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Abstract

A whole genome sequence of a human can consume gigabytes of

storage space. Analyzing a large number of such sequences is a

compute and memory intensive process. In this regard, cluster com-

puting has emerged as an attractive solution for large-scale human

genome analysis. In this paper, we investigate how the underlying

networking infrastructure of a commodity cluster can impact the

performance of variant calling, which is a key task to identify vari-

ations in a human’s genome compared to the reference genome.

We measured the performance of variant calling and analyzed the

network tra�c in 16-node clusters with di�erent hardware and

network bandwidth con�gurations. We observed that by increasing

the network link bandwidth, the execution time of variant calling

did not improve signi�cantly due to the degree of parallelism that

was achievable leading to underutilization of the links. However,

with low bandwidth links, data shu�ing errors become more likely

leading to failures. Furthermore, higher network latency among

cluster nodes led to slower execution of variant calling due to lower

utilization of the processor cores. By appropriately choosing the

network link bandwidth for a cluster, good performance can be

achieved while lowering the price of processing genomes especially

in a pay-as-you-go pricing model.
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1 Introduction

Due to advances in sequencing technologies and lower cost of

sequencing1, whole genome sequencing (WGS) has become eco-

nomically feasible for use in large-scale genomic studies and clinical

practice. It is projected that up to 2 billion human genomes could

be sequenced by 2025 [46]. The Sequence Research Archive (SRA)

containing petabytes of human genome data, is widely available

through commercial cloud providers [21]. Recently, new genome

sequencing initiatives [5, 34] were launched for the diagnosis and

treatment of life-threatening diseases such as cancer and COVID-19.

The All of Us Research Program2 and the UK Biobank3 host nearly

250,000 and 500,000 whole genome sequences, respectively. Indeed,

the volume of genomic data has grown rapidly in recent years.

Human genome sequences are very large in size. The (diploid)

human genome contains 6 billion base pairs forming the deoxyri-

bonucleic acid (DNA) [35]. During DNA sequencing, a sample DNA

is sliced into short fragments and read as a sequence of bases (a.k.a.

reads). Due to sequencing errors, a position in the genome is cov-

ered by multiple DNA fragments resulting in millions of reads. The

coverage of WGS denotes the average number of sequencing reads

for each position in the target genome. In essence, a high-coverage

whole genome sequence would require 100+ gigabytes (GBs) of

storage [17]. These large-sized sequences pose technical challenges

for e�cient storage, analysis, and data transfer.

Variant calling is a key task that is performed to identify variants

in a human genome sequence compared to the reference genome.

These variants include single nucleotide polymorphisms (SNPs),

short insertions/deletions (indels), copy number variation, and other

structural variants4. Identifying these variants using a variant call-

ing pipeline [22] is critical for assessing an individual’s risk to

diseases and enabling new innovations in disease diagnosis and

treatment. A pipeline consists of several stages including reading a

genome sequence, performing alignment of reads with the reference

genome, additional pre-processing steps, and �nally, invoking a

variant caller to produce raw variants. The raw variants are further

processed by variant �ltering and annotation steps. Variant calling

involves computationally intensive tasks and requires signi�cant

computing and storage resources to analyze a genome workload.

There is growing demand from hospitals and institutions to

process large volumes of genomic data due to precision medicine5.

Cloud computing has become a feasible solution for analyzing

genomes due to its elasticity and pay-as-you-go pricing model [23].

In this regard, reducing the cost of analyzing genomes has become

a key challenge [28, 32, 45]. In recent years, open source projects

1 www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-

Genome-cost 2 https://allofus.nih.gov 3 https://www.ukbiobank.ac.uk
4 https://m.ensembl.org/info/genome/variation/prediction/classi�cation.html
5 www.cancer.gov/publications/dictionaries/cancer-terms/def/precision-medicine
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have emerged (e.g., GATK4 [20], ADAM/Cannoli [32, 33]) that em-

ploy cluster computing frameworks, namely, Apache Spark [50]

and Apache Hadoop [48], to perform variant calling on genomes.

Companies such as Microsoft, Databricks, Illumina, Sentieon, and

NVIDIA are developing new tools/services to accelerate genome

analysis. Thus, there is a growing interest in advancing the state of

the art in large-scale human genome sequence analysis [47].

In this paper, we investigate how the underlying networking in-

frastructure of a commodity cluster can impact the performance of a

variant calling pipeline on a large workload of human genomes. To

the best of our knowledge, none of the prior e�orts has thoroughly

analyzed the performance of variant calling pipelines for di�erent

cluster con�gurations. Our key contributions are as follows:

•We study the performance of two variant calling pipeline im-

plementations, namely, GATK4 [20] and Adam/Cannoli [32]. Both

are open source and designed to run in a commodity cluster using

Apache Spark/Hadoop. (GATK4 is a widely adopted software.)

• We evaluated the performance of these pipelines in Cloud-

Lab [12], an experimental testbed for cloud computing research

available at no charge. We employed an asynchronous computing

model [41] that enables good cluster utilization on a workload of

genomes. We chose di�erent hardware/networking con�gurations

for the clusters and used publicly available WGS data [4].

• Through detailed performance evaluation and network tra�c

analysis on the chosen dataset, we observed that high bandwidth

links (e.g., 10 Gbps) did not signi�cantly improve the execution

time of variant calling as the links were underutilized due to the

achievable degree of parallelism on the cluster hardware.

• However, lowering the link bandwidth for the cluster (e.g.,

500 Mbps) was not a good solution due to Apache Spark shu�e

operation errors6 that occurred at times leading to failed execution

of some sequences. Furthermore, higher network latency between

cluster nodes increased the pipeline execution time due to lower

utilization of the processor cores.

• For users regularly processing genome workloads, we provide

a binary-search based approach to select an appropriate cluster con-

�guration. By appropriately choosing the network link bandwidth

and ensuring low network latency for a cluster, good performance

can be achieved for variant calling while lowering the price espe-

cially in a pay-as-you-go pricing model.

2 Background and Motivation

2.1 Overview of Variant Calling Pipelines

Variant calling is a key task performed to identify variants in an

individual’s genome compared to the reference human genome (e.g.,

GRCh38 [29]). It is a computationally intensive process and requires

signi�cant computing and storage resources. It involves reading

ten’s of GBs of genome data and writing several large intermediate

�les. A typical variant calling pipeline for an individual’s DNA sam-

ple [22] has a set of stages. It starts by reading of raw unmapped

reads (e.g., in FASTQ format [49]) output by a sequencer. Using

algorithms such as BWA-MEM [24], the alignment of the reads

with the reference genome is performed. This produces mapped

reads that are stored in a speci�c format (e.g., BAM format [25]).

Duplicate reads in the mapped reads are then marked followed by

6 https://dzone.com/articles/four-common-reasons-for-fetchfailed-exception-in-a

the execution of base quality score recalibration (BQSR) and local

realignment around the indels. BQSR and indel realignment steps

are performed to correct sequencing errors and improve accuracy

of downstream processing. The last stage involves the execution of

a variant calling method. Several variant callers exist today such

as FreeBayes [15], GATK HaplotypeCaller [20], DeepVariant [39],

and DNAscope [13]. The output �le produced by a variant caller

contains raw variants and is in the VCF format [14]. The subse-

quent downstream processing steps include variant �ltering and

annotation steps on the raw variants. The complexity and variety

of pipelines for variant discovery depends on the nature of genomic

analysis and the technology used for sequencing [22].

With the availability of Apache Hadoop [48] and Spark [50],

several e�orts accelerated the DNA variant calling pipelines using

these systems. CloudBurst [43], CloudAligner [30], SEAL [38], and

BigBWA [1] used Hadoop for speeding up the computationally-

intensive alignment stage. Hadoop-BAM was developed to sup-

port Hadoop-based parallel I/O [31] for sequencing data. Later,

SparkBWA [2] employed Apache Spark to speed up alignment us-

ing BWA. Built atop Spark, Cloud Scale-BWAMEM [7] sped up

alignment and was adapted for �eld-programmable gate arrays

(FPGAs) [6]. PipeMEM [51] used Spark pipes to speed up alignment

using BWA-MEM [24]. Ahmed et. al. [3] used FPGAs to accelerate

BWA-MEM [24]; however, they did not use Apache Spark/Hadoop.

The Broad Institute developed the GATK Best Practices Work-

�ows, which is widely adopted for variant discovery [20]. Hal-

vade [11] parallelized the variant calling pipeline of GATK us-

ing MapReduce [10]. Later, GATK4 was released that employed

Apache Spark for multithreading and parallelization [20]. NVIDIA

developed Parabricks to accelerate GATK pipelines using graph-

ics processing units (GPUs) [37]. Google’s DeepVariant [39] used

deep learning for variant calling and operated directly on aligned

reads. Nothaft et. al. [32, 33] created ADAM/Cannoli to enable

the processing of large genomic datasets using Apache Spark’s

primitives. ADAM supports read transformations and correcting

errors in aligned reads. Cannoli leverages pipes and parallelizes the

alignment process and variant calling by reusing existing tools.

More recently, Illumina developed the DRAGEN Platform to ac-

celerate the variant calling pipeline using FPGAs [44]. Sentieon [45]

developed highly optimized software-based algorithms for variant

calling using CPUs for cloud environments. They also developed

DNAscope [13], a machine learning-based variant caller.

2.2 Motivation

With growing use of cloud computing services for analyzing large

genomic datasets [8, 23, 45], the need for e�cient cluster computing

solutions has increased. Most of the prior work have focused on

either (a) developing more accurate variant callers, (b) accelerating

di�erent stages of a variant calling pipeline by designing better

algorithms, or (c) accelerating the entire pipeline using hardware

accelerators and frameworks such as Apache Spark/Hadoop. We

believe there is an important gap in the literature yet to be addressed

and pose the following motivating questions:

• [Q1] How does the underlying networking infrastructure of a

cluster impact the performance of variant calling pipelines due to

large data movement for enabling parallel computations?
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• [Q2] Does the network link bandwidth and network latency

of a cluster impact the execution speed of these pipelines?

Hence, the goal of ourwork is to gain insights to answer the afore-

mentioned questions by observing the performance and analyzing

the network tra�c generated during variant calling in di�erent

cluster settings. While prior work [36] has investigated the impact

of CPU, network, and disk I/O on data analytics workloads using

Apache Spark, our work focuses on variant calling pipelines that

are di�erent from traditional data analytics workloads. Data ana-

lytics workloads (expressed in SQL) are focused on select, project,

join, ordering, and aggregate operations that are commonly seen in

databases and data warehouses. However, genomic data processing,

speci�cally variant calling, invokes alignment algorithms, special-

ized read processing, and identi�cation of active regions/application

of Bayes’ rule/Pair Hidden Markov Models [20] for calling the vari-

ants. Hence, the two workloads are signi�cantly di�erent. The

lessons learned from our work can be bene�cial to other workloads

with similar compute and I/O patterns.

3 Large-Scale Variant Calling in a Cluster

Adam/Cannoli [32] introduced data parallel processing of vari-

ant calling pipelines using Apache Spark/Hadoop. However, on a

large workload of genomes, ADAM/Cannoli yielded modest cluster

utilization [41]. Motivated by these reasons, AVAH (Accelerating

VAriant Calling on Human Genomes) [41] was developed to ac-

celerate the pipeline execution on the workload by improving

the cluster utilization using asynchronous computations and the

concept of futures [19]. (Note that recent software systems have

successfully employed futures for e�cient large-scale distributed

execution [27, 42].) More speci�cally, AVAH distributes the task

of executing a variant calling pipeline on input sequences across

the cluster nodes. It synergistically combines task parallelism and

data parallelism for di�erent stages in the pipeline by launching

asynchronous computations. These computations are executed in

a sliding window manner on small groups of sequences result-

ing in improved cluster utilization. AVAH is built atop Apache

Spark/Hadoop and can use the APIs of Adam/Cannoli and GATK4.

In the reported experiments, AVAH achieved 3×-4× speedup over

Adam/Cannoli [41] on a workload of 98 whole genome sequences.

(AVAH leveraged the APIs of Adam/Cannoli for data parallelism.)

Table 1: GATK4’s Variant Calling Pipeline Stages

Stage Description

1 Copy paired-end FASTQ �les from HDFS to a local �le system,

produce an unaligned .bam, and store it in HDFS

2 Align the .bam �le against a reference genome (e.g., using BWA-

MEM) and mark duplicates of mapped reads to produce an

aligned .bam �le, and then store in HDFS

3 Sort the aligned reads in HDFS to produce a .bam �le in HDFS

4 Invoke the variant calling method HaplotypeCaller [20] to pro-

duce a .vcf �le in HDFS

Consider a single-sample germline variant calling pipeline [22].

Table 1 shows the stages of GATK4 that are invoked sequentially

on a human genome. Table 2 shows the stages of ADAM/Cannoli.

In AVAH, each stage of a variant calling pipeline is modeled as

Table 2: ADAM/Cannoli’s Variant Calling Pipeline

Stage Description

1 Interleave paired-end FASTQ �les in HDFS to produce a .ifq

�le in HDFS

2 Align the .ifq �le against a reference genome (e.g., using BWA-

MEM) to produce a .bam �le in HDFS

3 Using the .bam �le, sort the aligned reads and mark duplicate

reads with BQSR/indel realignment and store the output in

HDFS

4 Invoke the variant calling method Freebayes [15] to produce a

.vcf �le in HDFS

an atomic task. Tasks are executed as asynchronous computations

using futures. Tasks representing the same pipeline stage managed

by a Spark executor (on a worker node) are managed by a sliding

window approach to control the degree of parallelism.

The genome sequences are assumed to be stored in Hadoop

Distributed File System (HDFS). Each genome sequence is identi�ed

by a sequence ID. AVAH reads an input �le containing a list of

sequence IDs and the corresponding sequence sizes as a resilient

distributed dataset (RDD). The RDD can be repartitioned for load

balancing along with sorting the sequence IDs in each partition by

size. Next, AVAH invokes a map operation on each RDD partition

along with the appropriate pipeline stage. The map operation is

executed on a worker node on the set of sequences identi�ed by the

partition. The map operation on all the partitions returns an RDD

containing tuples of sequence IDs and status of the execution of a

stage on that sequence (i.e., success or failure). Each task/stage on

a sequence can be executed in a data parallel manner using either

the GATK4-Spark APIs [20] or the ADAM/Cannoli APIs. AVAH

chains the map operations that are applied on the partitions for the

di�erent pipeline stages; the collect call is executed by the Spark

driver at the end of the last stage of the pipeline. This introduces

minimal synchronization among the pipeline stages and yields

better cluster utilization and faster execution on a workload.

4 Methodology

In this section, we present our methodology for performance eval-

uation including details on the execution model, implementation,

experimental setup, tra�c measurement, and evaluation metrics.

4.1 Execution Model and Testbed Used

In this work, we study the performance of variant calling pipelines

in a commodity cluster. As AVAH is designed to achieve good

CPU utilization in a cluster for the aforementioned variant calling

pipelines (on a large workload of genomes), it is used for the experi-

ments. Furthermore, AVAH executes a genomeworkload faster than

separately executing ADAM/Cannoli or GATK4-Spark APIs on the

workload [41]. (We did not use AVAH★ [9] as the tested clusters did

not use GPUs.) Hereinafter, we refer to AVAH that uses the GATK4-

Spark APIs and the ADAM/Cannoli APIs as AVAHă and AVAHý ,

respectively. By using two di�erent pipeline implementations, we

aim to gain deeper understanding of how the performance of these

pipelines are impacted by a cluster’s networking infrastructure.

We ran all of our experiments in CloudLab [12], which is an

experimental testbed for cloud computing research available at no
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charge. (Note that we did not have usage credits for commercial

cloud providers to run many rounds of experiments.) CloudLab

has large number of bare metal servers for enabling large-scale

experimentation. The servers have CPUs with di�erent number

of cores and processing speeds as well as RAM of di�erent sizes.

Furthermore, the network bandwidth links for LANs can be con�g-

ured during cluster setup. In addition, a VLAN (virtual local area

network) can be set up across two geographically-separated data

centers using Internet2’s Advanced Layer 2 Service (AL2S). Hence,

CloudLab provides a highly con�gurable environment to study the

impact of a cluster’s networking infrastructure on variant calling

pipelines using large-scale human genome datasets. (Experiments

on multiple cloud providers is beyond the scope of this work.)

4.2 Implementation

We obtained the code for AVAHă and AVAHý published by the

original authors on GitHub7. AVAHý was built atop Spark 3.0.0,

Scala 2.12.8, and Hadoop 3.2.0. AVAHă was built atop Spark 2.4.7,

Scala 2.11.8, and Hadoop 2.7.6.

Figure 1: Architecture for Performance Evaluation

4.3 Cluster Setup

Figure 1 shows the overall architecture for performance evaluation

of variant calling on CloudLab. We set up clusters using hardware

available in two data centers of CloudLab: Clemson and Wisconsin.

The nodes were physical machines with Intel processors running

Ubuntu 18.04 and connected by a Gigabit Ethernet (GbE) network.

Local block storage (striped across multiple physical disks) was

mounted on each node in order to have ample storage space for

HDFS and genome sequences. (For HDFS, the default replication

factor of 3 was used.) Note that the cluster nodes were exclusively

used by us to run AVAHă /AVAHý without any interference from

other jobs or users. Hence, our results can be reproduced in the

same cluster settings.8

Table 3 shows the hardware details of the di�erent nodes used in

the experiments. The C8220 nodes had two Intel E5-2660 v2 10-core

CPUs (2.20 GHz); the C6320 nodes had two Intel E5-2683 v3 14-core

CPUs (2.00 GHz); theW220g2 nodes had two Intel E5-2660 v3 10-

core CPUs (2.60 GHz); and theW220g5 nodes had two Intel Xeon

Silver 4114 10-core CPUs (2.20 GHz). In essence, C6320 had more

7 https://github.com/MU-Data-Science/EVA 8 When a cluster spans across 2 Cloud-
Lab data centers, the results may vary depending on the number of concurrent Cloud-
Lab users of AL2S between the data centers.

Table 3: Node Hardware Description

Data Node Cores Main NIC

Center Type (Threads) Memory Type

Clemson C8220 20 (40) 256 GB 10 GbE

Clemson C6320 28 (56) 256 GB 10 GbE

Wisconsin W220g2 20 (40) 160 GB 10 GbE

Wisconsin W220g5 20 (40) 192 GB 10 GbE

cores than the others; W220g5 was a newer and faster processor

thanW220g2 and C8220.

All Spark jobs in AVAHă and AVAHý were executed using

Yet Another Resource Negotiator (YARN) [48]. We allocated suf-

�cient memory for YARN containers to successfully execute the

pipeline. Note that ADAM/Cannoli runs the tools such as BWA and

Freebayes outside of the Java Virtual Machine (JVM) as separate

Linux processes. On the other hand, GATK4-Spark runs all the

tools inside the JVM. Hence, AVAHă required higher memory for

YARN containers and Spark executors than AVAHý . We chose the

memory settings to allow the pipelines to achieve high load aver-

age for the chosen cluster. For example, AVAHý on Clemson was

run with yarn.scheduler.maximum-allocation-mb to 61,440 MB and

yarn.nodemanager.resource.memory-mb set to 191,440 MB. AVAHă

on Clemson was run with yarn.scheduler.maximum-allocation-mb

to 91,440 MB and yarn.nodemanager.resource.memory-mb to 220,000

MB. Also, the CPU settings in YARN were chosen based on the

hardware. The YARN property for virtual cores was set to 36 for a

40-thread node (i.e., C8220, W220g2,W220g5) and 50 for a 56-thread

node (i.e., C6320).

4.4 Cluster Con�gurations

We set up 16-node clusters with di�erent con�gurations. The �rst

group of 8 nodes (namedm0, ...,m7 ) were of one hardware type, and

the second group of 8 nodes (named m8, ..., m15) were of another

hardware type. In a single-site cluster, both groups belonged to one

data center. The cluster nodes were connected using a LAN. In

a multisite cluster, the two groups spanned across Clemson and

Wisconsin data centers. The two groups of nodes were connected

by AL2S using a VLAN. The multisite setting is useful for under-

standing how network latency (between cluster nodes) can impact the

performance of variant calling.

We con�gured the maximum network link bandwidth for each

cluster setting to 500 Mbps, 1 Gbps, or 10 Gbps. (The maximum

transmission unit (MTU) was �xed at 1,500 bytes.) For ease of

exposition, we use the notation X-Y-Z to refer to a cluster set-

ting, where X is the hardware type for the �rst 8 nodes, Y is the

hardware type for the remaining 8 nodes, and Z is the maximum

network link bandwidth between the cluster nodes. For example,

S-C8220-C6320-10G denotes a single-site cluster containing nodes

in Clemson of type C8220 and C6320 with 10 Gbps link bandwidth.

Similarly, M-C8220-W220g5-1G denotes a multisite cluster (span-

ning across the Clemson and Wisconsin data centers) with 1 Gbps

link bandwidth. CloudLab uses bandwidth shaping in case higher

bandwidth NICs are selected as part of a cluster setup. Note that

speci�c hardware chosen for di�erent experiments were based on

availability of CloudLab resources at the time of experimentation.
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Table 4: Filters Used With tshark

Filter ID Filter

Ĝ1 AVG(tcp.analysis.ack_rtt)

Ĝ2 MAX(tcp.window_size)

Ĝ3 COUNT(tcp.analysis.window_full)

Ĝ4 COUNT(tcp.analysis.zero_window)

Ĝ5 COUNT(tcp.analysis.lost_segment)

4.5 Publicly Available Genome Dataset

For the experiments, we used 98 whole genome sequences of hu-

mans that are publicly available from the 1000 Genomes Project [4].

The total size of these low-coverage (paired-end) sequences was

632 GB (in compressed form). The size of the paired-end sequences

ranged from 2.2 GB to 15.4 GB (in compressed form).

4.6 Network Tra�c and Evaluation Metrics

Using tcpdump9, we collected the network tra�c on the network in-

terface used by each cluster node during the execution of a pipeline.

Separate PCAP (Packet Capture) �les were produced every 30 mins

for the packets sent and received on each interface. A snapshot

length of 94 bytes was speci�ed for tcpdump to avoid the PCAP �les

from growing too large. (A merged PCAP �le on each worker was

typically 30-50 GB in size.) AVAHă and AVAHý were run using

YARN with the deploy mode as "client"; all the Spark executors

were launched on the worker nodes, namely, m1, ..., m15. Hence,

m0 had very low load average most of the time (< 1.0).

We used tshark10 to analyze the collected packets for data

transferred (sent/received), throughput, round-trip time (RTT),

and TCP window size. We also analyzed the number of lost seg-

ments and window full/zero window events. For TCP/IP metrics,

we calculated statistics for 60-second intervals using "tshark -z

io,stat,60,filter". We considered the tshark �lters shown in

Table 4. We also computed the cumulative distribution function

(CDF) for certain metrics and report their median/P90/P99 values.

As AVAHă and AVAHý used the APIs of existing variant call-

ing pipelines, their accuracy for variant calling is identical to the

pipelines GATK4-Spark and ADAM/Cannoli, respectively.

5 Performance Evaluation

In this section, we report the performance evaluation results of

AVAHă and AVAHý for di�erent cluster con�gurations. (Recall

that AVAHă employed GATK4-Spark APIs, and AVAHý employed

ADAM/Cannoli APIs.) We report the observed bandwidth among

nodes, pipeline execution time, CPU load average, and network

tra�c analysis. We also discuss the key takeaways based on our

evaluation. Finally, we present a binary search-based approach for a

user to choose an appropriate cluster con�guration. In the interest

of space, we present only the representative results.

5.1 Observed Network Bandwidth

To test the available bandwidth between nodes, we used iPerf ver-

sion 2.0.1011. The iPerf server was run on node m0 of a cluster;

the iPerf client was run on another node (e.g., m1, m10). Data was

9 https://www.tcpdump.org 10 https://www.wireshark.org 11 https://iperf.fr

transferred from a client to the server using TCP. The results for a

representative set of single-site clusters are reported in Table 5. The

measured bandwidth was slightly lower than the maximum band-

width setting for a cluster. The average network latency between

two nodes was 0.17 ms.

Table 5: iPerf Results for a Single-Site Cluster

Cluster Server- Data Measured

Con�guration Client Transfer Bandwidth

S-C8220-C6320-500M m0-m5 569 MB 476 Mbps

S-C8220-C6320-500M m0-m13 572 MB 478 Mbps

S-C6320-C6320-1G m0-m1 1.11 GB 950 Mbps

S-C6320-C6320-1G m0-m10 1.08 GB 929 Mbps

S-C8220-C6320-10G m0-m1 11.0 GB 9.41 Gbps

S-C8220-C6320-10G m0-m10 11.0 GB 9.41 Gbps

Another representative set of test results for multisite clusters

are reported in Table 6. The average network latency between a

Clemson node and a Wisconsin node was 25.86 ms. As expected,

this was much higher than in a single-site cluster. Also, the inter-

data center measured bandwidth was lower than the maximum

bandwidth setting for each cluster. It was noticeably lower for M-

C8220-W220g5-1G and M-C6320-W220g5-10G. These situations are

beyond our control as AL2S is a shared resource across CloudLab

users. On a positive note, this enables us to study how network

bandwidth/latency impacts the performance of variant calling.

Table 6: IPerf Results for a Multisite Cluster

Cluster Server- Data Measured

Con�guration Client Transfer Bandwidth

M-C8220-W220g5-500M m0-m1 572 MB 478 Mbps

M-C8220-W220g5-500M m0-m10 551 MB 461 Mbps

M-C8220-W220g5-1G m0-m1 1.12 GB 956 Mbps

M-C8220-W220g5-1G m0-m10 680 MB 569 Mbps

M-C6320-W220g5-10G m0-m1 10.9 GB 9.39 Gbps

M-C6320-W220g5-10G m0-m10 803 MB 674 Mbps

5.2 Total Execution Time

Table 7: Total Execution Time of AVAHă

Cluster Con�guration Time Taken

S-C8220-C6320-500M 29.96 hr

S-C6320-C6320-1G 28.46 hr

S-C8220-C6320-10G 27.09 hr

M-C6320-W220g5-500M 38.99 hr

M-C6320-W220g5-1G 36.68 hr

M-C6320-W220g5-10G 35.14 hr

We report the total wall-clock time required to successfully exe-

cute AVAHă and AVAHý for di�erent cluster con�gurations. Ta-

ble 7 shows the total execution time of AVAHă for single-site and

multisite clusters. Table 8 shows the total execution time of AVAHý
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Table 8: Total Execution Time of AVAHý

Cluster Con�guration Time Taken

S-C8220-C6320-1G 31.88 hr

S-C8220-C6320-10G 28.73 hr

M-C8220-W220g5-500M 32.24 hr

M-C8220-W220g5-1G 32.45 hr

M-C6320-W220g2-10G 33.13 hr

for single-site and multisite clusters. One may wonder if higher link

bandwidth can lead to faster execution of AVAHă /AVAHý . On the

contrary, we observed that the total execution time improved/varied

marginally for both AVAHă and AVAHý with increase in the maxi-

mum network link bandwidth. We observed these trends for both

single-site and multisite clusters. It is interesting to observe that

both AVAHă and AVAHý were slower in a multisite cluster than in

a single-site cluster. In fact, AVAHă was slower by a bigger margin

in a multisite cluster than in a single-site cluster. This is because

when AVAHă was executed, the latency between nodes across the

two data centers was signi�cantly higher than between nodes in

a single-site setting. (More analysis on network latency will be

provided in Section 5.4.) Also, as reported in Tables 5 and 6, the

measured bandwidth between nodes across the two data centers

was signi�cantly lower than in a single-site setting.

Further investigation of the CPU load average showed that some

of the cluster nodes (running the Spark workers) in Wisconsin

were underutilized leading to slower execution. (The Spark master

was running in Clemson.) As a representative case, we present the

cluster utilization of AVAHă . Figure 2(a) shows the 15-minute load

average (measured every 30 seconds on the Spark worker nodes) for

a single-site setting. Figure 2(b) shows the 15-minute load average

for a multisite setting. Clearly, some of the cluster nodes in the

multisite setting were underutilized due to higher network latency

across the Clemson and Wisconsin sites. Similar cluster utilization

trend was observed for AVAHý in a multisite setting.

(a) S-C8220-C6320-10G (b) M-C6320-W220g5-10G

Figure 2: AVAHă : Load Average of Cluster Nodes

Next, we state two key takeaways.

Takeway 1: For the tested workload of genomes, a cluster

with high network link bandwidth (i.e., 10 Gbps) provided

marginal bene�t in improving the execution speed of the vari-

ant calling pipelines. A cluster with moderate network link

bandwidth (i.e., 1 Gbps) was su�cient to execute the pipelines

with comparable performance. Hence, higher bandwidth links

may not always be necessary to achieve good performance

for variant calling.

Takeway 2: Higher network latency between cluster nodes,

which was observed in a multisite setting, caused slower

execution of the pipelines. Further analysis showed that some

of the processor cores had lower utilization in a multisite

setting compared to a single-site setting. Hence, low latency

links would enable better performance for variant calling.

One may wonder if lower bandwidth links are bene�cial. Un-

fortunately, for 500 Mbps link bandwidth, we observed that Spark

shu�e operation errors were more likely to happen leading to failed

execution on some sequences. Hence, a lower link bandwidth set-

ting may not be ideal for executing AVAHă /AVAHý . Note that the

results reported for the 500 Mbps link bandwidth setting were for

successful execution of the pipelines, i.e., no failures occurred.

We also increased the TCP bu�er sizes to 64 MB and re-ran the

pipelines. However, this change yielded marginal improvement in

the total processing time (less than 5% improvement) implying that

the CPU speed is a bottleneck.

5.3 Task Parallelism During Pipeline Execution

During execution of AVAHă /AVAHý , we logged the Apache Spark

events to better understand when di�erent Spark applications (or

jobs) were scheduled. (Note that these pipelines execute each vari-

ant calling stage as a Spark application/job invoked via spark-submit.)

Initially, AVAHă /AVAHý is �rst involved as a Spark application;

later, more Spark applications are launched as the pipeline pro-

gresses.) For AVAHă , the last three stages described in Table 1 are

shown in Figure 3(a-b) for single-site and multisite clusters with

10 Gbps link bandwidth. For AVAHý , the four stages described in

Table 2 are shown in Appendix (Figure 8(a-b)) for single-site and

multisite clusters with 10 Gbps link bandwidth. In each subplot, a

line indicates the start time and end time of a Spark application for

a sequence. As there were 98 sequences (and no failures occurred

during the execution), there are 98 lines in each subplot denoting

98 Spark applications. The �rst variant calling stage of AVAHă for

each sequence (described in Table 1) was executed as part of the

main Spark application, and hence is not shown separately. The

plots show the inherent task parallelism across di�erent variant call-

ing stages that enables high cluster utilization and fast execution

of the pipelines [41]. For other link bandwidth settings (e.g., 500

Mbps, 1 Gbps), the observed trends were similar.

(a) S-C8220-C6320-10G (b) M-C6320-W220g5-10G

Figure 3: Spark Events for AVAHă (Stages 2-4)
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5.4 Network Tra�c Analysis

Next, we report the analysis of the collected network tra�c.

(a) S-C6320-C6320-1G (b) M-C6320-W220g5-1G

Figure 4: IP Tra�c for AVAHă

5.4.1 Analysis of IP Tra�ic Between Cluster Nodes. We �rst ana-

lyzed the IP tra�c between cluster nodes during the execution of

AVAHă . We ran "tshark -z conv,ip" on the PCAP �les collected

on the nodes m1-m15. This computes the IP data (in bytes) sent

from one IP address (sender) to another (receiver). Figure 4 shows

the heatmaps for AVAHă in single-site and multisite cluster con�g-

urations with 1 Gbps link bandwidth. We observed that very few

nodes tend to send more data between each other (denoted by red

shade) than others. Similar trends were observed for other cluster

con�gurations. In all cases, m0 (the master node) did not exchange

much data with other nodes due to the YARN/Spark settings. Simi-

lar trends were observed for AVAHý and representative results are

shown in Figure 9 (see Appendix).

5.4.2 Analysis of TCP Tra�ic BetweenHDFSNodes. InHDFS, DataN-

odes that ran on m1-m15 were responsible for managing �le data

blocks and transferring data between a reader/writer and HDFS.

(The NameNode that ran on m0 was responsible for �le system

metadata and did not generate much tra�c.) We computed the total

amount of data transferred between the HDFS DataNodes during

the execution of AVAHă . We ran "tshark -z endpoints,tcp"

on the collected PCAP �les and computed the tra�c sent/received

on the DataNode server port in HDFS.

Figure 5 shows the results for AVAHă in terms of total data sent

and total data received by the di�erent HDFS DataNodes for di�er-

ent cluster con�gurations. We observed that each DataNode (shown

on the x-axis) approximately sent (or received) the same amount

of data during variant calling (upper point trend in each plot). The

lower point trends show how much data was sent (or received) by

others DataNode to (or from) a DataNode (shown on the x-axis).

Overall, the TCP tra�c seemed to be balanced across the DataN-

odes. Similar trends were observed for other bandwidth settings.

Whereas for AVAHý , the received tra�c was slightly higher than

the sent tra�c as shown in Figure 10 (see Appendix). We attribute

this to the di�erence in the pipeline stages of AVAHý and AVAHă

and their design and implementation.

5.4.3 Analysis of IP Throughput. We analyzed the throughput of IP

packets sent/received by cluster nodesm1-m15 during the execution

(a) S-C6320-C6320-1G (b) M-C6320-W220g5-1G

Figure 5: Tra�c Between HDFS DataNodes for AVAHă

(a) S-C8220-C6320-10G (b) M-C6320-W220g5-10G

Figure 6: AVAHă : IP Throughput

AVAHă /AVAHý . On the collected PCAP �les, we ran "tshark -z

io,stat,60,ip". Figure 6 shows the throughput (per minute) for

a single-site and a multisite setting when executing AVAHă . For 10

Gbps links (Figures 6(b) and 6(d)), we observed that the links were

underutilized for both single-site and multisite settings. (A 100%

utilization would be 75 GB/min for 10 Gbps links and 7.5 GB/min for

1 Gbps links.)We attribute this to the achievable degree of parallelism

as the number of YARN containers that could be executed were

limited by the amount of RAM and number of CPU cores in a

cluster. Having more RAM and cores would increase the degree

of parallelism and can ultimately improve the network bandwidth

utilization. Similar trends of link bandwidth underutilization were

observed when executing AVAHý . (See Figure 11 in Appendix.)

One observation is that the IP tra�c patterns were di�erent for

AVAHă and AVAHý . In AVAHý , the interleaving of FASTQ �les

(in Stage 1) was done by reading and writing data blocks to HDFS.

Hence, AVAHý had a spike in the IP tra�c when the pipeline began

execution. For AVAHă , the FASTQ �les were copied from HDFS to

a node, combined locally to create a .bam �le, and then copied back

to HDFS for the next stage. We did this because GATK4-Spark only

supports local FASTQ �les for .bam �le creation.

Based on the results, we state the following takeaway:
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Takeway 3: The underutilization of the network link band-

width during execution of AVAHă /AVAHý can be attributed

to the available cluster hardware resources such as CPU

cores and RAM. More cores and larger RAM size would al-

low AVAHă to launch higher number of YARN containers

leading to higher degree of parallelism in executing genome

sequences. We believe this would generate more network I/O,

thereby improving the link utilization.

5.4.4 Analysis of Network Latency. To better understand the la-

tency of data transfer during the execution of AVAHă /AVAHý ,

we analyzed the average RTT for the TCP packets in 60-second

intervals. We ran "tshark -z io,stat,60" with �lter Ĝ1 (shown

in Table 4) on the collected PCAP �les. We analyzed the aggre-

gated tra�c across all the worker nodes (m1-m15) by computing

the median, P90, and P99 avg. RTT during the pipeline execution.

The results for AVAHă and AVAHý are reported in Table 9. We

observed the avg. RTT percentile values were higher for multisite

clusters compared to single-site clusters for the same bandwidth

setting. Also the clusters with 500 Mbps link bandwidth had higher

latencies (compared to clusters with 1 Gbps/10 Gbps links) implying

that such low bandwidth links are not ideal for executing AVAHă

as this would increase the likelihood of observing Spark shu�e op-

eration errors. As reported earlier, higher latencies in the multisite

setting resulted in lower cluster utilization on a subset of cluster

nodes leading to slower execution of the pipelines.

Table 9: Avg. RTT (Aggregated Across All Workers)

Cluster Median P90 Avg. P99 Avg.

Con�guration Avg. RTT RTT RTT

AVAHă

S-C8220-C6320-500M 4.08 ms 13.26 ms 41.28 ms

S-C6320-C6320-1G 2.47 ms 11.03 ms 18.33 ms

S-C8220-C6320-10G 2.11 ms 10.67 ms 17.48 ms

M-C6320-W220g5-500M 13.18 ms 23.80 ms 44.54 ms

M-C6320-W220g5-1G 10.78 ms 20.68 ms 28.90 ms

M-C6320-W220g5-10G 12.07 ms 21.86 ms 31.20 ms

AVAHý

S-C8220-C6320-1G 8.44 ms 13.88 ms 21.35 ms

S-C8220-C6320-10G 2.88 ms 7.61 ms 14.72 ms

M-C8220-W220g5-500M 10.37 ms 17.18 ms 27.23 ms

M-C8220-W220g5-1G 7.78 ms 13.67 ms 20.16 ms

M-C6320-W220g2-10G 4.23 ms 7.86 ms 16.01 ms

Based on the latencies observed in di�erent cluster settings, we

state the following takeaway:

Takeway 4: It is not a good idea to use low network band-

width links (i.e., 500 Mbps). This is because the likelihood of

Spark shu�e operation errors increases due to higher RTTs

leading to failures in processing sequences. Re-execution of

failed sequences would ultimately increase the total process-

ing time of the pipelines.

5.4.5 Analysis of TCP Window Size. To better understand the TCP

tra�c pattern/congestion for di�erent cluster con�gurations, we an-

alyzed the maximum TCP window size for every 60-second interval.

(a) S-C6320-C6320-1G (b) M-C6320-W220g5-1G

Figure 7: AVAHă : CDF of Max. TCP Window Size

We ran "tshark -z io,stat,60" with �lter Ĝ2 (shown in Table 4)

on the collected PCAP �les. (TCP Cubic [18] was the congestion con-

trol algorithm used by the cluster nodes.) We report the CDF of the

maximum TCP window size (in bytes) computed every minute for

each cluster node during the execution of AVAHă /AVAHý . Figure 7

shows the CDF of max. TCP window size for AVAHă . Figure 12 (see

Appendix) shows the CDF of max. TCP window size for AVAHý .

The nodes were more likely to use a larger TCP window size in a

single-site setting than in a multisite setting. These plots clearly

show a di�erence in the tra�c patterns produced by AVAHă and

AVAHý . When executing AVAHý , the cluster nodes were more

likely to use the max. TCP window size (i.e., 3,145,728 bytes).

We also analyzed the number of window full and zero window

events (for every 60-second intervals) in the TCP tra�c for AVAHă

and AVAHý . We ran "tshark -z io,stat,60" with �lters Ĝ3 − Ĝ4
(shown in Table 4) on the collected PCAP �les. We analyzed the ag-

gregated tra�c across all the worker nodes (m1-m15) by computing

the P90/P99 values for the number of events during a pipeline exe-

cution. The results are reported in Table 10. We observed that these

events occurred more frequently as the link bandwidth increases

implying that the CPU speed is the bottleneck.

Table 10: Window Full/Zero Window Events (All Workers)

Cluster Window Full Zero Window

Con�guration P90 P99 P90 P99

Count Count Count Count

AVAHă

S-C8220-C6320-500M 3,173 7,030 1,947 3,287

S-C6320-C6320-1G 3,805 11,111 2,441 6,288

S-C8220-C6320-10G 10,265 42,711 4,162 12,527

M-C6320-W220g5-500M 5,637 13,320 1,492 2,628

M-C6320-W220g5-1G 6,370 15,298 1,885 3,600

M-C6320-W220g5-10G 8,456 21,063 2,262 6,049

AVAHý

S-C8220-C6320-1G 5,873 20,100 3,769 10,483

M-C8220-W220g5-500M 2,867 6,187 2,207 5,062

M-C8220-W220g5-1G 3,532 7,578 2,488 5,680

M-C6320-W220g2-10G 5,649 11,725 4,507 9,133

5.4.6 Analysis of TCP Lost Segments. Finally, we ran "tshark -z

io,stat,60" with �lters Ĝ5 (shown in Table 4) on the collected
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PCAP �les. We computed the ratio of lost segments in a 60-second

interval and the total number of packets sent/received in that in-

terval. We observed that the network was highly reliable with a

typical loss rate of below 1% for di�erent settings.

5.5 Recommendations for Users

Algorithm 1 Instance Type Selection for Variant Calling

Require: (ą1, ą2, ..., ąĤ) - sorted list of instances; Đ (> 0) - user

speci�ed threshold

Ensure: ąğĘěĩĪ - the best instance

1: Run AVAHă (or AVAHý) on theģ-node cluster of ąĤ node type

using the user’s representative workload of human genomes;

allocate 90% of the RAM/cores per node to YARN

2: Let ĪĘěĩĪ denote the execution time of AVAHă (or AVAHý)

3: Let ğĘěĩĪ ← Ĥ

4: Ģĥĭ ← 1, ℎğĝℎ ← Ĥ

5: while ℎğĝℎ − Ģĥĭ > 0 do

6: ģğĚ ← +
ℎğĝℎ+Ģĥĭ

2
,

7: Run AVAHă (or AVAHý) on theģ-node cluster of ąģğĚ node

type using the user’s sample workload of human genomes;

allocate 90% of the RAM/cores to YARN

8: Let ĪģğĚ denote the execution time of AVAHă (or AVAHý)

9: if [(Spark shu�e errors or Java heap space errors are ob-

served leading to failures in generating VCF �les) OR (ĪģğĚ >

Đ × ĪĘěĩĪ )] then

10: Ģĥĭ ←ģğĚ

11: else

12: ℎğĝℎ ←ģğĚ ; ĪĘěĩĪ ← ĪģğĚ ; ğĘěĩĪ ←ģğĚ

13: return ąğĘěĩĪ

For users who regularly process genome workloads, we present

a binary search-based approach for choosing an appropriate cluster

con�guration (focused on network link bandwidth/latency). For

example, Amazon Web Services (AWS)12 provides several general

purpose instances with di�erent network performance (e.g., 5 Gbps,

10 Gbps, 12.5 Gbps, 25 Gbps, 50 Gbps). It is challenging to �gure out

a priori which instance type would work best for a representative

genome workload; trying out every instance is also a tedious task.

Suppose there are Ĥ instances to choose from to set up an ģ-

node cluster. Suppose each instance is represented by its attributes

network link bandwidth (Ę), network latency (Ģ), instance’s RAM

size (Ĩ ), and number of cores in an instance (ę). Let (ą1, ą2, ..., ąĤ) de-

note the sorted list of instances by the composite key < Ę, 1
Ģ
, ę, Ĩ >.

We assume instance ąĤ always leads to successful execution of the

genome workloads. Algorithm 1 shows the steps involved. First, a

cluster with ąĤ instance type is used to run a representative work-

load of genomes to compute the initial best time (Lines 1-3). The

binary search process starts by selecting an instance in the mid-

dle of the sorted list and tests on a cluster with that instance type

(Lines 6-8). If the performance degrades signi�cantly (based on a

user-speci�ed threshold) or Spark shu�e/Java heap errors occur,

then the search proceeds to the right half of the list. Otherwise, the

left half of the list is searched next and the new best timing/instance

are noted. (See Lines 9-12.)

12 https://aws.amazon.com/ec2/instance-types

5.6 Discussion

CloudLab is representative of a commodity cluster in a data center

where the nodes are connected by high-speed networking. In con-

trast to a commercial cloud that typically provides virtual machines,

our experiments were conducted on baremetal servers in CloudLab.

The processors on CloudLab are likely to be older than those avail-

able today in a commercial cloud. Also, today cloud providers o�er

compute-optimized nodes and enhanced networking services for

compute-intensive and latency-sensitive applications albeit for a

cost. A multisite setting can be useful when resources across data

centers are aggregated for solving a data intensive problem. Via

AL2S, we can better understand the impact of network latency and

bandwidth on variant calling given shared users. Overall, CloudLab

is a valuable resource for our study as our experiments would have

cost us thousands of dollars in a commercial cloud.

In terms of scaling, we expect to see similar trends in network

tra�c with increasing number of the genomes for a given cluster.

This is because the number of YARN containers that can execute

concurrently depends on the amount of RAM and number of cores

in the cluster.

In our study, we did not use the recent human pangenome refer-

ence [26], which is known to improve read mapping and variant

calling performance [16]. We did not measure disk I/O nor consider

data locality in our experiments. Data locality can improve perfor-

mance especially in a multisite setting. We also did not consider

security and privacy concerns of genome data processing. A recent

work showed that SmartNICs can be used to perform secure variant

calling [40]. This work could be extended to perform secure variant

calling in a cluster.

6 Conclusion

In this paper, we studied the impact of a cluster’s network infras-

tructure on the performance of variant calling over human genomes.

We evaluated the performance of two open-source variant calling

pipelines and analyzed the network tra�c generated during execu-

tion for di�erent cluster con�gurations (e.g., single-site, multisite).

We observed that higher bandwidth links may not always lead to

faster execution of variant calling pipelines and can be underuti-

lized due to the achievable degree of parallelism. Higher network

latency among cluster nodes can lead to slower execution of the

pipelines due to lower utilization of the processor cores. Hence, by

choosing an appropriate network link bandwidth and ensuring low

network latency, good performance can be achieved for variant

calling on a large workload of human genomes. In the future, we

would like to analyze the network tra�c during variant calling

on high-coverage sequences with di�erent cluster con�gurations

especially in the presence of hardware accelerators.
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Appendix

In the interest of space, some of the AVAHý results are shown in

this Appendix.

Task Parallelism During Pipeline Execution

Figure 8 shows the Spark events for AVAHý .

(a) S-C8220-C6320-10G (b) M-C6320-W220g2-10G

Figure 8: Spark Events for AVAHý (Stages 1-4)

Analysis of IP Tra�c Between Cluster Nodes

Figure 9 shows the IP tra�c between cluster nodes for AVAHý .

(a) S-C8220-C6320-1G (b) M-C8220-W220g5-1G

Figure 9: IP Tra�c for AVAHý

Analysis of TCP Tra�c Between HDFS Nodes

Figure 10 shows the TCP tra�c between HDFS nodes.

(a) S-C8220-C6320-1G (b) M-C8220-W220g5-1G

Figure 10: Tra�c Between HDFS DataNodes for AVAHý

Analysis of IP Throughput

Figure 11 shows the IP throughput for AVAHý .

(a) S-C8220-C6320-10G (b) M-C6320-W220g2-10G

Figure 11: AVAHý: IP Throughput

Analysis of TCP Window Size

Figure 12 shows the CDF of max. TCP window size for AVAHý .

(a) S-C8220-c6320-1G (b) M-C8220-W220g5-1G

Figure 12: AVAHý: CDF of Max. TCP Window Size
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