
 

 

 
1. Introduction 
 

Recent decades have witnessed a rapid increase in the 
height of buildings and the span of bridges, making them 
very sensitive to wind loads. Numerous efforts have been 
made to mitigate the wind effects of these slender structures 
so that the safety and serviceability requirements can be 
satisfied. In addition to tuning structural properties and 
implementing structural control, one promising approach 
for wind mitigation of slender structures is to modify the 
external shapes directly. Conventionally, aerodynamic 
shapes of bluff-body civil structures are usually modified by 
trial and error from a limited number of candidates. For 
example, high-rise buildings can leverage corner 
modification of the cross sections and may further adopt 
modifications along the height, such as helical twisting 
(Davenport, 1971; Tanaka et al., 2012). Long-span bridges 
often resort to edge fairing or central slots (Nagao et al., 
1993; Yang et al., 2015). Although this intuition-based cut-
and-try is routinely used by the wind engineering 
community, a mathematically optimal (or near optimal) 
aerodynamic shape is not necessarily guaranteed 
(Dulikravich, 1992). To this end, there is a need for an 
automated process to facilitate the comprehensive search of 
shape design space, which can be realized by coupling 
optimization-guided search with the efficient evaluation of 
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aerodynamic performance (Topping, 1983; Ding and 
Kareem, 2018). As shown in Figure 1, a typical 
aerodynamic shape optimization process usually 
encompasses three components, namely, shape 
parameterization, performance evaluation, and search 
optimization. Numerous efforts have been made in the wind 
engineering community to advance aerodynamic shape 
optimization, which usually focuses on performance 
evaluation and search optimization. For example, Ding and 
Kareem (2018) constructed a multi-fidelity surrogate model 
from CFD simulation, on which the optimization algorithm 
is performed. Li et al. (2021) proposed a deep 
reinforcement learning-based shape optimization strategy to 
reduce the time-consuming CFD-based performance 
evaluations. Whiteman et al. (2022) developed a 
mechatronic building model for the efficient evaluation of 
different aerodynamic configurations in the wind tunnel, 
which accelerated the shape optimization process. Despite 
recent advances in performance evaluation and search 
optimization, shape parameterization, as the first step of the 
aerodynamic shape optimization pipeline, has not been well 
studied. In fact, existing studies still heavily depend on 
empirical judgment, which uses only a small number of 
parameters to define the geometry of bluff-body civil 
structures (e.g., Ding and Kareem, 2018; Montoya et al., 
2018). The resulting small design space may fail to cover a 
wide range of promising shapes, and hence could hinder the 
realization of the full potential in aerodynamic shape 
optimization. 

Determining a proper aerodynamic shape 
parameterization scheme moves beyond simple selections 
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of a few discrete choices. It is a complex process involving 
intensive iterations between structural engineers and 
architects, where a transparent procedure is currently 
unavailable. To the authors’ best knowledge, existing 
studies on aerodynamic shape optimization of wind-
sensitive structures have not explicitly discussed the 
justification of their adopted shape parameterization 
schemes. Considering this knowledge gap, it may be 
desirable to resort to a closely related field of airfoil shape 
optimization and leverage its recent advances to inform 
aerodynamic shape parameterization of wind-sensitive 
structures. For airfoils, the streamlined shapes are usually 
described using some smooth base functions, such as B-
spline and Bézier curves (e.g., Lepine et al., 2001; 
Venkataraman, 1995), and the parameters controlling the 
base functions are used as the design variables for the 
aerodynamic shape optimization. Due to the manual 
selection of base functions, the design space dimensionality 
is usually higher than the underlying dimensionality that 
represents sufficient shape variability (Chen et al., 2017; 
Chen et al., 2020). The high dimensionality of design 
variables compromises the search efficiency of the optimal 
shape. To reduce the number of design variables for shape 
optimization, researchers have used linear models for 
dimension reduction, such as principal component analysis 
(e.g., Cinquegrana  and Iuliano, 2017) and single value 
decomposition (e.g., Allen et al., 2018). However, these 
models with linear nature may fail to extract the compact 
representation for the nonlinear cases of real-world airfoil 
design. To this end, it is promising to utilize deep neural 
network-based nonlinear dimension reduction techniques, 
such as autoencoders (Wang et al., 2016) and generative 
adversarial networks (Hallaji et al., 2021). As a salient 
example of airfoil shape parameterization, Chen et al. 
(2020) leveraged generative adversarial networks to project 
a wide range of airfoil shapes in the existing database 
(UIUC Airfoil Coordinates Database) to a low-dimensional 
latent space characterized by only a few continuous 
variables, which resulted in an accelerated shape 
optimization process.  

Although the abovementioned studies in aerospace 
engineering could shed light on aerodynamic shape 
parameterization of wind-sensitive structures, some unique 
features of bluff-body civil structures need to be highlighted 
and require additional considerations. Unlike streamlined 
airfoils that can be conveniently characterized by some 
smooth base functions, it may be difficult to analytically 
describe the shape of bluff-body civil structures with sharp 
edges. Noting the challenges of using analytical approaches, 
it is tempting to use data-driven approaches to learn the 
parameterization schemes directly from the possible shapes 
of wind-sensitive structures. While the aerospace 
engineering community has built well-documented 
databases (e.g., UIUC Airfoil Coordinates Database) to 
cover a wide range of possible airfoil shapes, the same 
cannot be said for bluff-body civil structures, which 
requires a systematic collection of possible shapes that are 
both physically realizable and aesthetically pleasing. It is 
noted that the construction of this database not only needs 

to include the configurations of real-world civil structures, 
but also may require to encompass a wide range of 
conceptual designs to enrich the database, which is not a 
trivial task. Before initializing the time-consuming process 
of constructing the database involving collaborations 
between structural engineers and architects, it is desirable to 
first ensure that there exist suitable data-driven 
parameterization schemes satisfying the unique demands 
arising from bluff-body shapes, which is the focus of this 
study.  

Considering that the shape data is usually in the form of 
coordinates of the points along the edges or the pixels of the 
raw shape images, it is necessary to reduce the high-
dimensional shape data into a low-dimensional latent 
representation for efficient parameterization. It is noted that 
the state-of-the-art dimension reduction schemes used for 
airfoil shape parameterization (e.g., Chen et al., 2020) 
cannot be effectively applied to the case of bluff-body 
shapes. Unlike airfoil shapes that can be fully represented 
by a set of continuous variables, discrete variables are also 
needed to characterize distinct variations across different 
categories of the bluff-body shapes. For example, tall 
building cross sections with recessed corners and chamfered 
corners should be distinguished by a discrete variable. In 
addition to the importance of including discrete variables in 
the latent space, it should also be noted that hierarchy 
structures may exist in the discrete and continuous 
variables. For example, the discrete variables could be 
considered as high-level variables to classify tall building 
cross sections into different categories (e.g., recessed 
corners and chamfered corners) while the continuous 
variables are the low-level variables to capture the 
variations within each category (e.g., the depth of recessed 
corner and the slope of chamfer edge). Capturing the 
hierarchy structures makes it possible to consider 
conditional relations among the latent variables (i.e., certain 
variables are only active when some other variables are 
active). In fact, introducing the mixed discrete-continuous 
variables with hierarchy structures makes the learned 
parameterization more intuitive and interpretable, 
considering it is closer to the underlying generation 
mechanism (Ross et al., 2021; Ross and Doshi-Velez, 
2021). Parameterization of bluff-body shapes using mixed 
latent variables with hierarchy structures will also benefit 
subsequent aerodynamic shape optimization. First, it gives 
stakeholders the flexibility to focus on certain shape types 
instead of exhausting the whole design space. Another 
benefit is that varying the variables under their parent 
category will not result in a drastic change in the shape and 
hence the aerodynamic performance. This satisfies many 
optimization schemes' underlying assumption of the smooth 
objective function. 

To this end, this study leverages recent advances in 
learning hierarchical representations (Ross and Doshi-
Velez, 2021) and proposes a novel parameterization scheme 
for aerodynamic shape optimization of wind-sensitive 
structures. This machine learning-enabled scheme first 
learns the hierarchy structure of the mixed discrete and 
continuous latent variables. Then it constructs a shape 
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generator conditioned on the obtained hierarchy structure, 
which could be effectively used as the shape 
parameterization scheme for optimization purposes. This 
study is organized in the following manner. First, the 
existing shape parameterization schemes for typical bluff-
body wind-sensitive structures (i.e., tall buildings and long-
span bridges) are systematically reviewed. Then, the 
proposed machine learning-enabled parameterization 
scheme is presented. After that, proof-of-concept examples 
are conducted on tall building cross sections to demonstrate 
the performance of the proposed scheme. The existing gaps 
between proof-of-concept examples and real-world 
applications are also discussed subsequently. The 
concluding remarks and future directions are provided at the 
end. It is worthwhile to mention that this study, by no 
means, attempts to solve the problem of parameterization of 
bluff-body wind-sensitive structures completely. Instead, it 
aims to provide a proof of concept with preliminary results 
to guide future investigations toward a data-driven 
paradigm of shape parameterization for wind-sensitive 
structures. 

 
 
2. Literature review on shape parameterization 
schemes for wind-sensitive structures 

 
To provide a clear overview of the state of practice, this 

section presents existing parameterization schemes for 
aerodynamic shape optimization of two types of wind-
sensitive structures: tall buildings and long-span bridges. It 
is noted that many studies use the same shape 
parameterization schemes with different research focuses 
(e.g., different optimization objectives or algorithms). Only 
the representative study is selected here as the reference for 
the sake of being concise. For long-span bridges, numerous 
efforts have been made to modify the shape of basic box-
shape and H-shape bridge decks to improve the 
aerodynamic performance (Birhane et al., 2017), which is 
shown in Figure 2. For example, partial streamlining of the 
box-shape deck to tackle the flow separation of leading 
edges (e.g., Larsen, 1993) has been widely used in major 
long-span bridges. Similarly, fairings have also been added 
to the edges of the H-shape deck for aerodynamic retrofit of 
long-span bridges to resemble the streamlined box decks 
(e.g., Barelli et al., 2006). In addition, partial openings of 
bridge decks (slots and gratings for box-shape and H-shape 
decks) have been utilized to allow the mixing of airflow 

between upper and lower surfaces so that the coherent 
vortices are disrupted (e.g., Yang et al., 2015; Tang et al., 
2017). Furthermore, decks with appendages such as guide 
vanes for box-shape decks and baffle plates for H-shape 
decks have been introduced to alter the fluid-structure 
interaction for improved performance (e.g., Larsen et al., 
2000; Sakai et al., 1993). Despite a wide range of potential 
schemes to modify deck shapes for improved aerodynamic 
performance, existing studies on aerodynamic shape 
optimizations usually explore the shape variation of box-
shape decks using a limited number of variables. Montoya 
et al. (2018) used two design variables to consider the 
height and width variation of deck shape with respect to the 
reference design, which has been adopted in other studies 
(with slight changes in, for example, the reference design) 
(e.g., Tinmitondé et al., 2022; Abbas et al., 2022).  This 
two-variable parameterization scheme is further extended to 
consider the possibility of venting decks by introducing an 
additional design variable of the slot width (see Fig. 3a) 
(Nieto et al., 2020). Jaouadi et al. (2020) proposed to use a 
more flexible approach to allow the change of location of 

six corners (see Fig. 3b), which results in five design 
variables (considering the symmetry and fixed lane width). 

Compared to bridge deck shapes that always require a 
flat upper surface to support driving vehicles, the shape of 
tall buildings may exhibit higher complexities due to the 
flexibility in cross-section geometry as well as its potential 
variation along the height (Tanaka et al., 2012; Sharma et 
al., 2018; Jafari and Alipour, 2021). It is noted that this 
literature review does not consider irregular buildings (e.g., 
T-shape and star-shape buildings as well as buildings with 
novel facades) and instead only focuses on buildings with 
square/rectangular-like cross-sections. Starting from the 
basic cylinder configuration of a tall building, shape 
mitigation for improved aerodynamic performance is 
generally classified into minor and major modifications. 
Minor modifications (shown in Fig. 4a) usually change the 
geometry of cross sections through the corners (using, e.g., 
chamfered, slotted, rounded, recessed, and finned corners) 
to alter the flow separation characteristics (Mooneghi and 
Kargarmoakhar, 2016). It is noted that some of the minor 
modifications could be further extended to more complex 
geometries with, for example, multiple corner recessions 
and cuts (e.g., Wang et al., 2022; Tang et al., 2013). On the 
other hand, major modifications control the shape variation 
along the height through, for example, tapering, twisting, 
set-backing, and opening (Elshaer and Bitsuamlak, 2018) to 

 
Fig 1. Schematic of a typical aerodynamic shape optimization process 
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weaken the coherent vortex shedding, which could result in 
more complicated 3D building designs (see Fig. 4b). 
Existing shape parameterization schemes for optimization 
purposes have involved both minor and major 
modifications.  For minor modifications, Bernardini et al. 
(2014) used two design variables to control the cross-
section shapes of tall buildings (see Fig. 5a), where 
variations of the two control points with respect to a 
reference shape (i.e., a square with rounded corners) are 
used for determining the corner shape via interpolation with 
a cubic spline. Elshaer et al. (2017) utilized two-variable 
parameterization schemes to consider potential recession 
and protrusion of cross section corners (see Fig. 5b). Wang 
et al. (2022) adopted multiple corner recession with three 
parameters controlling the recession ratio, recession number 
and recession angle (see Fig. 5c). Alkhatib et al. (2022) 
used two design variables (radius of rounded corner and 
edge angle) to characterize the shape of the cross section 
(see Fig. 5d). Shirzadi and Tominaga (2021) parameterized 
a generic trapezoid with cut corners with four design 
variables (see Fig. 5e). Instead of directly varying the 
control points in one typical shape, Nieto et al. (2022) 
proposed to use the weighted sum of three empirically 
selected baseline shapes (in terms of polar coordinate) to 
characterize the cross section, where the weights are taken 
as the design variables (see Fig. 5f). Regarding major 
modifications, Elshaer and Bitsuamlak (2018) 

parameterized the openings in tall buildings using the aspect 
ratio of the openings as well as the spacing between each 
opening (see Fig. 5g). Efforts have also been made to 
integrate minor and major modifications. For example, 
Elshaer et al. (2016) used three design variables to consider 
both corner modifications (two design variables for the two 
control points) and twisting (one design variable for the 
twisting angle) (see Fig. 5h). He et al. (2022) adopted three 
parameters to respectively control the aspect ratio of oval 
cross section, the twisting angle and tapering ratio (see Fig. 
5i). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig 2. Representative aerodynamic modifications schemes for bridge decks 

 
 

  
(a)  Scheme used by Montoya et al. (2018); Nieto et al. 

(2020) and Abbas et al. (2022) 
(b)  Scheme used by Jaouadi et al. (2022) 

Fig 3.  Existing shape parameterization schemes for bridge decks 
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(a) Minor modifications 

 
(b) Major modifications 

Fig. 4 Representative aerodynamic modification schemes for tall buildings 

  
 

(a) Scheme used by Bernardini et al. 
(2014) (b) Scheme used by Elshaer et al. (2017) (c) Scheme used by Wang et al. (2022) 

 
 

 
 (d) Scheme used by Alkhatib et al. 

(2022) 
(e) Scheme used by Shirzadi and Tominaga 

(2021) (f) Scheme used by Nieto et al. (2022) 

 
 

 
(g) Scheme used by Elshaer and 

Bitsuamlak (2018) (h) Scheme used by Elshaer et al. (2016) (i) Scheme used by He et al. (2022) 

Fig 5. Existing shape parameterization schemes for tall buildings 
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 3. Machine learning-based shape parameterization 
scheme 

 The proposed machine learning-enabled shape 
parameterization scheme is presented in this section. For the 
sake of completeness, the basics of a standard autoencoder 
are first introduced to present the general idea of 
parameterization with latent variables.  Noting the 
limitation of using only continuous latent variables for 
shape parameterization, the importance of having mixed 
discrete-continuous variables with hierarchy structures is 
highlighted. After that, the proposed machine learning-
enabled shape parameterization scheme is described, which 
is composed of (1) the “skeleton” to learn the hierarchy 
structure of latent variables and (2) the “skin” to 
parameterize the shape based on the learned hierarchy 
structure.  

Autoencoders have been widely used for dimension 
reduction in many different fields (Hinton and 
Salakhutdinov, 2006; Wang et al., 2016). A standard 
autoencoder is a deep neural network with a “bottleneck” 
architecture (see Fig. 6), which is composed of an encoder 
and a decoder. The encoder maps from the input layer (the 
high-dimensional raw data x) to the bottleneck layer (the 
low-dimensional latent variables 𝒛𝒛): 
𝒛𝒛 = 𝑓𝑓𝐸𝐸(𝒙𝒙;𝜽𝜽𝑬𝑬)   (1) 
where 𝜽𝜽𝑬𝑬 is the weight of the encoder. On the other hand, 
the decoder aims to reconstruct the high-dimensional data 
using the latent variables as input: 
𝒙𝒙′ = 𝑓𝑓𝐷𝐷(𝒛𝒛;𝜽𝜽𝑫𝑫)   (2) 
where 𝒙𝒙′ is the reconstructed data in the output layer; 𝜽𝜽𝑫𝑫 
is the weight of the decoder. The learning objective of a 
standard autoencoder is to minimize the difference between 
the original data and the reconstructed data by adjusting the 
weights of the autoencoder: 
min
𝜽𝜽𝑬𝑬,𝜽𝜽𝑫𝑫 

𝐿𝐿𝑑𝑑(𝒙𝒙,𝒙𝒙′)  (3) 

where 𝐿𝐿𝑑𝑑(𝒙𝒙,𝒙𝒙′)  is the data reconstruction error. After 
training the autoencoder, the obtained decoder could be 
utilized to generate high-dimensional data through low-
dimensional latent variables. For the application to 
aerodynamic shape optimization of wind-sensitive 
structures, the trained encoder can be effectively used as a 
parameterization scheme, where the latent variables serve as 
the design variables to characterize the shape.  

It is noted that standard autoencoders embed the high-
dimensional data in continuous space (i.e., the components 
in 𝒛𝒛 are all continuous variables). The continuous variable-
based representation, however, may not be suitable for 
parameterization of the shape of wind-sensitive structures 
considering the distinct variations across different 
categories of the bluff-body shapes (e.g., tall building cross 
sections with recessed corners and chamfered corners). This 
characteristic calls for additional discrete variables in the 
latent space. It should also be noted that hierarchy structures 
may exist in the discrete and continuous variables 
considering the conditional relationships among the latent 
variables (i.e., certain variables are only active when some 
other variables are active). For example, the continuous 
variables (e.g., the depth of recessed corner and the slope of 

chamfer edge) can be considered low-level variables, and 
they are active only when the high-level discrete variables 
point to their corresponding category. In addition to being 
more intuitive and interpretable (Ross et al., 2021; Ross and 
Doshi-Velez, 2021), parameterization of bluff-body shapes 
using latent variables with hierarchy structure will also 
benefit subsequent aerodynamic shape optimization in 
terms of (1) the flexibility to focus on certain shape types 
instead of exhausting the whole design space and (2) 
avoiding a drastic change in the shape (and hence the 
aerodynamic performance) to facilitate optimization 
convergence.  

To this end, the study aims to learn a mixed discrete-
continuous latent space with hierarchy structures for shape 
parameterization of bluff-body wind-sensitive structures. 
Specifically, the latent variables 𝒛𝒛 to learn are composed of 
both discrete variables 𝒛𝒛𝒅𝒅 and continuous variables 𝒛𝒛𝒄𝒄: 
𝒛𝒛 = [𝒛𝒛𝒅𝒅, 𝒛𝒛𝒄𝒄]  (4) 

In addition, the hierarchy structure to learn, specifying 
the conditional relations between the discrete and 
continuous variables, can be generally represented by a 
mapping function 𝑓𝑓ℎ(∙): 
𝒎𝒎 = 𝑓𝑓ℎ(𝒛𝒛𝒅𝒅)   (5) 
where 𝒎𝒎 is the mask (ideally 𝒎𝒎 is a binary vector with 
the same dimension as the continuous variable 𝒛𝒛𝒄𝒄 ) 
representing the activation status of the continuous 
variables based on the value of discrete variables 𝒛𝒛𝒅𝒅. The 
active continuous variables 𝒛𝒛𝒄𝒄𝒂𝒂 can then be calculated by 
“masking” the original continuous variables 𝒛𝒛𝒄𝒄 with 𝒎𝒎: 
𝒛𝒛𝒄𝒄𝒂𝒂 = 𝒎𝒎 ∘ 𝒛𝒛𝒄𝒄  (6) 
where ∘ denotes the element-wise product.  

The learning algorithm adopted in this study is based on 
recent advances in learning hierarchical representations 
(Ross and Doshi-Velez, 2021), which is composed of (1) the 
“skeleton” to learn the hierarchy structure of latent variables 
and (2) the “skin” to parameterize the shape based on the 
learned hierarchy structure. The overview of the algorithms 
is schematically presented in Fig. 7 while the detailed 
descriptions of the “skeleton” and the “skin” are provided 
subsequently. 
 

 
Fig. 6 Schematic of a standard autoencoder 
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3.1 Skeleton: Learning the hierarchy structure 

 
First, the initial dimensional reduction is conducted on 

the raw data using a standard autoencoder, where the 
number of latent variables should exceed the intrinsic 
dimensionality. The intrinsic dimensionality is the smallest 
number of continuous variables that can faithfully 
reconstruct the original data, which is related to the 
underlying generation mechanisms of the data. For 
example, if the data has two categories, and each category is 
controlled by one continuous variable, then intrinsic 
dimensionality of the data is three (one for differentiating 
the category, similarly as a step function; two for 
controlling the variation within each category). The intrinsic 
dimensionality could be determined by trial and error: if the 
number of latent variables is smaller than the intrinsic 
dimensionality, the reconstruction error will be very large. 
This initial dimension reduction is helpful to enhance the 
learning efficiency considering that the subsequent 
computation will be conducted in the latent space with a 
lower dimension. In the reduced dimension, singular value 
decomposition (SVD) is performed for each point and its 

neighbors to obtain the local manifold directions, where a 
ball tree (Omohundro, 1989) is used to construct a 
neighborhood graph to identify the neighboring points 
quickly. Points with similar local manifold directions are 
then merged into components, which is realized by first 
merging the neighboring points and then combining similar 
components over longer distances. With the merged 
components, the hierarchy structure can be inferred based 
on which components enclose others. In addition, the 
assignments of each data point to the corresponding 
category a can be determined accordingly. The structured 
description of the “skeleton” model is shown in Algorithm 1 
while the details can be found in (Ross and Doshi-Velez, 
2021). 
 
Algorithm 1. Skeleton: Learning the hierarchy structure  
Use a standard autoencoder to encode the data in a lower 
dimension. 
Construct a ball tree-based neighborhood graph for efficient 
identification of neighbors.  
Perform SVD on each point and its neighbors to identify local 
manifold directions. 
Merge points into components: 
  Successively merge neighboring points with similar local 

 
Fig. 7 Proposed machine learning-enabled shape parameterization scheme 
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manifold directions. 
  Combine similar components over longer distances. 
Identify the hierarchy structure based on the merged components. 
Return the hierarchy structure and assignment of each point. 
 

3.2 Skin: Parameterization using the learned 
hierarchy structure 

 
The abovementioned “skeleton” model can output the 
hierarchy structure and categorical assignment for each data 
point, which allows the “skin” model for subsequent 
parameterization. A new hierarchical encoder is first built 
𝒛𝒛 = 𝑓𝑓𝐻𝐻𝐻𝐻(𝒙𝒙;𝜽𝜽𝑯𝑯𝑯𝑯) , where 𝜽𝜽𝑯𝑯𝑯𝑯  is the weight of the 
hierarchical encoder and the size of latent dimension 𝒛𝒛 
equals to the number of continuous variables plus the 
number of categorical options in the learned hierarchy 
structure. The latent variables 𝒛𝒛 can be then partitioned 
into two components, i.e., 𝒛𝒛𝒅𝒅 for the discrete dimension 
and 𝒛𝒛𝒄𝒄  for the continuous dimension. The values 
corresponding to discrete dimensions 𝒛𝒛𝒅𝒅 are first passed 
through a softmax function with temperature (temperature 
𝜏𝜏  is a hyperparameter) to convert to the assignment 
probability for each categorical option, denoted as 𝒂𝒂′ =
ST(𝒛𝒛𝒅𝒅). The obtained assignment 𝒂𝒂′ can be used, along 
with the learned hierarchy structure in the “skeleton” 
model, to obtain the mask to determine the activation status 
of the continuous variables 𝒎𝒎 = 𝑔𝑔ℎ(𝒂𝒂′) = 𝑔𝑔ℎ[ST(𝒛𝒛𝒄𝒄)] 
[essentially equivalent to 𝒎𝒎 = 𝑓𝑓ℎ(𝒛𝒛𝒅𝒅) in Eq. (5)]. With the 
mask 𝒎𝒎 , active continuous variables 𝒛𝒛𝒄𝒄𝒂𝒂  can be 
determined as 𝒛𝒛𝒄𝒄𝒂𝒂 = 𝒎𝒎 ∘ 𝒛𝒛𝒄𝒄  as shown in Eq. (6). The 
hierarchical decoder reconstructs the data 𝒙𝒙′  from the 
concatenated latent space (including the predicted 
assignment 𝒂𝒂′  and the active continuous variables 𝒛𝒛𝒄𝒄𝒂𝒂 ), 
𝒙𝒙′ = 𝑓𝑓𝐻𝐻𝐻𝐻(𝒂𝒂′, 𝒛𝒛𝒄𝒄𝒂𝒂;𝜽𝜽𝑯𝑯𝑯𝑯) , where 𝜽𝜽𝑯𝑯𝑯𝑯  is the weight of 
hierarchical decoder. The weights of the hierarchical 
encoder and decoder can be learned by: 

min
𝜽𝜽𝑯𝑯𝑯𝑯,𝜽𝜽𝑯𝑯𝑯𝑯 

[𝐿𝐿𝑑𝑑(𝒙𝒙,𝒙𝒙′) + 𝜆𝜆𝑎𝑎𝐿𝐿𝑎𝑎(𝒂𝒂,𝒂𝒂′) + 𝜆𝜆𝑟𝑟𝐿𝐿𝑟𝑟(𝜽𝜽𝑯𝑯𝑯𝑯,𝜽𝜽𝑯𝑯𝑯𝑯)]   (7) 

where, in addition to the data reconstruction error 
𝐿𝐿𝑑𝑑(𝒙𝒙,𝒙𝒙′), the assignment error 𝐿𝐿𝑎𝑎(𝒂𝒂,𝒂𝒂′) (representing the 
discrepancies between the predicted assignment by 
hierarchical decoder 𝒂𝒂′  and “ground-truth” assignment 
given by the “skeleton” model 𝒂𝒂 ) also needs to be 
minimized; 𝜆𝜆𝑎𝑎 is the weight for the assignment error; the 
regularization term 𝐿𝐿𝑟𝑟(𝜽𝜽𝑯𝑯𝑯𝑯,𝜽𝜽𝑯𝑯𝑯𝑯) with the weight of 𝜆𝜆𝑟𝑟 is 
used here to remove correlation of the continuous variables 
(Kim and Mnih, 2018). The trained hierarchical decoder can 
then be effectively used as the shape parameterization 
scheme. The structured description of the “skin” model is 
shown in Algorithm 2, while the details can be found in 
(Ross and Doshi-Velez, 2021).  
 
Algorithm 2. Skin: Parameterization using the learned hierarchy 
structure  
Obtain the latent variables from the hierarchical encoder 𝒛𝒛𝒅𝒅, 𝒛𝒛𝒄𝒄 =
𝑓𝑓𝐻𝐻𝐻𝐻(𝒙𝒙;𝜽𝜽𝑯𝑯𝑯𝑯). 
Calculate the assignment probability 𝒂𝒂′ from the 𝒛𝒛𝒅𝒅 using a 
softmax function with temperature: 𝒂𝒂′ = ST(𝒛𝒛𝒄𝒄) 
Get the mask 𝒎𝒎 from the predicted assignment 𝒂𝒂′ using the 
learned hierarchy structure 𝒎𝒎 = 𝑔𝑔ℎ(𝒂𝒂′). 
Use the mask 𝒎𝒎 to determine the active continuous variables 

𝒛𝒛𝒄𝒄𝒂𝒂 = 𝒎𝒎 ∘ 𝒛𝒛𝒄𝒄. 
Reconstruct the data 𝒙𝒙′ from concatenated variables using the 
hierarchical decoder 𝒙𝒙′ = 𝑓𝑓𝐻𝐻𝐻𝐻(𝒂𝒂′, 𝒛𝒛𝒄𝒄𝒂𝒂;𝜽𝜽𝑯𝑯𝑯𝑯). 
Compute the loss as 𝐿𝐿 = 𝐿𝐿𝑑𝑑(𝒙𝒙,𝒙𝒙′) + 𝜆𝜆𝑎𝑎𝐿𝐿𝑎𝑎(𝒂𝒂,𝒂𝒂′) +
𝜆𝜆𝑟𝑟𝐿𝐿𝑟𝑟(𝜽𝜽𝑯𝑯𝑯𝑯,𝜽𝜽𝑯𝑯𝑯𝑯). 
Conduct gradient descent to update the hierarchy autoencoder 
weights 𝜽𝜽𝑯𝑯𝑯𝑯 and 𝜽𝜽𝑯𝑯𝑯𝑯 by minimizing the loss 𝐿𝐿. 
Repeat until convergence. 
 
4. Proof-of-concept examples 

 
Two numerical examples, as a proof of concept, are 

presented in this section to demonstrate the performance of 
the proposed machine learning-enabled shape 
parameterization scheme. The first case deals with simple 
geometries represented by the edge coordinates using fully 
connected neural network-based autoencoders, which can 
help to determine the critical hyperparameters in the 
learning algorithm. The second case extends to more 
general applications with pixel-based representation using 
convolutional neural network-based autoencoders, which is 
promising for future applications with real-world raw image 
data. It should be emphasized that these proof-of-concept 
examples, by no means, attempt to solve the shape 
parameterization problem completely. Instead, they aim to 
serve as pilot studies to investigate the feasibility of data-
driven shape parameterization schemes using machine 
learning tools. In addition, since the ground-truth shape 
parameterization is predetermined in the synthetic dataset, 
there is no need in proof-of-concept examples to show a 
whole optimization process using the learned shape 
parameterization scheme. Hence, the following examples 
only focus on demonstrating the performance of the 
proposed scheme to accurately learn the predetermined 
shape parameterization in the synthetic dataset. 

 
4.1 Case 1: Coordinate-based shape representation 

using fully connected neural networks 
 

A synthetic dataset for shapes with simple geometries is 
built in this example, which includes two types of 
aerodynamic shape modifications for tall buildings (i.e., 
recessed and chamfered corners). As shown in Fig. 8, the 
double-recessed corners have two design variables 𝑙𝑙1 and 
𝑙𝑙2 for the recession depths (both are randomly generated 
following a uniform distribution in [0, 0.25]), while the 
chamfered corners have only one design variable 𝛼𝛼 for the 
corner slope (𝛼𝛼 is randomly generated following a uniform 
distribution in [0º, 45º]). The shapes are symmetric with 
respect to both vertical and horizontal axis, and hence they 
can be conveniently represented by the coordinates of one 
corner. Specifically, the vertical coordinates of 64 points 
with uniform horizontal distance are used to represent the 
shape, and fully connected neural networks are used for the 
autoencoders (the network architecture is shown in Table 1). 
The size of the dataset is 10,000 (5,000 for each category). 
The critical hyperparameters (obtained by trial and error) 
are shown in Table 1. Other parameters that are not shown 
here adopt the default values specified in (Ross and Doshi-
Velez, 2021). It is noted that the network architecture of the 
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hierarchical autoencoder in the “skeleton” is set as the same 
as that of the standard autoencoder for initial dimension 
reduction in the “skin” except for the additional “masking” 
operations. Adam optimizer is used for gradient descent of 
both the standard and hierarchical autoencoder (with a batch 
size of 256 and an epoch number of 50), where a learning 
rate starts at 0.001 and decays by 1/10 halfway and three-
quarters of the way through training. Regarding the 
hyperparameters used by only the hierarchical autoencoder, 
the softmax temperature 𝜏𝜏, the weight of assignment loss 
𝜆𝜆𝑎𝑎, and the weight of regularization loss 𝜆𝜆𝑟𝑟 are 1, 100, and 
1, respectively.  

After training, the “skeleton” model can successfully 
merge points with similar local manifold directions and 
identify the underlying hierarchy structure. As shown in 
Fig. 9, the obtained hierarchy structure has one discrete 
variable with two categorical options. The first category can 
be characterized by one continuous variable, while the 
second one needs two continuous variables. Note that only 
three of the five latent dimensions from initial dimensional 
reduction are plotted in Fig. 9 for the sake of clear 
illustration. With the obtained hierarchy structure, the 
hierarchical autoencoder is trained using the “skin” model. 
The trained hierarchical decoder can then be effectively 
utilized as the shape parameterization scheme. Specifically, 
the category assignment 𝒂𝒂′  is essentially a two-
dimensional vector with one-hot embedding (i.e., 𝒂𝒂′ =
[1, 0] denotes category 1 and 𝒂𝒂′ = [0, 1] denotes category 
2). The mask 𝒎𝒎 can then be determined according to the 
learned hierarchy structure (𝒎𝒎 = [1, 0, 0] for 𝒂𝒂′ = [1, 0] 
while 𝒎𝒎 = [0, 1, 1]  for 𝒂𝒂′ = [0, 1] ) so that the active 
status of the three continuous variables 𝒛𝒛𝒄𝒄 = [𝑧𝑧𝑐𝑐1, 𝑧𝑧𝑐𝑐2, 𝑧𝑧𝑐𝑐3] 
can be obtained (𝒛𝒛𝒄𝒄𝒂𝒂 = [𝑧𝑧𝑐𝑐1, 0, 0] for category 1 and 𝒛𝒛𝒄𝒄𝒂𝒂 =
[0, 𝑧𝑧𝑐𝑐2, 𝑧𝑧𝑐𝑐3] for category 2). Based on the projection in the 
latent space of the training data, it is found that the 
continuous variable 𝑧𝑧𝑐𝑐1 for category 1 lies in [-22, 3] while 
the continuous variables 𝑧𝑧𝑐𝑐2 and 𝑧𝑧𝑐𝑐3 for category 2 are in 
[-1, 38] and [0, 17] respectively.  

To show the performance of the shape parameterization, 
the output of the hierarchical decoder with varying input 
[𝒂𝒂′,  𝒛𝒛𝒄𝒄𝒂𝒂] is presented in Fig. 10. Fig. 10(a)-(c) indicate that 
the learned continuous variable 𝑧𝑧𝑐𝑐1  can successfully 
capture the variation in the slope of the chamfered corners. 
In addition to the interpolation results shown in Fig. 10(a)-
(c), it is also interesting to observe from Fig. 10(d) that the 
obtained parameterization scheme can even extrapolate 
beyond the limit of training data (although the result is not 
as good as that of interpolation due to the lack of data in the 
extrapolating region). This extrapolation ability indicates 
the trained decoder can “understand” the underlying pattern 
instead of “memorizing” it, which also shows the potential 
to expand the search space for aerodynamic shape 
optimization. Similarly, Fig. 10(e)-(j) and 10(i)-(k) show 
that the learned continuous variables 𝑧𝑧𝑐𝑐2  and 𝑧𝑧𝑐𝑐3  are 
responsible for controlling the variations in the two 
recession depths. Fig. 10(h) and (l) also demonstrate the 
extrapolation ability of the learned decoder in these two 
dimensions. Furthermore, it is tempting to test if novel 
designs can be generated by the trained decoder. Intuitively, 

the assignment variables 𝒂𝒂′ can manually be set as [0.5, 
0.5] to consider a hybrid of category 1 and 2, and 
accordingly all the three continuous variables in 𝒛𝒛𝒄𝒄𝒂𝒂 can be 
active. Fig. 10(m)-(t) shows the decoder output with eight 
arbitrary sets of design variables. The obtained shapes 
(although with zigzag) exhibit the features from both 
recessed and chamfered corners, which is unseen from the 
training data. These interesting results demonstrate the 
potential to manipulate the latent variables to generate novel 
designs (Li et al., 2020) for aerodynamic shape 
optimization, which is a promising direction for future 
work. In addition, it is not essential that the reconstructed 
data should be exactly the same as the training data or has a 
perfect quality for the case of extrapolation, considering 
that the reconstructed data will need to be postprocessed 
before passing it to the optimization process. For example, a 
filter based on empirical knowledge can be designed to 
remove the small errors (e.g., the small bumps in a straight 
line). 

 
Fig. 8 Synthetic dataset for Case 1 (The two axes in the 

upper two figures are coordinates for the two-
dimensional shape) 

 
Table 1. Hyperparameters for Case 1 

Hyperparameters Values 
Number of latent variables in initial 

dimension reduction 5 

Number of hidden layers in the 
standard/hierarchical autoencoder 2 

Number of neurons in 
standard/hierarchical autoencoder 200, 200 

Activation function in the 
standard/hierarchical autoencoder Softplus 

Learning rate for the 
standard/hierarchical autoencoder 

0.001 start, 0.0001 
halfway, 0.00001 3/4 way 

Batch size for the standard/hierarchical 
autoencoder 256 

Number of epochs for the 
standard/hierarchical autoencoder 50 

Softmax temperature 𝜏𝜏 for the 
hierarchical autoencoder 1 

Weight of assignment loss 𝜆𝜆𝑎𝑎 for the 
hierarchical autoencoder 100 

Weight of regularization loss 𝜆𝜆𝑟𝑟 for 
the hierarchical autoencoder 1 
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    4.2 Case 2: Pixel-based shape representation using 

  
(a)  Category 1 (1-dimensional) (b)  Category 2 (2-dimensional) 

Fig. 9 Identified hierarchy structure of Case 1 using the “skeleton” model (projection of data in the latent space) 

    
(a) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[1, 0, -15, 0, 0] 
(b) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[1, 0, -10, 0, 0] 
(c) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[1, 0, -5, 0, 0] 

(d) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[1, 0, 10, 0, 0] 

(extrapolation) 

    
(e) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, 10, 10] 
(f) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, 20, 10] 
(g) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, 30, 10] 

(h) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, -10, 10] 

(extrapolation) 

    
(i) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, 20, 4] 
(j) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, 20, 8] 
(k) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, 20, 12] 

(l) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, 20, -4] 

(extrapolation) 

    
(m) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -5, 10, 5] (novel 

design) 

(n) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -8, 12, 6] (novel 

design) 

(o) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -10, 6, 8] (novel 

design) 

(p) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -3, 8, 6] 

(novel design) 

    
(q) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -15, 4, 3] (novel 

design) 

(r) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -2, 10, 2] (novel 

design) 

(s) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -5, 20, 4] (novel 

design) 

(t) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -11, 5, 5] 

(novel design) 
Fig. 10 Shape parameterization result of Case 1 using the “skin” model 
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convolutional neural networks 

 
Instead of using the edge coordinates, Case 2 adopts the 

pixel-based representation to show the promising potential 
for future applications with real-world raw image data. 
Specifically, Case 2 considers two categories of shapes, as 
shown in Fig. 11. In the first category, the shape considers a 
special type of chamfered corner, where the square cross-
section is cut with an arc curve instead of a straight line (to 
test the algorithm’s capability to tackle curves). The 
diameter of the cutting circle is equal to the dimension of 
the square. The diagonal translation of the cutting circle 
(i.e., √2𝑙𝑙 ) is the continuous design variable, while the 
original square shape is fixed. The shape in the second 
category has recessed corners, where the horizontal and 
vertical translation of the cutting square are the two 
continuous design variables (i.e., 𝑑𝑑1 and 𝑑𝑑2). Specifically, 
64×64 pixel-based representations are used in Case 2 (down 
sampled from 256×256 pixel space to make images 
“blurry”, considering that real-word image data may need to 
be preprocessed to have a lower resolution for efficient 
training), where interpolations are employed in the pixel 
value for continuous translation of the shapes in discrete 
pixels. The limit of design variable 𝑙𝑙 is [4, 16] pixel while 
the limit of design variable 𝑑𝑑1 and 𝑑𝑑2 is [8, 24] pixel. The 
size of the dataset is 100,000 (50,000 for each category). 
Convolutional neural networks (CNN) are used in the 
autoencoders due to the high ability to capture the spatial 
features in image data. The structure of CNN is 
schematically shown in the Appendix. The generated 
images from the decoder can then be converted to CAD 
files for manufacturing models of wind tunnel tests or 
geometric drawings for CFD simulation. The 
hyperparameters are shown the Table 2.  

After training, the “skeleton” model can successfully 
merge points with similar local manifold directions and 
identify the underlying hierarchy structure with two 
categorical options. As shown in Fig. 12, the first category 
can be characterized by one continuous variable, while the 
second one needs two continuous variables. With the 
obtained hierarchy structure, the hierarchical autoencoder is 
trained using the “skin” model. Like Case 1, the category 
assignment 𝒂𝒂′ = [1, 0] denotes category 1 and 𝒂𝒂′ = [0, 1] 
denotes category 2. The mask 𝒎𝒎 can then be determined 
as  𝒎𝒎 = [1,0, 0]  for 𝒂𝒂′ = [1,0]  and 𝒎𝒎 = [0, 1, 1]  for 
𝒂𝒂′ = [0, 1] . Accordingly, the active status of the three 
continuous variables can be obtained as 𝒛𝒛𝒄𝒄𝒂𝒂 = [𝑧𝑧𝑐𝑐1, 0, 0 ] 
for category 1 and 𝒛𝒛𝒄𝒄𝒂𝒂 = [0, 𝑧𝑧𝑐𝑐2, 𝑧𝑧𝑐𝑐3] for category 2. Based 
on the projection in the latent space of the training data, it is 
found that the continuous variable 𝑧𝑧𝑐𝑐1 for category 1 lies 
in [-115, -5] while the continuous variables 𝑧𝑧𝑐𝑐2 and 𝑧𝑧𝑐𝑐3 
for category 2 are in [-65, -3] and [-68, -1] respectively. 

To show the performance of the shape parameterization, 
the output of the hierarchical decoder with varying input 
[𝒂𝒂′,  𝒛𝒛𝒄𝒄𝒂𝒂] is presented in Fig. 13. Fig. 13(a)-(c) indicate that 
the learned continuous variable 𝑧𝑧𝑐𝑐1  can successfully 
capture the diagonal translation of the cutting circle. 
Similarly, Fig. 13(e)-(j) and 13(i)-(k) show that the learned 
continuous variables 𝑧𝑧𝑐𝑐2  and 𝑧𝑧𝑐𝑐3  are responsible for 

controlling the horizontal and vertical translations of the 
cutting square. Note that they are not perfectly disentangled 
due to numerical errors [e.g., there are still slight horizontal 
translations in Fig. 13(i)-(k)]. It should also be noted that 
Fig. 13(d), (h) and (l) show extrapolation abilities to extend 
the original data distributions. To test if novel designs can 
be generated by the trained decoder, eight arbitrary sets of 
the latent variables are input to the decoder, and the decoder 
output is shown in Fig. 13(m)-(t). The obtained shapes 
exhibit features of the rounded cutting (although some of 
them are not as clear as others), which can be considered as 
a combination of square and circle. This demonstrates the 
potential to generate novel designs by manipulating the 
latent variables (Li et al., 2020), which, however, needs 
further investigations to make it more systematic and 
interpretable.  

 
Fig. 11 Synthetic dataset for Case 2 

 
Table 2. Hyperparameters for Case 2 

Hyperparameters Values 
Number of latent variables in 

initial dimension reduction 5 

Architecture of convolutional 
layers in standard/hierarchical 

autoencoder 

4 convolutional layers 
(each with 32 channels, 

4×4 kernels, and a stride of 
2) 

Architecture of fully connect 
layers in standard/hierarchical 

autoencoder 

2 fully connected 
layers (each of 256 

neurons) 
Activation function in 

standard/hierarchical autoencoder ReLU 

Learning rate for the 
standard/hierarchical autoencoder 

5×10-4 start, 2.5×10-4 
halfway, 1.25×10-4 3/4 way 

Batch size for the 
standard/hierarchical autoencoder 256 

Number of epochs for the 
standard/hierarchical autoencoder 10 

Softmax temperature 𝜏𝜏 for the 
hierarchical autoencoder 1 

Weight of assignment loss 𝜆𝜆𝑎𝑎 for 
the hierarchical autoencoder 1000 

Weight of regularization loss 𝜆𝜆𝑟𝑟 
for the hierarchical autoencoder 10 
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(a)  Category 1 (1-dimensional) (b)  Category 2 (2-dimensional) 

Fig. 12 Identified hierarchy structure of Case 2 using the “skeleton” model (projection of data in the latent space) 

    

(a) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[1, 0, -60, 0, 0] 

(b) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[1, 0, -40, 0, 0] 

(c) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[1, 0, -20, 0, 0] 

(d) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[1, 0, 0, 0, 0] 

(extrapolation) 

    
(e) Decoder output with [𝒂𝒂′,  

𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, -15, -50] 
(f) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[ 0, 1, 0, -15, -30] 

(g) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, -15, -10] 

(h) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, -15, -80] 

(extrapolation) 

    

(i) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0, 1, 0, -55, -15] 

(j) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[ 0, 1, 0, -35, -15] 

(k) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[ 0, 1, 0, -15, -15] 

(l) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[ 0, 1, 0, 0, -15] 

(extrapolation) 

    
(m) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -10, -5, -5] 

(novel design) 

(n) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -10, -8, -10] 

(novel design) 

(o) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -7, -20, -5] 

(novel design) 

(p) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -17, -20, -15] 

(novel design) 

    
(q) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -20, -9, -15] 

(novel design) 

(r) Decoder output with [𝒂𝒂′,  
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -8, -6, -17] 

(novel design) 

(s) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -40, -40, -40] 

(novel design) 

(t) Decoder output with [𝒂𝒂′, 
𝒛𝒛𝒄𝒄𝒂𝒂]=[0.5, 0.5, -7, -15, -15] 

(novel design) 
Fig. 13 Shape parameterization result of Case 2 using the “skin” model 
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5. Moving from proof-of-concept examples to real-
world applications 

 
Although previous discussions successfully demonstrate 

the promising features of the proposed scheme in 
parameterizing simple shapes for tall building cross 
sections, there still exist gaps between the proof-of-concept 
examples and real-world applications. In this section, some 
considerations on constructing real-world datasets and 
tuning the learning algorithms for complex scenarios are 
presented to guide future investigations. 

Considering the data-driven nature of the proposed 
scheme, construction of a suitable dataset is the first and 
perhaps the most important step in the machine learning-
based shape parameterization. There are several potential 
directions to construct the dataset for real-world 
applications. For example, Google Earth can be used to 
directly extract raw images of tall buildings (Google Earth). 
There are also publicly available datasets containing 3D 
coordinates of buildings in some cities (e.g., RealCity3D). It 
should be noted that using the dataset covering only 
existing structures may fail to generate real novel designs 
for the new structures to build, and hence it is desirable to 
also include conceptual designs from architects and 
engineers. In fact, the potential design space of building 
shapes is usually determined by practical constraints, which 
can be explicit (e.g., floor area) or implicit (e.g., aesthetic 
considerations). One possible approach to generate building 
shapes that satisfy the practical constraints is to first use 
computer to randomly generate the building shapes that 
meet the explicit constraints, and then rely on architects and 
engineers to filter out the undesirable ones (i.e., to meet the 
implicit constraints). This human-machine interaction also 
resembles the concept of generative adversarial networks 
composed of a generator and a discriminator (Goodfellow et 
al., 2014), except that in this case the generator is based on 
computer programming while the discriminator is based on 
human judgement (Fujii et al., 2020). Furthermore, it should 
be noted that data from different sources may have different 
resolutions and/or formats, which need to be carefully 
processed for uniformity. 

Once the dataset of aerodynamic shapes is built based 
on the abovementioned considerations, the proposed 
machine learning scheme in this study can be 
straightforwardly used to automatically categorize these 
shapes and parameterize them with a limited number of 
design variables. The obtained parameterization can be 
subsequently used for aerodynamic shape optimization. In 
addition, the novel designs generated outside the training 
data, as demonstrated previously in the proof-of-concept 
examples, can lead to discovery of promising aerodynamic 
shapes for wind mitigation. 

The increased complexity of real-world dataset also 
requires tuning the learning algorithms to accommodate the 
attending challenges. One potential challenge may come 
from the fact the constructed dataset may have uneven 
distributions across different categories (note that the two 
proof-of-concept examples simply assume same amount of 
data instances for each category). The data from 
underrepresented shape categories may be considered as 

noises and hence could be neglected in the machine 
learning schemes, which calls for further efforts to make the 
learning algorithms robust for uneven data distributions. 
Furthermore, the hierarchy structure for real-world shape 
datasets may be deep and complex (e.g., subcategories 
existing within one category), which can be challenging for 
the learning algorithm. In addition, there may be more than 
one plausible hierarchy structure that fits the complex 
dataset. Hence, it is necessary to develop a mechanism to 
ensure the identified hierarchy structure is most 
interpretable to human users (Ross and Doshi-Velez, 2021).  

 
5. Concluding remarks and future directions 

 
To move beyond current empirical approach to a data-

driven paradigm, a machine learning-enabled 
parameterization scheme is developed in this study for 
aerodynamic shape optimization of wind-sensitive 
structures. Specifically, autoencoders are used to encode the 
high-dimensional shape data in latent space with mixed 
discrete-continuous variables. In addition, the hierarchy 
structure in the latent space is identified to obtain the 
conditional relationship between the discrete and 
continuous variables. Proof-of-concept examples on shape 
parameterization of tall buildings are conducted to 
demonstrate the performance, where the proposed scheme 
works well for both coordinate-based shape representation 
using fully connected neural networks and pixel-based 
shape representation using convolutional neural networks. 
To extend from the current proof-of-concept study to 
practical implementations, future work is needed in the 
following directions. Firstly, a comprehensive dataset 
reflecting real-world complexities of possible shapes needs 
to be constructed for wind-sensitive structures. Secondly, 
the current parameterization algorithms may need further 
improvement on the robustness under noisy and/or 
insufficient real-world data. Thirdly, the potential of 
manipulating latent variables to generate novel designs 
should be investigated.   
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Appendix: Structure of CNN-based autoencoder in 
Case 2 

 
For the proof-of-concept example in Case 2, the encoder 

consists of 4 convolutional layers (each with 32 channels, 
4×4 kernels, and a stride of 2), which are followed by 2 
fully connected layers, each of 256 neurons. ReLU 
activation functions are used in these layers. The decoder 
architecture is simply the transpose of the encoder, and the 
final output is processed by a sigmoid layer to restrict the 
value in [0, 1]. The structure of the CNN-based autoencoder 
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is schematically shown in Fig. A1. 

 

Fig. A1 Structure of CNN-based autoencoder 
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