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A B S T R A C T

In this paper we provide a statement of dynamic spatial price equilibrium (DSPE) in continuous 
time as a basis for modeling freight 昀氀ows in a network economy. The model presented describes a 
spatial price equilibrium due to its reliance on the notion that freight movements occur in 
response to differences between the local and distant prices of goods for which there is excess 
demand; moreover, local and distant delivered prices are equated at equilibrium. We propose and 
analyze a differential variational inequality (DVI) associated with dynamic spatial price equi-
librium to study the Nash-like aggregate game at the heart of DSPE using the calculus of varia-
tions and optimal control theory. Our formulation explicitly considers inventory and the time lag 
between shipping and demand ful昀椀llment. We stress that such a time lag cannot be readily 
accommodated in a discrete-time formulation. We provide an in-depth analysis of the DVI’s 
necessary conditions that reveals the dynamic user equilibrium nature of freight 昀氀ows obtained 
from the DVI, alongside the role played by freight transport in maintaining equilibrium com-
modity prices and the delivered-price-equals-local-price property of spatial price equilibrium. By 
intent, our contribution is wholly theoretical in nature, focusing on a mathematical statement of 
the de昀椀ning equations and inequalities for dynamic spatial price equilibrium (DSPE), while also 
showing there is an associated differential variational inequality (DVI), any solution of which is a 
DSPE. The model of spatial price equilibrium we present integrates the theory of spatial price 
equilibrium in a dynamic setting with the path delay operator notion used in the theory of dy-
namic user equilibrium. It should be noted that the path delay operator used herein is based on 
LWR theory and fully vetted in the published dynamic user equilibrium literature. This integra-
tion is new and constitutes a signi昀椀cant addition to the spatial price equilibrium and freight 
network equilibrium modeling literatures. Among other things, it points the way for researchers 
interested in dynamic traf昀椀c assignment to become involved in dynamic freight modeling using 
the technical knowledge they already possess. In particular, it suggests that algorithms developed 
for dynamic user equilibrium may be adapted to the study of urban freight modelled as a dynamic 
spatial price equilibrium. As such, our work provides direction for future DSPE algorithmic 
research and application. However, no computational experiments are reported herein; instead, 
the computing of dynamic spatial price equilibria is the subject of a separate manuscript.
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1. Introduction

We are concerned herein with generalization of the notion of spatial price equilibrium from a static to a dynamic setting. Spatial 
price equilibrium is considered an expression of how the transport of commodities occurs in response to differences between local and 
distant prices of transportable goods, with an underlying equilibration process that equates local and delivered prices. In particular, 
spatial price equilibrium is achieved when remote market price equals local market price plus the generalized cost of transport of the 
good of interest to the remote market. Spatial price equilibrium is often considered the foundation theory of freight transportation. The 
static theory of spatial price equilibrium has been moved forward by Samuelson (1952), Beckmann et al. (1956), Takayama and Judge 
(1964), Florian and Los (1982), Friesz et al. (1983), Tobin and Friesz (1983), Smith (1984), Chao and Friesz (1984), Smith and Friesz 
(1985), and several others over the last 70 years.

It is Beckmann in Chapter 5 of Beckmann et al. (1956) who is the 昀椀rst to give the key insights for an extremal formulation of spatial 
price equilibrium; this occurs in the same book where Beckmann gives the much studied and widely employed mathematical pro-
gramming formulation of static user equilibrium of passenger 昀氀ows. Also found in Chapter 5 of Beckmann et al. (1956) are remarks 
about how dynamic equilibrium models might be constructed. Although Beckmann’s suggestions regarding dynamic equilibrium have 
been followed with respect to dynamic user equilibrium (Wardrop’s 昀椀rst principle), relatively little research has been done on ex-
tensions of spatial price equilibrium to a dynamic setting.a We do note that Friesz et al. (2006) studied dynamic spatial oligopoly using 
dynamics like those of this paper but without explicit time shifts accounting for shipment delays.

In this paper, we present a dynamic extension of spatial price equilibrium and, in the process, provide (i) a succinct de昀椀nition of 
dynamic spatial price equilibrium (DSPE), (ii) an associated differential variational inequality (DVI), and (iii) an analysis of that DVI. 
These are provided in the hope of stimulating research on DSPE by other scholars, as well as applications by professionals involved in 
strategic freight planning. Our contribution is the 昀椀rst spatial price equilibrium formulation that explicitly treats lead times (time 
shifts) in a continuous time context in the articulation of inventory dynamics, when such lead times are dictated by the transport of 
goods to distant markets. Intimately tied to our basic formulation is its reformulation as a differential variational inequality (DVI), 
which immediately provides necessary conditions that must be satis昀椀ed by equilibrium solutions.

The work reported herein is meant to be a theoretical contribution centered around formulation and a thorough explanation of the 
relevant DVI necessary conditions, in which there are noninteger time shifts that capture the intrinsic lead time between shipping and 
demand ful昀椀llment. The treatment of explicit time shifts is new to the study of spatial price equilibrium and still not common in supply 
chain modeling. No analysis of time shifts in models of goods transport have used the rigorous continuous-time perspective contained 
in this paper. This is so despite the fact that treatments of time shifts using a discrete-time modeling perspective are, at best, ap-
proximations that may fail to assure time-consistent model solutions.

We employ the calculus of variations to show the differential variational inequality (DVI) associated with DSPE has necessary 
conditions that are recognizably appropriate time-shifted spatial price equilibrium conditions. Thereby, we establish that our DVI 
formulation of spatial price equilibrium integrates, in a dynamic setting, the path delay operator notion from the theory of dynamic 
user equilibrium with the theory of spatial price equilibrium. This integration constitutes a signi昀椀cant addition to the spatial price 
equilibrium and freight network equilibrium modeling literatures. Among other things, it points the way for researchers interested in 
dynamic traf昀椀c assignment to become involved in freight modeling using the technical knowledge they already possess. In particular, 
our DVI representation allows algorithms developed for solving dynamic user equilibrium models to be adapted to computing a DSPE.b

As such, the DSPE model presented herein may be applied to any circumstance warranting use of a dynamic aggregative freight 
model when adequate data, including that needed to estimate or derive inverse commodity supply and demand functions, are 
available. However, the detailed analysis of the existence of solutions to the DVI, as well as algorithms for solving it, are presented in a 
separate manuscript (Friesz, 2023). However, we do comment that DSPE, like DUE, will suffer from the nonmonotonic nature of the 
path delay operator. Convergence for some applicable algorithms may, however, be proven by invoking weak monotonicity of path 
delay (Friesz et al., 2021) simultaneously with strong monotonicity of derived demand, as that notion is de昀椀ned in Friesz et al. (1983).

The freight traf昀椀c we envision is that of trucks traveling over a congested network in a large metropolitan region. Anywhere within 
the network, the traf昀椀c stream contains both passenger vehicles and trucks whose travel characteristics are determined by a 2-class 
dynamic network loading model that informs the spatial price equilibrium. In particular, we imagine a traf昀椀c delay operator of the 
form Φk

p(t,h), which provides the delay per unit of 昀氀ow (departure rate) of commodity k relative to path p, where h is a vector of such 
昀氀ows, departing at time t, expressed via a network loading model that has preloaded automobile 昀氀ows or simultaneously loads both 
freight and automobile 昀氀ows. Path delay operators are now widely accepted in the dynamic traf昀椀c assignment and dynamic user 
equilibrium (DUE) modeling literature as a means of capturing congestion phenomena in a fashion consistent with Lighthill-Whitham- 
Richards (LWR) traf昀椀c 昀氀ow theory and the 昀椀rst-in-昀椀rst-out (FIFO) queue discipline. Effective means for the numerical calculation and 
software instantiation of path delay operators via dynamic network loading are now well established, as extensively reviewed in Friesz 
and Han (2022, 2023b, 2023c). Moreover, LWR-based delay operators cannot be replaced with ad hoc link delay functions based on 
link congestion functions used in static traf昀椀c assignment; doing so runs the risk of violating the 昀椀rst-in-昀椀rst-out (FIFO) queue 
discipline, as well as the introduction of other 昀氀ow propagation errors that render computed DSPE/DUE solutions meaningless.

a A notable exception is Holguin-Veras et al. (2016) who base their analysis on the tours of freight vehicles rather than point-to-point deliveries as 
is traditional in spatial price equilibrium modeling.

b For a discussion of DUE algorithms, see the review in Friesz and Han (2023a).
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Han et al. (2016) and Friesz and Han (2022, 2023b, 2023c) explain how the dynamic network loading (DNL) problem is formulated 
to assure LWR theory and FIFO-obedient queuing are in effect. They also discuss how a DNL problem is solved to obtain the associated 
path delay operator. They present examples and cite de昀椀nitive references demonstrating how the path delay operator is accessible and 
practical during numerical calculations of equilibria. In fact, the path delay operator concept has been presented, explained, and 
applied in the following: Han et al. (2013), Han et al. (2015a), Han et al. (2015b), Han et al. (2016), Friesz and Han (2019), and Friesz 
et al. (2021). In particular, Han et al. (2016) is a complete exposition of the path delay operator (PDO) in a single journal paper. 
Moreover, it is a paper devoted exclusively to the de昀椀nition, analysis, and mathematical properties of the PDO. The other works named 
above establish the merit of the path delay operator (PDO) in terms of its computability and utility for studying traf昀椀c networks. These 
works also show the compatibility of the PDO with key aspects of behavioral modelling—like elastic travel demand, bounded ratio-
nality in route and departure time choice, and existence of equilibrium solutions.

In Han et al. (2016), the path delay operator formalism is presented in considerable depth. They begin by describing the pure 
dynamic user equilibrium (DUE) submodel and the dynamic network loading (DNL) submodel, both of which are needed to compute a 
dynamic user equilibrium. The DUE submodel determines departure rates given path delays, and the DNL submodel determines path 
delays given departure rates. They then introduce the concept of a path delay operator (PDO) that maps the departure rate vector to the 
path delay vector for each instant of continuous time. As such, the PDO is the DNL, since the only inputs to the DNL are departure rates 
and its most relevant outputs are path delays. The DNL explicitly involves a network-LWR model.

Han et al. (2016) present, as background, a network-LWR model with an associated Riemann solver. This model is the foundation 
for reformulating the dynamic network loading (DNL) problem as a partial differential algebraic equation (PDAE) system involving 
LWR link dynamics, boundary conditions, and path disaggregation constraints, as well as merge and diverge junction models. Within 
the PDAE system, they construct a path delay computational procedure for each departure rate vector; this procedure demonstrates 
that path delay may be determined from departure rates, for any given instant of time, and that the notion of a PDO is well founded and 
intrinsic to DNL, although the PDO cannot generally be expressed in a closed form. In practice, it is a numerical operator that is invoked 
for each instant of time considered in a DUE solution algorithm. The complete PDAE equation set is summarized in Section 3.5 of Han 
et al. (2016).

We reiterate that, in this paper, we seek a model of spatial price equilibrium that integrates, in a dynamic setting, the path delay 
operator notion presented in Friesz and Han (2022, 2023b, 2023c) with the foundation theory of goods movement, namely the theory 
of spatial price equilibrium. This integration in昀氀uences the essential features of the model explicated herein. In the presentation that 
follows, we proceed constructively: a model is presented, reformulated to make it tractable, and analyzed to uncover critical prop-
erties. A familiarity with optimal control theory and differential variational inequalities at the level of Friesz (2010), Friesz and Han 
(2019) and/or Friesz and Han (2022, 2023d) will facilitate understanding the necessary conditions of the proposed DSPE DVI.

2. Key notation and assumptions

We posit a freight network that transports several types of commodities between markets with positive excess supply and those with 
positive excess demand. We use t to denote continuous time. The decision variables of the model correspond to the arabic letters h, S, D, 
and I. In particular, h will refer to path 昀氀ow, S to rate of supply, D to demand rate, and I to inventory/backorder level. Furthermore, we 
will use c to refer to transportation cost per unit of 昀氀ow. Commodity prices will be π. The relevant subscripts/superscripts for variables, 
as is meaningful, are p for a speci昀椀c path, k for a speci昀椀c commodity, and i or j for a speci昀椀c node. Other notation will be introduced as 
needed. Dual variables for the terminal-time constraints will be related to commodity prices, as explained in Section 5.1 and Section 
5.2.

We will employ the following sets in discussing spatial price equilibrium and its extension from a static to a dynamic setting: 

N = the set of nodes in the network of interest
K = the set of commodities
W = the set of origin-destination pairs
P = the set of all paths connecting the OD pairs
P

k
ij = the subset of paths connecting (i, j) * W and suitable for commodity k * K

We consider continuous time t * [t0,t1] where t0 is the initial instant of the time interval of interest and t1is the 昀椀nal instant. Of 
course, t1 > t0. We also have, for every t * [t0,t1], the following vectors: 

h(t) =
(

hk
p(t) : p * P , k * K

)

S(t) =
(Sk

i (t) : i * N , k * K
)

D(t) =
(Dk

i (t) : i * N , k * K
)

π(t) =
(
πk

i (t) : i * N , k * K
)

Moreover, we assume 
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h *
(L2

+[t0, t1]
)|P ||K |

π : [t0, t1]→
(L2

+[t0, t1]
)|N ||K |

S *
(L2

+[t0, t1]
)|N ||K | I : [t0, t1]→

(W1[t0, t1]
)|N ||K |

D *
(L2

+[t0, t1]
)|N ||K |

where L2
+[t0, t1] is the space of square integrable functions relative to the interval [t0,t1] of the real line and (L2

+[t0, t1]
)|N 6K | is its 

|N 6 K |-fold product, while W1[t0,t1] is a Sobolev and space and (W1[t0, t1]
)|N 6K | is its |N 6 K |-fold product. We take the variables (h, 

S, D) to be controls; the inventory variables I will be the state variables.

3. Delay operator, minimum shipping latency, and spatial price equilibrium

The notion of a unit path delay operator Φk
p(t, h) for p * P gives the delay (latency) per unit of 昀氀ow for shipments of commodity k 

over path p when those shipments depart the origin at time t and encounter traf昀椀c conditions h. It includes free 昀氀ow shipping delay.
Throughout our presentation, the following assumptions will be in effect:

Assumption 1. The h variables are piecewise smooth.

Assumption 2. The S and D variables are piecewise smooth.

Assumption 3. Inverse supply and demand functions exist.

Assumption 4. Every path delay, value of time, and freight tariff is strictly positive.
In the DUE literature the unit path delay operator is taken to be measurable; therefore, that assumption, although we shall not refer 

to it explicitly, applies here implicitly. These very mild regularity conditions are needed for the analyses of and remarks about 
necessary conditions for the DSPE DVIs presented in Sections 5 and 6.

The unit cost ckp(t, h) for shipping k over p is given by the sum of a 昀椀xed freight tariff rk
ij and the economic loss due to congestion: 

ck
p(t, h) = rk

ij + ζkΦk
p(t, h) (1) 

where ζk is the value of time for commodity k * K. We will also have need for the de昀椀nition 
τk

ij c minΦk
p(t, h) : h * Ω(S7

,D7), t * [t0, t1], (2) 

which is the minimum shipping time (delay or latency) for commodity k * K and path p * P
k
ij connecting OD pair (i, j) * W , where 

Ω(S*, D*) is a set of feasible departure rate solutions corresponding to equilibrium supply S* and equilibrium demand D*. The cost 
vector is an operator in an in昀椀nite dimensional vector space: 

c(h) c
(

ck
p(⋅, h) : p * P , k * K

)
*
(L2

+[t0, t1]
)|P ||K |

where L2
+[t0, t1] and (L2

+[t0, t1]
)|P 6K | have been previously de昀椀ned.

We may sometimes, when context prevents misunderstanding, we may take time dependency to be implicit and drop direct 
reference to t. Also, when the spatial price equilibrium conditions are stated in terms of time shifts, we may drop the dependence on 
unshifted time, again taking that dependency to be implicit.

3.1. The extension of static spatial price equilibrium to DSPE

The essential characteristic of a spatial price equilibrium is that, if the shipping rate between a pair of supply and demand nodes is 
positive, the delivered price equals the local price. Moreover, if the delivered price exceeds local price, the shipping rate is zero. These 
properties are easily expressed for a dynamic setting like ours in the following way that is familiar from the study of static spatial price 
equilibrium, as presented in Friesz et al. (1983) and the works of other scholars: 

hk
p > 0, p * P

k
ij ⇒ πk

i (t) + ck
p(t, h) = πk

j
(

t+ τk
ij
)

(3) 

πk
i (t) + ck

p(t, h) > πk
j
(

t+ τk
ij
)
, p * P

k
ij ⇒ hk

p = 0 (4) 

where each hkp refers to the 昀氀ow (departure rate) associated with path p * P
k
ij of commodity k * K ; similarly, each πk

i refers to the 
price of commodity k * K produced at node (market) i * N . In (3) and (4), we have indicated that prices πk

i (t) and πk
j
(

t+τk
ij
)

are 
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compared to establish equilibrium because of the delay intrinsic to shipping goods from market i to market j. Note also that 

πk
i (t) + ck

p(t, h) g πk
j
(

t+ τk
ij
)
"(i, j) * W , k * K , p * P

k
ij (5) 

If (5) did not obtain, then, for some (i, j) * W , we would have 

πk
i (t) + ck

p(t, h) < πk
j
(

t+ τk
ij
)

and need to consider two cases:
(i) hp > 0 ⇒ πk

i (t)+ ckp(t,h) = πk
j
(

t + τk
ij
)

, which is a contradiction; or
(ii)hp = 0, which is a failure to take advantage of an apparent spatial arbitrage (delivered price strictly less than local price). Since 

the presence of such arbitrage opportunities is inconsistent with equilibrium, we enforce (5). We also note that, in light of the non-
negativity of departure rates (h g 0), expression (4) is redundant since it is implied by (3).

At the same time Sk
i and Dk

i , which respectively refer to supply and demand rates associated with the production and consumption of 
commodity k * K at node i * N , must satisfy: 

πk
i = ψk

i (S) when Sk
i > 0 (6) 

πk
i = Θk

i (D) when Dk
i > 0 (7) 

where Ψk
i (.) and Θk

i (.) are, respectively, inverse supply and inverse demand functions. We also expect that 
Ψk

i (S) > πk
i ⇒ Sk

i = 0 (8) 

to re昀氀ect that there will be no production when the price computed from the inverse supply function exceeds the market price. 
Similarly, we expect that 

πk
i > Θk

i (D) ⇒ Dk
i = 0 (9) 

to re昀氀ect that there will be no consumption when price computed from the inverse demand function is less than the market price. The 
upshot of (6), (7), (8) and (9) is 

Ψk
i (S) − πk

i g 0 "k * K , i * N

−Θk
i (D) + πk

i g 0 "k * K , i * N 

Naturally, we have the vectors 
Ψ(S) =

(
Ψk

i (S) : i * N
)

Θ(D) =
(
Θk

i (D) : i * N
)

where time is implicit.

3.2. Causation of time shifts in DSPE

When 昀椀rst articulating (3), (4), and (5), it seems that one is stipulating the conditions of price equilibrium before presenting the 
dynamics that govern the evolution of commodity 昀氀ows and prices, whatever those might be. Do the time shifts appearing in those 
expressions arise from a philosophy of pricing, such as cash on delivery (COD), or do they devolve from the physics of freight transport? 
In Section 4, we introduce dynamics describing the formation of inventories from considerations of production, consumption, export 
and import at each node (market). Such inventory dynamics involve time shifts for path 昀氀ows (departure rates) to re昀氀ect the intrinsic 
physical delay associated with the movement of tangible goods but make no direct reference to prices. In Section 5, we will see how it is 
possible to depict DSPE as a differential variational inequality (DVI) without the a priori assumption of (3), (4), and (5), the spatial 
price equilibrium conditions with time shifts. Moreover, we show in Sections 5 and 6 that (3), (4), and (5) arise from consideration of 
the dual variables of the inventory dynamics that constrain the DVI. As such the DVI explains (3), (4), and (5) as the consequence of 
inventory dynamics with time shifts that re昀氀ect the physics of transport. That is, the inventory dynamics do not presume any particular 
pricing policy yet force obedience to equilibrium conditions (3), (4), and (5), as is systematically explained in Section 5.3.

4. The unembellished DSPE model

In this section we present the mathematical statement of our basic dynamic spatial price equilibrium (DSPE) model under the 
assumption that there are prescribed initial and 昀椀nal inventory levels for each commodity, but there are no constraints on inventory 
other than the inventory (昀氀ow conservation) dynamics to be articulated below.
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4.1. Inventory dynamics and related constraints

For all k * K and i * N , the inventory dynamics we shall consider are the following: 
dIk

i (t)
dt = Sk

i (t) +
3

j*:(j,i)*W

3

p*P
k
ji

hk
p
(

t− τk
ji
)
−

3

j:(i,j)*W

3

p*P
k
ij

hk
p(t) − Dk

i (t) (10) 

Ik
i (t0) = Ak

i (11) 

Ik
i (t1) = Bk

i (12) 

where there is an adjoint variablec λk
i associated with each inventory differential Eq. (10). We do not yet know the relationship of the 

adjoint variables to prices. The constants Ak
i and Bk

i give the initial and 昀椀nal values of inventory for commodity k and market i. For 
commodity k * K , the 昀氀ows inbound to market (node) i are time shifted by an amount τk

ji that represents the travel time between (j,
i) * W .

In expressions (10)-(12), t0 is the initial instant of the time interval [t0,t1] of interest, for which the 昀椀nal instant is t1. Of course, t1 >
t0. In order for a shipment from market j to in昀氀uence inventory at market i at the time t for which the inventory dynamics (10) (which 
are 昀氀ow conservation constraints) are expressed, that shipment must depart at t− τji, where τji is the shipment time between those 
markets. Furthermore, each hkp refers to the departure rate of commodity k along path p, while Sk

i and Dk
i refer to supply and demand 

rates at node i of commodity k, respectively.
Nonnegativity restrictions on the path departure, supply and demand rates must be imposed: 

−hk
p f 0

(
μk

p
)

"k * K , p * P (13) 

−Sk
i f 0 (

αk
i
)

"k * K , i * N (14) 

−Dk
i f 0 (

βk
i
)

"k * K , i * N , (15) 

where the variables in parentheses are dual variables associated with their nonnegativity constraints (13)-(15). We rewrite the ter-
minal time constraints on inventory in implicit form: 

Bk
i − Ik

i (t1) = 0 (
πk

i
)

"k * K , i * N (16) 

where the Bk
i are 昀椀xed. The πk

i are dual variables for the stipulated 昀椀nal value constraints (16); we shall see for the unembellished 
model that they are also commodity prices.

4.2. The model in summary

For all t * [t0,t1] we seek a solution to this system, each aspect of which has been presented above: 

hk
p > 0, p * P

k
ij ⇒ πk

i (t) + ck
p(t, h) = πk

j
(

t+ τk
ij
)

(17) 

πk
i (t) + ck

p(t, h) g πk
j
(

t + τk
ij
)

"(i, j) * W , k * K , p * P
k
ij (18) 

dIk
i (t)
dt = Sk

i (t) +
3

j*:(j,i)*W

3

p*P
k
ji

hk
p
(

t− τk
ji
)
−

3

j:(i,j)*W

3

p*P
k
ij

hk
p(t) − Dk

i (t) (19) 

Ik
i (t0) = Ak

i Bk
i − Ik

i (t1) = 0 "k * K , i * N (20) 

Sk
i > 0 ⇒ πk

i = Ψk
i (S) "k * K , i * N (21) 

Dk
i > 0 ⇒ πk

i = Θk
i (D) "k * K , i * N (22) 

Ψk
i (S) − πk

i g 0 "k * K , i * N (23) 

c Also sometimes called a costate variable. Such variables are dynamic dual variables describing the sensitivity an agent’s performance functional 
to changes in state.
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πk
i − Θk

i (D) g 0 "k * K , i * N (24) 

h g 0 S g 0 D g 0 (25) 
Formulation (17) through (25) may be restated as a nonlinear complementarity problem when an appropriate inexpensive goods 

condition is imposed, as discussed in Friesz (2023), as an aid to computation. However, our interest in this paper is in restating 
(17)-(25) as a differential variational inequality (DVI) in order to illustrate the dynamic user equilibrium nature of its solutions as 
revealed by a thorough variational analysis of DSPE.

4.3. The differential variational inequality

Familiarity with differential variational inequalities allows us to conjecture that the DSPE problem may be solved by (h*, S*, D*) *
Ω that solves 

+t1

t0

[
c(t, h7)

T
(h − h7) − Θ(D7)T(D − D7) + Ψ(S7)T(S − S7)

]
dt g 0 "(h, S,D) * Ω (26) 

where Ω is the set of feasible controls, de昀椀ned as 
Ω = {(h, S,D)} : (17) − (25) hold}

If the application of appropriate necessary conditions for differential variational inequality (26) yields the DSPE conditions (17) 
and (18), along with the other relevant considerations described above, we will have established that we have a correct DVI 
formulation.

4.4. Recasting the problem

It is helpful to brie昀氀y consider this abstract variational inequality: 
F(x7)T(x− x7) g 0 x, x7 * Λ,

which is equivalent to 
F(x7)Tx g F(x7)Tx7 x, x7 * Λ,

which is a statement that x* * Λ solves 
minF(x7)Tx s.t. x * Λ (27) 

Note that program (27) is a mathematical construct whose objective function presumes knowledge of the equilibrium solution x* *
Λ, making it useful only for analysis not computation.

We study a reformulation of DVI (26) using the ideas presented in creating (27) to generate the following optimal control problem: 

min
3

k*K

3

i*N

πk
i
[Bk

i − Ik
i (t1)

]
+

+t1

t0

L(h, S,D, t)dt s.t. (h, S,D) * Ω (28) 

where 
L =

3

k*K

3

(i,j)*W

3

p*P ij

ck
p(t, h7)hk

p −
3

k*K

3

i*N

Θk
i (D7)TDk

i +
3

k*K

3

j*N

Ψk
j (S7)Sk

j (29) 

We reiterate that this optimal control problem may be used for analysis but not for computation since it is parametric in the 
equilibrium solution (h*, S*, D*). We will use it to derive differential spatial price equilibrium conditions, thereby showing our DVI 
formulation is valid. That is, any solution of the DVI will be a DSPE.

4.5. Optimal control with time shifts

In this section, we consider optimal control with time-shifted state and control variables in order to treat the time shifts appearing 
in the spatial price equilibrium conditions introduced earlier. Our presentation is based on Budelis and Bryson (1970), Friesz et al. 
(2001), and Friesz (2010). Let us address the following abstract optimal control problem: 
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minJ(u) = vTψ [x(t1), t1] +
+t1

t0

f0(x, u, t)dt (30) 

subject to 
dx
dt = f(x, xτ, u, uτ, t) t * [t0, t1] (31) 

x(t0) = x0 (32) 

x(t) = x0(t) t * [t0 − τ, t0) (33) 

g(x, u, t) f 0 (μ) (34) 

ψ [x(t1), t1] = 0 (v) (35) 

where t is continuous time, x is the state vector, u is the control vector, xτ 
––– x(t − τ), uτ 

––– u(t − τ), τ > 0, v is a dual variable, and τ is a 
constant time shift. In the discussion that follows, H is the Hamiltonian given by 

H = f0(x, u, t) + λTf(x, xτ, u, uτ, t) + μTg(x, u, t) (36) 

and λ is the adjoint vector obeying the following: 
dλ

dt = −Hx t * [t0, t1 − τ] (37) 

dλ

dt = −Hx − Hxτ
|t+τ t * (t1 − τ, t1] (38) 

λ(t1) = v ∂ψ(x(t1), t1)
∂x(t1) , (39) 

where v is a dual variable for the terminal time constraint ψ[x(t1),t1] = 0. Budelis and Bryson (1970), Friesz et al. (2001), and Friesz 
(2010) give the following necessary conditions: 

Hu + [Huτ
]t+τ = 0 t * [t0, t1 − τ] (40) 

Hu = 0 t * (t1 − τ, t1] (41) 

μTg = 0 (42) 

μ g 0 (43) 
Expressions (40) and (41) are the minimum principle, while (42) and (43) are complementary slackness conditions.

5. Analyzing the necessary conditions

As we have reviewed in Section 4.5, necessary conditions for optimal control problems require the minimization of the Hamil-
tonian, which is comprised of the integrand of the objective and priced out constraints. The optimal control problem (28)-(29) has the 
following Hamiltonian: 

H0 =
3

k*K

3

(i,j)*W

3

p*P
k
ij

ck
p(t, h7)hk

p −
3

k*K

3

i*N

Θk
i (D7)Dk

i +
3

k*K

3

i*N

Ψk
i (S7)Sk

i

+
3

k*K

3

i*N

λk
i (t)

£
££Sk

i (t) +
3

j:(j,i)*W

3

p*P
k
ji

hk
p
(

t − τk
ji
)
−

3

j:(i,j)*W

3

p*P
k
ij

hk
p(t) − Dk

i (t)
§
§§

+
3

k*K

3

i*N

[
ρk

p
(
−hk

p
)
+ ρk

pτ

(
−hk

pτ

)
+ αk

i
(
−Sk

i
)
+ βk

i
(
−Dk

i
)]

(44) 

Note that in (44) the following term 
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3

k*K

3

i*N

λk
i (t)

£
££−

3

j:(i,j)*W

3

p*P
k
ij

hk
p(t)+

3

j:(j,i)*W

3

p*P
k
ji

hk
p
(

t− τk
ji
)
§
§§ = −

3

k*K

3

i*N

λk
i (t)

3

j:(i,j)*W

3

p*P
k
ij

hk
p(t) +

3

k*K

3

i*N

λk
i (t)

3

j:(j,i)*W

3

p*P
k
ji

hk
p
(

t− τk
ji
)

(45) 

is evident. One may, by exchanging the roles of i and j in the second term, rewrite the immediately preceding expression as 

−
3

k*K

3

i*N

λk
i (t)

3

j:(i,j)*W

3

p*P
k
ij

hk
p(t) +

3

k*K

3

j*N

λk
j (t)

3

i:(i,j)*W

3

p*P
k
ij

hk
p
(

t− τk
ij
)

(46) 

Using πk
i = −λk

i for all i * N and k * K , a relationship that will be established subsequently, (46) becomes 
3

k*K

3

i*N

πk
i (t)

3

j:(i,j)*W

3

p*P
k
ij

hk
p(t) −

3

k*K

3

j*N

πk
j (t)

3

i:(i,j)*W

3

p*P
k
ij

hk
p
(

t− τk
ij
)

(47) 

As a consequence, we may state the Hamiltonian for the DVI as 
H0 =

3

k*K

3

(i,j)*W

3

p*P
k
ij

ck
p(t, h7)hk

p −
3

k*K

3

i*N

Θk
i (D7)Dk

i +
3

k*K

3

i*N

Ψk
i (S7)Sk

i

+
3

k*K

3

i*N

πk
i (t)

[Dk
i (t) − Sk

i (t)
]

+
3

k*K

3

i*N

πk
i (t)

3

j:(i,j)*W

3

p*P
k
ij

hk
p(t) −

3

k*K

3

j*N

πk
j (t)

3

i:(i,j)*W

3

p*P
k
ij

hk
p
(

t − τk
ij
)

+
3

k*K

3

i*N

[
ρk

p
(
−hk

p
)
+ ρk

pτ

(
−hk

pτ

)
+ αk

i
(
−Sk

i
)
+ βk

i
(
−Dk

i
)]

(48) 

5.1. Transversality conditions and adjoint equations

The transversality conditions (39) yield 

λk
i (t1) = πk

i
∂
[Bk

i − Ik
i (t1)

]

∂Ik
i (t1)

= −πk
i (49) 

Thus, the dual variables πk
i assigned to the terminal inventory constraints are constant and equal to the negative of the adjoint 

variables at the terminal time t1. That is, we con昀椀rm our prior assumption that πk
i = −λk

i for all i * N and k * K . In Section 5.2, we 
show the dual variables are valid prices. Moreover, commodity prices are constant over time for the unembellished model. However, 
demonstration of these features requires the detailed analysis presented below in Sections 5.2 and 5.3.

We next show the adjoint variables are constant for the purposely simpli昀椀ed unembellished model summarized in Section 4.2. 
Because the only state variables are inventories and such variables do not appear in the Hamiltonian, the analysis of the adjoint 
equations is especially easy. We obtain the following result from the adjoint Eqs. (37) and (38): 

dλk
i

dt = −
∂H0
∂Ik

i
= 0 "(i, k), t * [t0, t1], (50) 

which implies that each λk
i is a constant. Moreover, (49) and (50) establish that 

πk
i = −λk

i = a constant "(i, k) (51) 

5.2. The minimum principle: supply and demand variables

In this section we establish that prices follow the demand and supply functions and the dual variables on terminal inventory are the 
commodity prices we seek in spatial price equilibrium.

The following are 昀椀rst-order conditions associated with commodity supply and demand that arise from the minimum principle: 
∂H0
∂Sk

i
= Ψk

i (S7) − πk
i − αk

i = 0 (52) 

∂H0
∂Dk

i
= (−1) ⋅ θk

i (D7) + πk
i − βk

i = 0 (53) 

αk
i Sk

i = 0 αk
p g 0 (54) 
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βk
i Dk

i = 0 βk
p g 0 (55) 

Conditions (52)-(54) assure the following: 
Sk

i > 0 ⇒ Ψk
i (S7) = πk

i (56) 

Dk
i > 0 ⇒ θk

i (D7) = πk
i (57) 

In other words, nontrivial supplies and demands are consistent with inverse supply and inverse demand functions, respectively, for 
all markets and commodities. Results (56) and (57) con昀椀rm that the dual variables πk

i are prices. That is, we have established that the 
dual vector π =

(
πk:

i : k * K , i * N
) is comprised of prices at individual markets (nodes) of the network economy. Moreover, because 

prices are constant by virtue of (51), supplies and demands are likewise constant.

5.3. Minimum principle: departure rates

The Hamiltonian H0 expressed in the form (48) sets the stage for applying the minimum principle (40) for the time-shifted de-
parture rates intrinsic to DSPE; doing so, we 昀椀nd 

∂H
∂hkp

+

[
∂H
∂hkpτ

]t+τ

= ck
p(t, h7) + πk

i (t) − πk
j
(

t+ τk
ij
)
− μk

p − μk
pτ = 0 

when 

t *
[

t0, t1 − τk
ij
]

(58) 

We also know 
ρk

phk
p = 0 ρk

p g 0 (59) 

ρk
pτhk

pτ = 0 ρk
pτ g 0 (60) 

where 

hk
pτ c hk

pτ

(
t− τk

ij
)

From (58), (59), and (60) we have 

ck
p(t, h7) + πk

i (t) − πk
j
(

t+ τk
ij
)
g 0 (61) 

From the same conditions, we see that the following result reminiscent of static spatial price equilibrium holds for solutions of DVI 
(26): 

hk
p > 0 and hk

pτ > 0, p * P
k
ij ⇒ ρk

p = ρk
pτ = 0 t *

[
t0, t1 − τk

ij
]

⇒ ck
p(t, h7) + πk

i (t) − πk
j
(

t + τk
ij
)
= 0 t *

[
t0, t1 − τk

ij
] (62) 

Moreover, we see that 

ck
p(t, h7) + πk

i (t) > πk
j
(

t + τk
ij
)
, p * P

k
ij ⇒ hk

p = 0 t *
[
t0, t1 − τk

ij
]

(63) 

since the alternative, hkp > 0, requires ckp(t,h7)+ πk
i = πk

j , which is a contradiction.
The minimum principle (58) gives 

ck
p(t, h7) + πk

i (t) g ρk
p, p * P

k
ij t *

(
t1 − τk

ij, t1
]

from which we obtain 

ck
p(t, h7) + πk

i (t) > 0, p * P
k
ij ⇒ hk

p = 0 t *
(

t1 − τk
ij, t1

]
(64) 

as well as 

hk
p > 0, p * P

k
ij ⇒ ck

p(t, h7) + πk
i (t) = 0 t *

(
t1 − τk

ij, t1
]

(65) 
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Note that, in (64), ck
p(t, h7) + πk

i (t) = 0 cannot occur because ck
p(t, h7) is strictly positive for physical reasons. Hence, the circum-

stance of positive 昀氀ow for t *
(

t1 −τk
ij, t1

]
is impossible, so long as the πk

i are nonnegative and veri昀椀ed as commodity prices, as they are 
in (56) and (57). The impossibility of (65) is 昀椀tting since there is insuf昀椀cient time for a shipment to reach its destination. Therefore, 
conditions (62), (64) and (65) are valid statements of spatial price equilibrium; consequently, any solution of (26) is a DSPE.

6. Interpretation of DSPE and connection to due

For the unembellished model’s speci昀椀cation, as a consequence of (61) and the de昀椀nition 
ck

p(t, h) c rk
ij + ζkΦk

p(t, h),

we have that 

Φk
p(t, h) g

πk
j − πk

i − rk
ij

ζk
(66) 

Moreover, we know from (62) that at equilibrium (66) holds as an equality; thus 

min
h*Ωt*[t0 ,t1 ]

Φk
p(t, h) =

πk
j − πk

i − rk
ij

ζk
c τk

ij, (67) 

which con昀椀rms that each τk
ij is a constant since the adjoint equations assure commodity prices are constant and the tariff rk

ij is constant 
by stipulation. This justi昀椀es using the necessary conditions for 昀椀xed time shifts put forward in Section 4.5. Moreover, because delay 
must be strictly positive for physical reasons, each τk

ij > 0.
Although perhaps already clear, we want to emphasize that observation (67) means that the path 昀氀ows of our unembellished 

dynamic spatial price equilibrium model constitute a dynamic user equilibrium with minimum travel time τk
ij for every OD pair and 

commodity, as that notion is presented in Friesz et al. (1993), Friesz and Han (2019), and Friesz and Han (2022, 2023d). In particular, 
we note from (51), (62) and (67) that 

hk
p > 0, hk

pτ > 0 ⇒ ck
p(t, h) + πk

i − πk
j = 0 t *

[
t0, t1 − τk

ij
]

⇒ rk
ij + ζkΦk

p(t, h) + πk
i − πk

j = 0 t *
[
t0, t1 − τk

ij
]

⇒ Φk
p(t, h) =

πk
j − πk

i − rk
ij

ζk
c τk

ij t *
[
t0, t1 − τk

ij
]

for all k * K , (i,j) * W , and p * P
k
ij. That is, positive departure rates mandate that path delay is minimized, which is recognized as the 

de昀椀ning characteristic of dynamic user equilibrium. Furthermore, as revealed by our analysis, equilibrium commodity prices are 昀椀xed 
in our unembellished model, freight departure (shipping) rates h adjust dynamically to assure those prices are respected, and the 
generalized shipping cost ckp(t, h) c rk

ij + ζkΦk
p(t, h) maintains the delivered-price-equals-local-price property of spatial price equilib-

rium for all k * K , (i, j) * W , and p * P
k
ij. These are exactly the properties one wishes of a dynamic freight model that responds to 

transactions within a network economy characterized by established commodity prices, production schedules, and consumption 
patterns. Our preceding analysis has established the following:
Theorem 1. For the unembellished DSPE, commodity prices are constant, and its solutions are not only spatial price equilibria relative to the 
de昀椀ning relationships of Section 4.2, but they also are dynamic user equilibria relative to path 昀氀ow h and the delay operator Φ(t, h)in the sense 
that 

hk
p(t) > 0, p * P

k
ij ⇒ Φk

p(t, h) = τk
ij t *

[
t0, t1 − τk

ij
]

7. DSPE with time-dependent commodity prices

It is the Hamiltonian’s lack of dependence on inventory that makes the adjoint variables and, hence, commodity prices constant, in 
the unembellished model studied in previous sections, as can be seen in expressions (49)-(51). We now introduce an additional term 
pertaining to deterioration and pilferage of inventory in the DSPE inventory dynamics that gives rise to the following state dynamics: 

dIk
i (t)
dt = Sk

i (t) +
3

j*:(j,i)*W

3

p*P
k
ji

hk
p
(

t− τk
ji
)
−

3

j:(i,j)*W

3

p*P
k
ij

hk
p(t) − Dk

i (t) − αk
i Ik

i (t) (68) 
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Ik
i (t0) = Ak

i (69) 

Ik
i (t1) = Bk

i (70) 

where αk
i is the 昀椀xed rate of deterioration and pilferage of inventory, for all k * K and i * N . This means that our original Hamiltonian 

H0 given by (48) is replaced by the new Hamiltonian 
H1 = H0 −

3

k*K

3

i*N

αk
i λk

i Ik
i (71) 

7.1. Deriving dynamic commodity prices

The minimum principle continues to give the same spatial price equilibrium conditions (61), (62), and (63), as well as these 昀椀rst 
order conditions, presented previously, for all k * K and i * N : 

∂L
∂Sk

i
= Ψk

i (S7) + λk
i − αk

i = 0

∂L
∂Dk

i
= (−1) ⋅ Θk

i (D7) − λk
i − βk

i = 0

αk
i Sk

i = 0 αk
p g 0

β k
i Dk

i = 0 β k
p g 0 

It, of course, follows that 
Sk

i > 0 ⇒ Ψk
i (S7) = −λk

i
Dk

i > 0 ⇒ Θk
i (D7) = −λk

i 

Due to the very meaning of inverse commodity supply and demand functions, these expressions assure that commodity prices obey 
πk

i = −λk
i "k * K , i * N , (72) 

although the πk
i are no longer dual variables associated with the terminal inventory constraints; rather, they are now merely the adjoint 

variables multiplied by − 1. This makes sense because adjoint variables are generally dynamic rather than 昀椀xed dual variables; if 
dynamic prices are to be found, they are intuitively going to be related to nonconstant adjoint variables. This means that the relevant 
Hamiltonian is like (44) when the alternative foundation of identity (72) is understood to be implicit and consideration of inventory 
deterioration and pilferage is incorporated, as in (71).

To preserve our previous notation for commodity prices πk
i , we need to rename the dual variables for the terminal constraints 

Bk
i − Ik

i (t1) = 0 (
�πk

i
)

"k * K , i * N (73) 

In (73), the �πk
i are now dual variables of the terminal inventory constraints Bk

i − Ik
i (t1) = 0. As such, the adjoint equations and 

transversality conditions for t * [t0,t1] now become 
dλk

i
dt = −

∂H1
∂Ik

i
= αk

i λk
i "k * K , i * N

λk
i (t1) =

∂
3

i*N

3
k*K

�πk
i
[Bk

i − Ik
i (t1)

]

∂Ik
i (t1)

= −�πk
i "k * K , i * N 

Thus, because πk
i (t) = − λk

i (t), we are led to the price function 
πk

i (t) = �πk
i exp[αk

i (t− t1)
] (74) 

7.2. Finding shipping latencies

For the unembellished model, we have previously used this ratio: 

πk
j
(

t + τk
ij
)
− πk

i (t) − rk
ij

ζk 

to de昀椀ne the minimum shipping time; this was possible because it lacked any time dependence due to the provably constant nature of 
commodity prices. Now we will need to explicitly minimize over time, and accordingly write this expression: 
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τk
ij =

πk
j
(

td + τk
ij
)
− πk

i (td) − rk
ij

ζk
= min

{
πk

j
(

t + τk
ij
)
− πk

i (t) − rk
ij

ζk
: t *

[
t0, t1 − τk

ij
]}

, (75) 

where td is the delay minimizing departure time. Indeed, for a general problem, there may be multiple departure times or even a dense 
arc of time during which departures occur and the same minimum shipping delay is realized. Substituting (74) into (75) gives 

τk
ij =

�πk
j exp

[
αk

j
(

td − τk
ij − t1

)]
− �πk

i exp[αk
i (td − t1)

]
− rk

ij
ζk

(76) 

Therefore 

τk
ijζk = �πk

j exp
(
− αk

j τk
ij
)

exp
[
αk

j (td − t1)
]
− �πk

i exp[αk
i (td − t1)

]
− rk

ij 

For small αk
j , the 昀椀rst two terms of a Taylor series expansion will yield an accurate approximation of exp

(
− αk

j τk
ij
)

. That is, we use 

exp
(
− αk

j τk
ij
)
j 1 − αk

j τk
ij 

for small αk
j > 0. Therefore, (76) may be placed in this form: 

τk
ijζk = �πk

j
(

1−αk
j τk

ij
)

exp
[
αk

j (td − t1)
]
− �πk

i exp[αk
i (td − t1)

]
− rk

ij (77) 

It follows that 

τk
ijζk + αk

j �π
k
j τk

ijexp
[
αk

j (td − t1)
]
= �πk

j exp
[
αk

j (td − t1)
]
− �πk

i exp[αk
i (td − t1)

]
− rk

ij 

If we introduce this simplifying de昀椀nition 
Ak

l
c �πk

l
exp(−αk

l
t1
)
,

we obtain the following expression for shipping latency: 

τk
ij =

Ak
j
(

1 + αk
j td

)
− Ak

i
(1 + αk

i td
)
− rk

ij

ζk + αk
j Ak

j
(

1 + αk
j td

) (78) 

7.3. Finding departure times

We may 昀椀nd the departure time td appearing in (78) by setting the derivative of that expression with respect to td to zero. We de昀椀ne 

a = Ak
j
(

1 + αk
j td

)
− Ak

i
(1 + αk

i td
)
− rk

ij

b = ζk + αk
j Ak

j
(

1 + αk
j td

)

In other words 
Ûab =

[
αk

j Ak
j − αk

i Ak
i
][

ζk + αk
j Ak

j
(

1 + αk
j td

)]

a Ûb =
[
Ak

j
(

1 + αk
j td

)
− Ak

i
(1 + αk

i td
)
− rk

ij
][(

αk
j
)2Ak

j
]

Therefore 

Ûτk
ij c

dτk
ij

dtd =
Ûab − a Ûb

b2 

which leads to 

Ûτk
ij =

[
αk

j Ak
j − αk

i Ak
i
][

ζk + αk
j Ak

j
(

1 + αk
j td

)]
−
[
Ak

j
(

1 + αk
j td

)
− Ak

i
(1 + αk

i td
)
− rk

ij
][(

αk
j
)2Ak

j
]

[
ζk + αk

j Ak
j
(

1 + αk
j td

)]2 

The numerator of the expression immediately above may be written as 
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Nk
ij =

[
αk

j Ak
j − αk

i Ak
i
][

ζk + αk
j Ak

j
]
−
[
Ak

j − Ak
i − rk

ij
][(

αk
j
)2Ak

j
]

+
[
αk

j Ak
j − αk

i Ak
i
][(

αk
j
)2Ak

j td
]
−
[
Ak

j αk
j td − Ak

i
(
αk

i td
) ] (79) 

Next let 

Γk
ij c

[
αk

j Ak
j − αk

i Ak
i
][

ζk + αk
j Ak

j
]
−
(

αk
j
)2[Ak

j −Ak
i − rk

ij
]
Ak

j 

so that 

Nk
ij = Γk

ij +
[(

αk
j
)2Ak

j
][

αk
j Ak

j − αk
i Ak

i
]
td −

[
αk

j Ak
j − αk

i Ak
i
]
td

= Γk
ij +

[(
αk

j
)2Ak

j − 1
][

αk
j Ak

j − αk
i Ak

i
]
td 

We are ready to 昀椀nd the dispatch time for shipping commodity k * K from i * N to j * N by setting Nk
ij = 0. Doing so leads to the 

following expression 

td =
Γk

ij(
αk

j Ak
j − αk

i Ak
i
)[

1 −
(

αk
j
)2Ak

j
] (80) 

Use of (80) in expression (78) makes clear that there is a constant and well-de昀椀ned minimum shipping latency.

7.4. Summary of our dynamic commodity price example

Thus, we have shown there are well de昀椀ned, constant minimum shipping latencies for DSPE with 昀椀xed rates of inventory dete-
rioration and pilferage and dynamic commodity prices. We again conclude that the path 昀氀ows solving the associated DVI form a user 
equilibrium. That is, our preceding analysis has established the following:
Theorem 2. For the DSPE with a 昀椀xed rate of inventory deterioration and pilferage in each market (node) throughout the planning horizon, 
there are explicitly dynamic commodity prices, and its solutions are spatial price equilibria relative to the de昀椀ning relationships of Section 4.2, 
modi昀椀ed to re昀氀ect the inventory dynamics (68). For the approximations made in the preceding example there are also dynamic user equilibria 
relative to path 昀氀ow h and the delay operator Φ(t, h)in the sense that 

hk
p(t) > 0, p * P

k
ij ⇒ Φk

p(t, h) = τk
ij t *

[
t0, t1 − τk

ij
]

for the constant minimum shipping latency found by substituting (80) into (78).
There are other modi昀椀cations of our basic model that will also yield dynamic commodity prices. These include but are not limited 

to the inclusion of inventory carrying costs, upper and/or lower bounds on inventory, and any type of mixed constraints that include 
both control variables h, S, D and state variables I. Any of these modi昀椀cations would be handled by application of suitably adapted 
necessary conditions for DVIs. However, the introduction of constraints involving state variables involves jump conditions that will 
severely compromise the derivation of formulae for constant shipping latencies and are best left for computational study.

8. The issue of uniqueness

It is now widely known via counter examples that path delay in DUE is not reliably strictly monotone increasing. Owing to the 
generality of the PDO presented in Han et al. (2016), this, in effect, means any delays computed from the perspective of LWR theory are 
generally nonmonotone and equilibria based on such delays will not generally be unique. However, the alternative of assuming path 
delay is strictly monotone increasing, in order to assure uniqueness, would be widely repudiated by the DTA community.

There is no principle of nature or social science that says there must be a single, knowable dynamic user or dynamic spatial price 
equilibrium when nonmonotonic delay is present. That is, nonunique equilibria are generally linked to model properties that realism 
commands us to acknowledge, and available mathematics provides no remedy in the form of a convergence proof.

9. Concluding remarks

By intent, our contribution is wholly theoretical in nature. We have presented a mathematical statement of the de昀椀ning equations 
and inequalities for dynamic spatial price equilibrium (DSPE) and shown it to have an associated differential variational inequality 
(DVI), any solution of which is a DSPE. The model of spatial price equilibrium we have presented integrates, in a dynamic setting, the 
path delay operator notion from the theory of dynamic user equilibrium with the theory of spatial price equilibrium. This integration is 
original and constitutes a signi昀椀cant addition to the spatial price equilibrium and freight network equilibrium modeling literatures. 
Among other things, it points the way for researchers interested in dynamic traf昀椀c assignment to become involved in freight modeling 
using the technical knowledge they already possess.
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In particular, the DVI representation we have presented allows algorithms developed for solving dynamic user equilibrium models 
to be adapted to computing a DSPE. [For a discussion of DUE algorithms, see the review of them in Friesz and Han (2022, 2023a).] As 
such, the DSPE models presented herein are ready to apply to any circumstance warranting use of a dynamic aggregative freight model 
and possessing adequate data, including that needed to estimate or derive inverse commodity supply and demand functions. It is also 
possible to extend the framework of this paper to consider oligopoly as in Friesz et al. (2006).
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