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Abstract—This paper introduces transparent acceleration into
the Linux networking stack. To do so, we build on years of
research in creating high-performance software-based packet
processing systems. Rather than treating these technologies as
alternative pipelines, we leverage the technology to create explicit
fast paths in the Linux kernel. With this, Linux still serves as
a complete implementation of all its supported protocols, but
frequent operations on the critical path can be transparently han-
dled by a fast path. We implement a controller that continuously
introspects the Linux Kkernel to determine exactly what packet-
processing functionality is currently configured. The controller
then synthesizes and deploys a minimal fast past into the packet
processing pipeline that only implements functionality that is
currently needed. In this way, common command line tools, such
as bretl, control plane software, such as FRRouting (FRR), and
higher-level management frameworks such as Kubernetes and
Ansible, work without modification and transparently benefit
from a faster network data plane. Our system, LinuxFP, includes
a controller that can implement IP forwarding, bridging, and IP
filtering fast paths that are synthesized on-demand using their
specific and current configuration in the kernel. We evaluate
performance improvements using Linux management tools and a
Kubernetes network plugin. We show performance improvements
over Linux for packet forwarding of 77% and 20% for an
unmodified Kubernetes network plugin.

I. INTRODUCTION

Software-based packet processing is widely adopted across
a number of use cases, such as data-center load balanc-
ing [24], virtualized networking between containers [43] or
virtual machines [33], multi-cloud overlay networking [5],
and 5G infrastructures [26]. Software-based packet processing
requires both high performance and, in many cases, the ability
to introduce custom functionality. While Linux is the most
widely used platform for many such use cases, supporting the
required packet processing performance with its out-of-the-box
networking stack is challenging [30]. Likewise, introducing
custom functionality is generally considered painful, requiring,
for example, kernel recompilation or additional kernel modules
that hook into potentially evolving internal interfaces and
structures.

This led to the development of frameworks that enable
developers to write high-performance software-based packet
processing applications. These take several different forms,
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such as (1) kernel bypass (e.g., DPDK [21] or netmap [42]),
where packets are efficiently copied into user space for pro-
cessing, (2) in-kernel network stack bypass (e.g., XDP [30]
or Click [32]), which present alternative in-kernel pipelines
for packet processing which typically ensure packets do not
touch the Linux networking stack, or (3) as a new kernel (e.g.,
x-kernel [31] or Demikernel [45]). These frameworks provide
the required API and blueprint for high-performance packet-
processing applications, but developers are left to implement
both the complete packet-processing pipeline and control-
plane integration.

To lower the barrier to leveraging these high-performance
packet-processing frameworks, new platforms were introduced
to provide common functionality on top of these framewoks.
Polycube [37] is a kernel-space platform built around eBPF
technology that includes coarse-grained network functions
which can be configured using custom command line tools.
VPP [9] is a user-space platform leveraging kernel bypass
technology (e.g., DPDK [21]) that also provides custom man-
agement tools for configuring network functions. Each system
operates as a separate packet processing pipeline from the
Linux networking stack, and use of the system requires use of
custom APIs and tooling.

Lack of compatibility with the Linux networking API
is both a problem and a lost opportunity. There is a rich
ecosystem of widely-used and extensively tested software
that includes management tools (e.g., iproute2 [27]), control-
plane software (e.g., FRR [28]), and container orchestration
platforms (e.g., Kubernetes [12]). These tools are all dependent
on Linux networking APIs. Ideally, a system would be able
to support this ecosystem while also supporting acceleration.

To this end, we introduce LinuxFP, a system which enables
fast packet processing while retaining the sophisticated net-
working capabilities of Linux. The key approach of LinuxFP
is to transparently' accelerate hot spots in the Linux packet-
processing stack using an explicit fast path to accelerate
common-case processing. This is a widely-used design pattern

ITranspar(—:nt, in this case, refers to view point of the user, who will not
see any difference in how they interact with Linux.



in computer networking, where the common case is heavily
optimized while a slow path handles less frequent corner
cases and complex tasks, such as processing control-plane
messages or handling packet fragmentation. There were two
key challenges of realizing this design in LinuxFP: 1) how to
accelerate, and 2) what to accelerate.

The question of how to accelerate is deeper than just pick-
ing a high-performance packet-processing technology, such
as DPDK or eBPF. To accelerate packet processing while
supporting all existing Linux networking functionality and the
Linux networking API, LinuxFP uses Linux as the default
slow path for packet processing and selectively installs eBPF-
based fast paths as needed to accelerate common functionality.
The code that defines the fast path accesses kernel network
state and configuration (e.g., routing entries or firewall rules)
instead of using custom data structures and a custom control
plane. Coherent state across the slow and fast paths is critical
for ensuring correctness when packets may be processed on
different paths.

To determine what to accelerate, we design a controller that
continuously inspects state in the Linux kernel to determine
what packet-processing functionality is currently configured
and used. LinuxFP then synthesizes and deploys only fast path
components that would be used by the current configuration,
which keeps the fast path configuration light-weight, meaning
a minimal critical path in the data plane.

We built a complete working prototype of LinuxFP, sup-
porting accelerating within Linux kernel 6.6 for bridging, IP
forwarding, and IP filtering. LinuxFP is evaluated on two
real scenarios (a virtual router and a virtual gateway), where
LinuxFP is configured only using standard Linux techniques.
In contrast to Linux, LinuxFP is 77% faster for forwarding
with 53% lower latency. To determine whether there is a
performance impact of the state sharing between the fast
and slow paths, we compare LinuxFP against the alternative
accelerated packet-processing platform Polycube. We show
that LinuxFP does not see lower performance than Polycube?.
While LinuxFP is configured using standard Linux configura-
tion tools, Polycube was configured with its custom interfaces
and management software. We also evaluate another common
use of Linux networking, a Kubernetes network plugin. We
show a speedup over Linux of 20% and latency reduction
of 18% for pod-to-pod communication with an unmodified
network plugin (Flannel).

In this paper, we first provide background on fast packet
processing frameworks and platforms, motivating the need for
LinuxFP (Section II). We then introduce the design goals and
architecture of LinuxFP in Section III. Next, we provide a
deeper discussion of the complete system design (Section IV)
and implementation (Section V). We evaluate LinuxFP in
different scenarios (Section VI) and discuss related work
(Section VII). We conclude in Section VIII. Code for LinuxFP
is available at https://github.com/mcabranches/tna.

2LinuxFP actually sees a throughput improvement of 19% over Polycube,
but we attribute that to implementation differences.

II. BACKGROUND / MOTIVATION

Due to the importance of software-based packet processing,
there is a history of strong research in this space. Here, we
discuss previous works and identify a significant gap that this
work seeks to fill.

A. Fast Software Packet Processing

We first look at advances in the performance of software-
based packet processing technologies. While there is a great
number of works in this area, we highlight three significant
advances.

Click Modular Router. The Click modular router [32], or
just Click, was introduced to address the problem of routers
being closed and inflexible, whereas users needed flexibility
and extensibility. Click is a framework allowing a developer
or admin to specify a data flow graph of packet processing
modules called elements. Developers click together elements
to define the functionality of the router, and can extend the
router by introducing new elements as C++ classes. While
designed for flexibility, Click provided high-performance -
achieving 4x performance improvements over Linux for sim-
ilar functionality. The authors attributed the performance due
to device handling improvements from previous works [22],
[38]. We consider Click to be significant in the fast packet
processing space because it provided a complete framework
which allowed networking researchers to easily create new
high-performance packet processing applications and led to
many years of high-impact research.

DPDK. The Data Plane Development Kit (DPDK) [21] was
introduced as a framework for user space packet processing
which is both safer, due to the isolation of processes, and
easier to debug. While Click was capable of processing packets
in user space, the performance was substantially lower than
doing so in kernel space. DPDK introduced a set of libraries
that optimize user space networking through the introduction
of kernel bypass technology and efficient data structures.
Developers use the DPDK libraries to create custom pipelines.

eBPF/XDP. A challenge with DPDK is that it needed
to bypass the kernel to obtain performance, but in doing
so, sacrificed the ability to effectively interface with Linux.
eBPF is a Linux technology for safely loading code into the
kernel at various hook points. For networking, the eXpress
Data Path (XDP) [30] introduced a hook point for creating
optimized data paths for fast packet processing. Safety is
provided through an in-kernel verifier of bytecode. Code can
interface to the rest of the Linux kernel through (i) helper
functions integrated into the kernel (e.g., for accessing the
forwarding information base, or FIB), and (ii) packet interfaces
to pass packets to the kernel. In a sense, XDP provides the
best properties of both Click and DPDK: XDP is extensible,
hooks into the kernel, and is safe and fast.

However, Click, DPDK, and XDP are enabling tech-
nologies, not platforms. While they enable creating packet-
processing pipelines, extra work — sometimes significant — is
needed to create and integrate control-plane software and basic
data-plane functionality to create a complete platform.



B. Packet Processing Platforms

To address this problem, platforms that have been intro-
duced to provide a complete solution.

VPP. The Vector Packet Processor (VPP) [9] is a layer 2-
4 packet-processing stack that runs in Linux user space. It
is used much like an out-of-the-box network appliance (e.g.,
switch, router) would be used, with a fixed data plane that
can be configured through a custom command line interface
or through the VPP APIL. VPP is built using DPDK and
incorporates vector processing (batching of packets) to support
high-performance packet processing. VPP is packaged with
custom functions to support use cases such as a virtual switch,
virtual router, gateway, firewall, and a load balancer.

Polycube. Polycube [37] is a platform built on top of eBPF
technology, so the Polycube data plane runs in the Linux
kernel. Polycube consists of a fixed data plane that includes IP
forwarding, load balancing, filtering, and more. The data plane
can be configured using a custom command-line interface.

Analysis. Both VPP and Polycube are alternatives to Linux
networking in the sense that, despite either running on top of
Linux (VPP) or in the Linux kernel (Polycube), there is little
to no interface between each platform and the Linux packet
processing pipeline. There are two major drawbacks to this.
First, these pipelines are incompatible with well-established
management interfaces such as netlink [40], command-line
tools such as iproute2 [27], or widely-used control-plane
software that expect Linux’s networking interfaces, such as
FRR [28]. Instead, users must utilize the bespoke management
interfaces provided by the platform (e.g., pcn-iptables [36] for
configuring Polycube’s filtering). Second, developers building
these alternative pipelines often must re-implement basic func-
tionality, like forwarding packets based on tables, responding
to ARP or ICMP packets, or control plane functionality (e.g.,
maintaining routing tables and choosing routes). This task can
incur significant development, testing, and maintenance effort
to duplicate functionality that is already available elsewhere.

In short, today’s alternative pipelines are not transparent
to the rest of the system and require applications and environ-
ments to be customized for a platform in order to access the
benefits of network acceleration.

C. Hot Spots in Linux

Supporting the entire Linux networking API in a custom
acceleration platform would be a daunting task. Instead of
re-implementing all functionality, here we consider whether
one could make minimal changes to Linux networking stack
while still gaining the majority of benefits from acceleration-
enabling technologies. In order to identify locations for such
minimal changes we look for hot spots in the code which
are segments that are executed frequently. We check for the
existence of hot spots using flame graphs [29] for several
configurations and traffic patterns. As a simple example, we
configured Linux to forward traffic with ip route commands
and observed (as seen in Figure 1) that the majority of traffic
followed the same sequence of function calls — which we can
then use this knowledge as a guide on what to accelerate. A

Fig. 1. Flame graph for Linux processing for forwarding.

key motivating observation is that Linux networking does have
hot spots; which code section is a hot spot is dependent on
networking configuration. Table I summarizes these findings
for bridging, forwarding, filtering, and load balancing. For
these tasks, we outline what functionality could be acceler-
ated via a fast path to maximize performance impact, what
state is accessed as part of the proposed fast path, and the
functionality that should remain in the control or slow path.
These observations form a basis for the design of our system.

III. INTRODUCING LINUXFP

We introduce LinuxFP, a high-performance packet process-
ing platform that preserves the richness of Linux networking
functionality and surrounding software ecosystem. LinuxFP
achieves high performance while still using most of the Linux
networking stack by accelerating hot spots rather than by
creating a completely new packet processing platform. Close
integration between the accelerated fast path and the Linux
networking slow path is a key architectural difference between
LinuxFP and related work. In this section, we describe how
and what LinuxFP accelerates as well as present LinuxFP’s
system design.

A. How to accelerate?

Dual Packet Processing Environments. Specialized packet
processing environments such as DPDK and eBPF provide
strong performance benefits over the traditional packet pro-
cessing environment of the Linux packet processing pipeline.
LinuxFP leverages both types of technology by explicitly
separating out fast and slow path tasks, and then tailoring the
pipeline to use each path for particular purposes. The Linux
network stack is used as the slow path, as it provides complete
functionality. eBPF is used to implement the fast path. The
eBPF XDP and traffic control (TC) hooks within the Linux
kernel enables LinuxFP to safely and dynamically load custom
fast path code into the Linux kernel.

Dynamic Composability. LinuxFP accelerates identified
hot spots dynamically and on demand, based on the current
configuration, and only applies fast-path logic when it is
needed. This is based on the general principle that less
code leads to more efficient code paths, and therefore higher
performance. To support this dynamism, the LinuxFP fast path
LinuxFP is designed as a composable system, much like the
models proposed in the x-kernel [31] and Click [32]. When



TABLE I
ACCELERATION MODEL FOR DIFFERENT PACKET PROCESSING APPLICATIONS.

Subsystem Fast Path In-Kernel State Control Plane + Slow Path

Bridging Parsing, rewriting, FDB FDB, port state Manage FDB (aging), handle FDB
lookup/update, forwarding misses (flooding), STP protocol processing

Forwarding Parsing, rewriting, FIB lookup, FIB, neighbor ARP handling, IP (de)fragmentation
forwarding tables

Netfilter Parsing, rewriting, conntrack Conntrack, ACLs | Conntrack handling, IP (de)fragmentation,
lookup/update, allow/deny packets handle rules on unsupported hooks

Load Balancing || Parsing, rewriting, conntrack Conntrack Conntrack handling, Scheduling algorithms

(ipvs) lookup/update

LinuxFP uses configuration information to determine a fast
path component should be deployed, it installs a series of fast
path modules (FPMs). FPMs are dynamically stitched together
through function calls.

Correctness Through State Sharing: Having two packet
processing paths (fast and slow) means there is potential for
incorrect behavior if those two paths do not share a coherent
view of network state. To ensure this coherency, FPMs are
designed to use dynamic (e.g., ARP table) and static state
(e.g., configuration) from the Linux kernel.

B. What to accelerate?

Rule-based Hot-Spot Acceleration. We manually identi-
fied hot spots by configuring Linux in a variety of ways,
generating traffic, and observing the frequently executed code
for those configurations. This allowed us to create a mapping
between configurations and hot spots, and then we created
FPMs designed to accelerate those hot spots.

Dynamic Acceleration. We dynamically observe the con-
figuration in order to apply rule-based hot-spot acceleration as
needed. We access current configuration by inspecting Linux
kernel networking state. Based on this state, we use the rule
mapping from the previous step to synthesize each module
in a minimal fast-path configuration and generate a packet
processing graph. The graph forms the data plane that can
be implemented by deploying specific FPMs. Future work
includes dynamically accelerating hot spots based on traffic
patterns and table accesses in addition to configuration.

C. System Overview

Figure 2 illustrates the design of LinuxFP. The LinuxFP
fast path runs within the Linux kernel. For the common case,
packets are only processed by the fast path. Linux is used
to process corner-case packets. State is managed such that
correctness is retained regardless of which path any packet
takes. The LinuxFP controller runs as a daemon that contin-
uously introspects the Linux kernel, and upon any changes
will build a packet processing graph, synthesize the fast path,
and deploy it. A user, for example, could enter a command
with iptables and the LinuxFP controller would see the
configuration and update the data plane accordingly (e.g., by
inserting a filtering module if needed). The user is able to use
their tool of choice and did not have to take any additional
actions to obtain acceleration — it is incorporated into Linux
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Fig. 2. LinuxFP Overview

transparently. This is in stark contrast to VPP and PolyCube,
as summarized in Table II.

IV. SYSTEM DESIGN

This section describes the design of LinuxFP, from the
bottom up, starting with LinuxFP’s dual packet processing
environments. Figure 3 provides an overview of the steps
required to build and deploy a LinuxFP fast path using
LinuxFP fast path modules (FPMs).

A. Dual Packet Processing Environments

Most packet-processing tasks can be split into a relatively
simple task for the majority of packets and one or more
complex tasks a minority of packets. This insight has been
used for decades in router design [25] but, despite being
increasingly used for high-performance packet processing, the
Linux networking stack today processes all packets in a single
packet processing environment. This approach ensures any
packet that is sent to Linux will be correctly processed and
will interact with kernel state correctly, but it is hard to
scale this approach to today’s packet rates. LinuxFP aims to
support dual packet processing environments: default Linux
packet processing for complex/infrequent tasks, and a separate,
accelerated packet processing environment defined by modules
for simple/frequent tasks. FPMs are designed to only execute
simple and common-case tasks so as to be fast, efficient, and
reusable; corner cases and complex control protocols are left
to the default Linux stack.



TABLE II
COMPARISONS OF PLATFORMS, ILLUSTRATING LINUXFP IS THE ONLY PLATFORM THAT CAN ACCOMPLISH BOTH HIGH PERFORMANCE AND TIGHT
INTEGRATION WITH LINUX. *VPP WAS INITIALLY BUILT AROUND DPDK, BUT NOW SUPPORTS OTHER KERNEL-BYPASS TECHNOLOGIES (E.G.,

NETMAP).
Technology || Uses Linux State | Packet Interface to Linux | Configuration API | Handling of Corner Cases
VPP DPDK* No No Custom Custom Code
PolyCube | eBPF No Possible, but not used Custom Custom code
LinuxFP eBPF Yes Yes Linux Linux
Processing Graph (JSON) FPM Library Processing Graph
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Fig. 3. Steps to install a new LinuxFP-accelerated Data Path

1) Running a Fast Path within the Kernel using eBPF:
Adding FPMs and switching exceptional packets from the
fast to the slow path is possible using enhanced kernel pro-
grammability that was added to Linux over the past several
years, namely eBPF [44] in the form of the XDP [30] and TC
subsystems [6]. eBPF enables application developers to write
code that can run inside a sandboxed execution environment
within the Linux kernel at various locations (called hooks)
to efficiently and safely add user-defined logic to the kernel
without requiring kernel source code changes or loadable
kernel modules [8].

eBPF offers two hooks for packet processing: XDP and
TC. Programs attached to the XDP hook run on packets
immediately after the packet is retrieved from the network
interface card (NIC). Programs attached to the TC hook can
run both on incoming packets and on outgoing packets before
they are passed to the NIC. TC provides lower performance
due to its location in the kernel’s packet processing path (i.e.,
after socket buffer — the sk_buff struct in Linux — allocation
and population) but, as a result, has access to a wider range
of state and packet processing capabilities. LinuxFP leverages
both XDP and TC hooks to realize the fast path of various
Linux network functions in the form of FPMs.

2) Deploying FPMs Dynamically: Given an eBPF program
that contains the desired fast path, LinuxFP deploys this
program in the kernel for a given interface. Swapping the
eBPF program currently deployed on either hook can incur
packet loss for several seconds. To avoid this problem, the
beginning of the LinuxFP fast path runs eBPF program that
leverages the eBPF tail-call mechanism [7] to switch over from
the old set of LinuxFP FPMs to the new one as it is simply
updating a pointer versus loading a new program. Illustrated in
Figure 4, each time the data path is regenerated in response to a
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Fig. 4. Deploying a new LinuxFP Fast Path

change in network configuration, LinuxFP atomically replaces
the current data path with the new one by updating the tail
call reference to the new program in an eBPF map [30].

B. LinuxFP FPMs

FPMs are a central component of our design; they handle
the majority of traffic, need to be synthesized on demand, and
must integrate with the kernel for state access and manage-
ment. This section outlines the design of these modules.

1) Module Structure: At a high level, FPMs are functions
inside an eBPF program that taken together constitute an
accelerated fast path. Consequently, FPMs are constrained by
the capabilities of the eBPF virtual machine and eBPF hook
point specific constraints. FPM code is invoked by Linux for
each packet such that the program terminates after processing
a single packet and any local state is discarded. Depending
on the hook, different data structures are passed to the eBPF
program as a pointer. For the XDP hook, since the packet has
just been retrieved from the network and no other processing
has been performed yet, the data available is limited to the
packet buffer, the interface index, and the queue index from
which the packet was received. Packets on the TC hook are
associated with a populated sk_buff as TC eBPF programs
are invoked after some initial kernel processing. The sk_buff
contains significantly richer data than the meta data available
in XDP and contains pointers to individual parsed headers, as
well as data from the routing and bridging systems.

The code of each FPM is synthesized individually depend-
ing on the network configuration of the system. This code
composed from a set of code snippets for individual tasks,
such as performing a FIB lookup or parsing VLAN headers.
As a result, branching inside the fast path (e.g., to check
whether a feature such as VLANSs are enabled on the device)
can be reduced to a minimum as this logic is not included



if not required. This enables streamlined and efficient FPMs.
Finally, depending on whether a FPM is at the end of the
processing graph or not, the FPM contains code to either call
the subsequent FPM or set an XDP/TC verdict that determines
what happens to the packet next. Possible verdicts include
dropping the packet, sending the packet to a NIC, or sending
the packet to the kernel for further processing.

2) Unifying State: As FPMs implement packet processing
functions such as routing and filtering on behalf of Linux,
they require access to the state of the respective subsystems
within Linux to maintain transparency to the rest of the system.
Within our system, every packet must be able to be processed
either by the LinuxFP fast path or by the kernel with the
identical result under all circumstances. This is a crucial design
decision and requires ensuring consistency and correctness of
all operations whether they have been performed in the slow
path or in the fast path. Effectively, Linux provides a superset
of the functionality of the LinuxFP fast path.

This means that although there are two different packet
processing environments, control plane state must be unified:
an FPM must be able to view the current configuration (such
as configurations set by an administrator) as well as access
and sometimes modify kernel networking state. While eBPF
maps can be used to share state between user space and
an eBPF program, doing so would sacrifice transparency as
they would have to be maintained separately; furthermore,
this approach would require explicitly handling concurrent
operations between user space and kernel space. Thus, instead
of using maps, LinuxFP uses helper functions that can access
and modify kernel state. Some of these helpers are already
available in the kernel for use within eBPF programs (e.g.,
bpf_fib_lookup [20]) but other helpers (e.g., for looking up
iptables entries) are not present. In those cases, we add them
to the kernel as required.

3) Composing Functions inside the Fast Path: A Linux
system typically performs a series of networking tasks, e.g.,
a firewall plus a load balancer where each task is associated
with specific configuration details. As such, simply loading
a single, generic FPM is insufficient. LinuxFP builds and
deploys a fast path by dynamically building C code that can
be compiled and loaded into the kernel to realize the current
packet processing graph configured on Linux. LinuxFP models
the processing graph in JSON, as illustrated in Figure 3. A
code synthesizer ingests the JSON model and outputs the C
code for a series of customized FPMs generated from Jinja
templates [11]. To do this, the synthesizer maps each key in
the model to an FPM; subkeys are used to specialize the FPM
with code-sippets based on configuration details. For example,
a JSON model of a bridge with STP and VLAN config-
ured would have bridge as the key and {STP_enabled:
True, VLAN_enabled: True} asthe conf attributes in
Figure 3. In this case, the bridge FPM along with snippets to
parse VLAN and process STP will be added to the data path.

C. Supporting the Linux Networking APIs

A key contribution of LinuxFP is its ability to retain full
compatibility with all Linux programming and configuration
APIs. We achieve this by monitoring the kernel’s configuration
state, deriving dependencies, and assembling a data plane that
is a subset of the current kernel networking stack. We now
describe the steps in this process.

1) Introspecting the Linux Kernel Configuration: The
Netlink protocol [40] enables exchanging messages between
user space and the kernel. Our Service Introspection compo-
nent uses Netlink to query kernel state by sending queries at
controller startup to get an initial view of configured services,
and also by joining multicast groups to get kernel notifications
about configuration changes and updates. Received messages
are converted into network object descriptions (LinuxFP ob-
Jjects) containing a type and a set of configuration attributes.
For example, a network interface object contains the type of
interface (e.g., physical or virtual), name, current state (e.g., up
or down), IP configuration, and other properties.

2) Building a Processing Graph: LinuxFP models the
Linux network processing configuration as a graph encoded in
JSON. This model defines what network processing functions
need to be included on the data path associated with a
network interface, in which order, and how the processing
must be customized. In this specification, the keys represent
the processing nodes (FPMs) that should be included on the
data path while sub-keys define custom configurations for each
node as well as the next node on the data path.

Defining Processing Nodes. We add processing nodes to
the JSON model by introspecting the Linux kernel configura-
tion for different network subsystems (i.e., routing, bridging,
and filtering), illustrated in Figure 3. If there are instances of
those subsystems configured in Linux, we add their respective
FPMs as keys to the processing graph. For example, we create
a key for a bridge FPM if introspection retrieves a bridge net-
work interface and add a key for a router FPM if L3 forwarding
is enabled in the kernel (i.e., net.ipv4.ip_forward=1) and there
are routes configured on the system.

Defining Processing Ordering. To define the ordering and
processing dependencies, we follow the same ordering as
packet processing happens inside the kernel. This ordering
can change based on how network services are configured on
Linux. For example, if there are network interfaces connected
to a bridge, the bridge FPM will be the first key on their
processing graph. If there are IP addresses and routes config-
ured on a bridge interface or if there are routes pointing to a
bridge subnet, a next_nf entry will be added to the JSON
description of the bridge or router FPMs accordingly (see
Figure 3). For example, a route pointing to a bridge subnet
will create a next_nf: bridge FPM entry within the router
JSON description and routes referring to the bridge interfaces
will create a next_nf: router FPM within the bridge JSON
description.

Customizing Processing Configuration. Finally, for each
FPM we add sub-keys in the JSON model with specific
configurations for the respective subsystem. For example,



we retrieve the configuration for all network interfaces on
the system and if we have bridges configured, we get the
master interface attribute for each of them, allowing LinuxFP
to associate these interfaces to the bridge FPM. Similarly,
LinuxFP introspects the specific configuration of each bridge
configured in the kernel, with sub-keys describing if they have
STP and VLAN configured.

V. IMPLEMENTATION

Controller. The LinuxFP controller is implemented in C++
and Python and consists of a series of components that
work in concert to build the fast path. The first component
(Service Introspection) introspects the Linux kernel using the
Netlink protocol [40], leveraging libnl [14] (or libiptc [19]
for iptables) for sending queries to the kernel and parsing
responses. From these responses, we create LinuxFP objects
which represent network services currently configured in the
kernel. The objects are fed to the Topology Manager that de-
rives relationships between objects and builds the Processing
Graph (Section IV-C2). The Fast Path Synthesizer then uses
this graph along with the library of FPMs to render templates
generating the fast-path eBPF code. The Capability Manager
ensures that the system supports the fast path being built
(e.g., supports the necessary helpers) by inputting a description
of available resources to the synthesizer. Finally, the Fast
Path Deployer compiles the data plane, generating the eBPF
bytecode which is deployed on the XDP or TC hooks using
libbpf [13].

Decomposing Linux Network Functions. To be as efficient
as possible, the LinuxFP data plane must avoid executing any
unnecessary tasks. Therefore, we break down Linux processing
so that the fast path executes only a few simple tasks that
are sufficient to process the majority of packets. To maintain
transparency to Linux, we do not maintain any state in FPMs
and instead rely on state managed by the kernel. In Table I,
we summarize the division between the fast and slow paths
for several Linux networking subsystems, including bridging,
forwarding, and filtering. Load balancing is left as future work,
but we leave it in the table as another example. In general, the
LinuxFP fast path performs packet manipulations, performs
state lookups in the kernel, and sends control-plane messages
or corner-case packets to the slow path in the kernel. For
example, the fast path of a bridge is responsible for packet
parsing, forwarding database (FDB) lookups (via a kernel
helper), and the actual L2 forwarding. The kernel exposes FDB
access and port state to the fast path via a kernel helper and
performs tasks like aging, spanning tree protocol (STP), FDB
miss handling, and packet flooding. Other subsystems follow
the same model.

Helper Functions. To support the described decomposition
in Linux, we leverage existing kernel helper functions and
introduce new ones when necessary. To implement routing,
we use the bpf fib_lookup helper that already is available in
the kernel [20] to determine the next hop for a packet by
querying its destination IP in the routing table. The helper also
allows setting the source MAC address of the egress interface

and the destination MAC address to the next hop. For the
bridge, we introduce a new helper called bpf fdb_lookup; it
allows querying the FDB (L2 forwarding database) to retrieve
the egress port of a previously learned MAC address. The
MAC learning process is delegated to the slow path. Our
helper also supports FDB entry aging, VLAN filtering, and the
spanning tree protocol (STP). We accelerate Linux’s iptables
filtering using a new helper which we call bpf_ipt_lookup; it
enables matching source/destination IP addresses (performing
longest-prefix matching) and the protocol. We also support
aggregating rules using ipsets. All testing was performed with
the Linux 6.6 Kernel and our helpers (~260 LoC) available
in [2]; we hope to work with the community to make those
helpers available in the mainstream Linux kernel.

VI. EVALUATION

We introduced LinuxFP as a means to transparently ac-
celerate networking in Linux. As such, our first evaluation
task is to determine to what degree it accelerates packet
processing for common use cases (Section VI-A). Then, we
present some microbenchmarks (Section VI-B) to understand
the performance characteristics of implementation choices in
LinuxFP.

A. Acceleration Benchmarks

LinuxFP has two main goals: acceleration, and compatibility
with Linux networking APIs to enable comparison. As such,
our evaluations goals are to show for some common scenarios
1) how much LinuxFP accelerates packet processing when
compared to Linux, and 2) that LinuxFP does not sacrifice
performance compared to other acceleration platforms. For
our first scenario (two different virtual network functions),
we compare LinuxFP against Linux as the baseline, Polycube
(version v0.9.0) as a kernel space platform with eBPF, and
VPP (version 23.10) as a user space platform with DPDK.
For the second scenario (Kubernetes network plugin), we
only compare against Linux as each of Polycube’s and VPP’s
custom implemented network plugins are not perfectly com-
parable to our Linux setup. All experiments were run on
CloudLab [23] ¢6525-25g hosts with 25Gbps NICs, Hyper
Threading (HT) and power saving disabled, and running the
Linux 6.6 kernel.

1) Virtual Network Functions: Virtual network functions
are increasingly leveraged to support dynamic networks. We
can see these in on-premise data centers (e.g., Equnix Network
Edge [4]) and in-cloud data centers (e.g., Cisco Cloud Services
Router [3]) alike. While those are proprietary solutions, we
believe Linux is a suitable open alternative — if accelerated.
The two network functions we consider are a virtual router
and a virtual gateway.

For these experiments, we set up in a three node line
topology with a traffic source and traffic sink each connected
to the device under test through a separate link. We perform
all tests using CPU cores and NIC interfaces on the same
NUMA node. For packet generation, we leveraged DPDK’s
Pktgen [16] for throughput tests and netperf [15] for latency
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Fig. 5. Throughput of virtual router as a function of number of cores.

TABLE 11
VIRTUAL ROUTER RTT WITH SINGLE CORE. LATENCY MEASURED IN uS.
Avg. P_99 Std. Dev
Linux 326.872 || 512.378 | 109.265
Polycube | 145.792 || 269.772 | 60.204
VPP 85.604 182.265 | 32.011
LinuxFP | 151.675 || 279.407 | 76.798

tests. We let Pktgen warm up for 10 seconds before determin-
ing the observed throughput. Unless stated otherwise, we use
XDP driver mode for LinuxFP and Polycube. We run each
experiment for 10 seconds and repeat it 10 times. In our tests,
VPP and Polycube are configured with commands equivalent
to the Linux configuration.

Virtual Router. The core function used in a virtual router is
IP forwarding and virtual routers are used to interface between
multiple networks. For example, in an on-premise deployment,
a virtual router may route between multiple-cloud providers
through direct connections. In an in-cloud deployment, a
virtual router could be used to accept route advertisements
from a transit gateway and forward traffic between regions.

Our first experiment uses iproute2 to set 50 prefixes and
measures throughput as a function of the number of cores
used. Here, we use Pktgen to send minimum sized packets.
Figure 5 shows that LinuxFP’s ability to generate the minimal
data path for specialized routing allows it to nearly double the
Linux throughput. LinuxFP and Polycube have similar perfor-
mance in this use case, with differences that we attribute to
implementation choices discussed later in this section (VI-B).
This is significant, as LinuxFP was able to achieve similar
performance while retaining the Linux networking API (while
Polycube does not). VPP has higher throughput, which we
attribute to its use of vector processing (batching). However,
the use of busy polling (via DPDK) in VPP, requires it to
dedicate the configured number of cores entirely to VPP which
then run at 100% utilization. VPP uses each core to poll on a
separate NIC hardware queue.

For latency, we focus on processing with a single core.
Here, we load the network function using 128 parallel netperf
sessions and average the results among all instances. Table III
shows that LinuxFP is capable of improving the latency of
Linux routing, again having performance similar to Polycube.

30 1
—a-LinuxFP Polycube = Linux —+ VPP
Z e - H
T el
< 201 s Lo
3 / -
< 7 H
2 /s =
e i _ ==
£ 10 7 L e
. Fy -
S J = ——
) b -
= 4/ £ -
et A
o =+
0 500 1000 1500

Packet Size [B]

Fig. 6. Throughput of virtual router for a single core as a function of packet
size.
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Fig. 7. Throughput of virtual gateway as a function of number of cores.

Finally, to exercise one aspect of scalability, we look at
single core throughput for various packet sizes. Figure 6 shows
LinuxFP and Polycube achieve near line rate (25Gbs in our
testbed) with just one core when processing 1500B packets.
Virtual Gateway. A virtual gateway sits at the edge of
networks and can both forward traffic and provide some
security by enabling white listing of IP addresses or ports that
can access some private service. The core functions used are
IP forwarding and a network filter.

We use iptables to configure 100 rules blocking a blacklist
of IP addresses for networking filtering, and iproute2 to
configure 50 prefixes for IP forwarding. We first explore
throughput as a function of number of cores using minimum-
size packets. In Figure 7, we can see that LinuxFP nearly
doubles Linux throughput for this use case. However, we
inherit iptables performance issues, related to linear searches
on rule tables. Polycube addresses this issue by adopting a
more efficient classification algorithm [34]. Fortunately, our
iptables helper implementation allows LinuxFP to leverage
Linux’s ipsets, which allow aggregation of several filtering
rules in sets that can be matched in one or more policies. In
this experiment, we aggregate the blacklist of IP addresses in
one set allowing us to reduce our filtering rules to just one.
This allows LinuxFP’s firewall to have better performance than
Polycube in this scenario. Again, VPP’s performance is higher,
and is included for reference despite its need for bespoke
dedicated resources for packet processing.

We measure latency for packets processed on a single



TABLE IV
VIRTUAL GATEWAY RTT WITH SINGLE CORE. LATENCY MEASURED IN 4S.

Avg. P_99 Std. Dev
Linux 388.863 || 512.404 | 40.942
Linux (ipset) 331.480 || 437.275 | 49.052
Polycube 181.500 || 289.379 | 40.584
VPP 85.604 180.948 | 32.011
LinuxFP 212.798 || 317.636 | 43.730
LinuxFP (ipset) | 161.469 || 275.114 | 39.625
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Fig. 8. Single core throughput of virtual gateway as a function of number of
filtering rules.

core. Here, we load the network function using 128 parallel
netperf sessions and average the results across the instances.
In Table IV, we see that LinuxFP improves latency in this
scenario and performs better than Polycube when using ipsets.

Finally, as a scalability test, we explore single core through-
put as a function of the number of filter rules. In Figure 8 we
see that LinuxFP, Linux, and Polycube scale throughput as we
add CPUs. LinuxFP has better performance when aggregating
the filtering rules using ipset which has also been shown to
be scalable to a larger number of rules [35].

2) Kubernetes Pod-to-Pod: To understand the importance
of retaining Linux Networking APIs and the power in lever-
aging the Linux networking ecosystem, we select Kubernetes
container orchestration platform [12] as an example applica-
tion to evaluate LinuxFP. Today, many networked applications
are run inside containers as containers provide a powerful way
to package, deploy, and scale applications in cloud environ-
ments. Containerized applications often span many containers
which provide different services (e.g., caches, application
logic, databases, etc.), requiring a container orchestration plat-
form such as Kubernetes. Kubernetes enables internal commu-
nication via network plugins (e.g., Flannel [10], Calico [43],
etc.) that implement the interface defined by the container
network interface (CNI) specification. Network plugins often
heavily rely on Linux’s built-in networking capabilities such as
bridging to enable communication between containers on the
same host, routing and encapsulation to enable communication
between hosts, address translation and load balancing for
outside connectivity, and packet filtering to ensure security.

In our experiments we use the Flannel [10] network plugin
with a 3-node Kubernetes cluster (one primary node and two
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Fig. 9. Pod-to-pod communication throughput as a function of number of
pod pairs.

TABLE V
POD-TO-POD LATENCY WITH SINGLE POD PAIR. MEASURED IN MS.
Avg. P_99 | Std. Dev
Linux (intra) 9.680 20.1 2.021
LinuxFP (intra) | 7.918 159 1.527
Linux (inter) 29.226 || 34.7 3.086
LinuxFP (inter) | 25.176 || 30.9 2913

secondary nodes). We evaluate Linux and LinuxFP by measur-
ing the throughput and latency of pod-to-pod communication
for both intra-node communication (where both pods are co-
located on the same node) and inter-node communication
(where the pods are located on different nodes). The LinuxFP
synthesized data plane is attached to the tc hook. For both
scenarios, pods are deployed in pairs, with one pod acting
as a server (running netperf’s netserver) and one acting as a
client (running netperf [15]). For all measurements, we use the
netperf TCP_RR test run for 60 seconds, which is configured
to output average and 99%-ile latency as well as the standard
deviation. We output the number of transmissions for each one
second interval to measure throughput.

We collect throughput data for 1-10 pairs of pods that are
running simultaneously (Figure 9). The first and last 10 sec-
onds of throughput data is discarded, so per-client throughput
is the average of the middle 40 seconds of data. The overall
throughput is the average over all per-client throughputs of
the test configuration, then this value is averaged over 10 test
iterations. As shown in Figure 9, LinuxFP demonstrates 120%
(intra) and 116% (inter) throughput when compared to Linux.

Latency results from the 1-pair case are shown in Table V,
with each result the average of 10 test iterations. LinuxFP
reduces average latency by 18% and 14% for intra and inter
respectively, and reduces 99%-ile latency by 21% and 11%
for intra and inter respectively.

In sum, LinuxFP shows performance improvements for both
throughput and latency for both intra- and inter-node pod con-
figurations when compared against Linux. No modifications
to Kubernetes, pods, or other tooling was required to run
this experiment, other than the requirements to install and run
LinuxFP on each worker node.



TABLE VI
LINUXFP REACTION TIME IN SECONDS

Command Time
ip addr add 10.10.1.1/24 dev enslfOnp0 0.602
bretl addbr brO 0.539
bretl addif br0 vethll 0.493
iptables -d 10.10.3.0/24 -A FORWARD -j DROP 1.028
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Fig. 10. Function call vs Tail call.

B. Micro benchmarks

Here, we run experiments to explore different aspects of the
operation of LinuxFP.
Reaction Time. We define reaction time as the time from
when a command is entered to the time of data plane instal-
lation. This includes generating the packet processing graph,
synthesizing parameterized modules, and installation of the
eBPF code into the kernel. We measure this time in the
LinuxFP controller, where the start time is when LinuxFP sees
the configuration change and the end time is when LinuxFP
gets confirmation that the eBPF code is installed. The reaction
time for various commands is found in Table VI
eBPF Implementation Options. In some cases we saw better
performance with LinuxFP than Polycube. As they both use
eBPF, performance differences largely stem from implementa-
tion differences. One implementation factor is how functions
are chained together: LinuxFP chains functions with inlined
function calls, while Polycube chains functions together with
tail calls. While a greater study of how best to use eBPF is
beyond the scope of this paper, and even further optimiza-
tions likely exist, we did craft an experiment independent to
highlight how these implementation differences may impact
performance. In this experiment, which was independent of
either platform, we created a chain of N trivial network
functions, followed by one function that modifies the Ethernet
and IP headers and then uses XDP_REDIRECT to forward
the packet out of another interface. Varying the number of
functions allows us to see the impact of using a tail call vs.
a function call. We use the same experimental setup as in the
Virtual Network Functions use case benchmark. In Figure 10,
we can see that the throughput remains relatively steady when
using function calls, but drops by about one percent for each
added function when using tail calls.
TC Hook vs. XDP Hook. The LinuxFP controller can insert

TABLE VII
LATENCY AND THROUGHPUT OF FUNCTIONS USING XDP vs TC HOOKS.
Throughput (pps) Mean Latency (ms)
XDP TC XDP TC
bridge 1,914,978 | 889,735 | 139.523 | 275.300
forwarding | 1,768,221 | 850,209 | 149.248 | 288.139
filtering 1,183,252 | 680,065 | 215.611 | 363.133

the needed function into either the TC hook point or the XDP
hook point. Here, we explore the impact of that choice by
measuring the throughput. This is important, as depending on
the use case, XDP or TC is more appropriate. For example, in
a container scenario, where containers will consume packets,
allocating the sk_buff is inevitable. In this case, a TC data
plane performs better as we can, for example, avoid the cost
of converting the xdp_buff into a sk_buff. In Table VII, we
evaluate several network functions in a forwarding scenario
and compare TC and XDP dataplanes. In this case, we can
see that XDP performs better as we can avoid the costs of
sk_buff allocation and other unnecessary processing steps, as
we process the packet closer to the wire.

VII. RELATED WORK

This paper extends an earlier workshop paper [1] which
accelerated only one Linux network subsystem (bridging).
LinuxFP goes beyond that work by building a complete
controller that can accelerate several Linux networking sub-
systems, evaluating each individually and in combinations, as
well as evaluating the more complex use case of a Kubernetes
network plugin. Beyond that, this paper shares similarities with
a few bodies of related work.

Kernel-bypass networking. A variety of packet I/O frame-
works take the approach of bypassing the kernel in order
to scale software packet processing, most notably the Data
Plane Development Kit [21], PF_RING [41], and Netmap [42].
Common to these frameworks is that they generally take over
control of a NIC, only copy packets a single time from the
NIC to pre-allocated memory via DMA, and rely on expensive
busy polling instead of interrupts. In contrast, with LinuxFP
we believe that the Linux networking stack should not be
bypassed, but instead redesigned such that we can leverage
the operating system’s networking features, and its ecosystem
of tools and control plane software.

In-kernel accelerated packet processing. There has been
work that can load custom packet processing functionality into
the kernel, providing both the opportunity to access kernel
state (e.g., the forwarding table) and exchange traffic with the
Linux networking stack. Click [32], eBPF / XDP [30], and
VPP [9] are described in more detail in Section II. LinuxFP is
complementary to these efforts, as we rely on the capabilities
of eBPF / XDP to provide a fast path packet procressing
environment and are inspired by the composibility of Click
modules. Bastion [39] implements a CNI with XDP has a
smaller scope than LinuxFP, as LinuxFP is focused on Linux
networking, generally.



Clean-slate approaches. Finally, entirely new kernel archi-
tectures have also been proposed. X-kernel [31] is an early
work that proposes an OS designed to simplify building and
composing communication protocols; it includes abstractions
and building blocks to realize a wide range of protocols to
be used within and across hosts. More recently, Zhang et al.
proposed Demikernel [45], an OS architecture that aims at
integrating legacy control plane software with a fast data path
bypassing the kernel. Those approaches have in common that
they propose completely new kernels and radical changes to
OS architecture. While achieving similar goals, LinuxFP can
be deployed today as it can be implemented using mechanisms
already provided by Linux.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce LinuxFP, a system which takes
a unique look at incorporating advances in high-performance
packet processing into Linux. In doing so, we accelerate
Linux’s network stack completely transparently to common
command-line tools such as brctl and iptables, control plane
software such as FRR, and management frameworks such as
Kubernetes and Ansible. We leverage eBPF programmability
in the Linux kernel to enable deploying dynamically synthe-
sized data planes based on current configuration. Evaluations
with our implementation of LinuxFP showed that it provides
77% higher throughput and 53% lower latency than Linux.
We also showed that LinuxFP does not sacrifice performance
in comparison to Polycube (an alternative pipeline that also
uses eBPF) while maintaning full support for Linux network
APIs and tight integration with Linux packet processing. We
also evaluate the throughput of pod-to-pod communication in
Kubernetes, and find that with LinuxFP, performance increases
20% as compared to without LinuxFP (i.e., standard Linux).

For future work, we intend to pursue several opportunities.
First, while we have accelerated the bridging, routing, and
filtering functionality within Linux, there is other functionality
that can be accelerated. We have begun work on ipvs, the load
balancing functionality within Linux (and used in Kubernetes
services), and initial prototyping is showing promising results.
In addition to accelerating Linux functions, we intend to
support the insertion of custom functionality, e.g., for mon-
itoring [18] modules. We can inject custom eBPF code at
different points in the XDP processing pipeline or add custom
packet-processing applications in user space [17] and use a
special type of socket, called AF_XDP, that allows sending raw
packets directly from the XDP layer to user space. Finally, the
architectural decision to incorporate the concept of an explicit
fast path (as is done in network systems already) lends itself
nicely to hardware offload. We intend to explore this in the
context of SmartNICs and FPGAs.
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