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Abstract

A whole genome sequence of a human can consume gigabytes of
storage space. Analyzing a large number of such sequences is a
compute and memory intensive process. In this regard, cluster com-
puting has emerged as an attractive solution for large-scale human
genome analysis. In this paper, we investigate how the underlying
networking infrastructure of a commodity cluster can impact the
performance of variant calling, which is a key task to identify vari-
ations in a human’s genome compared to the reference genome.
We measured the performance of variant calling and analyzed the
network traffic in 16-node clusters with different hardware and
network bandwidth configurations. We observed that by increasing
the network link bandwidth, the execution time of variant calling
did not improve significantly due to the degree of parallelism that
was achievable leading to underutilization of the links. However,
with low bandwidth links, data shuffling errors become more likely
leading to failures. Furthermore, higher network latency among
cluster nodes led to slower execution of variant calling due to lower
utilization of the processor cores. By appropriately choosing the
network link bandwidth for a cluster, good performance can be
achieved while lowering the price of processing genomes especially
in a pay-as-you-go pricing model.
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1 Introduction

Due to advances in sequencing technologies and lower cost of
sequencing!, whole genome sequencing (WGS) has become eco-
nomically feasible for use in large-scale genomic studies and clinical
practice. It is projected that up to 2 billion human genomes could
be sequenced by 2025 [46]. The Sequence Research Archive (SRA)
containing petabytes of human genome data, is widely available
through commercial cloud providers [21]. Recently, new genome
sequencing initiatives [5, 34] were launched for the diagnosis and
treatment of life-threatening diseases such as cancer and COVID-19.
The All of Us Research Program? and the UK Biobank?® host nearly
250,000 and 500,000 whole genome sequences, respectively. Indeed,
the volume of genomic data has grown rapidly in recent years.

Human genome sequences are very large in size. The (diploid)
human genome contains 6 billion base pairs forming the deoxyri-
bonucleic acid (DNA) [35]. During DNA sequencing, a sample DNA
is sliced into short fragments and read as a sequence of bases (a.k.a.
reads). Due to sequencing errors, a position in the genome is cov-
ered by multiple DNA fragments resulting in millions of reads. The
coverage of WGS denotes the average number of sequencing reads
for each position in the target genome. In essence, a high-coverage
whole genome sequence would require 100+ gigabytes (GBs) of
storage [17]. These large-sized sequences pose technical challenges
for efficient storage, analysis, and data transfer.

Variant calling is a key task that is performed to identify variants
in a human genome sequence compared to the reference genome.
These variants include single nucleotide polymorphisms (SNPs),
short insertions/deletions (indels), copy number variation, and other
structural variants?. Identifying these variants using a variant call-
ing pipeline [22] is critical for assessing an individual’s risk to
diseases and enabling new innovations in disease diagnosis and
treatment. A pipeline consists of several stages including reading a
genome sequence, performing alignment of reads with the reference
genome, additional pre-processing steps, and finally, invoking a
variant caller to produce raw variants. The raw variants are further
processed by variant filtering and annotation steps. Variant calling
involves computationally intensive tasks and requires significant
computing and storage resources to analyze a genome workload.

There is growing demand from hospitals and institutions to
process large volumes of genomic data due to precision medicine®.
Cloud computing has become a feasible solution for analyzing
genomes due to its elasticity and pay-as-you-go pricing model [23].
In this regard, reducing the cost of analyzing genomes has become
a key challenge [28, 32, 45]. In recent years, open source projects
! www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-

2 https://allofus.nih.gov 3 https://www.ukbiobank.ac.uk

4 https://m.ensembl.org/info/genome/variation/prediction/classification.html
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have emerged (e.g., GATK4 [20], ADAM/Cannoli [32, 33]) that em-
ploy cluster computing frameworks, namely, Apache Spark [50]
and Apache Hadoop [48], to perform variant calling on genomes.
Companies such as Microsoft, Databricks, Illumina, Sentieon, and
NVIDIA are developing new tools/services to accelerate genome
analysis. Thus, there is a growing interest in advancing the state of
the art in large-scale human genome sequence analysis [47].

In this paper, we investigate how the underlying networking in-
frastructure of a commodity cluster can impact the performance of a
variant calling pipeline on a large workload of human genomes. To
the best of our knowledge, none of the prior efforts has thoroughly
analyzed the performance of variant calling pipelines for different
cluster configurations. Our key contributions are as follows:

o We study the performance of two variant calling pipeline im-
plementations, namely, GATK4 [20] and Adam/Cannoli [32]. Both
are open source and designed to run in a commodity cluster using
Apache Spark/Hadoop. (GATK4 is a widely adopted software.)

e We evaluated the performance of these pipelines in Cloud-
Lab [12], an experimental testbed for cloud computing research
available at no charge. We employed an asynchronous computing
model [41] that enables good cluster utilization on a workload of
genomes. We chose different hardware/networking configurations
for the clusters and used publicly available WGS data [4].

e Through detailed performance evaluation and network traffic
analysis on the chosen dataset, we observed that high bandwidth
links (e.g., 10 Gbps) did not significantly improve the execution
time of variant calling as the links were underutilized due to the
achievable degree of parallelism on the cluster hardware.

e However, lowering the link bandwidth for the cluster (e.g.,
500 Mbps) was not a good solution due to Apache Spark shuffle
operation errors® that occurred at times leading to failed execution
of some sequences. Furthermore, higher network latency between
cluster nodes increased the pipeline execution time due to lower
utilization of the processor cores.

o For users regularly processing genome workloads, we provide
a binary-search based approach to select an appropriate cluster con-
figuration. By appropriately choosing the network link bandwidth
and ensuring low network latency for a cluster, good performance
can be achieved for variant calling while lowering the price espe-
cially in a pay-as-you-go pricing model.

2 Background and Motivation

2.1 Overview of Variant Calling Pipelines

Variant calling is a key task performed to identify variants in an
individual’s genome compared to the reference human genome (e.g.,
GRCh38 [29]). It is a computationally intensive process and requires
significant computing and storage resources. It involves reading
ten’s of GBs of genome data and writing several large intermediate
files. A typical variant calling pipeline for an individual’s DNA sam-
ple [22] has a set of stages. It starts by reading of raw unmapped
reads (e.g., in FASTQ format [49]) output by a sequencer. Using
algorithms such as BWA-MEM [24], the alignment of the reads
with the reference genome is performed. This produces mapped
reads that are stored in a specific format (e.g., BAM format [25]).
Duplicate reads in the mapped reads are then marked followed by

© https://dzone.com/articles/four-common-reasons-for-fetchfailed-exception-in-a
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the execution of base quality score recalibration (BQSR) and local
realignment around the indels. BQSR and indel realignment steps
are performed to correct sequencing errors and improve accuracy
of downstream processing. The last stage involves the execution of
a variant calling method. Several variant callers exist today such
as FreeBayes [15], GATK HaplotypeCaller [20], DeepVariant [39],
and DNAscope [13]. The output file produced by a variant caller
contains raw variants and is in the VCF format [14]. The subse-
quent downstream processing steps include variant filtering and
annotation steps on the raw variants. The complexity and variety
of pipelines for variant discovery depends on the nature of genomic
analysis and the technology used for sequencing [22].

With the availability of Apache Hadoop [48] and Spark [50],
several efforts accelerated the DNA variant calling pipelines using
these systems. CloudBurst [43], CloudAligner [30], SEAL [38], and
BigBWA [1] used Hadoop for speeding up the computationally-
intensive alignment stage. Hadoop-BAM was developed to sup-
port Hadoop-based parallel I/O [31] for sequencing data. Later,
SparkBWA [2] employed Apache Spark to speed up alignment us-
ing BWA. Built atop Spark, Cloud Scale-BWAMEM [7] sped up
alignment and was adapted for field-programmable gate arrays
(FPGAs) [6]. PipeMEM [51] used Spark pipes to speed up alignment
using BWA-MEM [24]. Ahmed et. al. [3] used FPGAs to accelerate
BWA-MEM [24]; however, they did not use Apache Spark/Hadoop.

The Broad Institute developed the GATK Best Practices Work-
flows, which is widely adopted for variant discovery [20]. Hal-
vade [11] parallelized the variant calling pipeline of GATK us-
ing MapReduce [10]. Later, GATK4 was released that employed
Apache Spark for multithreading and parallelization [20]. NVIDIA
developed Parabricks to accelerate GATK pipelines using graph-
ics processing units (GPUs) [37]. Google’s DeepVariant [39] used
deep learning for variant calling and operated directly on aligned
reads. Nothaft et. al. [32, 33] created ADAM/Cannoli to enable
the processing of large genomic datasets using Apache Spark’s
primitives. ADAM supports read transformations and correcting
errors in aligned reads. Cannoli leverages pipes and parallelizes the
alignment process and variant calling by reusing existing tools.

More recently, Illumina developed the DRAGEN Platform to ac-
celerate the variant calling pipeline using FPGAs [44]. Sentieon [45]
developed highly optimized software-based algorithms for variant
calling using CPUs for cloud environments. They also developed
DNAscope [13], a machine learning-based variant caller.

2.2 Motivation

With growing use of cloud computing services for analyzing large
genomic datasets [8, 23, 45], the need for efficient cluster computing
solutions has increased. Most of the prior work have focused on
either (a) developing more accurate variant callers, (b) accelerating
different stages of a variant calling pipeline by designing better
algorithms, or (c) accelerating the entire pipeline using hardware
accelerators and frameworks such as Apache Spark/Hadoop. We
believe there is an important gap in the literature yet to be addressed
and pose the following motivating questions:

¢ [Q1] How does the underlying networking infrastructure of a
cluster impact the performance of variant calling pipelines due to
large data movement for enabling parallel computations?
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¢ [Q2] Does the network link bandwidth and network latency
of a cluster impact the execution speed of these pipelines?

Hence, the goal of our work is to gain insights to answer the afore-
mentioned questions by observing the performance and analyzing
the network traffic generated during variant calling in different
cluster settings. While prior work [36] has investigated the impact
of CPU, network, and disk I/O on data analytics workloads using
Apache Spark, our work focuses on variant calling pipelines that
are different from traditional data analytics workloads. Data ana-
lytics workloads (expressed in SQL) are focused on select, project,
join, ordering, and aggregate operations that are commonly seen in
databases and data warehouses. However, genomic data processing,
specifically variant calling, invokes alignment algorithms, special-
ized read processing, and identification of active regions/application
of Bayes’ rule/Pair Hidden Markov Models [20] for calling the vari-
ants. Hence, the two workloads are significantly different. The
lessons learned from our work can be beneficial to other workloads
with similar compute and I/O patterns.

3 Large-Scale Variant Calling in a Cluster

Adam/Cannoli [32] introduced data parallel processing of vari-
ant calling pipelines using Apache Spark/Hadoop. However, on a
large workload of genomes, ADAM/Cannoli yielded modest cluster
utilization [41]. Motivated by these reasons, AVAH (Accelerating
VAriant Calling on Human Genomes) [41] was developed to ac-
celerate the pipeline execution on the workload by improving
the cluster utilization using asynchronous computations and the
concept of futures [19]. (Note that recent software systems have
successfully employed futures for efficient large-scale distributed
execution [27, 42].) More specifically, AVAH distributes the task
of executing a variant calling pipeline on input sequences across
the cluster nodes. It synergistically combines task parallelism and
data parallelism for different stages in the pipeline by launching
asynchronous computations. These computations are executed in
a sliding window manner on small groups of sequences result-
ing in improved cluster utilization. AVAH is built atop Apache
Spark/Hadoop and can use the APIs of Adam/Cannoli and GATK4.
In the reported experiments, AVAH achieved 3x-4x speedup over
Adam/Cannoli [41] on a workload of 98 whole genome sequences.
(AVAH leveraged the APIs of Adam/Cannoli for data parallelism.)

Table 1: GATK4’s Variant Calling Pipeline Stages

[ Stage |
1 Copy paired-end FASTQ files from HDFS to a local file system,
produce an unaligned . bam, and store it in HDFS

2 Align the .bam file against a reference genome (e.g., using BWA-
MEM) and mark duplicates of mapped reads to produce an
aligned .banm file, and then store in HDFS

3 Sort the aligned reads in HDFS to produce a .bam file in HDFS
4 Invoke the variant calling method HaplotypeCaller [20] to pro-
duce a . vcf file in HDFS

Description ]

Consider a single-sample germline variant calling pipeline [22].
Table 1 shows the stages of GATK4 that are invoked sequentially
on a human genome. Table 2 shows the stages of ADAM/Cannoli.
In AVAH, each stage of a variant calling pipeline is modeled as
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Table 2: ADAM/Cannoli’s Variant Calling Pipeline

l Stage | Description ]
1 Interleave paired-end FASTQ files in HDFS to produce a .ifq
file in HDFS

2 Align the . ifq file against a reference genome (e.g., using BWA-
MEM) to produce a .bam file in HDFS

3 Using the .bam file, sort the aligned reads and mark duplicate
reads with BQSR/indel realignment and store the output in
HDFS

4 Invoke the variant calling method Freebayes [15] to produce a
.vcf file in HDFS

an atomic task. Tasks are executed as asynchronous computations
using futures. Tasks representing the same pipeline stage managed
by a Spark executor (on a worker node) are managed by a sliding
window approach to control the degree of parallelism.

The genome sequences are assumed to be stored in Hadoop
Distributed File System (HDFS). Each genome sequence is identified
by a sequence ID. AVAH reads an input file containing a list of
sequence IDs and the corresponding sequence sizes as a resilient
distributed dataset (RDD). The RDD can be repartitioned for load
balancing along with sorting the sequence IDs in each partition by
size. Next, AVAH invokes a map operation on each RDD partition
along with the appropriate pipeline stage. The map operation is
executed on a worker node on the set of sequences identified by the
partition. The map operation on all the partitions returns an RDD
containing tuples of sequence IDs and status of the execution of a
stage on that sequence (i.e., success or failure). Each task/stage on
a sequence can be executed in a data parallel manner using either
the GATK4-Spark APIs [20] or the ADAM/Cannoli APIs. AVAH
chains the map operations that are applied on the partitions for the
different pipeline stages; the collect call is executed by the Spark
driver at the end of the last stage of the pipeline. This introduces
minimal synchronization among the pipeline stages and yields
better cluster utilization and faster execution on a workload.

4 Methodology

In this section, we present our methodology for performance eval-
uation including details on the execution model, implementation,
experimental setup, traffic measurement, and evaluation metrics.

4.1 Execution Model and Testbed Used

In this work, we study the performance of variant calling pipelines
in a commodity cluster. As AVAH is designed to achieve good
CPU utilization in a cluster for the aforementioned variant calling
pipelines (on a large workload of genomes), it is used for the experi-
ments. Furthermore, AVAH executes a genome workload faster than
separately executing ADAM/Cannoli or GATK4-Spark APIs on the
workload [41]. (We did not use AVAH* [9] as the tested clusters did
not use GPUs.) Hereinafter, we refer to AVAH that uses the GATK4-
Spark APIs and the ADAM/Cannoli APIs as AVAHG and AVAHy,,
respectively. By using two different pipeline implementations, we
aim to gain deeper understanding of how the performance of these
pipelines are impacted by a cluster’s networking infrastructure.
We ran all of our experiments in CloudLab [12], which is an
experimental testbed for cloud computing research available at no
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charge. (Note that we did not have usage credits for commercial
cloud providers to run many rounds of experiments.) CloudLab
has large number of bare metal servers for enabling large-scale
experimentation. The servers have CPUs with different number
of cores and processing speeds as well as RAM of different sizes.
Furthermore, the network bandwidth links for LANs can be config-
ured during cluster setup. In addition, a VLAN (virtual local area
network) can be set up across two geographically-separated data
centers using Internet2’s Advanced Layer 2 Service (AL2S). Hence,
CloudLab provides a highly configurable environment to study the
impact of a cluster’s networking infrastructure on variant calling
pipelines using large-scale human genome datasets. (Experiments
on multiple cloud providers is beyond the scope of this work.)

4.2 Implementation

We obtained the code for AVAHg and AVAH4 published by the
original authors on GitHub’. AVAH,4 was built atop Spark 3.0.0,
Scala 2.12.8, and Hadoop 3.2.0. AVAH was built atop Spark 2.4.7,
Scala 2.11.8, and Hadoop 2.7.6.

AVAH AVAH AVAH
(master) (worker) (worker)
GATK4 or GATK4 or GATK4 or

Adam/Cannoli Adam/Cannoli Adam/Cannoli

Spark/HDFS Q Spark/HDFS Spark/HDFS
A Cl.g ml Q‘ m15
it i i

LAN or Virtual LAN

Legend
CloudLab block
I:I node Q‘ NIC thpdump Q tshark . storage

Figure 1: Architecture for Performance Evaluation

4.3 Cluster Setup

Figure 1 shows the overall architecture for performance evaluation
of variant calling on CloudLab. We set up clusters using hardware
available in two data centers of CloudLab: Clemson and Wisconsin.
The nodes were physical machines with Intel processors running
Ubuntu 18.04 and connected by a Gigabit Ethernet (GbE) network.
Local block storage (striped across multiple physical disks) was
mounted on each node in order to have ample storage space for
HDFS and genome sequences. (For HDFS, the default replication
factor of 3 was used.) Note that the cluster nodes were exclusively
used by us to run AVAHG/AVAH 4 without any interference from
other jobs or users. Hence, our results can be reproduced in the
same cluster settings.8

Table 3 shows the hardware details of the different nodes used in
the experiments. The C8220 nodes had two Intel E5-2660 v2 10-core
CPUs (2.20 GHz); the C6320 nodes had two Intel E5-2683 v3 14-core
CPUs (2.00 GHz); the W220g2 nodes had two Intel E5-2660 v3 10-
core CPUs (2.60 GHz); and the W220g5 nodes had two Intel Xeon
Silver 4114 10-core CPUs (2.20 GHz). In essence, C6320 had more

7 https://github.com/MU-Data-Science/EVA  ® When a cluster spans across 2 Cloud-
Lab data centers, the results may vary depending on the number of concurrent Cloud-
Lab users of AL2S between the data centers.
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Table 3: Node Hardware Description

Data Node Cores Main NIC
Center Type | (Threads) | Memory | Type
Clemson | C8220 | 20(40) | 256 GB | 10 GbE
Clemson C6320 28 (56) 256 GB | 10 GbE
Wisconsin | W220g2 20 (40) 160 GB | 10 GbE
Wisconsin | W220g5 20 (40) 192 GB | 10 GbE

cores than the others; W220g5 was a newer and faster processor
than W220g2 and C8220.

All Spark jobs in AVAHgG and AVAH, were executed using
Yet Another Resource Negotiator (YARN) [48]. We allocated suf-
ficient memory for YARN containers to successfully execute the
pipeline. Note that ADAM/Cannoli runs the tools such as BWA and
Freebayes outside of the Java Virtual Machine (JVM) as separate
Linux processes. On the other hand, GATK4-Spark runs all the
tools inside the JVM. Hence, AVAH required higher memory for
YARN containers and Spark executors than AVAH 4. We chose the
memory settings to allow the pipelines to achieve high load aver-
age for the chosen cluster. For example, AVAH4 on Clemson was
run with yarn.scheduler. maximum-allocation-mb to 61,440 MB and
yarn.nodemanager.resource.memory-mb set to 191,440 MB. AVAH
on Clemson was run with yarn.scheduler.maximum-allocation-mb
to 91,440 MB and yarn.nodemanager.resource.memory-mb to 220,000
MB. Also, the CPU settings in YARN were chosen based on the
hardware. The YARN property for virtual cores was set to 36 for a
40-thread node (i.e., C8220, W220g2, W220g5) and 50 for a 56-thread
node (i.e., C6320).

4.4 Cluster Configurations

We set up 16-node clusters with different configurations. The first
group of 8 nodes (named mo, ..., m7) were of one hardware type, and
the second group of 8 nodes (named m§, ..., m15) were of another
hardware type. In a single-site cluster, both groups belonged to one
data center. The cluster nodes were connected using a LAN. In
a multisite cluster, the two groups spanned across Clemson and
Wisconsin data centers. The two groups of nodes were connected
by AL2S using a VLAN. The multisite setting is useful for under-
standing how network latency (between cluster nodes) can impact the
performance of variant calling.

We configured the maximum network link bandwidth for each
cluster setting to 500 Mbps, 1 Gbps, or 10 Gbps. (The maximum
transmission unit (MTU) was fixed at 1,500 bytes.) For ease of
exposition, we use the notation X-Y-Z to refer to a cluster set-
ting, where X is the hardware type for the first 8 nodes, Y is the
hardware type for the remaining 8 nodes, and Z is the maximum
network link bandwidth between the cluster nodes. For example,
S-C8220-C6320-10G denotes a single-site cluster containing nodes
in Clemson of type C8220 and C6320 with 10 Gbps link bandwidth.
Similarly, M-C8220-W220g5-1G denotes a multisite cluster (span-
ning across the Clemson and Wisconsin data centers) with 1 Gbps
link bandwidth. CloudLab uses bandwidth shaping in case higher
bandwidth NICs are selected as part of a cluster setup. Note that
specific hardware chosen for different experiments were based on
availability of CloudLab resources at the time of experimentation.
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Table 4: Filters Used With tshark
l Filter ID | Filter ‘
fi AVG(tcp.analysis.ack_rtt)
f MAX(tcp.window_size)
f COUNT(tcp.analysis.window_full)
fa COUNT (tcp.analysis.zero_window)
f COUNT(tcp.analysis.lost_segment)

4.5 Publicly Available Genome Dataset

For the experiments, we used 98 whole genome sequences of hu-
mans that are publicly available from the 1000 Genomes Project [4].
The total size of these low-coverage (paired-end) sequences was
632 GB (in compressed form). The size of the paired-end sequences
ranged from 2.2 GB to 15.4 GB (in compressed form).

4.6 Network Traffic and Evaluation Metrics

Using tcpdump®, we collected the network traffic on the network in-
terface used by each cluster node during the execution of a pipeline.
Separate PCAP (Packet Capture) files were produced every 30 mins
for the packets sent and received on each interface. A snapshot
length of 94 bytes was specified for tcpdump to avoid the PCAP files
from growing too large. (A merged PCAP file on each worker was
typically 30-50 GB in size.) AVAH; and AVAH,4 were run using
YARN with the deploy mode as "client"; all the Spark executors
were launched on the worker nodes, namely, m1, ..., m15. Hence,
m0 had very low load average most of the time (< 1.0).

We used tshark!® to analyze the collected packets for data
transferred (sent/received), throughput, round-trip time (RTT),
and TCP window size. We also analyzed the number of lost seg-
ments and window full/zero window events. For TCP/IP metrics,
we calculated statistics for 60-second intervals using "tshark -z
io,stat,60,filter". We considered the tshark filters shown in
Table 4. We also computed the cumulative distribution function
(CDF) for certain metrics and report their median/P90/P99 values.

As AVAHg and AVAH 4 used the APIs of existing variant call-
ing pipelines, their accuracy for variant calling is identical to the
pipelines GATK4-Spark and ADAM/Cannoli, respectively.

5 Performance Evaluation

In this section, we report the performance evaluation results of
AVAH and AVAH, for different cluster configurations. (Recall
that AVAH employed GATK4-Spark APIs, and AVAH, employed
ADAM/Cannoli APIs.) We report the observed bandwidth among
nodes, pipeline execution time, CPU load average, and network
traffic analysis. We also discuss the key takeaways based on our
evaluation. Finally, we present a binary search-based approach for a
user to choose an appropriate cluster configuration. In the interest
of space, we present only the representative results.

5.1 Observed Network Bandwidth

To test the available bandwidth between nodes, we used iPerf ver-
sion 2.0.10!1. The iPerf server was run on node mo0 of a cluster;
the iPerf client was run on another node (e.g., m1, m10). Data was

9 https://www.tcpdump.org  * https://www.wireshark.org ! https://iperf.fr
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transferred from a client to the server using TCP. The results for a
representative set of single-site clusters are reported in Table 5. The
measured bandwidth was slightly lower than the maximum band-
width setting for a cluster. The average network latency between
two nodes was 0.17 ms.

Table 5: iPerf Results for a Single-Site Cluster

Cluster Server- Data Measured
Configuration Client | Transfer | Bandwidth
S-C8220-C6320-500M | m0-mb5 569 MB 476 Mbps
S-C8220-C6320-500M | m0-m13 | 572 MB 478 Mbps
S-C6320-C6320-1G m0-ml 1.11 GB 950 Mbps
S-C6320-C6320-1G m0-m10 | 1.08 GB 929 Mbps
S-C8220-C6320-10G m0-ml 11.0 GB 9.41 Gbps
S-C8220-C6320-10G m0-m10 | 11.0 GB 9.41 Gbps

Another representative set of test results for multisite clusters
are reported in Table 6. The average network latency between a
Clemson node and a Wisconsin node was 25.86 ms. As expected,
this was much higher than in a single-site cluster. Also, the inter-
data center measured bandwidth was lower than the maximum
bandwidth setting for each cluster. It was noticeably lower for M-
C8220-W220g5-1G and M-C6320-W220g5-10G. These situations are
beyond our control as AL2S is a shared resource across CloudLab
users. On a positive note, this enables us to study how network
bandwidth/latency impacts the performance of variant calling.

Table 6: IPerf Results for a Multisite Cluster

Cluster Server- Data Measured
Configuration Client | Transfer | Bandwidth
M-C8220-W220g5-500M | m0-m1l 572 MB 478 Mbps
M-C8220-W220g5-500M | m0-m10 | 551 MB 461 Mbps
M-C8220-W220g5-1G m0-m1 1.12 GB 956 Mbps
M-C8220-W220g5-1G m0-m10 | 680 MB 569 Mbps
M-C6320-W220g5-10G m0-m1 10.9 GB 9.39 Gbps
M-C6320-W220g5-10G m0-m10 | 803 MB 674 Mbps

5.2 Total Execution Time

Table 7: Total Execution Time of AVAHg

l Cluster Configuration | Time Taken ‘

S-C8220-C6320-500M 29.96 hr
S-C6320-C6320-1G 28.46 hr
5-C8220-C6320-10G 27.09 hr
M-C6320-W220g5-500M 38.99 hr
M-C6320-W220g5-1G 36.68 hr
M-C6320-W220g5-10G 35.14 hr

We report the total wall-clock time required to successfully exe-
cute AVAHg and AVAH 4 for different cluster configurations. Ta-
ble 7 shows the total execution time of AVAH for single-site and
multisite clusters. Table 8 shows the total execution time of AVAH 4
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Table 8: Total Execution Time of AVAH 4

Cluster Configuration | Time Taken
S-C8220-C6320-1G 31.88 hr
S-C8220-C6320-10G 28.73 hr
M-C8220-W220g5-500M 32.24 hr
M-C8220-W220g5-1G 32.45 hr
M-C6320-W220g2-10G 33.13 hr

for single-site and multisite clusters. One may wonder if higher link
bandwidth can lead to faster execution of AVAHG/AVAH 4. On the
contrary, we observed that the total execution time improved/varied
marginally for both AVAHG and AVAH, with increase in the maxi-
mum network link bandwidth. We observed these trends for both
single-site and multisite clusters. It is interesting to observe that
both AVAHG and AVAH 4 were slower in a multisite cluster than in
a single-site cluster. In fact, AVAHg was slower by a bigger margin
in a multisite cluster than in a single-site cluster. This is because
when AVAH; was executed, the latency between nodes across the
two data centers was significantly higher than between nodes in
a single-site setting. (More analysis on network latency will be
provided in Section 5.4.) Also, as reported in Tables 5 and 6, the
measured bandwidth between nodes across the two data centers
was significantly lower than in a single-site setting.

Further investigation of the CPU load average showed that some
of the cluster nodes (running the Spark workers) in Wisconsin
were underutilized leading to slower execution. (The Spark master
was running in Clemson.) As a representative case, we present the
cluster utilization of AVAH. Figure 2(a) shows the 15-minute load
average (measured every 30 seconds on the Spark worker nodes) for
a single-site setting. Figure 2(b) shows the 15-minute load average
for a multisite setting. Clearly, some of the cluster nodes in the
multisite setting were underutilized due to higher network latency
across the Clemson and Wisconsin sites. Similar cluster utilization
trend was observed for AVAH, in a multisite setting.

- vml- vm3 - vm5- vm7 - vm9 - vmll- vml3 - vml5 - vml- vm3- vm5- vm7 - vm9 - vmll - vml3 - vml5
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Figure 2: AVAH: Load Average of Cluster Nodes

Next, we state two key takeaways.

Takeway 1: For the tested workload of genomes, a cluster
with high network link bandwidth (i.e., 10 Gbps) provided
marginal benefit in improving the execution speed of the vari-
ant calling pipelines. A cluster with moderate network link
bandwidth (i.e., 1 Gbps) was sufficient to execute the pipelines
with comparable performance. Hence, higher bandwidth links
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may not always be necessary to achieve good performance
for variant calling.

Takeway 2: Higher network latency between cluster nodes,
which was observed in a multisite setting, caused slower
execution of the pipelines. Further analysis showed that some
of the processor cores had lower utilization in a multisite
setting compared to a single-site setting. Hence, low latency
links would enable better performance for variant calling.

One may wonder if lower bandwidth links are beneficial. Un-
fortunately, for 500 Mbps link bandwidth, we observed that Spark
shuffle operation errors were more likely to happen leading to failed
execution on some sequences. Hence, a lower link bandwidth set-
ting may not be ideal for executing AVAHG/AVAH 4. Note that the
results reported for the 500 Mbps link bandwidth setting were for
successful execution of the pipelines, i.e., no failures occurred.

We also increased the TCP buffer sizes to 64 MB and re-ran the
pipelines. However, this change yielded marginal improvement in
the total processing time (less than 5% improvement) implying that
the CPU speed is a bottleneck.

5.3 Task Parallelism During Pipeline Execution

During execution of AVAHG/AVAH4, we logged the Apache Spark
events to better understand when different Spark applications (or
jobs) were scheduled. (Note that these pipelines execute each vari-

ant calling stage as a Spark application/job invoked via spark-submit.)

Initially, AVAHG/AVAH, is first involved as a Spark application;
later, more Spark applications are launched as the pipeline pro-
gresses.) For AVAHg, the last three stages described in Table 1 are
shown in Figure 3(a-b) for single-site and multisite clusters with
10 Gbps link bandwidth. For AVAH4, the four stages described in
Table 2 are shown in Appendix (Figure 8(a-b)) for single-site and
multisite clusters with 10 Gbps link bandwidth. In each subplot, a
line indicates the start time and end time of a Spark application for
a sequence. As there were 98 sequences (and no failures occurred
during the execution), there are 98 lines in each subplot denoting
98 Spark applications. The first variant calling stage of AVAHg for
each sequence (described in Table 1) was executed as part of the
main Spark application, and hence is not shown separately. The
plots show the inherent task parallelism across different variant call-
ing stages that enables high cluster utilization and fast execution
of the pipelines [41]. For other link bandwidth settings (e.g., 500
Mbps, 1 Gbps), the observed trends were similar.
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Figure 3: Spark Events for AVAH (Stages 2-4)
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5.4 Network Traffic Analysis

Next, we report the analysis of the collected network traffic.
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Figure 4: IP Traffic for AVAHg

5.4.1 Analysis of IP Traffic Between Cluster Nodes. We first ana-
lyzed the IP traffic between cluster nodes during the execution of
AVAHg. We ran "tshark -z conv, ip" on the PCAP files collected
on the nodes m1-m15. This computes the IP data (in bytes) sent
from one IP address (sender) to another (receiver). Figure 4 shows
the heatmaps for AVAH in single-site and multisite cluster config-
urations with 1 Gbps link bandwidth. We observed that very few
nodes tend to send more data between each other (denoted by red
shade) than others. Similar trends were observed for other cluster
configurations. In all cases, m0 (the master node) did not exchange
much data with other nodes due to the YARN/Spark settings. Simi-
lar trends were observed for AVAH4 and representative results are
shown in Figure 9 (see Appendix).

5.4.2  Analysis of TCP Traffic Between HDFS Nodes. In HDFS, DataN-
odes that ran on m1-m15 were responsible for managing file data
blocks and transferring data between a reader/writer and HDFS.
(The NameNode that ran on m0 was responsible for file system
metadata and did not generate much traffic.) We computed the total
amount of data transferred between the HDFS DataNodes during
the execution of AVAHg. We ran "tshark -z endpoints, tcp"
on the collected PCAP files and computed the traffic sent/received
on the DataNode server port in HDFS.

Figure 5 shows the results for AVAH in terms of total data sent
and total data received by the different HDFS DataNodes for differ-
ent cluster configurations. We observed that each DataNode (shown
on the x-axis) approximately sent (or received) the same amount
of data during variant calling (upper point trend in each plot). The
lower point trends show how much data was sent (or received) by
others DataNode to (or from) a DataNode (shown on the x-axis).
Overall, the TCP traffic seemed to be balanced across the DataN-
odes. Similar trends were observed for other bandwidth settings.
Whereas for AVAH 4, the received traffic was slightly higher than
the sent traffic as shown in Figure 10 (see Appendix). We attribute
this to the difference in the pipeline stages of AVAH, and AVAHg
and their design and implementation.

5.4.3  Analysis of IP Throughput. We analyzed the throughput of IP
packets sent/received by cluster nodes m1-m15 during the execution
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AVAHG/AVAH 4. On the collected PCAP files, we ran "tshark -z
io,stat,60,ip". Figure 6 shows the throughput (per minute) for
a single-site and a multisite setting when executing AVAH. For 10
Gbps links (Figures 6(b) and 6(d)), we observed that the links were
underutilized for both single-site and multisite settings. (A 100%
utilization would be 75 GB/min for 10 Gbps links and 7.5 GB/min for
1 Gbps links.) We attribute this to the achievable degree of parallelism
as the number of YARN containers that could be executed were
limited by the amount of RAM and number of CPU cores in a
cluster. Having more RAM and cores would increase the degree
of parallelism and can ultimately improve the network bandwidth
utilization. Similar trends of link bandwidth underutilization were
observed when executing AVAH,. (See Figure 11 in Appendix.)

One observation is that the IP traffic patterns were different for
AVAH; and AVAH4. In AVAHy, the interleaving of FASTQ files
(in Stage 1) was done by reading and writing data blocks to HDFS.
Hence, AVAH 4 had a spike in the IP traffic when the pipeline began
execution. For AVAHg, the FASTQ files were copied from HDFS to
a node, combined locally to create a . bam file, and then copied back
to HDFS for the next stage. We did this because GATK4-Spark only
supports local FASTQ files for .bam file creation.

Based on the results, we state the following takeaway:
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Takeway 3: The underutilization of the network link band-
width during execution of AVAHG/AVAH/ can be attributed
to the available cluster hardware resources such as CPU
cores and RAM. More cores and larger RAM size would al-
low AVAHg to launch higher number of YARN containers
leading to higher degree of parallelism in executing genome
sequences. We believe this would generate more network I/0,
thereby improving the link utilization.

5.4.4  Analysis of Network Latency. To better understand the la-
tency of data transfer during the execution of AVAHG/AVAH 4,
we analyzed the average RTT for the TCP packets in 60-second
intervals. We ran "tshark -z io,stat,60" with filter fj (shown
in Table 4) on the collected PCAP files. We analyzed the aggre-
gated traffic across all the worker nodes (m1-m15) by computing
the median, P90, and P99 avg. RTT during the pipeline execution.
The results for AVAHgG and AVAH,4 are reported in Table 9. We
observed the avg. RTT percentile values were higher for multisite
clusters compared to single-site clusters for the same bandwidth
setting. Also the clusters with 500 Mbps link bandwidth had higher
latencies (compared to clusters with 1 Gbps/10 Gbps links) implying
that such low bandwidth links are not ideal for executing AVAHg
as this would increase the likelihood of observing Spark shuffle op-
eration errors. As reported earlier, higher latencies in the multisite
setting resulted in lower cluster utilization on a subset of cluster
nodes leading to slower execution of the pipelines.

Table 9: Avg. RTT (Aggregated Across All Workers)

Cluster Median | P90 Avg. | P99 Avg.
Configuration Avg. RTT RTT RTT

AVAH;
S-C8220-C6320-500M 4.08ms | 13.26 ms | 41.28 ms
S-C6320-C6320-1G 247 ms | 11.03 ms | 18.33 ms
S5-C8220-C6320-10G 2.11ms | 10.67 ms | 17.48 ms
M-C6320-W220g5-500M 13.18 ms | 23.80 ms | 44.54 ms
M-C6320-W220g5-1G 10.78 ms | 20.68 ms | 28.90 ms
M-C6320-W220g5-10G 12.07 ms | 21.86 ms | 31.20 ms

AVAH,,
S-C8220-C6320-1G 8.44ms | 13.88 ms | 21.35 ms
S-C8220-C6320-10G 2.88 ms 7.61 ms | 14.72 ms
M-C8220-W220g5-500M 10.37 ms | 17.18 ms | 27.23 ms
M-C8220-W220g5-1G 7.78 ms | 13.67 ms | 20.16 ms
M-C6320-W220g2-10G 423ms | 7.86ms | 16.01 ms

Based on the latencies observed in different cluster settings, we
state the following takeaway:

Takeway 4: It is not a good idea to use low network band-
width links (i.e., 500 Mbps). This is because the likelihood of
Spark shuffle operation errors increases due to higher RTTs
leading to failures in processing sequences. Re-execution of
failed sequences would ultimately increase the total process-
ing time of the pipelines.

5.4.5 Analysis of TCP Window Size. To better understand the TCP
traffic pattern/congestion for different cluster configurations, we an-
alyzed the maximum TCP window size for every 60-second interval.
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We ran "tshark -z io,stat,60" with filter f, (shown in Table 4)
on the collected PCAP files. (TCP Cubic [18] was the congestion con-
trol algorithm used by the cluster nodes.) We report the CDF of the
maximum TCP window size (in bytes) computed every minute for
each cluster node during the execution of AVAHG/AVAH 4. Figure 7
shows the CDF of max. TCP window size for AVAH. Figure 12 (see
Appendix) shows the CDF of max. TCP window size for AVAH 4.
The nodes were more likely to use a larger TCP window size in a
single-site setting than in a multisite setting. These plots clearly
show a difference in the traffic patterns produced by AVAH; and
AVAH 4. When executing AVAH,, the cluster nodes were more
likely to use the max. TCP window size (i.e., 3,145,728 bytes).

We also analyzed the number of window full and zero window
events (for every 60-second intervals) in the TCP traffic for AVAHg
and AVAH,. We ran "tshark -z io,stat, 60" with filters f3 — f3
(shown in Table 4) on the collected PCAP files. We analyzed the ag-
gregated traffic across all the worker nodes (m1-m15) by computing
the P90/P99 values for the number of events during a pipeline exe-
cution. The results are reported in Table 10. We observed that these
events occurred more frequently as the link bandwidth increases
implying that the CPU speed is the bottleneck.

Table 10: Window Full/Zero Window Events (All Workers)

Cluster Window Full Zero Window
Configuration P90 P99 P90 P99
Count | Count | Count | Count

AVAH
S-C8220-C6320-500M 3,173 | 7,030 | 1,947 | 3,287
S-C6320-C6320-1G 3,805 | 11,111 | 2,441 | 6,288
S-C8220-C6320-10G 10,265 | 42,711 | 4,162 | 12,527

M-C6320-W220g5-500M | 5,637 | 13,320 | 1,492 | 2,628
M-C6320-W220g5-1G 6,370 | 15,298 | 1,885 | 3,600
M-C6320-W220g5-10G | 8,456 | 21,063 | 2,262 | 6,049

AVAH,
S-C8220-C6320-1G 5,873 | 20,100 | 3,769 | 10,483
M-C8220-W220g5-500M | 2,867 | 6,187 | 2,207 | 5062
M-C8220-W220g5-1G 3532 | 7578 | 2,488 | 5,680
M-C6320-W220g2-10G | 5,649 | 11,725 | 4,507 | 9,133

5.4.6 Analysis of TCP Lost Segments. Finally, we ran "tshark -z
io,stat,60" with filters f5 (shown in Table 4) on the collected
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PCAP files. We computed the ratio of lost segments in a 60-second
interval and the total number of packets sent/received in that in-
terval. We observed that the network was highly reliable with a
typical loss rate of below 1% for different settings.

5.5 Recommendations for Users

Algorithm 1 Instance Type Selection for Variant Calling

Require: (1, Iy, ..., I) - sorted list of instances; T(> 0) - user
specified threshold
Ensure: I;,,, - the best instance
1: Run AVAHg (or AVAH,) on the m-node cluster of I, node type
using the user’s representative workload of human genomes;
allocate 90% of the RAM/cores per node to YARN
: Let tp,s; denote the execution time of AVAHg (or AVAH,)
. Let ipegy < 1
: low « 1, high < n
: while high — low > 0 do
mid | Mo |
7: Run AVAHg (or AVAH,) on the m-node cluster of I,,,;4 node
type using the user’s sample workload of human genomes;
allocate 90% of the RAM/cores to YARN
8:  Let t,,,;4 denote the execution time of AVAHg (or AVAH4)
9 if [(Spark shuffle errors or Java heap space errors are ob-
served leading to failures in generating VCF files) OR (¢,,,;4 >
T X tpest)] then

[S N N N

k

10: low «— mid
11:  else
12: high < mid; tyess — tmids ipest < mid

13: return [,

For users who regularly process genome workloads, we present
a binary search-based approach for choosing an appropriate cluster
configuration (focused on network link bandwidth/latency). For
example, Amazon Web Services (AWS)!? provides several general
purpose instances with different network performance (e.g., 5 Gbps,
10 Gbps, 12.5 Gbps, 25 Gbps, 50 Gbps). It is challenging to figure out
a priori which instance type would work best for a representative
genome workload; trying out every instance is also a tedious task.

Suppose there are n instances to choose from to set up an m-
node cluster. Suppose each instance is represented by its attributes
network link bandwidth (b), network latency (I), instance’s RAM
size (r), and number of cores in an instance (c). Let (I, Iz, ..., I,) de-
note the sorted list of instances by the composite key < b, % c,r>.
We assume instance I, always leads to successful execution of the
genome workloads. Algorithm 1 shows the steps involved. First, a
cluster with I, instance type is used to run a representative work-
load of genomes to compute the initial best time (Lines 1-3). The
binary search process starts by selecting an instance in the mid-
dle of the sorted list and tests on a cluster with that instance type
(Lines 6-8). If the performance degrades significantly (based on a
user-specified threshold) or Spark shuffle/Java heap errors occur,
then the search proceeds to the right half of the list. Otherwise, the
left half of the list is searched next and the new best timing/instance
are noted. (See Lines 9-12.)

12 https://aws.amazon.com/ec2/instance-types
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5.6 Discussion

CloudLab is representative of a commodity cluster in a data center
where the nodes are connected by high-speed networking. In con-
trast to a commercial cloud that typically provides virtual machines,
our experiments were conducted on baremetal servers in CloudLab.
The processors on CloudLab are likely to be older than those avail-
able today in a commercial cloud. Also, today cloud providers offer
compute-optimized nodes and enhanced networking services for
compute-intensive and latency-sensitive applications albeit for a
cost. A multisite setting can be useful when resources across data
centers are aggregated for solving a data intensive problem. Via
AL2S, we can better understand the impact of network latency and
bandwidth on variant calling given shared users. Overall, CloudLab
is a valuable resource for our study as our experiments would have
cost us thousands of dollars in a commercial cloud.

In terms of scaling, we expect to see similar trends in network
traffic with increasing number of the genomes for a given cluster.
This is because the number of YARN containers that can execute
concurrently depends on the amount of RAM and number of cores
in the cluster.

In our study, we did not use the recent human pangenome refer-
ence [26], which is known to improve read mapping and variant
calling performance [16]. We did not measure disk I/O nor consider
data locality in our experiments. Data locality can improve perfor-
mance especially in a multisite setting. We also did not consider
security and privacy concerns of genome data processing. A recent
work showed that SmartNICs can be used to perform secure variant
calling [40]. This work could be extended to perform secure variant
calling in a cluster.

6 Conclusion

In this paper, we studied the impact of a cluster’s network infras-
tructure on the performance of variant calling over human genomes.
We evaluated the performance of two open-source variant calling
pipelines and analyzed the network traffic generated during execu-
tion for different cluster configurations (e.g., single-site, multisite).
We observed that higher bandwidth links may not always lead to
faster execution of variant calling pipelines and can be underuti-
lized due to the achievable degree of parallelism. Higher network
latency among cluster nodes can lead to slower execution of the
pipelines due to lower utilization of the processor cores. Hence, by
choosing an appropriate network link bandwidth and ensuring low
network latency, good performance can be achieved for variant
calling on a large workload of human genomes. In the future, we
would like to analyze the network traffic during variant calling
on high-coverage sequences with different cluster configurations
especially in the presence of hardware accelerators.
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Appendix

In the interest of space, some of the AVAH 4 results are shown in

this Appendix.

Task Parallelism During Pipeline Execution
Figure 8 shows the Spark events for AVAH 4.
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Figure 8: Spark Events for AVAH 4 (Stages 1-4)

Analysis of IP Traffic Between Cluster Nodes
Figure 9 shows the IP traffic between cluster nodes for AVAH4.
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Figure 9: IP Traffic for AVAH,4

Analysis of TCP Traffic Between HDFS Nodes
Figure 10 shows the TCP traffic between HDFS nodes.
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Analysis of IP Throughput
Figure 11 shows the IP throughput for AVAH 4.
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Figure 11: AVAH 4: IP Throughput

Analysis of TCP Window Size
Figure 12 shows the CDF of max. TCP window size for AVAH,4.
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Figure 12: AVAH4: CDF of Max. TCP Window Size
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