
Vol.:(0123456789)1 3

Catalysis Letters (2023) 153:1–18 
https://doi.org/10.1007/s10562-022-03961-0

Kinetic Parameter Estimation for Catalytic H2–D2 Exchange on Pd

Nicholas Golio1 · Irem Sen1 · Zhitao Guo1 · Rucha Railkar1 · Andrew J. Gellman1,2

Received: 6 February 2022 / Accepted: 13 February 2022 / Published online: 15 March 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Kinetic parameters have been estimated for the H2–D2 exchange reaction on a thin film Pd catalyst by fitting reaction data 
from T = 333 to 593 K over a range of inlet partial pressures, Pin

H
2

 and Pin

D
2

 . A rigorous approach to estimating the 95% con-
fidence regions of the kinetic parameters reveals some of the issues and complexities that are not routinely considered in the 
estimation of kinetic parameter uncertainty from catalytic data. Three different mechanistic models were used to assess the 
influence of subsurface hydrogen, H′: the traditional Langmuir–Hinshelwood (LH) mechanism, the Single Subsurface Hydro-
gen (1H′) mechanism, and the Dual Subsurface Hydrogen (2H′) mechanism. The fitting was performed by fixing the pre-
exponential factors for all Arrhenius rate constants and equilibrium constants to their transition state theory values. The 
diffusion of H and D atoms from the surface into the subsurface was constrained to be endothermic (i.e. ΔE

ss
 > 0) and 

represented as an equilibrium process. Performance of the fitting routine was evaluated on a noiseless simulated dataset 
(created using ΔE‡

ads
 = 0, ΔE‡

des
 = 43, and ΔE

ss
 = 25 kJ/mol) and the same simulated dataset with the inclusion of 3% Gauss-

ian noise. In both cases, the solver was able to return the chosen values of ΔE‡

ads
 , ΔE‡

des
 , and ΔE

ss
 . Mapping of the behavior 

of the residual sum of squared errors, �2 , about its global minimum within 3D ( �
ads

 , �
des

 , �
ss

 ) parameter space allowed quan-
tification and visualization of the 95% confidence regions using 2D error ellipses for each pair of fitting parameters. For the 
experimental dataset on the Pd catalyst, fitting to the LH model predicted that H2–D2 exchange is adsorption rate limited, 
with ΔE‡

ads
 = 51.1 ± 0.6 kJ/mol with 95% confidence. On the other hand, fitting to both the 1H′ and 2H′ models led to predic-

tions of ΔE‡

ads
 = 0, consistent with the current understanding that the barrier to H2 dissociation on Pd is low. Thus, the results 

detailed herein provide supporting evidence for a non-LH mechanism for H2–D2 exchange on Pd while also illustrating the 
issues associated with quantification of uncertainty in kinetic parameter estimation.
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1  Introduction

Reactions involving H2 have a wide range of industrial appli-
cations. For example, H2 is used as a fuel in advanced energy 
systems, such as fuel cells [1–4], and it is also used for vari-
ous catalytic hydrogenation reactions [5–8]. Because it is 
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often derived from fossil fuels, H2 must be separated from 
CO2-rich gas mixtures. Standard methods for H2 separation 
and purification include solvent absorption, pressure swing 
adsorption, and cryogenic distillation, all of which require 
large capital and energy expenditures [9, 10]. Metal mem-
brane filters offer a promising alternative for purifying H2 
due to their low operating cost and low energy consump-
tion [11]. Pd-based membranes are commonly used for H2 
separation since they can easily dissociate H2 and dissolve 
H atoms, and they have a high permeability for H atoms 
once dissolved [12]. Pd membranes also possess a high 
selectivity to H2 transport relative to other gases [13, 14]. It 
has been shown that Pd or Pd-alloy membranes are stable 
for several months under H2 flow in the temperature range 
900–1046 K [15, 16]. However, there are limitations to using 
pure Pd membranes for H2 purification. H2 adsorption on Pd 
below its critical point of 571 K and 2 MPa produces both 
α-PdH and β-PdH phases, which have different lattice con-
stants. Phase transitions between these two hydrides cause 
lattice strain and result in the formation of bulk and grain 
boundary defects [17]. Ultimately, H2 embrittlement causes 
membrane rupture after repeated pressure and temperature 
cycling [18–20].

Transport of H2 through Pd-based membranes involves 
five steps: dissociative adsorption of H2 on the upstream 
side of the membrane surface to form H atoms, dissolu-
tion of H into the subsurface, diffusion of dissolved H 
atoms through the bulk, diffusion of subsurface H′ atoms 
to the downstream surface, and associative desorption of 
H2 from the downstream surface [21, 22]. This transport 
process is known to be limited by the bulk diffusion of 
H atoms, as manifested by its half-order dependence, 
nH

2

= 1∕2 , on H2 pressure, PH
2

 [23]. Decreasing the mem-
brane thickness increases the order of the hydrogen pres-
sure dependence and increases the permeability through 
Ag-Pd alloys [18, 23, 24]. For ultrathin Ag-Pd alloy films 

with thicknesses < 500 nm, the H2 transport is reported to 
be first-order, nH

2

= 1 , in PH
2

 over the temperature range 
373–523 K [18]. This result indicates that surface reac-
tions, i.e. the H2 adsorption step at the upstream surface 
dictate the rate of hydrogen transport through ultrathin 
Ag-Pd membranes.

While the bulk diffusion of H atoms through Pd has 
been investigated extensively [25–27], the surface reac-
tions of H2 adsorption and desorption on Pd-based alloy 
surfaces are not as well understood. The kinetics of the 
H2–D2 exchange reaction (H2 + D2 → 2HD) can provide 
valuable information about the adsorption and desorp-
tion steps [21, 22]. Hence, our estimation of the kinetic 
parameters associated with the H2–D2 exchange reaction 
on Pd provides important insight into hydrogen purifica-
tion by Pd-based membranes. Understanding the kinet-
ics of H2 adsorption is also a fundamental component of 
understanding other surface reactions, such as catalytic 
hydrogenation, that involve adsorbed H atoms.

Numerous studies of H2 on Pd surfaces have shown that 
it adsorbs with a negligible barrier to dissociation and a high 
heat of adsorption [28–30]. The most straightforward 
approach to modeling H2–D2 exchange on Pd involves appli-
cation of the traditional Langmuir–Hinshelwood (LH) 
framework. H2–D2 exchange has the simplest possible sur-
face reaction mechanism as described by the LH framework. 
The reaction mechanism is parametrized by just two rate 
constants: kads for the dissociative adsorption of H2 and kdes 
for the associative desorption of H2 (Fig. 1). However, the 
kinetic behavior predicted by the LH mechanism has been 
found to be inconsistent with several experimental observa-
tions of H2–D2 exchange on Pd catalysts. Savara et  al. 
observed that on Pd(111) and Pd nanoparticles [31, 32] with 
PD

2

≫ PH
2

 and high total surface coverage, � ≅ 1 , the reac-
tion order in PD

2

 was nD
2

= 0 . This differs from the LH pre-
diction of nLH

D
2

= −1 for PD
2

≫ PH
2

 and high total surface 

H’

H H D D H

H H D D H D

D

H’ H’D’

Fig. 1   Schematic diagram of the H2–D2 exchange reaction on a cata-
lyst surface. H2, D2, and HD adsorb competitively on the catalyst 
surface into adjacent empty sites. All three have the same Langmuir–
Hinshelwood adsorption  and desorption rate constants, k

ads
and k

des
 . 

The surface-to-subsurface diffusion equilibrium constant, K
ss

 , quanti-
fies the equilibrium between adsorbed H and D atoms and absorbed 
H’ and D’ atoms in the immediate subsurface layer. Note that hydro-
gen adsorption and desorption can occur with zero, one, or two H’ (or 
D’) atoms in the immediate subsurface
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coverage, � ≅ 1 . The LH prediction results from the intuition 
that the surface is already saturated with deuterium ( �D ≈ 1 ) 
when PD

2

≫ PH
2

 thus, increasing PD
2

 will inhibit H2 adsorp-
tion, thereby decreasing �H . Similarly, Sen et al. observed 
that the H2–D2 exchange reaction order in PH

2

 was nH
2

= 0 
for PH

2

≫ PD
2

 and � ≅ 1 using the same Pd catalyst film used 
for this work [33]. 

The importance of subsurface hydrogen, herein denoted 
by H′, has been increasingly documented in the field of 
heterogeneous catalysis [29, 31, 32, 34–38], and has the 
ability to explain deviations from the LH framework for 
H2–D2 exchange. Density functional theory (DFT) studies 
have shown that Pd is the only transition metal for which 
subsurface H′ atoms are energetically stable with respect 
to gaseous H2 [36, 39]. Consequently, the contribution of 
subsurface H′ must be considered in order to accurately 
model the kinetics of catalytic reactions involving H2 on 
Pd and Pd-based alloys. Previously, two H2–D2 exchange 
mechanisms were proposed, both of which include the pres-
ence of subsurface H′ (and D′) in the rate equations [33]. 
These mechanisms (Fig. 2), referred to as the Single Sub-
surface Hydrogen mechanism (1H′) and the Dual Subsurface 
Hydrogen mechanism (2H′), expand on the LH framework 
by allowing diffusion of surface H and D atoms into and out 
of the subsurface layer with an equilibrium constant, Kss 
(Fig. 1). Fundamentally, the subsurface hydrogen mecha-
nisms require the presence of either one or two adjacent 
H′ or D′ species in the immediate subsurface in order to 
facilitate the hydrogen adsorption and desorption processes 
occurring on the adjacent top surface sites. Analysis of these 
mechanisms under conditions where PH

2

≫ PD
2

 and � ≅ 1 

revealed that the Dual Subsurface Hydrogen mechanism 
(2H′) is consistent with the reaction order nH

2

= 0 observed 
in the earlier work using this Pd catalyst film [33]. 

In this study, the catalytic kinetic data for H2–D2 
exchange on the pure Pd region of a AgxPd1-x composition 
spread alloy film [33] was used to estimate the fundamental 
kinetic parameters associated with three different mecha-
nistic models: LH, 1H′, 2H′. A schematic illustration of 
each mechanism is presented in Fig. 2. The three kinetic 
parameters considered were the barriers to H2 (D2) adsorp-
tion and desorption, ΔE‡

ads
 and ΔE‡

des
 , and the surface-to-

subsurface H (D) transport energy, ΔEss . The uncertainty 
regions for each kinetic parameter were visualized using the 
Hessian matrix describing the curvature of the residual �2 
at its optimal value (minimum) to reveal confidence lim-
its on the parameter fitting results. The kinetics of H2–D2 
exchange on Pd offers an interesting case study opportu-
nity to explore the limits of kinetic parameter estimation 
for the three mechanisms: LH, 1H′, and 2H′. This is possi-
ble because we have developed analytic expressions for the 
three rate laws describing the exchange kinetics [33]. These 
rate laws enable us to rationalize some of the observations 
made during analysis of the reaction kinetics. In addition, we 
have applied the relevant methods to map out the statistical 
confidence regions across 3D parameter space spanned by 
�ads , �des , and �ss , in such a way that the limitations of these 
methods can be appreciated.

2 � Experimental

The data analyzed herein are a subset of a larger dataset 
that includes the rates of H2–D2 exchange measured over a 
range of temperatures and inlet pressures of H2 and D2 on 
90 compositions of AgxPd1-x spanning the range x = 0 → 1, 
as described earlier [33]. This was accomplished using a 
Ag-Pd composition spread alloy film (CSAF) and a multi-
channel microreactor array capable of isolating 100 regions 
of the CSAF, all having different alloy compositions [40, 
41]. This study focuses on the methodology for extraction 
of confidence intervals for kinetic parameters derived from 
three models of the reaction mechanism. As such, we focus 
on the reaction rates for catalytic H2–D2 exchange obtained 
on the most Pd-rich region of the CSAF, which has a nomi-
nal composition of Ag01Pd99. Throughout, we refer to this 
simply as the Pd catalyst.

2.1 � Measurements of H2–D2 Exchange Kinetics

The H2–D2 exchange activity of the AgxPd1-x CSAF was 
measured at 90 different alloy compositions using a high-
throughput 100-channel microreactor array which has been 
described in detail elsewhere [40]. Only 90 channels of the 

H H

H H H H H H

H’ H’ H’

LH 1H’ 2H’

Fig. 2   Schematic representation of the three different reaction mod-
els investigated in this work. The Langmuir–Hinshelwood mechanism 
(LH) only involves adsorption and desorption from the top surface. 
In the Single Subsurface Hydrogen mechanism (1H’), an H’ (or D’) 
atom in the immediate subsurface layer influences the energetics of 
adsorption and desorption from the adjacent sites on the surface. In 
the Dual Subsurface Hydrogen mechanism (2H’), two adjacent H’ (or 
D’) atoms in the subsurface layer influence the energetics of adsorp-
tion and desorption from the adjacent sites on the surface
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reactor were in use because the inlet flow to one row of 10 
reactors was blocked. Reactant mixtures of H2, D2, and Ar 
were delivered continuously to the 90 isolated regions of 
the AgxPd1-x CSAF surface, and products were continuously 
withdrawn from each region for analysis using an Extrel 
quadrupole mass spectrometer.

The H2–D2 exchange activity of the AgxPd1-x alloys con-
tained on the CSAF was measured at atmospheric pressure 
and over a temperature range from T = 333 to 593 K. The 
H2 inlet partial pressure spanned the range Pin

H
2

 = 
23–230 Torr and the D2 inlet partial pressure spanned Pin

D
2

 = 
0.23–230 Torr with Ar constituting the remainder of the gas 
flow. The temperature was increased in 20 K increments 
from 333 to 593 K, and the reaction was allowed to reach 
steady-state by waiting for 4 min at each temperature before 
beginning the analysis of the product gases from each of the 
reactor channels. The composition of the reaction products 
was calculated by assuming that the mass spectrometer sig-
nals at m∕z = 2, 3, and 4 amu obtained from the product gas 
samples were proportional to the H2, HD, and D2 partial 
pressures. Baseline (0% conversion) signals at m∕z = 2, 3, 
and 4 amu were collected by sampling the feed gas mixture 
directly without it contacting the CSAF surface. The dataset 
collected from these measurements consists of the HD flow 
rate exiting each of the reactor channels measured over a 
range of: catalyst compositions, x ; temperatures, T ; and inlet 
pressures, Fout

HD
(x, T;Pin

H
2

,Pin
D

2

) . The subset of these data ana-
lyzed in this work are Fout

HD
(x = 0.01, T;Pin

H
2

,Pin
D

2

) ; i.e. the data 
from the most Pd rich region of the CSAF.

3 � Kinetic Parameter Estimation

3.1 � The Dual‑Subsurface Hydrogen (2H′) H2–D2 
Exchange Mechanism

Several studies of H2–D2 exchange on Pd surfaces have pro-
vided evidence for a non-LH mechanism that involves both 
surface hydrogen atoms, herein denoted by H, and subsur-
face hydrogen atoms, herein denoted by H′ (Fig. 2) [31–33]. 
The primary kinetic evidence for a non-LH mechanism is 
that under conditions where Pin

H
2

≫ Pin
D

2

 and � ≈ 1, the reac-
tion order in Pin

H
2

 is nH
2

= 0 , whereas the LH mechanism 
predicts a reaction order of nH

2

= −1 . Our comparison of 
several alternative mechanisms revealed one in which two 
adjacent subsurface H′ or D′ atoms in sites below two adja-
cent surface H or D atoms serve to facilitate associative des-
orption of the two surface atoms. A derivation of the rate law 
for the Dual-Subsurface Hydrogen (2H′) mechanism has 
been provided previously [33] and predicts a reaction order 
of nH

2

= 0 for Pin
H

2

≫ Pin
D

2

 and � ≈ 1. In brief, an equilibrium 

constant for surface–subsurface diffusion ( Kss ), as illustrated 
in Fig. 1, describes the equilibrium between adsorbed H or 
D atoms and absorbed H′ or D′ atoms in the immediate sub-
surface layer. The presence of subsurface species, H′ or D′, 
influences the dissociative adsorption and associative des-
orption kinetics on the surface, modifying the rate equation 
for H2–D2 exchange from that given by traditional LH kinet-
ics. The overall rate of HD production given by the 2H′ 
mechanism is

 where k2H′

ads
 is the rate constant for dissociative adsorption of 

HD onto two adjacent empty surface sites with H′ or D′ in 
their immediate subsurface, and k2H′

des
 is the rate constant for 

associative desorption of HD from two adjacent filled sur-
face sites with H′ or D′ in their immediate subsurface. Note 
that the rate constants for H2, D2, and HD adsorption (or des-
orption) are all taken to be equal (i.e. isotope effects causing 
zero-point energy differences are ignored). The quantity PHD 
is the pressure of HD in the gas phase, and � = �H + �D and 
�
� = �

�

H
+ �

�
D represent the fractional coverages of surface 

and subsurface hydrogen species, respectively. The equi-
librium expressions for �H , �D , � , and �′ given by the 2H′ 
mechanism can be found in Eqs. 2–5. In the following equa-
tions, K

2H′ represents the adsorption equilibrium constant 
given by the ratio k2H�

ads
∕k2H

�

des
.

The quantity Ptot
H

= Pin
H

2

+ Pin
D

2

= PH
2

+ PHD + PD
2

 is the total 
pressure of hydrogen containing species in the gas phase and 
is constant at each point along the length of the reactor.

Note that the rate constant for HD formation and des-
orption, k2H′

des
 , is multiplied by a factor of 2  in Eq. 1. This 

arises from the statistics of atomic collisions leading to 
a reaction with a rate constant k2H′

des
 . In a mixture of H and 

D atoms, the total collision frequency is proportional to 

(1)rHD = 2k2H
�

des
�H�D�

�
2 − k2H

�

ads
PHD(1 − �)

2
�

�
2

(2)�H =
K
2H�Pin

H
2

K
2H�Ptot

H
+

√
K
2H�Ptot

H

(3)�D =
K
2H�Pin

D
2

K
2H�Ptot

H
+

√
K
2H�Ptot

H

(4)� =
K
2H�Ptot

H

K
2H�Ptot

H
+

√
K
2H�Ptot

H

(5)�
� =

KssK2H�Ptot
H

KssK2H�Ptot
H

+

√
K
2H�Ptot

H
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(
�H + �D

)2
=
(
�
2

H
+ 2�H�D + �

2

D

)
 . The coefficient of 2 on 

the �H�D term describing H–D collision frequency has been 
used explicitly in Eq. 1 rather than embedding it into a new 
rate constant. The presence of this factor of 2 also ensures 
that the rate expression that we have used yields the correct 
equilibrium constant of 

(
P
eq

HD

)2
∕
(
P
eq

H2

)(
P
eq

D2

)
= 4 at full con-

version of the initial mixture of H2 and D2.
From the perspective of assessing our ability to perform 

accurate parameter estimation, one of the attractive fea-
tures of this problem is the fact that one can find analytical 
rate laws for the LH, 1H′, and 2H′ mechanisms for H2–D2 
exchange. The design equation for a catalytic surface reac-
tion in a flow reactor relates the catalyst surface area, A , to 
a mass balance represented by the following integral [42].

The catalyst area, A , is known because we are using a thin 
film reactor area of 900 × 700 µm2. Solving the integral using 
the expression for rHD in Eq. 1 and rearranging the result 
yields an expression for the molar outlet flow rate of HD 
( F2H′

HD
 , mol/s) generated by the 2H′ mechanism in terms of 

kinetic parameters and experimental conditions.

In Eq. 7, Ftot is the total molar flow rate through the reactor 
including the inert stream of Ar and Ptot is the total pressure 
inside the reactor (~ 1 atm).

The rate constants for adsorption and desorption are in 
the Arrhenius form, each parametrized by its pre-exponential 
factor, � , and activation energy ( ΔE‡ ). Because the activa-
tion energy term lies inside an exponential, all analysis was 
done using the logarithm of the pre-exponents to balance 
the sensitivity of the fitting objective function, �2 , to both 
parameters.

In Eqs. 8 and 9, R is the ideal gas constant and T  is the reac-
tion temperature in K. The equilibrium constant for surface-
subsurface diffusion, Kss , is given by the ratio of the rate 
constant for surface-to-subsurface diffusion, ks→ss , and the 
rate constant for subsurface-to-surface diffusion, kss→s.

(6)A = ∫
Fout
HD

0

dF�

rHD

(7)

F2H�

HD
=

2kdes�H�DF
tot

kads(1 − �)
2Ptot

[
1 − exp

(
−
Akads(1 − �)

2
�

�
2Ptot

Ftot

)]

(8)kads = �adsexp

(
−
ΔE

‡

ads

RT

)

(9)kdes = �desexp

(
−
ΔE

‡

des

RT

)

In Eq. 10, �ss represents the ratio of the pre-exponents for 
the two diffusion rate constants and ΔEss = ΔE‡

s→ss
− ΔE‡

ss→s
 

is the reaction energy for surface-to-subsurface transport of 
H and D atoms. When ΔEss > 0 , the transport of hydrogen 
from the surface into the subsurface layer is an endothermic 
process.

To summarize the data fitting problem briefly, the 2H′ 
model contains six kinetic parameters: three pre-exponential 
factors ( log(�ads) , log(�des) , and log(�ss) ) and three energies 
( ΔE‡

ads
 , ΔE‡

des
 , and ΔEss ). For a given mechanistic model, 

e.g. 2H′, the three pairs of � and ΔE correspond to the rate 
constant for dissociative adsorption, k2H′

ads
 , the rate constant 

for associative desorption, k2H′

des
 , and the equilibrium constant 

for surface-subsurface diffusion, Kss.

3.2 � Parameter Estimation from a Noiseless 
Simulated Dataset

In order to assess the difficulty of fitting 6-parameter kinetic 
model proposed for the 2H′ mechanism to the kinetic data 
for H2–D2 exchange, a simulated dataset was generated for 
the 2H′ mechanism by assuming values for the three pairs of 
pre-exponential factors, � , and energy terms, ΔE . Transition 
state theory was used to estimate reasonable values for the 
pre-exponents [43]. Assuming a mobile transition state, �ads 
= 102 mol/m2/s/Torr for dissociative adsorption and �des = 
106 mol/m2/s for associative desorption. The pre-exponential 
factors for the surface–subsurface diffusion rate constants, 
ks→ss and kss→s , are assumed to be roughly equal to one 
another, resulting in �ss = 100. The energy barriers used for 
creating the simulated data were chosen to be ΔE‡

ads
 = 0 kJ/

mol and ΔE‡

des
 = 43 kJ/mol based on values for similar Pd-

alloy systems [21] and the known values from fitting our 
data for Pd. An endothermic subsurface diffusion energy of 
ΔEss = 25 kJ/mol is close to the value of 29 kJ/mol calcu-
lated in a DFT study of hydrogen absorption into pure Pd 
[29]. Using the fixed kinetic parameters defined above, a 
dataset was generated using Eq. 7 to calculate the HD molar 
flow rate at the outlet, Fout

HD
(T;Pin

H
2

,Pin
D

2

) , as a function of reac-
tion temperature and the inlet partial pressures of H2 and D2. 
The reaction temperature was varied from T  = 333 to 593 K 
in increments of 20 K, as done experimentally. The inlet H2 
pressure was varied from Pin

H
2

 = 23–230 Torr and the inlet 
D2 pressure was varied from Pin

D
2

 = 0.23–230 Torr while 
keeping the total inlet f low rate constant at Ftot = 
2.5 × 10–7 mol/sec/channel. In total, 14 different inlet flow 
conditions were simulated across the range of 14 reaction 
temperatures, yielding a data set of 196 points (partially 

(10)Kss =
ks→ss

kss→s

=

�s→ssexp

(
−

ΔE
‡
s→ss

RT

)

�ss→sexp

(
−

ΔE
‡
ss→s

RT

) = �ssexp

(
−
ΔEss

RT

)
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shown in Fig. 3) representing the data for a Pd catalyst; 
Fout
HD

(T;Pin
H

2

,Pin
D

2

) . Figure 3 shows that the reaction conditions 
span the full range of conversions, with each curve achieving 
its equilibrium conversion at high temperatures.

The 2H′ rate law (Eq. 7) was fitted to the simulated data 
using the MATLAB® minimization tool fmincon, which is 
designed for constrained, nonlinear, multivariable functions. 
Other built-in MATLAB® solvers, such as lsqcurvefit and 
nlfit, were explored and found to perform equally well. Ini-
tially, all six kinetic parameters were fit to the simulated 
dataset using 1000 initial parameter guesses (seeds) span-
ning a wide range of parameter space. The pre-exponential 
factors of the initial seeds were varied over 10 orders of 
magnitude and the energy barriers were varied from 0 to 
100 kJ/mol. Initializing the solver at 1000 different points 
explored the potential for the solver to find multiple min-
ima, or not converge on a minimum at all. For each initial 
seed guess, the optimal kinetic parameters were estimated 
using the solver to sample parameter space and minimize an 
objective function which, in this case, is the relative sum of 
squared errors, �2 , over all 196 data points. In order to give 
similar weights to the low and high conversion data points, 
the relative error between the fit and the simulated data 
points was used in the definition of �2 as shown in Eq. 11.

Fsolv
HD

 is the HD flow rate calculated by the solver as it sam-
ples parameter space and Fsim

HD
 is the HD flow rate calculated 

(11)�
2 =

∑(
Fsolv
HD

− Fsim
HD

Fsim
HD

)2

using the parameter values chosen for the simulated dataset. 
The parameter values that yielded the lowest value of �2 
among the 1000 optimizations were chosen as the optimal 
solution; i.e. the best estimates of log(�ads) , log(�des) , log(�ss) , 
ΔE

‡

ads
 , ΔE‡

des
 , and ΔEss . Since the dataset contained no noise, 

the solver was able to converge to the exact solution with �2 
< 3 × 10–9 for ~ 25% of the 1000 iterations (initial seeds). 
In ~ 60% of the optimizations, the solver failed to move from 
the initial guess because the �2 function was flat across the 
local parameter space. This occurred when the combination 
of parameters used for the initial guess predicted either zero 
conversion or full conversion (the equilibrium flow rate) at 
all reaction temperatures and inlet flow conditions. In the 
remaining ~ 15% of iterations, the solver converged to vari-
ous local minima with significantly higher values of �2 > 1 
than the one found at the optimum parameter set.

In order to understand the landscape of this (or any) 
parameter estimation problem and to extract some under-
standing of the confidence limits associated with an optimal 
fit, one needs to understand the full extent of �2

(
⇀

p
)
 , where 

⇀

p represents a vector of the set of parameters over which the 
optimization is conducted. In this case, contour plots of �2 
were generated for pairs of kinetic parameters to visualize 
their impact on �2 and on the quality of the fit. Particularly 
important are the contour plots for the pairs of kinetic 
parameters that define a single rate constant (i.e. log(�des) 
and ΔE‡

des
 ). Figure 4 shows �2 versus log(vdes) and �des evalu-

ated while holding the parameters determining kads and Kss 

Fig. 3   Noiseless simulated data for the outlet molar flow rate of HD 
( Fout

HD
 ) versus temperature as predicted by the 2H’ mechanism, with 

�
ads

 = 102 mol/m2/s/Torr, �
des

 = 106 mol/m2/s, �
ss

 = 100, ΔE‡

ads
 = 0 kJ/

mol, ΔE‡

des
 = 43 kJ/mol, and ΔE

ss
 = 25 kJ/mol. All data points of the 

same color correspond to a particular inlet combination of Pin

H
2

 and 
P
in

D
2

 in Ar

Fig. 4   Grayscale map and contour plot of �2 versus log(v
des
) and �

des
 

about the true minimum, marked by the blue dot at ΔE‡

des
 = 43 kJ/mol 

and ���
(
�
des

)
 = 6. The values of �2 were calculated using the simu-

lated data from Fig. 3 with no added noise. The red ellipse bounds the 
region of 95% confidence around the solution. Thus, any combina-
tion of points within the ellipse gives a reasonable fit to the simulated 
dataset
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at their optimal values. For clarity, the symbols � and v used 
throughout this work represent parameter space generally, 
whereas the quantities ΔE and � represent the values of the 
optimum fitted kinetic parameters. In other words, if �des is 
the variable spanning the range of desorption energy barri-
ers, then ΔE‡

des
 = 43 kJ/mol is the value of �des at the opti-

mum fit to the simulated data. The value of this distinction 
will become apparent during the discussion of uncertainty 
estimation in Sect. 4. In Fig. 4, the solution point found by 
the solver (with �2 < 3 × 10–9) is marked by the blue dot and 
falls exactly at the predefined values of �des = 106 mol/m2/s 
and ΔE‡

des
 = 43 kJ/mol used to create the dataset. The region 

of 95% confidence was calculated using the curvature of the 
�
2 objective function around the global minimum (as 

explained in Sect. 4) and was drawn over the contour plot as 
a red ellipse. The ellipse contains a large area of the white 
region of the plot, spanning several orders of magnitude of 
vdes and a large range of �des . All combinations of log(�des) 
and ΔE‡

des
 within this red error ellipse are capable of giving 

reasonable fits to the data, although not all combinations are 
physically meaningful (i.e. ΔE‡

des
 < 0). Such a large uncer-

tainty on these two parameters is due to the coupling of the 
pre-exponent and energy barrier in the Arrhenius equation 
(Eq. 9). The value of the desorption rate constant, kdes , stays 
constant when log(�des) is decreased at a rate proportional to 
the decrease in ΔE‡

des
 . The same phenomenon can be 

observed when plotting �2 as a function of the other two 
pairs of log(v) and � . This illustrates the inherent futility of 
trying to extract independent measures of log(�) and ΔE 
from kinetic data spanning a limited range of temperatures. 
Because all pairs of log(�) and ΔE are coupled in this way, 
one must turn to additional fundamental understanding of 
reaction rate constants in order to estimate either one of 
these two parameters. In this case, the pre-exponents can be 
estimated using transition state theory, thereby enabling 
meaningful estimation of ΔE‡

ads
 , ΔE‡

des
 , and ΔEss from the 

experimental dataset [43]. For the remainder of this work, 
we will limit parameter fitting to the quantities ( ΔE‡

ads
 , 

ΔE
‡

des
 , ΔEss ) and fix the pre-exponential factors to their val-

ues estimated by transition state theory, i.e. ( �ads = 102 mol/
m2/s/Torr, �des = 106 mol/m2/s, and �ss = 100) [43].

Using transition state theory to estimate the pre-expo-
nent values involves its own inherent assumptions about the 
nature of the transition state. In the case of adsorption and 
desorption this typically involves assumptions about the 
mobility of the transition state. Given that the adsorption 
process for H2 has no barrier and, therefore, that the desorp-
tion process has a transition state that is very late in the reac-
tion coordinate, the transition state is likely to approximate 
H2 weakly interacting with the surface. In other words, the 
transition state is mobile. In all such analyses, it necessary 
to be clear about the assumptions being made regarding 
the transition state. If the uncertainty in the transition state 

estimate of the pre-exponent is larger than that of the esti-
mate based solely on the kinetic data (Fig. 4), then the use 
of transition state theory is unjustified.

One of the ubiquitous issues plaguing parameter estima-
tion problems is the potential existence of multiple local 
minima in the objective function, �2 , all predicting differ-
ent sets of parameter values that yield comparably good fits 
to the data. Performing multiple fits using different initial 
seed parameters that span wide ranges (orders of magni-
tude) of parameter space can reveal multiple solutions or 
provide some confidence that a unique optimal solution 
has been found. Of course, this becomes impractical for 
problems with many degrees of freedom (i.e. too many fit-
ting parameters). An interesting feature of the 2H′ model 
was discovered when allowing the search space for ΔEss to 
include negative values, i.e. implying exothermic surface-to-
subsurface energetics. Figure 5 shows a grayscale contour 
plot of �2 versus �ads and �ss (with ΔE‡

des
 = 43 kJ/mol, the 

value used for simulation of the dataset). The kinetic param-
eters used to create the dataset are indicated by the blue dot 
and an alternate minimum (optimal fit) is indicated by the 
green dot. Surprisingly, the solver found a new solution with 
�
2 < 3 × 10–9 at a value of ΔEss = − 25 kJ/mol, the negative 

of the value used to generate the dataset. At this solution, 
the adsorption energy barrier is ΔE‡

ads
 = 50 kJ/mol, also 

substantially different from the value of ΔE‡

ads
 = 0 kJ/mol 

used to generate the dataset. Note that these alternative val-
ues of ΔEss and ΔE‡

ads
 differ by exactly -50 and + 50 kJ/mol, 

respectively, from the values used to generate the dataset. 

Fig. 5   Grayscale map and contour plot of �2 versus ϵads and ϵss cal-
culated using the noiseless simulated dataset from Fig.  3. Note that 
�
2 increases so quickly in the black region that all values of �2 in 

this region were assigned a maximum value of 1000. The expected 
minimum with ΔE

ss
> 0 is marked by the blue point and has �2 < 

3 × 10–9. An alternative solution with ΔE
ss
< 0 is marked by the green 

point and also has �2 < 3 × 10–9
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The value of ΔE‡

des
 = 43 kJ/mol used to generate the dataset 

is also found for the second optimum fit. 
To investigate the effect of the sign of ΔEss on the 2H′ 

model predictions, the total coverages of surface and sub-
surface hydrogen species were plotted as functions of tem-
perature and total inlet hydrogen pressure, Ptot

H
 , in Fig. 6. 

The left-hand panels of Fig. 6 show the total coverages on 
the surface, � , and in the subsurface, �′ , predicted using the 
parameter values, ( ΔE‡

ads
 , ΔE‡

des
 , ΔEss) = (0, 43, 25), used to 

create the dataset. The low value of ΔE‡

ads
 = 0 kJ/mol results 

in high coverages on the surface, � ≈ 1, while the positive 
value of ΔEss = 25 kJ/mol, yields very low coverages in the 
subsurface, �′ ≈ 0. The right-hand panels of Fig. 6 show the 
coverages, � and �′ , predicted using the parameter values at 
the alternate minimum, ( ΔE‡

ads
 , ΔE‡

des
 , ΔEss) = (50, 43, − 25), 

marked by the green dot in Fig. 5. The high value of ΔE‡

ads
 = 

50 kJ/mol yields a very low coverage on the surface, � ≈ 0, 
while the negative value of ΔEss = -25 kJ/mol yields a high 
coverage in the subsurface, �′ ≈ 1. An apparent symme-
try in the coverages at these two optimal sets of parameters 
leads to identical HD flow rates by swapping the values of 
� and �′ in the 2H′ mechanism. In other words, the model is 
incapable of distinguishing between a saturated top surface 
with a depleted subsurface and a saturated subsurface with 
a depleted surface. 

As a result of the indistinguishability of the two param-
eter sets identified by the fitting process, the values of ΔEss 
and ΔE‡

ads
 must be identified based on additional data. In this 

case, DFT calculations [29, 36] show that the exchange of 
hydrogen between the surface and the subsurface should be 
endothermic for Pd, consistent with the choice that ΔEss = 
25 kJ/mol. In addition, there are many experimental studies 
of the dissociative adsorption of H2 on Pd surfaces [21, 28] 
indicating that the barrier to dissociative hydrogen adsorp-
tion on Pd is negligible, consistent with the choice of ΔE‡

ads
 

= 0 kJ/mol over the value of 50 kJ/mol suggested by the 
alternate solution.

3.3 � Parameter Estimation from a Simulated Dataset 
with Noise

The dataset discussed in the previous section was simulated 
directly from the rate law (Eq. 7) with parameter values set 
at ( ΔE‡

ads
 , ΔE‡

des
 , ΔEss) = (0, 43, 25) kJ/mol. The pre-expo-

nential factors for the rate constants and equilibrium con-
stant were set at values consistent with transition state the-
ory, ( �ads , �des , �ss) = (102 mol/m2/s/Torr, 106 mol/m2/s, 100). 
To examine the performance of the solver on a dataset that 
more closely represents the experiment, random Gaussian 
noise with a standard deviation of 3% was introduced into 
the simulated data. The search space for all three energy 
parameters was bounded between 0 and 100 kJ/mol. As 
before, 1000 random initial seeds were generated across the 
search space and used to initialize minimization of �2 . The 
result of the fitting is shown in Fig. 7, where the black dots 
are the simulated HD f low rates at the outlet, 
Fsim
HD

(T;Pin
H

2

,Pin
D

2

) , calculated using ( ΔE‡

ads
 , ΔE‡

des
 , ΔEss) = (0, 

Fig. 6   The fractional coverage 
of H + D on the surface, � , and 
H’ + D’ in the subsurface, �′ , 
versus temperature and inlet 
H2 + D2 pressure, Ptot

H
 . The 

panels on the left show the cov-
erages based on the parameters 
defined in the simulated dataset, 
with ΔE

ss
 = 25 kJ/mol, ΔE‡

ads
 

= 0 kJ/mol, and ΔE‡

des
 = 43 kJ/

mol. The righthand panels show 
coverages on the surface and in 
the subsurface, � and �′ , for the 
symmetric solution found by 
the solver, where ΔE

ss
 = -25 kJ/

mol, ΔE‡

ads
 = 50 kJ/mol, and 

ΔE
‡

des
 = 43 kJ/mol. This sym-

metry reveals that identical fits 
can be achieved by swapping 
the values of � and �′ in the 2H’ 
mechanism
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43, 25) kJ/mol with 3% Gaussian noise added. The solid red 
lines show the predicted values of Fsolv

HD
(T;Pin

H
2

,Pin
D

2

) found 
using the estimated parameter values of ( ΔE‡

ads
 , ΔE‡

des
 , ΔEss

) = (1.0, 43.8, 24.5) kJ/mol at the optimal solution. Introduc-
tion of Gaussian noise results in an increase in the minimum 
value of �2 to 0.18, however, the solver converged to the 
same parameter estimates for a wide range of initial guesses. 
As before, the solver only failed to find the optimal solution 
when the initial guess corresponded to either 0% or 100% 
(H2 + D2 ↔ 2HD equilibrium) conversion for all reaction 
conditions, ( T  , Pin

H
2

 , Pin
D

2

 ). When the solver starts in these 
regions, the value of �2 is insensitive to changes in the 
kinetic parameters, ( ΔE‡

ads
 , ΔE‡

des
 , ΔEss).

Figure 7 shows that even with noisy data the solver can 
yield close estimates of the kinetic parameters used to sim-
ulate the dataset. However, in most parameter estimation 
problems, the model parameters are unknown, and some-
times lack physical significance, making it more difficult 
to trust the output of the solver or constrain it to physically 
reasonable regions of parameter space. Relevant to this, it is 
important to note that extending the parameter space used 
for fitting the data with 3% noise into regions where ΔEss < 
0 results again in the identification of a second minimum, as 
shown in Fig. 5. The alternative solution occurs at ( ΔE‡

ads
 , 

ΔE
‡

des
 , ΔEss) = (50, 43.8, -24.5) kJ/mol with �2 = 0.18. This 

describes the scenario where the surface coverage is � ≈ 0 

and subsurface coverage is �′ ≈ 1 (as in Fig. 6), opposite 
to the coverages of the physically reasonable solution. The 
primary point to make is that the addition of 3% noise into 
the kinetic data only slightly degrades the ability of the 2H′ 
model to extract meaningful estimates of reaction param-
eters. The next issues to address are our ability to extract 
parameter estimates from the real kinetic data and how to 
quantify the confidence limits on those estimates.

4 � Quantification of Confidence Limits 
on Estimated Kinetic Parameters

In order to quantify the confidence limits on the estimated 
kinetic parameters for the 2H′ mechanism, we assume a nor-
mal distribution around their most probable values, ( ΔE‡

ads
 , 

ΔE
‡

des
 , ΔEss ), at the global minimum of �2(�ads, �des, �ss) . 

Since the 2H′ mechanism used for the creation of the simu-
lated datasets contains three parameters ( ΔE‡

ads
,ΔE

‡

des
,ΔEss ), 

a 3D probability density function (PDF) defines the region 
in ( �ads , �des , �ss ) space within which the solution can be 
found with a given level of confidence (e.g. 68%, 95%, etc.). 
For a 3D parameter space, the probability, P , of finding the 
solution within a certain ‘distance’, k , of the minimum of 
�
2(�ads, �des, �ss) is defined by Eq. 12.

The values of k for any desired confidence limit have been 
tabulated for PDFs of various dimensionality [44]. We are 
seeking the 95% confidence limit (i.e. the value of k at which 
P(k) = 0.95) for the values of the three parameters, ( �ads , �des , 
�ss ), around their most probable values of ΔE‡

ads
 , ΔE‡

des
 , and 

ΔEss at the global minimum of �2(�ads, �des, �ss) . For a 3D 
PDF, P(k) = 0.95 when k = 2.7955 [44]. This value of k = 
2.7955 determines the distance between the mean value of 
the kinetic parameters, ( ΔE‡

ads
,ΔE

‡

des
,ΔEss ), and the locus of 

points that represent the 95% confidence limit in 3D. More 
precisely, k2 serves as a scaling factor for a 3D hyper-ellip-
soid centered on the global minimum of �2(�ads, �des, �ss ) and 
whose orientation in parameter space is determined by the 
covariance of the three fitting parameters, as derived from 
the fitting process.

The orientation of the 3D hyper-ellipsoid comes from the 
covariance matrix ( ̄̄C ), which defines the variances of all 
three fitting parameters and the covariances between each 
pair of parameters (Eq. 13). The covariance matrix is found 
by inverting the Hessian (  ̄̄H ) matrix, which is calculated 
each time the solver converges. The Hessian matrix contains 
all of the second derivatives and cross derivatives of �2 with 
respect to �ads , �des , and �ss , evaluated at (ΔE‡

ads
,ΔE

‡

des
,ΔEss ). 

(12)P(k) = erf

�
k√
2

�
− k

�
2

�
exp

�
−
k2

2

�

Fig. 7   Outlet HD flow rates versus temperature for 14 different feed 
flow conditions. The black dots represent the simulated data with the 
inclusion of 3% Gaussian noise. The red lines illustrate the result of 
fitting the 2H’ model to the data. For the fitting, log(�

ads
 ), log(�

des
) , 

and log(�
ss
) were fixed at their transition state theory values, and the 

search space for ΔE
ss

 was constrained to be ≥ 0 kJ/mol. The solver-
predicted values for ΔE‡

ads
 , ΔE‡

des
 , and ΔE

ss
 are indicated on the graph 

and are close to the parameters used to generate the dataset. The 
value of �2 for the fit is 0.18
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In physical terms, H , characterizes the curvature of �2 
around its global minimum.

In Eq. 13, � represents the standard deviation for each 
parameter and � represents the correlation coefficient for 
each pair of parameters. In order to encompass the entire 
95% confidence region, the distance from the center of the 
hyper-ellipsoid at (ΔE‡

ads
,ΔE

‡

des
,ΔEss ) to its surface must 

equal the Mahalanobis distance, k2 = 7.8148 [44]. While k2 
is a constant, the absolute distance between the center point 
and the surface of the hyper-ellipsoid changes based upon 
the variance and covariance of the parameters at the global 
minimum. Combining all of these features, the equation for 
the 3D hyper-ellipsoid in the Cartesian coordinate system 
( �ads , �des , �ss ) is given by Eq. 14.

Dividing both sides of Eq. 14 by k2 results in the standard 
ellipsoid equation and causes k2 to act as a scaling factor 
for each term in the covariance matrix. Equation 14 can be 
condensed into linear algebra notation, as shown in Eq. 15.

Plotting Eq. 15 in ( �ads , �des , �ss ) parameter space allows visu-
alization of the 3D hyper-ellipsoid centered on the global 
minimum of �2 at ( ΔE‡

ads
,ΔE

‡

des
,ΔEss ). For the noiseless 

simulated dataset, the resulting ellipsoid is a wide, thin 
shape, as shown in Fig. 8. The true values of ΔE‡

ads
 , ΔE‡

des
 , 

and ΔEss lie within this ellipsoidal region with up to 95% 
confidence. However, this 3D region of parameter space is 
difficult to visualize and quantify in a straightforward way. 

In parameter estimation problems with more than three 
degrees of freedom, it is impossible to visualize these 

(13)

̄̄C = ̄̄
H

−1
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hyper-ellipsoidal regions of parameter space. Furthermore, 
when parameters are coupled, it is meaningless to try to 
represent the uncertainty of a given parameter using a single 
value. If the covariance matrix, C , was diagonal, then the 
three major axes of the 3D hyper-ellipsoid would be parallel 
to the �ads , �des , and �ss axes and the PDF would be described 
by a product of three normal distribution functions, one for 
each degree of freedom. These three normal distribution 
functions would also define the variances for each degree of 
freedom, ( �2

�ads
 , �2

�des
 , �2

�ss
 ), and the hyper-ellipsoid would be 

defined by Eq. 14 with just the first three terms of the right-
hand side. Under these conditions, the confidence regions 
for each of the three degrees of freedom can be meaningfully 
represented by a unique value. However, as illustrated in 
Fig. 8, this is not the case for the 2H′ mechanism. Nor is it 
true for the 1H′ or LH mechanisms. When parameters are 
coupled, the confidence intervals must be represented by 
continuous regions spanning multiple degrees of freedom in 
parameter space.

One method for portraying the confidence regions con-
tained within the hyper-ellipsoid is to project them onto each 
of the 2D planes spanned by the pairs of natural variables for 
the problem, e.g. (�ads, �des) . An error ellipse is a 2D section 
or projection of the n-dimensional hyper-ellipsoid centered 
on the estimated values of the fitting parameters: ΔE‡

ads
 , 

ΔE
‡

des
 , and ΔEss . For example, one could take the ellipsoid 

illustrated in Fig. 8 and project it onto the ( �ads , �des ) plane 
as a 2D ellipse centered on the most probable values ( ΔE‡

ads
 , 

ΔE
‡

des
 ). This would define the region of 95% confidence for 

finding ΔE‡

ads
 and ΔE‡

des
 , independent of the value of ΔEss . 

Fig. 8   The 3D hyper-ellipsoid for the noiseless simulated dataset 
encloses the 95% confidence region around the global minimum of 
�
2 , marked by the pink dot at ( ΔE‡

ads
 , ΔE‡

des
 , ΔE

ss
) = (0, 43, 25) kJ/

mol. The translucent hyper-ellipsoid is constructed using the Hessian 
matrix returned by the solver, quantifying the curvature of �2 with 
respect to all three parameters. The black dashed lines serve as aids 
for visualizing the 3D hyper-ellipsoid with respect to the axes
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This overestimates the confidence region because it includes 
points at which finding the values ( ΔE‡

ads
,ΔE

‡

des
,ΔEss ) is 

highly improbable. An alternative representation of the 
confidence region is to take the 2D cross section of the 3D 
hyper-ellipsoid in a plane parallel to ( �ads , �des ) at a value of 
�ss = ΔEss . This represents the region of 95% confidence for 
finding ΔE‡

ads
 and ΔE‡

des
 when ΔEss takes its most probable 

value. In the figures below, we have used these 2D cross 
sections through the hyper-ellipsoid evaluated at the most 
probable value of the third degree of freedom.

Figure 9 presents a graphical visualization of the 2D cross 
sections through the 3D hyper-ellipsoids for: the noiseless 
simulated data (left column), the simulated data with 3% 
noise (middle column), and the experimental data on Pd 
(right column). These are all plotted in 2D parameter space 
and are superimposed on contour plots of �2(�ads, �des, �ss) . 
Each contour plot was constructed by holding one of the 
energy parameters constant at its most probable value ( ΔE‡

ads
 , 

ΔE
‡

des
 , or ΔEss ) and allowing the other two parameters to 

vary over a range of values while explicitly calculating �2 
at each point. The blue dot marked on each graph shows the 

global minimum found by the solver at ( ΔE‡

ads
,ΔE

‡

des
,ΔEss ). 

The solid red ellipses drawn over the contour plots for the 
three datasets represent the intersections of their associ-
ated hyper-ellipsoids with the three 2D planes evaluated at 
the most probable value of the third parameter. The loci of 
points on these ellipses are solutions to Eqs. 14 or 15 defin-
ing the 3D hyper-ellipsoid. The hyper-ellipsoids constructed 
for each of the three datasets are similar in orientation and 
size, as revealed by the similarity of the solid red ellipses 
along each row in Fig. 9. It is worth noting that the error 
ellipses for the noiseless simulated data (Figs. 9a, d, and 
g) represent the theoretical “best” (i.e. smallest) confidence 
limits from fitting the 2H′ model to the dataset.

In reality, the �2 function is not perfectly parabolic as 
implied by the Gaussian assumption. This is seen clearly in 
the top and bottom rows of Fig. 9 where the solid red ellipses 
span a range of contour levels and �2 starts to deviate sig-
nificantly from its value at the global minimum. In the quad-
ratic approximation, the value of �2 ≅ �

2

(2)
 where �2

(2)
 at a 

constant value of ΔEss is given by the following expression

Fig. 9   Grayscale contour plots of �2(�
ads

 , �
des

 , �
ss

 ) around the global 
minimum (marked in blue) for: a, d, g the noiseless simulated data 
for the 2H’ mechanism, b, e, h the simulated data with 3% noise, and 
c, f, i the experimental data on Pd. Each �2 contour map was eval-
uated as a function of two parameters while holding the third at its 
most probable value. The solid red error ellipses represent the inter-
section of the 3D hyper-ellipsoid with the three planes in parameter 

space. The region bounded by each error ellipse represents the region 
of 95% confidence assuming that �2 is perfectly quadratic around its 
minimum. Evaluation of �2 at any point on the red ellipses using the 
Taylor expansion (Eq. 16) yields: 

95
�
2

(2)
 = 3.9 for the simulated 2H’ 

data with no noise, 
95
�
2

(2)
 = 4.1 for the simulated data with 3% noise, 

and 
95
�
2

(2)
 = 12.1 for the experimental data on Pd. Contour levels at 

these three values are marked with dotted red lines on each plot and 
are used to represent the 95% confidence regions
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in which �2

min
 = �2(ΔE

‡

ads
,ΔE

‡

des
,ΔEss) . The second deriva-

tives of �2 with respect to �ads and �des are evaluated at the 
global minimum and come directly from the Hessian matrix 
returned by the solver. The value of �2

(2)
 is constant on the 

locus of points forming the ellipsoid; i.e. on the solid red 
ellipses indicating the intersection of the 3D hyper-ellipsoid 
with the 2D planes through ( �ads , �des , �ss ) space shown in 
Fig. 9. In this case, the value of �2

(2)
 on the ellipse can be 

denoted 
95
�
2

(2)
 , the value that determines the 95% confidence 

limit. Since much of the area contained within the solid red 
ellipses includes parameters that yield relatively poor fits to 

(16)

�
2

(2)

(
ΔE

‡

ads
+ �

ads
,ΔE

‡

des
+ �

des
,ΔE

ss

)
≈ �

2

min

+
1

2

d
2
�
2

d�
2

ads

|||||ΔE‡

ads
,ΔE

‡

des
,ΔEss

⋅ �
ads

2

+
1

2

d
2
�
2

d�
2

des

|||||ΔE‡

ads
,ΔE

‡

des
,ΔE

ss

⋅ �
des

2

+
d
2
�
2

d�
ads

d�
des

|||||ΔE‡

ads
,ΔE

‡

des
,ΔE

ss

⋅ �
ads

�
des

the data, we also highlight as a dashed red curve the contour 
level along which �2 =

95
�
2

(2)
 . The dashed red contour pro-

vides a better estimate of the 95% confidence region than the 
solid red ellipse.

Figure 10 shows the same contour plot as in Fig. 9a. The 
quadratic Taylor expansion at any point on the solid red 
ellipse has a constant value of 

95
�
2

(2)
 = 3.9. As a better esti-

mate of the 95% confidence interval, we have mapped with 
a dashed red curve the region of parameter space bounded 
by the locus of points on the �2 = 3.9 contour. This region 
serves as a better representation than the ellipse of the 
parameter space within which combinations of ( �ads , �des , 
ΔEss ) yield statistically indistinguishable fits of the 2H′ 
mechanism to the data.

Figure 10 also includes four solid black lines drawn at 
the maximum and minimum values of �ads and �des at which 
�
2 = 3.9. However, not all of the parameter space contained 

within the black rectangle is realistic because it includes 
values of ΔE‡

ads
 < 0 that are nonphysical. Therefore, a subset 

of this region is framed by the green lines which contain the 
95% confidence limit around ΔE‡

ads
 and ΔE‡

des
 , constrained 

to include only physically meaningful values of �ads and �des . 
These limits serve as conservative estimates for the 95% 
confidence limits on ΔE‡

ads
 and ΔE‡

des
 . The contour level at 

�
2 = 3.9 is only achievable for values of �ads in the range 0 

to 0.8 kJ/mol. Thus, the 95% confidence limit around ΔE‡

ads
 

= 0 kJ/mol spans the range [0, 0.8] kJ/mol. Similarly, Fig. 10 
reveals that the 95% confidence limit around ΔE‡

des
 = 43 kJ/

mole spans the range [26, 51] kJ/mol.
All of the solid red error ellipses in Fig. 9 have been mapped 

onto their corresponding contours at �2 =
95
�
2

(2)
 using the 

dashed red curves. The Taylor expansion gives the same value 
of 

95
�
2

(2)
 on all three 2D representations of the 3D hyper-ellip-

soid because they all represent cross sections through the same 
ellipsoid. The values of 

95
�
2

(2)
 get progressively higher for the 

simulated data with 3% noise ( 
95
�
2

(2)
 = 4.1) and for the Pd exper-

imental data ( 
95
�
2

(2)
 = 12.1). Finding the extrema of the �2 con-

tour level at 95% confidence gives a straightforward method for 
using �2 to estimate the uncertainties on all kinetic parameters. 
Note that this approach for estimating confidence limits on indi-
vidual parameters is conservative. It implies a confidence region 
defined by a rectangular area (framed by the green lines in 
Fig. 10) that bounds the 95% confidence region (dashed red 
contour). This rectangular area contains regions that represent 
combinations of �ads and �des that lie outside the dashed contour 
defining the 95% confidence region. Note also, that this analysis 
takes advantage of the fact that we have evaluated 
�
2(�ads, �des, �ss) across the full 3D parameter space. In general, 

this is not practical and one must rely only on the value of �2 at 
its minimum, �2

min
 , and on the Hessian to define the hyper-ellip-

soid shown in Fig. 8. One would then estimate the intervals of 
individual parameters based on the extrema of the solid red 

Fig. 10   Grayscale contour plot of �2 versus �
ads

 and �
des

 at ΔE
ss

 = 
25 kJ/mol for the noiseless data simulated using the 2H’ mechanism. 
The global minimum is marked by the blue dot and the solid red error 
ellipse indicates the region of 95% confidence predicted from �2

(2)
 , the 

quadratic approximation to �2 . Calculation of �2

(2)
 at any point on the 

red ellipse using the Taylor expansion (Eq.  16) yields 
95
�
2

(2)
 = 3.9. 

The corresponding contour of �2 at the value of 3.9 is marked by the 
dashed red curve. The solid black lines framing the contour level at 
�
2 = 3.9 provide conservative estimates of the 95% confidence lim-

its on ΔE‡

ads
 and ΔE‡

des
 . A subset of the region contained within the 

black lines is bounded by green lines which account for the constraint 
that only solutions with ΔE‡

ads
 > 0 are physically meaningful. Thus, 

the area framed by the green rectangle represents the estimated 95% 
confidence region for ΔE‡

ads
 and ΔE‡

des
 when ΔE

ss
 is fixed at 25 kJ/mol
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ellipses formed by the intersection of 2D planes with the hyper-
ellipsoid under the assumption that �2 is quadratic in all degrees 
of freedom.

Analysis of the simulated datasets with and without the inclu-
sion of Gaussian noise reveals the care with which parameter 
estimation must be performed. The coupling of kinetic param-
eters creates relatively large regions of parameter space across 
which the quality of the fit of the 2H′ mechanistic model is indis-
tinguishable from the best fit to the data. This is particularly 
apparent in Figs.  5 and 9d, e, and f which plot 
�
2

(
�ads,ΔE

‡

des
, �ss

)
 , revealing a long narrow trough in �2 lead-

ing from a minimum at a low value of ΔE‡

ads
 and a positive ΔEss 

to a symmetric solution at a high value of ΔE‡

ads
 and a negative 

value of ΔEss . The presence of the alternate solutions reveals a 
challenge for fitting the 2H′ mechanism, namely the model’s 
inability to differentiate between solutions having high surface 
coverage of H with low subsurface coverage of H′ and solutions 
having low surface coverage of H with high subsurface coverage 
of H′ (Fig. 6). In this case, the challenge has to be resolved by 
invoking the constraint that ΔE‡

ads
 should be low and ΔEss > 0 

to be consistent with prior observations [28–30, 36, 39].
To summarize, the methodology for the quantification of 

parameter confidence intervals takes advantage of the Hes-
sian matrix returned by the solver at the global minimum of 
�
2(�ads, �des, �ss) . Using the curvature of �2 around the most 

probable parameter values, ( ΔE‡

ads
,ΔE

‡

des
,ΔEss ), allows con-

struction of a hyper-ellipsoid bounding the region in which 
the values of ( ΔE‡

ads
,ΔE

‡

des
,ΔEss ) can be found with any 

desired level of confidence. This hyper-ellipsoid can be visu-
alized on 2D planes spanning any pair of parameters by 
intersecting the hyper-ellipsoid at the most probable esti-
mated value of the remaining parameter. Since �2 exhibits 
non-quadratic behavior over parameter space, we have iden-
tified the contours of �2 =

95
�
2

(2)
 , where 

95
�
2

(2)
 is the quad-

ratic approximation to �2 evaluated on the surface of the 
95% confidence ellipsoid. This region of parameter space 
better estimates the 95% confidence region than the error 
ellipses. Using this method, we now turn to fitting the exper-
imental data for H2–D2 exchange over the Pd catalyst using 
the three mechanistic adsorption/reaction models: LH, 1H′, 
and 2H′. It is important to note that for the 2H′ and 1H′ 
mechanisms, the 95% confidence limits for each parameter 
are given in two separate 2D plots, each representing a dif-
ferent cross section through the 3D hyper-ellipsoid. For 
example, the uncertainty range on ΔE‡

ads
 is given by 

�
2
(
�ads, �des,ΔEss

)
 and by �2(�ads,ΔE

‡

des
, �ss) . When these 

95% confidence limits differ, we combine the ranges to 
encompass the parameter values from both plots so that the 
estimate of the 95% confidence region is more 
conservative.

5 � Fitting H2–D2 Exchange Data for the Pd 
Catalyst

Three different mechanistic models, LH, 1H′, and 2H′, were 
fit to the experimental dataset for the H2–D2 exchange activ-
ity of the Pd catalyst. Derivations of the rate laws for each 
model have been provided elsewhere [33]. In brief, the sub-
surface mechanisms modify the LH model by including 
either one or two subsurface H′ atoms that influence the 
adsorption and desorption kinetics on the adjacent surface 
sites (Fig. 2). The expressions for the molar flow rate of 
product HD, Fout

HD
(T;Pin

H
2

,Pin
D

2

) , for the LH and 1H′ models 
are given in Eqs. 17 and 18, respectively.

The expressions for the coverages of H and D atoms on the 
surface and in the subsurface, �H , �D , � , and �′ , are given 
by Eqs. 2 – 5. The expression for Fout

HD
 given by each model 

was used to define �2 (Eq. 11) when fitting that model to the 
data. As for the datasets just presented for the 2H′ model, the 

(17)

FLH
HD

=
2kdes�H�DF

tot

kads(1 − �)
2Ptot

[
1 − exp

(
−
Akads(1 − �)

2Ptot

Ftot

)]

(18)

F1H�

HD
=

2kdes�H�DF
tot

kads(1 − �)
2Ptot

[
1 − exp

(
−
Akads(1 − �)

2
�
�Ptot

Ftot

)]

Fig. 11   Plot of HD outlet flow rate as a function of temperature for 
H2–D2 exchange on Pd. The black symbols are the experimentally 
measured HD flow rates exiting the microreactor array for 14 differ-
ent inlet combinations of Pin

H
2

 and Pin

D
2

 and measured at 14 tempera-
tures. The solid lines represent the solutions calculated using kinetic 
parameters found by the solver for the three different mechanisms: 
red = LH ( ΔE‡

ads
 = 51.1, ΔE‡

des
 = 0 kJ/mol, �2

min
 = 6.4), green = 1H’ 

( ΔE‡

ads
 = 0, ΔE‡

des
 = 20, ΔE

ss
 = 46  kJ/mol, �2

min
 = 10.4), and 

blue = 2H’ ( ΔE‡

ads
 = 0, ΔE‡

des
 = 43, ΔE

ss
 = 25 kJ/mol, �2

min
 = 8.2)
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pre-exponents predicted by transition state theory were used 
when fitting each model to the kinetic data.

The experimental data, Fout
HD

(
T;Pin

H
2

,Pin
D

2

)
 , for H2–D2 

exchange over the Pd catalyst are compared in Fig. 11 to the 
predictions of the three reaction mechanisms determined 
using the optimal values of the kinetic parameters, ( ΔE‡

ads
 , 

ΔE
‡

des
 , ΔEss ), found for each mechanism. In Fig. 11, the red 

curves represent the best fit using the LH mechanism, the 
green curves represent the best fit using the 1H′ mechanism, 
and the blue curves represent the best fit using the 2H′ mech-
anism. All three models produce nearly equivalent fits to the 
experimental data across all inlet flow conditions and tem-
peratures, however, the best fits are achieved by different 
optimal values of the kinetic parameters.

Before comparing the three models, the 95% confidence 
limits on the estimated kinetic parameters are visualized 
using contour plots of �2 , as was done for the 2H′ mecha-
nism. Figure 12 shows the contour plot of �2

LH
(�ads, �des) for 

the LH model fit to the H2–D2 exchange kinetics on the Pd 
catalyst. The global minimum found by the solver at ( ΔE‡

ads
 , 

ΔE
‡

des
) = (51.1, 0) kJ/mol is marked by the blue dot and has 

a value of �2

min
= �

2(ΔE
‡

ads
,ΔE

‡

des
) = 6.4. The values of the 

kinetic parameters at this global minimum have been used 
with the LH model to simulate the values of FLH

HD
(T;Pin

H
2

,Pin
D

2

) 
shown by the red curves in Fig. 11. The error ellipse defining 
the 95% confidence limit in the quadratic approximation for 
�
2 about its minimum is not shown in Fig. 12 because it 

extends far outside the axis bounds due to the large variance 

of �des . The value of �2

(2)
 for the LH mechanism on the 95% 

confidence ellipsoid is 
95
�
2

(2)
 = 9.4. The contour on which 

�
2

LH
 = 9.4 is shown as the dashed red curve in Fig. 12. �2

LH
 

= 9.4 has a trough at �ads = ΔE
‡

ads
= 51.1 kJ/mol running 

parallel to the �des axis from the minimum in �2

LH
 at ΔE‡

des
 = 

0 kJ/mol to �des ≈ 50 kJ/mol. Along this trough, the value of 
�
2

LH
 is independent of �des and all points along the trough 

yield good fits to the data. The values of �ads and �des along 
this trough suggest that the Pd catalyst is operating in a 
regime that is rate limited by adsorption. Therefore, the fit-
ting cannot produce a meaningful estimate of ΔE‡

des
 for the 

LH model. The estimate for ΔE‡

ads
 , however, possesses a 

high level of confidence around the optimal value of ΔE‡

ads
 

= 51.1 kJ/mol, with the 95% confidence limit ranging from 
50.6 to 51.7 kJ/mol. The combination of a high barrier to 
adsorption and a low barrier to desorption suggests that the 
Pd catalyst is operating in the low coverage limit. That, and 
the very high barrier to adsorption, ΔE‡

ads
 = 51.1 kJ/mol, 

suggests that this result is not physically realistic, i.e. 
although the LH model is capable of fitting our experimental 
data, it is not a good model for the H2–D2 exchange 
process. 

The 1H′ and 2H′ mechanisms for H2–D2 exchange each 
have three degrees of freedom so their 95% confidence ellip-
soids must be illustrated by three 2D plots of �2 versus two 
degrees of freedom and evaluated at the most probable value 
of the third. Figure 13 shows the contour plots of �2

1H′ versus 
each pair of kinetic parameters for the fit of the 1H′ mecha-
nism to the experimental data. Similarly, Fig. 14 shows the 
equivalent �2

2H′ plots for the fit of the 2H′ mechanism to the 
data. In all cases, the global minimum is marked by a blue 
dot. The parameter values at the minimum were used to con-
struct the solid green and blue curves in Fig. 11 showing 
Fout
HD

(T;PH
2

,PD
2

) predicted by the 1H′ and 2H′ models, 
respectively. The red ellipses in Figs. 13 and 14 bound the 
95% confidence regions estimated by assuming a quadratic 
form for �2

1H′ and �2

2H′ about their minima, analogous to the 
red ellipses in Figs. 9 and 10. Using the quadratic Taylor 
expansion around the global minima yields estimates of the 
values of �2 on the 95% confidence ellipsoids: 

95
�
2

(2)
 = 14.3 

for the 1H′ model and 
95
�
2

(2)
 = 12.1 for the 2H′ model. The 

contours of �2

1H′ = 14.3 and �2

2H′ = 12.1 are indicated by the 
dashed red curves in Figs. 13 and 14, respectively. Finally, 
the solid black lines on each plot are drawn at the extrema 
of the contours bounding the 95% confidence regions. It is 
important to note that these bounds on the values of the 
individual parameters are a conservative estimate of the real 
shape of the 95% confidence region. They are conservative 
in the sense that the rectangles bounding the 95% confidence 
regions contains areas that are not actually within the perim-
eter of the 95% confidence region. A summary of the fitting 
results and the 95% confidence limits for the kinetic 

Fig. 12   Grayscale contour plot of �2

LH
(�

ads
, �

des
) given by the LH 

model for H2–D2 exchange on Pd. The minimum point with �2

min
 

= 6.4 is marked in blue at ΔE‡

ads
 = 51.1 kJ/mol and ΔE‡

des
 = 0. The 

95% confidence region is outlined by the dashed red contour at 
95
�
2

(2)
 

= 9.4. A trough runs parallel to the �
des

 axis from �
des

= ΔE
‡

des
= 0 

to ~ 50  kJ/mol, suggesting that the Pd surface is operating in a low 
coverage, adsorption limited regime
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Fig. 13   Grayscale contour plots of a �
2

1H� (�ads, �des ) with ΔE
ss

 
= 46  kJ/mol, b �2

1H� (�ads, �ss) with ΔE‡

des
 = 20  kJ/mol, and c) 

�
2

1H� (�des, �ss) with ΔE‡

ads
 = 0 given by the 1H’ model for H2–D2 

exchange on Pd. In all three plots, the blue dot marks the global mini-
mum at ΔE‡

ads
 = 0, ΔE‡

des
 = 20  kJ/mol, and ΔE

ss
 = 46  kJ/mol with 

�
2

min
 = 10.4. The red error ellipses represent the 95% confidence limit 

assuming a quadratic form for �2

1H′ about its minimum. The value of 
�
2

1H′ on the ellipses evaluated in the quadratic limit is 
95
�
2

(2)
 = 14.3. 

The dashed red contour levels with �2

1H′ = 14.3 represent the esti-
mates of the 95% confidence regions for parameters derived from the 
1H’ model

Fig. 14   Grayscale contour plots of a �2

2H� (�ads, �des) with ΔE
ss

 = 
25  kJ/mol, b log(�2

2H� (�ads, �ss)) with ΔE‡

des
 = 43  kJ/mol, and c) 

�
2

2H� (�des, �ss) with ΔE‡

ads
 = 0 given by the 2H’ model for H2–D2 

exchange on Pd. In all three plots, the blue dot marks the global mini-
mum found at ΔE‡

ads
 = 0, ΔE‡

des
 = 43.1 kJ/mol, and ΔE

ss
 = 25.4 kJ/

mol with �2

min
 = 8.2. The red error ellipses represent the 95% confi-

dence limit assuming a quadratic form for �2

2H′ about its minimum. 
The value of �2

2H′ on the ellipses evaluated in the quadratic limit is 
95
�
2

(2)
 = 12.1. The dashed red contour levels with �2

2H′ = 12.1 rep-
resent the estimates of the 95% confidence regions for parameters 
derived from the 2H’ model
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parameters for each reaction mechanism are presented in 
Table 1.   

6 � Evaluation of Model Performance 
and Fitting Methodology

The goal of fitting three different mechanistic models to the 
kinetic data for H2–D2 exchange on Pd is to identify the one 
that best describes the data and best represents the real 
mechanism. A thorough implementation of parameter and 
uncertainty estimation has yielded the kinetic parameters 
and their 95% confidence intervals presented in Table 1. 
Since the parameter values for ΔE‡

ads
 , ΔE‡

des
 , and ΔEss have 

physical significance, analysis of the fitting results can yield 
important insight into the physical possibility of the associ-
ated mechanism.

At first glance, it is difficult to distinguish between the 
quality of the optimal solutions found for each mechanism. 
The red, green, and blue curves in Fig. 11 illustrate the pre-
dictions of Fout

HD
(T;PH

2

,PD
2

) by the best fits of the LH, 1H′, 
and 2H′ models to the experimental data. They are nearly 
overlapping, and have comparable values of �2

min
 . In the 

case of the LH model, we can only report values for the 
adsorption energy barrier, ΔE‡

ads
 , because �2 is insensitive 

to ΔE‡

des
 in this regime. The LH mechanism predicts ΔE‡

ads
 

= 51.1 ± 0.6 kJ/mol with 95% confidence. However, this is 
unrealistic for a Pd catalyst, which is known to have a neg-
ligible energy barrier for H2 dissociation [28–30]. In addi-
tion, the LH model is unable to account for the zero-order 
dependence of the reaction rate on PH

2

 under conditions 
where PH

2

≫ PD
2

 and � ≈ 1 , as reported previously [33]. 
Thus, in spite of its low value of �2 the LH mechanism can-
not account for the observed kinetics for H2–D2 exchange 
using physically reasonable kinetic parameters. In contrast, 

both subsurface models predict ΔE‡

ads
 = 0 for their best fit 

solutions, and the 2H′ mechanism supports the observation 
that nH

2

 = 0 under experimental conditions with PH
2

≫ PD
2

 
[33]. Therefore, these fitting results provide additional evi-
dence that H2–D2 exchange follows non-LH kinetics.

We can also calculate the adsorption energy for hydro-
gen, ΔEads = ΔE

‡

ads
− ΔE

‡

des
 , predicted by the most prob-

able values of ΔE‡

ads
 and ΔE‡

des
 for each model. While we do 

not report a value for ΔE‡

des
 using the LH model, it is clear 

from Fig. 12 that the mechanism predicts ΔEads > 0 since 
ΔE

‡

ads
> ΔE

‡

des
 within the entire 95% confidence region. 

By contrast, the 1H′ and 2H′ mechanisms predict ΔEads = 
− 20 kJ/mol and ΔEads = − 43 kJ/mol, respectively, which is 
consistent with the understanding that dissociative hydrogen 
adsorption is exothermic. DFT calculations have found that 
ΔEads = − 101 kJ/mol for H2 on Pd (100) and that ΔEads = 
− 114 kJ/mol for H2 on Pd (111) [29]. Experimental studies 
have measured the hydrogen adsorption energy to be system-
atically lower than DFT predictions, ΔEads = − 87 kJ/mol 
for Pd (100) [28], and ΔEads = − 99 kJ/mol for Pd(111) [45]. 
The predictions of the 2H′ mechanism are in better agree-
ment with the expectations for ΔEads from the literature.

While both subsurface models predict the same value for 
ΔE

‡

ads
 , they have different implications for ΔE‡

des
 and ΔEss . 

For the 2H′ mechanism, ΔE‡

des
> ΔEss , which means that the 

equilibrium constant for surface-subsurface diffusion, Kss , 
is less sensitive to temperature changes than the desorption 
rate constant, kdes . The opposite is true for the 1H′ mecha-
nism, where ΔE‡

des
< ΔEss . This difference highlights the 

fundamental preference of the 2H′ mechanism for populat-
ing the subsurface in order to facilitate the adsorption and 
desorption processes. The value of ΔEss = 25 kJ/mol pre-
dicted by the 2H′ mechanism for Pd is consistent with a DFT 
study by Ferrin et al. who calculated the surface–subsurface 
energy difference for hydrogen atoms on various transition 
metal single crystals [29]. In their work, ΔEss = 29 kJ/mol 
for Pd(111) and ΔEss = 30 kJ/mol for Pd(100), similar to 
the value predicted by the 2H′ mechanism. Finally, the 2H′ 
mechanism predicts ΔE‡

ads
 = 0 consistent with values meas-

ured on clean Pd surfaces [28–30], and predicts nH
2

 = 0 
under the experimental conditions at which this is observed. 
As such, the 2H′ model is the most consistent with the cur-
rent understanding of H2–D2 exchange kinetics.

7 � Conclusion

This work presented the methodology for kinetic parameter 
estimation from reaction data and for estimating the confi-
dence regions associated with these parameters. In particu-
lar, we have illustrated the difficulty in independently esti-
mating the values of � and ΔE‡ associated with 

Table 1   Summary of the fitting results for the Pd catalyst

Langmuir–
Hinshelwood 
(LH)

Single subsur-
face hydrogen 
(1H’)

Dual subsurface 
hydrogen (2H’)

ΔE
‡

ads
(kJ/mol) 51.1 0 0

95% conf. 
bounds

50.6–51.7 0 – 6 0–12

ΔE
‡

des
(kJ/mol) – 20 43

95% conf. 
bounds

– 13–29 29–56

ΔE
ss

(kJ/mol) – 46 25
95% conf. 

bounds
– 40–47 19–26

�
2

min
6.4 10.4 8.2

95
�
2

(2)
9.4 14.3 12.1
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Arrhenius-like rate constants. The best practice uses transi-
tion state theory to constrain the values of the pre-exponen-
tial factor before then estimating the value of the energy 
barrier. Numerical solvers can encounter pitfalls, such as the 
presence of multiple solutions and regions of parameter 
space where the sum of squared errors ( �2 ) is insensitive to 
parameter values. These issues can render it impossible to 
quantify such parameters with useful accuracy. For this rea-
son, it is essential to investigate the local environment 
around a suspected global minimum of �2 to quantify the 
degree of (un)certainty in the solver output. Error ellipses 
can be used to visualize the bivariate relationships between 
pairs of parameters around the global minimum in multidi-
mensional parameter space. Since the models had non-
Gaussian distributions of error in �2 , the error ellipses 
bounding the 95% confidence region were converted into 
contours of constant �2 =

95
�
2

(2)
 determined by a quadratic 

approximation to �2 . The extrema of these contours can be 
interpreted as conservative estimates for the 95% confidence 
limits of the kinetic parameters.

Using the above methodology, three different mechanistic 
models, LH, 1H′, and 2H′, were fit to the H2–D2 exchange 
activity of a Pd catalyst. In fitting the models to the reaction 
data, we obtained estimates for the fundamental energetics 
describing hydrogen adsorption, desorption, and surface-to-
subsurface diffusion. While all three mechanisms fit the data 
with a similar value of �2

min
 , the kinetic parameters predicted 

at the global minima varied significantly. The LH model 
was only capable of estimating ΔE‡

ads
 = 51.1 ± 0.6 kJ/mol, 

which disagrees with the literature for H2 adsorption on Pd. 
Both subsurface models predicted ΔE‡

ads
 = 0, but only the 

2H′ mechanism was also able to match the DFT prediction 
for ΔEss and the experimental observation of the reaction 
order in PH

2

 of nH
2

 = 0 for conditions where PH
2

≫ PD
2

 . Ulti-
mately, the estimates for ΔE‡

ads
 , ΔE‡

des
 , and ΔEss and inclu-

sion of the uncertainty on each parameter give additional 
insight into the mechanism for H2–D2 exchange on Pd.
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