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ABSTRACT

Controlled degradation of polymers finds various applications in fields ranging
from the design of functional soft materials to recycling of polymers. In several of these
applications, the characteristic length scale at which relevant processes occur ranges from
nanometers to microns, typically referred to as the mesoscale. Although analytical models
and continuum approaches inform our current understanding, analysis of degradation at the
mesoscale is exceptionally limited. For modeling degradation at the mesoscale, we use the
Dissipative Particle Dynamics (DPD) technique and the LAMMPS simulation software.
Within the DPD framework, we model controlled degradation or the breaking of covalent
bonds within a polymer as a stochastic process that reproduces first order degradation
reaction kinetics. A known limitation of the DPD approach is polymer chains crossing
through each other. Previous researchers had developed a modified segmental repulsive
potential (mSRP) framework which prevents such crossing of polymers by introducing
extra repulsion between the bonds of polymer chains. We modified the existing model in
LAMMPS to enable switching off the extra repulsion when a bond is broken. We
implemented this feature within the LAMMPS framework, and it is now available for the
general scientific community as a part of the online open-source project. Later, we
extended this feature to introduce the extra repulsion when a bond is formed to simulate
the hydrosilylation reaction used in the synthesis of polymer derived ceramics.

As a model polymer network for studying degradation, we use the tetra-arm
polyethylene glycol (tetra-PEG) based hydrogel films. Tetra-PEG networks have a uniform

network structure and hence superior mechanical properties. We tracked the degradation
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of these networks by measuring the evolution of the weight average molecular weight and
dispersity during degradation. By tracking the fraction of degradable bonds broken, we
identified the “reverse gel point”, the point where the polymer network dissolves into the
surrounding solvent. Additionally, we tracked the erosion or mass loss from the degrading
network by accounting for polymer fragments which dissociate and diffuse away from the
network. We identified that the mass loss from the network depends on the initial thickness
of the hydrogel films.

As a second system, we modeled the controlled degradation of nanogels that are
either suspended in a single solvent or adsorbed onto a liquid-liquid interface. Controlled
degradation of nanogels at an interface provides a dynamic approach to control interface
topography at the nanoscale. We tracked the degradation of these particles by analyzing
the evolution of their shape and size along with the molecular weights and dispersity in the
system. In bulk, the particles swell almost homogenously while at the interface, the
particles spread and cover the interface as degradation occurs. We found that the reverse
gel point for these particles varies with the total initial number of precursors. The evolution
of particle shape and size is significantly affected by the surrounding solvent and the
surface tension between the two liquid phases.

The final part of this dissertation focuses on developing an initial framework to
extend the above approach to model degradation of polyolefin melts under a local
temperature gradient. The long term goal of this project is to study thermal degradation of
polyolefins caused by introducing microwave absorbing nanosheets and subjecting the

polymer to microwave irradiation.
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CHAPTER ONE

Introduction

Polymeric materials undergoing controlled degradation are an integral part of several
polymer applications. Controlled degradation is applied in the development of recycling strategies
for thermosets[1] and thermoplastics[2], platforms for controlled delivery of drugs and
biomolecules[3-5], platforms for tissue scaffolds[6] and materials for enabling smart biological
applications[7]. In the context of polymeric materials, the term “degradation” typically refers to
the chemical reaction that cleaves covalent bonds between atoms[8, 9]. Such breaking of covalent
bonds can be enabled via several mechanisms; these mechanisms can be correspondingly classified
according to the stimulus enabling the bond breaking reaction into: thermal degradation, photo-
degradation, pH controlled degradation, etc. Photo-controlled degradation is often interesting in
biological applications as it facilitates spatially-resolved dynamic control of the physical and
chemical properties of the materials[10-16]. Thermal degradation is prominently used in the
recycling of polyolefins[17, 18]. The breaking of covalent bonds is often accompanied by
erosion[8, 9] which is defined as a decrease in the weight of the degrading polymer. During
degradation of polymer networks, erosion occurs due to dissolution of soluble fragments that are
formed during the degradation process[8]. This erosion process for polymer networks continues
upto a critical “reverse gel point™[1, 8, 19, 20] beyond which the entire material becomes soluble.
During thermal degradation of polyolefins, mass loss occurs due to formation of low molecular

weight products that are volatile at the elevated temperatures applied to cause the degradation[21,

22].



Broadly, this dissertation will focus on understanding controlled degradation in two classes
of polymeric materials: hydrogels and polyolefin melts. Hydrogels are polymers networks used in
several biological applications. As a model hydrogel system, we analyze controlled degradation in
hydrogels made from tetra-arm polyethylene glycol (tetra-PEG) precursors. To synthesize
hydrogels, tetra-PEG precursors can either be crosslinked directly via reactive end
functionalities[23, 24] or used in conjunction with linear or other multi-arm polymeric linkers|[7,
25]. The specific model hydrogel network that we will use in a part of this dissertation can be
synthesized experimentally by crosslinking tetra-PEG precursors with mutually reactive end
functionalities[23, 24]. Gelation of such mutually reactive tetra-PEG precursors near overlap
concentration of the precursors has been shown to form nearly ideal network structures exhibiting
superior mechanical properties prior to degradation[23]. Controlled degradation can be introduced
in this network by incorporating photo-degradable groups in the vicinity of the end functionalities
responsible for gelation[24, 26-28]. Fig. 1.1 below shows the schematic of a possible gelation and
degradation pathway[24] for synthesizing tetra-PEG networks. As shown in Fig. 1.1a, the two
mutually reactive precursors, in this case the reactivity is introduced via the alkyne and azide
functionalities, react to form a uniform network[23]. Network formation is evidenced via the
increase in storage modulus during the gelation process (Fig. 1.1b). Then, degradation is carried
out via the photo-degradation reaction of the coumarin group (Fig. 1.1c) which was originally
incorporated in the vicinity of the azide functionality. Another example of a smart biological
application based on the tetra-PEG polymeric precursors is shown in the schematic of Fig. 1.2.
The green and red structure in Fig. 1.2 represents a hydrogel network synthesized using linear and
tetra-arm polyethylene glycol (PEG) precursors, while the green blob represents neural cells

embedded into the polymer.
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Figure 1.1: Schematic of a possible gelation and degradation pathway for tetra-PEG gels. (a)
Structure of the two mutually reactive tetra-PEG precursors and the resulting network on gelation.
(b) Change in storage modulus during gelation and subsequent degradation upon exposure to
ultraviolet light. (¢) Chemistry of the coumarin based degradation reaction and the resulting

degraded tetra-PEG precursors. Reproduced with permission from ref. [24]. Copyright 2014

American Chemical Society.

2-photon lase

Figure 1.2: Schematic of a polyethylene glycol (PEG) based hydrogel platform that enables user-

defined growth of a neural network. Adapted with permission from ref. [7]. Copyright 2014

American Chemical Society.



When a 2-photon laser is shone on the hydrogel network, it leads to controlled degradation in the
direction that the laser is shone and enables growth of a neural network in this user-defined
direction[7]. Although the focus in this dissertation is on hydrogels, similar controlled degradation
can also be carried out in other polymer networks. A schematic for the use of controlled

degradation in recycling of thermoset polymers[1] is shown in Fig. 1.3 below.
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Figure 1.3: Schematic of a degradable thermoset synthesized by introducing cleavable
comonomers into the polymer chain. Reproduced from ref. [1] with permission from Springer

Nature.

In this work by Shieh et. al.[1] cleavable silyl ether based comonomers were introduced in the
polydicyclopentadiene (pDCPD) polymer chains constituting a thermoset material. The silyl ether
comonomers can be selectively degraded in the presence of an excess of tetrabutylammonium
fluoride (TBAF). It was shown that a 25 wt% mixture of the degradation products from this process
with DCPD produces a thermoset polymer with comparable properties as the original material[1].

It is important to note here that in several of the above applications, the characteristic

features of degradable polymeric materials (e.g. mesh size of a degrading hydrogel network) [7,



10, 12] lies in the length scale of several nanometers upto a few microns; these length scales are
also referred to as mesoscopic length scales. Traditionally, analytical and numerical approaches[8,
9,20, 29-32], both applied at the much longer continuum length scales, have been applied to study
degradation and erosion processes. Despite the mesoscopic length scale being relevant to the
degradation process, an understanding of degradation and erosion at the mesoscale is exceptionally
limited. Hence, the objective of this dissertation is to develop a framework for mesoscale modeling
of degradation in polymer networks and melts. Using a mesoscale simulation technique allows to
account for factors such as the diffusion of all degrading fragments, hydrodynamic interactions
between various components, bonding topology of the polymer, heterogeneities in the polymer
structure and, dependence of the degradation reaction on local environment.

In this dissertation we primarily use the mesoscale simulation technique called Dissipative
Particle Dynamics (DPD)[33-35] to model these complex systems. Within the DPD approach,
collections of atoms are coarse-grained into beads. The schematic in Fig. 1.4 below shows a

representation of the coarse-graining approach applied in DPD simulations of polymers.

Figure 1.4: Schematic of the coarse-graining scheme applied in Dissipative Particle Dynamics

simulations. Reproduced from ref. [36] with permission from Elsevier.



The atomic representation of a surfactant is provided at the top of the schematic in Fig. 1.4.
The circles with dashed lines represent groups of atoms within the surfactant that are coarse-
grained into a single DPD bead. Interactions between beads of various types, for example the beads
labeled “c” and “e” in Fig. 1.4 are then defined by tuning a soft repulsive force between these
beads[33-35]. A detailed description of the coarse-graining approach along with other salient
features of the DPD scheme relevant to this work are provided in chapter two. Overall, DPD has
been widely used to model a variety of complex polymeric systems[35-44]. To overcome
unphysical topological crossings of polymer chains in DPD, we use the modified Segmental
Repulsive Potential (mSRP) DPD formulation[45]. Further, we simulate the degradation reaction
as a stochastic similar to the choice made in several other DPD simulations of reactions[46-51].
DPD approach has also been previously utilized to model gelation via atom transfer radical
polymerization[52], free radical polymerization[49], iniferter-mediated photo-growth of
hydrogels[50, 51], and complexation and decomplexation reactions within hydrogels[53]. It is
worth noting that in some reactive systems the DPD approach can be integrated with another
computational technique. Among the most recent examples, DPD approach integrated with
quantum-chemical reaction path calculation was recently utilized to model the process of curing
of thermoset resin[54]. DPD had also been recently used to quantify the effect of crosslinking
reaction on drug diffusion in hyaluronic acid microneedles; in this work, atomistic MD simulations
were performed to derive DPD parameters.[55] In chapter three of this dissertation, we describe
the implementation of an approach to combine mSRP with the stochastic framework to simulate
reactions.

The text in this dissertation is organized as follows. We first begin with a detailed

description of our simulation approach which is provided in chapter two. In chapter two, we also



discuss the energy conserving DPD[56, 57] (eDPD) approach we use to simulate local temperature
dependent degradation of polymer melts. Chapter three provides a detailed discussion of the
approach we use for simulating the bond breaking reaction during degradation. We modified the
mSRP DPD formulation to enable simulation of degradation while overcoming unphysical
topological crossings of polymer chains. Details of our modifications and our implementation of
this framework in the LAMMPS open-source software are also discussed in chapter three. We then
use this framework to simulate photo-controlled degradation in hydrogel films. Chapter four
describes our analysis of the degradation and erosion process in hydrogel films. We track the
progress of degradation by measuring the fraction of degradable bonds intact along with the
evolution of molecular weight distribution in the system. We identify a reverse gel point as a
critical fraction of bonds broken and then analyze fractional mass loss from the hydrogel film as a
function of the relative extent of the degradation reaction with respect to the reverse gel point. In
chapter five, we apply our technique to the simulation of nanogel particles either suspended in a
single solvent or adsorbed at the interface between two incompatible liquids. We identify the
dependence of the reverse gel point of these particles on the total number of polymer precursors.
We also analyze the evolution of particle shape and size during degradation and study the impact
of surrounding conditions, such as the solvent quality, on the evolution of particle properties. In
chapter six, we discuss our initial progress towards developing a framework for simulating local

temperature dependent thermal degradation of polyolefin melts.



CHAPTER TWO

Dissipative Particle Dynamics simulations of polymers

Depending on the material properties to be studied, the dynamics of polymeric materials
are generally modeled at three length scales: the atomistic scale (a few nanometers), the mesoscale
(from tens of nanometers to a few microns) and the macroscale (hundreds of microns and beyond).
Several simulation techniques, each with their own merits and limitations, exist at each of these
length scales with Molecular Dynamics (MD) at the atomistic scale, Dissipative Particle Dynamics
(DPD) and coarge-grained Molecular Dynamics at the mesoscale and Finite Elements Method at
the macroscale being among the popular examples. As discussed in the previous chapter, several
phenomena during the process of degradation of polymers occur at the mesoscale and hence a
mesoscale modeling technique is appropriate for the simulation of this process. Specifically, we
choose DPD, a particle-based technique involving soft repulsive potentials that has been used in
modeling several phenomena in polymeric systems such as phase separation of polymer blends[58]
and block copolymers[59], dynamics of polymer networks[46, 60] and bottlebrushes[61],
dynamics of surfactants at interfaces[36] and entanglement regime dynamics of polymer melts[62,
63].

In comparison to MD, DPD reproduces complex hydrodynamic phenomena[64] with
computational efficiency. While hydrodynamic interactions are shielded for polymer melts, they
are known to play a significant role in polymer solutions with relatively low polymer
concentrations. On the other hand, due to the soft repulsive potential in the standard form of the

DPD approach, polymer chains can pass through each other causing unphysical topological



violations. We use the modified Segmental Repulsive Potential (mSRP)[62] formulation of DPD
which decreases such topological violations.

In its standard form, the DPD method is a “thermostat” i.e., a constant temperature is
maintained throughout the simulation. To simulate local variations of temperature within the DPD
approach, Espanol[56] developed the energy conserving dissipative particle dynamics (eDPD)
method that introduces temperature as an additional degree of freedom and adds energy
conservation equations to the original DPD approach. Li et. al.[57] modified the eDPD approach
to model variation of temperature dependent properties such as the Schmidt number in eDPD
simulations. The eDPD method allows simulation of local temperature gradients and has been
used to model temperature induced phase transitions in polymers[65].

In this chapter, we first introduce the details of the DPD approach relevant to this work.
We then discuss the mSRP formulation that is used in all subsequent chapters and finally the eDPD
approach used in chapter six to model local temperature gradients in polymer melts. The protocol
we developed for modeling the bond breaking reaction with this simulation approach is discussed
in more details in chapter three. Main features of the simulation methodology used in this
dissertation are highlighted below while values of parameters and other specific details are

provided in the corresponding chapters.

2.1 The standard DPD model

DPD was originally developed by Hoogerbrugge and Koelmann[66] as a more efficient
alternative to molecular dynamics simulations for modeling complex fluid flow. Along with
conceptual and algorithmic simplicity, the DPD method can handle relatively larger simulation
timesteps[58]. The dynamics of a DPD system are simulated via beads whose motion is governed

by the Newton’s equations of motion[58]



dr; dp;
= . — F-' .
dt vl) dt L (2 1)

where r;, v;, p; = mv; and F; are the position, velocity, momentum and total force corresponding
to bead i, respectively. Each bead represents groups of atoms and parameters of the interaction
forces between beads are governed by factors such as the degree of coarse-graining, i.e. the number
of atoms represented by one bead. The total force between the non-bonded beads has three

contributions
Fi= ) (FS+ F5+ FE), 22)

where the sum is evaluated over all other beads within an interaction distance 7. F icj' F ?j and F ’fj
are respectively the conservative, dissipative and random contributions to the total force. We

choose the typical “soft” repulsion form of the conservative force[58, 64]
’r‘. .
c ij
Fij = aij <1—r_)el’j, (23)
c
where the parameter a;; sets a repulsion magnitude between beads i and j, r;; = |ri j| is the

distance between these beads, r;; = r; — 1, and e;; = 1;;/7;;. Other choices of the conservative

repulsion are also possible. The conservative force described in equation (2.3) contains only the
repulsive part of a harmonic force and is much weaker than the force derived from the Lennard-
Jones potential in MD simulations. This peculiar characteristic of the DPD conservative force
enables usage of longer simulation timesteps compared to MD[58]. The same peculiar form also
allows polymer chains to unphysically pass through each other since the repulsion is not strong
enough to avoid such topological violations[62, 63]. Suggested modifications to minimize

unphysical crossing are discussed later in this chapter. The interaction parameter a;; in equation

(2.3) is derived to match physical properties such as the compressibility of the system and the
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nature of interaction between various species[36, 58]. An important aspect in making the choice
of a suitable a;; is the particular coarse graining scheme used. For this dissertation, we choose the
standard scheme originally introduced by Groot and Rabone[36] whose modifications and other
alternative approaches have been analyzed by Lee et. al.[67] Fig. 2.1 below shows a compilation
of a subset of possible coarse graining schemes[67] based on a choice of “degree of coarse-

graining” or number of water molecules coarse-grained into one DPD bead.
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Figure 2.1: Representation of a set of coarse-graining schemes for polymeric species based on the
number of water molecules coarse-grained into one DPD bead. The blue spheres on the right of
Fig. 2.1 show a DPD bead representing water in each scheme. The red spheres on the left
correspond to a DPD bead representing a hydrophobic hydrocarbon chain and the green beads in
the middle represent a hydrophilic polyethylene oxide (PEO) chain. Reproduced with permission

from ref. [67]. Copyright 2016 American Chemical Society.
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In each of the coarse graining schemes in Fig. 2.1, each colored bead is chosen to represent the
same volume, i.e. one blue bead represents the same volume as one green bead and also the same
volume as one red bead. We choose the degree of coarse-graining corresponding to three water
molecules coarse-grained into one bead, represented by the scheme in the top row of Fig. 2.1. This
choice results in a dimensional value 7. = 0.65 nm. After making the choice of the degree of
coarse graining, a choice is then made for a;;, the interaction parameter in equation (2.3) for beads
of same type. We choose a;; = 78 kgT /1. as this choice is known to reproduce the
compressibility of water at our chosen degree of coarse-graining[36, 58]. The interaction
parameter for dissimilar beads is then chosen depending on the affinity between the two beads

using the relation a;; = a;; + 3.27x;;,[58] where y;; is the Flory-Huggins interaction parameter

J
for the interaction between the respective beads. Note that our above choice of the model
parameters is based on the approach derived by Groot and Warren[58]. The specific parameters
for interaction between various components simulated in this dissertation are provided in the
corresponding chapters.

Apart from the conservative force, the dissipative and random contributions to the total

force are written as,[64]
Fg' = _V“)D(rij)(eij Vi )eij; (2.4)
R 1
Fi; = G“)R(rij) ¢ijAt 2 ey, (2.5)
correspondingly, here y and o are the strengths of the dissipative and random forces, v;; = v; —

v; is the relative velocity, {;; is a symmetric Gaussian distributed random variable with zero mean

and unit variance, and At is the simulation time step. The random force provides thermal
fluctuations causing the system to effectively “heat up” while the dissipative force decreases the

relative velocity of beads effectively causing the system to “cool down”. These forces are coupled
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via the fluctuation-dissipation theorem which tunes the magnitude of the two forces, effectively
enforcing a thermostat and leading to the correct thermodynamic equilibrium distribution[64]. The
following relations must be satisfied in order to satisfy the fluctuation-dissipation theorem,

02 = 2ykgT, (2.6)

wp (1i;) = wi(ry)). (2.7)

S\ 2
We choose the soft repulsion form of the weight function wD(rij) = w3 (rij) = (1 —Tri) .

According to the standard Groot and Warren[58] DPD model, we set .., temperature, and mass of
a bead at 1.0 in reduced DPD units, and the bead number density in the simulation box is set at 3.
The simulation time is correlated to a dimensional unit of time by matching diffusion coefficient
of water beads with the known value of self-diffusion coefficient of water as[36] T = 88 ps .
Unless otherwise specified, all quantities reported in this dissertation are in reduced DPD units,
with 7, as the unit length, t as unit time, and kzT as the unit of energy.

Overall, the non-bonded interactions in the standard DPD model have been summarized in
the graphic shown in Fig. 2.2 below. The conservative force, represented by the spring element in
Fig. 2.2, tunes the interaction between beads of different types. The dissipative and random forces,
depicted by the middle and bottom element in Fig. 2.2 can be tuned to vary physical properties
such as the diffusivity and viscosity[57].

Lastly, for creating polymer chains, the DPD beads are stringed together by introducing a

force corresponding to the harmonic potential,

K,
Upona = 7b (Ti' —Tp )2' (2.8)

where K), is a spring constant and 1, is the equilibrium bond distance taken as K, = 1000 and

1, = 0.7, respectively.
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Figure 2.2: Schematic representation of the three pairwise forces in DPD. The spring element at
the top represents the conservative force, the dashpot in the middle represents the dissipative force
and the bottom element represents the random force. Reprinted from ref. [35] with permission

from AIP publishing.

While the main goal of this dissertation is to study degradation of polymer networks, the
standard DPD technique described so far can also be used to simulate equilibrium characterisitcs
of polymer networks. Specifically, we used the above described framework for modeling the
equilibrium swelling of polyacrylamide (PAAm) hydrogels[68]. The equilibrium swelling data
from our DPD simulations of PAAm hydrogels[68] is shown in Fig. 2.3. For simulating the PAAm
hydrogels, we made a choice for the a;; parameter in equation (2.3) based on the Flory-Huggins y
parameter for the PAAm-water interaction as described above. We compared the equilibrium
swelling volume fractions ¢ and crosslink densities ¢, measured from DPD simulations with
analytical estimates of the quantities.[68] The analytical estimate of ¢ is obtained from the Flory-
Rehner swelling theory of polymers. According to Flory-Rehner theory, the equilibrium swelling
is governed by a balance between the osmotic pressure due to the favorable polymer-solvent
interactions and the elastic stresses developing within the hydrogel due to the stretching of polymer

strands. An affine network approximation was used for the analysis in Fig. 2.3 and a near perfect
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matching between the analytical estimates and values measured from the DPD simulations is

evident in Fig. 2.3[68]
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Figure 2.3. The polymer volume fraction, ¢, (left y axis, solid line) and crosslink density, ¢,
(right y axis, dashed line) as functions of N,, i.e. the number beads between two crosslinks. Both
lines are from analytical calculations. The symbols (filled for ¢ and unfilled for c;) represent data
points from simulations. Reproduced with permission from ref. [68] Copyright 2020 American

Chemical Society.

2.2 The modified Segmental Repulsive Potential
As mentioned in the previous section, the soft conservative force in DPD allows for chains
to unphysically cross through each other. This concerns simulations of polymers since such

topological violations would effectively mean phenomena such as entanglements are not captured
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by the simulations. Kartunnen et. al.[63] reported that such topological violations can be decreased
by making the bonds between monomers stiffer, hence causing stronger repulsion when two
polymer chains approach each other. In an alternative approach, Kumar and Larson[69] first
developed a segmental repulsive potential (SRP) which adds extra repulsive forces between the

bonds of neighboring polymer chains. The additional SRP force is given as,

d.::
FifP = b (1 — d—Z) e, (2.9)

where, d.is the SRP cut-off distance,b is the strength of the SRP repulsion, d;; = |d;; | is the

distance between bonds and eisj =d,;j/d;; is the unit vector in the direction from one bond to

another. In the original SRP approach, the minimum distance between bonds is used as the distance
measure[69]. This approach was later modified by Sirk et. al[62] to use the distance between mid-
points of bonds as the distance measure. As compared to the original SRP, use of the distance
between mid points of the bonds was shown to improve structural and thermodynamic properties
of the simulate polymer chains. By selecting appropriate parameters, the modified approach
demonstrates minimization of topological violations and reproduces entanglement regime scaling
of the diffusion constant of polymer chains in the melt state.[62] We use the parameters b = 80
and d,. = 0.8 in our work, these parameters were shown to minimize topology violations in the
original framework. We additionally conducted a series of simulations for the dynamics of
entangled polymer loops in a good solvent to validate minimization of bond crossings using the
above parameters. We simulated two entangled polymer loops (Fig. 2.4a) for 105 DPD steps with
and without the mSRP potential. We then compared the standard DPD (sDPD) simulation, without
mSRP interactions, and the simulation using mSRP DPD formulation Fig. 2.4b-d. Snapshots at
late simulation time are shown in Fig. 2.4b,c respectively. Due to the added repulsion, loops

remains entangled for the entire length of the mSRP simulation while the loops pass through each
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other at a very early stage in the DPD simulation. To quantify this behavior, we measure the time

evolution of the distance between the centers of masses (COMs) of the two loops (Fig. 2.4d).
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Figure 2.4: (a) Initial configuration of two entangled loops in good solvent. Simulation snapshots
after 10° timesteps using (b) mSRP and (¢) sDPD formulations. Inset in b shows zoomed view of
the entangled loops. (d) Distance between centers of masses (COMs) of the two loops. Figure
reproduced from ref. [70] with permission from American Chemical Society. Copyright 2022

American Chemical Society.

This distance remains small for the mSRP simulation (black curve), confirming that the loops

remain entangled throughout, while it is significantly higher for the separated sDPD loops. We
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repeated the mSRP simulation and observed the above reported behavior in 98 out of 100
independent simulations run for 107 DPD steps, in two simulations the loops separated at very

early timestep (less than 100 steps, data not shown).

2.3 Energy conserving dissipative particle dynamics

As mentioned earlier in this chapter, the standard DPD method is a thermostat and can only
simulate constant temperature situations. For non-isothermal processes involving polymers, such
as heating a polymer through its volume phase transition[65, 71] or flow of micelles through a
temperature gradient[72], the ability to model local variations of temperature is important. To this
end, Espanol[56] introduced the internal energy of a DPD bead as an additional degree of freedom.

The energy conservation equations in the eDPD are given as:

d(mcC,T;)

— = Zir(a + a4 + 4), (2.10)
1 1
quj = kijWCT(Tij) (f - f)' (2.11)
1 (o)’
5 g
ai; = E(WD (rij) [Vij(eij-vij) - #‘ — oy;wr (1) (€. vi) i), (2.12)
v
1

quj = ﬁijWRT(Tij)dt_Efie,': (2.13)

where C, is the heat capacity of each eDPD bead with temperature T;. The collisional (qicj) and
random (qu) heat fluxes together account for conduction of heat through the material. The viscous
heat flux (ql‘;) accounts for viscous heating due to conversion of the particle’s mechanical energy

to heat. The strengths of the collisional and random heat fluxes k;; and f;; are given as k;; =

CﬁK(Tl- + Tj)2 /4kg and ,812] = 2kgk;j, where k is a mesoscopic heat friction parameter. We
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choose the typical form[56, 57] of the weighting functions in the collisional and random forces as

2
— 1,2 — Tij
WCT(rij) = WRT(rl'j) = (1 - T'_c) .
The introduction of energy conservation leads to some modifications to the momentum

conservation equations of the standard DPD method. The momentum conservation equations for

eDPD have the following temperature dependent parameters:

kg(T; + T;)
a;j = ij-—lz =, (2.14)
2 ij*Blilj
of; = —Ti TT (2.15)

The strength of the conservative force a;; can have an additional temperature dependence
prescribed through the A;; parameter. The function 4;; = Aj; + AA/(1 + exp (Fw(T;; — Tp)))
has been used previously to model LCST and UCST type polymers[65, 72]. To model temperature
dependence of system properties such as the diffusivity and viscosity, the weight functions wj, and

wp, are also chosen to be temperature dependent via the exponent s,

r N
Wp = Wi = <1 —7) ) (2.16)
(5

The exact form of this temperature dependence and the resulting variations in system properties

are discussed in more details in chapter six.

2.4 Integrating the dynamic equations and visualizing simulation results
One of the advantages of DPD is the ability to handle larger simulation timesteps. To
further enhance this capability, Groot and Warren[58] proposed a modified form of the popular

velocity-Verlet algorithm[73],

r;(t + At) = r;(t) + Atw;(t) + %(Atz)fi(t), (2.17)
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U;(t + At) = v;(t) + AAtf,;(t), (2.18)

fi(t + A0) = fi(r(t + AD), B (t + AD)), (2.19)

v;(t + At) = v;(t) + %At(fi(t) + f:(t + At). (2.20)

We use the standard velocity-Verlet algorithm which can be recovered by setting A = 0.5 in the
above scheme. Other integration schemes have also been proposed for DPD[74].

We use the LAMMPS open-source simulation package[75-77] along with the
corresponding code for mSRP[62] and eDPD[57] to integrate the momentum and energy
conservation equations. All visualizations of the simulations are performed using the Visual
Molecular Dynamics (VMD) software[78]. In addition to the methodology described above, the
stochastic approach used to simulate the bond breaking reaction during controlled degradation is
described in chapter three. Dr. Chandan K. Choudhury is acknowledged for providing the initial

data to conduct simulations provided in Fig. 2.3.
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CHAPTER THREE

Implementation of a stochastic approach within the DPD framework for
simulating controlled degradation with mSRP

In chapter two we discussed the general mesoscale details of the DPD framework used in
this dissertation. In the current chapter we will introduce the stochastic approach used in this work
to simulate bond breaking during the controlled degradation reaction. In developing this
framework, several things need to be considered. Firstly, the framework should reproduce
degradation reaction kinetics. In this regard, it should be noted that several degradation reactions
in polymers follow either first order[79] or pseudo first order[8, 20, 26] reaction kinetics. Hence,
we aim to use a framework that reproduces first order kinetics. Further, the use of mSRP, as
described in chapter two, requires additional repulsive interactions between bonds. These
interactions need to be switched off as bond breaking occurs. Additionally, the dependence of
degradation reaction kinetics on local material properties, such as the local temperature need to be
incorporated into the framework.

In what follows, we will first introduce the basic stochastic protocol for simulating the
degradation reaction with a rate constant independent of local properties. Next, we will discuss the
implications of bond breaking on the mSRP approach and provide a modified mSRP
implementation to allow for switching off the additional repulsion from a bond after it breaks. In
the last section, we will describe modifications to the stochastic approach that incorporate

dependence of the reaction rate on local temperature during the reaction.
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3.1 The stochastic approach for modeling degradation reactions

Chemical reactions, either bond formation or bond breaking reactions in polymeric systems
are often simulated within DPD as stochastic processes[46-51]. Similarly, such protocols are also
used in coarse-grained MD simulations[80, 81] of polymers. To implement such a framework, the
probability of bond breaking P, and the reaction time step 7z, need to be defined. Within this
framework, the possibility of reaction is evaluated every tgz which, in DPD simulations, is
commonly chosen to be Tz = 10At [46, 47, 49-52]. To evaluate the reaction probability, at each
of the reaction timesteps, a random number is generated for each of the “degradable” bonds; the
reaction is allowed to happen for a certain bond only if the generated random number for that bond
is lower than P. A first order degradation reaction can be simulated by simply setting appropriate

values for P and tp. Details of the resulting degradation reaction kinetics are provided below.

3.2 Handling topology violations along with chemical reactions

The mSRP approach described in chapter two was developed for polymers with a fixed
topology, i.e. polymeric systems without chemical reactions. In order to model the degradation
reaction, the mSRP interaction for a bond needs to be switched off as soon as the bond breaks. We
recently assimilated this ability with the existing mSRP framework and implemented it as part of
the LAMMPS simulation software[75-77]. To implement the mSRP framework within LAMMPS,
Sirk et. al.[62, 82] introduced pseudo beads at the location of the bonds to introduce the inter-bond
mSRP repulsion. Each psuedo bead only experiences the mSRP repulsive force (equation 2.9)
from other pseudo beads and has no interaction with any other bead. Hence, to deactivate the
mSRP repulsion upon bond breaking, we introduced the ability to delete pseudo beads via the pair

style srp/react command in LAMMPS[70, 83, 84]. A schematic of the bond breaking mechanism
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along with the pseudo beads for mSRP interaction is shown in Fig. 3.1 below. In addition to the
bond breaking reaction, the mSRP framework is also useful for bond formation reactions. Hence,
our implemented pair style srp/react command in LAMMPS also enables insertion of pseudo beads
when a bond formation reaction occurs and this functionality was utilized recently in our lab for
simulation of crosslinking via the hydrosilylation reaction during synthesis of polymer derived

ceramics[85]. Specific details of the LAMMPS implementation, along with the relevant C++ code

is provided in the Appendix A.
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Figure 3.1: Schematic of the bond breaking and formation mechanism highlighting the role of

mSRP pseudo beads (shown in yellow). When a bond is broken, the corresponding pseudo bead is

deleted.

3.3 Kinetics of the degradation reaction

In this dissertation, we use the approach described above to simulate the degradation
reaction in polymer networks and melts. To analyze the reaction kinetics resulting from the use of
the approach described above, we first simulated degradation of nanogel particles[84] suspended

in a single solvent. All relevant details about the setup of the nanogel system along with analysis
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of the degradation process of nanogels is provided in chapter five. Here, we will use this system
only for the specific purpose of analyzing the degradation reaction kinetics. As a result of using
the approach described above, the first-order degradation rate constant (k) in these simulations is
a function of P and 7, as [70, 84] k = P /1. The fraction of degradable bonds intact, p, provides
a measure of the progress of the degradation reaction and follows the relation p = exp (—kt)
expected for first order reaction kinetics. We conducted several simulations by varying P and 7y,
effectively varying k, and the evolution of fraction of degradable bonds intact for these simulations
is plotted in Fig. 3.2a below. Results from the DPD simulations, represented by symbols in Fig.
3.2a, are reported as average measurements from five independent simulations with error bars
representing standard deviation. We used several combinations of P and 7, values[84] as is shown
in Fig. 3.2b. Solid lines in Fig. 3.2a represent the analytical plot of p = exp (—kt). The simulations
reproduce first order reaction kinetics for all tested parameter sets with the rate constant given as

k = P /tg; no fitting of the rate constant is required.

3.4 Introducing local temperature dependence of the degradation reaction rate
In addition to the framework described so far, we aim in this dissertation to introduce the
initial framework to incorporate effects of the local environment on the degradation reaction. In

general, kinetics of the degradation reaction depend on the local environment such as temperature
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or pH in the vicinity of the degradable bond. The dependence of reaction rate constant on local

properties is represented mathematically by the Arrhenius relation:

Eq

k = kyexp <_ﬁ)’ (3.1)

where k is a pre-exponential factor, E, is the activation energy for the reaction, R is the universal

gas constant and, T the local temperature.

Symbol k P TR
_ k_o 50 (units 10-571) (units 1)
e (o] 0.50 3106 0.6
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Figure 3.2: (a) Evolution of the fraction of bonds intact as a function of time. Symbols represent
average measurements over five DPD simulations with error bars representing standard deviations.
Lines represent the function p = exp (—kt), with k = P/t provided in the legend in the units of
107571, Table on the right contains a list of P and 7 values for each simulation in the figure.

Figure reproduced from ref. [84] with permission from Springer Nature.
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While the temperature dependence is explicit in equation (3.1), other material properties
such as the local pH alter the activation energy of the reaction, thereby affecting the overall
kinetics. With this context, we introduce the temperature dependence described in equation (3.1)
into the degradation framework by modifying the reaction probability P, to depend on the local

temperature as:

E

P = P, exp (— R_;z)' (3.2)

. . Ti+T; .
where T; is the local temperature at the reaction site T, = ( 12 ! ), T; and Tj is the eDPD temperature

of bead i and j, respectively. The above dependence of the reaction probability is used in chapter

six to simulate local temperature dependent thermal degradation in polyolefin melts.

26



CHAPTER FOUR

Mesoscale modeling of controlled degradation and erosion in hydrogel
films

4.1 Introduction

Controlled degradation of polymer networks plays a vital role in a variety of applications
ranging from the design of degradable thermoset polymers[1] to controlled delivery of drugs and
biomolecules[3-5] and regulating growth of neural networks[7]. Of a particular interest is photo-
controlled degradation, which permits spatially-resolved dynamic control of physical and chemical
properties of the materials[10-16]. Notably, in a number of the above applications, either the
characteristic features of degradable gels[7, 10, 12] or the dimensions of the entire degradable gel
particle[5] range between nanometers to microns, the length scales referred to as mesoscopic.
While analytical models and continuum approaches[8, 9, 20, 29-32] inform our current
understanding of hydrogel degradation, an understanding of degradation and erosion at the
mesoscale to date is exceptionally limited despite of the relevance of this length scale to a plethora
of applications.

The term degradation commonly refers to the reaction that cleaves covalent bonds, while
erosion refers to the mass loss that accompanies degradation[8, 9]. Correspondingly, the polymer
network undergoing degradation is often characterized by the mass loss capturing erosion
processes[1, 8, 19, 86], and by the reverse gel point[1, 8, 19, 20] capturing the critical extent of
degradation reaction. Similar to the gel point, which is defined as a critical point of formation of
an infinite percolating network during gelation[87], the reverse gel point is a critical point
corresponding to the disappearance of the percolating network[l, 8, 19] . This point is

characterized by a critical value of the reaction conversion; the term reverse gel point is sometimes
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used interchangeably with gel point[8] when describing degradation process. Notably, the
disappearance of the percolating network at the reverse gel point results in a sudden drop in the
mass of the polymer[8, 19].

To capture the polymer network degradation and erosion at the mesoscale, diffusion of all
the network fragments along with reaction kinetics, hydrodynamic interactions, and network
topology and heterogeneities need to be taken into account. We use Dissipative Particle Dynamics
(DPD)[33-35] to model these complex systems. DPD is a mesoscale approach utilizing soft
repulsive interactions between the beads representing clusters of atoms; this approach has been
widely used to model variety of complex systems[35-44], including dynamics of hydrogels in
various environments[51, 52, 60, 68, 88-93]. To overcome unphysical topological crossings of
bonded polymer chains, we recently adapted a modified Segmental Repulsive Potential (mSRP)
formulation[45] to model gels with degradable bonds[84]. More details of this implementation
approach are provided in chapter three and appendix A of this dissertation.

As mentioned in chapter one, for a model hydrogel network, we focus on hydrogels formed
by the end-linking of four-arm polyethylene glycol macromolecular precursors[23, 24, 94], often
referred to as tetra-PEG gels[19, 23, 95]. Tetra-PEG gels fabricated by Sakai et. al. [23] have been
shown to form nearly ideal network structures exhibiting superior mechanical properties prior to
degradation. The near-ideality of the tetra-PEG gels is attributed to the elimination of a large
fraction of defects during synthesis provided that the stoichiometric ratio of two macromonomer
precursors is equal to one and that the overlap monomer concentration is used [23]. The four-arm
PEG precursors can be modified during their synthesis to enable controlled degradation.
Specifically, these hydrogels can be made degradable by including photocleavable functional

groups, e.g. the coumarin[24, 27] and nitrobenzyl[14, 27, 28] groups, in the close vicinity of the
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end functionalities responsible for gelation[24, 26-28]. A schematic of the coumarin-based
degradable tetra-PEG hydrogels synthesized with the reaction between alkyne and azide
functionalities is provided above in Fig. 1.2.

In what follows, we characterize the degradation process via tracking the time evolution of
distribution of network fragments. We show that the reverse gel point can be reliably calculated
from the reduced weight-average and z-average degrees of polymerization of network fragments.
Based on the calculated reverse gel point, we define the relative extent of reaction and show that
the polydispersity and the fraction of broken-off fragments scales with the relative extent of
reaction for the samples with various thicknesses and crosslink densities. Further, we characterize
erosion from the swollen polymer network via tracking the apparent mass loss that accounts for
the fragments remaining in contact with the percolated network. The proposed framework allows
one to clearly distinguish the main features of degradation and erosion on the mesoscale. The work
described in this chapter is published in the Journal of Physical Chemistry. The corresponding
journal article is ref. [70] of the dissertation and the permission to reproduce this work in this

chapter is included in Appendix B of this dissertation.

4.2 Methods
4.2.1 Introducing DPD formulation for tetra-PEG hydrogels

The main features of the overall DPD approach used in this work are outlined in chapter
two. Below, we go into the details of parameter choices and other specifics for modelling tetra-
PEG gels using this approach. As described in chapter two, we chose a;; = 78 (in reduced DPD
units) for the interaction between beads of the same type based on the compressibility of water and
our choice of coarse-graining three water molecules into one bead[36]. The repulsion parameter

for the dissimilar beads is chosen based on the affinity between these beads as[34] a;; = a;; +
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3.27y;j, where y;; is the Flory-Huggins polymer-solvent interaction parameter. The affinity of
PEG beads to water beads is set by the choice of the repulsion parameter between the polymer and
water beads as a,,, = 79.5 based on the PEG-water Flory-Huggins interaction parameter [29,
96] [26, 29, 96], x = 0.45. The degradable end groups are assumed to have the same solubility as
a PEG monomer and hence the same interaction parameter is used for these beads.

We also conducted a series of additional simulations tracking the dynamics of entangled
polymer loops to validate the effective minimization of bond crossings[70]. In addition, we
confirmed that with the chosen parameters both the bond lengths distribution and the mean-squared
internal distances for beads separated by a fixed number of bonds remain largely unaffected by the
mSRP potential[70]. To integrate dynamic equations, the LAMMPS simulation package[75, 77]
with mSRP code[45] is used. All visualizations of the hydrogel network were performed using the
Visual Molecular Dynamics (VMD) software[78]. The trajectories used for the analysis below are

saved every Aty =5000 time steps.

4.2.2 Parameter choices and other details for modelling the degradation reaction

As detailed in chapter three, to simulate the bonds breaking, we use the stochastic approach,
similar to that used previously for various reactive systems[52, 81, 97]. Herein, we use tr=10At,
similarly to the choice of reaction time step in previous DPD simulations of various reactive
systems[46, 47, 49-52]. For a number of the polymer networks undergoing controlled
photodegradation, the degradation rate constants are within the range of[3, 24, 25, 27, 28] 1s7'-10"
3571, i.e., the degradation occurs orders of magnitude slower than the characteristic diffusion times

on the relevant length scales[84]. Hence low degradation rates are chosen in our simulations,

ensuring that our system remains in a kinetically limited regime[52, 84].

30



4.2.3 Construction of initial network structure

The initial configuration of the tetra-PEG network is modeled as a diamond-like lattice[52,
98]. The choice of diamond lattice ensures junction functionality of four, corresponding to the
network formed by the four-arm precursors. The centers of the tetra arm precursors are placed at
the lattice sites and the precursor arms are then formed by placing N,/2 beads (N,/2-1 PEG beads
and one end functionality bead) along the directions from each lattice site to its nearest neighbors.
Thus, there are N, beads between the centers of two bonded precursors. Two neighboring end
functionalities are then connected, which results in an initial unit cell of the polymer network.
Hydrogel films are made by replicating the polymer unit cell and are referred to as XxYxZ, where
X, Y and Z denote the number of replicas in x, y and z directions, respectively. The unit cell is
replicated up to the simulation box faces in x and y directions with beads connected across these
faces (i.e, beads at the +x face are connected to the beads at the -x face). In the z direction, the unit
cell is replicated within the simulation box to allow space for swelling. Mere repetition (without
bonding across the periodic box) of the unit cell results in precursors having a functionality less
than four at the z-faces of the network. These partial precursors are deleted to yield the hydrogel
film structure containing an integer number of precursors[84], however such deletion results in
dangling polymer chains at the z-faces. Fig. 4.1a shows a part of this initial network structure prior
to the network equilibration. PEG beads and the end groups of both precursors are shown in cyan,
red, and blue, respectively, and the water beads are shown as points in Fig. 4.1a for clarity of
representation. The bond between the end functionalities is set to be degradable corresponding to
a cleavable site typically located in the proximity of the end functionality[24, 26]. While herein

we focus solely on a tetra-functional polymer network, it is worth noting that both the network
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connectivity and a fraction of degradable bonds can be readily tailored during the hydrogel

synthesis[26, 94, 99], for example by using linear linkers of various lengths[99] or by using star-

shaped precursors[100]. The corresponding variations in the network architecture prior to

degradation can potentially be translated into the DPD framework in a straightforward manner by

choosing different functionalities of the network junctions and specifying corresponding

degradable bonds for each system of interest.

Table 4.1: Simulation parameters sets for initial hydrogel films used in this work.

Parameter | N, | Unit Beads in | Total Tetra arm | Degradable | Simulation | Total
set cell one polymer | precursors | bonds box size water
repeats | precursor | beads (Ny) beads
A (ref.) 6 |8x8x4 |13 24960 | 1920 3584 42x42x50 | 239640
B 6 | 8x8x3 |13 18304 | 1408 2560 42x42x50 | 246296
C 6 | 8x8x5 |13 31616 | 2432 4608 42x42x60 | 285904
D 6 | 8x8x6 |13 38272 | 2944 5632 42x42x70 | 332168
E 10 | 8x8x4 | 21 40320 | 1920 3584 57x57x60 | 544500
F 14 | 8x8x4 |29 55680 | 1920 3584 66x66x60 | 728400
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Figure 4.1. (a) A fragment of polymer network with degradable bonds (bonds between red and
blue beads), initial configuration prior to equilibration. Tetra-functional centers and PEG beads
are shown in yellow and cyan, respectively, and water beads are shown as blue dots. (b-d)
Snapshots of degradation of a reference hydrogel film (parameters set A in Table 4.1) with the
degradation rate k = 4.5-107% at t = 0 in (b), ¢t = 10,000 in (c), and t = 20,000 in (d). The
largest connected cluster is highlighted in each snapshot, remaining polymer beads are shown as

translucent and in less saturated color. Water beads are hidden for visual clarity.
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All parameters used for creating the initial polymer networks in this work are listed in
Table 4.1 below. The simulation box size for films with higher N, was increased in horizontal
direction to ensure free swelling. Additionally, the box size was increased in z-direction for films

with higher N, or larger thickness to ensure sufficient swelling and accurate calculation of clusters.

4.3 Results and Discussion
4.3.1 Clusters distribution and reverse gel point

In the first series of simulations, we characterize the dynamics of the degradation process
of the swollen network. The film is equilibrated prior to degradation as detailed in our work in
refs. [68, 70]. Fig. 4.1b shows the equilibrated hydrogel film prior to degradation. The affinity of
PEG beads to water beads is chosen based on the PEG-water Flory-Huggins interaction parameter
(See section 4.2 above). Snapshots in Fig. 4.1b-d illustrate the process of degradation and erosion
of the hydrogel film. After the degradation begins (for example, after switching the light on for a
photodegradable network), degradable bonds break according to the degradation rate constant, .
As a result, fragments break off from the film and are shown as translucent and in less saturated
color in Fig. 4.1c,d; water beads are not shown for clarity.

To track the degradation process, we first define a topological cluster as a group of bonded
beads; correspondingly, the cluster size is defined as the number of tetra-arm precursors within the
cluster. Prior to the degradation, there is a single topological cluster encompassing all the
precursors within the hydrogel matrix. Evolution of both the size of the largest cluster, N (t)
(black curve, left axis) and the total number of clusters during degradation (red curve, right axis)
is shown in Fig. 4.2a. At early times, relatively small fragments leave the hydrogel, while the size
of the largest cluster does not change significantly. This is evident from the simulation snapshot

in Fig. 4.1c and the corresponding distribution of cluster sizes in Fig. 4.2b. Specifically, along with
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the large number of smaller fragments, only one large cluster corresponding to the degrading
hydrogel film exists in the system (inset in Fig. 4.2b). Overall, the small clusters dominate the
distribution throughout the degradation process (see all distributions in Fig. 4.2b-d). As seen in the
snapshot Fig. 4.1c, several of these small clusters leave the hydrogel film and are dispersed in the

surrounding solvent, contributing to an overall mass loss.
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Figure 4.2. (a) Evolution of the size of the largest cluster (in black) and number of clusters in the
system (in red) for the degradation simulation shown in Fig. 4.1. (b-d) Distribution of cluster sizes

at time instants t=10,000 in (b), t=20,000 in (c), and t=30,000 in (d), the same time instants are
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marked in (a). Insets in (b-d) highlight the distributions of clusters with large number of precursors

(>20 precursors).

Notably, this topological characterization does not allow to distinguish between the smaller
fragments leaving the film and the fragments that broke off but remain within the film and hence
do not contribute to the mass loss. Additional characterization needed to quantify mass loss and
erosion is detailed below. As degradation proceeds, multiple larger clusters appear in the system
(Fig. 4.1d), while the size of the largest cluster sharply decreases (Fig. 4.2a). During this sharp
decrease the percolating hydrogel network vanishes; beyond the reverse gel point, the largest
cluster no longer represents the original degrading film. The existence of many relatively small
clusters at late times is evident from the distributions in Fig. 4.2c,d. Correspondingly, the largest
cluster in the snapshot in Fig. 4.1d (shown in more vivid color and seen through some of the
translucent beads representing smaller clusters) is indeed relatively small and consists of only 736
precursors (or 38.33% of the total number of precursors). As degradation continues, the larger
clusters disintegrate into smaller clusters and eventually into the single precursors.

To characterize the degradation process quantitatively, we carried out five independent
simulations each at three different degradation rates. The averaged results from these simulations
are summarized in Fig. 4.3, where all error bars denote standard deviation over five independent
simulations. To characterize reverse gelation, we use measurements similar to those that have been

used to characterize gelation[87, 101-105]. Accordingly, the weight average degree of

Zn;(t)i?

— , where i is the
In;(t)i

polymerization, DP,,, is defined at each moment in time as DB, (t) =

number of beads in a cluster, n;(t) is the number of clusters with i beads at time t, and summation

is taken over all the clusters. The values of DP,, (Fig. 4.3a) are high at early times corresponding
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to the existence of the percolating network. After an initial slow decrease, there is a sudden drop
in DP,,, which is delayed at lower degradation rates since longer time is needed to break the same

number of bonds.
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Figure 4.3. Time evolution of (a) weight average degree of polymerization, D P, (left axis) and
fraction of bonds broken, 1-p, (right axis), (b) normalized reduced DP,, for 5 independent
simulations for each degradation rate, and (c¢) reduced z-average degree of polymerization,
DP] , and DPy, for a single simulation run for each degradation rate. (d) Measured reverse gel
points p? (solid bars) and pZ (striped bars). Each curve in (a) and each data point in (d) represent
average over 5 independent simulations, error bars represent the standard deviation. Each curve in
(b) and (c¢) represents a single simulation and the data in (b) is normalized by the maximum value
in each simulation. Gel film with N, = 6 and reference parameters set (set A) is considered. Black,

red, and green colors in (a)-(d) correspond to degradation rates k; = 1.5x1075, k, = 3.0x107°,
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and k; =45 x107°, respectively. These rates were obtained by setting P =

3x107°, 6x107° and, 9x10~° with 7z = 0.2. The degradation rate constants are provided in units

of reduced simulation time, 77 1.
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Figure 4.4. Time evolution of (a) number-average degree of polymerization, DP,, and (b)
polydispersity index, PDI. Each curve represents an average over 5 independent simulations,

error bars represent the standard deviation. The colors have the same meaning as in Fig. 4.3 above

The fraction of the bonds broken in the same systems, 1 — p(t), is shown on the right axis
in Fig. 4.3a; this value ranges from zero to one and represents an extent of the degradation reaction.
While DP,, diverges at the gel point in analytical gelation theories[87, 104, 105], it remains finite
throughout simulations of finite size systems during gelation[106] or reverse gelation. Thus, to
identify the reverse gel point in our finite-size simulations, we use the reduced weight average

degree of polymerization, DP,,, defined as

='ni(1)i?
DRY®) = T o (“.1)

where the summation is taken over all the clusters excluding the largest cluster.
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The reduced weight average degree of polymerization exhibits a peak at the gel point
during the gelation process in finite size systems[101-103, 107]. The curves of the same color in
Fig. 4.3b correspond to five independent simulation runs for each degradation rate k, and are
normalized by the highest value of the DP,, in each independent simulation. At the initial stages
of degradation, DP,, has a low value since the gel constitutes the only large cluster in the system.
As degradation proceeds, DPF,, exhibits a peak similar to that observed at the gel point in
simulations of gelation[101-103, 108]. This peak corresponds to the disintegration of the
percolating network. The time instant corresponding to peaks in DB, t, allows us to identify a
reverse gel point by calculating the corresponding critical value of the fraction of degradable bonds
intact as

pe’ = exp (—kt?). (4.2)
Alternatively, reverse gel point can be identified from the analysis of the z-average degree of

Zn; ()i
In;(t)iz )

polymerization, DP,(t) = DP,, similar to DP,, , diverges at gel point according to the

analytical theories of gelation[87, 105]. In our finite size simulations, DP,(t) shows a behavior
similar to the DP,,, although it decreases slower than D P,,. Using analogous arguments as for DP,,,

we define the reduced z-average degree of polymerization, DP;, at each time instant as:

='ni(t)id3
='n;(t)i? !

DR (t) = (4.3)

where the summation is taken over all the clusters excluding the largest cluster. The DP; curves
for one representative simulation each at the three degradation rates are plotted along with the
corresponding DP,; curves in Fig. 4.3c. The time corresponding to the peak in DP;, tZ, provides
a second measurement of the critical conversion at the reverse gel point pZ = exp (—ktZ). Note

that the peak value of DP; is higher than that of DF,,. The values of p?” and pZ obtained from the
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positions of the peaks in Fig. 4.3b,c (averaged over 5 runs for each degradation rate) are provided
in Fig. 4.3d. These results show that either measurement, p}’ or pZ, can be used to accurately
identify the reverse gel point. An increase in standard deviation for the highest degradation rate
constant can be attributed to the fact that the data is sampled for the analysis every 5000 time steps
(Aty, see section 4.2) for all three cases; hence the deviations at the higher reaction rates can
potentially be reduced at the cost of increased computation time if the data is sampled more often.

Note that our measured reverse gel point is significantly higher than the value predicted by
the mean-field theories for the gel point of tetra-functional networks[104, 105] (p, = 0.33). This
could be attributed to the significant difference between the initial network structure prior to the
degradation and Bethe lattice postulated in the mean-field models. The assumption of absence of
any intramolecular connections used in these mean-field theories is not expected to hold for
networks, since existence of intramolecular connections is an essential characteristic of any
network architecture.[109] Recall that the initial structure in our simulations corresponds to a
diamond-like lattice. Hence, the percolation problem closest to our simulations is that of bond
percolation on a diamond lattice[ 110], which predicts p. = 0.39 for the gelation problem (marked
by the dashed line in Fig. 4.3d). Notably, the measured reverse gel points in Fig. 4.3d are
somewhat higher than the theoretical limit of p. = 0.39 corresponding to an infinite network.
This could be attributed to the finite network size and is consistent with prior studies of gelation
in finite-size network, where the gel point was shown to increase with the decrease in total number
of macromers forming the network with respect to the gelation point of the infinite network[106,
110].

In experiments, values close to the diamond lattice percolation problem have been observed

for the gelation of tetra-arm PEG precursors near the overlap concentration [111, 112], while
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higher values were observed at lower concentrations. A delay in gel point is often attributed to an
increased tendency of intramolecular reactions[107, 109, 113-116]. Recent work by Lang et.
al.[117] suggests that such attribution may not be sufficient as the gel point delay is not fully
explained by intramolecular reactions. A number of recent studies on gelation, both computational
and experimental, are surveyed by Lang et. al. in the same publication[117]. In contrast to the
numerous publications focusing on characterizing gelation process, analysis of the kinetics of
controlled network degradation along with measurement of reverse gel point, specifically for the
systems formed by two tetra-arm precursors (often referred to as A4B4 network), is exceptionally
limited. Li et. al.[26] had reported a reverse gel point ranging within 0.43 to 0.48 for the tetra-PEG
networks formed at a fixed polymer concentration but with various stochiometric ratios. In the
latter work, the authors argued that their observed reverse gel points[26] are close to the reverse
gel points predicted by the site and bond percolation models on the diamond lattice. The diamond
lattice model and corresponding reverse gel point have also been used by Reid et. al. in their model
[118] to explain experimental data of degradation behavior of tetra-arm PEG gels.

To characterize polydispersity within the degrading system, we track the number-average

degree of polymerization, DP,(t) = Zn;—(lt)[ (Fig. 4.4a), and a polydispersity index, PDI(t) =
% (Fig. 4.4b), during the degradation process. Note that PDI is also referred to as the dispersity

D in the system. Similar to DP,,, DP, initially has a large value owing to the existence of the
percolating network. As anticipated, D P, decreases faster compared to DP,, . The PDI exhibits a
peak close to the reverse gel point and decreases to one at the end of the degradation process. The
peak in PDI is observed prior to the disappearance of the percolating network (average value of
the reverse gel point is marked by the circle of the corresponding color in Fig. 4.4b). Analogous

trend was previously observed in simulations of gelation where the PDI peak was observed after
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the gel point[107]. The trend in PDI is also evident from the time evolution of the cluster size

distributions in Fig. 4.2b-d.

4.3.2 Fractional mass loss

We now turn our focus onto characterizing erosion, which can be defined as the loss of
material due to the fragments leaving the original matrix[8, 9]. In experiments, the fractional mass
loss from the material, f(t) = 1 — m(t)/m,, where m, is the initial mass of the material, and
m(t) is mass of the material at a time t from the start of the degradation process, can be tracked
during the degradation[8]. Unlike the apparent first order degradation kinetics observed in
experiments[25, 26, 119], the fractional mass loss in experiments shows more complicated
behavior, with early time slow mass loss followed by an accelerated mass loss attributed to reverse
gelation[8, 19]. The fast mass loss can be modeled as a discontinuity at the reverse gel point where
the entire hydrogel film becomes soluble and hence complete mass loss occurs (m(t,) = 0).[8]

We first measure mass loss from the largest topological cluster up to the reverse gel point
by measuring the mass of topological clusters that detach from the largest cluster due to bond
breaking. Since the mass of all beads is the same in DPD simulations (see section 4.2), we calculate
a fractional mass loss as f7(t) = 1 — N(t)/N, (black curve in Fig. 4.5a, t, = 20,500), where
Ny (t) is the size of the largest cluster (expressed in the number of precursors), and N, = Ny (0) is
the total number of precursors. Thus, f denotes the fraction of polymer beads that are no longer
bonded to the hydrogel film. Two mass loss regimes can be distinguished in this fractional mass
loss data. A slow mass loss regime is initially observed as only small fragments leave the hydrogel

network. This slow regime occurs even though a significant fraction of degradable bonds have
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broken (the fraction of degradable bonds intact for the same simulation until the reverse gel point

is shown in Fig. 4.5a, dashed curve).
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Figure 4.5 (a) Fractional mass loss from the largest topological cluster (black curve) and the
largest agglomerate (red curve) measured up to the reverse gel point (t=20,500) for the N, =
6, 8x8x4 hydrogel film, degradation rate is k = 4.5x107° in dimensionless units. The dashed line
represents the fraction of degradable bonds intact, p(?), for the same simulation run. Snapshots of
the degrading film at (b) t=10,000 and (c) t=18,000 (corresponding time instances are marked in
(a)). The fragments within the interaction distance with the largest agglomerate, including the
fragments that are stuck inside the film, are highlighted in red with the rest of the polymer shown

as translucent. (d) Number density distribution of all polymer beads in vertical direction averaged
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over xy plane (solid line), largest cluster (dashed line) and largest agglomerate (filled circles) at

t=0 (black), t=10,000 (red), and t=18,000 (green).

For example, in the simulation in Fig. 4.5a, at t = 10,000 only =5% of the mass is lost (f7(t) =
0.05) while =35% of the degradable bonds have broken (this time instant is marked by a circle
(b) in Fig. 4.5a). In this regime, erosion primarily occurs from the surface where the tetra-arm
precursors have lower connectivity to the film. Some precursors get detached but remain within
the bulk of the largest cluster as discussed below. However, bonds breaking in the bulk primarily
contribute to reduction in number of elastically active polymer strands and hence to the decrease
in crosslink density and corresponding swelling of the hydrogel film, as seen in Fig. 4.1c. The
initial slow mass loss from the topological largest cluster notably accelerates before the reverse
gelation occurs primarily due to the detachment of larger fragments that consist of several tetra-
arm precursors, as seen in Fig. 4.1d.

The above definition of f;(t) is purely topological and does not account for spatial
distribution of the clusters. Consequently, it does not distinguish between the broken fragments
that are no longer in contact with the film and the broken fragments that remain within the bulk or
within an interaction distance from the surface of the film. Hence this definition overestimates the
actual mass loss from the film. To estimate the mass loss only due to the fragments that no longer
interact with the film, we define a distance-based cluster or an agglomerate as a set of beads each
within 7, from at least one other bead in the agglomerate. We correspondingly introduce mass loss
from the largest agglomerate as: fp(t) =1 — Np(t)/Ny, where N, is the size of the largest
agglomerate (number of beads within the agglomerate normalized by the size of the precursor).

The evolution of f, for our reference case is provided in Fig. 4.5a (red curve). The fragments that
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remain in the bulk or at the surface of the topological largest cluster are now incorporated into the
distance-based largest cluster (or agglomerate). These fragments are highlighted in dark red and
shown through the hydrogel film (the film is shown as translucent) in the snapshots at t=10,000
(p=0.64) and at t=18,000 (p=0.44) in Fig. 4.5b and 4.5¢, respectively. Note that reliable calculation
of the agglomerate sizes requires that the simulation box size is large enough in the z-direction to
allow space for swelling and for the detached clusters to diffuse away from the film. We chose the
box size of 50 units in z-direction since calculation of f for the hydrogel film with reference

parameters set is independent of the box size above this value (Fig. 4.6).
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Figure 4.6. Comparison of f; (solid) and f, (dashed lines) during the degradation of the hydrogel
film as a function of relative extent of reaction with z direction box size 30 (black), 40 (red), 50

(green) and 60 (blue) units.

To characterize the spatial distribution of clusters during erosion, we compare the number
density distribution of all polymer beads in the simulation box with the distribution of those beads

that form the largest topological cluster and the largest agglomerate. Before any bonds are broken,
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the hydrogel film constitutes the largest cluster (both topological and distance-based). The number
density of this equilibrated film along z direction (averaged over xy plane) is shown in black in
Fig. 4.5d. The film thickness and spatial location prior to the degradation can be clearly identified
from the black curve. As degradation begins, the film thickness increases due to swelling; this is
seen in the density distributions at t=10,000 (red curves in Fig. 4.5, p=0.64). At this time instant
(early stages of degradation), the difference between the density distribution of all polymer beads
(solid line), and that of the largest topological cluster (dashed line) and largest agglomerate
(circles) are minor. The distribution for the largest agglomerate closely follows that for all polymer
beads (solid lines and circles) and the difference between the largest agglomerate and largest
topological cluster is caused by the fragments highlighted in red in Fig. 4.5b. Quantitatively, these
fragments constitute only 3.15% of the mass of the largest topological cluster at t=10,000. As the
reverse gel point is approached, the relative contribution of such fragments increases to about
38.00% at t=18,000 (p=0.44, Fig. 4.5c). At this later stage of the degradation the density of the
largest topological cluster within the bulk region of the film (green dashed line in Fig. 4.5d)
becomes notably lower than the density of all polymer beads and the density of the largest distance-
based cluster (solid and dotted green lines, respectively). The number density distribution of the
largest agglomerate matches the density distribution of all polymers in the bulk region of the film
(solid and dotted green lines overlap within the bulk), but attains notably higher values than that
for the largest topological cluster close to film surface due to the clusters that broke off but remain
within the interaction distance. Hence, f}, defined above accounts for the largest topological cluster
and the smaller topological clusters that are either stuck within the film or remain within the
characteristic interaction distance. The latter contribution increases with time as the surface-to-

volume ratio of the degrading cluster increases.
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Figure 4.7. Snapshots of the degrading film for parameter sets B(a,d), C(b,e) and E(c,f) (see Table
4.1). Polymer fragments that either remain stuck within the percolated film or remain within the
interaction distance from it are shown in red. Water beads and fragments that are no longer within
the interaction distance with the film are hidden for clarity of representation. The beads
representing largest topological cluster are translucent. The snapshots in the top row (a-c) are taken
at t=10,000, corresponding to the fraction of degradable bonds intact p=0.64. The snapshots in the

bottom row (d-f) are taken at t=18,000,corresponding to p=0.44.
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4.3.3 Effect of sample thickness and crosslink density

Having established the essential characteristics of degradation of a hydrogel film with the
reference parameters set, we now turn our attention to the effects of varying physical parameters
of the polymer network, specifically film thickness and crosslink density. The detailed parameters
are provided in Table 4.1 and representative snapshots during degradation are provided in Fig. 4.7.
First, we varied the film thickness at a constant crosslink density (N, = 6) by varying the number
of unit cell repetitions in z-direction from three to six (parameter sets A-D). The thickness of the
film prior to the degradation can be clearly seen from the number density plots in z-direction
averaged over x-y plane (Fig. 4.8a). Red, black, green, and blue curves in Fig. 4.8 correspond to
sets A through D respectively. In the second independent series of simulations, we increased N,
effectively decreasing the crosslink density while keeping the number of precursors fixed. This
corresponds to parameter sets A (N,, = 6), E (N, = 10) and F (N,, = 14), with corresponding data
represented by black, orange, and purple curves in Fig. 4.8. Note that such an increase in N, also
effectively increases the sample thickness prior to the degradation due to the more pronounced
swelling at lower crosslink density. Notably, the pairs of simulations parameter sets C, E and D, F
are chosen to have matching thicknesses (Fig. 4.8a) but different crosslink densities. The
snapshots of the thinner and thicker films than that in the reference case during the degradation
(sets B and C), and the snapshot of the sample with lower cross-link density (set E) are shown in
Fig.4.7a,d, Fig. 4.7b,e and Fig. 4.7c,f respectively. These snapshots represent relatively early stage
of degradation (Fig. 4.7a-c, top row, t=10,000, p=0.64) and time instant close to the reverse gel

point (Fig. 4.7d-f, bottom row, t=18,000, p=0.44), respectively.
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Figure 4.8. (a) Number density distribution of all polymer beads in vertical direction averaged
over x and y coordinates prior to degradation. (b) Polydispersity Index, PDI, as a function of
the relative extent of reaction, € . The inset shows maximum value of PDI as a function of a

number of precursors in the film, N,. (c-d) Fractional mass loss from the largest topological
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cluster, fr in (¢) , and from the largest agglomerate, f;, in (d) as functions of the relative extent
of reaction, € . The colors in (a-d) represent simulations with the parameter sets provided in

Table 4.1 as following: A(black), B(red), C(green), D(blue), E(orange), and F (purple).

We now define the relative extent of degradation reaction in analogy with the definition
used to characterize the gelation process[87]. Recall that the extent of degradation reaction is 1 —
p, hence the relative extent of reaction, €, defining a proximity to the reverse gel point, can be
expressed as

e =0 (8)

C1-pc

The value of € is calculated for each simulation using the corresponding calculated reverse
gel point p.(= p¢’) for that simulation. € increases from -1 at the onset of degradation to zero at
the reverse gel point with positive values following the reverse gel point. The quantities in Fig. 6b-
d are plotted as a function of the proximity to the reverse gel point.

The trends in PDI discussed above (Fig. 4.4b) hold for all cases considered. Films with the
larger number of precursors show a higher peak in PDI while an increase in N, (an increase in the
size of the precursors) has no impact on the PDI. This is anticipated since the PDI is normalized
by the size of individual precursors. The maximum value of PDI is plotted as a function of the
number of precursors in the inset of Fig. 4.7b and increases approximately linearly with an increase
in the number of precursors, No. When each PDI(e) curve is normalized on Ny, all curves
approximately collapse into a single master curve (Fig. 4.9), indicating that the polydispersity
index normalized on the number of precursors depends only on the proximity to the reverse gel

point.
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Mass loss from the largest topological cluster, fr(€), shows the same trend for all the cases
considered (Fig. 4.7d). Large error bars in Fig. 4.7d indicate high variability between the individual
independent simulations for the same parameters, however average trends overlap for all the

parameter sets (various number and sizes of precursors).

0.08

0.00

Figure 4.9. Comparison of PDI normalized by the number of precursors Ny for the films described

in Table 4.1. Colors correspond to the same parameters sets as in Fig. 4.7.

Hence these results show that the fraction of broken-off segments, or the mass loss from the largest
topological cluster, depends solely on the proximity to the reverse gel point and does not depend
on the total number and size of the precursors for all the cases considered herein. For all the cases
considered, the average values of fr remain close to the apparent mass loss from the largest

agglomerate, fp, for eS—0.65 (Figs. 4.7d and 4.7¢).
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With an increase in € until the reverse gel point is reached, fp increases significantly
slower than f7 . In the proximity of the reverse gel point € = 0 the fractional mass of the broken-
off fragments is more than three fold of the apparent mass loss, fp. Furthermore, erosion from the
largest agglomerate distinctly varies for some of the cases considered, despite of the high
variability of data from individual runs (Fig. 4.7¢). The mass loss closer to the reverse gel point is
lower for the films with larger number of precursors (green and blue curves) or lower crosslink
density (orange and purple curves) compared to the reference case (black). This distinction is clear
in the representative snapshots in Fig. 4.7 and in Fig. 4.5b,c. For the film with the reference
parameter set and the film with the smaller number of precursors (Fig. 4.5b,c and Fig. 4.7a,d
respectively), a significantly smaller fraction of precursors interact with the film after detachment
compared to the film with more precursors (Fig. 4.7b,e) and the film with lower crosslink density
(Fig. 4.7¢c,1).

To compare the effect of varying crosslink density at the same initial film thickness we
compared the pairs of simulations C, E and D, F. Both of these pairs have matching thicknesses as
seen in Fig. 4.8a, but different N, ( N, = 6 insets C, D, N, = 10 inset E, and N, = 14 in set F).
The mass loss from the largest agglomerate shows similar trends for the two simulations within
each pair. This indicates that in the considered cases the crosslink density does not significantly
affect the erosion trend while the actual film thickness has more pronounced effect. The
degradation rate constant and the chosen box size did not have an impact on the mass loss from
the largest agglomerate, indicating that the detached fragments have sufficient space and time to
diffuse away from the largest agglomerate. However, a significant fraction of these fragments
remains within or in the close proximity of the largest cluster representing a degrading film near

the reverse gel point.
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4.4 Conclusions

Herein, we utilized DPD simulations to capture degradation and erosion of polymer
networks on the mesoscale. We characterized the degradation process via tracking the time
evolution of distribution of broken-off fragments. The reverse gel point corresponding to the
disappearance of the percolated network was calculated using the reduced weight-average and z-
average degrees of polymerization. We then used this calculated reverse gel point to define the
relative extent of reaction which identifies the proximity to the reverse gel point. We demonstrated
that the fraction of broken-off fragments depends solely on the relative extent of reaction for the
samples with various number of precursors, different film thicknesses and different crosslink
densities prior to the degradation. We showed that the polydispersity index exhibits a distinct peak
prior to the disappearance of the percolating network and strongly decreases at the reverse gel
point. The observed peak in PDI scales approximately linearly with the number of precursors;
further, the PDI normalized on the total number of precursors depends primarily on the proximity
to the reverse gel point.

The reverse gel point measured in our simulations is comparable to predictions of bond
percolation theory on a diamond lattice[110]. Small positive deviations from the analytical value
seen in our measurements are likely due to the relatively small number of precursors[106]. The
dependence of the reverse gel point on number of precursors is analyzed in the next chapter. This
analytical value also describes the experimentally measured values of both the gel point[111, 112]
and reverse gel point[26] of networks formed with tetra-arm precursors. Notably, the measured
value of the reverse gel point is significantly higher than the value predicted by the mean-field
theories for the gel point of tetra-functional networks[104, 105]. This is attributed to the fact that

the assumption of absence of any intramolecular connections used in these mean-field theories is
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not expected to hold for a network[109] prior to degradation. Relatively high reverse gel point
observed herein is consistent with the delay of the gel point during the gelation process in the
presence of the finite-size loops [106].

Further, we characterized the erosion from the swollen polymer network via tracking the
apparent mass loss that accounts for the fragments remaining stuck within or in contact with the
percolated network (fp). We showed that while this apparent mass loss remains approximately the
same as mass loss from the largest topological cluster for low relative extent of reaction
(e5—0.65), an increase in € until the reverse gel point is reached results in significantly slower
increase in fp than f7 . In the proximity of the reverse gel point the fractional mass of the broken-
off fragments is more than three fold of the apparent mass loss, fp. Furthermore, we quantified
that the erosion process from the largest agglomerate does not solely depend on the relative extent
of reaction but also distinctly varies with the physical properties of the gel such as sample
thickness. Hence both characteristics, fj and fr, are necessary to quantify and predict the outcome
of the erosion process. These results elucidate the main features of degradation and erosion on the
mesoscale and could provide guidelines for designing degrading materials with controlled
properties. The work described in this chapter is published in the Journal of Physical Chemistry.
The corresponding journal article is ref. [70] of the dissertation and the permission to reproduce

this work in this chapter is included in Appendix B of this dissertation.
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CHAPTER FIVE

Mesoscale modeling of nanogel degradation at interfaces and in bulk

5.1 Introduction

Nanogels and microgels find their uses in a broad range of applications including drugs
and biomolecules delivery and controlled release[5, 120], catalyst carriers[121], interfacial
catalysis[122], stimuli responsive emulsion stabilizers[123], and fabrication of scaffolds for cells
and tissue culture[124]. These polymeric particles can be fabricated of various shapes, sizes,
softness[123, 125], and with tailored stimuli-responsive functionalities. Recent advances in
synthesis of functional nanogels and microgels and their applications are surveyed in a number of
recent reviews[125-127]. The equilibrium size of a microgel swollen in a solvent depends on
solvent quality and is defined by the balance between the osmotic and elastic contributions to the
stress tensor. This balance can be externally controlled for a broad range of stimuli-responsive
hydrogel networks that can respond to environmental changes such as changes in pH[128],
temperature[ 128, 129], and external light[130]. As an example, thermoresponsive poly(N-
isopropylacrylamide)-based gels undergo a temperature induced volume phase transition resulting
in a fraction of water being expelled from the network, ultimately causing a particle collapse and
respective reduction in microgel size[128, 129, 131]. Photodegradation of nanogels and microgels
can be used to remotely control drug delivery[132] or to control properties of scaffolds for
multidimensional cell culture[124].

Nanogels and microgels are also extensively used in multi-component systems with two
incompatible liquids, where the particles adsorb onto and spread over the liquid-liquid interface
effectively decreasing the interfacial tension. In this case, the equilibrium structural characteristics,

such as shape and size, of nanogel particles are determined by a range of factors including
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interfacial tension between the two liquids, particle elasticity, and affinity of the nanogel polymer
to either liquid phase. An extent of deformation and an effective depth of protrusion of microgels
into each of the two liquid phases depends on the affinity between the polymer strands and each
of these phases[122, 133, 134]. The interfacial tension between the two liquid phases also
significantly affects the microgels spreading, with higher extent of spreading observed for higher
interfacial tension[135]. Softer nanogels spread to a greater extent over a liquid-liquid interface
compared to more densely crosslinked nanogels and hence provide better emulsion stability[ 123].
Further, the spreading of the microgels and nanogels can be controlled dynamically via a range of
external stimuli[128], making these particles excellent candidates for emulsion stabilizers to form
Pickering emulsions[123, 136]. Similar to the microgels in a single solvent, a volume phase
transition can be triggered in thermoresponsive or pH-responsive gel particles adsorbed at the
interfaces resulting in a reduced interfacial coverage due to particle collapse and a subsequent loss
of emulsion stability[68, 128].

Herein, we characterize controlled degradation of a nanogel particle in a single solvent
and at the liquid-liquid interface. Controlled degradation is of interest since it can be used to
dynamically tailor size, shape and thereby transport properties of nanogels and microgels in
various environments. In particular, photo-triggered degradation can be turned on and off
remotely, which could bring further advantages to regulate properties of these soft particles
and rates of cargo release from these nano- and microcarriers. For the nanogels adsorbed at the
liquid-liquid interfaces, controlled degradation could provide means to dynamically tune
properties of these interfaces, such as interfacial tension and topography of a liquid-liquid

interface. Unlike rather comprehensive understanding of gelation processes for various
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polymer systems, understanding of the process of network degradation to date remains limited.
Controlled degradation can be introduced in micro and nanogels via several pathways[137].
Previous experimental studies provide insights into the erosion of the microgels with
chemically labile crosslinkers[138, 139] and microgels with blocks degradable via hydrolysis
of ester bonds[140]. Progress of microgel degradation in experiments has been tracked via
measurement of the size of microgel particles either in suspensions[120, 140, 141] or adsorbed
on a solid substrate[138, 139]. Measurements in suspension show distinctly different profiles
for microgels with homogenous network architecture compared to microgels with an initial
core-shell structure[141]. The measurements at the surface are either performed by direct
observation of degradation of microgel particles adsorbed on a solid substrate[138] or by
extracting the nanogel particles from the degrading medium and then depositing them on a
solid substrate for measurements and characterization[139].

Since nanogels and microgels are soft polymer networks with characteristic linear sizes
on the order of tens to hundreds nanometers to tens of microns, respectively, mesoscale
modeling approaches are commonly used to capture their behavior in solvents and at the
interfaces. The DPD approach[58, 66, 142] has also been used to model a broad range of multi-
component systems[37-39, 41, 43, 44, 90, 142-150] and is often chosen to model behavior of
microgels at liquid-liquid interfaces[68, 122, 133, 151-155]. To model controlled degradation
and erosion of these microgels, we use the framework described in chapter three which uses
the modified segmental repulsive potential (mSRP)[62] to overcome unphysical crossing of

polymer chains along with modeling degradable bonds[70, 84]. Similar to chapter four, as a
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model polymer network, we focused on gels synthesized by the end-linking of four-arm
polyethylene glycol (PEG) precursors[23, 24, 94] originally fabricated by Sakai et al[23]. As
noted also in chapter four, these precursors can be modified during their synthesis by including
photodegradable functional groups, for example nitrobenzyl[14, 27, 28] or coumarin[24, 27]
groups. We showed[70] that the reverse gel point characterizing disappearance of the
percolated network is close to but somewhat higher than the value predicted by the bond
percolation theory on a diamond lattice[26, 110]. In what follows, we use the same model
polymer network with controllably degradable crosslinks between four-arm polymer
precursors[70] and focus on characterization of structural characteristics of the remnant
nanogel and distribution of broken-off fragments during the degradation process. We consider
degradation of nanogels in a single solvent and at the liquid-liquid interface. We show that the
affinity between the polymer and solvent strongly affects the evolution of shape and size of
the remnant nanogel during the degradation process. The work described in this chapter is
published in the Macromolecules. The corresponding journal article is ref. [156] of the
dissertation and the permission to reproduce this work in this chapter is included in Appendix
B of this dissertation.
5.2 Specific details of the simulation protocol

The overall general simulation approach used in this work is the same as that used in
chapter four. One specific aspect relevant to this chapter is that in addition to the water and PEG

beads, a third kind of beads need to be introduced for the hydrophobic oil phase in the system. For

this purpose, we use the same mapping that was originally derived by Groot and Rabone[36] and
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which we have used in the previous chapters. Within this coarse-graining scheme, one oil bead
represents three CH> groups[36]. To summarize the coarse-graining choice for this chapter, three
water molecules are coarse-grained into a single DPD bead, one hydrophilic PEG bead is taken to
represent[157] 1.5 CH>OCH: groups and one hydrophobic bead represented three CH» groups,
same as in ref. [36].

Also as described in chapter two and four previously, the interaction parameter between
the beads of different types is chosen based on the affinity between the respective moieties as[58]
a;j = a; + 3.27y;;, where yx;; is the Flory-Huggins interaction parameter. The repulsion
parameter between the polymer and water beads is chosen based on the PEG—water Flory—Huggins

interaction parameter[29], y = 0.45, as ap,, = 79.5, and the repulsion parameter between the

polymer and oil beads is chosen as a,,, = 85.0. Both these values are close to the values chosen

po
in Ref. [36] to capture the interactions between polyethyleneoxide and water beads and
polyethyleneoxide and oil beads (where one DPD bead represents three CH» groups), respectively.
For simplicity, the degradable end groups are taken to have the same solubility as PEG beads. We
vary the repulsion parameter between the water and oil phase in the studies below by setting
a,» = 100,a,, = 120, and a,,, =150 in selected series of simulations; note that an increase in
a, corresponds to an increase in the interfacial tension between the oil and water phases[58].
Within the range of chosen values of a,,,, the oil phase is immiscible with water; it had been
previously shown in DPD simulations by Nair et al [158] that the dependence of a mean square
radius of gyration on the degree of polymerization of chains composed of oil beads with a,,, =

100 follows an anticipated scaling for poor solvent. The specific choice of the repulsion

parameters in each simulation series below along with the system sizes is provided in Tables 5.1
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and 5.2 below. Also, same as in chapter four, all quantities in this work are provided in reduced
DPD units, with 7, as the unit length, t as the unit time, and kT as the unit of energy.

To simulate bond breaking during degradation, we use the framework described in chapter
three with a reaction time that is taken ten times larger than the time for each update of positions
of the beads[46, 47, 49-51], 7,, = 10At. Similar stochastic approaches have been used previously
for various reactive systems[46, 49, 81, 97]. For various polymer networks undergoing controlled
photodegradation, the degradation occurs[46] orders of magnitude slower than the characteristic
diffusion times on the relevant length scales[70, 84]. Hence we use relatively low degradation rate
set by[70] P = 9107 (corresponding to degradation rate constant of k = 4.5x107°771) to
ensure that our system is in a kinetically limited regime[46, 84]. After a bond breaking event
occurs, the two beads remain unbonded for the rest of the simulation with no change to the
interaction parameters of these beads.It should also be noted that although bond breaking can take
place every ten timesteps, we only store the bead trajectories every t); = 1000At to decrease file
sizes with minimal loss of information.

The same diamond-like lattice[46, 98] as described in chapter four is used as an initial
configuration of the nanogel’s polymer network. Same as in the case of hydrogel films, the
effective “unit cell” is created by first placing tetra-functional beads at lattice sites and then placing
N,./2 beads for each of the four polymer arms[70], so that there are N, beads between the centers
of two bonded precursors. To create nanogel particles, we first replicate this unit cell N, times
in each of the x, y, and z directions. The fractional precursors with a functionality less than four at
the faces of the initially cubic network are deleted and a sphere is drawn inside the cubic network
with its center as the center of the cube and a diameter (D,,,;) smaller than the side length of the

cube. All precursors with any bead outside of the sphere are deleted to generate approximately
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spherical nanogel particle with an integer number of total precursors N,, and with dangling chains

at the surface of the network[84]. All the parameters used for constructing the initial network are

provided in Table 5.1. Prior to the production runs, all the nanogels are equilibrated in the water

phase for 12x10° time steps without allowing for degradation.

Table 5.1: Parameter sets corresponding to the degradation simulations in single solvent

Unit Total Total Beads in
cell Radius | polymer degradable Simulation | one
Set | N, |repeats | factor | beads N, | bonds a,y | boxsize precursor
A 10 | 5x5x5 0.97 9996 476 836 79.5 | 60x60x60 21
B 10 | 6x6x6 0.85 12537 597 1032 79.5 | 60x60x60 21
C 10 | 6x6x6 0.97 16821 801 1416 79.5 | 60x60x60 21
D 6 6x6x6 0.96 10413 801 1416 79.5 | 50x50x50 13
E 20 | 6x6x6 0.64 9799 239 380 79.5 | 60x60x60 41
F* 6 6x6x6 0.77 5421 417 708 79.5 | 60x60x60 13
G 10 | 5x5x5 0.67 3612 172 284 79.5 | 60x60x60 21
H 10 | 6x6x6 0.72 6909 329 560 79.5 | 60x60x60 21
I 10 | 6x6x6 0.77 8757 417 708 79.5 | 60x60x60 21
J 16 | 6x6x6 0.77 13761 417 708 79.5 | 60x60x60 33
K 10 | 6x6x6 0.94 15309 729 1296 79.5 | 60x60x60 21
L 10 | 6x6x6 0.77 8757 417 708 82.0 | 60x60x60 21
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M 10 | 6x6x6 0.77 8757 417 708 85.0 | 60x60x60 21
N 6 6x6x6 0.77 5421 417 708 82.0 | 60x60x60 13
0] 6 6x6x6 0.77 5421 417 708 85.0 | 60x60x60 13
* reference parameter set
F*, N and O parameter sets are used to analyze impact of solvent quality in main text.
Table 5.2: Parameter sets used in simulations of degradation at interface
Set | a,, | Simulation box size | # water # oil beads | # polymer Total beads
beads beads
A | 100 | 60x60x70 372579 378000 5421 756000
B 120 | 60x60x70 372579 378000 5421 756000
C 150 | 60x60x70 372579 378000 5421 756000

Properties of the nanogel polymer networks in sets A-C are same as in set F in Table 5.1

An equilibrated nanogel particle swollen in water is shown in Fig. 5.1b. PEG beads are

shown in cyan, and the end groups of both precursors are shown in red and blue, respectively. For

clarity of representation, the water beads are hidden. The degradable bonds in the system are

chosen to be the bonds between the end functionalities (Fig. 5.1a) since the cleavable sites are

typically chosen to be in the proximity of the end functionality[24, 26]. Three water molecules are

represented by a single DPD bead, the oil phase is modeled using short chains with four beads

each[158], and the number of beads between the centers of two bonded precursors, N,, is varied

as detailed in Table 5.1.
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The processes of degradation of nanogels in a single solvent and degradation of nanogels
adsorbed at the liquid-liquid interface are characterized and compared in this study. In all the
simulations of the gel particles degrading in a single solvent, bond breaking is switched on
immediately after the equilibration step and the degradation is carried on for 3x10° time steps. In
all the simulations involving degradation of the nanogels at the liquid-liquid interface, the nanogels
equilibrated in water are first placed into the water phase in the binary oil-water system and are
allowed to adsorb onto the interface and attain a new equilibrium shape. The degradation is turned
on only after the gels are equilibrated at the liquid-liquid interface; then the degradation study is

carried out for 3x10° time steps.

5.3 Results and Discussion

5.3.1 Characterizing nanogel degradation in bulk and at the liquid-liquid interface

We first characterize degradation of a nanogel depending on its environment via tracking and
comparing the main characteristics of the degradation process for the same nanogel particle
swollen in a good solvent and adsorbed at the liquid-liquid interface. The snapshots during
degradation are shown in Fig. 5.1 with panels b-d corresponding to degradation in water and panels
e-j corresponding to degradation at the oil-water interface. The parameters are chosen
corresponding to the reference parameter sets (Tables 5.1 and 5.2 above). Prior to the onset of
degradation, the nanogel swollen in water attained approximately spherical shape upon
equilibration (Fig. 5.1b). During degradation, the breaking of bonds results in an effective decrease
in crosslink density accompanied by detachment of fragments from the nanogel particle. To
characterize the degradation process, we first define a cluster as a set of bonded precursors at any
stage during the degradation[70]. In a similar manner, we define the nanogel as the largest cluster

of bonded precursors at a given time instant. This definition is relevant until the reverse gel point,
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since only until this point the largest cluster represents the remnant part of the original nanogel, as
can be seen in Fig. 5.2. The largest cluster of chemically bonded precursors is highlighted in all
images in Fig. 5.1, while the detached fragments are shown as translucent. The decrease in the
effective crosslink density is pronounced at relatively early times, during which approximately
homogenous swelling of the remnant nanogel in water is observed (Fig. 5.1c, also see quantitative
characterization below). At this stage, a fraction of the fragments that are detached from the

nanogel diffuses away from the network while some fragments remain stuck inside the particle.
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Figure 5.1. Nanogel degradation in water and at the oil-water interface. (a) Schematic of
the fragment of nanogel network with degradable bonds. Snapshots of a single nanogel
corresponding to the reference parameter set (set F in Table 5.1), (b-d) nanogel degradation in
good solvent and (e-j) degradation of a nanogel initially adsorbed at the oil-water interface.
Dimensionless time, in units of 7, is t=0 in (b, e, h), t=10,000 in (c, {, i), and t=22,000 in (d, g,
j). Polymer beads are colored as described in the text, oil beads are shown in red and water
beads are hidden for visual clarity. (e-g) Side view and (h-j) top view of the nanogel at the
interface. In the above snapshots, the largest cluster is highlighted while all other polymer

beads shown as translucent.

At late times, due to detachment of sufficiently large fraction of fragments, the nanogel loses its

spherical shape.
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Figure 5.2: Tracking nanogel as the largest connected cluster in the system. Displacement of

the center of mass of the largest cluster every 5000 simulation steps (d.ou, black curve, left axis)
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and reduced weight average degree of polymerization, (DP,,, red curve, right axis) during
degradation of the nanogel with reference parameters set F (Table 5.1). Large “jumps” in dqouy
only occur at or after the reverse gel point (global peak in DPy)) indicating that up to the reverse
gel point the largest cluster corresponds to the remaining portion of the original nanogel, hence
only smooth changes in d .y, are observed until the reverse gel point. As degradation continues,
either the fragment corresponding to the original nanogel or one of the larger fragments that broke-
off can become the largest clusters in the system; large “jumps” in d;oy indicate that different

fragments separated by a notable distance are identified as largest clusters at various time instants.

In comparison to the nanogel in the water (Fig. 5.1b-d), the nanogel at the liquid-liquid
interface has an initial asymmetric shape prior to the degradation (Fig. 5.1e,h). This shape is
defined by the interplay between the energetically favorable shielding of oil-water contacts and an
energy penalty due to the increase in elastic energy contribution upon nanogel deformation. Prior
studies demonstrated effective flattening of gel particles at the interfaces[123, 129, 133] with more
pronounced interfacial spreading of loosely crosslinked gels. The specific deformation and the
depth of protrusion into each liquid phase depends on the affinity between the polymer strands and
these liquids phases[122, 133, 134]. For the chosen affinity of the polymer network with both
liquid phases (see section 5.2), the nanogel adsorbed at the interface largely remains in the water
attaining close to hemispherical shape prior to degradation. Similar to the nanogel in water
considered above, at the beginning of degradation the decrease in crosslink density is notable and
correspondingly leads to the enhanced spreading and interfacial coverage (Fig. 5.1f,i). The
remnant nanogel particle along with most of the detached fragments remains adsorbed at the

interface with the adsorbed fragments diffusing along the interface to promote shielding of a large
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number of unfavorable oil-water contacts. The fragments that detach while in the water phase are
also later adsorbed by the interface (one such fragment is highlighted in Fig. 5.1f). Below we
characterize the reverse gelation transition for the nanogels at the interface and that in a single

solvent.

5.3.2 Characterizing nanogel size, shape, reverse gel point, and mass loss

Prior to the degradation the nanogel constitutes the only cluster in the system. During the
degradation process, clusters of different sizes (i.e. both different numbers of precursors and
different geometric sizes) and shapes are formed in the system. The nanogel particle, defined above
as the largest cluster of connected precursors, contains N(t) precursors at any time, out of the
initial N, precursors in the original nanogel. We measure the size and shape of the degrading

remnant nanogels via the gyration tensor of the largest cluster at any time. The components of the

Np ZNb

gyration tensor are given as Sy,, = N X2 ]=i(r,§l - ,fl)(r,{ -1 ), where m, n indicate cartesian

directions, N, is the total number of beads comprising the nanogel and 73}, is the m-th component

of the position vector 1! of the i

particle. The eigenvalues of the gyration tensor,
A4, 43,and A3, provide a measure of characteristic size squared along three principle directions
and allow one to calculate the radius of gyration, R,, and the shape anisotropy, k?, as:
R =2+ 2+ 23 (5.1)
and

2 2 2
2 = 3(A5+15+43) _t (5.2)

T 2(A+2,+42)2 2
The k? is typically used to characterize shapes of various polymeric species[61, 159, 160] and

ranges from k2 = 0 for an ideal sphere to % = 0.25 for a planar object (with A; = A, and A; =
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0) to k2 = 1 for points on a line[159]. For linear polymer chains, k? ~ 0.43 and ~ 0.39 in good
and theta solvents, respectively [161-163].

The time evolution of R, and k? for a nanogel particle (reference parameter set F in Table
5.1) degrading in water (black curve) and at the interface (red curve) is provided in Fig. 5.3 a,b.
The values at t = 0 indicate the equilibrium values prior to degradation. As degradation begins,
the R, of the nanogel in the water increases approximately up to t ~ 19,000 for the chosen
simulation run (Fig. 5.3) and then decreases. During the initial increase in Ry, up to t = 10,000,
there is no significant change in k2. Close to zero values of k? correspond to the equilibrium
spherical nanogel shape prior to and during initial stages of degradation. Hence, the nanogel size
initially increases without any notable increase in shape anisotropy; this indicates that the nanogel
undergoes approximately homogenous swelling maintaining the spherical shape during this initial
phase of degradation. The second portion of the increase in R, is somewhat less smooth (at times
approximately within the interval t € [10*: 1.9 - 10*] for the simulation in Fig. 5.3); during this
time frame, some increase in k? is observed, indicating notable deviations from spherical
symmetry. The latter sharp decrease in Ry is accompanied by a significant increase in the shape
anisotropy. As we show below, this decrease in R, and increase in k? correspond to the reverse
gelation transition. At late times the measured value of Ry and k2 correspond merely to the largest

polymeric cluster in the system and not to the remnant nanogel (as discussed in Fig. 5.2).
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Figure 5.3. Time evolution of (a) the radius of gyration, R,, (b) shape anisotropy, k2, (c)
reduced weight average degree of polymerization, DFP,, . The points marked by arrows

correspond to the snapshots in Fig. 5.1. The data in ¢ are normalized by the corresponding

maxima.

Thus at late times the value of R, decreases significantly while x? fluctuates around an average
value of k2 ~ 0.40 + 0.19 (Fig. 5.3b, the average is taken at time interval t € [35000: 50000]

using 150 frames). Large fluctuations of the shape anisotropy were previously reported while

characterizing conformations of polymers of various architectures[61, 161-163].
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For the nanogel at the interface, the initial values of both R; and x? are higher than the

values for the nanogel in water due to the initial spreading of the nanogel at the interface prior to
degradation as discussed above. As degradation begins, the R increases faster compared to the
nanogel in water and then decreases sharply at late times (t >~ 18,000 for the simulation in Fig.
5.3). In contrast to the degradation in water, k? for the degradation at interface increases
continuously from the beginning of degradation. This indicates that the nanogel loses its initial
shape at the interface immediately after the onset of degradation since the degradation promotes
the spreading over the interface.

Next we relate the observed trends in R, and k2 to the reverse gelation transition in both
cases of degradation in a single solvent and degradation at an interface. Analogous to the approach
used to identify gel point in the simulations of gelation process[101, 102, 106, 107], the location
of the reverse gel point can be identified[70], as in the orevious chapter, using the reduced weight

average degree of polymerization, DF,,, defined as

=" n;i(t) i?
' ni(t)i !

DPI(t) = (5.3)

where n; (t) is the number of topological clusters with size i at time t and the ’ indicates summation
over all but the largest cluster. The DP,, curves for the degradation of a nanogel in water (in black)
and at the interface (in red) are shown in Fig. 5.3¢c. The critical time instant corresponding to the
peak value of DP,, indicates the reverse gel point[70], which is analogous to the definition of gel
point in gelation simulations[101, 102, 106, 107, 113, 115]. The time instant corresponding to
peaks in DP,, in Fig. 5.3c, t., allows one to identify a reverse gel point as a critical value of the
fraction of degradable bonds intact at this time instant[70], p. = exp (—kt.). The exact location
of the reverse gel point somewhat differs for the individual simulations due to the stochastic nature

of the degradation process. Indeed, the reverse gel points are approximately within the error bars
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for the two scenarios when averaged over five independent simulation runs. Specifically, p, =
0.44 + 0.01 for the degradation in water and p, = 0.47 £ 0.05 for the degradation at interface.
This is expected since the current model assumes, for simplicity, no effect of the surrounding
moieties on the probability of bond breaking. Once the reverse gel point for a given system is
identified, the proximity to this point at a given time instant can be defined via the relative extent
of degradation[70], € , which was defined in the previous chapter and is analogous to the
definitions of relative extent of gelation during the gelation process[87]:

_ DPc—p
e=bt (5.4)

Note that the fraction of bonds broken, 1 — p, defines an extent of the degradation reaction and
hence the definition of € above provides a relative measure of proximity to the reverse gel point.
With the above definition, € = —1 corresponds to the onset of degradation, € = 0 to the reverse
gel point, and positive values of € correspond to the degradation after the reverse gelation
transition. In what follows, we plot all data characterizing degradation processes as a function of
€ to identify main trends in evolution with the proximity to the reverse gel point.

The dependence of shape anisotropy k2, the ratio of the largest to smallest eigenvalues
A1/43, and Ry for nanogels degrading in water (black curves) and for nanogels degrading at the
interface (red curves) with an increase in the extent of degradation up to the reverse gel point is
provided in Fig. 5.4. The values in this and following plots are averaged over five independent

simulations with error bars denoting standard deviation.
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Figure 5.4. Evolution of (a) shape anisotropy, (b) ratio of largest to smallest eigenvalues, (c)
radius of gyration normalized by the value prior to degradation, and (d) topological and
distance-based mass loss for degradation in water and at the interface. The distance-based mass
loss is represented by green (in water) and blue (at interface) curves, and f7 is shown in black
(in water) and in blue (at interface). All data represent an average over five independent

simulations with error bars denoting standard deviation.

Relatively far from the reverse gel point (e ~ [—1:—0.38]), k? ~ 0 and A,/A; = 1 for the

degradation in water with relatively small error bars (Fig. 5.4a,b), confirming that the broken bonds
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at this extent of degradation result in an effective decrease of the crosslink density and nearly
isotropic swelling of the nanogel particle. Correspondingly, R, increases monotonically with
relatively small error bars at these low € (Fig. 5.4c). With further increase in the extent of
degradation of nanogel in water (¢ = —0.38), both k? and 1, /1; somewhat increase with notably
larger error bars indicating that nanogel is no longer isotropic. However, the average value of x?
and the standard deviation around mean remain low with respect to that expected for example for

a random coil configuration.

On the contrary, both k2 and A;/A; increase nearly monotonically from the onset of
degradation with the increase in € for the gels degrading at the interface (red curves in Fig. 5.4
a,b). Note that the initial values of k2 and A;/A; on these plots are defined by the equilibrium
shape of the gel particle adsorbed at the interface. As discussed above, this shape is anisotropic
and depends on the affinities between all the moieties in the system and on the crosslink density
of the nanoparticle prior to degradation. A distinct (over two orders of magnitude) increase in the
ratio 1, /A3 with an increase in € indicates that the nanogel essentially spreads over the interface
during the degradation. Correspondingly, more distinct increase in the radius of gyration
normalized by that prior to degradation is observed with an increase in € for the nanogels in water
(Fig. 5.4¢).

The characterization of topological clusters described above provides information about
the remnant nanogel particle and allows one to identify the reverse gel point. In addition, it is also
instructive to analyze the spatial distribution of fragments detaching from the degrading nanogels.
Hence, in addition to the characterization of topological clusters discussed above, we also define
a distance-based cluster or an agglomerate as the set of polymer precursors each having at least

one contact with another precursor[70] (two beads belonging to these precursors are within the
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interaction distance r,.). Correspondingly, during the degradation process we calculate the number
of precursors in the largest agglomerate in the system, Nj (€), along with the size of the largest
topological cluster as defined above, N(€). At the onset of degradation, Np(—1) = N(—1) =N,
. During the degradation, Nj, (€) can significantly exceed N (€) since it accounts for the fragments
stuck within or remaining in the close proximity to the surface of the largest topological cluster.
The fraction of precursors broken-off from the nanogel can be characterized via the topological
mass loss, fr(€) = 1 — N(¢€)/N,, while the fraction of precursors that not only broke-off but also
diffused away (to distance exceeding r,.) from the largest agglomerate (which encompasses the
remnant nanogel) can be characterized via distance-based mass loss as fp(€) = 1 — Np(€)/N,.
The fraction of broken-off fragments represented by fr(€)is indistinguishable for
degradation in water and at an interface (black and red curves in Fig. 5.4d). This is anticipated,
since topological mass loss is defined by the rate constant of bonds breaking and does not depend
on diffusion of broken-off fragments. For degradation in water, f} in this reference scenario (green
curve) is indistinguishable from f7, clearly indicating that no fragments are stuck within the largest
agglomerate or in close proximity to it. On the contrary, f;, at the interface remains close to zero
(blue curve in Fig. 3d) as the fragments that detach from the nanogel remain adsorbed at the
interface. f;, somewhat increases around € = —0.2 as some fragments diffuse away from the
nanogel particle, however at later times these fragments are adsorbed onto the interface. In the
proximity of the reverse gel point, the degraded fragments cover the interface having contacts with

largest agglomerate thereby reducing fp to values close to zero.

5.3.3 Scaling of reverse gel point
Next we identify the reverse gel point as a function of the number of precursors in the

nanogel, N,.The specific nanogel parameters used in multiple series of simulations in water and
g D P gelp p
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at the interface are provided in Tables 5.1 and 5.2. For each parameter set the critical value of p,

is found from the maximum of the reduced weight-average degree of polymerization using the
procedure described above. The values of p. provided in Fig. 5.5 are averaged over five
independent simulation runs with the error bars representing the standard deviation, Ap.. The data
from nanogels in water and at the interface are shown in Fig. 5.5 by the black and red symbols,
respectively. The data points shown by the green symbols are reproduced from chapter four on
hydrogel films[70]. The p, is lower for the simulations with higher total number of precursors and
this value of reverse gel point is also close to the analytical estimate from the bond percolation
theory on a diamond lattice[87, 110] marked by the dashed line in Fig. 5.5. There is an evident
increase in both p. and Ap, with the decrease in N,. The increase in Ap, is attributed to the
stochastic nature of the process since higher number of precursors provide better statistics. The
increase in p, upon decrease of the number of precursors is anticipated from analytical theories of
gelation reflecting the finiteness of any “simulated” system (finite number of precursors) compared

to the infinite system sizes assumed in classical percolation theories[87, 110, 164].
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Figure 5.5. Scaling of the reverse gel point with the number of precursors, Np. The
dependence of reverse gel point p. on the total number of precursors in the system. Symbols
correspond to the measured p. for nanogels degrading in water (black symbols), nanogels
degrading at the interface (red symbols) and hydrogel films from Ref. [70] (green symbols).
The dashed line corresponds to p;° = 0.39. The error bars represent standard deviation taken
over five independent simulations in each case. The red line corresponds to a weighted

nonlinear least squares fitting of the simulated data.

The following relation is expected to hold for percolation on regular lattices during gelation

process[87, 110, 115]:

pc(Np) = p& + cN, °, (5.5)
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where p;° is an analytical estimate for the percolation threshold on an infinite lattice, o is a scaling
exponent and c is a proportionality constant. It should be noted here that nanogel particles indeed
consist of a finite number of polymeric precursors and hence, as opposed to gelation of
macroscopic samples, effects of finiteness should be taken into account. For the gelation process
modeled as percolation on Bethe lattice of functionality four, the values p;° = 0.33 and ¢ = 0.5
had been derived[87, 110]. However, both these values are not expected to hold for gelation
processes that differ significantly from the ideal Bethe lattice percolation model and for the
corresponding reverse gelation processes. For example, values of p.° significantly exceeding the
predicted 0.33 (so-called delay in the gel point) have been reported in a number of studies of
gelation processes[107, 109, 113-117]; this delay is typically attributed to intramolecular reactions.
The gel point values close to percolation threshold on the diamond lattice (0.39) have been
reported for the gelation of tetra-arm PEG precursors near the overlap concentration[111, 112].
Further, the scaling exponent o = 0.5 is not expected to necessarily hold for the systems with
defects such as loops[106, 115] or for the systems with intramolecular reactions. The scaling
relation in equation (5.5) had been used[106, 115] for prediction of true gel points using Kinetic
Monte Carlo simulations; it had been shown that the predicted gel point is insensitive to the scaling
exponent within the range ¢ = 0.3 — 0.7.

Unlike fairly comprehensive understanding of gelation processes for various systems,
understanding of the kinetics of network degradation remains limited. Reverse gel points ranging
between 0.43 and 0.48 for networks formed by the tetra-PEG precursors at various stochiometric
ratios were reported by Li et. al. [26]; the authors concluded that the reverse gel points observed
in their work are close to the predictions of percolation models on the diamond lattice. In our recent

work[70] (see also chapter four) we demonstrated that the reverse gel point calculated during
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degradation of hydrogel films formed by the tetra-arm precursors is close to but somewhat higher
than predictions of bond percolation theory on a diamond lattice[110].

To estimate the scaling of the reverse gel point with the number of precursors, N, based
on our simulation data, we used a weighted nonlinear least squares regression method/765].

Equation (5.5) was used as the prediction model with a weighted loss function taken as

3 (Pc(Np)—E

2
e ) , where p.(N,) is the predicted value and the summation is taken over all the
available data points. The choice of 1/4p, values as weights is made herein to bias the fitting
towards data points with lower Ap. since these points are measured with higher certainty/765].
By setting/110] p;° = 0.39 and treating ¢ and o as the fitting parameters, we obtained the best fit

asc¢ = 5.38 1 2.38 and ¢ = 0.7 £ 0.07. The best fit to the simulation data points is provided in

Fig. 5.5 as p, = pZ° + 5.38 * N; %70 (red curve).

Effects of polymer-solvent interaction
We now focus on the effect of polymer-solvent interaction on the degradation and erosion
kinetics of nanogel particles in a single solvent. We consider three values of the polymer-solvent

interaction parameter: a,; = 79.5,82.0 and 85.0 with a,; = 79.5 representing a good solvent and

a,s = 82.0,85.0 representing decrease in solvent quality. The snapshots for degradation of

D

nanogels for these three cases are shown in Fig. 5.1b-d, Fig. 5.6a-c and Fig. 5.6d-f, respectively.
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Figure 5.6. Effects of solvent quality on nanogel degradation in a single solvent. Snapshots
of the nanogel degrading in a solvent with a,; = 82.0 (a-c) and in a solvent with a,, =
85.0 (d-i) att=0 (a, d), t=10,000 (b, e) and t=22,000 (c, f). (g) Evolution of the distance-based
mass loss and (h) radius of gyration during degradation in a solvent with a,s = 79.5 (black

curve), a,; = 82.0 (red curve) and a,s = 85.0 (green curve).
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A decrease in solvent quality results in a lower degree of swelling both prior to and during the
degradation of the nanogel. This is evident in the initial and early time snapshots of the degrading
nanogel particles. As expected, the topological mass loss, fr(€), in all three cases remains the
same. The fractional mass loss from the largest agglomerate, however, f,(€), follows distinctly
different trends depending on solvent quality. Recall that f}, effectively accounts for the fragments
that not only break-off but also diffuse away from the nanogel. For the solvent of intermediate
quality (a,s = 82.0, top row in Fig. 5.6), significantly smaller number of fragments are seen
leaving the main agglomerate than that in the reference scenario at the same time instants (Fig.
5.1, top row). These differences are even more pronounced for the relatively poor solvent (a,; =
85.0), where only small fraction of fragments is seen leaving the nanoparticle (second row in Fig.
5.6). As discussed above, no notable agglomeration of the broken-off fragments within the
nanogel is observed for the good solvent case (black curve in Fig. 5.6g). Clearly some
agglomeration of the broken-off segments within the largest agglomerate is observed for the
intermediate solvent quality (a,s; = 82.0), resulting in significantly lower values of fp(€) , in
particular in the proximity of the reverse gel point (red curve in Fig. 5.6g). For the relatively poor
solvent (a,,, = 85.0, green curve in Fig. 5.6g), the distance-based mass loss remains close to zero
throughout the degradation indicating that almost the entire mass remains agglomerated with the
largest agglomerate. This is also apparent from the snapshots in Fig. 5.6e-f, which show that
majority of broken-off fragments remain aggregated in the close proximity to the nanogel particle
(for example, in Fig. 5.6f only the highlighted part in the center of the agglomerate is the nanogel
particle).

Understanding fractional mass loss from the largest agglomerate in solvents of various

qualities allows one to understand dependence of the radius of gyration of the nanogel degrading
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in these solvents as a function of the extent of degradation reaction. At the onset of degradation
(e = —1), the radius of gyration depends on the equilibrium degree of swelling in the solvent of a
chosen quality and as anticipated decreases with the decrease in solvent quality. To characterize a
relative change in the radius of gyration depending on solvent quality, we plot the dependence of
R, scaled by the value of R, prior to degradation for each case as a function of the proximity to
the reverse gel point (Fig. 5.6h). As degradation occurs the nanogel in good solvent shows the
highest relative increase in R (black curve in Fig. 5.6h). As discussed above, an effective decrease
in the crosslink density enables higher absorption of water within the polymer network and thus
an increased swelling of the nanogel is observed in a good solvent. For the gel degrading in solvent
of relatively poor quality (a,s = 85.0, green curve in Fig. 5.6h), the R, remains nearly constant
until relative extent of degradation reaches about € =~ —0.4; this is consistent with the above
observation that up to this point there is essentially no mass loss from the largest agglomerate
(green curve in Fig. 5.6g). Further increase in € upon approaching reverse gel point results in the
decrease in R, , which is consistent with mass loss due to the fragments diffusing away from the
nanogel as seen in Fig. 5.6g. Intermediate solvent quality (a,s = 82, red curve in Fig. 5.6h) still
leads to the swelling of the gel particle due to the decrease in crosslink density, however the relative

increase in Ry is less pronounced than that in the good solvent case.
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Figure 5.7. Snapshots of the nanogel degrading at an interface with the oil-water interaction
parameter (a-c) ay, = 100, (d-f) a5y, = 120 and (g-i) a,, = 150 at (a, d, g) t=0, (b, e, h)

t=10,000 and (c, f, 1) t=22,000.

Similar to the effect of solvent quality in case of degradation in a single solvent, the

interaction between the two liquids affects the kinetics of erosion and spreading of nanogel at the
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liquid-liquid interface. As introduced in the model section, we consider three sets of liquid-liquid
interaction parameters, a,,, = 100,120 and 150. Increasing a,,, results in a stronger repulsion
and correspondingly higher interfacial tension between the two liquids. The snapshots for
degradation of a nanogel particle at the interface with a,,, = 100, 120 and 150 are shown in Fig.
5.7a-c, Fig. 5.7d-f and Fig. 5.7g-1, respectively. For the cases with higher repulsion (a,,, = 120
and 150), all the fragments formed during degradation remain at the interface for the entire
duration of the process (see Fig. 5.7d-1). A small fraction of fragments, such as fragments formed
somewhat away from the interface (as the ones circled in Fig. 5.7f), diffuse within the liquid phase
before adsorbing onto the interface. Once adsorbed at the interface, these fragments do not detach
from the interface and remain adsorbed. For the case with a,, = 100 (the case with lowest
interfacial tension considered), a notable fraction of fragments remains in the liquid phase without
adsorption onto the interface (see Fig. 5.7a-c). This difference in adsorption is seen quantitatively
in the evolution of the number of contacts between the beads of the two liquid phases in Fig. 5.8a.
The cases of three different interfaces with a,,, = 100,120 and 150 are represented in Fig. 5.8
by black, red, and green curves, respectively. As the nanogel degrades at the interface, the number
of contacts between the two liquids decreases due to spreading of the remnant nanogel and broken-
off fragments over the interface. For the case of a,,, = 100, this decrease is relatively moderate
with respect to the other two cases. The difference in the observed behavior can be attributed to
the relatively smaller energy gain due to shielding of the unfavorable oil-water interactions upon

fragment adsorption onto the interface.
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Figure 5.8. Effects of liquid-liquid interaction parameter. Evolution of (a) the number of
contacts between two liquid phases, (b) radius of gyration, (c) extent of spreading, and (d)
shape anisotropy for a nanogel particle degrading at the interface with a,,, = 100 (black
curves), a,,, = 120 (red curves) and a,, = 150 (green curves). All quantities are averaged
over five simulations with error bars representing standard deviation. The data in (a) is

normalized by the initial number of contacts for each case.

Our results show that this decrease in total interfacial energy due to spreading of small
fragments at the interface with a,, = 100is not sufficient to compensate for introducing

relatively unfavorable contacts of polymer with oil with respect to that with water (recall that
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apo > Apy) along with the decrease in entropy due to interfacial confinement of these fragments.
For the interfaces with a,, = 120 and a,, = 150, the decrease in interfacial energy upon
fragment adsorption onto the interface is correspondingly higher, hence it is energetically
favorable for the fragments to remain adsorbed decreasing the number of liquid-liquid contacts.

Evolution of the radius of gyration, extent of interfacial spreading, and shape anisotropy,
k2, of the nanogels with the proximity to the reverse gel point are provided in Fig. 5.8b-d. The
extent of spreading, e, is defined as[68]:

e(e) = Y (5.6)

<JA1w>
where 4, (€) is the largest eigenvalue of the gyration tensor during degradation, and (,/4;,,) =

5.58 in reduced units of length is the average of the square root of the largest eigenvalue during
equilibration in the water phase. All three characteristics provide information only about the
remnant nanogel (the largest topological cluster in the system) and not about spreading of the
smaller fragments. The initial values of R, prior to degradation increase with an increase in @, .
This trend is in agreement with prior studies, which demonstrated enhanced stretching of nanogels
at interfaces with higher interfacial tension[135]. Correspondingly, the initial extent of spreading
for the nanogel at the interface with a,,, = 100 is the lowest (e = 1.1 prior to degradation) and
increases with an increase in a,,,. In all cases considered, extent of spreading increases while
approaching the reverse gel point, reaching nearly three-fold extension (e = 2.75) for the two
interfaces with higher interfacial tension. Note that the relative extent of spreading with respect to
that at the onset of degradation is most pronounced for the gels at the interface with a,,, = 100.
This difference in the relative extent of spreading can be understood by following variation in the
shape anisotropy of the nanogels during their spreading over various interfaces. The gel adsorbed

at the interface with relatively low interfacial tension (a,,, = 100) attains close to a hemispherical
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shape with k% =~ 0.10 for the gel with chosen crosslink density. The same nanogel spreads and
flattens more with an increase in a,,,, attaining more anisotropic shapes with values of k% = 0.20
and k2 ~ 0.22 for the remaining two cases, respectively (thereby approaching 0.25 corresponding
to a flat shape). As degradation occurs the k2 for nanogel at all interfaces increases with the
increase being highest for the a,,,, = 100 interface. Near the reverse gel point, nanogels at all three
interfaces probed attain similar values of k? ~ 0.36 with relatively large error bars. This value
however remains lower than the values for the largest cluster at late times after the reverse gelation
transition as reported above.

To summarize, these studies demonstrate that controlled degradation effectively promotes
spreading of the remnant nanoparticle for all interfacial properties probed in this work.
Specifically, the extent of spreading increases with an increase in the extent of degradation. The
nanogel attains relatively flat shapes during the entire degradation process for two cases of
interfaces with relatively high interfacial tension. For the same two cases, the fragments broken-
off from the nanogel are adsorbed onto the interface thereby notably decreasing a number of
unfavorable oil-water contacts. For the lowest interfacial tension considered, large fraction of the
broken-off fragments remains dispersed in the water phase. Hence, this study shows that controlled
degradation can be used to promote spreading of the nanogels at the soft interfaces and
concurrently control location of the broken-of fragments to either be dispersed in the good solvent

or to be controllably deposited at the interface.

5.4 Conclusions
Via DPD simulations, we characterized the degradation of nanogels suspended in a

solvent and those adsorbed at the liquid-liquid interface [156]. In both scenarios, nanogels

undergo a reverse gelation transition with the reverse gel point depending on the number of
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polymeric precursors constituting the original nanogel. We identified the reverse gel points in
various scenarios via peak values of the reduced weight average degree of polymerization. Our
results demonstrate [156] that the reverse gel point follows a scaling relation p¢° + ¢N,, © with
respect to the number of polymer precursors , N,,, with the exponent 0 = 0.7 and p;° = 0.39,
which in turn is the value predicted by the bond percolation theory on a diamond lattice[110].
Further, in both scenarios we characterized the structural characteristics of the remnant
nanogels along with the spatiotemporal distribution of polymeric fragments released during
degradation as a function of proximity to the reverse gel point. Our results demonstrate distinct
differences in structural characteristics of degrading nanogels depending on its environments.
Nanogel degradation in a good solvent results in approximately uniform swelling of the
remnant particle due to the decrease in crosslink density for the moderate relative extent of
degradation reaction, € = [—1:—0.38]; within this range of ¢, the particle keeps
approximately spherical shape (k* = 0), while R, gradually increases. On the contrary, the
shape anisotropy k? increases nearly monotonically from the onset of degradation with an
increase in € for the gels degrading at the interface, indicating that initial shape of the nanogel
adsorbed at the interface is nearly immediately lost upon degradation since bond breaking
promotes interfacial spreading. We demonstrate that the overall degradation process including
mass loss from the nanogel is significantly affected by the nature of the polymer-solvent
interactions. Further, for the nanogels initially adsorbed at the liquid-liquid interface, shape

changes and spreading of the remnant nanogel along with dispersion of detaching fragments
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is affected significantly by the interfacial tension between the two incompatible liquids. For
lower interfacial tension, some of the detaching fragments disperse to the liquid phase with
higher affinity to polymer beads. Our results clearly demonstrate that controlled degradation
of the nanogels adsorbed at liquid-liquid interfaces results in an enhanced extent of spreading
and provides a means to control interfacial properties at the nanoscale. Further, our results
provide insights on using controlled degradation to dynamically tune shapes of nanocarriers
and nanoscale topography at a liquid-liquid interface. Devanshu Thakar is acknowledged for

conducting simulations corresponding to the data sets A-E listed in Table 5.1 and for contributing

to some of the analysis for these simulations during his summer internship. The work described
in this chapter is published in the Macromolecules. The corresponding journal article is ref.
[156] of the dissertation and the permission to reproduce this work in this chapter is included
in Appendix B of this dissertation. The data for each plot in this chapter is also available

publicly at https://doi.org/10.5281/zenodo.7410537.
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CHAPTER SIX

Modeling controlled thermal degradation of polyolefins under a local
temperature gradient

6.1 Motivation and background
6.1.1 Importance of polyolefin recycling and challenges with traditional approach

Polyolefins, among the most abundantly used polymers in the world accounting for more
than half of global primary polymer production[166], find applications in a wide range of
industries[17]. Despite their widespread use, only a small fraction of polyolefins are recycled in
the present day[17, 166]. For instance, only 14% of the total post-consumer packaging waste is
collected for recycling[166], out of which only 2% is effectively recycled to the same or similar
quality applications[166]. The traditional approach to recycling these polymers involves thermal
degradation of the material in an attempt to recover the monomer[166]. However, this process
often leads to the formation of several side products, which decrease the yield of the degradation
reaction. This chapter outlines initial work towards exploring an alternative approach for recycling
polyolefins that can potentially overcome these challenges. Specifically, this chapter aims to
simulate degradation of polyolefins to shorter length oligomers which can be recycled or upcycled
into useful products. To achieve this goal, our collaborators are currently introducing microwave
absorbing materials into the bulk of the polyolefinic materials. When subject to pulsed microwave
irradiation, these materials can be heated up to temperatures at which thermal degradation of the
polyolefin takes place. The long-term goal of the simulation work is to inform concurrent
experiments about optimal conditions to carry out the microwave assisted degradation. Using the
simulation and experiment in tandem, a target molecular weight and dispersity in the polymer melt

is aimed to be achieved. Overall, the goal of this project is to develop a more efficient and
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sustainable approach to recycling polyolefins, which can have a significant impact on the
environment and the economy.

Within this broad goal, the specific focus of this chapter will be on setting up an appropriate
modeling approach that captures relevant details such as local temperature dependence of
degradation reaction kinetics, molecular weight dependence of the diffusivity of polymers, and the
ability to simulate a local temperature gradient from the surface of the microwave absorber to the

bulk of the polymer material.

6.1.2 Diffusivity of polyethylene melt

Polyethylene melt properties depend on both temperature and polymer molecular weight.
The self-diffusivity of polyethylene melts (D) is known to follow Rouse (D a M~1) and reptation
(D a M~2)[167-170] regimes below and above the critical entanglement molecular weight,

respectively. The temperature dependence of polyethylene melt viscosity follows an Arrhenius

dependance[171, 172]:

D = Dy exp (— E—D), (6.1)

where D is a pre-exponential factor and the activation energy Ep = 30 k]J/mol. Overall, the self-
diffusion constant for polyethylene varies several orders of magnitude 1075 — 107 ¢m? /s [167-
172] depending on both the temperature and molecular weight at which the measurement is
performed. In simulations of polymer melts, the diffusivity is measured via the mean squared
displacement of the center of masses of polymer chains[62, 173]. Transition from the rouse to
reptation scaling at sufficiently high molecular weights of linear polymers has been observed in

both coarse-grained molecular dynamics[173] and DPD with mSRP[62] simulations.
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6.1.3 Thermal degradation of polyethylene
Thermal degradation of polyethylene (PE) is reported to occur primarily via random

scission mechanism.[18, 174] Fig. 6.1 below shows a schematic of the degradation mechanism.

initiation:
~CHg-CH~CH-CHyCHyCHp~ X1y ~CHy-CHyCHy +  CHy-CHy-CHy~ (1)
P 2R
p
propagation:
~CHy-CHy~CHy~CHy~CH, _fe ~CHy-CHyCHy  +  CHz=CH, @)
R Ry

hydrogen transfer, intramolecular

~CHy—CHy—CH,~CH,p~CHy—CH—CH, s ~CHy~CHy~CH-CHy—CH,~CH,—CHgy (3)
R, R,
k-l .
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Figure 6.1. Schematic pathway of thermal degradation of polyethylene. Reproduced from ref.

[18] with permission from Elsevier.
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The degradation is initiated by random scission of the polymer chain into primary radicals, as
shown in step 1 of Fig. 6.1. The free radical initiation is followed by propagation via intra/inter
molecular hydrogen transfer and f scission reactions (steps 2-5), while termination is assumed to
occur via recombination[18, 174] (shown in step 6). In addition to random scission, a chain end

scission reaction is also possible as shown in Fig. 6.2.

@ Direct scission
. L‘HE—L‘HZ'S-L‘HZ-CHz— —_— CH=CH, «CH;y~CHy

b' 1 1,5-radical transfer scission

inner . . )
CH;~CH;—CH;+» CHF~CH-CH;—CH3

CH;—CH,;—CHy}CHyCH—CHCHy- <:
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b'2 Multiple-step-radical transfer scission

N N N N N

CHy~CH,;—CH;~CHy~CHy~CH;—~CHy—CHy;~CHy;—CHy;~CH;~CH;—CH;—~CHy—CHy~CHy—CH,~CHy-CHy—CHy-CHy-CH -
1 5 9 13 17 21
(3.6) (7,10) (11,14) (15,18) (19,22)

Figure 6.2. Mechanism of chain-end scission reaction of polyethylene. Reproduced from ref. [175]

with permission from Elsevier.

During the random scission reaction, bond cleavage follows first order kinetics which,
assuming Arrhenius dependance of the rate constant, can be written as[176]:

dx_

— = k(D)1 - x), 6.2)
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where x is the fraction of bonds broken, k(T) = k, exp (— i—;) is the temperature dependent

degradation rate constant, k is the pre-exponential factor, and E} activation energy for the bond
breaking reaction.

In experiments, thermal degradation is often studied in terms of the degree of mass
conversion[18, 176, 177] (a), which has the same form as the fractional mass loss defined in

chapter four:

(mo - m(t))

0

a(t) = (6.3)

where m,, is the mass of a sample at the beginning of the experiment and m(t) is the mass at time
t during thermal degradation. Mass loss occurs primarily due to volatilization of low molecular
weight products formed during degradation. Prior theoretical and simulation work has focused on
predicting the degradation kinetics via the degree of mass conversion. The degradation kinetics

are often written in terms of the degree of mass conversion as:

da_ 64
= =@, (64)

where Kk is a rate constant given via the Arrhenius form k = K, exp (— ﬁ), Ko is the pre-

exponential factor, E,, is an activation energy for the mass degradation kinetics and f(«) is a
function dependent on the kinetic model for the degradation process. The activation energy for
mass loss during the degradation process has been reported to be conversion dependent and in the
range of 150 — 250 kJ/mol.[18, 176-178].

Several models for f(a) have been proposed in literature[ 176], ranging from models that
assume n-th order reaction kinetics[18] (f(a) = a™) to models that relate the bond cleavage
kinetics to the mass loss[176]. As the overall thermal degradation mechanism is complex (see Figs.

6.1 and 6.2 above), it is not trivial to relate the bond cleavage kinetics to the mass conversion
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kinetics. For simplicity, simulation approaches typically only consider the first step of the
degradation reactions[21, 175, 179], i.e. either random scission or chain end scission or both, and
there are limited studies considering the possibility of recombination of molecules[180]. Since
initial bond breaking pre-dominantly occurs via random scission[18, 21, 174] in thermal
degradation of polyethylene, we will describe the modeling of random scission process in more
detail. Fig. 6.3 below shows a schematic of the random scission mechanism applied in the
stochastic modeling of polyethylene thermal degradation[21].

2 3

PN b o e mm—zmm—le

.1
o—0

- Y
&
...glving two new

molecules with A-1 and
m-b-1 bonds

- 1 o 2 o . o D=1l - ] - 2 _m-h-1
oo o—e-0 - 000

Figure 6.3. Schematic of the random scission mechanism in linear polyethylene chain.

Bond b breaks...

Reproduced from ref. [21] with permission from Elsevier.

As shown in Fig. 6.3 above, random scission is typically assumed to occur at only one site at a
time in any polymer chain and hence leads to an increase of one molecule per scission event[21,
175, 179]. Consider that at some point during the random scission, a fraction x of the total bonds
have broken and there are N;(x) polymer chains with i as their degree of polymerization. As

random scission continues, some of these N;(x) chains disintegrate into smaller fragments while
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some chains are formed as a consequence of disintegration of longer chains into chains with i

repeat units. Overall, the rate equation for N;(x) can be written as[179]:

dN,
dt

= —k(T)(i — DN, + 2k(T) Z N, (6.5)

j=i+1
where, N is the maximum initial degree of polymerization. The first term on the right-hand side of
equation (6.5) represents the rate of disappearance of chains with i repeat units and the second
term represents their rate of formation. The total number bonds in the chains with i repeat units is
given by (i — 1)N; and, since the scission of any one of these bonds would result in a chain
disappearing, hence the rate of disappearance is —k(T)(i — 1)N;. Now, consider a chain with i +
m repeat units, where m > 0. The scission of such a chain, either at the m*® bond or at the i"
bond would result in the formation of a chain with i repeat units. Hence, for each such chain with

more than i repeat units, there are two possible scission reactions that can produce a chain with i

repeat units leading to a rate of formation given by 2k(T)Zj=;,1N;. Substituting dt = ﬁ
from equation (6.2) above for the first order kinetics, we obtain the equation[21],
dN;  (—-1N, 2 x
i . L= i Z
dx 1—x 1-x L N (6.6)
j=i+1
Assuming as in ref. [21], a solution in the form
N;(x) = Ax*(1 - 01, (6.7)
equation (6.6) can be rewritten as
d n
a(Ax5(1 — )" = —(i — DAx (1 — x)"72 + 24x° Z (1—x)/2 (6.8)

j=it1
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For a large value of the maximum initial degree of polymerization, N — oo, the summation in the
last term can be calculated analytically as %72;,,(1 — x)/7% = (1 —x)'""/x. Using this
summation, equation (6.8) can be simplified as:

(1—x)"tsxs™t =2x571(1 — )71, (6.9)
which gives s = 2. The constant A remains to be determined. We can use the information so far

N;(x) as:
E{\]:lNi(x)’ ’

to determine the number fraction of chains with i monomers, n;(x) =

Ax?(1 —x)t1
Ax2 Yyt (1 —x)i-t

n;(x) = (6.10)

For the limit of N = oo, ¥, (1 — x)!~* = 1/x which leads to further simplification of equation
(6.10) to:

n;(x) = x(1 —x)"=L. (6.11)
The above number fraction distribution during random scission is identical to the well-known most
probable distribution during any step growth polymerization reaction, also known as Flory or
Flory-Schulz[181, 182] distribution. The latter is typically described in terms of the fraction of
bonds formed p = 1 — x. This similarity is expected since, the random scission reaction is
essentially reverse of the step growth polymerization process[183].

From the above information, we can also calculate the weight fraction distribution, w; (x),

IN;(x)
w;(x) = W (6.12)
w;(x) = ix?(1 —x)i 1, (6.13)

To relate the bond cleavage kinetics with mass loss, those bond breaking reactions which result in

the formation of volatile fragments need to be considered. To address this, theoretical approaches
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typically define L as the shortest degree of polymerization of non-volatile fragments[21, 174, 175,
179]. Hence, the non-volatile fraction of total mass remaining, 1 — a(x), reads

272 iN; (x)

1=al) =52 TN

(6.14)

This leads to the Simha-Wall equation[22] that relates the fraction of bonds broken during random
scission to « as:

a(x)=1—-(1 -1 +x(L - 1)]. (6.15)

The activation energy of bond breaking in degradation of polyethylene has been estimated to be =

125kJ/mol[21, 174]. The average C-C bond energy is = 348kJ/mol.[174, 184]

6.2 Methods
6.2.1 eDPD approach

The energy conserving dissipative particle dynamics (eDPD) method[56] enables
modeling of non-isothermal heat transport processes in polymers[56, 57]. This method can be used
to model the thermal response of various polymeric systems such as colloids[185], micelles[72],
polymer nanocomposites[71] and microgels[65]. Specifically, eDPD has been used to model the
effect of particle-fluid interactions on the mobility of thermophoretic colloidal
microswimmers[185]. Non-equilibrium processes involving changes in solvent affinity for
polymers displaying either lower critical solution temperature (LCST) or upper critical solution
temperature (UCST) type behavior can be explicitly modeled using the eDPD method[65]. This

aspect has been used in modeling of reversible heat-stiffening of nanocomposites made from
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cellulose nanocrystals grafted with a LCST polymer[71] and in modeling the transport of

thermoresponsive micelles and vesicles through a non-isothermal fluid medium[72].

To enable energy conservation, the internal energy of a DPD bead has been introduced as
an additional degree of freedom in the eDPD method. This leads to modifications to the form of
the momentum conservation equations of the standard DPD method. The momentum conservation

equations for eDPD have the following temperature dependent parameters:

kg(T; + T;
aij = Ay o > ) (6.16)
\$S
Wp = Wi = <1 —7) ) (6.17)
c
2 ij*Blilj
o= —. 6.18

Here, the strength of the conservative force a;; can have a temperature dependence prescribed

J
through the A;; parameter and T; is the temperature of it" bead. The function A; g =45+
AA/(1 + exp (zw(T;; — Tp))) has been used to model LCST and UCST type polymers[65, 72].
The weight functions wj and wy are also chosen to be temperature dependent via the exponent s.
The exact form of this temperature dependence will be discussed in more detail below.

In addition to the momentum conservation equations, the eDPD method also uses the

following equations for conservation of total energy[56]:

d(m;C,T;)
—— = Zix(ai; + aij + a), (6.19)
1 1
€ =k;:wer(r;; (———), (6.20)
qu ij CT( l]) Ti T]

(%‘)2

m

1
q; = Z_Q,(WD(rU) [yl'j(eij-vij)z - ] — o;;wr(ri;)(eij. vij) 3o (6.21)
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1

qfs = Bijwrr(ryj)dt 205 (6.22)
Here, C,, is the dimensionless heat capacity of each eDPD bead with temperature T;. The definition
and choice of C,, have been discussed in previous literature[56, 57] and details regarding our choice

are provided below. The collisional (qicj) and random (qu) heat fluxes together account for

conduction of heat through the material. The viscous heat flux (qZ) accounts for viscous heating

due to conversion of the particle’s mechanical energy to heat. The strengths of the collisional and

random heat fluxes k;; and f;; and are given as k;; = CEK(Ti + '1"]-)2/4k3 and [312] = 2kgk;;,

where k is a mesoscopic heat friction parameter.
6.2.2 Considerations for modeling temperature dependent thermal degradation

In addition to the bond breaking conditions described in chapter three, there are certain
additional constraints required to simulate random scission. For example, if the method of
generating random numbers for each bond in the polymer chain is used without any additional
constraints, it could lead to unphysical reactions such as simultaneous breaking of both bonds by
which a bead is connected to the polymer chain. A bond length based constraint is introduced to
ensure a maximum of one bond per DPD bead can break at a time. For each DPD bead, the bond
with the longest length is identified as a potential candidate for attempting bond breaking. An
attempt to break the bond, i.e. generation of a random number, is only carried out if the said bond
is a potential candidate for both DPD beads that constitute this bond. Hence, random numbers are
not generated for all bonds in the polymer chain but only a fraction of the total bonds at a particular
time step are considered for the bond breaking reaction. Bond lengths at each time step follow a
Gaussian distribution around the mean equilibrium bond length (73, described in chapter two) and

the length of a particular bond can be thought of as a random sample from this distribution.
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Whether a particular bond is longer or shorter than it’s neighbors is rather random and, hence, at
each time a random subset of bonds is considered for the bond breaking reaction. The fraction of
bonds within a chain that are attempted to be broken would depend on the actual degree of
polymerization of a particular chain. Taking as an example, the extreme case of chains with N =
2, any bond can potentially be broken, while it will certainly not be the case for longer chains. In
section 6.3.4 below, we will look at the impact of this criteria on the overall degradation reaction

kinetics.

As discussed in chapter three, we aim in this dissertation to introduce the framework to
incorporate effects of the local environment on the degradation reaction. In general, kinetics of the
degradation reaction depend on the local environment such as temperature or pH in the vicinity of
the degradable bond. The dependence of reaction rate constant on local properties is represented

mathematically by the Arrhenius relation:

E
k = ko exp (— ﬁ) (6.23)

where k,, is a pre-exponential factor, E, is the activation energy for the reaction, R is the universal

gas constant and, T the local temperature. With this context, we introduce the temperature
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dependence described in equation (6.23) into the degradation framework by modifying the reaction
probability P, to depend on the local temperature as:

Ea
P = PO exp <— R_Tl) , (624)

. . Ti+T; .
where T; is the local temperature at the reaction site T, = ( 12 ! ), T; and Tj is the eDPD temperature

of bead i and j, respectively.

6.2.2 Measurement of diffusivity and viscosity of an eDPD liquid

To begin setting up the eDPD model, we first aim to setup a system to simulate and
reproduce physical properties such as the viscosity and diffusivity of a simple eDPD liquid[57].
For this purpose, we used the following parameters as introduced by Li et. al.[57]: bead number
density p = 4, cut-off distance . = 1.58, strength of the conservative force a;; = 18.75 kgT.
The reference temperature T* = 300K is used to scale the dimensionless temperatures such that
the temperatures ranging from 273K to 373K are equivalent to the dimensionless temperatures T
=0.91 to 1.25. The dimensionless heat capacity of a single eDPD bead (C,) is normalized by the
Boltzmann constant kj = 1.381x10723JK~1 and is given by C, = C;L*3/pk},, where C; is the
volumetric heat capacity and L* is the reference length. Using C;; = 4.167x10%/m™3K ! for water
at 300K and a reference length L* = 11nm gives C, = 1.0x10°. To ensure accurate temperature
dependence of the diffusivity and viscosity, we use the temperature dependent form of the
exponent of the weighting function[57] s = 0.41 + 1.9(T? — 1).

We determine the self-diffusion coefficient via the mean square displacement (MSD) of

beads,

((r®) = r(0)") = 6Dt, (6.25)
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where < (r(t) — r(0))? > is the MSD and D is the self-diffusivity of eDPD beads. The MSD for
several temperatures is plotted as a function of time in Fig 6.4a below. As follows from the

equation above, the self-diffusivity can be calculated from the slope of the lines in Fig. 6.4a.

40 T T T T T 3 T T T
a o T=0.91 b I =0.91
o T=0.95 2r =0.95
30r T=1.00 7] - =1.00
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Figure 6.4. (a) Mean squared displacement of eDPD beads. (b) Velocity profile during perioidic

Poiseuille flow of the eDPD system. A simulation box of 30x30x30 was used in each case.

To measure kinematic viscosity, we use the periodic Poiseuille flow method[57]. In this
method, a periodic Poiseuille flow is generated in the simulation box by applying a body force to
each eDPD bead. To generate Poiseuille flow the box is divided into two equal domains and an
equal and opposite body force is applied to particles in each domain. The resulting velocity profile

is then fitted to the analytical solution

_ gez(d— 12D

u(2) 2v

(6.26)
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where v is the kinematic viscosity, d = 15 is the half-length of the simulation box and g, = 0.2 in
dimensionless units is a body force on each eDPD particle. The resulting velocity profiles in our
simulations along with the fitted analytical solutions are plotted in Fig. 6.4b.

Approximate analytical equations for the transport coefficients of a DPD fluid have been
derived previously by several authors[57, 58, 186]. Specifically for the eDPD fluid with weight
functions as described above, the self-diffusivity and kinematic viscosity are given as follows[57]:

D 3kgT(s+1)(s+2)(s+ 3)
- 8mypry

) (6.27)

3kgT(s + 1)(s +2)(s + 3) 16mypry
Vv =

tomypr? YA DG OG+GFAGTs O

Fig. 6.5 below shows the variation of kinematic viscosity and self-diffusivity of the eDPD fluid.
As is seen in the plots in Fig. 6.5, numerical measurements of the transport coefficients agree well
with the analytical expressions above. It has also been shown in literature[57] that these values

agree well with the measured experimental values for water.
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Figure 6.5. Temperature dependence of (a) diffusivity and (b) kinematic viscosity of the eDPD
fluid measured numerically from simulations (symbols) and calculated as per analytical

expressions (solid lines).
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Hence, so far we have reproduced results from previous literature[57] for the properties of liquids
modeled using the eDPD approach. Next, we will focus on the parameter choice for our model
eDPD polymer melt and analyze properties such as the thermal conductivity, self-diffusion

constant and structure of polymer chains of the simulated polyolefin melt.

6.3 Results and Discussion
6.3.1 Measuring thermal conductivity

In the above section, we demonstrated temperature dependence of the properties of an
eDPD liquid. As shown above for the mass diffusivity and kinematic viscosity, the thermal
conductivity is also a measured output from eDPD simulations. For measuring thermal
conductivity, we used DPD parameters as introduced in chapter three: p = 3, cut-off distance
1, = 1.0, strength of the conservative force a;; = 78kgT. For the choice of eDPD parameters in
this preliminary study, we set [57], C, = C;L*3/pk}, where C;, is the volumetric heat capacity and
L* is the reference length. It had been shown that [57] C; = 4.167x10%Jm~3K ! for water at 300K
and a reference length L* = 11nm gives C, = 1.33x10°. As in the previous section, the same
temperature dependence of the power for the weighting function, s = 0.41 + 1.9(T2 — 1), is used.
It should be noted here that alternate choices for s and C, have been used in previous eDPD
simulations of polymers[65, 72, 187]. For example, s = 2 and C, = 103, along with the heat
friction coefficient k¥ = 1073 have been used in eDPD simulations of thermoresponsive
polymers[65]. Hence in addition to the preliminary choice of eDPD parameters in this chapter,

more detailed analysis for the choice of these parameters is planned to be conducted in the future
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to ensure that the thermal conductivity and diffusivity of simulated melts demonstrate expected
dependences with molecular weight and temperature.

Using the above parameters, we conducted the following experiment to setup a temperature
gradient. First, eDPD beads were equilibrated for 20,000 timesteps in a 40x40x40 simulation box
with periodic boundaries and the temperature was set to be uniform throughout T, = 1.0. Then, a
boundary layer of beads within a distance 6 = 3 from both y-periodic faces was made immobile,
these immobile beads are colored red in Fig. 6.6a while the mobile eDPD beads are colored blue.
In addition to this, to ensure minimal crossing of beads across the periodic face an additional soft
repulsion potential U,,4; = 1000 * (h — h,)? was added to all beads within a distance h (< h, =
1) from the periodic walls. This system was then further equilibrated for an additional 20,000 time
steps. After the second equilibration, a slight fluctuation was observed in the density at the
interface between the mobile and immobile phases which is shown by the red curve in Fig. 6.6b.
This fluctuation is evident compared to the homogenous density distribution after the first
equilibration step (shown by black curve in Fig. 6.6b) and has a maximum magnitude of less than
1% inside the mobile region.

At the end of the second equilibration, the temperatures of the two immobile regions were
changed such that the region near the lower y-boundary had a colder temperature of 7, = 0.9 and
the upper region had a hotter temperature of 7" = 1.1. The evolution of temperature profiles
inside the simulation box is shown in Fig. 6.6¢. As is evident in Fig. 6.6¢, the temperature evolution
is well described by analytical solutions of the heat equation. Slight deviations from the analytical
solution are observed at later times. This is attributed to the fact that our choice of conservative
interaction parameters leads to a density gradient in the eDPD liquid as the temperature gradient

evolves.
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Figure 6.6. (a) Snapshot of the simulation box after the second equilibration step, see text for
details. The red and blue beads indicate the immobile and mobile phases respectively. (b) Number
density of eDPD beads inside the simulation box at the end of the first (black) and second (red)
equilibrations. The dashed lines indicate the interface between the mobile and immobile phases.
(¢) Temperature profiles inside the simulation box at t=0 (black), t=15 (red), t=25 (green) and t=75
(blue). The symbols indicate measurements from eDPD simulations and lines indicate analytical

solutions of the heat equation.
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The variation of density as a function of temperature is expected in liquids and is not accounted
for in the form of the heat equation we used. To obtain the thermal diffusivity a we fitted the
temperature values from the eDPD simulations to the analytical solution of heat equation at t=15.
The fitted value of thermal diffusivity & = 0.11 r2t~! agrees well with the theoretical estimate of
the macroscopic thermal diffusivity in eDPD simulations provided in literature[57, 188]:

k  2mp
pC, 315kg

kC,r2 = 0.12r277 1. (6.24)

Table 6.1. Details of the simulated systems for determining properties of eDPD melts

N L | Total simulation time | Measurement time (R?)
ty RS

8 20 | 50000t 100t 5.69

10 20 | 50000t 100t 5.78

15 20 | 50000t 100t 5.89

20 |20 | 100000t 100t 5.93

30 30 | 50000t 100t 5.97

40 |40 | 200000t 100t 5.97

60 |40 | 300000t 300t 5.99

80 |40 | 3000007 300t 6.00

100 |40 | 300000t 300t 6.00

120 | 40 | 300000t 300t 6.03
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6.3.2 Static and dynamic properties of the eDPD melt

The starting structure of the eDPD melt is modeled using linear polymers with N beads per
chain placed randomly in a cubic simulation box with side length L. Each bead is assigned a
constant initial temperature T; = 1.0. Table 6.1 provides a summary of the details of all the
simulated systems.

Longer total simulation times and larger box sizes were chosen for the melts of longer
polymers since longer chains have longer relaxation times and larger sizes. In addition, since the
overall simulation times are much longer for the longer chains, snapshots were saved after longer
intervals of time (see measurement time in Table 6.1) to reduce the overall file sizes. For each of
the simulations, the trajectory up to t = 10,000 in reduced time units was considered as an
equilibration phase by the end of which, chains are expected to reach a random coil configuration.
Only the trajectory after ¢ = 10,000 was considered for measurements of properties of the
polymer melts. Fig. 6.7a,b shows snapshots of 8 randomly chosen chains for N = 8 and N = 120
simulations after the entire simulations have finished.

To ensure that the polymer chains in our model obey random walk statistics, we measure

the mean squared radius of gyration (R7) and the mean squared end-to-end distance (R?) for the

melt,

N

1
(R3) = 3 (= Teom)? ), (6:25)
i=1
(R?) =((ry —Tn)?), (6.26)

respectively, where 7; is the position of bead i in a chain, r,,, = EZiri is the center of mass of a

chain, and () represents an average over all chains. Fig. 6.7¢ shows both (RE]) and (R?) as a

function of N — 1 for all the simulations listed in Table 6.1. Both of these quantities are measured
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from the data of the last 100 saved frames and scale linearly with N — 1 as expected for the random

2
coil polymer configuration[173]. In addition, the ratio % ~ 6 for each of the N considered, see
g

values in Table 6.1, which is also expected for random coils[173].

;k
(=n
[+

<RZ>, <R?>

100,

10! 102
N—1

Figure 6.7. Snapshots of polymer chains in the equilibrated simulation box with (a) N = 20 and

(b) N = 120 beads per chain. Only eight chains are shown in each box while the rest are hidden.

The simulation box size is L = 20 in a and L = 40 in b. (¢) Scaling of the mean squared end-to-
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end distance (open symbols, blue line) and mean squared radius of gyration (closed symbols, red
line). The lines show fitting to a + bN". Both quantities follow expected scaling for random coils
with v = 1.0.

To measure the diffusion constant of chains, we measured the mean squared displacement
of the chain center of mass (g3(t)) starting from the configuration at t = 10,000, i.e. after the
initial equilibration phase. This quantity is typically utilized in simulation studies[62, 173] to
measure diffusion constants of melts and is defined as:

95() = ([Teom(©) — Teom (0)]?) (6.27)

According to reptation theory, at late times g5 is expected to scale as g3 « t! and the diffusion
constant of polymer chains can be derived from late time values of g5 (t) using the relation,

g3(t) =~ 6Dt. (6.28)

The time evolution of g3(t) for melts with N = 8to N = 120 is shown in Fig. 6.8a. Diffusion

constants are measured by fitting the g; values from the last 100 measured frames of the

simulations with the equation (6.28) above. The dependence of the melt diffusion constant on the

number of bonds in each chain of the melt is plotted in Fig. 6.8b.
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Figure 6.8. (a) Evolution of the mean squared displacement of the chain center of mass, g;(t) for
melts of polymers with different degrees of polymerization (N) as described in the legend. (b)

Dependence of the product (N — 1) . D on the number of bonds in the chains N — 1.

The data of diffusion constant demonstrates that up to N = 15, an approximately constant value
of the product (N — 1) . D is observed. This is expected from the Rouse theory of diffusive motion
where D o (N — 1)~1. For N > 80, the trend starts to approach the reptation regime scaling D o
(N — 1)72. This trend in the diffusion constant data indicates that in the higher region of the
studied molecular weights, 80 < N < 120, the polymer melts are in a transition regime between

the pure rouse and reptation dynamics.

6.3.3 Modeling random scission under thermal degradation

In section 6.2.2 above, we described additional criteria apart from those outlined in chapter
three of this dissertation, to model random scission of linear polymer chains. To evaluate what
fraction of the total bonds can potentially be broken, we applied the above approach to a melt with

initial degree of polymerization N = 120. We tracked the progress of degradation by tracking the
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fraction of bonds intact, p = 1 — x. The data in Fig. 6.9 above shows that the thermal degradation
reaction follows first order kinetics with a rate constant k = 0.38P(T) /7. The factor 0.38 appears
here since, as discussed in section 6.2.2 above, the degradation probability is evaluated for only a
fraction of all the bonds.

To further confirm that our simulations follow trends expected for the random scission
process we tracked the evolution of number fraction (n;(x)) and weight fraction(w;(x))

distribution of polymer chains as shown in Fig. 6.10 below.

1-00 . N p— 120
—— k = 0.38P/1,
0.95
= 0.90
(]
0.85
0.80 s

0 20000 40000 60000 80000
Time

Figure 6.9. Evolution of the fraction of bonds intact during simulation of an eDPD melt with N =
120. The symbols represent data from an eDPD simulation and the line represents a fitting of the
first order equation p = exp (—kt). The values P(T) = 900exp (—32/T), tz = 0.1 were used
for the degradation simulation which was carried out at T = 1.53 in reduced DPD units

corresponding to T = 450 °C.
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Both of these distributions follow the trends expected from the Flory-Schulz distribution for
sufficiently high initial values of the degree of polymerization. Symbols of different color
represent data corresponding to time instants during the eDPD simulations with specific fraction
of bonds broken as mentioned in the legend. Lines represent plots of equations (6.11) and (6.13)
above. Highest deviations in the trends are observed near the limit x — 0 (see data for x = 0.01)
which is the limiting case where almost no bonds are broken. In this limit, the expected distribution
would be the unimolecular starting distribution we used for these simulations which is different

from the Flory-Schulz prediction.

o 0.14 b
0.12 0.08
0.10

0.06 |

__0.08 R

X >

IS 5 4
0.06 0.04
0.04

0.02
0.02
0.0075 50 "~ 100 0.00"

Figure: 6.10. (a) Number fraction n; (x) and (b) weight fraction w; (x) distributions during random
scission of polymer melt with initial degree of polymerization N = 120. Symbols represent data

from eDPD simulations while lines representing plots of equations 6.11 and 6.13 above.
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Outliers are also observed for the longest chain length in the simulation, N = 120 since the
statistics are poor for this chain length and the number of chains with N = 120 only keeps

decreasing throughout the simulation.

6.4 Conclusions

We have developed an initial framework for simulating the thermal degradation of
polyolefin melts. The framework uses a combined eDPD-mSRP approach to enable simulation of
temperature gradients in entangled polymer melts. The approach used in this chapter produces
polymer melts that show a transition from the rouse to reptation regime dynamics with increasing
molecular weight. The polymer chains at different molecular weights also demonstrate random
walk statistics expected from polymer chains in the melt state[ 173]. When a temperature gradient
is applied across the simulation box, temperature profile in the bulk of the simulated single bead
liquid system follows the trend expected from the heat conduction equation. Further, we conducted
a preliminary simulation of the thermal degradation of this polymer melt. The degradation reaction
constant in this model is dependent on the local temperature at which the degradation reaction is
carried out. The simulated degradation reaction results in a distribution of polymer chain lengths
in the melt that follows the expected Flory-Schulz distribution for the random scission
process[183]. The initial framework outlined in this chapter can be expanded further to simulate

the local temperature dependent thermal degradation of polyolefin melts.
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CHAPTER SEVEN

Conclusions

In this dissertation, we developed a framework for the simulation of degradation of
polymer networks and melts at the mesoscale. We used the DPD mesoscale simulation technique
along with mSRP to model the dynamics of polymers while avoiding unphysical crossing of the
polymer chains. We used a stochastic approach to model bond breaking during the degradation
process and implemented a modified form of the mSRP-DPD formulation to allow for dynamically
switching off the extra mSRP repulsion as bonds break. The developed simulation protocol also
allows for switching on mSRP repulsion upon bond formation and was used in our lab for
simulating the hydrosilylation reaction during synthesis of polymer derived ceramics[85].

The framework described above was used to simulate photo-controlled degradation and
erosion in tetra-PEG based hydrogel films. We tracked the progress of degradation reaction by
measuring the fraction of degradable bonds intact along with the evolution of molecular weight
distribution in the system. We identified a reverse gel point as a critical fraction of bonds broken
and then analyzed fractional mass loss from the hydrogel film as a function of the relative extent
of the degradation reaction with respect to the reverse gel point. We also analyzed the impact of
mass loss on properties such as the film thickness and crosslink density.

In addition to simulating hydrogel films, we also simulated degradation of finite sized
nanogel particles either suspended in a single solvent or adsorbed at the interface between two
incompatible liquids. We identified the dependence of the reverse gel point of these particles on
the total number of polymer precursors. We also analyzed the evolution of nanogel shape and size
during degradation and studied the impact of surrounding local conditions, such as the solvent

quality, on the evolution of these properties. During degradation in a good solvent, the nanogel
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undergoes homogenous swelling. The degree of swelling during degradation in a single solvent
decreases with a decrease in solvent quality. At the interface, the decrease in elasticity of nanogels
as degradation proceeds leads to increased spreading and interfacial coverage. The adsorption of
polymeric fragments formed during degradation along with the extent of spreading of the remnant
nanogel depends on the interfacial tension between the two liquids. The simulation protocol
developed for this work was implemented as pair srp/react[83] in the LAMMPS software[75-77]
to enable usage by the broader scientific community. Various aspects of the above work, discussed
in chapters 2-5, have been published in four journal articles [68, 70, 84, 85]; one journal article
has been accepted for publication and a review on this topic has been submitted as a book
chapter[189]. Additionally, the data regarding nanogel degradation work is publicly available on
Zenodo: https://doi.org/10.5281/zenodo.7410537

Lastly, we discussed our initial progress towards developing a framework for simulating
local temperature dependent thermal degradation of polyolefin melts. For this purpose, we used
the energy conserving dissipative particle dynamics (eDPD) technique which allows simulation of
temperature gradients in the simulation. The simulated polymer melts show a transition from the
rouse to reptation regime dynamics with increasing molecular weight. We simulated thermal
degradation of this polymer melt via the random scission mechanism with a degradation rate
constant dependent on the local temperature of the polymer. Our initial degradation simulations
result in molecular weight distributions in the melt that follow the expected Flory-Schulz
distribution for the random scission process[183]. Overall, the last chapter outlines initial
simulation framework towards that will aid in exploring an alternative approach for recycling

polyolefins.
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APPENDIX A

Implementation specifics for mSRP with bond breaking and formation

For this discussion, I will first introduce two types of C++ classes implemented within
LAMMPS[A1-A3], namely pair styles and fix styles. Pair styles primarily compute pairwise forces
between beads, e.g. the pairwise DPD forces, while fix styles perform some operation during a
simulation timestep. The segmental repulsive potential in LAMMPS, as implemented by Tim Sirk
and co-workers[A4, AS5], is based on one pair style for the additional SRP potential (pair_srp.cpp)
and one fix style (fix_srp.cpp) for handling pseudo beads during the simulation run.

To add the functionality of creation and deletion of pseudo beads upon bond creation or
breaking, correspondingly, additions are needed to both styles. These additions are implemented
in LAMMPS as files with a “ react” suffix (pair_srp_react.cpp and fix_srp react.cpp) and these
files are discussed below. Within these two files, major modifications to code are either in the class
constructor or some member functions. Since both pair srp_react and fix srp_react are derived
from the corresponding parent classes (pair srp and fix srp, respectively), the constructor of the
original class is always called by default when instantiating either of the srp_react classes. Hence
the constructor of srp_react only has the additional operations for this class. On the other hand,
most member functions in the srp react classes overwrite the function of the same name in the
original srp class. Hence, member functions have the same code as in the original srp along with

additions for the srp_react functionalities.
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pair_srp_react.cpp

PairSRPREACT():
In the constructor of the original pair srp class, an instance of the fix srp is created. As we will use
the fix srp react instead of fix srp, the fix srp is first deleted and then the fix srp react is

instantiated.

if (lmp->citeme) lmp—>citeme—>add(cite_srpreact);

// pair srp/react has its own fix, hence delete fix srp instance
// created in the constructor of pair srp
for( int ifix = @; ifix<modify->nfix; ifix++)
if( strcmp(modify—>get_fix_by_index(ifix)->style, "SRP") == 0)
modify—>delete_fix(ifix);

// similar to fix SRP, create fix SRP REACT instance here with unique fix id
f_srp = (FixSRPREACT %) modify—>add_fix(fmt::format("{:02d}_FIX_SRP_REACT all
SRPREACT",srp_instance));

++srp_instance;

ffeli: Zift(i)ngs function serves the purpose of reading srp parameters from the input script. For the
case of reactions along with srp, one additional parameter needs to be read from the input, namely
the ID of the fix style that executes the reaction. The ID of the reaction fix style is passed to the
pair srp command as follows (reproduced from edited manual page[A6]):

pair style srp/react cutoff btype dist react-id keyword value ...

The following code in the settings() function reads the react-id, searches the id within LAMMPS,
decides whether it is fix bond break or fix bond create and stores the ID in either the idbreak or

idcreate variables:
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// default bond/break and bond/create settings
bond_break = false;

bond_create = false;

idbreak = nullptr;

idcreate= nullptr;

// find whether id is of bond/break or bond/create
const charx reactid = arg[3];
if(strcmp(modify->get_fix_by_id(reactid)->style,"bond/break") == 0)

bond_break = true;
int n = strlen(reactid) + 1;
idbreak = new char([n];
strcpy(idbreak, reactid);
}
else if(strcmp(modify—>get_fix_by_id(reactid)->style,"bond/create") == 0)
{
bond_create = true;
int n = strlen(reactid) + 1;
idcreate = new charl[nl;
strcpy(idcreate, reactid)
}
else
error—>all(FLERR,"I1legal pair_style command");

init_style()

The id of the reaction fix read in the settings() function is passed to fix srp_react via the

init_style() function. The relevant part of code is as follows:

// if using fix bond/break, set id of fix bond/break in fix srp
// idbreak = id of fix bond break
%f( bond_break )
sprintf(c@, "%s", idbreak);
arg@d[0] = (char %) "bond/break";
argo[1] = co;
f_srp->modify_params(2, argo);
delete [] idbreak;
}

// if using fix bond/create, set id of fix bond/create in fix srp
// idcreate = id of fix bond break
%f( bond_create )

sprintf(c@, "%s", idcreate);

argd[0] = (char %) "bond/create";

argo[1] = co;

f_srp->modify_params(2, argo);

delete [] idcreate;
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fix_srp_react.cpp
The first task in the fix srp_react is to store and process information passed from the pair style
srp_react as mentioned in the previous section. The modify param() and init() functions undertake

this task.

modify_param()
This function is called from the init_style() function in pair srp react (see above) and passes

information from pair srp_react to fix srp_react. The relevant addition that passes the ID of the

reaction fix:

if (strcmp(arg(@],"bond/break") == @) {
int n = strlen(arg[1]) + 1;
idbreak = new charl(nl;
strcpy(idbreak,arg[1]);
return 2;

}

if (strcmp(arg(@],"bond/create") == 0) {
int n = strlen(arg[1]) + 1;
idcreate = new charl(n];
strcpy(idcreate,arg([1]);
return 2;

s

init()

The init() function creates instances of pointers to fix bond/break or fix bond/create as per

information obtained via modify param.

// find fix bond break
if( idbreak !'= nullptr )
f_bb = (FixBondBreak x) modify—>get_fix_by_id(idbreak);

// find fix bond create
if( idcreate !'= nullptr )

f_bc = (FixBondCreate *) modify->get_fix_by_id(idcreate);
// free memory

delete [] idbreak;
delete [] idcreate;

After fix srp react has received all relevant information, the next step is the heart of the

problem, i.e. insertion and deletion of beads.
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To understand the functions henceforth, it is helpful to start from a discussion of how a timestep
works in LAMMPS. Following is the relevant part of the pseudocode for a LAMMPS timestep
that is necessary in the current context, adapted from the LAMMPS documentation,

https://docs.lammps.org/Developer flow.html.

loop over N timesteps:

# initial integration steps

fix->initial_integrate()

fix->post_integrate()

nflag = neighbor->decide()

if nflag:
fix->pre_neighbor()
neighbor->build()
fix->post_neighbor()

force_clear()
fix->pre_force()

pair->compute()
bond—>compute()

fix->post_force()
fix->final_integrate()
fix->end_of_step()

end loop

The functions of form fix->function() above can be implemented in all fixes while only a
few of these are implemented in a particular fix. The reaction fixes, bond/break and bond/create
both execute reactions via the fix->post integrate() function. The reaction fixes update the
bond atom data structure in LAMMPS which is a per-atom list containing bond partners for each
atom. However, fix srp does not use this list directly to determine necessary bond particles but
depends on a different data structure, bondlist, which is a per-bond list containing the atom-ids
forming a particular bond. When a reaction occurs, the post_integrate function updates bond atom
list, and sets up a flag such that the neighbor->decide() function (see pseudocode above) returns

true. Then, the neighbor->build() function updates bondlist from bond_atom. Since at this point in
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the LAMMPS timestep we have all data needed to update the srp pseudo beads we implement a

fix->post_neighbor() function in srp_react.

The following functions describe the overall changes needed to perform the operation described
above.

setmask()
The setmask() function passes information about which of the fix->function() functions (see

timestep pseudocode above) are implemented in a particular fix. As we implement a new

post_neighbor function that is added to the mask in the setmask function via:

mask |= POST_NEIGHBOR;

post_neighbor()
This function checks whether a reaction has occurred via the number of bonds broken or created

in a particular time step and then calls the setup_pre force() function from the original fix srp class

which builds the bond particle array based on the bondlist.

void FixSRPREACT::post_neighbor()

{
// store ncalls as it is reset in fix srp setup pre force
int ncalls = neighbor->ncalls;

if( idbreak !'= nullptr)
if (f_bb->breakcount)
{

setup_pre_force(0);

//reset break count before exiting
// not reseting breakcount would lead to redundant rebuilds
f_bb—>breakcount=0;

// count additional call during setup_pre_force
neighbor—>ncalls = ncalls+1;
¥
if( idcreate !'= nullptr)
if (f_bc—>createcount)

{

setup_pre_force(0);
//reset create count before exiting

// not reseting createcount would lead to redundant rebuilds
f_bc—>createcount=0;
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// count additional call during setup_pre_force
neighbor->ncalls = ncalls+1;
}
}
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