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Abstract
Kinetic parameters have been estimated for the H,—D, exchange reaction on a thin film Pd catalyst by fitting reaction data
from T=333 to 593 K over a range of inlet partial pressures, PZZ and Pj:’;Z. A rigorous approach to estimating the 95% con-

fidence regions of the kinetic parameters reveals some of the issues and complexities that are not routinely considered in the
estimation of kinetic parameter uncertainty from catalytic data. Three different mechanistic models were used to assess the
influence of subsurface hydrogen, H': the traditional Langmuir—Hinshelwood (LH) mechanism, the Single Subsurface Hydro-
gen (1H') mechanism, and the Dual Subsurface Hydrogen (2H') mechanism. The fitting was performed by fixing the pre-
exponential factors for all Arrhenius rate constants and equilibrium constants to their transition state theory values. The
diffusion of H and D atoms from the surface into the subsurface was constrained to be endothermic (i.e. AE; > 0) and
represented as an equilibrium process. Performance of the fitting routine was evaluated on a noiseless simulated dataset
(created using AE:E 2 =0, AEjes =43, and AE = 25 kJ/mol) and the same simulated dataset with the inclusion of 3% Gauss-
ian noise. In both cases, the solver was able to return the chosen values of AEj s AELS, and AE . Mapping of the behavior
of the residual sum of squared errors, y2, about its global minimum within 3D (€, €4, €,,) parameter space allowed quan-
tification and visualization of the 95% confidence regions using 2D error ellipses for each pair of fitting parameters. For the
experimental dataset on the Pd catalyst, fitting to the LH model predicted that H,—D, exchange is adsorption rate limited,
with AEE 45 = 1.1 £0.6 kJ/mol with 95% confidence. On the other hand, fitting to both the 1H" and 2H' models led to predic-
tions of AEi 4 = 0, consistent with the current understanding that the barrier to H, dissociation on Pd is low. Thus, the results
detailed herein provide supporting evidence for a non-LH mechanism for H,—D, exchange on Pd while also illustrating the
issues associated with quantification of uncertainty in kinetic parameter estimation.
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1 Introduction
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gellman@cmu.edu Reactions involving H, have a wide range of industrial appli-
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often derived from fossil fuels, H, must be separated from
CO,-rich gas mixtures. Standard methods for H, separation
and purification include solvent absorption, pressure swing
adsorption, and cryogenic distillation, all of which require
large capital and energy expenditures [9, 10]. Metal mem-
brane filters offer a promising alternative for purifying H,
due to their low operating cost and low energy consump-
tion [11]. Pd-based membranes are commonly used for H,
separation since they can easily dissociate H, and dissolve
H atoms, and they have a high permeability for H atoms
once dissolved [12]. Pd membranes also possess a high
selectivity to H, transport relative to other gases [13, 14]. It
has been shown that Pd or Pd-alloy membranes are stable
for several months under H, flow in the temperature range
900-1046 K [15, 16]. However, there are limitations to using
pure Pd membranes for H, purification. H, adsorption on Pd
below its critical point of 571 K and 2 MPa produces both
a-PdH and B-PdH phases, which have different lattice con-
stants. Phase transitions between these two hydrides cause
lattice strain and result in the formation of bulk and grain
boundary defects [17]. Ultimately, H, embrittlement causes
membrane rupture after repeated pressure and temperature
cycling [18-20].

Transport of H, through Pd-based membranes involves
five steps: dissociative adsorption of H, on the upstream
side of the membrane surface to form H atoms, dissolu-
tion of H into the subsurface, diffusion of dissolved H
atoms through the bulk, diffusion of subsurface H' atoms
to the downstream surface, and associative desorption of
H, from the downstream surface [21, 22]. This transport
process is known to be limited by the bulk diffusion of
H atoms, as manifested by its half-order dependence,
ny, = 1/2, on H, pressure, Py [23]. Decreasing the mem-
brane thickness increases the order of the hydrogen pres-
sure dependence and increases the permeability through
Ag-Pd alloys [18, 23, 24]. For ultrathin Ag-Pd alloy films
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with thicknesses < 500 nm, the H, transport is reported to
be first-order, ny =1, in Py over the temperature range
373-523 K [18]. This result indicates that surface reac-
tions, i.e. the H, adsorption step at the upstream surface
dictate the rate of hydrogen transport through ultrathin
Ag-Pd membranes.

While the bulk diffusion of H atoms through Pd has
been investigated extensively [25-27], the surface reac-
tions of H, adsorption and desorption on Pd-based alloy
surfaces are not as well understood. The kinetics of the
H,-D, exchange reaction (H, + D, —2HD) can provide
valuable information about the adsorption and desorp-
tion steps [21, 22]. Hence, our estimation of the kinetic
parameters associated with the H,—D, exchange reaction
on Pd provides important insight into hydrogen purifica-
tion by Pd-based membranes. Understanding the kinet-
ics of H, adsorption is also a fundamental component of
understanding other surface reactions, such as catalytic
hydrogenation, that involve adsorbed H atoms.

Numerous studies of H, on Pd surfaces have shown that
it adsorbs with a negligible barrier to dissociation and a high
heat of adsorption [28-30]. The most straightforward
approach to modeling H,—D, exchange on Pd involves appli-
cation of the traditional Langmuir-Hinshelwood (LH)
framework. H,—D, exchange has the simplest possible sur-
face reaction mechanism as described by the LH framework.
The reaction mechanism is parametrized by just two rate
constants: k , for the dissociative adsorption of H, and k,
for the associative desorption of H, (Fig. 1). However, the
kinetic behavior predicted by the LH mechanism has been
found to be inconsistent with several experimental observa-
tions of H,—D, exchange on Pd catalysts. Savara et al.
observed that on Pd(111) and Pd nanoparticles [31, 32] with
PD2 > PH2 and high total surface coverage, 8 = 1, the reac-
tion order in P, was n, = 0. This differs from the LH pre-
diction of nj" = —1for P, > P and high total surface
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Fig. 1 Schematic diagram of the H,—D, exchange reaction on a cata-
lyst surface. H,, D,, and HD adsorb competitively on the catalyst
surface into adjacent empty sites. All three have the same Langmuir—
Hinshelwood adsorption and desorption rate constants, k,,, and kg ,,.
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The surface-to-subsurface diffusion equilibrium constant, K, quanti-
fies the equilibrium between adsorbed H and D atoms and absorbed
H’ and D’ atoms in the immediate subsurface layer. Note that hydro-

gen adsorption and desorption can occur with zero, one, or two H’ (or
D’) atoms in the immediate subsurface
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coverage, @ = 1. The LH prediction results from the intuition
that the surface is already saturated with deuterium (6,, =~ 1)
when Pj, > Py thus, increasing P, will inhibit H, adsorp-
tion, thereby decreasing 0. Similarly, Sen et al. observed
that the H,—D, exchange reaction order in Py, was ny, =0
for P, > Pj, and @ = 1using the same Pd catalyst film used
for this work [33].

The importance of subsurface hydrogen, herein denoted
by H’, has been increasingly documented in the field of
heterogeneous catalysis [29, 31, 32, 34-38], and has the
ability to explain deviations from the LH framework for
H,-D, exchange. Density functional theory (DFT) studies
have shown that Pd is the only transition metal for which
subsurface H' atoms are energetically stable with respect
to gaseous H, [36, 39]. Consequently, the contribution of
subsurface H" must be considered in order to accurately
model the kinetics of catalytic reactions involving H, on
Pd and Pd-based alloys. Previously, two H,-D, exchange
mechanisms were proposed, both of which include the pres-
ence of subsurface H' (and D’) in the rate equations [33].
These mechanisms (Fig. 2), referred to as the Single Sub-
surface Hydrogen mechanism (1H') and the Dual Subsurface
Hydrogen mechanism (2H'), expand on the LH framework
by allowing diffusion of surface H and D atoms into and out
of the subsurface layer with an equilibrium constant, K
(Fig. 1). Fundamentally, the subsurface hydrogen mecha-
nisms require the presence of either one or two adjacent
H’ or D’ species in the immediate subsurface in order to
facilitate the hydrogen adsorption and desorption processes
occurring on the adjacent top surface sites. Analysis of these
mechanisms under conditions where Py > P, and 6 = 1
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Fig.2 Schematic representation of the three different reaction mod-
els investigated in this work. The Langmuir-Hinshelwood mechanism
(LH) only involves adsorption and desorption from the top surface.
In the Single Subsurface Hydrogen mechanism (1H’), an H* (or D’)
atom in the immediate subsurface layer influences the energetics of
adsorption and desorption from the adjacent sites on the surface. In
the Dual Subsurface Hydrogen mechanism (2H), two adjacent H’ (or
D’) atoms in the subsurface layer influence the energetics of adsorp-
tion and desorption from the adjacent sites on the surface

revealed that the Dual Subsurface Hydrogen mechanism
(2H’) is consistent with the reaction order ny, = 0 observed
in the earlier work using this Pd catalyst film [33].

In this study, the catalytic kinetic data for H,-D,
exchange on the pure Pd region of a Ag,Pd,_, composition
spread alloy film [33] was used to estimate the fundamental
kinetic parameters associated with three different mecha-
nistic models: LH, 1H’, 2H'. A schematic illustration of
each mechanism is presented in Fig. 2. The three kinetic
parameters considered were the barriers to H, (D,) adsorp-
tion and desorption, AEj is and AELS, and the surface-to-
subsurface H (D) transport energy, AE,. The uncertainty
regions for each kinetic parameter were visualized using the
Hessian matrix describing the curvature of the residual y?
at its optimal value (minimum) to reveal confidence lim-
its on the parameter fitting results. The kinetics of H,-D,
exchange on Pd offers an interesting case study opportu-
nity to explore the limits of kinetic parameter estimation
for the three mechanisms: LH, 1H’, and 2H'. This is possi-
ble because we have developed analytic expressions for the
three rate laws describing the exchange kinetics [33]. These
rate laws enable us to rationalize some of the observations
made during analysis of the reaction kinetics. In addition, we
have applied the relevant methods to map out the statistical
confidence regions across 3D parameter space spanned by
€445> €405 AN €, in such a way that the limitations of these
methods can be appreciated.

2 Experimental

The data analyzed herein are a subset of a larger dataset
that includes the rates of H,—D, exchange measured over a
range of temperatures and inlet pressures of H, and D, on
90 compositions of Ag Pd, . spanning the range x=0—1,
as described earlier [33]. This was accomplished using a
Ag-Pd composition spread alloy film (CSAF) and a multi-
channel microreactor array capable of isolating 100 regions
of the CSAF, all having different alloy compositions [40,
41]. This study focuses on the methodology for extraction
of confidence intervals for kinetic parameters derived from
three models of the reaction mechanism. As such, we focus
on the reaction rates for catalytic H,—D, exchange obtained
on the most Pd-rich region of the CSAF, which has a nomi-
nal composition of Ag,,Pdyy. Throughout, we refer to this
simply as the Pd catalyst.

2.1 Measurements of H,-D, Exchange Kinetics
The H,-D, exchange activity of the Ag Pd, . CSAF was
measured at 90 different alloy compositions using a high-

throughput 100-channel microreactor array which has been
described in detail elsewhere [40]. Only 90 channels of the
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reactor were in use because the inlet flow to one row of 10
reactors was blocked. Reactant mixtures of H,, D,, and Ar
were delivered continuously to the 90 isolated regions of
the Ag,Pd,_, CSAF surface, and products were continuously
withdrawn from each region for analysis using an Extrel
quadrupole mass spectrometer.

The H,—D, exchange activity of the Ag,Pd, _, alloys con-
tained on the CSAF was measured at atmospheric pressure
and over a temperature range from 7' = 333 to 593 K. The
H, inlet partial pressure spanned the range PZZ =

23-230 Torr and the D, inlet partial pressure spanned P’gz =

0.23-230 Torr with Ar constituting the remainder of the gas
flow. The temperature was increased in 20 K increments
from 333 to 593 K, and the reaction was allowed to reach
steady-state by waiting for 4 min at each temperature before
beginning the analysis of the product gases from each of the
reactor channels. The composition of the reaction products
was calculated by assuming that the mass spectrometer sig-
nals at m/z =2, 3, and 4 amu obtained from the product gas
samples were proportional to the H,, HD, and D, partial
pressures. Baseline (0% conversion) signals at m/z = 2, 3,
and 4 amu were collected by sampling the feed gas mixture
directly without it contacting the CSAF surface. The dataset
collected from these measurements consists of the HD flow
rate exiting each of the reactor channels measured over a
range of: catalyst compositions, x; temperatures, 7'; and inlet
pressures, Fou (x, T;Pi”z, Pg’o). The subset of these data ana-

lyzed in this work are F;’;g(x =0.01, T;PiH" s Pg‘ ); i.e. the data
2 2
from the most Pd rich region of the CSAF.

3 Kinetic Parameter Estimation

3.1 The Dual-Subsurface Hydrogen (2H') H,-D,
Exchange Mechanism

Several studies of H,—D, exchange on Pd surfaces have pro-
vided evidence for a non-LH mechanism that involves both
surface hydrogen atoms, herein denoted by H, and subsur-
face hydrogen atoms, herein denoted by H' (Fig. 2) [31-33].
The primary kinetic evidence for a non-LH mechanism is
that under conditions where P"H”2 > Pg: and 6 ~ 1, the reac-
tion order in Pian is ny, = 0, whereas the LH mechanism
predicts a reaction order of ny = —1. Our comparison of
several alternative mechanisms revealed one in which two
adjacent subsurface H' or D’ atoms in sites below two adja-
cent surface H or D atoms serve to facilitate associative des-
orption of the two surface atoms. A derivation of the rate law
for the Dual-Subsurface Hydrogen (2H') mechanism has
been provided previously [33] and predicts a reaction order
of ny, = 0 for PZZ > sz and O =~ 1. In brief, an equilibrium

@ Springer

constant for surface—subsurface diffusion (K,), as illustrated
in Fig. 1, describes the equilibrium between adsorbed H or
D atoms and absorbed H' or D’ atoms in the immediate sub-
surface layer. The presence of subsurface species, H' or D',
influences the dissociative adsorption and associative des-
orption kinetics on the surface, modifying the rate equation
for H,—D, exchange from that given by traditional LH kinet-
ics. The overall rate of HD production given by the 2H’
mechanism is

rup = 2k270,0,0% — K21 Py (1 — 0)%60 (1)
where kiz 'is the rate constant for dissociative adsorption of
HD onto two adjacent empty surface sites with H' or D' in
their immediate subsurface, and kﬁg 'is the rate constant for
associative desorption of HD from two adjacent filled sur-
face sites with H' or D’ in their immediate subsurface. Note
that the rate constants for H,, D,, and HD adsorption (or des-
orption) are all taken to be equal (i.e. isotope effects causing
zero-point energy differences are ignored). The quantity P,
is the pressure of HD in the gas phase, and 8 = 6, + 6, and
0’ = 0, + 0’|, represent the fractional coverages of surface
and subsurface hydrogen species, respectively. The equi-
librium expressions for 8, 8, 0, and 8’ given by the 2H’
mechanism can be found in Egs. 2-5. In the following equa-
tions, K, represents the adsorption equilibrium constant

. . 2H! 2H/
given by the ratio k2, /k .
) _ Ko Py,
1 K Pf()l + K Pl(]f (2)
2H'Y g V 2H'" g
b K Pl‘ot + K Ptol‘ (3)
2H'Y g \/ *2H g
) Koy P!
K Pt()t + K Ptat (4)
2H' g 2H' g
K K Plot
6, — ssT2H'Y g

5
K Koy P + ) Ky P )

The quantity P’H‘” = Pjsz + Pi’;z = PH2 + Py + PD2 is the total
pressure of hydrogen containing species in the gas phase and
is constant at each point along the length of the reactor.
Note that the rate constant for HD formation and des-
orption, k27', is multiplied by a factor of 2 in Eq. 1. This
arises from the statistics of atomic collisions leading to
a reaction with a rate constant kjg’. In a mixture of H and
D atoms, the total collision frequency is proportional to
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(64 + 9D)2 = (0% + 20,0, + 62). The coefficient of 2 on
the 6,0, term describing H-D collision frequency has been
used explicitly in Eq. 1 rather than embedding it into a new
rate constant. The presence of this factor of 2 also ensures
that the rate expression that we have used yields the correct
equilibrium constant of (P}? ) 2 /(P5E) (PY) = 4at full con-
version of the initial mixture of H, and D,.

From the perspective of assessing our ability to perform
accurate parameter estimation, one of the attractive fea-
tures of this problem is the fact that one can find analytical
rate laws for the LH, 1H’, and 2H’ mechanisms for H,-D,
exchange. The design equation for a catalytic surface reac-
tion in a flow reactor relates the catalyst surface area, A, to
a mass balance represented by the following integral [42].

!
A:/ wdr )
o Tup

The catalyst area, A, is known because we are using a thin
film reactor area of 900 700 um?. Solving the integral using
the expression for 7, in Eq. 1 and rearranging the result
yields an expression for the molar outlet flow rate of HD
(F 1%1111) mol/s) generated by the 2H' mechanism in terms of
kinetic parameters and experimental conditions.

R 2k, 00 F™ . Ak (1 — )22 Pt
HD = 2 —eXp\ — o1
k(1 = 0)>Prot F
(N

In Eq. 7, F™ is the total molar flow rate through the reactor
including the inert stream of Ar and P’ is the total pressure
inside the reactor (~ 1 atm).

The rate constants for adsorption and desorption are in
the Arrhenius form, each parametrized by its pre-exponential
factor, v, and activation energy (AEY). Because the activa-
tion energy term lies inside an exponential, all analysis was
done using the logarithm of the pre-exponents to balance
the sensitivity of the fitting objective function, y?2, to both
parameters.

AEz:Sds

kads = Vaas®XP| — RT (8)
AEjes

kdes = Vies€XP RT (9)

In Eqgs. 8 and 9, R is the ideal gas constant and T is the reac-
tion temperature in K. The equilibrium constant for surface-
subsurface diffusion, K, is given by the ratio of the rate
constant for surface-to-subsurface diffusion, k,_, , and the
rate constant for subsurface-to-surface diffusion, k

>TSS —8

exp(~ 222
kS—)SS V—’YY RT

AE
Km- = k. = AL = Vi CXp RT (10)
=8 vv—»vexp< T)

In Eq. 10, v, represents the ratio of the pre-exponents for
the two diffusion rate constants and AE;, = AE* | — AE*
is the reaction energy for surface-to-subsurface transport of
H and D atoms. When AE > 0, the transport of hydrogen
from the surface into the subsurface layer is an endothermic
process.

To summarize the data fitting problem briefly, the 2H'
model contains six kinetic parameters: three pre-exponential
factors (log(v,,,), log(v,,,), and log(v,,)) and three energies
(AEj s AEjeX, and AE,,). For a given mechanistic model,
e.g. 2H’, the three pairs of v and AE correspond to the rate
constant for dissociative adsorption, kig;, the rate constant
for associative desorption, kle , and the equilibrium constant

for surface-subsurface diffusion, K.

3.2 Parameter Estimation from a Noiseless
Simulated Dataset

In order to assess the difficulty of fitting 6-parameter kinetic
model proposed for the 2H' mechanism to the kinetic data
for H,-D, exchange, a simulated dataset was generated for
the 2H' mechanism by assuming values for the three pairs of
pre-exponential factors, v, and energy terms, AE. Transition
state theory was used to estimate reasonable values for the
pre- exponents [43]. Assuming a mobile transition state, v, 4
= 10? mol/m?/s/Torr for dissociative adsorption and v,,, =
10° mol/m?/s for associative desorption. The pre-exponential
factors for the surface—subsurface diffusion rate constants,
k.. and k_ ., are assumed to be roughly equal to one
another, resulting in v, = 10°. The energy barriers used for
creating the simulated data were chosen to be AE]L =0kJ/
mol and AE‘L = 43 kJ/mol based on values for 31m11ar Pd-
alloy systems [21] and the known values from fitting our
data for Pd. An endothermic subsurface diffusion energy of
AE =25 kJ/mol is close to the value of 29 kJ/mol calcu-
lated in a DFT study of hydrogen absorption into pure Pd
[29]. Using the fixed kinetic parameters defined above, a
dataset was generated using Eq. 7 to calculate the HD molar
flow rate at the outlet, Fy out (T P’" ,P’” ), as a function of reac-
tion temperature and the inlet partlal pressures of H, and D,.
The reaction temperature was varied from 7 = 333 to 593 K
in increments of 20 K, as done experimentally. The inlet H,
pressure was varied from PZZ = 23-230 Torr and the inlet
D, pressure was varied from PZ;Z = 0.23-230 Torr while
keeping the total inlet flow rate constant at F"' =
2.5% 1077 mol/sec/channel. In total, 14 different inlet flow
conditions were simulated across the range of 14 reaction
temperatures, yielding a data set of 196 points (partially
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Fig.3 Noiseless simulated data for the outlet molar flow rate of HD
(F°") versus temperature as predicted by the 2H’ mechanism, with

HD
Vaay = 10> mol/m?/s/Torr, v, = 10° mol/m?s, v, = 10°, AEF | =0 kJ/

mol, AEjE = 43 kJ/mol, and AE; = 25 kJ/mol. All data points of the
same color correspond to a partlcular inlet combination of P’" and
P’” in Ar

shown in Fig. 3) representing the data for a Pd catalyst;
F out (T P’” P’" ) Figure 3 shows that the reaction conditions

span the full range of conversions, with each curve achieving
its equilibrium conversion at high temperatures.

The 2H' rate law (Eq. 7) was fitted to the simulated data
using the MATLAB® minimization tool finincon, which is
designed for constrained, nonlinear, multivariable functions.
Other built-in MATLAB® solvers, such as Isgcurvefit and
nlfit, were explored and found to perform equally well. Ini-
tially, all six kinetic parameters were fit to the simulated
dataset using 1000 initial parameter guesses (seeds) span-
ning a wide range of parameter space. The pre-exponential
factors of the initial seeds were varied over 10 orders of
magnitude and the energy barriers were varied from 0 to
100 kJ/mol. Initializing the solver at 1000 different points
explored the potential for the solver to find multiple min-
ima, or not converge on a minimum at all. For each initial
seed guess, the optimal kinetic parameters were estimated
using the solver to sample parameter space and minimize an
objective function which, in this case, is the relative sum of
squared errors, y2, over all 196 data points. In order to give
similar weights to the low and high conversion data points,
the relative error between the fit and the simulated data
points was used in the definition of y? as shown in Eq. 11.

Fsolv _ Fsim
2 _ HD HD
X = Z Fsim (1 1)
HD

F jjg is the HD flow rate calculated by the solver as it sam-
ples parameter space and F’ ;g is the HD flow rate calculated
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using the parameter values chosen for the simulated dataset.
The parameter values that yielded the lowest value of y?
among the 1000 optimizations were chosen as the optimal
solution; i.e. the best estimates of log(v,,;,), log(v,,,), log(v,,),
AE;L s AEjm, and AE . Since the dataset contained no noise,
the solver was able to converge to the exact solution with y?
< 3x 107 for~25% of the 1000 iterations (initial seeds).
In~60% of the optimizations, the solver failed to move from
the initial guess because the y? function was flat across the
local parameter space. This occurred when the combination
of parameters used for the initial guess predicted either zero
conversion or full conversion (the equilibrium flow rate) at
all reaction temperatures and inlet flow conditions. In the
remaining ~ 15% of iterations, the solver converged to vari-
ous local minima with significantly higher values of y? > 1
than the one found at the optimum parameter set.

In order to understand the landscape of this (or any)
parameter estimation problem and to extract some under-
standing of the confidence limits associated with an optimal

fit, one needs to understand the full extent of y? (ﬁ), where

p represents a vector of the set of parameters over which the
optimization is conducted. In this case, contour plots of >
were generated for pairs of kinetic parameters to visualize
their impact on y? and on the quality of the fit. Particularly
important are the contour plots for the pairs of kinetic
parameters that define a single rate constant (i.e. log(vy,,)
and AEfles). Figure 4 shows y? versus log(v,,,) and € ,, evalu-
ated while holding the parameters determining k; and K

(kJ/mol)

log(v

des)

Fig.4 Grayscale map and contour plot of y? versus log(vdm) and €,
about the true minimum, marked by the blue dot at AE = 43 kJ/mol
and log(vdes) = 6. The values of y? were calculated usmg the simu-
lated data from Fig. 3 with no added noise. The red ellipse bounds the
region of 95% confidence around the solution. Thus, any combina-
tion of points within the ellipse gives a reasonable fit to the simulated
dataset
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at their optimal values. For clarity, the symbols € and v used
throughout this work represent parameter space generally,
whereas the quantities AE and v represent the values of the
optimum fitted kinetic parameters. In other words, if €, is
the variable spanning the range of desorption energy barri-
ers, then AE]k = 43 kJ/mol is the value of ¢, at the opti-
mum fit to the 51mulated data. The value of this distinction
will become apparent during the discussion of uncertainty
estimation in Sect. 4. In Fig. 4, the solution point found by
the solver (with y% < 3% 107%) is marked by the blue dot and
falls exactly at the predefined values of v,,, = 10° mol/m*/s
and AEfles = 43 kJ/mol used to create the dataset. The region
of 95% confidence was calculated using the curvature of the
2 objective function around the global minimum (as
explained in Sect. 4) and was drawn over the contour plot as
a red ellipse. The ellipse contains a large area of the white
region of the plot, spanning several orders of magnitude of
V4 and a large range of €,,,. All combinations of log(v,,,)
and AET , within this red error ellipse are capable of giving
reasonable fits to the data, although not all combinations are
physically meaningful (i.e. AEjes < 0). Such a large uncer-
tainty on these two parameters is due to the coupling of the
pre-exponent and energy barrier in the Arrhenius equation
(Eq. 9). The value of the desorption rate constant, k,,, stays
constant when log(vdes) is decreased at a rate proportional to
the decrease in AE The same phenomenon can be
observed when plottmg x? as a function of the other two
pairs of log(v) and e. This illustrates the inherent futility of
trying to extract independent measures of log(v) and AE
from kinetic data spanning a limited range of temperatures.
Because all pairs of log(v) and AE are coupled in this way,
one must turn to additional fundamental understanding of
reaction rate constants in order to estimate either one of
these two parameters. In this case, the pre-exponents can be
estimated using transition state theory, thereby enabling
meaningful estimation of AE;iE s AEj,es, and AE from the
experimental dataset [43]. For the remainder of this work,
we will limit parameter fitting to the quantities (AEM[Y
AEjm, E,) and fix the pre-exponential factors to their val-
ues estimated by transition state theory, i.e. (v 4, = 10> mol/
m?/s/Torr, v,,, = 10° mol/m?/s, and v, = 10°) [43].

Using transition state theory to estimate the pre-expo-
nent values involves its own inherent assumptions about the
nature of the transition state. In the case of adsorption and
desorption this typically involves assumptions about the
mobility of the transition state. Given that the adsorption
process for H, has no barrier and, therefore, that the desorp-
tion process has a transition state that is very late in the reac-
tion coordinate, the transition state is likely to approximate
H, weakly interacting with the surface. In other words, the
transition state is mobile. In all such analyses, it necessary
to be clear about the assumptions being made regarding
the transition state. If the uncertainty in the transition state

estimate of the pre-exponent is larger than that of the esti-
mate based solely on the kinetic data (Fig. 4), then the use
of transition state theory is unjustified.

One of the ubiquitous issues plaguing parameter estima-
tion problems is the potential existence of multiple local
minima in the objective function, y2, all predicting differ-
ent sets of parameter values that yield comparably good fits
to the data. Performing multiple fits using different initial
seed parameters that span wide ranges (orders of magni-
tude) of parameter space can reveal multiple solutions or
provide some confidence that a unique optimal solution
has been found. Of course, this becomes impractical for
problems with many degrees of freedom (i.e. too many fit-
ting parameters). An interesting feature of the 2H' model
was discovered when allowing the search space for AE to
include negative values, i.e. implying exothermic surface-to-
subsurface energetics. Figure 5 shows a grayscale contour
plot of y? versus €,4, and €, (with AE? = 43 kJ/mol, the
value used for simulation of the dataset). The kinetic param-
eters used to create the dataset are indicated by the blue dot
and an alternate minimum (optimal fit) is indicated by the
green dot. Surprisingly, the solver found a new solution with
2% <3x107 at a value of AE, = — 25 kJ/mol, the negative
of the value used to generate the dataset. At this solution,
the adsorption energy barrier is AEi = 50 kJ/mol, also
substantially different from the value of AE = 0 kJ/mol
used to generate the dataset. Note that these alternatlve val-
ues of AE_ and AE;E 4 differ by exactly -50 and + 50 kJ/mol,
respectively, from the values used to generate the dataset.

900
800
700
600
500

(kJ/mol)

400

€
sSs
'

300
200
100

0 10 20 30 40 50
€ s (kJ/mol)

Fig. 5 Grayscale map and contour plot of y? versus €,y and e cal-
culated using the noiseless simulated dataset from Fig. 3. Note that
x? increases so quickly in the black region that all values of y? in
this region were assigned a maximum value of 1000. The expected
minimum with AE,; > 0 is marked by the blue point and has y2 <
3% 107. An alternative solution with AE,; < 0 is marked by the green
point and also has y2 < 3x107°
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The value of AEﬁes = 43 kJ/mol used to generate the dataset
is also found for the second optimum fit.

To investigate the effect of the sign of AE on the 2H’
model predictions, the total coverages of surface and sub-
surface hydrogen species were plotted as functions of tem-
perature and total inlet hydrogen pressure, Py, in Fig. 6.
The left-hand panels of Fig. 6 show the total coverages on
the surface, 6, and in the subsurface, ', predicted using the
parameter values, (AEJr AE1E E )=(0, 43, 25), used to
create the dataset. The low value of AEi = 0 kJ/mol results
in high coverages on the surface, 6 ~ 1 whrle the positive
value of AE ;=25 kJ/mol, yields very low coverages in the
subsurface, 8’ ~ 0. The right-hand panels of Fig. 6 show the
coverages, 0 and 8’, predicted using the parameter values at
the alternate minimum, (AE;t AEEI];Es E )=(50,43, - 5)
marked by the green dot in Frg 5. The hlgh value of AE
50 kJ/mol yields a very low coverage on the surface, 9 0
while the negative value of AE ; = -25 kJ/mol yields a high
coverage in the subsurface, 8’ ~ 1. An apparent symme-
try in the coverages at these two optimal sets of parameters
leads to identical HD flow rates by swapping the values of
0 and 0’ in the 2H' mechanism. In other words, the model is
incapable of distinguishing between a saturated top surface
with a depleted subsurface and a saturated subsurface with
a depleted surface.

As a result of the indistinguishability of the two param-
eter sets identified by the fitting process, the values of AE
and AE;IE ; must be identified based on additional data. In this

Fig.6 The fractional coverage
of H+D on the surface, 0, and
H’ +D’ in the subsurface, ¢’, 593
versus temperature and inlet

(AEF AEE

H, +D, pressure, P} The X 553
panels on the left show the cov- 2 513
erages based on the parameters 2 473
defined in the simulated dataset, ©
with AE,; =25 kJ/mol, AE} Q 433
= 0 KI/mol, and AE!,_ =43/ =
mol. The righthand panels show g 393
coverages on the surface and in 353
the subsurface, 6 and @', for the
symmetric solution found by 593
the solver, where AE = -25 kJ/ ey
mol, AE* =50 kJ/mol and 5 553
AEi = 43 kJ/mol. This sym- © 513
metry reveals that identical fits 5
can be achieved by swapping E 473
the values of 6 and ¢’ in the 2H’ D 433
mechanism g‘

g 393

353

Total H Pressure (Torr)
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case, DFT calculations [29, 36] show that the exchange of
hydrogen between the surface and the subsurface should be
endothermic for Pd, consistent with the choice that AE =
25 kJ/mol. In addition, there are many experimental studies
of the dissociative adsorption of H, on Pd surfaces [21, 28]
indicating that the barrier to dissociative hydrogen adsorp-
tion on Pd is negligible, consistent with the choice of AEZ s
= 0 kJ/mol over the value of 50 kJ/mol suggested by the
alternate solution.

3.3 Parameter Estimation from a Simulated Dataset
with Noise

The dataset discussed in the previous section was simulated
directly from the rate law (Eq. 7) with parameter values set
at (AEY,, AE? | AE,)=(0, 43, 25) kJ/mol. The pre-expo-
nential factors for the rate constants and equilibrium con-
stant were set at values consistent with transition state the-
OrY, (Vugss Vges» Vss) = (10> mol/m?/s/Torr, 10® mol/m?/s, 10°).
To examine the performance of the solver on a dataset that
more closely represents the experiment, random Gaussian
noise with a standard deviation of 3% was introduced into
the simulated data. The search space for all three energy
parameters was bounded between 0 and 100 kJ/mol. As
before, 1000 random initial seeds were generated across the
search space and used to initialize minimization of y2. The
result of the fitting is shown in Fig. 7, where the black dots
are the simulated HD flow rates at the outlet,

Fyn(T;Pi P ), caleulated using (AE], AE], , AE)=(0,

,AE¥

des’

AE_ ) = (50,43,-25)

0.8

10.6

460 23
Total H Pressure (Torr)
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Fig.7 Outlet HD flow rates versus temperature for 14 different feed
flow conditions. The black dots represent the simulated data with the
inclusion of 3% Gaussian noise. The red lines illustrate the result of
fitting the 2H’ model to the data. For the fitting, log(v,,), log(v4).
and log(v,,) were fixed at their transition state theory values, and the
search space for AE was constrained to be >0 kJ/mol. The solver-
predicted values for AEj i AE* | and AE are indicated on the graph

des’®
and are close to the parameters used to generate the dataset. The

value of y? for the fit is 0.18

43, 25) kJ/mol with 3% Gaussian noise added. The solid red
lines show the predicted values of F5oY (T;Pi”2, PZZZ) found
using the estimated parameter values of (AEiE i AE;S‘, AE,
)=(1.0, 43.8, 24.5) kJ/mol at the optimal solution. Introduc-
tion of Gaussian noise results in an increase in the minimum
value of ){2 to 0.18, however, the solver converged to the
same parameter estimates for a wide range of initial guesses.
As before, the solver only failed to find the optimal solution
when the initial guess corresponded to either 0% or 100%
(H,+ D, <> 2HD equilibrium) conversion for all reaction
conditions, (T, Pian’ Pj;’z). When the solver starts in these

regions, the value of y? is insensitive to changes in the
kinetic parameters, (AEZ s AEjes, AE).

Figure 7 shows that even with noisy data the solver can
yield close estimates of the kinetic parameters used to sim-
ulate the dataset. However, in most parameter estimation
problems, the model parameters are unknown, and some-
times lack physical significance, making it more difficult
to trust the output of the solver or constrain it to physically
reasonable regions of parameter space. Relevant to this, it is
important to note that extending the parameter space used
for fitting the data with 3% noise into regions where AE <
0 results again in the identification of a second minimum, as
shown in Fig. 5. The alternative solution occurs at (AEj: s
AE? AE,)=(50, 43.8, -24.5) kJ/mol with y? = 0.18. This

des’
describes the scenario where the surface coverage is 8 =~ 0

and subsurface coverage is 8’ ~ 1 (as in Fig. 6), opposite
to the coverages of the physically reasonable solution. The
primary point to make is that the addition of 3% noise into
the kinetic data only slightly degrades the ability of the 2H'
model to extract meaningful estimates of reaction param-
eters. The next issues to address are our ability to extract
parameter estimates from the real kinetic data and how to
quantify the confidence limits on those estimates.

4 Quantification of Confidence Limits
on Estimated Kinetic Parameters

In order to quantify the confidence limits on the estimated
kinetic parameters for the 2H' mechanism, we assume a nor-
mal distribution around their most probable values, (AE?: s
AE:EES, AE_,), at the global minimum of y?(€,y5, €455» €s,)-
Since the 2H' mechanism used for the creation of the simu-
lated datasets contains three parameters (AEﬁ s AEEES, AE),
a 3D probability density function (PDF) defines the region
in (€,4,, €45 €) space within which the solution can be
found with a given level of confidence (e.g. 68%, 95%, etc.).
For a 3D parameter space, the probability, P, of finding the
solution within a certain ‘distance’, k, of the minimum of

22 (€445 €aos- €55 1 defined by Eq. 12.

k 2 k?
P(k) = erf<%> — k\/;exp<—3> (12)

The values of k for any desired confidence limit have been
tabulated for PDFs of various dimensionality [44]. We are
seeking the 95% confidence limit (i.e. the value of k at which
P(k) = 0.95) for the values of the three parameters, (€, €,5,
€,,), around their most probable values of AEz s AEjm, and
AE_, at the global minimum of y2(e,q, €4, €,,)- For a 3D
PDF, P(k) = 0.95 when k = 2.7955 [44]. This value of k =
2.7955 determines the distance between the mean value of
the kinetic parameters, (AEE s AE?;S, AE,), and the locus of
points that represent the 95% confidence limit in 3D. More
precisely, k? serves as a scaling factor for a 3D hyper-ellip-
soid centered on the global minimum of y2(e,;, €45 €,;) and
whose orientation in parameter space is determined by the
covariance of the three fitting parameters, as derived from
the fitting process.

The orientation of the 3D hyper-ellipsoid comes from the
covariance matrix (C), which defines the variances of all
three fitting parameters and the covariances between each
pair of parameters (Eq. 13). The covariance matrix is found
by inverting the Hessian (1) matrix, which is calculated
each time the solver converges. The Hessian matrix contains
all of the second derivatives and cross derivatives of y* with

respect to €,,4, €,,,, and €, evaluated at (AEi o AEjeS, AE).
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In physical terms, ﬁ, characterizes the curvature of y>
around its global minimum.

2

(o} O, O, O, O,
_ _ €uds p €ads€des  €ads  Edes p €ads€ss  €ads  Ess
= _ -1 2
= = [0} O (o3 O, O,
C H p €ads€des  €ads  Edes €es p €des€ss ~ Edes  Ess
2
O, O, O, O, (o3
p €ads€ss ~ €ads  Ess p €des€ss  €des  Ess €5

In Eq. 13, o represents the standard deviation for each
parameter and p represents the correlation coefficient for
each pair of parameters. In order to encompass the entire
95% confidence region, the distance from the center of the
hyper-ellipsoid at (AEE s AE;ES, AE ) to its surface must
equal the Mahalanobis distance, k? = 7.8148 [44]. While k>
is a constant, the absolute distance between the center point
and the surface of the hyper-ellipsoid changes based upon
the variance and covariance of the parameters at the global
minimum. Combining all of these features, the equation for
the 3D hyper-ellipsoid in the Cartesian coordinate system
(€450 €050 €s5) 18 given by Eq. 14.

s )2 )’
(eads - AE::ds> <€des - AE;ES) (SSS - AEss)z
+

2 _
K= o2 * o2 o2
€ads €des Ess
t i3
+ 2(€ads B AEads)(edes B AEdes)

. 0, O,
peudsédm €ads ~ €des

2(6“"5 — AEF (e, — AE,)

BN

0. O
p €ads€ss ~ €ads ~ Ess

(e es AE-L )(ew - AES‘S‘)
+2 des des” N 5 S8

O O
pede.vsw €des ~ Ess

(14)

Dividing both sides of Eq. 14 by & results in the standard
ellipsoid equation and causes k? to act as a scaling factor
for each term in the covariance matrix. Equation 14 can be
condensed into linear algebra notation, as shown in Eq. 15.

T

€ads AE:F ds =\—1 €ads AE:F ds
1=|| e |- | AE, <k2-C) Cus |~ | AEE,
€ss AE 5§ Ess AE s

15)

Plotting Eq. 15 in (€4, €4, €,;) parameter space allows visu-
alization of the 3D hyper-ellipsoid centered on the global
minimum of y? at (AEi s AEjm, AE,). For the noiseless
simulated dataset, the résulting ellipsoid is a wide, thin
shape, as shown in Fig. 8. The true values of AEi i AE'dTeS,
and AE lie within this ellipsoidal region withup to 95%
confidence. However, this 3D region of parameter space is
difficult to visualize and quantify in a straightforward way.

In parameter estimation problems with more than three

degrees of freedom, it is impossible to visualize these

@ Springer
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Fig.8 The 3D hyper-ellipsoid for the noiseless simulated dataset
encloses the 95% confidence region around the global minimum of

1. marked by the pink dot at (AE*, . AE} | AE,)=(0, 43, 25) kI/

mol. The translucent hyper-ellipsoid is constructed using the Hessian
matrix returned by the solver, quantifying the curvature of y? with
respect to all three parameters. The black dashed lines serve as aids
for visualizing the 3D hyper-ellipsoid with respect to the axes

hyper-ellipsoidal regions of parameter space. Furthermore,
when parameters are coupled, it is meaningless to try to
represent the uncertainty of a given parameter using a single
value. If the covariance matrix, E, was diagonal, then the
three major axes of the 3D hyper-ellipsoid would be parallel
to the €,,, €,,,- and €, axes and the PDF would be described
by a product of three normal distribution functions, one for
each degree of freedom. These three normal distribution
functions would also define the variances for each degree of
freedom, (agadv, Gsz,m’ Gi;)’ and the hyper-ellipsoid would be
defined by Eq‘. 14 with ‘just the first three terms of the right-
hand side. Under these conditions, the confidence regions
for each of the three degrees of freedom can be meaningfully
represented by a unique value. However, as illustrated in
Fig. 8, this is not the case for the 2H' mechanism. Nor is it
true for the 1H' or LH mechanisms. When parameters are
coupled, the confidence intervals must be represented by
continuous regions spanning multiple degrees of freedom in
parameter space.

One method for portraying the confidence regions con-
tained within the hyper-ellipsoid is to project them onto each
of the 2D planes spanned by the pairs of natural variables for
the problem, e.g. (€,4,, €4,5)- An error ellipse is a 2D section
or projection of the n-dimensional hyper-ellipsoid centered
on the estimated values of the fitting parameters: AEiE s
AEjgs, and AE,. For example, one could take the ellipsoid
illustrated in Fig. 8 and project it onto the (e, €,,,) plane
as a 2D ellipse centered on the most probable values (AEj s
AE® ). This would define the region of 95% confidence for

des
finding AEj 4 and AE;Y, independent of the value of AE,.
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This overestimates the confidence region because it includes
points at which finding the values (AE*, | AE! [ AE,) is
highly improbable. An alternative representation of the
confidence region is to take the 2D cross section of the 3D
hyper-ellipsoid in a plane parallel to (e, €,,,) at a value of
€,, = AE,. This represents the region of 95% confidence for
finding AEi‘ 4 and AEjes when AE takes its most probable
value. In the figures below, we have used these 2D cross
sections through the hyper-ellipsoid evaluated at the most
probable value of the third degree of freedom.

Figure 9 presents a graphical visualization of the 2D cross
sections through the 3D hyper-ellipsoids for: the noiseless
simulated data (left column), the simulated data with 3%
noise (middle column), and the experimental data on Pd
(right column). These are all plotted in 2D parameter space
and are superimposed on contour plots of y2(€, > €o5s €5s)-
Each contour plot was constructed by holding one of the
energy parameters constant at its most probable value (AE:E .
AE;ES, or AE_) and allowing the other two parameters to
vary over a range of values while explicitly calculating >
at each point. The blue dot marked on each graph shows the

Simulated Data (no noise)

Simulated Data (3% noise)

global minimum found by the solver at (AEﬁ s AEEES, AE).
The solid red ellipses drawn over the contour plots for the
three datasets represent the intersections of their associ-
ated hyper-ellipsoids with the three 2D planes evaluated at
the most probable value of the third parameter. The loci of
points on these ellipses are solutions to Egs. 14 or 15 defin-
ing the 3D hyper-ellipsoid. The hyper-ellipsoids constructed
for each of the three datasets are similar in orientation and
size, as revealed by the similarity of the solid red ellipses
along each row in Fig. 9. It is worth noting that the error
ellipses for the noiseless simulated data (Figs. 9a, d, and
g) represent the theoretical “best” (i.e. smallest) confidence
limits from fitting the 2H’ model to the dataset.

In reality, the y? function is not perfectly parabolic as
implied by the Gaussian assumption. This is seen clearly in
the top and bottom rows of Fig. 9 where the solid red ellipses
span a range of contour levels and y? starts to deviate sig-
nificantly from its value at the global minimum. In the quad-
ratic approximation, the value of y? = )((22) where )((22) ata

constant value of AE is given by the following expression

Experimental Data on Pd

(kJ/mol)

€
ss

(kJ/mol)

€
ss

20 30 40 50 60 70 20 30
€4os (KJIMOI)
es

Fig.9 Grayscale contour plots of y2(€,4,> €4 €5,) around the global
minimum (marked in blue) for: a, d, g the noiseless simulated data
for the 2H” mechanism, b, e, h the simulated data with 3% noise, and
¢, f, i the experimental data on Pd. Each y? contour map was eval-
uated as a function of two parameters while holding the third at its
most probable value. The solid red error ellipses represent the inter-
section of the 3D hyper-ellipsoid with the three planes in parameter

€4s (KJ/MOI)

€ais (kJ/mol)

10 15 20 0

3

10 15 20
€1qs (kJ/moI) 2

50 60 70 20 30 40 50 60 70
€4s (KJ/MOI)

space. The region bounded by each error ellipse represents the region
of 95% confidence assuming that y is perfectly quadratic around its
minimum. Evaluation of y2 at any point on the red ellipses using the
Taylor expansion (Eq. 16) yields: o5 ;(?2) = 3.9 for the simulated 2H’
data with no noise, g5 ;(22 = 4.1 for the simulated data with 3% noise,
and 5 )((22) = 12.1 for the experimental data on Pd. Contour levels at
these three values are marked with dotted red lines on each plot and
are used to represent the 95% confidence regions
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inwhich y2, = y*(AE} | AE} ,AE,). The second deriva-
tives of y2 with respect to €, and €, are evaluated at the
global minimum and come directly from the Hessian matrix
returned by the solver. The value of )((22) is constant on the
locus of points forming the ellipsoid; i.e. on the solid red
ellipses indicating the intersection of the 3D hyper-ellipsoid
with the 2D planes through (€4, €4, €,) space shown in
Fig. 9. In this case, the value of ;((22) on the ellipse can be
denoted g5 )((22), the value that determines the 95% confidence

limit. Since much of the area contained within the solid red
ellipses includes parameters that yield relatively poor fits to

160
140
120
= 100
E
2 80
3
S 60

€

€ 4e (KJ/mol)

Fig. 10 Grayscale contour plot of y? versus €, and e,,, at AE, =
25 kJ/mol for the noiseless data simulated using the 2H’ mechanism.
The global minimum is marked by the blue dot and the solid red error
ellipse indicates the region of 95% confidence predicted from )((22), the
quadratic approximation to y2. Calculation of ;((22) at any point on the
red ellipse using the Taylor expansion (Eq. 16) yields o5 ;((22) =30
The corresponding contour of y? at the value of 3.9 is marked by the
dashed red curve. The solid black lines framing the contour level at
2 = 3.9 provide conservative estimates of the 95% confidence lim-
its on AE” ~and AELS. A subset of the region contained within the
black lines is bounded by green lines which account for the constraint
that only solutions with AE{f 4 > 0 are physically meaningful. Thus,
the area framed by the green rectangle represents the estimated 95%
confidence region for AEZF 4, and AEjm when AE is fixed at 25 kJ/mol
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the data, we also highlight as a dashed red curve the contour
level along which y? = )((22). The dashed red contour pro-
vides a better estimate of the 95% confidence region than the
solid red ellipse.

Figure 10 shows the same contour plot as in Fig. 9a. The
quadratic Taylor expansion at any point on the solid red
ellipse has a constant value of o5 )((22) =3.9. As a better esti-
mate of the 95% confidence interval, we have mapped with
a dashed red curve the region of parameter space bounded
by the locus of points on the y? = 3.9 contour. This region
serves as a better representation than the ellipse of the
parameter space within which combinations of (e, ., €4,
AE,) yield statistically indistinguishable fits of the 2H'
mechanism to the data.

Figure 10 also includes four solid black lines drawn at
the maximum and minimum values of ¢ ,, and €,,, at which
7% =3.9. However, not all of the parameter space contained
within the black rectangle is realistic because it includes
values of AE;IE s < 0 that are nonphysical. Therefore, a subset
of this region is framed by the green lines which contain the
95% confidence limit around AE; s and AEjﬂ, constrained
to include only physically meaningful values of €,,, and €.
These limits serve as conservative estimates for the 95%
confidence limits on AE‘aT 4 and AEjeS. The contour level at
x* = 3.9 is only achievable for values of €, in the range 0
to 0.8 kJ/mol. Thus, the 95% confidence limit around AEE s
= 0 kJ/mol spans the range [0, 0.8] kJ/mol. Similarly, Fig. 10
reveals that the 95% confidence limit around AELS =43KkJ/
mole spans the range [26, 51] kJ/mol.

All of the solid red error ellipses in Fig. 9 have been mapped
onto their corresponding contours at y? = g5 ;(?2) using the
dashed red curves. The Taylor expansion gives the same value
of g5 ;((22) on all three 2D representations of the 3D hyper-ellip-
soid because they all represent cross sections through the same
ellipsoid. The values of g5 ;((22) get progressively higher for the
simulated data with 3% noise (y5 )(?2) =4.1) and for the Pd exper-
imental data (o5 ;((22) = 12.1). Finding the extrema of the y? con-
tour level at 95% confidence gives a straightforward method for
using 2 to estimate the uncertainties on all kinetic parameters.
Note that this approach for estimating confidence limits on indi-
vidual parameters is conservative. It implies a confidence region
defined by a rectangular area (framed by the green lines in
Fig. 10) that bounds the 95% confidence region (dashed red
contour). This rectangular area contains regions that represent
combinations of €,,,, and €5, that lie outside the dashed contour
defining the 95% confidence region. Note also, that this analysis
takes advantage of the fact that we have evaluated
2 2(€45 €os» €5, ) actoss the full 3D parameter space. In general,
this is not practical and one must rely only on the value of y at
its minimum, )(rim, and on the Hessian to define the hyper-ellip-
soid shown in Fig. 8. One would then estimate the intervals of
individual parameters based on the extrema of the solid red
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ellipses formed by the intersection of 2D planes with the hyper-
ellipsoid under the assumption that y?is quadratic in all degrees
of freedom.

Analysis of the simulated datasets with and without the inclu-
sion of Gaussian noise reveals the care with which parameter
estimation must be performed. The coupling of kinetic param-
eters creates relatively large regions of parameter space across
which the quality of the fit of the 2H' mechanistic model is indis-
tinguishable from the best fit to the data. This is particularly
apparent in Figs. 5 and 9d, e, and f which plot
X ( €5 AE ,€ ) revealing a long narrow trough in y?lead-

s b
ing from a minimum at a low value of AE” | : . and a positive AE
to a symmetric solution at a high value of AE i ,and a negatlve
value of AE . The presence of the alternate solutlons reveals a
challenge for fitting the 2H' mechanism, namely the model’s
inability to differentiate between solutions having high surface
coverage of H with low subsurface coverage of H' and solutions
having low surface coverage of H with high subsurface coverage
of H' (Fig. 6). In this case, the challenge has to be resolved by
invoking the constraint that AE” | i . should be low and AE > 0
to be consistent with prior observatrons [28-30, 36, 39].

To summarize, the methodology for the quantification of
parameter confidence intervals takes advantage of the Hes-
sian matrix returned by the solver at the global minimum of
X (€a4ss €ges» €s5)- Using the curvature of x? around the most
probable parameter values, (AE?; i AEjes, AE,), allows con-
struction of a hyper-ellipsoid bounding the region in which
the values of (AEE s AEEES, AE ) can be found with any
desired level of confidence. This hyper-ellipsoid can be visu-
alized on 2D planes spanning any pair of parameters by
intersecting the hyper-ellipsoid at the most probable esti-
mated value of the remaining parameter. Since y2 exhibits
non-quadratic behavior over parameter space, we have iden-
tified the contours of y? = 4 )((22), where o5 )((22) is the quad-
ratic approximation to y? evaluated on the surface of the
95% confidence ellipsoid. This region of parameter space
better estimates the 95% confidence region than the error
ellipses. Using this method, we now turn to fitting the exper-
imental data for H,—D, exchange over the Pd catalyst using
the three mechanistic adsorption/reaction models: LH, 1H’,
and 2H’. Tt is important to note that for the 2H' and 1H'
mechanisms, the 95% confidence limits for each parameter
are given in two separate 2D plots, each representing a dif-
ferent cross section through the 3D hyper ellipsoid. For
example, the uncertainty range on AE 4 18 given by
17 (€adss €aess AE,) and by y2(e g AE" SS) When these
95% confidence limits differ, we combine the ranges to
encompass the parameter values from both plots so that the
estimate of the 95% confidence region is more
conservative.

5 Fitting H,-D, Exchange Data for the Pd
Catalyst

Three different mechanistic models, LH, 1H’, and 2H’, were
fit to the experimental dataset for the H,—D, exchange activ-
ity of the Pd catalyst. Derivations of the rate laws for each
model have been provided elsewhere [33]. In brief, the sub-
surface mechanisms modify the LH model by including
either one or two subsurface H' atoms that influence the
adsorption and desorption kinetics on the adjacent surface
sites (Fig. 2). The expressions for the molar flow rate of
product HD, F' ‘”"(T P"’ ,P’” ), for the LH and 1H' models

are given in Egs. 17 and 18, respectlvely.

2
FIng — 2kdes€H9DFwt 1— exp _Akads(l - 0) P
k(1 — 9)2 prot Flot

17
. 2k, 0,0, ,F° Ak (1 — 6)*9' Pt
FII_IIZ = % 1— exp| — ads( mt)
k(1 — 0)>Prot F
(18)

The expressions for the coverages of H and D atoms on the
surface and in the subsurface, 0y, 0, 0, and ', are given
by Egs. 2 — 5. The expression for Fy;7 given by each model
was used to define y2 (Eq. 11) When ﬁttrng that model to the
data. As for the datasets just presented for the 2H’ model, the

%1078

FHD (mol/s)

350 400
Temperature (K)

450 500 550 600

Fig. 11 Plot of HD outlet flow rate as a function of temperature for
H,-D, exchange on Pd. The black symbols are the experimentally
measured HD flow rates exiting the microreactor array for 14 differ-
ent inlet combinations of Pﬁ and P’" and measured at 14 tempera-
tures. The solid lines represent the squtrons calculated using kinetic
parameters found by the solver for the three dlfferent mechanisms:
red=LH (AE}, =511, AE} =0 kl/mol, 2, = 6 4), green=1H’
(AEF =0, AE‘ = 20, AE = 46 kI/mol. x2, = 104), and
blue=2H’ (AEi _0 AE* _43 AE,, =25 kI/mol, ;{ =82)
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pre-exponents predicted by transition state theory were used
when fitting each model to the kinetic data.

The experimental data, FZ%(T;PZZ, sz ), for Hy-D,
exchange over the Pd catalyst are compared in Fig. 11 to the
predictions of the three reaction mechanisms determined
using the optimal values of the kinetic parameters, (AEi
AEjev E,), found for each mechanism. In Fig. 11, the red
curves represent the best fit using the LH mechanism, the
green curves represent the best fit using the 1H' mechanism,
and the blue curves represent the best fit using the 2H' mech-
anism. All three models produce nearly equivalent fits to the
experimental data across all inlet flow conditions and tem-
peratures, however, the best fits are achieved by different
optimal values of the kinetic parameters.

Before comparing the three models, the 95% confidence
limits on the estimated kinetic parameters are visualized
using contour plots of y2, as was done for the 2H’ mecha-
nism. Figure 12 shows the contour plot of )(zH(eadS, €,4,5) for
the LH model fit to the H,—D, exchange kinetics on the Pd
catalyst. The global minimum found by the solver at (AEJE
AE;EH) (51.1, 0) kJ/mol is marked by the blue dot and has
a value of ;(rim = )(Z(AEZ' e AE;‘_) = 6.4. The values of the
kinetic parameters at this global minimum have been used
with the LH model to simulate the values of F£/\(T; sz’ Pian)

shown by the red curves in Fig. 11. The error ellipse defining
the 95% confidence limit in the quadratic approximation for
x? about its minimum is not shown in Fig. 12 because it
extends far outside the axis bounds due to the large variance

X
- 250
40 200
5 30 150
=3
]
&° 20 100
10 = 50
»
1
0 o1
48 49 50 51 52 53 54
€,4s (kJ/mol)

Fig. 12 Grayscale contour plot of y; H(eadé,edm) given by the LH
model for H,-D, exchange on Pd. The minimum point with ;(mm
= 6.4 is marked in blue at AE*, = 51.1 ki/mol and AE* = 0. The
95% confidence region is outhned by the dashed red contour at g5 )((2)
= 9.4. A trough runs parallel to the €,,, axis from ¢, = AEM =0
to~50 kJ/mol, suggesting that the Pd surface is operating in a low

coverage, adsorption limited regime
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of €,,,. The value of ;((22) for the LH mechanism on the 95%
confidence ellipsoid is g5 )((22) = 9.4. The contour on which
)(LZH = 9.4 is shown as the dashed red curve in Fig. 12. ;(LH
= 9.4 has a trough at €, = AEi =51.1 kJ/mol running
parallel to the €, axis from the m1n1mum in ;(L  at AEﬁes =
0 kJ/mol to €,,, = 50 kJ/mol. Along this trough, the value of
X7y, is independent of €,,, and all points along the trough
yield good fits to the data. The values of €, and €,,; along
this trough suggest that the Pd catalyst is operating in a
regime that is rate limited by adsorption. Therefore, the fit-
ting cannot produce a meaningful estimate of AE]IE , for the
LH model. The estimate for AET however, possesses a
high level of confidence around the optimal value of AE$
= 51.1 kJ/mol, with the 95% confidence limit ranging from
50.6 to 51.7 kJ/mol. The combination of a high barrier to
adsorption and a low barrier to desorption suggests that the
Pd catalyst is operating in the low coverage limit. That, and
the very high barrier to adsorption, AEE 4 = 1.1 kJ/mol,
suggests that this result is not physically realistic, i.e.
although the LH model is capable of fitting our experimental
data, it is not a good model for the H,—D, exchange
process.

The 1H’ and 2H' mechanisms for H,—D, exchange each
have three degrees of freedom so their 95% confidence ellip-
soids must be illustrated by three 2D plots of y? versus two
degrees of freedom and evaluated at the most probable value
of the third. Figure 13 shows the contour plots of )(]ZH, versus
each pair of kinetic parameters for the fit of the 1H' mecha-
nism to the experimental data. Similarly, Fig. 14 shows the
equivalent )(2211' plots for the fit of the 2H’ mechanism to the
data. In all cases, the global minimum is marked by a blue
dot. The parameter values at the minimum were used to con-
struct the solid green and blue curves in Fig. 11 showing
Fy(T;Py, , Pp) predicted by the 1H" and 2H' models,
respectlvely The red ellipses in Figs. 13 and 14 bound the
95% confidence regions estimated by assuming a quadratic
form for )(IQH, and ;(ZZH, about their minima, analogous to the
red ellipses in Figs. 9 and 10. Using the quadratic Taylor
expansion around the global minima yields estimates of the
values of y? on the 95% confidence ellipsoids: g5 )((22) =143
for the 1H" model and o4 )((22) = 12.1 for the 2H' model. The

contours of )(IZH, = 14.3 and ;(22H, = 12.1 are indicated by the
dashed red curves in Figs. 13 and 14, respectively. Finally,
the solid black lines on each plot are drawn at the extrema
of the contours bounding the 95% confidence regions. It is
important to note that these bounds on the values of the
individual parameters are a conservative estimate of the real
shape of the 95% confidence region. They are conservative
in the sense that the rectangles bounding the 95% confidence
regions contains areas that are not actually within the perim-
eter of the 95% confidence region. A summary of the fitting
results and the 95% confidence limits for the kinetic
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;(IH,(edeS,ess) with AE* s = 0 given by the IH’ model for H,-D,
exchange on Pd. In all three plots, the blue dot marks the global mini-
mum at AE!, =0, AE} =20 ki/mol, and AE,, = 46 kJ/mol with
;(m . =104 The red error elllpses represent the 95% confidence limit
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o5 X (= 12.1. The dashed red contour levels with )(ZH, = 12.1 rep-
resent the estimates of the 95% confidence regions for parameters
derived from the 2H’ model
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Table 1 Summary of the fitting results for the Pd catalyst

Langmuir— Single subsur-  Dual subsurface
Hinshelwood  face hydrogen  hydrogen (2H’)
(LH) (1H’)
AE!, (kI/mol) 511 0 0
95% conf. 50.6-51.7 0-6 0-12
bounds
AE! (K¥fmol) - 20 43
95% conf. - 13-29 29-56
bounds
AE, (kJ/mol) - 46 25
95% conf. - 4047 19-26
bounds
;(,fu_n 6.4 104 8.2
95;((22) 9.4 143 12.1

parameters for each reaction mechanism are presented in
Table 1.

6 Evaluation of Model Performance
and Fitting Methodology

The goal of fitting three different mechanistic models to the
kinetic data for H,—D, exchange on Pd is to identify the one
that best describes the data and best represents the real
mechanism. A thorough implementation of parameter and
uncertainty estimation has yielded the kinetic parameters
and their 95% confidence intervals presented in Table 1.
Since the parameter values for AE; s AEjﬂ, and AE_ have
physical significance, analysis of the fitting results can yield
important insight into the physical possibility of the associ-
ated mechanism.

At first glance, it is difficult to distinguish between the
quality of the optimal solutions found for each mechanism.
The red, green, and blue curves in Fig. 11 illustrate the pre-
dictions of Fyy;(T;Py , Pp ) by the best fits of the LH, 1H’,
and 2H' models to the experimental data. They are nearly
overlapping, and have comparable values of )(”zu.n. In the
case of the LH model, we can only report values for the
adsorption energy barrier, AEiE because y? is insensitive
to AEl , in this regime. The LH mechamsm predicts AE;L
=51. l +O 6 kJ/mol with 95% confidence. However, th1s 1s
unrealistic for a Pd catalyst, which is known to have a neg-
ligible energy barrier for H, dissociation [28-30]. In addi-
tion, the LH model is unable to account for the zero-order
dependence of the reaction rate on Py under conditions
where Py > Pp, and 0 ~ 1, as reported previously [33].
Thus, in spite of its low value of y2 the LH mechanism can-
not account for the observed kinetics for H,—D, exchange
using physically reasonable kinetic parameters. In contrast,
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both subsurface models predict AEi 4 = 0 for their best fit
solutions, and the 2H' mechanism supports the observation
that n,;, = 0 under experimental conditions with Py > P,
[33]. Therefore, these fitting results provide additional evi-
dence that Hy—D, exchange follows non-LH kinetics.

We can also calculate the adsorption energy for hydro-
gen, AE ;= AE]L - AE‘L .» predicted by the most prob-
able Values of AE% . and AE* , for each model. While we do
not report a value for AET s usrng the LH model, it is clear
from Fig. 12 that the mechamsrn predicts AE,;; > 0 since
AEjds > AE;Ses within the entire 95% confidence region.
By contrast, the 1H" and 2H' mechanisms predict AE,; =
— 20 kJ/mol and AE, ;. = — 43 kJ/mol, respectively, which is
consistent with the understanding that dissociative hydrogen
adsorption is exothermic. DFT calculations have found that
AE,;, = — 101 kJ/mol for H, on Pd (100) and that AE,; =
— 114 kJ/mol for H, on Pd (111) [29]. Experimental studies
have measured the hydrogen adsorption energy to be system-
atically lower than DFT predictions, AE,;,, = — 87 kJ/mol
for Pd (100) [28], and AE ;= — 99 kJ/mol for Pd(111) [45].
The predictions of the 2H’ mechanism are in better agree-
ment with the expectations for AE,;, from the literature.

While both subsurface models predict the same value for
AEj 4> they have different implications for AEJIE and AE .
For the 2H’ mechanism, AEiE > AE,, which means that the
equilibrium constant for surface subsurface diffusion, K,
is less sensitive to temperature changes than the desorption
rate constant, k,,,. The opposite is true for the 1H' mecha-
nism, where AEj’ < AE. This difference highlights the
fundamental preference of the 2H" mechanism for populat-
ing the subsurface in order to facilitate the adsorption and
desorption processes. The value of AE_, = 25 kJ/mol pre-
dicted by the 2H’ mechanism for Pd is consistent with a DFT
study by Ferrin et al. who calculated the surface—subsurface
energy difference for hydrogen atoms on various transition
metal single crystals [29]. In their work, AE = 29 kJ/mol
for Pd(111) and AE = 30 kJ/mol for Pd(100), similar to
the value predicted by the 2H' mechanism. Finally, the 2H’
mechanism predicts AEE 4 = 0 consistent with values meas-
ured on clean Pd surfaces [28-30], and predicts ny, = 0
under the experimental conditions at which this is observed.
As such, the 2H' model is the most consistent with the cur-
rent understanding of H,—D, exchange kinetics.

7 Conclusion

This work presented the methodology for kinetic parameter
estimation from reaction data and for estimating the confi-
dence regions associated with these parameters. In particu-
lar, we have illustrated the difficulty in independently esti-
mating the values of v and AE* associated with
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Arrhenius-like rate constants. The best practice uses transi-
tion state theory to constrain the values of the pre-exponen-
tial factor before then estimating the value of the energy
barrier. Numerical solvers can encounter pitfalls, such as the
presence of multiple solutions and regions of parameter
space where the sum of squared errors (y2) is insensitive to
parameter values. These issues can render it impossible to
quantify such parameters with useful accuracy. For this rea-
son, it is essential to investigate the local environment
around a suspected global minimum of y? to quantify the
degree of (un)certainty in the solver output. Error ellipses
can be used to visualize the bivariate relationships between
pairs of parameters around the global minimum in multidi-
mensional parameter space. Since the models had non-
Gaussian distributions of error in ;(2, the error ellipses
bounding the 95% confidence region were converted into
contours of constant y? = 45 ;(?2) determined by a quadratic
approximation to y2. The extrema of these contours can be
interpreted as conservative estimates for the 95% confidence
limits of the kinetic parameters.

Using the above methodology, three different mechanistic
models, LH, 1H’, and 2H’, were fit to the H,—D, exchange
activity of a Pd catalyst. In fitting the models to the reaction
data, we obtained estimates for the fundamental energetics
describing hydrogen adsorption, desorption, and surface-to-
subsurface diffusion. While all three mechanisms fit the data
with a similar value of ;(3”.”, the kinetic parameters predicted
at the global minima varied significantly. The LH model
was only capable of estimating AEjIE = 51.1+0.6 kl/mol,
which disagrees with the literature for H, adsorption on Pd.
Both subsurface models predicted AEi = 0, but only the
2H' mechanism was also able to match the DFT prediction
for AE and the experimental observation of the reaction
order in PH of ny, = 0 for conditions where Py, > Pp, . Ulti-
mately, the estimates for AE;t AE , and AE and inclu-
sion of the uncertainty on each parameter give additional
insight into the mechanism for H,—D, exchange on Pd.
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