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Abstract. Aerodynamic shape optimization is very useful for enhancing the performance of wind-sensitive structures. However,
shape parameterization, as the first step in the pipeline of aerodynamic shape optimization, still heavily depends on empirical
judgment. If not done properly, the resulting small design space may fail to cover many promising shapes, and hence hinder
realizing the full potential of aerodynamic shape optimization. To this end, developing a novel shape parameterization scheme
that can reflect real-world complexities while being simple enough for the subsequent optimization process is important. This
study proposes a machine learning-based scheme that can automatically learn a low-dimensional latent representation of
complex aerodynamic shapes for bluff-body wind-sensitive structures. The resulting latent representation (as design variables for
aerodynamic shape optimization) is composed of both discrete and continuous variables, which are embedded in a hierarchy
structure. In addition to being intuitive and interpretable, the mixed discrete and continuous variables with the hierarchy structure
allow stakeholders to narrow the search space selectively based on their interests. As a proof-of-concept study, shape
parameterization examples of tall building cross sections are used to demonstrate the promising features of the proposed scheme
and guide future investigations on data-driven parameterization for aerodynamic shape optimization of wind-sensitive structures.
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1. Introduction

Recent decades have witnessed a rapid increase in the
height of buildings and the span of bridges, making them
very sensitive to wind loads. Numerous efforts have been
made to mitigate the wind effects of these slender structures
so that the safety and serviceability requirements can be
satisfied. In addition to tuning structural properties and
implementing structural control, one promising approach
for wind mitigation of slender structures is to modify the
external shapes directly. Conventionally, aerodynamic
shapes of bluff-body civil structures are usually modified by
trial and error from a limited number of candidates. For
example, high-rise buildings can leverage corner
modification of the cross sections and may further adopt
modifications along the height, such as helical twisting
(Davenport, 1971; Tanaka et al., 2012). Long-span bridges
often resort to edge fairing or central slots (Nagao et al.,
1993; Yang et al., 2015). Although this intuition-based cut-
and-try is routinely used by the wind engineering
community, a mathematically optimal (or near optimal)
aerodynamic shape 1is not necessarily guaranteed
(Dulikravich, 1992). To this end, there is a need for an
automated process to facilitate the comprehensive search of
shape design space, which can be realized by coupling
optimization-guided search with the efficient evaluation of
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aerodynamic performance (Topping, 1983; Ding and
Kareem, 2018). As shown in Figure 1, a typical
aerodynamic  shape  optimization process usually
encompasses  three  components, namely, shape
parameterization, performance evaluation, and search
optimization. Numerous efforts have been made in the wind
engineering community to advance aerodynamic shape
optimization, which usually focuses on performance
evaluation and search optimization. For example, Ding and
Kareem (2018) constructed a multi-fidelity surrogate model
from CFD simulation, on which the optimization algorithm
is performed. Li et al. (2021) proposed a deep
reinforcement learning-based shape optimization strategy to
reduce the time-consuming CFD-based performance
evaluations. Whiteman et al. (2022) developed a
mechatronic building model for the efficient evaluation of
different aerodynamic configurations in the wind tunnel,
which accelerated the shape optimization process. Despite
recent advances in performance evaluation and search
optimization, shape parameterization, as the first step of the
aerodynamic shape optimization pipeline, has not been well
studied. In fact, existing studies still heavily depend on
empirical judgment, which uses only a small number of
parameters to define the geometry of bluff-body civil
structures (e.g., Ding and Kareem, 2018; Montoya et al.,
2018). The resulting small design space may fail to cover a
wide range of promising shapes, and hence could hinder the
realization of the full potential in aerodynamic shape
optimization.

Determining a  proper  aerodynamic shape
parameterization scheme moves beyond simple selections
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of a few discrete choices. It is a complex process involving
intensive iterations between structural engineers and
architects, where a transparent procedure is currently
unavailable. To the authors’ best knowledge, existing
studies on aerodynamic shape optimization of wind-
sensitive structures have not explicitly discussed the
justification of their adopted shape parameterization
schemes. Considering this knowledge gap, it may be
desirable to resort to a closely related field of airfoil shape
optimization and leverage its recent advances to inform
aerodynamic shape parameterization of wind-sensitive
structures. For airfoils, the streamlined shapes are usually
described using some smooth base functions, such as B-
spline and Bézier curves (e.g., Lepine et al, 2001;
Venkataraman, 1995), and the parameters controlling the
base functions are used as the design variables for the
aerodynamic shape optimization. Due to the manual
selection of base functions, the design space dimensionality
is usually higher than the underlying dimensionality that
represents sufficient shape variability (Chen et al., 2017,
Chen et al., 2020). The high dimensionality of design
variables compromises the search efficiency of the optimal
shape. To reduce the number of design variables for shape
optimization, researchers have used linear models for
dimension reduction, such as principal component analysis
(e.g., Cinquegrana and Iuliano, 2017) and single value
decomposition (e.g., Allen et al., 2018). However, these
models with linear nature may fail to extract the compact
representation for the nonlinear cases of real-world airfoil
design. To this end, it is promising to utilize deep neural
network-based nonlinear dimension reduction techniques,
such as autoencoders (Wang et al., 2016) and generative
adversarial networks (Hallaji et al., 2021). As a salient
example of airfoil shape parameterization, Chen et al.
(2020) leveraged generative adversarial networks to project
a wide range of airfoil shapes in the existing database
(UIUC Airfoil Coordinates Database) to a low-dimensional
latent space characterized by only a few continuous
variables, which resulted in an accelerated shape
optimization process.

Although the abovementioned studies in aerospace
engineering could shed light on aerodynamic shape
parameterization of wind-sensitive structures, some unique
features of bluff-body civil structures need to be highlighted
and require additional considerations. Unlike streamlined
airfoils that can be conveniently characterized by some
smooth base functions, it may be difficult to analytically
describe the shape of bluff-body civil structures with sharp
edges. Noting the challenges of using analytical approaches,
it is tempting to use data-driven approaches to learn the
parameterization schemes directly from the possible shapes
of wind-sensitive structures. While the aerospace
engineering community has built well-documented
databases (e.g., UIUC Airfoil Coordinates Database) to
cover a wide range of possible airfoil shapes, the same
cannot be said for bluff-body civil structures, which
requires a systematic collection of possible shapes that are
both physically realizable and aesthetically pleasing. It is
noted that the construction of this database not only needs

to include the configurations of real-world civil structures,
but also may require to encompass a wide range of
conceptual designs to enrich the database, which is not a
trivial task. Before initializing the time-consuming process
of constructing the database involving collaborations
between structural engineers and architects, it is desirable to
first ensure that there exist suitable data-driven
parameterization schemes satisfying the unique demands
arising from bluff-body shapes, which is the focus of this
study.

Considering that the shape data is usually in the form of
coordinates of the points along the edges or the pixels of the
raw shape images, it is necessary to reduce the high-
dimensional shape data into a low-dimensional latent
representation for efficient parameterization. It is noted that
the state-of-the-art dimension reduction schemes used for
airfoil shape parameterization (e.g., Chen et al.,, 2020)
cannot be effectively applied to the case of bluff-body
shapes. Unlike airfoil shapes that can be fully represented
by a set of continuous variables, discrete variables are also
needed to characterize distinct variations across different
categories of the bluff-body shapes. For example, tall
building cross sections with recessed corners and chamfered
corners should be distinguished by a discrete variable. In
addition to the importance of including discrete variables in
the latent space, it should also be noted that hierarchy
structures may exist in the discrete and continuous
variables. For example, the discrete variables could be
considered as high-level variables to classify tall building
cross sections into different categories (e.g., recessed
corners and chamfered corners) while the continuous
variables are the low-level variables to capture the
variations within each category (e.g., the depth of recessed
corner and the slope of chamfer edge). Capturing the
hierarchy structures makes it possible to consider
conditional relations among the latent variables (i.e., certain
variables are only active when some other variables are
active). In fact, introducing the mixed discrete-continuous
variables with hierarchy structures makes the learned
parameterization more intuitive and interpretable,
considering it is closer to the underlying generation
mechanism (Ross et al, 2021; Ross and Doshi-Velez,
2021). Parameterization of bluff-body shapes using mixed
latent variables with hierarchy structures will also benefit
subsequent aecrodynamic shape optimization. First, it gives
stakeholders the flexibility to focus on certain shape types
instead of exhausting the whole design space. Another
benefit is that varying the variables under their parent
category will not result in a drastic change in the shape and
hence the aerodynamic performance. This satisfies many
optimization schemes' underlying assumption of the smooth
objective function.

To this end, this study leverages recent advances in
learning hierarchical representations (Ross and Doshi-
Velez, 2021) and proposes a novel parameterization scheme
for aerodynamic shape optimization of wind-sensitive
structures. This machine learning-enabled scheme first
learns the hierarchy structure of the mixed discrete and
continuous latent variables. Then it constructs a shape
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generator conditioned on the obtained hierarchy structure,
which could be effectively used as the shape
parameterization scheme for optimization purposes. This
study is organized in the following manner. First, the
existing shape parameterization schemes for typical bluff-
body wind-sensitive structures (i.e., tall buildings and long-
span bridges) are systematically reviewed. Then, the
proposed machine learning-enabled parameterization
scheme is presented. After that, proof-of-concept examples
are conducted on tall building cross sections to demonstrate
the performance of the proposed scheme. The existing gaps
between proof-of-concept examples and real-world
applications are also discussed subsequently. The
concluding remarks and future directions are provided at the
end. It is worthwhile to mention that this study, by no
means, attempts to solve the problem of parameterization of
bluff-body wind-sensitive structures completely. Instead, it
aims to provide a proof of concept with preliminary results
to guide future investigations toward a data-driven
paradigm of shape parameterization for wind-sensitive
structures.

between upper and lower surfaces so that the coherent
vortices are disrupted (e.g., Yang et al., 2015; Tang et al.,
2017). Furthermore, decks with appendages such as guide
vanes for box-shape decks and baffle plates for H-shape
decks have been introduced to alter the fluid-structure
interaction for improved performance (e.g., Larsen et al.,
2000; Sakai et al., 1993). Despite a wide range of potential
schemes to modify deck shapes for improved aerodynamic
performance, existing studies on aerodynamic shape
optimizations usually explore the shape variation of box-
shape decks using a limited number of variables. Montoya
et al. (2018) used two design variables to consider the
height and width variation of deck shape with respect to the
reference design, which has been adopted in other studies
(with slight changes in, for example, the reference design)
(e.g., Tinmitondé et al., 2022; Abbas et al., 2022). This
two-variable parameterization scheme is further extended to
consider the possibility of venting decks by introducing an
additional design variable of the slot width (see Fig. 3a)
(Nieto et al., 2020). Jaouadi et al. (2020) proposed to use a
more flexible approach to allow the change of location of

Shape parameterization Candidate shape

Performance evaluation

Search optimization

Fig 1. Schematic of a typical aerodynamic shape optimization process

2. Literature review on shape parameterization
schemes for wind-sensitive structures

To provide a clear overview of the state of practice, this
section presents existing parameterization schemes for
aerodynamic shape optimization of two types of wind-
sensitive structures: tall buildings and long-span bridges. It
is noted that many studies use the same shape
parameterization schemes with different research focuses
(e.g., different optimization objectives or algorithms). Only
the representative study is selected here as the reference for
the sake of being concise. For long-span bridges, numerous
efforts have been made to modify the shape of basic box-
shape and H-shape bridge decks to improve the
aerodynamic performance (Birhane et al., 2017), which is
shown in Figure 2. For example, partial streamlining of the
box-shape deck to tackle the flow separation of leading
edges (e.g., Larsen, 1993) has been widely used in major
long-span bridges. Similarly, fairings have also been added
to the edges of the H-shape deck for acrodynamic retrofit of
long-span bridges to resemble the streamlined box decks
(e.g., Barelli et al., 2006). In addition, partial openings of
bridge decks (slots and gratings for box-shape and H-shape
decks) have been utilized to allow the mixing of airflow

six corners (see Fig. 3b), which results in five design
variables (considering the symmetry and fixed lane width).
Compared to bridge deck shapes that always require a
flat upper surface to support driving vehicles, the shape of
tall buildings may exhibit higher complexities due to the
flexibility in cross-section geometry as well as its potential
variation along the height (Tanaka et al., 2012; Sharma et
al., 2018; Jafari and Alipour, 2021). It is noted that this
literature review does not consider irregular buildings (e.g.,
T-shape and star-shape buildings as well as buildings with
novel facades) and instead only focuses on buildings with
square/rectangular-like cross-sections. Starting from the
basic cylinder configuration of a tall building, shape
mitigation for improved aerodynamic performance is
generally classified into minor and major modifications.
Minor modifications (shown in Fig. 4a) usually change the
geometry of cross sections through the corners (using, e.g.,
chamfered, slotted, rounded, recessed, and finned corners)
to alter the flow separation characteristics (Mooneghi and
Kargarmoakhar, 2016). It is noted that some of the minor
modifications could be further extended to more complex
geometries with, for example, multiple corner recessions
and cuts (e.g., Wang et al., 2022; Tang et al., 2013). On the
other hand, major modifications control the shape variation
along the height through, for example, tapering, twisting,
set-backing, and opening (Elshaer and Bitsuamlak, 2018) to



Shaopeng Li, Brian M. Phillips and Zhaoshuo Jiang

Basic box-shape deck

e

Streamlined edge

Central slot

N= —

Guide vane

—
—

Basic H-shape deck

<l =

Edge fairing

—
=

Central grating

—
—H

Baffle plate

Fig 2. Representative aerodynamic modifications schemes for bridge decks

OH v

5B
[~

(a) Scheme used by Montoyé et al. (2018); Nieto et al.

(2020) and Abbas et al. (2022)
Fig 3.

weaken the coherent vortex shedding, which could result in
more complicated 3D building designs (see Fig. 4b).
Existing shape parameterization schemes for optimization
purposes have involved both minor and major
modifications. For minor modifications, Bernardini et al.
(2014) used two design variables to control the cross-
section shapes of tall buildings (see Fig. 5a), where
variations of the two control points with respect to a
reference shape (i.e., a square with rounded corners) are
used for determining the corner shape via interpolation with
a cubic spline. Elshaer et al. (2017) utilized two-variable
parameterization schemes to consider potential recession
and protrusion of cross section corners (see Fig. 5b). Wang
et al. (2022) adopted multiple corner recession with three
parameters controlling the recession ratio, recession number
and recession angle (see Fig. 5c). Alkhatib et al. (2022)
used two design variables (radius of rounded corner and
edge angle) to characterize the shape of the cross section
(see Fig. 5d). Shirzadi and Tominaga (2021) parameterized
a generic trapezoid with cut corners with four design
variables (see Fig. 5e). Instead of directly varying the
control points in one typical shape, Nieto et al. (2022)
proposed to use the weighted sum of three empirically
selected baseline shapes (in terms of polar coordinate) to
characterize the cross section, where the weights are taken
as the design variables (see Fig. 5f). Regarding major
modifications,  Elshaer = and  Bitsuamlak  (2018)
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e

(b) Scheme used by Jaouadi et al. (2022)
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Existing shape parameterization schemes for bridge decks

parameterized the openings in tall buildings using the aspect
ratio of the openings as well as the spacing between each
opening (see Fig. 5g). Efforts have also been made to
integrate minor and major modifications. For example,
Elshaer et al. (2016) used three design variables to consider
both corner modifications (two design variables for the two
control points) and twisting (one design variable for the
twisting angle) (see Fig. 5h). He et al. (2022) adopted three
parameters to respectively control the aspect ratio of oval
cross section, the twisting angle and tapering ratio (see Fig.
51).
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3. Machine learning-based shape parameterization
scheme
The proposed machine learning-enabled shape
parameterization scheme is presented in this section. For the
sake of completeness, the basics of a standard autoencoder
are first introduced to present the general idea of
parameterization with latent variables. Noting the
limitation of using only continuous latent variables for
shape parameterization, the importance of having mixed
discrete-continuous variables with hierarchy structures is
highlighted. After that, the proposed machine learning-
enabled shape parameterization scheme is described, which
is composed of (1) the “skeleton” to learn the hierarchy
structure of latent variables and (2) the “skin” to
parameterize the shape based on the learned hierarchy
structure.

Autoencoders have been widely used for dimension
reduction in many different fields (Hinton and
Salakhutdinov, 2006; Wang et al., 2016). A standard
autoencoder is a deep neural network with a “bottleneck”
architecture (see Fig. 6), which is composed of an encoder
and a decoder. The encoder maps from the input layer (the
high-dimensional raw data x) to the bottleneck layer (the
low-dimensional latent variables z):

z = fg(x;0g) (1)
where @ is the weight of the encoder. On the other hand,
the decoder aims to reconstruct the high-dimensional data
using the latent variables as input:

X' = fo (2 0p) )
where x' is the reconstructed data in the output layer; 6
is the weight of the decoder. The learning objective of a
standard autoencoder is to minimize the difference between
the original data and the reconstructed data by adjusting the
weights of the autoencoder:

min Lg(x, x") 3)
0g.6p

where L;(x,x") is the data reconstruction error. After
training the autoencoder, the obtained decoder could be
utilized to generate high-dimensional data through low-
dimensional latent variables. For the application to
aerodynamic shape optimization of wind-sensitive
structures, the trained encoder can be effectively used as a
parameterization scheme, where the latent variables serve as
the design variables to characterize the shape.

It is noted that standard autoencoders embed the high-
dimensional data in continuous space (i.e., the components
in z are all continuous variables). The continuous variable-
based representation, however, may not be suitable for
parameterization of the shape of wind-sensitive structures
considering the distinct variations across different
categories of the bluff-body shapes (e.g., tall building cross
sections with recessed corners and chamfered corners). This
characteristic calls for additional discrete variables in the
latent space. It should also be noted that hierarchy structures
may exist in the discrete and continuous variables
considering the conditional relationships among the latent
variables (i.e., certain variables are only active when some
other variables are active). For example, the continuous
variables (e.g., the depth of recessed corner and the slope of

chamfer edge) can be considered low-level variables, and
they are active only when the high-level discrete variables
point to their corresponding category. In addition to being
more intuitive and interpretable (Ross et al., 2021; Ross and
Doshi-Velez, 2021), parameterization of bluff-body shapes
using latent variables with hierarchy structure will also
benefit subsequent aerodynamic shape optimization in
terms of (1) the flexibility to focus on certain shape types
instead of exhausting the whole design space and (2)
avoiding a drastic change in the shape (and hence the
acrodynamic performance) to facilitate optimization
convergence.

To this end, the study aims to learn a mixed discrete-
continuous latent space with hierarchy structures for shape
parameterization of bluff-body wind-sensitive structures.
Specifically, the latent variables z to learn are composed of
both discrete variables z; and continuous variables z.:
z=[z4,2.] “)

In addition, the hierarchy structure to learn, specifying
the conditional relations between the discrete and
continuous variables, can be generally represented by a
mapping function f,():

m = f,(zq) ®)
where m is the mask (ideally m is a binary vector with
the same dimension as the continuous variable z.)
representing the activation status of the continuous
variables based on the value of discrete variables z,;. The
active continuous variables z2 can then be calculated by
“masking” the original continuous variables z, with m:
22 =moz, ©)
where o denotes the element-wise product.

The learning algorithm adopted in this study is based on
recent advances in learning hierarchical representations
(Ross and Doshi-Velez, 2021), which is composed of (1) the
“skeleton” to learn the hierarchy structure of latent variables
and (2) the “skin” to parameterize the shape based on the
learned hierarchy structure. The overview of the algorithms
is schematically presented in Fig. 7 while the detailed
descriptions of the “skeleton” and the “skin” are provided
subsequently.

Input Encoder Bottleneck  pocoqer Output
layer layer layer

% Q

Fig. 6 Schematic of a standard autoencoder



Machine Learning-Enabled Parameterization Scheme for Aerodynamic Shape Optimization of Wind-Sensitive Structures: A-Proof-of-

Concept Study
— b,
by i/
b,
by i
c
el
. X X X Perform SVD in the reduced dimension to identify
Initial dimension reduction with a standard autoencoder local manifold directions of neighboring points
=}
Q
=
L
3}
4
w
) .
. .
. . .
y am .
Category=1 Category=2 .
g - e
.o ¢
.« ®
b o . .
1 b, g o1 e o .
- .
3] LN
2 %
> .,
-
. '’
E *
- . - .
Identify the hierarchy structure = Merge components with similar SVD directions
- £
s
— =
o]
D}scrclu (“zllggury . Mask m (z\lgg«)ly
variables zq . assignmenta assignment @
s =8 .
2 O 10,
§ 5w —— Z
& N 2y
g5 \/ 5\
S A k]
= £ O =y
2 o
“ g
- 8
O - - @ : 0
3
-0 o
Continous Active Active
5 Mask m . :
variables z,. continuous continuous
variables z¢ variables z¢
Shape parameterization with learned hierarchy structure

Fig. 7 Proposed machine learning-

3.1 Skeleton: Learning the hierarchy structure

First, the initial dimensional reduction is conducted on
the raw data using a standard autoencoder, where the
number of latent variables should exceed the intrinsic
dimensionality. The intrinsic dimensionality is the smallest
number of continuous variables that can faithfully
reconstruct the original data, which is related to the
underlying generation mechanisms of the data. For
example, if the data has two categories, and each category is
controlled by one continuous variable, then intrinsic
dimensionality of the data is three (one for differentiating
the category, similarly as a step function; two for
controlling the variation within each category). The intrinsic
dimensionality could be determined by trial and error: if the
number of latent variables is smaller than the intrinsic
dimensionality, the reconstruction error will be very large.
This initial dimension reduction is helpful to enhance the
learning efficiency considering that the subsequent
computation will be conducted in the latent space with a
lower dimension. In the reduced dimension, singular value
decomposition (SVD) is performed for each point and its

enabled shape parameterization scheme

neighbors to obtain the local manifold directions, where a
ball tree (Omohundro, 1989) is used to construct a
neighborhood graph to identify the neighboring points
quickly. Points with similar local manifold directions are
then merged into components, which is realized by first
merging the neighboring points and then combining similar
components over longer distances. With the merged
components, the hierarchy structure can be inferred based
on which components enclose others. In addition, the
assignments of each data point to the corresponding
category a can be determined accordingly. The structured
description of the “skeleton” model is shown in Algorithm 1
while the details can be found in (Ross and Doshi-Velez,
2021).

Algorithm 1. Skeleton: Learning the hierarchy structure
Use a standard autoencoder to encode the data in a lower
dimension.
Construct a ball tree-based neighborhood graph for efficient
identification of neighbors.
Perform SVD on each point and its neighbors to identify local
manifold directions.
Merge points into components:

Successively merge neighboring points with similar local
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manifold directions.
Combine similar components over longer distances.
Identify the hierarchy structure based on the merged components.
Return the hierarchy structure and assignment of each point.
3.2 Skin: Parameterization using the learned
hierarchy structure

The abovementioned “skeleton” model can output the
hierarchy structure and categorical assignment for each data
point, which allows the “skin” model for subsequent
parameterization. A new hierarchical encoder is first built
Z = fup(x;0yxg) , where Oyp is the weight of the
hierarchical encoder and the size of latent dimension z
equals to the number of continuous variables plus the
number of categorical options in the learned hierarchy
structure. The latent variables z can be then partitioned
into two components, i.e., Z; for the discrete dimension
and 2z, for the continuous dimension. The values
corresponding to discrete dimensions z4 are first passed
through a softmax function with temperature (temperature
T is a hyperparameter) to convert to the assignment
probability for each categorical option, denoted as a’ =
ST(z4). The obtained assignment @’ can be used, along
with the learned hierarchy structure in the “skeleton”
model, to obtain the mask to determine the activation status
of the continuous variables m = g,(a’) = g,[ST(z.)]
[essentially equivalent to m = f,(z4) in Eq. (5)]. With the
mask m , active continuous variables z¢ can be
determined as zf =moz, as shown in Eq. (6). The
hierarchical decoder reconstructs the data x' from the
concatenated latent space (including the predicted
assignment @’ and the active continuous variables z%),
x' = fyp(a',z%;0yp) , where Oyp is the weight of
hierarchical decoder. The weights of the hierarchical
encoder and decoder can be learned by:

min [Ly(x,x") + A.Lg(a,a") + A, L. (Oyg, Oup)] @)
OnE.OHD

where, in addition to the data reconstruction error
Lg(x,x"), the assignment error L,(a,a’) (representing the
discrepancies between the predicted assignment by
hierarchical decoder a’ and “ground-truth” assignment
given by the “skeleton” model a) also needs to be
minimized; 4, is the weight for the assignment error; the
regularization term L,(@yg, O@yxp) with the weight of A, is
used here to remove correlation of the continuous variables
(Kim and Mnih, 2018). The trained hierarchical decoder can
then be effectively used as the shape parameterization
scheme. The structured description of the “skin” model is
shown in Algorithm 2, while the details can be found in
(Ross and Doshi-Velez, 2021).

Algorithm 2. Skin: Parameterization using the learned hierarchy
structure

Obtain the latent variables from the hierarchical encoder z4,z, =
frue (x; Oy).

Calculate the assignment probability a’ from the z4 using a
softmax function with temperature: a’ = ST(z,)

Get the mask m from the predicted assignment a’ using the
learned hierarchy structure m = g, (a’).

Use the mask m to determine the active continuous variables

zi=moz,.

Reconstruct the data x” from concatenated variables using the
hierarchical decoder x' = fyp(a’, z%; Oyp).

Compute the loss as L = Ly(x,x") + A,L,(a, a’) +
ArLr(eHE' BHD)-

Conduct gradient descent to update the hierarchy autoencoder
weights Oyp and Oyp by minimizing the loss L.

Repeat until convergence.

4. Proof-of-concept examples

Two numerical examples, as a proof of concept, are
presented in this section to demonstrate the performance of
the  proposed  machine  learning-enabled  shape
parameterization scheme. The first case deals with simple
geometries represented by the edge coordinates using fully
connected neural network-based autoencoders, which can
help to determine the critical hyperparameters in the
learning algorithm. The second case extends to more
general applications with pixel-based representation using
convolutional neural network-based autoencoders, which is
promising for future applications with real-world raw image
data. It should be emphasized that these proof-of-concept
examples, by no means, attempt to solve the shape
parameterization problem completely. Instead, they aim to
serve as pilot studies to investigate the feasibility of data-
driven shape parameterization schemes using machine
learning tools. In addition, since the ground-truth shape
parameterization is predetermined in the synthetic dataset,
there is no need in proof-of-concept examples to show a
whole optimization process using the learned shape
parameterization scheme. Hence, the following examples
only focus on demonstrating the performance of the
proposed scheme to accurately learn the predetermined
shape parameterization in the synthetic dataset.

4.1 Case 1: Coordinate-based shape representation
using fully connected neural networks

A synthetic dataset for shapes with simple geometries is
built in this example, which includes two types of
aerodynamic shape modifications for tall buildings (i.e.,
recessed and chamfered corners). As shown in Fig. 8, the
double-recessed corners have two design variables [; and
l, for the recession depths (both are randomly generated
following a uniform distribution in [0, 0.25]), while the
chamfered corners have only one design variable « for the
corner slope (a is randomly generated following a uniform
distribution in [0° 45°]). The shapes are symmetric with
respect to both vertical and horizontal axis, and hence they
can be conveniently represented by the coordinates of one
corner. Specifically, the vertical coordinates of 64 points
with uniform horizontal distance are used to represent the
shape, and fully connected neural networks are used for the
autoencoders (the network architecture is shown in Table 1).
The size of the dataset is 10,000 (5,000 for each category).
The critical hyperparameters (obtained by trial and error)
are shown in Table 1. Other parameters that are not shown
here adopt the default values specified in (Ross and Doshi-
Velez, 2021). It is noted that the network architecture of the
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hierarchical autoencoder in the “skeleton” is set as the same
as that of the standard autoencoder for initial dimension
reduction in the “skin” except for the additional “masking”
operations. Adam optimizer is used for gradient descent of
both the standard and hierarchical autoencoder (with a batch
size of 256 and an epoch number of 50), where a learning
rate starts at 0.001 and decays by 1/10 halfway and three-
quarters of the way through training. Regarding the
hyperparameters used by only the hierarchical autoencoder,
the softmax temperature 7, the weight of assignment loss
Aq, and the weight of regularization loss A, are 1, 100, and
1, respectively.

After training, the “skeleton” model can successfully
merge points with similar local manifold directions and
identify the underlying hierarchy structure. As shown in
Fig. 9, the obtained hierarchy structure has one discrete
variable with two categorical options. The first category can
be characterized by one continuous variable, while the
second one needs two continuous variables. Note that only
three of the five latent dimensions from initial dimensional
reduction are plotted in Fig. 9 for the sake of clear
illustration. With the obtained hierarchy structure, the
hierarchical autoencoder is trained using the “skin” model.
The trained hierarchical decoder can then be effectively
utilized as the shape parameterization scheme. Specifically,
the category assignment a’ is essentially a two-
dimensional vector with one-hot embedding (i.e., a' =
[1,0] denotes category 1 and a’ = [0,1] denotes category
2). The mask m can then be determined according to the
learned hierarchy structure (m = [1,0,0] for a’ =[1,0]
while m =1[0,1,1] for a’ =[0,1]) so that the active
status of the three continuous variables z. = [z, Z¢,, Z¢,]
can be obtained (z¢ = [2.,,0,0] for category 1 and zg =
[0,2,,2,] for category 2). Based on the projection in the
latent space of the training data, it is found that the
continuous variable z., for category 1 lies in [-22, 3] while
the continuous variables z., and z., for category 2 are in
[-1, 38] and [0, 17] respectively.

To show the performance of the shape parameterization,
the output of the hierarchical decoder with varying input
[a’, z%]is presented in Fig. 10. Fig. 10(a)-(c) indicate that
the learned continuous variable z., —can successfully
capture the variation in the slope of the chamfered corners.
In addition to the interpolation results shown in Fig. 10(a)-
(c), it is also interesting to observe from Fig. 10(d) that the
obtained parameterization scheme can even extrapolate
beyond the limit of training data (although the result is not
as good as that of interpolation due to the lack of data in the
extrapolating region). This extrapolation ability indicates
the trained decoder can “understand” the underlying pattern
instead of “memorizing” it, which also shows the potential
to expand the search space for aerodynamic shape
optimization. Similarly, Fig. 10(e)-(j) and 10(i)-(k) show
that the learned continuous variables z., and z., are
responsible for controlling the variations in the two
recession depths. Fig. 10(h) and (1) also demonstrate the
extrapolation ability of the learned decoder in these two
dimensions. Furthermore, it is tempting to test if novel
designs can be generated by the trained decoder. Intuitively,

the assignment variables a’ can manually be set as [0.5,
0.5] to consider a hybrid of category 1 and 2, and
accordingly all the three continuous variables in z& can be
active. Fig. 10(m)-(t) shows the decoder output with eight
arbitrary sets of design variables. The obtained shapes
(although with zigzag) exhibit the features from both
recessed and chamfered corners, which is unseen from the
training data. These interesting results demonstrate the
potential to manipulate the latent variables to generate novel
designs (Li et al, 2020) for aerodynamic shape
optimization, which is a promising direction for future
work. In addition, it is not essential that the reconstructed
data should be exactly the same as the training data or has a
perfect quality for the case of extrapolation, considering
that the reconstructed data will need to be postprocessed
before passing it to the optimization process. For example, a
filter based on empirical knowledge can be designed to
remove the small errors (e.g., the small bumps in a straight
line).
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Fig. 8 Synthetic dataset for Case 1 (The two axes in the
upper two figures are coordinates for the two-
dimensional shape)

Table 1. Hyperparameters for Case 1

Hyperparameters Values
Number of latent variables in initial 5
dimension reduction
Number of hidden layers in the 5
standard/hierarchical autoencoder
Number of neurons in
standard/hierarchical autoencoder 200, 200
Activation function in the
Softplus

standard/hierarchical autoencoder
Learning rate for the
standard/hierarchical autoencoder
Batch size for the standard/hierarchical

0.001 start, 0.0001
halfway, 0.00001 3/4 way

256
autoencoder
Number of epochs for the 50
standard/hierarchical autoencoder
Softmax temperature t for the 1
hierarchical autoencoder
Weight of assignment loss 4, for the 100

hierarchical autoencoder
Weight of regularization loss 4, for
the hierarchical autoencoder
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Fig. 9 Identified hierarchy structure of Case 1 using the “skeleton” model (projection of data in the latent space)
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convolutional neural networks

Instead of using the edge coordinates, Case 2 adopts the
pixel-based representation to show the promising potential
for future applications with real-world raw image data.
Specifically, Case 2 considers two categories of shapes, as
shown in Fig. 11. In the first category, the shape considers a
special type of chamfered corner, where the square cross-
section is cut with an arc curve instead of a straight line (to
test the algorithm’s capability to tackle curves). The
diameter of the cutting circle is equal to the dimension of
the square. The diagonal translation of the cutting circle
(i.e., V2l) is the continuous design variable, while the
original square shape is fixed. The shape in the second
category has recessed corners, where the horizontal and
vertical translation of the cutting square are the two
continuous design variables (i.e., d; and d,). Specifically,
64x64 pixel-based representations are used in Case 2 (down
sampled from 256%x256 pixel space to make images
“blurry”, considering that real-word image data may need to
be preprocessed to have a lower resolution for efficient
training), where interpolations are employed in the pixel
value for continuous translation of the shapes in discrete
pixels. The limit of design variable [ is [4, 16] pixel while
the limit of design variable d; and d, is [8, 24] pixel. The
size of the dataset is 100,000 (50,000 for each category).
Convolutional neural networks (CNN) are used in the
autoencoders due to the high ability to capture the spatial
features in image data. The structure of CNN is
schematically shown in the Appendix. The generated
images from the decoder can then be converted to CAD
files for manufacturing models of wind tunnel tests or
geometric  drawings for CFD  simulation. The
hyperparameters are shown the Table 2.

After training, the “skeleton” model can successfully
merge points with similar local manifold directions and
identify the underlying hierarchy structure with two
categorical options. As shown in Fig. 12, the first category
can be characterized by one continuous variable, while the
second one needs two continuous variables. With the
obtained hierarchy structure, the hierarchical autoencoder is
trained using the “skin” model. Like Case 1, the category
assignment a’ = [1,0] denotes category 1 and a’ = [0, 1]
denotes category 2. The mask m can then be determined
as m=1[10,0] for a’ =[1,0] and m =[0,1,1] for
a’' =[0,1]. Accordingly, the active status of the three
continuous variables can be obtained as zg = [2.,,0,0]
for category 1 and z¢ = [0,2.,,z.,] for category 2. Based
on the projection in the latent space of the training data, it is
found that the continuous variable z., for category 1 lies
in [-115, -5] while the continuous variables z., and z.,
for category 2 are in [-65, -3] and [-68, -1] respectively.

To show the performance of the shape parameterization,
the output of the hierarchical decoder with varying input
[a’', Zz%]is presented in Fig. 13. Fig. 13(a)-(c) indicate that
the learned continuous variable z., can successfully
capture the diagonal translation of the cutting circle.
Similarly, Fig. 13(e)-(j) and 13(i)-(k) show that the learned
continuous variables z., and z., are responsible for

controlling the horizontal and vertical translations of the
cutting square. Note that they are not perfectly disentangled
due to numerical errors [e.g., there are still slight horizontal
translations in Fig. 13(i)-(k)]. It should also be noted that
Fig. 13(d), (h) and (1) show extrapolation abilities to extend
the original data distributions. To test if novel designs can
be generated by the trained decoder, eight arbitrary sets of
the latent variables are input to the decoder, and the decoder
output is shown in Fig. 13(m)-(t). The obtained shapes
exhibit features of the rounded cutting (although some of
them are not as clear as others), which can be considered as
a combination of square and circle. This demonstrates the
potential to generate novel designs by manipulating the
latent variables (Li et al., 2020), which, however, needs
further investigations to make it more systematic and
interpretable.

Fig. 11 Synthetic dataset for Case 2

Table 2. Hyperparameters for Case 2
Hyperparameters
Number of latent variables in
initial dimension reduction

Values

5

4 convolutional layers
(each with 32 channels,
4x4 kernels, and a stride of

Architecture of convolutional
layers in standard/hierarchical

autoencoder 2)
Architecture of fully connect 2 fully connected
layers in standard/hierarchical layers (each of 256
autoencoder neurons)
Activation function in ReLU

standard/hierarchical autoencoder
Learning rate for the
standard/hierarchical autoencoder
Batch size for the

5x10* start, 2.5x10*
halfway, 1.25x10 3/4 way

standard/hierarchical autoencoder 256
Number of epochs for the 10
standard/hierarchical autoencoder
Softmax temperature t for the |
hierarchical autoencoder
Weight of assignment loss 4, for 1000
the hierarchical autoencoder
Weight of regularization loss A, 10

for the hierarchical autoencoder
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Fig. 13 Shape parameterization result of Case 2 using the “skin” model
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5. Moving from proof-of-concept examples to real-
world applications

Although previous discussions successfully demonstrate
the promising features of the proposed scheme in
parameterizing simple shapes for tall building cross
sections, there still exist gaps between the proof-of-concept
examples and real-world applications. In this section, some
considerations on constructing real-world datasets and
tuning the learning algorithms for complex scenarios are
presented to guide future investigations.

Considering the data-driven nature of the proposed
scheme, construction of a suitable dataset is the first and
perhaps the most important step in the machine learning-
based shape parameterization. There are several potential
directions to construct the dataset for real-world
applications. For example, Google Earth can be used to
directly extract raw images of tall buildings (Google Earth).
There are also publicly available datasets containing 3D
coordinates of buildings in some cities (e.g., RealCity3D). It
should be noted that using the dataset covering only
existing structures may fail to generate real novel designs
for the new structures to build, and hence it is desirable to
also include conceptual designs from architects and
engineers. In fact, the potential design space of building
shapes is usually determined by practical constraints, which
can be explicit (e.g., floor area) or implicit (e.g., aesthetic
considerations). One possible approach to generate building
shapes that satisfy the practical constraints is to first use
computer to randomly generate the building shapes that
meet the explicit constraints, and then rely on architects and
engineers to filter out the undesirable ones (i.e., to meet the
implicit constraints). This human-machine interaction also
resembles the concept of generative adversarial networks
composed of a generator and a discriminator (Goodfellow et
al., 2014), except that in this case the generator is based on
computer programming while the discriminator is based on
human judgement (Fujii et al., 2020). Furthermore, it should
be noted that data from different sources may have different
resolutions and/or formats, which need to be carefully
processed for uniformity.

Once the dataset of aerodynamic shapes is built based
on the abovementioned -considerations, the proposed
machine learning scheme in this study can be
straightforwardly used to automatically categorize these
shapes and parameterize them with a limited number of
design variables. The obtained parameterization can be
subsequently used for aerodynamic shape optimization. In
addition, the novel designs generated outside the training
data, as demonstrated previously in the proof-of-concept
examples, can lead to discovery of promising aerodynamic
shapes for wind mitigation.

The increased complexity of real-world dataset also
requires tuning the learning algorithms to accommodate the
attending challenges. One potential challenge may come
from the fact the constructed dataset may have uneven
distributions across different categories (note that the two
proof-of-concept examples simply assume same amount of
data instances for each category). The data from
underrepresented shape categories may be considered as

noises and hence could be neglected in the machine
learning schemes, which calls for further efforts to make the
learning algorithms robust for uneven data distributions.
Furthermore, the hierarchy structure for real-world shape
datasets may be deep and complex (e.g., subcategories
existing within one category), which can be challenging for
the learning algorithm. In addition, there may be more than
one plausible hierarchy structure that fits the complex
dataset. Hence, it is necessary to develop a mechanism to
ensure the identified hierarchy structure is most
interpretable to human users (Ross and Doshi-Velez, 2021).

5. Concluding remarks and future directions

To move beyond current empirical approach to a data-
driven  paradigm, a  machine learning-enabled
parameterization scheme is developed in this study for
aerodynamic shape optimization of wind-sensitive
structures. Specifically, autoencoders are used to encode the
high-dimensional shape data in latent space with mixed
discrete-continuous variables. In addition, the hierarchy
structure in the latent space is identified to obtain the
conditional relationship between the discrete and
continuous variables. Proof-of-concept examples on shape
parameterization of tall buildings are conducted to
demonstrate the performance, where the proposed scheme
works well for both coordinate-based shape representation
using fully connected neural networks and pixel-based
shape representation using convolutional neural networks.
To extend from the current proof-of-concept study to
practical implementations, future work is needed in the
following directions. Firstly, a comprehensive dataset
reflecting real-world complexities of possible shapes needs
to be constructed for wind-sensitive structures. Secondly,
the current parameterization algorithms may need further
improvement on the robustness under noisy and/or
insufficient real-world data. Thirdly, the potential of
manipulating latent variables to generate novel designs
should be investigated.
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Appendix: Structure of CNN-based autoencoder in
Case 2

For the proof-of-concept example in Case 2, the encoder
consists of 4 convolutional layers (each with 32 channels,
4x4 kernels, and a stride of 2), which are followed by 2
fully connected layers, each of 256 neurons. ReLU
activation functions are used in these layers. The decoder
architecture is simply the transpose of the encoder, and the
final output is processed by a sigmoid layer to restrict the
value in [0, 1]. The structure of the CNN-based autoencoder
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is schematically shown in Fig. Al.

Encoder

Decoder
x2

Transpose
of encoder

Fig. A1 Structure of CNN-based autoencoder
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