recent feedback in predicting Yt, as shown in Figure 3. How-
ever, using the empirical distribution of updated residuals
may not fully exploit the temporal dependence across the
residuals. Indeed, when residuals are temporally correlated,
the past residuals contain information about the distribution
of future residuals and can be used to perform “predictive”
conformal inference. More precisely, we should use the past
residuals to predict the tail probability of the new residual,
as doing so may allow certain adaptivity. The above is the
main idea of our proposed SPCI algorithm.

3. Algorithms

Below, we first consider a simple split conformal prediction
as a vanilla baseline approach based on traditional CP, which
constructs prediction intervals without considering feedback
during prediction. Then, we present the EnbPI (Xu & Xie,
2021b) method in sequential CP as a refined approach and
illustrate its limitation in using empirical quantile of past
residuals. Finally, we introduce the proposed SPCI as an
improved algorithm for sequential CP for time series data.

3.1. Vanilla split conformal

One of the most commonly used conformal prediction meth-
ods is split conformal (Papadopoulos et al., 2007), so we
describe it as a prototypical example. First, split the indices
of training data [T ] := {1, . . . , T} into two halves I1 and
I2. Second, fit the prediction model f̂ on {(Xt, Yt), t ↑ I1}
to make point predictions Ŷt = f̂(Xt), t ↗= I1. Third, com-
pute non-conformity score on I2, where a typical choice is
the residual. Lastly, let E [I2] = {ε̂j}j↑I2 and define the
prediction interval Ĉt→1(Xt) for t > T as

[f̂(Xt) + qω/2(E [I2]), f̂(Xt) + q1→ω/2(E [I2])], (3)

where q1→ω is the 1 → ω quantile function over a set of val-
ues. In particular, the set of non-conformity scores {ε̂j}j↑I2

is fixed during prediction. When (Xt, Yt) are exchangeable
(i.e., we can shuffle the order of these random variables with-

out affecting the joint distribution), split conformal intervals
in (3) reaches exact finite-sample marginal coverage defined
in (3). However, without further distribution assumptions,
split conformal intervals cannot reach valid conditional cov-
erage in (2) (Foygel Barber et al., 2021).

3.2. EnbPI: Ensemble version using empirical residuals

Compared to split conformal in the previous section, EnbPI
involves no data-splitting, trains ensemble predictors that
make more accurate point predictions and utilizes feed-
back during prediction on test data. Thus, EnbPI is more
suitable than split conformal for sequential prediction in-
terval construction. EnbPI has the following three steps.
First, it leverages training data as much as possible by fit-
ting “leave-one-out” (LOO) ensemble prediction models
f̂t(Xt) := ϑ({f̂b(Xt) : t /↑ Sb}), where ϑ denotes an arbi-
trary aggregation function (e.g., mean, median, etc.) over a
set of scalars, and Sb ↘ [T ] is the bootstrap index set used to
train the b-th bootstrap estimator f̂b. The point predictor on
test data is defined as f̂(Xt) := ϑ({f̂b(Xt)}), which aggre-
gates all bootstrap predictions. Second, we obtain residuals
using the LOO models ε̂t := Yt → f̂t(Xt). Third, it updates
the past residuals during predictions so that the prediction
intervals have adaptive width. For a fixed w ↓ 1, define
Ew

t := {ε̂t→1, . . . , ε̂t→w}. Then, EnbPI intervals Ĉt→1(Xt)
have the form:

[f̂(Xt) + qω/2(ET
t ), f̂(Xt) + q1→ω/2(ET

t )], (4)

which utilize the past w = T residuals and greatly resemble
traditional CP intervals in (3) due to the use of empirical
quantile function q1→ω/2 to compute interval width.

However, EnbPI intervals in (4) can have limitations under
dependent residuals. Note that dependent residuals lead
to non-equivalence between conditional and marginal dis-
tributions of ε̂t, namely ε̂t|Ew

t ↗= ε̂t in distribution. More
precisely, let F (z|Ew

t ) := P(ε̂t ≃ z|Ew
t ) be the unknown

conditional distribution function of the residual ε̂t, where
we implicitly assume the conditional distribution function is
invariant over time (i.e., residuals have identical conditional
distributions). Based on (4),

P(Yt ↑ Ĉt→1(Xt)|Xt) (5)

= P(ε̂t ↑ [qω/2(ET
t ), q1→ω/2(ET

t )]|Xt)

= F (q1→ω/2(ET
t )|Ew

t ) → F (qω/2(ET
t )|Ew

t ). (6)

However, the distribution function F evaluated at the em-
pirical quantiles may not yield the desired coverage. More
precisely, define

Qt(p) := inf{e↓ ↑ R : F (e↓|Ew
t ) ↓ p}, (7)

which is the p-th quantile of the residual ε̂t. By definition,

F (Qt(1 → ω/2)|Ew
t ) → F (Qt(ω/2)|Ew

t ) = 1 → ω. (8)
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Thus, in order for EnbPI intervals in (4) to have the desired
1 → ω coverage asymptotically, the empirical quantile must
uniformly converge to the actual quantile value, namely:

sup
p↑[0,1]

|qp(ET
t ) → Qt(p)| ⇐ 0 as T ⇐ ⇒. (9)

However, the condition (9) requires strong assumptions: (Xu
& Xie, 2021b) assumes a particular linear functional form
of Yt|Xt (i.e., Yt = f(Xt) + εt), which further needs to be
consistently estimated as sample size approaches infinity.
Such assumptions can impose limitations in practice.

3.3. Proposed SPCI algorithm

Due to the limitations above by split conformal and EnbPI,
we propose SPCI in Algorithm 1 as a more general frame-
work than both approaches. In particular, SPCI directly
leverages the dependency of ε̂t on the past residuals when
constructing the prediction intervals. Based on the equiva-
lence in (6) and the coverage property in (8), SPCI replaces
the empirical quantile with an estimate by a conditional
quantile estimator. Specifically, let Q̂t(p) be an estimator
of the true quantile Qt(p) in (7) and let f̂ be a pre-trained
point predictor, SPCI intervals Ĉt→1(Xt) are defined as

[f̂(Xt) + Q̂t(ϖ̂), f̂(Xt) + Q̂t(1 → ω + ϖ̂)], (10)

where ϖ̂ minimizes interval width:

ϖ̂ = arg minε↑[0,ω](Q̂t(1 → ω + ϖ) → Q̂t(ϖ)). (11)

In particular, SPCI is more general than both EnbPI and
split conformal. If we train LOO point predictors, choose
the quantile estimator Q̂t(·) as the empirical quantile, and
use ϖ̂ = ω/2, SPCI in (10) reduces to EnbPI in (4). If we
follow split conformal prediction to train the point predictor
f̂ , train quantile predictor Q̂t on residuals from calibration
set, and do no update residuals during prediction, SPCI
intervals reduce to the split conformal intervals in (3).

We particularly comment on the computational aspect of
fitting conditional quantile estimators Q̂t, the essential step
of SPCI. To train Q̂t, one minimizes the pinball loss

L(x, ω) =

{
ωx if x ↓ 0,

(ω → 1)x if x < 0,
(12)

which depends on the significance level ω. Because SPCI
aims to produce intervals as narrow as possible and refits
the quantile regression models at each t, it is important
to choose quantile regression algorithms that are efficient
enough in this sequential setting. In this work, we will use
quantile random forest (QRF) (Meinshausen, 2006) to train
Q̂t and establish coverage guarantees.

We train QRF auto-regressively in SPCI to leverage the
dependency in residuals. In short, we use the past w ↓ 1

Algorithm 1 Sequential Predictive Conformal Inference
(SPCI)

Require: Training data {(Xt, Yt)}T
t=1, prediction algo-

rithm A, significance level ω, quantile regression al-
gorithm Q .

Output: Prediction intervals Ĉt→1(Xt), t > T

1: Obtain f̂ and prediction residuals ω̂ with A and
{(Xt, Yt)}T

t=1

2: for t > T do

3: Use quantile regression to obtain Q̂t ⇑ Q(ω̂)
4: Obtain prediction interval Ĉt→1(Xt) as in (10)
5: Obtain new residual ε̂t

6: Update residuals ω̂ by sliding one index forward (i.e.,
add ε̂t and remove the oldest one)

7: end for

residuals to predict the conditional quantile of the future
(unobserved) residual. More precisely, suppose we have
T past residuals ET

t available at prediction index t. Let
T̃ := T → w. For t

↔ = 1, . . . , T̃ , define

X̃t→ := [ε̂t→+w→1, . . . , ε̂t→ ], Ỹt→ := ε̂t→+w. (13)

Thus, feature X̃t→ contains w residuals useful for predicting
the conditional quantile of Ỹt→ , which is the residual at index
t
↔ + w. We use the feature X̃T̃+1 to predict the conditional

quantile of ỸT̃+1. As a result, the QRF is trained using T̃

training data (X̃t→ , Ỹt→), t↔ = 1, . . . , T̃ . When re-fitting the
QRF at each prediction index, we re-design these T̃ training
data using a sliding window of most recent T residuals. In
our experiments, we use the Python implementation of QRF
by (Roebroek, 2022).
Remark 1 (SPCI vs. Quantile regression). We further high-
light the essential difference of SPCI against quantile re-
gression approaches. In general, quantile regression al-
gorithms rely on minimizing the pinball loss for specific
regression algorithms. Doing so can often lead to inaccurate
results and require special hyper-parameter tuning. In gen-
eral, these algorithms can also be computationally expensive
to train for multiple significance levels, as the pinball loss
depends on ω. In contrast, SPCI is compatible with any
user-specified point prediction model, remains distribution-
free, and provides coverage guarantees (see Theorem 2).
Hence, SPCI inherits the main benefits of CP methods. In
addition, SPCI leverages the dependency of non-conformity
scores by fitting a QRF model of the quantiles (one can use
general quantile regression models if desired). Computa-
tionally, SPCI is also efficient in test time as the fitting of
the QRF model does not rely on the significance level alpha.
In practice, we find such a hybrid approach to outperform
quantile regression models using deep neural networks (see
Table 3).
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4. Theory

We first show that when data are exchangeable, one can
reach exact marginal coverage when using the empirical
quantile function as the quantile regression predictor. We
then establish asymptotic coverage upon considering the
dependency of estimated residuals. For dependent residuals,
we adapt the proof in (Meinshausen, 2006) for independent
observations, where we replace the independence assump-
tion with stationary and decaying dependence assumptions.
Most proofs and additional theoretical details appear in Ap-
pendix A.

4.1. Under exchangeability

We show below that SPCI maintains marginal coverage
when data are exchangeable. The proof is standard based on
showing the marginal coverage of split conformal prediction

Proposition 1 (Finite-sample marginal coverage under ex-
changeability (Papadopoulos et al., 2007)). Suppose the
data (Xt, Yt), t ↓ 1 are exchangeable (e.g., independent
and identically distributed). Prediction intervals obtained
via Algorithm 2 (i.e., a special version of SPCI) satisfy

P(Yt ↑ Ĉt→1(Xt)) ↓ 1 → ω.

4.2. Beyond exchangeability

The primary theoretical contribution of our work is to show
the asymptotic conditional validity of SPCI intervals when
the quantile random forest (Meinshausen, 2006) is used as
the conditional quantile estimator. Specifically, we have

P(Yt ↑ Ĉt→1(Xt)|Xt) ⇐ 1 → ω as T ⇐ ⇒,

which by (6) and (7), is equivalent to proving

sup
p↑[0,1]

|Q̂t(p) → Qt(p)| ⇐ 0 as T ⇐ ⇒, (14)

where Q̂t(p) is the QRF estimator. More precisely, we want
to estimate the conditional quantile values of ỸT̃+1 given
X̃T̃+1, both of which are defined in (13). Note that (14) for
i.i.d. observations has been proven in (Meinshausen, 2006,
Theorem 1), so that our analysis also extends the original
statement therein to observations with dependency.

We follow the notation in (Meinshausen, 2006) to intro-
duce QRF. For the feature X̃t, t ↓ 1, assume its support
Supp(X̃t) ↘ B ↘ Rp. We grow the tree T (ϱ) with param-
eter ϱ as follows: every leaf l = 1, . . . , L of a tree T (ϱ)
is associated with a rectangular subspace Rl ↘ B. In par-
ticular, they are disjoint and cover the entire space B: for
every x ↑ B, there is one and only one leaf l, thus denoted
as l(x, ϱ), such that x ↑ Rl(x,ϑ). If we grow K trees, let
each of them have separate parameter ϱk. Now, for a given

x ↑ B and T̃ observed features X̃1, . . . , X̃T̃ , we define the
following weights:

kϑ(l) := #{j ↑ {1, . . . , T̃} : X̃j ↑ Rl(x,ϑ)} (15)

wt(x, ϱ) :=
(X̃t ↑ Rl(x,ϑ))

kϑ(l)
(16)

wt(x) := K
→1

K∑

k=1

wt(x, ϱk) (17)

For interpretation, (15) counts the “node size” of the leaf
l(x, ϱ), (16) weighs the i-th observation using whether
X̃t belongs to this leaf and its node size, and (17)
weighs such weights from K trees. Based on weights
in (17), the estimated conditional distribution function
F̂ (z|x)= F̂ (z|X̃T̃+1 = x) is defined as

F̂ (z|x) :=
T̃∑

t=1

wt(x) (Ỹt ≃ z). (18)

In retrospect, the estimation in (18) is similar to that under
fixed weights by (Barber et al., 2022). The key difference
is that (18) uses data-adaptive weights as it exploits the
temporal autocorrelation of residuals. In contrast, (Barber
et al., 2022) uses fixed and non-adaptive weights.

To show the convergence of the estimated QRF quantile to
the true value, we first have the following lemma relating
the convergence of quantile estimates to the convergence of
corresponding distribution functions.

Lemma 1. For random variable ε̂t (i.e., residual in our
setup), let F (z|x) be its conditional distribution function
and Q(p) := inf{z ↑ R : F (z|x) ↓ p} be the p-th quantile,
which is assumed to be unique. Let F̂ (z|x) be an estimator
trained on T̃ samples {(X̃t, Ỹt)}T̃

t=1. If for all z and x it
holds that

F̂ (z|x) ⇐ F (z|x) in probability as T̃ ⇐ ⇒, (19)

then Q̂(p) := inf{z ↑ R : F̂ (z|x) ↓ p} satisfies Q̂(p) ⇐
Q(p) in probability for every p ↑ (0, 1) and x.

Thus, the crux of the remaining analyses relies on show-
ing the point-wise convergence in (19) for the QRF in (18).
The case where all data are independent and identically
distributed has been addressed in (Meinshausen, 2006, The-
orem 1). We address the more general case for dependent
observations in Proposition 2.

Proposition 2. If Assumptions 1—4 defined in Appendix A
hold, we obtain the point-wise convergence in (19) for QRF.

We briefly explain and discuss the necessary theoretical
assumptions 1—4 used in proving Proposition 2:
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• Assumption 1: This assumption states two things. First,
the dependency of the covariance of the indicator ran-
dom variables (defined over the residual quantiles) only
depends on the difference in index (see Eq. (22)).
Such assumption on residual dependency resembles the
weak or wide-sense stationarity assumption. Second,
the value of covariances can be uniformly bounded
over the conditioning variables by a function g̃, and
there is a growth order constraint on g̃ (see Eq. (24)).
This condition is imposed to avoid strong dependency
among the residuals, which prevents asymptotic con-
sistency of the QRF estimator.

• Assumption 2: This assumption requires that the
weights wt(x) in QRF decay linearly with respect to
the number of training samples for QRF. In practice,
we often found that the weights decay at such an order.

• Assumption 3 and 4: These distributional assumptions
on the conditional quantile function follow those in
QRF (Meinshausen, 2006), and they are reasonably
mild. In particular, we are not assuming a particular
parametric of the conditional quantile function so the
results are distribution-free.

We finally obtain the asymptotic guarantee on interval cov-
erage.

Theorem 2 (Asymptotic conditional coverage beyond ex-
changeability). Under the same assumptions as Lemma 1
and Proposition 2, as the sample size T ⇐ ⇒, we have for
any ω ↑ (0, 1)

|P(Yt ↑ Ĉt→1(Xt)|Xt) → (1 → ω)| p⇐ 0 (20)

4.3. Implications of results

We discuss several implications of the results: (1) how the
results are distribution-free and model-free; (2) challenges in
obtaining interval convergence; (3) the generality of proving
guarantees for QRF; (4) convergence analyses beyond using
QRF.

Distribution-free & model-free guarantees. Note that our
coverage guarantee makes no explicit distributional assump-
tions of the residuals (e.g., density function has certain
parametric form). Instead, our assumptions are on the de-
pendency among the residuals and the regularity of the
density functions of the residuals. On the other hand, our
results also make no assumptions on the underlying data
generation process of Yt given Xt, in contrast to the linear
assumption Yt = f(Xt) + εt in EnbPI (Xu & Xie, 2021b).
One can also use arbitrary predictive model to obtain the
residuals, rather than relying on special deep neural network
architectures (Salinas et al., 2020; Lim et al., 2021).

Interval convergence. Ideally, we wish SPCI intervals in
(10) to converge in width to the oracle interval defined by
Yt|Xt. However, doing so requires assumptions on the
inverse CDF of Yt|Xt, which deviate from our focus on
model-free interval construction. Even though such theoret-
ical analyses are lacking, experiments in Section 5 demon-
strate that SPCI improves over recent sequential conformal
prediction models in many cases.

Generality of QRF. Note that decision trees are simple func-
tions, thus satisfying the assumptions of the Simple Function
Approximation Theorem (Royden & Fitzpatrick, 1988). In
other words, the QRF estimates can theoretically approxi-
mate those of any other quantile estimates. As a result, this
can be useful if one analyzes the convergence of QRF quan-
tile estimates for residuals with a more general dependency.

Convergence beyond using QRF. The convergence of quan-
tile estimates has been a long-standing question in statistics.
In our case, we are particularly interested in the quantile
estimates under time-series data. In the past, several lines
of work have established such results for different estima-
tors under various assumptions on dependency. (Cai, 2002)
studied weighted Nadaraya-Watson quantile estimates for ω-
mixing sequences. (Biau & Patra, 2011) proposes a nearest-
neighbor strategy for stationary and ergodic data. (Zhou
& Wu, 2009) analyzed local linear quantile estimators for
locally stationary time series. More analyses appear in the
survey (Xiao, 2012).

5. Experiments

We empirically demonstrate the improved performance of
SPCI over competing sequential CP methods and proba-
bilistic forecasting methods in terms of interval coverage
and width. The CP baselines are EnbPI (Xu & Xie, 2021b),
AdaptiveCI (Gibbs & Candes, 2021), and NEX-CP (Bar-
ber et al., 2022), whose details are in Appendix B. The two
probabilistic forecasting methods are DeepAR (Salinas et al.,
2020) and TFT (Lim et al., 2021). In all experiments, we
obtain LOO point predictors f̂ and prediction residuals ω̂ as
in EnbPI. Official implementation can be found at https:
//github.com/hamrel-cxu/SPCI-code.

5.1. Simulation

We first compare SPCI with EnbPI on non-stationary
and/or heteroskedastic time-series. We then compare SPCI
with NEX-CP on data with distribution drifts and change-
points under the setting described in (Barber et al., 2022).
Details on data simulation are in Appendix B.1.

(1) Comparison with EnbPI. Given a feature Xt, we spec-
ify the true data-generating process as Yt = f(Xt)+ εt. We
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Table 1: Simulation: EnbPI vs. SPCI on simulated time-
series with ω = 0.1. SPCI outperforms EnbPI in terms of
interval width without sacrificing valid coverage.

Nstat coverage Nstat width Hetero coverage Hetero width

SPCI 0.94 (2.04e-3) 11.23 (3.37e-2) 0.89 (9.43e-3) 24.09 (8.27e-1)
EnbPI 0.91 (1.11e-3) 25.22 (2.84e-2) 0.92 (1.18e-2) 25.84 (3.47e-1)

simulate two types of time-series data. The first considers
non-stationary (Nstat) time-series. The second considers
heteroskedastic (Hetero) time-series in which the variance
of εt depends on Xt.

Table 1 compares EnbPI with SPCI, where both use the
random forest regression model to fit the point estimator
f̂ . We see clear improvement of SPCI. We suspect the im-
provement lies in the more adaptive and accurate calibration
of quantile values of residual distributions in prediction.

(2) Comparison with NEX-CP. We consider data with dis-
tribution drift and changepoints, where data are simulated
according to examples in (Barber et al., 2022).

Table 2 shows competitive results of both methods. We
notice slight under-coverage by SPCI under both settings,
despite the much narrower intervals by SPCI. When we
slightly lower the significance level ω, which is held con-
stant when constructing all intervals, SPCI maintains valid
coverage with comparable interval widths as NEX-CP. Fig-
ure A.1 visualizes rolling coverage and width after a burn-in
period, with a rolling window of 50 samples. The results
are similar to the best model in (Barber et al., 2022, Figure
2). In Appendix B.1, we further explain why SPCI tends to
under-cover in these settings before ω adjustment.

5.2. Real-data examples

We primarily consider three real time-series in this sec-
tion, whose details are in Appendix B. We first compare
the marginal coverage and width of SPCI against baseline
methods. We then examine the rolling coverage and width
of each method to assess their stability during prediction.

Table 2: Simulation: NEX-CP vs. SPCI on simulated time-
series with 90% target coverage. Entries in the bracket
indicate standard deviation over ten trials where data are
re-generated. The symbol * denotes results from (Barber
et al., 2022, Table 1). Results from the second row are based
on ω = 0.09 (dist. shift) and ω = 0.075 (change-point).

Drift coverage Drift width Change coverage Change width

SPCI 0.89 (5.04e-3) 3.33 (4.17e-2) 0.87 (2.75e-3) 3.85 (4.12e-2)
SPCI, adjusted ω 0.90 (4.63e-3) 3.43 (4.43e-2) 0.90 (3.71e-3) 4.18 (4.89e-2)
NEX-CP* 0.91 3.45 0.91 4.13

We lastly apply SPCI on a more challenging multi-step
ahead inference case to illustrates its usefulness. We fix
ω = 0.1 and use the first 80% (resp. rest 20%) data for
training (resp. testing). For SPCI and EnbPI, we use the
random forest regression model with 25 bootstrap models.

(1) Marginal coverage and width. Table 3 shows the
marginal coverage and width of all methods on the three
time series. While all methods nearly maintain validity at
ω = 0.1, SPCI yields significantly narrower intervals, es-
pecially on the wind speed prediction data. Such results
illustrate the advantages of fitting conditional quantile re-
gression on residuals for width calibration and training LOO
regression predictors for point prediction.

In the appendix, Table A.2 further compares SPCI against
AdaptiveCI on stock market return data, which are similar to
ones used in (Gibbs & Candes, 2021). We show that SPCI
always maintains valid 1 → ω coverage and yields narrower
intervals than Adaptive CI.

(2) Rolling coverage and width. Besides the marginal metric,
we provide further insights into the dynamics of prediction
intervals. Figure 4 visualizes the rolling coverage and width
of each method, where the metric is computed over a rolling
window of size 100 (resp. 50) for the solar and electricity
(resp. wind) datasets. The results first show that SPCI
barely loses rolling coverage when competing methods (e.g.,
EnbPI) can fail to do so. Secondly, SPCI intervals are
adaptive: they are wider or narrower depending on the data
index, which likely reflects higher or less uncertainty in test

(a) Wind

(b) Solar

(c) Electric

Figure 4: Rolling coverage and interval width over three real
time series by different methods. SPCI in black not only
yields valid rolling coverage but also consistently yields the
narrowest prediction intervals. Furthermore, the variance
of SPCI results over trials is also small, as shown by the
shaded regions over coverage and width results.
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Table 3: Marginal coverage and width by all methods on three real time series. The target coverage is 0.9, and entries in the
bracket indicate standard deviation over three independent trials. SPCI outperforms competitors with a much narrower
interval width and does not lose coverage.

Wind coverage Wind width Electric coverage Electric width Solar coverage Solar width

SPCI 0.95 (1.50e-2) 2.65 (1.60e-2) 0.93 (4.79e-3) 0.22 (1.68e-3) 0.91 (1.12e-2) 47.61 (1.33e+0)
EnbPI 0.93 (6.20e-3) 6.38 (3.01e-2) 0.91 (6.84e-4) 0.32 (9.11e-4) 0.88 (4.25e-3) 48.95 (3.38e+0)
AdaptiveCI 0.95 (5.37e-3) 9.34 (3.56e-2) 0.95 (1.81e-3) 0.51 (7.25e-3) 0.96 (1.39e-2) 56.34 (1.15e+0)
NEX-CP 0.96 (8.21e-3) 6.68 (7.73e-2) 0.90 (2.05e-3) 0.45 (2.16e-3) 0.90 (7.73e-3) 102.80 (5.25e+0)
DeepAR 0.95 (5.32e-3) 6.86 (7.86e-3) 0.91 (3.45e-3) 0.62 (2.56e0-3) 0.92 (5.35e-3) 80.23 (4.94e+0)
TFT 0.92 (6.34e-2) 7.56 (5.34e-3) 0.95 (2.34e-2) 0.66 (2.34e-3) 0.93 (2.84e-3) 74.82 (4.23e+0)

(a) EnbPI, 1 step ahead (b) EnbPI, 4 steps ahead

(c) SPCI, 1 step ahead (d) SPCI, 2 step ahead

(e) SPCI, 3 step ahead (f) SPCI, 4 step ahead

Figure 5: Multi-step ahead prediction interval construction
by SPCI and EnbPI on wind speed data. Compared to
EnbPI results in subfigures (a) and (b), SPCI intervals are
much narrower and more adaptive—SPCI intervals follow
the trajectory of the time-series whereas EnbPI ones are
overly conservative. In addition, SPCI interval increase
in width as the predictive horizon increases, reflecting the
existence of more uncertainty in long horizons.

data. Thirdly, SPCI intervals are evidently narrower than
those by competing methods. Lastly, SPCI rolling results
have less variance than others such as NEX-CP.

(3) Multi-step predictive inference. In practice, it is often
desirable and important to construct S > 1 prediction in-
tervals at once. This is a challenging problem for SPCI
since it involves estimating the conditional joint distribution
of S residuals ahead. We thus modify SPCI to tackle this
problem through a “divide-and-conquer“ approach. Specif-
ically, we apply SPCI S times on lagged training data
(Xt, Yt+s), s = 0, . . . , S → 1, so that we obtain S fitted
QRF estimators to compute the S prediction intervals simul-
taneously. Additional details including the motivation and
algorithm appear in Appendix B.3.

Figure 5 compares SPCIwith EnbPI on the wind dataset in
terms of multi-step ahead coverage and width. We compare
with EnbPI because it supports multi-step ahead predic-
tion in the algorithm, although each batch of S→step ahead
intervals have the same width by construction. We first
note that EnbPI intervals are too wide and non-adaptive,
as 4-step ahead intervals may even be narrower than 1-step
ahead ones. In contrast, SPCI intervals closely follow the
trajectory of actual data and are more adaptive: S→step
ahead intervals with larger S yield wider intervals on av-
erage. This increase in width is expected because there
are greater uncertainty when predicting more prediction
intervals simultaneously.

6. Conclusions

In this work, we propose SPCI, a general framework for
constructing prediction intervals for time series. Similar to
existing conformal prediction methods, SPCI is model-free
and distribution-free, making it applicable to any time se-
ries with arbitrary predictive models. Unlike existing CP
methods, SPCI fits quantile regression models on residuals
to utilize temporal dependency among residuals to achieve
more adaptive confidence intervals and better coverage. The-
oretical analyses verify the asymptotic valid conditional
coverage by SPCI. Experimental results consistently show
improved performance by SPCI over existing sequential
CP methods.

In the future, we aim to extend SPCI for constructing con-
fidence regions for multi-variate time-series, by further ex-
ploiting the dependency among individual uni-variate time-
series and designing non-conformity scores that enable effi-
cient interval construction. How to develop the multi-step
SPCI in Algorithm 3 to more precisely capture the joint
distribution of future residuals is also a promising direction.
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A. Proof

Proof of Proposition 1. The proof is standard in conformal prediction literature based on an exchangeability argument. By
(3), we know that

P(Yt ↑ Ĉt→1(Xt)) = P(ε̂t ↑ [qω/2({E [I2]), q1→ω/2(E [I2])]).

By exchangeability of the original data and the fact that f̂ is trained on (Xt, Yt), t ↑ I1, we have E [I2] = {ε̂j}j↑I2 and ε̂t

are exchangeable. For p ↑ [0, 1], let qp := qω/2({ε̂j}j↑I2). Thus, by exchangeability, we have

P(ε̂t ↑ [qω/2, q1→ω/2])

=
1

|I2|
∑

j↑I2

P(ε̂j ↑ [qω/2, q1→ω/2])

=
1

|I2|
E




∑

j↑I2

(ε̂j ↑ [qω/2, q1→ω/2])



 = 1 → ω,

where the last equality holds by the definition of the interval [qω/2, q1→ω/2].

Proof of Lemma 1. First, by (Ridler-Rowe, 1968, Theorem 1, p.127-128), we know that (19) implies

sup
z↑R

|F̂ (z|x) → F (z|x)| ⇐ 0 in probability. (21)

Recall that Q(p) is unique. Thus, for any x, there exists ε = ε(x) > 0 such that

ς = ς(ε) := min{p → F (Q(p) → ε|x), F (Q(p) + ε|x) → p} > 0.

Namely, there exists a small pertubation of Q(p) whereby the change in the value of the distribution function is at least
positive. Thus, we have that

P(|Q̂(p) → Q(p)| > ε)
(i)
= P(|F (Q̂(p)|x) → p| > ς)

= P(|F (Q̂(p)|x) → F̂ (Q̂(p)|x)| > ς)

≃ P(sup
z↑R

|F (z|x) → F̂ (z|x)| > ς).

Note that (i) holds because the event |Q̂(p) → Q(p)| > ε means that Q̂(p) is at least ε far away from Q(p). By monotonicity
of the distribution function F , this event implies the occurrence of the event |F (Q̂(p)|x) → p| > ς.

Now, (21) implies the convergence of estimated quantile values, hence finishing the proof.

To prove Proposition 2, we need several assumptions followed by interpretation and examples.

Assumption 1. Define Ut := F (Ỹt|X = X̃t) as the quantile of observations Ỹt conditioning on the observed feature X̃t,
where Ut ⇓ Unif[0, 1]. For a x ↑ B := Supp({X̃t}t↗1), define the scalar z[x] := F (z|X = x). Given

g(i, j, x1, x2) := Cov( (Ui ≃ z[x1]), (Uj ≃ z[x2])),

we require that for any pair of x1, x2 ↑ B,

g(i, j, x1, x2) = g(|i → j|, x1, x2) for i ↗= j. (22)

In addition, there exists g̃ such that

g(k, x1, x2) ≃ g̃(k) ↔x1, x2 ↑ B, k ↓ 1 (23)

lim
T̃↘≃

[∫ T̃

1

∫ x

1
g̃(u)dudx

]
/T̃

2 ⇐ 0. (24)
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In other words, (22) assumes that the covariance of the indicator random variables only depends on the difference in index,
where this assumption appears widely in the weak or wide-sense stationary processes. The difference is that we do not
require constant mean values of the indicator variables. In fact, constant mean is impossible, as E[ (Ut ≃ z[x])] = z[x],
whose value changes depending on the conditioning value x. Meanwhile, there is a function g̃(k) in (23) bounding the
covariance uniformly over pairs of values x1, x2, and (24) further assumes a restriction on the order of growth of the function
g̃(k). Below are examples of g̃(k) for which (24) holds and we can also characterize the decay rate of (24).
Example 1 (Finite memory). For some cutoff index s ↑ Z and constants {c1, . . . , cs},

g̃(k) =

{
ck k ≃ s

0 k > s

Showing g̃(k) in Example 1 satisfies (24) is trivial, with decay rate O(1/T̃
2). This example appears in stochastic processes

with finite memory.
Example 2 (Linear decay). For every k ↓ 1, g̃(k) = 1

kp , p ↓ 1.

Example 2 is weaker than Example 1. To characterize the decay rate, we see that
∫ T̃

1

∫ x

1
g̃(u)dudx ≃

∫ T̃

1

∫ x

1
1/ududx

=

∫ T̃

1
log(x)dx = T̃ (log T̃ → 1).

Thus, T̃
→2

∫ T̃
1

∫ x
1 g̃(u)dudx ≃ T̃ (log T̃→1)

T̃ 2 = O(log(T̃ )/T̃ ). Hence, (24) is proven for Example 2.

Example 3 (Logarithmic decay). For every k ↓ 1, g̃(k) =
[

1
log(k+1)

]p
, p ↓ 1.

Example 3 is weaker than the above two examples as it imposes a weaker decay order on the covariance. Lemma 2
presents the proof of (24) for this example, which decays at the order of O( 1

2 log T̃
). In general, we wish to show (24) in this

example when p ↑ (0, 1). However, doing so is difficult as the analysis of the integral
∫ T̃
1

∫ x
1 [ 1

log(u+1) ]
p
dudx is complicated.

Furthermore, note that log(u + 1)p ⇐ 1 as p ⇐ 0, so this integral tends to T̃
2
/2, whereby (24) cannot be obtained for small

enough p.
Lemma 2. For p ↓ 1, we have

lim
T̃↘≃

[∫ T̃

1

∫ x

2

1

log(u)p
dudx

]
/T̃

2 = O

(
1

2 log T̃

)
.

Proof of Lemma 2. First, consider the case where p = 1. Define li(x) as the anti-derivative of 1/ log(x). To find the
growth order of li(x), we note that li(x) = Ei(log x), where Ei(x) standards for the exponential integral with the form
Ei(x) =

∫ x
→≃

et

t dt. This can be shown via the change of variable log(u) = t. Note that we have the following asymptotic
expansion for Ei(x) (Cody & Thacher, 1969):

Ei(x) =
exp(x)

x
(1 +

1

x
+

2

x2
+

6

x3
+ . . .)

=
exp(x)

x
(1 + O(1/x)) when x > 1.

Thus, Ei(log x) = x
log x (1 + O(1/ log x)) ⇔ x

log x for large x.

As a result, dropping the constants and small order terms yield
∫ T̃

1

∫ x

2

1

log(u)
dudx =

∫ T̃

1
Ei(log x)dx

=

∫ T̃

1

x

log x
dx

= Ei(2 log T̃ )

13
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Hence, we have

lim
T̃↘≃

[∫ T̃

1

∫ x

2

1

log(u)
dudx

]
/T̃

2 = lim
T̃↘≃

Ei(2 log T̃ )/T̃
2

= O(
1

2 log T̃
).

Lastly, when p > 1, 1
log u > [ 1

log u ]p uniformly for all u > 1. Hence, we have

lim
T̃↘≃

[∫ T̃

1

∫ x

2

1

log(u)p
dudx

]
/T̃

2
< lim

T̃↘≃

[∫ T̃

1

∫ x

2

1

log(u)
dudx

]
/T̃

2
,

where the latter limit decays at order O( 1
2 log T̃

) as shown above.

Assumption 2. The weights wt(x) in (17) satisfies that for all x ↑ B, wt(x) = O(1/T̃ ).

Assumption 2 imposes the condition on the decay order of each weights. Note that by the definition of wt(x) in (17) and
(Meinshausen, 2006, Assumption 2), we know that wt(x) = o(1). Assumption 2 thus assumes an exact order of decay of
the weights.

Assumption 3. The true conditional distribution function is Lipschitz continuous with parameter L. That is, for all x, x
↔ in

the support of the random variable X .

sup
z

|F (z|X = x) → F (z|X = x
↔)| ≃ L↖x → x

↔↖1.

Assumption 4. For every x in the support of X , the conditional distribution function F (z|X = x) is continuous and strictly
monotonically increasing in z.

We remark that Assumption 3 and 4 are identical to (Meinshausen, 2006, Assumption 4 and 5), respectively.

Proof of Proposition 2. The proof is motivated by the analyses in (Meinshausen, 2006), which assumes (Ỹt, X̃t), t ↓ 1 are
independent and identically distributed. In essence, we analyze the point-wise difference between the estimate F̂ (z|x) in
(18) and the true value F (z|x). The difference can then be broken into two terms. Both terms can be bounded by Chebyshev
inequalities, leading to convergence to zero.

For each observation t = 1, . . . , T̃ , denote Ut := F (Ỹt|X = X̃t) as the quantile of the t-th empirical residual Ỹt. Note that
Ut ⇓ Unif[0, 1] by the property of the distribution function, which is continuous by Assumption 4.

By the form of the estimator F̂ (z|x) in (18), we break it into two parts:

F̂ (z|x) =
T̃∑

t=1

wt(x) (Ỹt ≃ z)

(i)
=

T̃∑

t=1

wt(x) (Ut ≃ F (z|X̃t))

=
T̃∑

t=1

wt(x) (Ut ≃ F (z|x)) +
T̃∑

t=1

wt(x)( (Ut ≃ F (z|X̃t)) → (Ut ≃ F (z|x))).

The equivalence (i) holds because the event {Ỹt ≃ z} is identical to the event {Ut ≃ F (z|X = X̃t)} under Assumption 4.

14
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Thus, we have that

|F̂ (z|x) → F (z|x)| ≃



T̃∑

t=1

wt(x) (Ut ≃ F (z|x)) → F (z|x)


  

(a)

+



T̃∑

t=1

wt(x)( (Ut ≃ F (z|X̃t)) → (Ut ≃ F (z|x)))


  

(b)

.

1) Bound of term (a). The first term can be bounded using Chebyshev inequality. Let z
↔ := F (z|x). Define U

↔ :=
T̃

t=1 wt(x) (Ut ≃ z
↔). By the linearity of expectation taken over Ut, we have

E[U ↔] =
T̃∑

t=1

wt(x)E[ (Ut ≃ z
↔)]

=




T̃∑

t=1

wt(x)



 z
↔ (i)
= z

↔
,

where (i) holds under the definition of wt(x) in (17), which satisfies
T̃

t=1 wt(x) = 1 as remarked earlier. Now, for any
ε > 0,

P







T̃∑

t=1

wt(x) (Ut ≃ F (z|x)) → F (z|x)


↓ ε





=P(|U ↔ → z
↔| ↓ ε) ≃ Var(U ↔)/ε

2
.

Note that

Var(U ↔) =Var(
T̃∑

t=1

wt(x) (Ut ≃ z
↔))

=
T̃∑

t=1

wt(x)2Var( (Ut ≃ z
↔))

  
(i)

+
∑

i ⇐=j

wi(x)wj(x)Cov( (Ui ≃ z
↔), (Uj ≃ z

↔))

  
(ii)

. (25)

We need to show that (i) and (ii) in (25) both converge to zero. To show the convergence of (i), we have wt(x) = O(1/T̃ ) by
Assumption 2 and note that Var( (Ut ≃ z

↔)) = E( (Ut ≃ z
↔)2)→E( (Ut ≃ z

↔))2 = z
↔→z

↔2. Hence, Var( (Ut ≃ z
↔)) < 1

and we have
T̃

t=1 wt(x)2Var( (Ut ≃ z
↔)) <

T̃
t=1 wt(x)2 = O(1/T̃ ).

To show the convergence of (ii), we have by Assumption 1 that

∑

i ⇐=j

wi(x)wj(x)Cov( (Ui ≃ z
↔), (Uj ≃ z

↔)) ≃
T̃→1∑

k=1

O


T̃ → k

T̃ 2


g̃(k)

≃
∫ T̃

1
O


T̃ → k

T̃ 2


g̃(k)dk

=O


T̃

→1
∫ T̃

1
g̃(k)dk → O


T̃

→2
∫ T̃

1
kg̃(k)dk

=O

T

→1

[G(T̃ ) → G(1)] → O


T̃

→2
∫ T̃

1
kg̃(k)dk,

15
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where G(x) :=
∫ x
1 g̃(k)dk is the anti-derivative. Using integration by part with u = k, dv = g̃(k)dk, we have

∫ T̃

1
kg̃(k)dk = T̃G(T̃ ) → G(1) →

∫ T̃

1
G(x)dx.

Thus, dropping constants and small order terms yield

∑

i ⇐=j

wi(x)wj(x)Cov( (Ui ≃ z
↔), (Uj ≃ z

↔)) ≃
[∫ T̃

1

∫ x

1
g̃(k)dk


dx

]
/T̃

2
.

By (24) in Assumption 1, we thus have the desired convergence result.

2) Bound of term (b). Define W :=
T̃

t=1 wt(x) (Ut ≃ F (z|X̃t)). Note that E(W ) =
T̃

t=1 wt(x)F (z|X̃t). We have for
any ε > 0,

P(|W → E(W )| > ε)

≃ Var(W )/ε
2

= (ε)→2




T̃∑

t=1

wt(x)2Var( (Ut ≃ F (z|X̃t))) +
∑

i ⇐=j

wi(x)wj(x)Cov( (Ui ≃ F (z|X̃i)), (Uj ≃ F (z|X̃j)))



 .

By the same argument for bounding term (a) above, we have that W
p⇐ E[W ] as sample size T̃ ⇐ ⇒.

As a result, we have


T̃∑

t=1

wt(x)( (Ut ≃ F (z|X̃t)) → (Ut ≃ F (z|x)))


p⇐



T̃∑

t=1

wt(x)(F (z|X̃t) → F (z|x))


.

By Assumption 3, we have


T̃∑

t=1

wt(x)(F (z|X̃t) → F (z|x))


≃

T̃∑

t=1

wt(x)L↖X̃t → x↖1.

The rest of proof follows due to (Meinshausen, 2006, Lemma 2), which shows that

T̃∑

t=1

wt(x)↖X̃t → x↖1 = op(1).

Proof of Theorem 2. Under SPCI interval construction in (10), the equivalence in (6) implies that

P(Yt ↑ Ĉt→1(Xt)|Xt) = F (Q̂t(1 → ω + ϖ̂)|Ew
t ) → F (Q̂t(ϖ̂)|Ew

t ),

where Q̂t(p), p ↑ [0, 1] is the estimated p-th quantile of ε̂t, F (z|Ew
t ) is the unknown distribution function of ε̂t, and ϖ̂

minimizes interval width per the procedure in Algorithm 1.

To finish the proof, by Proposition 2, we know that the conditional distribution estimator F̂ (z|Ew
t ) using QRF converges

point-wise to the true F (z|Ew
t ) as the sample size (hence the number of residuals) approaches infinity. By Lemma 1, we

thus know that Q̂t(p) ⇐ Qt(p) in probability for all p ↑ [0, 1].

We can thus use the continuous mapping theorem (Van der Vaart, 2000, Theorem 2.3) to finish the proof: by Assumption 3,
the true conditional distribution function F is absolutely continuous and therefore differentiable almost everywhere. Thus,
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the set of discontinuity points of F has measure zero. As the number of data T̃ ⇐ ⇒ when training QRF, we finally have
that in probability,

F (Q̂t(1 → ω + ϖ̂)|Ew
t ) → F (Q̂t(ϖ̂)|Ew

t )

⇐F (Qt(1 → ω + ϖ̂)|Ew
t ) → F (Qt(ϖ̂)|Ew

t ) = 1 → ω.

B. Experimental details

(1) Baseline methods. We compare SPCI with three recent CP methods for non-exchangeable data or time series, which have
also been carefully described in the literature review. In particular, they all leverage the feedback Yt after it is sequentially
revealed.

• EnbPI (Xu & Xie, 2021b) proposes a general framework for constructing time-series prediction intervals. In particular,
it fits LOO regression models and uses residuals as non-conformity scores. Comparing our use of SPCI in experiments,
the only difference appears in using conditional rather than empirical quantiles for the calibration of interval width.

• AdaptiveCI (Gibbs & Candes, 2021) is an adaptive procedure that adjusts the significance level ω based on historical
information of interval coverage. It leverages CQR (Romano et al., 2019) to produce intervals that maintain coverage
validity in theory. We use the quantile random forest as the predictor and update ω according to the simple online
update (ibid., Eq (2)).

• NEX-CP (Barber et al., 2022) uses weighted quantiles to tackle arbitrary distribution drift in test data. In particular, the
implementation is based on full conformal with weighted least squares regression models, which empirically yields
more stable coverage than the naive split conformal method.

(2) Real-data description. We describe the three real time-series for results in Section 5.2. The first dataset is the wind
speed data (m/s) at wind farms operated by the Midcontinent Independent System Operator (MISO) in the US (Zhu et al.,
2021). The wind speed record was updated every 15 minutes over a one-week period in September 2020. The second dataset
contains solar radiation information1 in Atlanta downtown, which is measured in Diffuse Horizontal Irradiance (DHI). The
full dataset contains a yearly record in 2018 and is updated every 30 minutes. We remark that uncertainty quantification
for both wind and solar is important for accurate and reliable energy dispatch. The last dataset tracks electricity usage and
pricing (Harries et al., 1999) in the states of New South Wales and Victoria in Australia, with an update frequency of 30
minutes over a 2.5-year period in 1996–1999. We are interested in tracking the quantity of electricity transferred between
the two states.

B.1. Simulation

We first describe details regarding data simulation procedures. We then show additional rolling coverage and width results
when comparing with NEX-CP.

B.1.1. DATA SIMULATION

For the results in Table 1, we simulate the non-stationary and heteroskedastic time-series as follows:

1. Non-stationary (Nstat) time-series: We let

f(Xt) = g(t)h(Xt). (26)
g(t) = log(t↔) sin(2φt

↔
/12), t↔ = mod(t, 12).

h(Xt) = (|ϖT
Xt| + (ϖT

Xt)
2 + |ϖT

Xt|3)1/4
.

Note that the model in (26) can represent non-stationary time-series due to additional time-related effects (e.g., time drift,
seasonality, periodicity, etc.). For a fixed window size w ↓ 1, each feature observation Xt = [Yt→w, . . . , Yt→1] contains

1Collected from National Solar Radiation Database (NSRDB): https://nsrdb.nrel.gov/.
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Table A.1: Simulation on non-stationary time-series: the setup is identical to Table 1. We compare SPCI against baseline
CP methods when no time information is assumed known (i.e., X̃t = Xt).

SPCI EnbPI AdaptiveCI NEX-CP

Coverage Width Coverage Width Coverage Width Coverage Width
0.92 (2.75e-3) 12.96 (2.56e-2) 0.90 (2.21e-3) 25.41 (4.79e-2) 0.90 (4.12e-3) 28.00 (5.81e-2) 0.93 (3.10e-3) 46.50 (6.29e-2)

the past w observations of the response Y . We sample the errors εt from an AR(1) process, where εt = ↼εt→1 + et and
et are i.i.d. normal random variables with zero mean and unit variance with ↼ = 0.6.

We want to compare the performance of EnbPI and SPCI assuming no feature mis-specification, so that the only
difference in interval coverage/width lies in how the residuals are used to construct the intervals. Therefore, because f

in (26) explicitly depends on t and Xt, we use the new feature X̃t := [mod(t, 12), Xt] to predict Yt. We acknowledge
that in practice, the true periodicity constant 12 in (26) is unknown, and one must estimate it before constructing the
new feature X̃t. Meanwhile, Table A.1 compares all four CP methods when the time information is unknown (i.e.,
X̃t = Xt), and we still observe much narrower intervals by SPCI than the baselines.

2. Heteroskedastic (Hetero) time-series: We let

f(Xt) = (|ϖT
Xt| + (ϖT

Xt)
2 + |ϖT

Xt|3)1/4
. (27)

Var(εt) = ↽(Xt)
2
, ↽(Xt) = 1

T
Xt. (28)

Note that the model above represents the generalized autoregressive conditional heteroskedasticity (GARCH) model
(Engle, 1982), where variances of response Yt depend on its feature Xt. We let features Xt ↑ R20, with i.i.d.
entries from Uniform[0, e

0.01mod(t,100)). Due to heteroskedastic errors, we estimate conditional quantile of normalized
residuals ε̂t := (Yt → f̂t(Xt))/↽̂(Xt) and multiply the quantile values by estimates ↽̂(Xt) to construct the prediction
intervals.

For the simulated results in Table 2, the data with distribution-shift and change-points are simulated as follows. For
N = 2000 and Xi ⇓ N (0, I4), i = 1, . . . , N :

1. Distribution-drift (Drift): Yi ⇓ X
T
i ϖi + N (0, 1), where ϖ1 = (2, 1, 0, 0), ϖN = (0, 0, 2, 1), and ϖi, i = 2, . . . , N → 1

is a linear interpolation of ϖ1 and ϖN .

2. Changepoints (Change): Yi ⇓ X
T
i ϖi + N (0, 1),

ϖ1 = . . . = ϖ500 = (2, 1, 0, 0)

ϖ501 = . . . = ϖ1500 = (0,→2,→1, 0)

ϖ1501 = . . . = ϖN = (0, 0, 2, 1).

Similar to NEX-CP, we apply SPCI after a burn-in period of the first 100 sample points, and in addition, adaptively refit the
point estimator f̂ using a rolling window of min(T, T0) points during testing for T = 101, . . . , 2000. We choose T0 = 300
under distribution shifts and T0 = 200 under changepoints. Similar to NEX-CP, we use weighted linear regression with
exponentially decaying weights to train the point estimator f̂ in SPCI.

B.1.2. COMPARISON WITH NEX-CP

We explain why SPCI tends to under-cover in these settings before ω adjustment. We suspect the primary reasons are that
prediction residuals ε̂i in these settings are (nearly) independent yet non-identically distributed. More precisely, regarding
independence, suppose we use the split conformal framework in SPCI to train f̂ and obtain residuals on the calibration set.
We thus have that for each prediction residual ε̂i in the calibration set,

ε̂i = Yi → Ŷi ⇓ (XT
i ϖi + N (0, 1)) → f̂(Xi). (29)

Note that Xi are all independent by design. Except for the possible dependency in ϖi, which is zero in the change-point
setting, the (unobserved) test residual ε̂T+1 ↙↙ ε̂T+1→k, k ↓ 1, where ↙↙ denotes independence of random variables.
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(a) Distribution shift (b) Changepoint

Figure A.1: Rolling coverage and width during test time without adjusted ω values. Target coverage at 0.9 is marked in the
black lines. In (b), the two changepoints are marked in dotted red line at time indices 500 and 1500.
Table A.2: Marginal coverage and width by SPCI and AdaptiveCI on three NASDAQ stock market data. The tarrget
coverage is 0.9, and entries in the bracket indicate standard deviation over three independent trials.

Method Company AJISF Company AGTC Company AAVL

Coverage Width Coverage Width Coverage Width
SPCI 0.89 (2.34e-3) 17.64 (1.24e-1) 0.95 (2.43e-3) 2.89 (5.23e-2) 0.81 (3.64e-3) 1.03 (2.34e-2)

AdaptiveCI 0.94 (3.43e-3) 30.20 (2.53e-1) 0.71 (1.53e-2) 5.88 (7.43e-2) 0.64 (2.32e-2) 2.18 (3.37e-2)

We empirically verify the independence of residuals through the PACF plot in Figure A.2. On the other hand, regarding
non-identical distribution, because of drifts or changepoints through the changes in ϖi, the residuals do not follow the same
distribution. Thus, the QRF estimated on past residuals may not be a desirable estimator for the conditional quantile of the
test residual ε̂T+1, hence weakening the performance of SPCI in this setting.

B.2. Additional real-data comparisons

We compare SPCI with AdaptiveCI on stock market data. Specifically, the dataset is publicly available on Kaggle
https://www.kaggle.com/datasets/paultimothymooney/stock-market-data, where we are inter-
ested in constructing the prediction intervals for the closing price. We randomly select three NASDAQ stock from three
companies. Table A.2 shows several findings:

• When AdaptiveCI and SPCI both yield valid coverage (on company AJISF), the width of SPCI is significantly narrower.

• Even when AdaptiveCI loses coverage and SPCI maintains coverage (on company AGTC), the width of SPCI is still
significantly narrower.

• When both methods lose coverage (on company AAVL), the loss by SPCI is less and SPCI still yields narrower
intervals.

(a) Distribution shift (b) Changepoint

Figure A.2: PACF using 300 residuals (dist. shift) and 200 residuals (change-point). We see near independence of the
residuals, which are non-identically distributed due to the data generation.
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Algorithm 2 SPCI for exchangeable data (based on split conformal)

Require: Training data {(Xt, Yt)}T
t=1, significance level ω.

Output: Prediction intervals Ĉt→1(Xt), t > T

1: Randomly split {1, . . . , T} into disjoint index sets I1 and I2.
2: Train a point predictor f̂ with {(Xt, Yt)}t↑I1 .
3: Obtain residuals ε̂t := Yt → f̂(Xt) for t ↑ I2.
4: for t > T do

5: Return the prediction interval Ĉt→1(Xt) as in (3).
6: end for

B.3. Multi-step inference

(1) Motivation and setup. We first motivate the study of multi-step ahead prediction interval. For examples in Section 5.2,
all intervals are one step ahead: the response variable Yt is revealed before Ĉt→1(Xt) is constructed, which is the prediction
interval for Yt+1. Such immediate feedback is advantageous for all adaptive methods as they thus have access to the most
up-to-date information about the data process. Nevertheless, such access can be neither feasible nor desirable for some
use cases. In energy systems such as wind or solar prediction, we often need multiple forecasts spanning a long enough
future horizon to allow enough time for subsequent dispatch. Meanwhile, lags in data collection can limit the availability of
feedback—for S > 1, Yt may not be revealed until all S intervals ahead are constructed.

We consider the following multi-step ahead prediction setting. Fix a value of S ↓ 1, which denotes the s→step ahead
prediction setting (S = 1 refers to examples in earlier sections). Features Xt = [Yt→1, . . . , Yt→ϖ ] are auto-regressive with
a pre-specified window ⇀ ↓ 1. At prediction time t, we need to construct S prediction intervals at once for time indices
t, . . . , t + S → 1. In particular, responses Yt, . . . , Yt+S→1 (and thus features Xt+1, . . . , Xt+S) are not available until we
construct prediction intervals at indices t + S, . . . , t + 2S → 1.

(2) Multi-step SPCI algorithm. Note that constructing multi-step ahead prediction intervals using SPCI involves estimating
the joint distribution of ε̂t+1, . . . , ε̂t+S every S test indices. Doing so can be highly challenging. Instead, we take a
simplified “divide-and-conquer” approach based on the LOO fitting in EnbPI. First, we train S sets of LOO predictors for
estimating the value of Ŷt+j , j = 0, . . . , S → 1. This is implemented by fitting B bootstrap models on each lagged data
{(Xt, Yt+s)}T→s+1

t=1 , s = 1, . . . , S. Then, we compute residuals only at t = 1 + kS : kS ≃ T → 1. We do so because on
test data, new feature Xt and output Yt are revealed only in every S step. Lastly, we fit QRF S times using past residuals
with lags to obtain s prediction intervals at once.

We briefly compare and contrast Algorithm 1 (SPCI) and 3 (multi-step ahead SPCI) when LOO point predictors are trained.
Computationally, we need to refit S → 1 more sets of LOO predictors in multi-step ahead SPCI for point prediction. On
the other hand, both algorithms fit the same number of QRF regressors for constructing prediction intervals. In practice,
multi-step SPCI is expected to yield wider intervals as S increases because there is greater uncertainty when fitting the
baseline regression or QRF on lagged data. A simple example is the AR(1) process where xt = axt→1 + εt, εt

i.i.d.⇓ N (0, 1).
Using the present feature xt→1, we have xt+S = a

S+1
xt→1 +

S
i=1 a

i→1
εt+i, whereby the error distribution a

i→1
εt+i ⇓

N(0,
S

i=1 a
2(i→1)), so width naturally increases.

C. Additional technical details

We first present the SPCI algorithm for exchangeable data in Algorithm 2. We then present the SPCI algorithm for
multi-step ahead inference in Algorithm 3.
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Algorithm 3 Multi-step SPCI (based on LOO prediction in EnbPI (Xu & Xie, 2021b))

Require: Training data {(Xt, Yt)}T
t=1, significance level ω, number of bootstrap estimators B, aggregation function ϑ,

conditional quantile regression algorithm Q, multi-step size S > 1.
Output: Prediction intervals Ĉt→1(Xt), t > T

1: for s = 1, . . . , S do {⇁ s-step ahead model fitting}
2: Sample with replacement B index sets, each of size T → s + 1:

{Sb : Sb ↘ {1, . . . , T → s + 1}}B
b=1.

3: Train B corresponding bootstrap estimators {f̂ b}B
b=1 on data {(Xt, Yt+s→1) : t ↑ Sb}.

{⇁ Leave-one-out aggregation}
4: Initialize ω̂ = [ ]
5: for t = 1, 1 + S, . . . , 1 + kS such that kS ≃ T → 1 do

6: f̂
s
t (Xt) = ϑ({f̂ b(Xt), t /↑ Sb}B

b=1)

7: ω̂.append(Yt+s→1 → f̂
s
t (Xt))

8: end for

9: end for

10: for t > T do {⇁ Interval construction}
11: Compute s = mod(t → T, S + 1) and t

↔ = t → s

{⇁ t
↔ denotes the most recent index where residual ε̂t→ and feature Xt→+1 are available.}

12: if s = 1 then {⇁ Fit quantile regressors with updated residuals}
13: Re-fit S quantile estimators {Q̂t(· ; s↔)}S

s→=1 with {(ε̂w
j , ε̂j+s→→1)}t→1→(S→1)

j=t→T+w .
14: end if

15: Compute ϖ̂ = arg minε↑[0,ω](Q̂t(1 → ω + ϖ; s) → Q̂t(ϖ; s)) using ε̂
w
t→ .

16: Ĉt→1(Xt) = [Ŷt + wleft(t), Ŷt + wright(t)], where
Ŷt = ϑ({f̂s

j (Xt→+1)}T/S
j=1 ), wleft(t) = Q̂t(ϖ̂; s), wright(t) = Q̂t(1 → ω + ϖ̂; s) .

17: end for
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