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Abstract—This paper introduces transparent acceleration into
the Linux networking stack. To do so, we build on years of
research in creating high-performance software-based packet
processing systems. Rather than treating these technologies as
alternative pipelines, we leverage the technology to create explicit
fast paths in the Linux kernel. With this, Linux still serves as
a complete implementation of all its supported protocols, but
frequent operations on the critical path can be transparently han-
dled by a fast path. We implement a controller that continuously
introspects the Linux kernel to determine exactly what packet-
processing functionality is currently configured. The controller
then synthesizes and deploys a minimal fast past into the packet
processing pipeline that only implements functionality that is
currently needed. In this way, common command line tools, such
as brctl, control plane software, such as FRRouting (FRR), and
higher-level management frameworks such as Kubernetes and
Ansible, work without modification and transparently benefit
from a faster network data plane. Our system, LinuxFP, includes
a controller that can implement IP forwarding, bridging, and IP
filtering fast paths that are synthesized on-demand using their
specific and current configuration in the kernel. We evaluate
performance improvements using Linux management tools and a
Kubernetes network plugin. We show performance improvements
over Linux for packet forwarding of 77% and 20% for an
unmodified Kubernetes network plugin.

I. INTRODUCTION

Software-based packet processing is widely adopted across

a number of use cases, such as data-center load balanc-

ing [24], virtualized networking between containers [43] or

virtual machines [33], multi-cloud overlay networking [5],

and 5G infrastructures [26]. Software-based packet processing

requires both high performance and, in many cases, the ability

to introduce custom functionality. While Linux is the most

widely used platform for many such use cases, supporting the

required packet processing performance with its out-of-the-box

networking stack is challenging [30]. Likewise, introducing

custom functionality is generally considered painful, requiring,

for example, kernel recompilation or additional kernel modules

that hook into potentially evolving internal interfaces and

structures.

This led to the development of frameworks that enable

developers to write high-performance software-based packet

processing applications. These take several different forms,

such as (1) kernel bypass (e.g., DPDK [21] or netmap [42]),

where packets are efficiently copied into user space for pro-

cessing, (2) in-kernel network stack bypass (e.g., XDP [30]

or Click [32]), which present alternative in-kernel pipelines

for packet processing which typically ensure packets do not

touch the Linux networking stack, or (3) as a new kernel (e.g.,

x-kernel [31] or Demikernel [45]). These frameworks provide

the required API and blueprint for high-performance packet-

processing applications, but developers are left to implement

both the complete packet-processing pipeline and control-

plane integration.

To lower the barrier to leveraging these high-performance

packet-processing frameworks, new platforms were introduced

to provide common functionality on top of these framewoks.

Polycube [37] is a kernel-space platform built around eBPF

technology that includes coarse-grained network functions

which can be configured using custom command line tools.

VPP [9] is a user-space platform leveraging kernel bypass

technology (e.g., DPDK [21]) that also provides custom man-

agement tools for configuring network functions. Each system

operates as a separate packet processing pipeline from the

Linux networking stack, and use of the system requires use of

custom APIs and tooling.

Lack of compatibility with the Linux networking API

is both a problem and a lost opportunity. There is a rich

ecosystem of widely-used and extensively tested software

that includes management tools (e.g., iproute2 [27]), control-

plane software (e.g., FRR [28]), and container orchestration

platforms (e.g., Kubernetes [12]). These tools are all dependent

on Linux networking APIs. Ideally, a system would be able

to support this ecosystem while also supporting acceleration.

To this end, we introduce LinuxFP, a system which enables

fast packet processing while retaining the sophisticated net-

working capabilities of Linux. The key approach of LinuxFP

is to transparently1 accelerate hot spots in the Linux packet-

processing stack using an explicit fast path to accelerate

common-case processing. This is a widely-used design pattern

1Transparent, in this case, refers to view point of the user, who will not
see any difference in how they interact with Linux.



in computer networking, where the common case is heavily

optimized while a slow path handles less frequent corner

cases and complex tasks, such as processing control-plane

messages or handling packet fragmentation. There were two

key challenges of realizing this design in LinuxFP: 1) how to

accelerate, and 2) what to accelerate.

The question of how to accelerate is deeper than just pick-

ing a high-performance packet-processing technology, such

as DPDK or eBPF. To accelerate packet processing while

supporting all existing Linux networking functionality and the

Linux networking API, LinuxFP uses Linux as the default

slow path for packet processing and selectively installs eBPF-

based fast paths as needed to accelerate common functionality.

The code that defines the fast path accesses kernel network

state and configuration (e.g., routing entries or firewall rules)

instead of using custom data structures and a custom control

plane. Coherent state across the slow and fast paths is critical

for ensuring correctness when packets may be processed on

different paths.

To determine what to accelerate, we design a controller that

continuously inspects state in the Linux kernel to determine

what packet-processing functionality is currently configured

and used. LinuxFP then synthesizes and deploys only fast path

components that would be used by the current configuration,

which keeps the fast path configuration light-weight, meaning

a minimal critical path in the data plane.

We built a complete working prototype of LinuxFP, sup-

porting accelerating within Linux kernel 6.6 for bridging, IP

forwarding, and IP filtering. LinuxFP is evaluated on two

real scenarios (a virtual router and a virtual gateway), where

LinuxFP is configured only using standard Linux techniques.

In contrast to Linux, LinuxFP is 77% faster for forwarding

with 53% lower latency. To determine whether there is a

performance impact of the state sharing between the fast

and slow paths, we compare LinuxFP against the alternative

accelerated packet-processing platform Polycube. We show

that LinuxFP does not see lower performance than Polycube2.

While LinuxFP is configured using standard Linux configura-

tion tools, Polycube was configured with its custom interfaces

and management software. We also evaluate another common

use of Linux networking, a Kubernetes network plugin. We

show a speedup over Linux of 20% and latency reduction

of 18% for pod-to-pod communication with an unmodified

network plugin (Flannel).

In this paper, we first provide background on fast packet

processing frameworks and platforms, motivating the need for

LinuxFP (Section II). We then introduce the design goals and

architecture of LinuxFP in Section III. Next, we provide a

deeper discussion of the complete system design (Section IV)

and implementation (Section V). We evaluate LinuxFP in

different scenarios (Section VI) and discuss related work

(Section VII). We conclude in Section VIII. Code for LinuxFP

is available at https://github.com/mcabranches/tna.

2LinuxFP actually sees a throughput improvement of 19% over Polycube,
but we attribute that to implementation differences.

II. BACKGROUND / MOTIVATION

Due to the importance of software-based packet processing,

there is a history of strong research in this space. Here, we

discuss previous works and identify a significant gap that this

work seeks to fill.

A. Fast Software Packet Processing

We first look at advances in the performance of software-

based packet processing technologies. While there is a great

number of works in this area, we highlight three significant

advances.

Click Modular Router. The Click modular router [32], or

just Click, was introduced to address the problem of routers

being closed and inflexible, whereas users needed flexibility

and extensibility. Click is a framework allowing a developer

or admin to specify a data flow graph of packet processing

modules called elements. Developers click together elements

to define the functionality of the router, and can extend the

router by introducing new elements as C++ classes. While

designed for flexibility, Click provided high-performance -

achieving 4x performance improvements over Linux for sim-

ilar functionality. The authors attributed the performance due

to device handling improvements from previous works [22],

[38]. We consider Click to be significant in the fast packet

processing space because it provided a complete framework

which allowed networking researchers to easily create new

high-performance packet processing applications and led to

many years of high-impact research.

DPDK. The Data Plane Development Kit (DPDK) [21] was

introduced as a framework for user space packet processing

which is both safer, due to the isolation of processes, and

easier to debug. While Click was capable of processing packets

in user space, the performance was substantially lower than

doing so in kernel space. DPDK introduced a set of libraries

that optimize user space networking through the introduction

of kernel bypass technology and efficient data structures.

Developers use the DPDK libraries to create custom pipelines.

eBPF/XDP. A challenge with DPDK is that it needed

to bypass the kernel to obtain performance, but in doing

so, sacrificed the ability to effectively interface with Linux.

eBPF is a Linux technology for safely loading code into the

kernel at various hook points. For networking, the eXpress

Data Path (XDP) [30] introduced a hook point for creating

optimized data paths for fast packet processing. Safety is

provided through an in-kernel verifier of bytecode. Code can

interface to the rest of the Linux kernel through (i) helper

functions integrated into the kernel (e.g., for accessing the

forwarding information base, or FIB), and (ii) packet interfaces

to pass packets to the kernel. In a sense, XDP provides the

best properties of both Click and DPDK: XDP is extensible,

hooks into the kernel, and is safe and fast.

However, Click, DPDK, and XDP are enabling tech-

nologies, not platforms. While they enable creating packet-

processing pipelines, extra work – sometimes significant – is

needed to create and integrate control-plane software and basic

data-plane functionality to create a complete platform.



B. Packet Processing Platforms

To address this problem, platforms that have been intro-

duced to provide a complete solution.

VPP. The Vector Packet Processor (VPP) [9] is a layer 2-

4 packet-processing stack that runs in Linux user space. It

is used much like an out-of-the-box network appliance (e.g.,

switch, router) would be used, with a fixed data plane that

can be configured through a custom command line interface

or through the VPP API. VPP is built using DPDK and

incorporates vector processing (batching of packets) to support

high-performance packet processing. VPP is packaged with

custom functions to support use cases such as a virtual switch,

virtual router, gateway, firewall, and a load balancer.

Polycube. Polycube [37] is a platform built on top of eBPF

technology, so the Polycube data plane runs in the Linux

kernel. Polycube consists of a fixed data plane that includes IP

forwarding, load balancing, filtering, and more. The data plane

can be configured using a custom command-line interface.

Analysis. Both VPP and Polycube are alternatives to Linux

networking in the sense that, despite either running on top of

Linux (VPP) or in the Linux kernel (Polycube), there is little

to no interface between each platform and the Linux packet

processing pipeline. There are two major drawbacks to this.

First, these pipelines are incompatible with well-established

management interfaces such as netlink [40], command-line

tools such as iproute2 [27], or widely-used control-plane

software that expect Linux’s networking interfaces, such as

FRR [28]. Instead, users must utilize the bespoke management

interfaces provided by the platform (e.g., pcn-iptables [36] for

configuring Polycube’s filtering). Second, developers building

these alternative pipelines often must re-implement basic func-

tionality, like forwarding packets based on tables, responding

to ARP or ICMP packets, or control plane functionality (e.g.,

maintaining routing tables and choosing routes). This task can

incur significant development, testing, and maintenance effort

to duplicate functionality that is already available elsewhere.

In short, today’s alternative pipelines are not transparent

to the rest of the system and require applications and environ-

ments to be customized for a platform in order to access the

benefits of network acceleration.

C. Hot Spots in Linux

Supporting the entire Linux networking API in a custom

acceleration platform would be a daunting task. Instead of

re-implementing all functionality, here we consider whether

one could make minimal changes to Linux networking stack

while still gaining the majority of benefits from acceleration-

enabling technologies. In order to identify locations for such

minimal changes we look for hot spots in the code which

are segments that are executed frequently. We check for the

existence of hot spots using flame graphs [29] for several

configurations and traffic patterns. As a simple example, we

configured Linux to forward traffic with ip route commands

and observed (as seen in Figure 1) that the majority of traffic

followed the same sequence of function calls — which we can

then use this knowledge as a guide on what to accelerate. A
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Fig. 1. Flame graph for Linux processing for forwarding.

key motivating observation is that Linux networking does have

hot spots; which code section is a hot spot is dependent on

networking configuration. Table I summarizes these findings

for bridging, forwarding, filtering, and load balancing. For

these tasks, we outline what functionality could be acceler-

ated via a fast path to maximize performance impact, what

state is accessed as part of the proposed fast path, and the

functionality that should remain in the control or slow path.

These observations form a basis for the design of our system.

III. INTRODUCING LINUXFP

We introduce LinuxFP, a high-performance packet process-

ing platform that preserves the richness of Linux networking

functionality and surrounding software ecosystem. LinuxFP

achieves high performance while still using most of the Linux

networking stack by accelerating hot spots rather than by

creating a completely new packet processing platform. Close

integration between the accelerated fast path and the Linux

networking slow path is a key architectural difference between

LinuxFP and related work. In this section, we describe how

and what LinuxFP accelerates as well as present LinuxFP’s

system design.

A. How to accelerate?

Dual Packet Processing Environments. Specialized packet

processing environments such as DPDK and eBPF provide

strong performance benefits over the traditional packet pro-

cessing environment of the Linux packet processing pipeline.

LinuxFP leverages both types of technology by explicitly

separating out fast and slow path tasks, and then tailoring the

pipeline to use each path for particular purposes. The Linux

network stack is used as the slow path, as it provides complete

functionality. eBPF is used to implement the fast path. The

eBPF XDP and traffic control (TC) hooks within the Linux

kernel enables LinuxFP to safely and dynamically load custom

fast path code into the Linux kernel.

Dynamic Composability. LinuxFP accelerates identified

hot spots dynamically and on demand, based on the current

configuration, and only applies fast-path logic when it is

needed. This is based on the general principle that less

code leads to more efficient code paths, and therefore higher

performance. To support this dynamism, the LinuxFP fast path

LinuxFP is designed as a composable system, much like the

models proposed in the x-kernel [31] and Click [32]. When



TABLE I
ACCELERATION MODEL FOR DIFFERENT PACKET PROCESSING APPLICATIONS.

Subsystem Fast Path In-Kernel State Control Plane + Slow Path

Bridging Parsing, rewriting, FDB
lookup/update, forwarding

FDB, port state Manage FDB (aging), handle FDB
misses (flooding), STP protocol processing

Forwarding Parsing, rewriting, FIB lookup,
forwarding

FIB, neighbor
tables

ARP handling, IP (de)fragmentation

Netfilter Parsing, rewriting, conntrack
lookup/update, allow/deny packets

Conntrack, ACLs Conntrack handling, IP (de)fragmentation,
handle rules on unsupported hooks

Load Balancing
(ipvs)

Parsing, rewriting, conntrack
lookup/update

Conntrack Conntrack handling, Scheduling algorithms

LinuxFP uses configuration information to determine a fast

path component should be deployed, it installs a series of fast

path modules (FPMs). FPMs are dynamically stitched together

through function calls.

Correctness Through State Sharing: Having two packet

processing paths (fast and slow) means there is potential for

incorrect behavior if those two paths do not share a coherent

view of network state. To ensure this coherency, FPMs are

designed to use dynamic (e.g., ARP table) and static state

(e.g., configuration) from the Linux kernel.

B. What to accelerate?

Rule-based Hot-Spot Acceleration. We manually identi-

fied hot spots by configuring Linux in a variety of ways,

generating traffic, and observing the frequently executed code

for those configurations. This allowed us to create a mapping

between configurations and hot spots, and then we created

FPMs designed to accelerate those hot spots.

Dynamic Acceleration. We dynamically observe the con-

figuration in order to apply rule-based hot-spot acceleration as

needed. We access current configuration by inspecting Linux

kernel networking state. Based on this state, we use the rule

mapping from the previous step to synthesize each module

in a minimal fast-path configuration and generate a packet

processing graph. The graph forms the data plane that can

be implemented by deploying specific FPMs. Future work

includes dynamically accelerating hot spots based on traffic

patterns and table accesses in addition to configuration.

C. System Overview

Figure 2 illustrates the design of LinuxFP. The LinuxFP

fast path runs within the Linux kernel. For the common case,

packets are only processed by the fast path. Linux is used

to process corner-case packets. State is managed such that

correctness is retained regardless of which path any packet

takes. The LinuxFP controller runs as a daemon that contin-

uously introspects the Linux kernel, and upon any changes

will build a packet processing graph, synthesize the fast path,

and deploy it. A user, for example, could enter a command

with iptables and the LinuxFP controller would see the

configuration and update the data plane accordingly (e.g., by

inserting a filtering module if needed). The user is able to use

their tool of choice and did not have to take any additional

actions to obtain acceleration – it is incorporated into Linux

Linux Kernel

LinuxFP Fast Path

Linux Networking Stack
(unmodiûed)

Network

FPMs

LinuxFP Controller

Assemble 

Fast Path
Hand Oû to Slow
Path or User Space

Read/Write
State

Introspect

Linux Interfaces (unmodiûed) and

User-Space Applications

Fig. 2. LinuxFP Overview

transparently. This is in stark contrast to VPP and PolyCube,

as summarized in Table II.

IV. SYSTEM DESIGN

This section describes the design of LinuxFP, from the

bottom up, starting with LinuxFP’s dual packet processing

environments. Figure 3 provides an overview of the steps

required to build and deploy a LinuxFP fast path using

LinuxFP fast path modules (FPMs).

A. Dual Packet Processing Environments

Most packet-processing tasks can be split into a relatively

simple task for the majority of packets and one or more

complex tasks a minority of packets. This insight has been

used for decades in router design [25] but, despite being

increasingly used for high-performance packet processing, the

Linux networking stack today processes all packets in a single

packet processing environment. This approach ensures any

packet that is sent to Linux will be correctly processed and

will interact with kernel state correctly, but it is hard to

scale this approach to today’s packet rates. LinuxFP aims to

support dual packet processing environments: default Linux

packet processing for complex/infrequent tasks, and a separate,

accelerated packet processing environment defined by modules

for simple/frequent tasks. FPMs are designed to only execute

simple and common-case tasks so as to be fast, efficient, and

reusable; corner cases and complex control protocols are left

to the default Linux stack.



TABLE II
COMPARISONS OF PLATFORMS, ILLUSTRATING LINUXFP IS THE ONLY PLATFORM THAT CAN ACCOMPLISH BOTH HIGH PERFORMANCE AND TIGHT

INTEGRATION WITH LINUX. *VPP WAS INITIALLY BUILT AROUND DPDK, BUT NOW SUPPORTS OTHER KERNEL-BYPASS TECHNOLOGIES (E.G.,
NETMAP).

Technology Uses Linux State Packet Interface to Linux Configuration API Handling of Corner Cases

VPP DPDK* No No Custom Custom Code

PolyCube eBPF No Possible, but not used Custom Custom code

LinuxFP eBPF Yes Yes Linux Linux

       Compose +

       Synthesize

Linux Kernel Networking Stack

LinuxFP-accelerated Data Plane

       Introspect

      Compile     Deploy

{

  <NF1=: {

    <conf=: [
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      <custom_conf2=: params

    ],

    <next_nf=: <NF2=

  },

  <NF2=: {

    <conf=: [

      <custom_conf1=: params, &
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  ...
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}
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Fig. 3. Steps to install a new LinuxFP-accelerated Data Path
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Fig. 4. Deploying a new LinuxFP Fast Path

1) Running a Fast Path within the Kernel using eBPF:

Adding FPMs and switching exceptional packets from the

fast to the slow path is possible using enhanced kernel pro-

grammability that was added to Linux over the past several

years, namely eBPF [44] in the form of the XDP [30] and TC

subsystems [6]. eBPF enables application developers to write

code that can run inside a sandboxed execution environment

within the Linux kernel at various locations (called hooks)

to efficiently and safely add user-defined logic to the kernel

without requiring kernel source code changes or loadable

kernel modules [8].

eBPF offers two hooks for packet processing: XDP and

TC. Programs attached to the XDP hook run on packets

immediately after the packet is retrieved from the network

interface card (NIC). Programs attached to the TC hook can

run both on incoming packets and on outgoing packets before

they are passed to the NIC. TC provides lower performance

due to its location in the kernel’s packet processing path (i.e.,

after socket buffer – the sk buff struct in Linux – allocation

and population) but, as a result, has access to a wider range

of state and packet processing capabilities. LinuxFP leverages

both XDP and TC hooks to realize the fast path of various

Linux network functions in the form of FPMs.

2) Deploying FPMs Dynamically: Given an eBPF program

that contains the desired fast path, LinuxFP deploys this

program in the kernel for a given interface. Swapping the

eBPF program currently deployed on either hook can incur

packet loss for several seconds. To avoid this problem, the

beginning of the LinuxFP fast path runs eBPF program that

leverages the eBPF tail-call mechanism [7] to switch over from

the old set of LinuxFP FPMs to the new one as it is simply

updating a pointer versus loading a new program. Illustrated in

Figure 4, each time the data path is regenerated in response to a

change in network configuration, LinuxFP atomically replaces

the current data path with the new one by updating the tail

call reference to the new program in an eBPF map [30].

B. LinuxFP FPMs

FPMs are a central component of our design; they handle

the majority of traffic, need to be synthesized on demand, and

must integrate with the kernel for state access and manage-

ment. This section outlines the design of these modules.

1) Module Structure: At a high level, FPMs are functions

inside an eBPF program that taken together constitute an

accelerated fast path. Consequently, FPMs are constrained by

the capabilities of the eBPF virtual machine and eBPF hook

point specific constraints. FPM code is invoked by Linux for

each packet such that the program terminates after processing

a single packet and any local state is discarded. Depending

on the hook, different data structures are passed to the eBPF

program as a pointer. For the XDP hook, since the packet has

just been retrieved from the network and no other processing

has been performed yet, the data available is limited to the

packet buffer, the interface index, and the queue index from

which the packet was received. Packets on the TC hook are

associated with a populated sk buff as TC eBPF programs

are invoked after some initial kernel processing. The sk buff

contains significantly richer data than the meta data available

in XDP and contains pointers to individual parsed headers, as

well as data from the routing and bridging systems.

The code of each FPM is synthesized individually depend-

ing on the network configuration of the system. This code

composed from a set of code snippets for individual tasks,

such as performing a FIB lookup or parsing VLAN headers.

As a result, branching inside the fast path (e.g., to check

whether a feature such as VLANs are enabled on the device)

can be reduced to a minimum as this logic is not included



if not required. This enables streamlined and efficient FPMs.

Finally, depending on whether a FPM is at the end of the

processing graph or not, the FPM contains code to either call

the subsequent FPM or set an XDP/TC verdict that determines

what happens to the packet next. Possible verdicts include

dropping the packet, sending the packet to a NIC, or sending

the packet to the kernel for further processing.

2) Unifying State: As FPMs implement packet processing

functions such as routing and filtering on behalf of Linux,

they require access to the state of the respective subsystems

within Linux to maintain transparency to the rest of the system.

Within our system, every packet must be able to be processed

either by the LinuxFP fast path or by the kernel with the

identical result under all circumstances. This is a crucial design

decision and requires ensuring consistency and correctness of

all operations whether they have been performed in the slow

path or in the fast path. Effectively, Linux provides a superset

of the functionality of the LinuxFP fast path.

This means that although there are two different packet

processing environments, control plane state must be unified:

an FPM must be able to view the current configuration (such

as configurations set by an administrator) as well as access

and sometimes modify kernel networking state. While eBPF

maps can be used to share state between user space and

an eBPF program, doing so would sacrifice transparency as

they would have to be maintained separately; furthermore,

this approach would require explicitly handling concurrent

operations between user space and kernel space. Thus, instead

of using maps, LinuxFP uses helper functions that can access

and modify kernel state. Some of these helpers are already

available in the kernel for use within eBPF programs (e.g.,

bpf fib lookup [20]) but other helpers (e.g., for looking up

iptables entries) are not present. In those cases, we add them

to the kernel as required.

3) Composing Functions inside the Fast Path: A Linux

system typically performs a series of networking tasks, e.g.,

a firewall plus a load balancer where each task is associated

with specific configuration details. As such, simply loading

a single, generic FPM is insufficient. LinuxFP builds and

deploys a fast path by dynamically building C code that can

be compiled and loaded into the kernel to realize the current

packet processing graph configured on Linux. LinuxFP models

the processing graph in JSON, as illustrated in Figure 3. A

code synthesizer ingests the JSON model and outputs the C

code for a series of customized FPMs generated from Jinja

templates [11]. To do this, the synthesizer maps each key in

the model to an FPM; subkeys are used to specialize the FPM

with code-sippets based on configuration details. For example,

a JSON model of a bridge with STP and VLAN config-

ured would have bridge as the key and {STP_enabled:
True, VLAN_enabled: True} as the conf attributes in

Figure 3. In this case, the bridge FPM along with snippets to

parse VLAN and process STP will be added to the data path.

C. Supporting the Linux Networking APIs

A key contribution of LinuxFP is its ability to retain full

compatibility with all Linux programming and configuration

APIs. We achieve this by monitoring the kernel’s configuration

state, deriving dependencies, and assembling a data plane that

is a subset of the current kernel networking stack. We now

describe the steps in this process.
1) Introspecting the Linux Kernel Configuration: The

Netlink protocol [40] enables exchanging messages between

user space and the kernel. Our Service Introspection compo-

nent uses Netlink to query kernel state by sending queries at

controller startup to get an initial view of configured services,

and also by joining multicast groups to get kernel notifications

about configuration changes and updates. Received messages

are converted into network object descriptions (LinuxFP ob-

jects) containing a type and a set of configuration attributes.

For example, a network interface object contains the type of

interface (e.g., physical or virtual), name, current state (e.g., up

or down), IP configuration, and other properties.
2) Building a Processing Graph: LinuxFP models the

Linux network processing configuration as a graph encoded in

JSON. This model defines what network processing functions

need to be included on the data path associated with a

network interface, in which order, and how the processing

must be customized. In this specification, the keys represent

the processing nodes (FPMs) that should be included on the

data path while sub-keys define custom configurations for each

node as well as the next node on the data path.

Defining Processing Nodes. We add processing nodes to

the JSON model by introspecting the Linux kernel configura-

tion for different network subsystems (i.e., routing, bridging,

and filtering), illustrated in Figure 3. If there are instances of

those subsystems configured in Linux, we add their respective

FPMs as keys to the processing graph. For example, we create

a key for a bridge FPM if introspection retrieves a bridge net-

work interface and add a key for a router FPM if L3 forwarding

is enabled in the kernel (i.e., net.ipv4.ip forward=1) and there

are routes configured on the system.

Defining Processing Ordering. To define the ordering and

processing dependencies, we follow the same ordering as

packet processing happens inside the kernel. This ordering

can change based on how network services are configured on

Linux. For example, if there are network interfaces connected

to a bridge, the bridge FPM will be the first key on their

processing graph. If there are IP addresses and routes config-

ured on a bridge interface or if there are routes pointing to a

bridge subnet, a next nf entry will be added to the JSON

description of the bridge or router FPMs accordingly (see

Figure 3). For example, a route pointing to a bridge subnet

will create a next nf: bridge FPM entry within the router

JSON description and routes referring to the bridge interfaces

will create a next nf: router FPM within the bridge JSON

description.

Customizing Processing Configuration. Finally, for each

FPM we add sub-keys in the JSON model with specific

configurations for the respective subsystem. For example,



we retrieve the configuration for all network interfaces on

the system and if we have bridges configured, we get the

master interface attribute for each of them, allowing LinuxFP

to associate these interfaces to the bridge FPM. Similarly,

LinuxFP introspects the specific configuration of each bridge

configured in the kernel, with sub-keys describing if they have

STP and VLAN configured.

V. IMPLEMENTATION

Controller. The LinuxFP controller is implemented in C++

and Python and consists of a series of components that

work in concert to build the fast path. The first component

(Service Introspection) introspects the Linux kernel using the

Netlink protocol [40], leveraging libnl [14] (or libiptc [19]

for iptables) for sending queries to the kernel and parsing

responses. From these responses, we create LinuxFP objects

which represent network services currently configured in the

kernel. The objects are fed to the Topology Manager that de-

rives relationships between objects and builds the Processing

Graph (Section IV-C2). The Fast Path Synthesizer then uses

this graph along with the library of FPMs to render templates

generating the fast-path eBPF code. The Capability Manager

ensures that the system supports the fast path being built

(e.g., supports the necessary helpers) by inputting a description

of available resources to the synthesizer. Finally, the Fast

Path Deployer compiles the data plane, generating the eBPF

bytecode which is deployed on the XDP or TC hooks using

libbpf [13].

Decomposing Linux Network Functions. To be as efficient

as possible, the LinuxFP data plane must avoid executing any

unnecessary tasks. Therefore, we break down Linux processing

so that the fast path executes only a few simple tasks that

are sufficient to process the majority of packets. To maintain

transparency to Linux, we do not maintain any state in FPMs

and instead rely on state managed by the kernel. In Table I,

we summarize the division between the fast and slow paths

for several Linux networking subsystems, including bridging,

forwarding, and filtering. Load balancing is left as future work,

but we leave it in the table as another example. In general, the

LinuxFP fast path performs packet manipulations, performs

state lookups in the kernel, and sends control-plane messages

or corner-case packets to the slow path in the kernel. For

example, the fast path of a bridge is responsible for packet

parsing, forwarding database (FDB) lookups (via a kernel

helper), and the actual L2 forwarding. The kernel exposes FDB

access and port state to the fast path via a kernel helper and

performs tasks like aging, spanning tree protocol (STP), FDB

miss handling, and packet flooding. Other subsystems follow

the same model.

Helper Functions. To support the described decomposition

in Linux, we leverage existing kernel helper functions and

introduce new ones when necessary. To implement routing,

we use the bpf fib lookup helper that already is available in

the kernel [20] to determine the next hop for a packet by

querying its destination IP in the routing table. The helper also

allows setting the source MAC address of the egress interface

and the destination MAC address to the next hop. For the

bridge, we introduce a new helper called bpf fdb lookup; it

allows querying the FDB (L2 forwarding database) to retrieve

the egress port of a previously learned MAC address. The

MAC learning process is delegated to the slow path. Our

helper also supports FDB entry aging, VLAN filtering, and the

spanning tree protocol (STP). We accelerate Linux’s iptables

filtering using a new helper which we call bpf ipt lookup; it

enables matching source/destination IP addresses (performing

longest-prefix matching) and the protocol. We also support

aggregating rules using ipsets. All testing was performed with

the Linux 6.6 Kernel and our helpers (∼260 LoC) available

in [2]; we hope to work with the community to make those

helpers available in the mainstream Linux kernel.

VI. EVALUATION

We introduced LinuxFP as a means to transparently ac-

celerate networking in Linux. As such, our first evaluation

task is to determine to what degree it accelerates packet

processing for common use cases (Section VI-A). Then, we

present some microbenchmarks (Section VI-B) to understand

the performance characteristics of implementation choices in

LinuxFP.

A. Acceleration Benchmarks

LinuxFP has two main goals: acceleration, and compatibility

with Linux networking APIs to enable comparison. As such,

our evaluations goals are to show for some common scenarios

1) how much LinuxFP accelerates packet processing when

compared to Linux, and 2) that LinuxFP does not sacrifice

performance compared to other acceleration platforms. For

our first scenario (two different virtual network functions),

we compare LinuxFP against Linux as the baseline, Polycube

(version v0.9.0) as a kernel space platform with eBPF, and

VPP (version 23.10) as a user space platform with DPDK.

For the second scenario (Kubernetes network plugin), we

only compare against Linux as each of Polycube’s and VPP’s

custom implemented network plugins are not perfectly com-

parable to our Linux setup. All experiments were run on

CloudLab [23] c6525-25g hosts with 25Gbps NICs, Hyper

Threading (HT) and power saving disabled, and running the

Linux 6.6 kernel.

1) Virtual Network Functions: Virtual network functions

are increasingly leveraged to support dynamic networks. We

can see these in on-premise data centers (e.g., Equnix Network

Edge [4]) and in-cloud data centers (e.g., Cisco Cloud Services

Router [3]) alike. While those are proprietary solutions, we

believe Linux is a suitable open alternative – if accelerated.

The two network functions we consider are a virtual router

and a virtual gateway.

For these experiments, we set up in a three node line

topology with a traffic source and traffic sink each connected

to the device under test through a separate link. We perform

all tests using CPU cores and NIC interfaces on the same

NUMA node. For packet generation, we leveraged DPDK’s

Pktgen [16] for throughput tests and netperf [15] for latency
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Fig. 5. Throughput of virtual router as a function of number of cores.

TABLE III
VIRTUAL ROUTER RTT WITH SINGLE CORE. LATENCY MEASURED IN µS.

Avg. P 99 Std. Dev

Linux 326.872 512.378 109.265

Polycube 145.792 269.772 60.204

VPP 85.604 182.265 32.011

LinuxFP 151.675 279.407 76.798

tests. We let Pktgen warm up for 10 seconds before determin-

ing the observed throughput. Unless stated otherwise, we use

XDP driver mode for LinuxFP and Polycube. We run each

experiment for 10 seconds and repeat it 10 times. In our tests,

VPP and Polycube are configured with commands equivalent

to the Linux configuration.

Virtual Router. The core function used in a virtual router is

IP forwarding and virtual routers are used to interface between

multiple networks. For example, in an on-premise deployment,

a virtual router may route between multiple-cloud providers

through direct connections. In an in-cloud deployment, a

virtual router could be used to accept route advertisements

from a transit gateway and forward traffic between regions.

Our first experiment uses iproute2 to set 50 prefixes and

measures throughput as a function of the number of cores

used. Here, we use Pktgen to send minimum sized packets.

Figure 5 shows that LinuxFP’s ability to generate the minimal

data path for specialized routing allows it to nearly double the

Linux throughput. LinuxFP and Polycube have similar perfor-

mance in this use case, with differences that we attribute to

implementation choices discussed later in this section (VI-B).

This is significant, as LinuxFP was able to achieve similar

performance while retaining the Linux networking API (while

Polycube does not). VPP has higher throughput, which we

attribute to its use of vector processing (batching). However,

the use of busy polling (via DPDK) in VPP, requires it to

dedicate the configured number of cores entirely to VPP which

then run at 100% utilization. VPP uses each core to poll on a

separate NIC hardware queue.

For latency, we focus on processing with a single core.

Here, we load the network function using 128 parallel netperf

sessions and average the results among all instances. Table III

shows that LinuxFP is capable of improving the latency of

Linux routing, again having performance similar to Polycube.
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Fig. 6. Throughput of virtual router for a single core as a function of packet
size.
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Fig. 7. Throughput of virtual gateway as a function of number of cores.

Finally, to exercise one aspect of scalability, we look at

single core throughput for various packet sizes. Figure 6 shows

LinuxFP and Polycube achieve near line rate (25Gbs in our

testbed) with just one core when processing 1500B packets.

Virtual Gateway. A virtual gateway sits at the edge of

networks and can both forward traffic and provide some

security by enabling white listing of IP addresses or ports that

can access some private service. The core functions used are

IP forwarding and a network filter.

We use iptables to configure 100 rules blocking a blacklist

of IP addresses for networking filtering, and iproute2 to

configure 50 prefixes for IP forwarding. We first explore

throughput as a function of number of cores using minimum-

size packets. In Figure 7, we can see that LinuxFP nearly

doubles Linux throughput for this use case. However, we

inherit iptables performance issues, related to linear searches

on rule tables. Polycube addresses this issue by adopting a

more efficient classification algorithm [34]. Fortunately, our

iptables helper implementation allows LinuxFP to leverage

Linux’s ipsets, which allow aggregation of several filtering

rules in sets that can be matched in one or more policies. In

this experiment, we aggregate the blacklist of IP addresses in

one set allowing us to reduce our filtering rules to just one.

This allows LinuxFP’s firewall to have better performance than

Polycube in this scenario. Again, VPP’s performance is higher,

and is included for reference despite its need for bespoke

dedicated resources for packet processing.

We measure latency for packets processed on a single



TABLE IV
VIRTUAL GATEWAY RTT WITH SINGLE CORE. LATENCY MEASURED IN µS.

Avg. P 99 Std. Dev

Linux 388.863 512.404 40.942

Linux (ipset) 331.480 437.275 49.052

Polycube 181.500 289.379 40.584

VPP 85.604 180.948 32.011

LinuxFP 212.798 317.636 43.730

LinuxFP (ipset) 161.469 275.114 39.625
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Fig. 8. Single core throughput of virtual gateway as a function of number of
filtering rules.

core. Here, we load the network function using 128 parallel

netperf sessions and average the results across the instances.

In Table IV, we see that LinuxFP improves latency in this

scenario and performs better than Polycube when using ipsets.

Finally, as a scalability test, we explore single core through-

put as a function of the number of filter rules. In Figure 8 we

see that LinuxFP, Linux, and Polycube scale throughput as we

add CPUs. LinuxFP has better performance when aggregating

the filtering rules using ipset which has also been shown to

be scalable to a larger number of rules [35].

2) Kubernetes Pod-to-Pod: To understand the importance

of retaining Linux Networking APIs and the power in lever-

aging the Linux networking ecosystem, we select Kubernetes

container orchestration platform [12] as an example applica-

tion to evaluate LinuxFP. Today, many networked applications

are run inside containers as containers provide a powerful way

to package, deploy, and scale applications in cloud environ-

ments. Containerized applications often span many containers

which provide different services (e.g., caches, application

logic, databases, etc.), requiring a container orchestration plat-

form such as Kubernetes. Kubernetes enables internal commu-

nication via network plugins (e.g., Flannel [10], Calico [43],

etc.) that implement the interface defined by the container

network interface (CNI) specification. Network plugins often

heavily rely on Linux’s built-in networking capabilities such as

bridging to enable communication between containers on the

same host, routing and encapsulation to enable communication

between hosts, address translation and load balancing for

outside connectivity, and packet filtering to ensure security.

In our experiments we use the Flannel [10] network plugin

with a 3-node Kubernetes cluster (one primary node and two
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Fig. 9. Pod-to-pod communication throughput as a function of number of
pod pairs.

TABLE V
POD-TO-POD LATENCY WITH SINGLE POD PAIR. MEASURED IN MS.

Avg. P 99 Std. Dev

Linux (intra) 9.680 20.1 2.021

LinuxFP (intra) 7.918 15.9 1.527

Linux (inter) 29.226 34.7 3.086

LinuxFP (inter) 25.176 30.9 2.913

secondary nodes). We evaluate Linux and LinuxFP by measur-

ing the throughput and latency of pod-to-pod communication

for both intra-node communication (where both pods are co-

located on the same node) and inter-node communication

(where the pods are located on different nodes). The LinuxFP

synthesized data plane is attached to the tc hook. For both

scenarios, pods are deployed in pairs, with one pod acting

as a server (running netperf’s netserver) and one acting as a

client (running netperf [15]). For all measurements, we use the

netperf TCP RR test run for 60 seconds, which is configured

to output average and 99%-ile latency as well as the standard

deviation. We output the number of transmissions for each one

second interval to measure throughput.

We collect throughput data for 1-10 pairs of pods that are

running simultaneously (Figure 9). The first and last 10 sec-

onds of throughput data is discarded, so per-client throughput

is the average of the middle 40 seconds of data. The overall

throughput is the average over all per-client throughputs of

the test configuration, then this value is averaged over 10 test

iterations. As shown in Figure 9, LinuxFP demonstrates 120%

(intra) and 116% (inter) throughput when compared to Linux.

Latency results from the 1-pair case are shown in Table V,

with each result the average of 10 test iterations. LinuxFP

reduces average latency by 18% and 14% for intra and inter

respectively, and reduces 99%-ile latency by 21% and 11%

for intra and inter respectively.

In sum, LinuxFP shows performance improvements for both

throughput and latency for both intra- and inter-node pod con-

figurations when compared against Linux. No modifications

to Kubernetes, pods, or other tooling was required to run

this experiment, other than the requirements to install and run

LinuxFP on each worker node.



TABLE VI
LINUXFP REACTION TIME IN SECONDS

Command Time

ip addr add 10.10.1.1/24 dev ens1f0np0 0.602

brctl addbr br0 0.539

brctl addif br0 veth11 0.493

iptables -d 10.10.3.0/24 -A FORWARD -j DROP 1.028
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Fig. 10. Function call vs Tail call.

B. Micro benchmarks

Here, we run experiments to explore different aspects of the

operation of LinuxFP.

Reaction Time. We define reaction time as the time from

when a command is entered to the time of data plane instal-

lation. This includes generating the packet processing graph,

synthesizing parameterized modules, and installation of the

eBPF code into the kernel. We measure this time in the

LinuxFP controller, where the start time is when LinuxFP sees

the configuration change and the end time is when LinuxFP

gets confirmation that the eBPF code is installed. The reaction

time for various commands is found in Table VI.

eBPF Implementation Options. In some cases we saw better

performance with LinuxFP than Polycube. As they both use

eBPF, performance differences largely stem from implementa-

tion differences. One implementation factor is how functions

are chained together: LinuxFP chains functions with inlined

function calls, while Polycube chains functions together with

tail calls. While a greater study of how best to use eBPF is

beyond the scope of this paper, and even further optimiza-

tions likely exist, we did craft an experiment independent to

highlight how these implementation differences may impact

performance. In this experiment, which was independent of

either platform, we created a chain of N trivial network

functions, followed by one function that modifies the Ethernet

and IP headers and then uses XDP REDIRECT to forward

the packet out of another interface. Varying the number of

functions allows us to see the impact of using a tail call vs.

a function call. We use the same experimental setup as in the

Virtual Network Functions use case benchmark. In Figure 10,

we can see that the throughput remains relatively steady when

using function calls, but drops by about one percent for each

added function when using tail calls.

TC Hook vs. XDP Hook. The LinuxFP controller can insert

TABLE VII
LATENCY AND THROUGHPUT OF FUNCTIONS USING XDP VS TC HOOKS.

Throughput (pps) Mean Latency (ms)

XDP TC XDP TC

bridge 1,914,978 889,735 139.523 275.300

forwarding 1,768,221 850,209 149.248 288.139

filtering 1,183,252 680,065 215.611 363.133

the needed function into either the TC hook point or the XDP

hook point. Here, we explore the impact of that choice by

measuring the throughput. This is important, as depending on

the use case, XDP or TC is more appropriate. For example, in

a container scenario, where containers will consume packets,

allocating the sk buff is inevitable. In this case, a TC data

plane performs better as we can, for example, avoid the cost

of converting the xdp buff into a sk buff. In Table VII, we

evaluate several network functions in a forwarding scenario

and compare TC and XDP dataplanes. In this case, we can

see that XDP performs better as we can avoid the costs of

sk buff allocation and other unnecessary processing steps, as

we process the packet closer to the wire.

VII. RELATED WORK

This paper extends an earlier workshop paper [1] which

accelerated only one Linux network subsystem (bridging).

LinuxFP goes beyond that work by building a complete

controller that can accelerate several Linux networking sub-

systems, evaluating each individually and in combinations, as

well as evaluating the more complex use case of a Kubernetes

network plugin. Beyond that, this paper shares similarities with

a few bodies of related work.

Kernel-bypass networking. A variety of packet I/O frame-

works take the approach of bypassing the kernel in order

to scale software packet processing, most notably the Data

Plane Development Kit [21], PF RING [41], and Netmap [42].

Common to these frameworks is that they generally take over

control of a NIC, only copy packets a single time from the

NIC to pre-allocated memory via DMA, and rely on expensive

busy polling instead of interrupts. In contrast, with LinuxFP

we believe that the Linux networking stack should not be

bypassed, but instead redesigned such that we can leverage

the operating system’s networking features, and its ecosystem

of tools and control plane software.

In-kernel accelerated packet processing. There has been

work that can load custom packet processing functionality into

the kernel, providing both the opportunity to access kernel

state (e.g., the forwarding table) and exchange traffic with the

Linux networking stack. Click [32], eBPF / XDP [30], and

VPP [9] are described in more detail in Section II. LinuxFP is

complementary to these efforts, as we rely on the capabilities

of eBPF / XDP to provide a fast path packet procressing

environment and are inspired by the composibility of Click

modules. Bastion [39] implements a CNI with XDP has a

smaller scope than LinuxFP, as LinuxFP is focused on Linux

networking, generally.



Clean-slate approaches. Finally, entirely new kernel archi-

tectures have also been proposed. X-kernel [31] is an early

work that proposes an OS designed to simplify building and

composing communication protocols; it includes abstractions

and building blocks to realize a wide range of protocols to

be used within and across hosts. More recently, Zhang et al.

proposed Demikernel [45], an OS architecture that aims at

integrating legacy control plane software with a fast data path

bypassing the kernel. Those approaches have in common that

they propose completely new kernels and radical changes to

OS architecture. While achieving similar goals, LinuxFP can

be deployed today as it can be implemented using mechanisms

already provided by Linux.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce LinuxFP, a system which takes

a unique look at incorporating advances in high-performance

packet processing into Linux. In doing so, we accelerate

Linux’s network stack completely transparently to common

command-line tools such as brctl and iptables, control plane

software such as FRR, and management frameworks such as

Kubernetes and Ansible. We leverage eBPF programmability

in the Linux kernel to enable deploying dynamically synthe-

sized data planes based on current configuration. Evaluations

with our implementation of LinuxFP showed that it provides

77% higher throughput and 53% lower latency than Linux.

We also showed that LinuxFP does not sacrifice performance

in comparison to Polycube (an alternative pipeline that also

uses eBPF) while maintaning full support for Linux network

APIs and tight integration with Linux packet processing. We

also evaluate the throughput of pod-to-pod communication in

Kubernetes, and find that with LinuxFP, performance increases

20% as compared to without LinuxFP (i.e., standard Linux).

For future work, we intend to pursue several opportunities.

First, while we have accelerated the bridging, routing, and

filtering functionality within Linux, there is other functionality

that can be accelerated. We have begun work on ipvs, the load

balancing functionality within Linux (and used in Kubernetes

services), and initial prototyping is showing promising results.

In addition to accelerating Linux functions, we intend to

support the insertion of custom functionality, e.g., for mon-

itoring [18] modules. We can inject custom eBPF code at

different points in the XDP processing pipeline or add custom

packet-processing applications in user space [17] and use a

special type of socket, called AF XDP, that allows sending raw

packets directly from the XDP layer to user space. Finally, the

architectural decision to incorporate the concept of an explicit

fast path (as is done in network systems already) lends itself

nicely to hardware offload. We intend to explore this in the

context of SmartNICs and FPGAs.
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