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Abstract 

The spike protein (S-protein) of SARS-CoV-2 plays an important role in binding, fusion, and host entry. In 

this study, we have predicted interatomic bond strength between receptor binding domain (RBD) and 

angiotensin converting enzyme-2 (ACE2) using machine learning (ML), that matches with expensive ab 

initio calculation result. We collected bond order result from ab initio calculations. We selected a total of 

18 variables such as bond type, bond length, elements and their coordinates, and others, to train ML 

models. We then trained five well-known regression models, namely, Decision Tree regression, KNN 

Regression, XGBoost, Lasso Regression, and Ridge Regression. We tested these models on two different 

datasets, namely, Wild type (WT) and Omicron variant (OV). In the first setting, we used 90% of each 

dataset for training and 10% for testing to predict the bond order. XGBoost model outperformed all the 

other models in the prediction of the WT dataset. It achieved an R2 Score of 0.997. XGBoost also 

outperformed all the other models with an R2 score of 0.9998 in the prediction of the OV dataset. In the 

second setting, we trained all the models on the WT (or OV) dataset and predicted the bond order on the 

OV (or WT) dataset. Interestingly, Decision Tree outperformed all the other models in both cases. It 

achieved an R2 score of 0.997.  

Keywords: Machine learning, spike protein, RBD-ACE2 interface, interatomic bonding, Ab initio 

calculations, XGBoost, decision trees, linear regression

1. Introduction

The COVID-19 pandemic started in November 2019, taking millions of lives globally. The severe acute 

respiratory syndrome coronavirus-2 (SARS-CoV-2) has several variants of concerns (VOC) such as 

Alpha[1], Beta[2], Delta[3], Gamma[4], and Omicron[5] and variants of interest (VOI) such as Eta[6], Iota[7], 

Kappa[8], Lambda[9], and Mu[10]. These VOC and VOI have shown the nature of rapidly mutating SARS-

CoV-2. With overwhelming effort of the scientific community, the development of vaccines has saved 
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billions of lives. In addition to ongoing research in medicine and biology, scientists from various discipline 

have collaborated in an effort to enhance prepardness of such a situation in the future.

SARS-CoV-2 is composed of four proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N) 

proteins (Figure 1a). Among these four proteins, spike protein (S-protein) plays an important role and 

initiates the infection by binding with human angiotensin converting enzyme 2 (ACE2). S-protein has two 

subunits S1 and S2. S1 consists of signal peptide (SP), n-terminal domain (NTD), receptor binding domain 

(RBD), subdomain 1 (SD1), and subdomain 2 (SD2). Similary, S2 consists of fusion peptide (FP), heptad 

repeat 1 (HR1), central helix (CH), connecting domain (CD), heptad repeat 2 (HR2), transmembrane domain 

(TM), and cytoplasmic tail (CT). Among these domains of S-protein, RBD binds with ACE2 in Figure 1b.

Figure 1. (a) Structure of SARS-CoV-2, highlighting its four key proteins and their interaction with ACE2; 

(b) ribbon structure of interface between RBD and ACE2. ACE2: angiotensin converting enzyme 2; RBD: 

receptor binding domain.

There has been a lot of research including experimental[11-13] and computational[14-18] study focused on 

RBD-ACE2 interaction. In the computational research, most of the calculations are performed utilizing 

molecular dynamics[15,19-21], with a few employing ab initio method. Ab initio calculations are known for 

their accuracy however, they are difficult and expensive especially for such large and complex biomolecules. 

In our past studies, we have conducted ab initio calculations for around 4999 atoms[18], which is very large 

but not sufficient to calculate biomolecules with several thousands of atoms. Hence, we have utilized ab 

initio methods on such biomolecules using the divide-and-conquer strategy. Using this strategy, we divide 

the complex biomolecules in small sections and calculate their properties such as electronic structure, 

interatomic bonding, and partial charge. Among these properties interatomic bonding is a crucial one as it 

reflects the types of bonds involved, and their corresponding strength. Investigating the interatomic bonding 

within the RBD-ACE2 interface identifies key interacting amino acids. This information can be used to 

target specific amino acids. Given that RBD-ACE2 is the initial point of contact between the SARS-CoV-2 

and human cells, the strategic targeting of these interacting amino acids can disrupt their interaction and stop 

virus attack. However, ab initio calculations can be costly. Therefore, finding ways to achieve comparable 

accuracy at a reduced expense is essential, and this is where machine learning (ML) steps in.

ML represents a sub-field within artificial intelligence (AI), employing algorithms to discern significant 

patterns and correlations within complex datasets, facilitating the prediction of specific properties[22]. Using 

ML, computers can excel in several tasks that humans can perform using their knowledge and wisdom. ML 

delves into how computer system mimic human learning processes and explores methods for self-

improvement to acquire new knowledge[23]. Widely utilized across diverse domains such as healthcare, 
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finance, marketing, and telecommunications, ML models have become indispensable in today's real-world 

applications[23].

ML models have also been applied in physics and chemistry. For instance, Hansen et al. applied ML 

techniques to predict molecular properties[24]. The precise and efficient prediction of such properties is 

crucial for rational computer design in chemical and pharmaceutical industries. Du et al. proposed a method 

for learning the relativistic continuum mass table by using the kernel ridge regression[25]. They used it to 

learn the nuclear mass table obtained by the relativistic continuum Hartree-Boogoliubov theory. Recently, 

Adhikari et al. suggested the use of ML techniques for predicting potential unknown COVID-19 

mutations[26].

In this study, we employed interatomic bonding result obtained through ab initio calculations and tested ML 

to predict these already obtained bonding outcomes. Our objective is to replicate results obtained via ab 

initio methods, with the eventual aim of overcoming the cost limitations associated with such calculations.

2. Method

2.1 Modelling RBD-ACE2 interface

The interface structures were extracted from the PDB ID 6M0J[13] for the WT and PDB ID 7WBP[27] for the 

OV. Amino acids within the sequence S19-I88 and G319-T365 were incorporated from ACE2, while the 

sequence T333-G526 was included from the RBD. The entire model consists of 311 amino acids. Hydrogen 

atoms were added using the Leap module with ff14SB force field in the AMBER package[28] resulting into a 

total of 4817 and 4873 atoms for WT and OV, respectively. The RBD-ACE2 of the OV contains 15 

mutations.

2.2 Ab initio packages

For the ab initio calculations, we have used two density functional theory (DFT) packages - Vienna ab initio 

simulation package (VASP)[29]and orthogonalized linear combination of atomic orbital[30]. VASP was used 

for interface model optimization. In VASP, we used projector augmented wave[31,32]method with Perdew-

Burke-Ernzerhof[31]exchange correlation functional within the generalized gradient approximation. We used 

the energy cut off 500 eV with electronic convergence of 10-4 eV, force convergence for ionic relaxation to -

10-2 eV, and a single kpoint.

The optimized structure from VASP is used as an input for the OLCAO package. The combination of VASP 

with OLCAO is very effective for complex biomolecules[14,16,18,30,33,34]. OLCAO uses atomic orbitals for 

basis function expansion. It is used to calculate the interatomic bonding in terms of bond order (BO). BO 

determines the strength of the bond. OLCAO uses Mulliken's population analysis to calculate BO. BO is the 

overlap population Ã³³ between pair of atoms (³, ³), defined as:

(1)

Where S i³,j³ are the overlap integrals between the ith orbital in ³th atom and the orbital in atom, and are the 

eigen vector coefficients of the band, jth orbital in the atom. For the ab initio calculations using OLCAO 

method, the total wall clock time and CPU time utilized for RBD-ACE2 OV are approximately 617.89 hours 

and 617.75 hours, respectively, resulting in a CPU efficiency of 99.98%. For RBD-ACE2 WT, the total wall 

clock time and CPU time are approximately 619.07 hours, and 617.16 hours respectively, with a CPU 

efficiency of 99.69%. The dataset for WT and OV obtained from OLCAO were further used as described in 

section 2.3 below.
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2.3 Dataset

The BO result obtained from OLCAO calculation served as the source data. The BO prediction was 

conducted on both interfaces: RBD-ACE2 WT and RBD-ACE2 OV datasets. Note that the RDB-ACE2 WT 

and RDB-ACE2 OV datasets contained 25,356 rows and 25, 753 rows, respectively. Each dataset had 21 

variables. The datasets contained the X, Y and Z coordinates of the bond between the Atom 1 and Atom 2. 

The variables in the datasets are briefly explained in the table below. We used these datasets to predict the 

bond strength also known as the BO (Table 1).

Table 1. Brief description of the variables.

# Variable Brief Description

1 Bond Shows the bond

2 BL Shows the bond length

3 Ele1 Element Participating in the bond

4 X1 Position Coordinates

5 Y1 Position Coordinates

6 Z1 Position Coordinates

7 Ele2 Element Participating in the bond

8 X2 Position Coordinates

9 Y2 Position Coordinates

10 Z2 Position Coordinates

11 PDBele1 Identifier for PDB

12 AA1 Amino acid participating in the bond

13 SeqNo1 Sequence number of the amino acid participating in the bond

14 ChainN1 Chain of the amino acids

15 PDBele2 Identifier for PDB

16 AA2 Amino acid participating in the bond

17 SeqNo2 Sequence number of the amino acid participating in the bond

18 ChainN2 Chain of the amino acids

PDB: Python Debugger.

2.4 Data pre-processing

In the original dataset, the total number of variables were 21. We dropped Atom1 and Atom2 as they are 

both identifiers of the OLCAO package. Eighteen of them were used for training the models, and BO was the 

target variable for prediction. We used the variables bond, bond length, Ele1, x1, y1, z1, PDBele1, AA1, 

SeqNo1, ChainN1, Ele2, x2, y2, z2, PDBele2, AA2, SeqNo2 and ChainN2 as input features for our 

regression models. Label encoding was used to convert the categorical variables to numerical ones before 

passing them to the ML models. Label encoding is an efficient way to transform categorical data to 

numerical ones. It is simple, efficient and helps with memory efficiency.
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2.5 Machine learning

In our work, five well-known ML models were used for the BO prediction. The models were XGBoost 

Regression, K-Nearest Neighbor (KNN) Regression, Decision Trees Regression, Lasso Regression, and 

Ridge Regression. The overall approach of ML for this work is shown in Figure 2. The ML models ran on 

average for 4 hours using grid-search hyperparameter tuning and 10-fold cross validation. These ML models 

have performed well on different datasets and are commonly used in research projects. XGBoost has 

outperformed so many models in literature via extreme gradient boosting[35]. Linear regression is used for its 

simplicity before using other complex models. Decision Trees are often used for many problems because of 

its interpretability. It can learn complex relationship between features. Next, we briefly describe each model 

and its unique characteristics for learning on data.

Figure 2. Overall approach for BO prediction. WT: wild type; OV: omicron variant; XGB: extreme gradient 

boosting; DT: decision tree; KNN: k-nearest neighbor; BO: bayesian optimization.

Lasso Regression: It is a type of linear regression that combines both linear regression and lasso 

hyperparameter tuning. It helps to pick the best regression model by discarding less relevant features[36]. The 

predicted BO is calculated as the product of the input features with the learned coefficients, and then adding 

the regularization term to penalize the absolute values of the coefficient.
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Ridge Regression: It is a type of linear regression that uses Ridge Optimization and includes a 

regularization term to the regression function. The term penalizes the sum of the squared coefficients[37]. 

The predicted BO is calculated by multiplying the input features with the learned coefficients and then 

adding the regularization term that penalizes the squared magnitudes of the coefficients.

Decision Tree Regression: This regression type uses a tree-like model of decisions to predict the target 

value. The tree structure has the root node, decision nodes, and leaf nodes. The root node is the initial node 

of the decision tree. The predicted BO value is computed as the average numerical value for the training data 

that is stored in the selected leaf node. The optimal structure for the tree is learned during the training 

process.

KNN Regression: It is a supervised learning regression model in which the model predicts a continuous 

target variable based on the average or weighted average of the values of its k nearest neighbours. The 

predicted BO is computed by estimating the weighted average of the target values of the k-nearest neighbors.

XGBoost : It is a machine learning models that combines decision trees, ensemble learning, and gradient 

boosting. It is scalable and can be used to train on large datasets. The predicted BO is the sum of individual 

tree predictions multiplied by the learning rate, which is a hyperparameter used during training. 

Hyperparameters are the type of parameters that are used to control and manage an ML model during 

training.

In our experiments, we used the grid search approach to identify the best hyperparameters for the models. 

We also performed a 10-fold cross validation on our datasets. Cross validation is a technique that is used to 

evaluate a model by dividing the dataset into two segments[38,39]. The first segment is used to train the 

model, and the other segment is used to test the model performance[39]. This process is repeated a number of 

times so that every data sample is used in the test set leading to a more robust evaluation of the model.

2.6 Bond order regression

Before the regression process, we first pre-processed our datasets so that it can be easily passed to the ML 

models. We converted the data that are not in numerical form to numerical form using label encoding. We 

then split our datasets into the training set and the testing set. We used four different settings in our work:

A. Train on 90% of the RBD-ACE2 WT dataset and evaluate the models on the remaining 10% of the 

dataset to predict the BO.

B. Train on 90% of the RBD-ACE2 OV dataset and evaluate the models on the remaining 10% of the dataset 

to predict the BO.

C. Train on the entire RBD-ACE2 WT dataset and evaluate the models on the entire RBD-ACE2 OV dataset 

to predict the BO.

D. Train on the entire RBD-ACE2 OV dataset and evaluate the models on the entire RBD-ACE2 WT dataset 

to predict the BO.

3. Result

In this section, we present the performance of the aforementioned ML models on the RBD-ACE2 WT and 

RBD-ACE2 OV datasets. We implemented all the models in Python using Scikit Learn[40], Numpy[41], 

Matplotlib, and XGBoost libraries[42]. We used the best model after the hyperparameter tuning for each 

approach for the BO prediction.

3.1 Performance metrics

Next, we will discuss the different performance metrics that were used in this work to evaluate our models. 

Our regression models aimed to predict the BO in the chosen datasets. We evaluated the models based on the 
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R2 Score, Root Mean Square Error (RMSE), and the Relative Absolute Error metrics (RAE), which are 

explained below.

R2 : This metric is referred to as the goodness of fit or the coefficient of determination. It shows how the 

regression line approximates the actual data. The values are between 0 to 1 with 1 being the value when the 

model fits the data perfectly.

RAE : The RAE is the ratio of the mean error (residuals) to the errors by the naïve model.

RMSE : This is calculated by computing the square root of the Mean Squared Error (MSE). MSE is the 

average of the squared differences between the predicted and expected target values. If all the predicted BO 

values are the same as the true BO values, RSME will be 0. RMSE is a good metric for regression analysis 

because it penalizes large error. The RMSE measures the standard deviation of the errors when the 

regression model makes a prediction.

First, we present the results for Settings (A) and (B). Table 2 shows the performance metrics of the various 

ML models for Setting (A). XGBoost outperformed all the other models. It achieved an R2 score of 0.997, 

RAE of 0.029, and RMSE of 0.008. Table 3 shows the performance metrics of the various ML models for 

Setting (B). Once again, XGBoost outperformed other models and achieved an R2 score of 0.998, RAE of 

0.028, and RMSE of 0.006.

Table 2. Performance metrics of the ML models for Setting (A) (best value is shown in bold).

Models R2 RAE RMSE

XGBoost 0.997 0.029 0.008

Decision Trees 0.996 0.025 0.009

KNN 0.320 0.800 0.130

Ridge Regression 0.830 0.392 0.065

Lasso Regression 0.442 0.696 0.118

ML: machine learning; RAE: relative absolute error; RMSE: root mean square error; KNN: k-nearest 

neighbor.

Table 3. Performance metrics of the ML models for Setting (B) (best value is shown in bold).

Models R2 RAE RMSE

XGBoost 0.998 0.028 0.006

Decision Trees 0.996 0.025 0.009

KNN 0.339 0.726 0.126

Ridge Regression 0.826 0.405 0.065

Lasso Regression 0.444 0.712 0.116

ML: machine learning; RAE: relative absolute error metrics; RMSE: root mean square error; KNN: k-nearest 

neighbor.

Next, we present the results for Settings (C) and (D). Table 4 and Table 5 show the performance results of 

our various ML models for Setting (C) and Setting (D), respectively. In both cases, Decision Trees 

outperformed other models.
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Table 4. Performance metrics of the ML models for Setting (C) (best value is shown in bold).

Models R2 RAE RMSE

XGBoost 0.995 0.049 0.011

Decision Tress 0.997 0.028 0.008

KNN 0.386 0.708 0.121

Ridge Regression 0.824 0.406 0.065

Lasso Regression 0.386 0.710 0.115

ML: machine learning; RAE: relative absolute error metrics; RMSE: root mean square error; KNN: k-nearest 

neighbor.

Table 5. Performance metrics of the ML models for Setting (D) (best value is shown in bold).

Models R2 RAE RMSE

XGBoost 0.991 0.064 0.015

Decision Tress 0.997 0.024 0.007

KNN 0.385 0.702 0.121

Ridge Regression 0.822 0.410 0.065

Lasso Regression 0.445 0.712 0.115

ML: machine learning; RAE: relative absolute error metrics; RMSE: root mean square error; KNN: k-nearest 

neighbor.

We additionally plotted the R2 values for the various models in Settings (A) and (B). These are illustrated in 

Figure 3 and Figure 4, where the x-axis represents the actual BO and the y-axis denotes the predicted BO. 

For models that achieved high R2 score, we observed that the predictions were clustered around the 45-

degree line (shown as a dotted line). Decision Trees and XGBoost models performed very well. For models 

with low R2 score, we observed that the predicted values were scattered differently. Clearly, the linear 

regression models were unable to capture the underlying distribution of the BO values. KNN regression also 

performed poorly on the tested datasets. Similar trends were observed for Settings (C) and (D) where 

Decision Trees and XGBoost achieved high R2 scores. In the interest of space, the plots are shown in the 

supplementary information as Figure S1 and Figure S2, respectively.

https://oss.sciexplor.com/images/web/2025-01-22/BMEH-110_Supplementary_materials_Figures.zip
https://oss.sciexplor.com/images/web/2025-01-22/BMEH-110_Supplementary_materials_Figures.zip
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Figure 3. R2 plot for the regression models tested: (a) XGBoost Regression; (b) Decision Tree Regression; 

(c) Ridge Linear Regressionp; (d) Lasso Linear Regression in Setting (A).

Figure 4. R2 Plot for regression models tested: (a) XGBoost Regression; (b) Decision Tree Regression; (c) 

Ridge Linear Regression; (d) Lasso Linear Regression in Setting (B).
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4. Discussion

ML is a subset of AI that employs algorithms to detect important patterns and relationships within intricate 

data sets, aiding in forecasting specific characteristics. The use of ML models to predict various aspects of 

COVID-19 mutations has gained attraction in recent years[43]. Huang et al. identified COVID-19 severity-

related SARS-CoV-2 mutation using a machine learning method. They collected genome-wide mutation of 

virulent strains and the severity of COVID-19 pneumonia in patients. They used 1513 viral genomes from 

the Global Initiative on Sharing All Influenza Data database. They employed Decision Tree, K-Nearest 

Neighbor, Random Forest, and Support Vector machine in their work. They evaluated the performance of 

their models using sensitivity, specificity, accuracy, Matthew's correlation coefficient, and G-Mean. Their 

result showed a set of mutations associated with SARS-CoV-2 severity, which can be used to quickly 

recognize SARS-COV-2 infections associated with severe outcomes and guide the development of SARS-

CoV-2 vaccines[44].

Burukanli et al. predicted COVID-19 virus mutation using Long Short-Term Memory and attention 

mechanisms. Their proposed HyperAttCov model outperforms many state-of-the-art methods. Their method 

achieved an accuracy of 70%, precision of 92%, and a Mathew's correlation coefficient of 46.5% on the 

COVID-19 test dataset. Their proposed method was able to successfully predict mutations in the COVID-19 

dataset in 2022[45].

Han et al. worked on the predicting the binding affinity between SARS-CoV-2 spike receptor binding 

domain (RBD) with multiple amino acid mutations and human angiotensin-converting enzyme 2 (ACE2). 

Their models were based on CNN and CNN-RNN. Their methods achieved a concordance index of around 

0.8. They developed a free online platform named D3A1-spike to efficiently predict the binding affinity 

between spike RBD mutants and ACE2. Their predicted results closely matched their experimental 

results[46].

Adhikari et al. suggested the use of ML techniques for predicting COVID-19 mutations[26]. In our study, we 

leveraged the efficacy of ML models for the prediction of BO from ab initio calculations. We demonstrated 

that regression models can predict BO with a very high performance. We used XGBoost Regression, 

Decision Tree Regression, KNN Regression, Lasso Regression, and Ridge Regression in our BO prediction. 

Our BO prediction task was done on the RBD-ACE2 WT and RBD-ACE2 OV datasets. We first 

preprocessed the variables before training the machine learning models using label encoding. We trained the 

machine learning models by splitting the training and testing set into four different settings. In Settings (A) 

and (B), the training and testing samples were from the same dataset. In Settings (C) and (D), the training 

and testing samples were from different dataset. In the first two settings, the training set comprised 90% of 

the total dataset, while the test set contains 10% of the dataset. In Settings (C) and (D), we trained the model 

on the entire WT (or OV) dataset and predicted the BO on the entire OV (or WT) dataset. We evaluated our 

different machine learning models by using R2 Score, Root Mean Square Error and Relative Absolute Error 

Metrics. Using ML, we predicted the BO or bond strength calculated by ab initio study. This is a first step in 

this direction, as accurately predicting ab initio results will significantly reduce the computational costs and 

enable the quantification of such properties for larger systems.

5. Conclusion

In this work, we explored the efficacy of well-known ML models in predicting BO values derived from ab 

initio calculations, which are computationally demanding to simulate on high performance computing 

platforms. Specifically, we employed XGBoost Regression, Decision Tree Regression, KNN Regression, 

Lasso Regression, and Ridge Regression for BO prediction. The XGBoost model outperformed all other 

models when the training and testing samples were from the same dataset (i.e., Settings (A) and (B)). 
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However, Decision Trees outperformed all other models when the training and testing samples were from 

different datasets (i.e., Settings (C) and (D)). Linear regression models and KNN regression performed 

poorly in all settings. Our investigation shows that ML models such as Decision Trees and XGBoost can be 

used to accurately predict the BO values without expensive simulation-based computations.

Supplementary materials

The supplementary material for this article is available at: Supplementary materials.

Declarations

Acknowledgements

This research used the resources of the National Energy Research Scientific Computing Center (NERSC), a 

DOE office of Science User Facility supported by the Office of Science of the U.S. Department of Energy by 

U.S. Department of Energy under the contract number DE-AC03-76SF00098, DE-AC02-05CH11231 using 

NERSC award NERSC DDR-ERCAP0023727, and the Research Computing Support Services (RCSS) of 

the University of Missouri System. The third author (Rao P) would like to acknowledge the support of the 

National Science Foundation (NSF) Grant No. 2201583.

Author contributions

Adebiyi A: Visualization, writing-original draft, editing.

Adhikari P: Data curation, visualization, analysis, writing-original draft, editing, supervision.

Rao P, Ching WY: Writing, editing, supervision, conceptualization.

Conflicts of interest

All authors declare that they are bound by confidentiality agreements preventing disclosure of conflicts of 

interest in this work.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The data and materials could be obtained from the corresponding author.

Funding

None.

Copyright

© The Author(s) 2024.

References

https://oss.sciexplor.com/images/web/2025-01-22/BMEH-110_Supplementary_materials_Figures.zip


BME Horizon 

Rambaut A, Loman N, Pybus O, Barclay W, Barrett J, Carabelli A, et al. Preliminary genomic 

characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike 

mutations [Internet]. 2020. Available from: https://virological.org/t/preliminary-genomic-

characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-

mutations/563

1. 

Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhariet J, et al. Detection of a 

SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592(7854):438-443. 

[DOI] [PubMed]

2. 

Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE. SARS-CoV-2 variants of concern are emerging 

in India. Nat Med. 2021;27(7):1131-1133. 

[DOI] [PubMed]

3. 

Faria NR, Claro IM, Candido D, Franco LAM, Andrade PS, Coletti TM, et al. Genomic characterisation 

of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological [Internet]. 2021 Jan. 

Available from: https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-

manaus-preliminary-findings/586

4. 

Kupferschmidt K. New mutations raise specter of 'immune escape'. Science. 2021;371(6527):329-330. 

[DOI] [PubMed]

5. 

Ozer EA, Simons LM, Adewumi OM, Fowotade AA, Omoruyi EC, Adeniji JA, et al. High prevalence of 

SARS-CoV-2 B. 1.1. 7 (UK variant) and the novel B. 1.5. 2.5 lineage in Oyo State, Nigeria. MedRxiv 

[Preprint]. 2021.  

[DOI]

6. 

Annavajhala MK, Mohri H, Zucker JE, Sheng Z, Wang P, Gomez-Simmonds A, et al. Emergence and 

expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature. 2021;597(77878):703-708. 

[DOI] [PubMed] [PMC]

7. 

Liu C, Ginn HM, Dejnirattisai W, Supasa P, Wang B, Tuekprakhon A, et al. Reduced neutralization of 

SARS-CoV-2 B. 1.617 by vaccine and convalescent serum. Cell. 2021;184(16):4220-4236. 

[DOI] [PubMed] [PMC]

8. 

Kimura I, Kosugi Y, Wu J, Yamasoba D, Butlertanaka EP, Tanaka YL, et al. The SARS-CoV-2 Lambda 

variant exhibits enhanced infectivity and immune resistance. Cell Rep. 2022;38(2):110218. 

[DOI]

9. 

Laiton-Donato K, Franco-Munoz C, Alvarez-Diaz DA, Ruiz-Moreno HA, Usme-Ciro JA, Prada DA, et 

al. Characterization of the emerging B. 1.621 variant of interest of SARS-CoV-2. Infect Genet Evol. 

2021;95:105038. 

[DOI] [PubMed] [PMC]

10. 

Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain 

(RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment 

inhibitor and vaccine. Cell Mol Immunol. 2020;17(6):613-620. 

[DOI] [PubMed] [PMC]

11. 

Hanson QM, Wilson KM, Shen M, Itkin Z, Eastman RT, Shinn P, et al. Targeting ACE2-RBD 

interaction as a platform for COVID-19 therapeutics: Development and drug-repurposing screen of an 

AlphaLISA proximity assay. ACS Pharmacol Transl Sci. 2020;3(6):1352-1360. 

[DOI] [PubMed] [PMC]

12. 

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding 

domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-220. 

13. 

https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://doi.org/10.1038/s41586-021-03402-9
https://pubmed.ncbi.nlm.nih.gov/33690265
https://doi.org/10.1038/s41591-021-01397-4
https://pubmed.ncbi.nlm.nih.gov/34045737
https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
https://doi.org/10.1126/science.371.6527.329
https://pubmed.ncbi.nlm.nih.gov/33479129
https://doi.org/10.1101/2021.04.09.21255206
https://doi.org/10.1038/s41586-021-03908-2
https://pubmed.ncbi.nlm.nih.gov/33655278;
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924303
https://doi.org/10.1016/j.cell.2021.06.020
https://pubmed.ncbi.nlm.nih.gov/34242578;
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8218332
https://doi.org/10.1016/j.celrep.2021.110218
https://doi.org/10.1016/j.meegid.2021.105038
https://pubmed.ncbi.nlm.nih.gov/34403832
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364171
https://doi.org/10.1038/s41423-020-0400-4
https://pubmed.ncbi.nlm.nih.gov/32203189
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7091888
https://doi.org/10.1021/acsptsci.0c00161
https://pubmed.ncbi.nlm.nih.gov/33330843
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688046


Vol 2 Issue 1

[DOI] [PubMed]

Adhikari P, Jawad B, Podgornik R, Ching WY. Mutations of Omicron variant at the interface of the 

receptor domain motif and human angiotensin-converting enzyme-2. Int J Mol Sci. 2022;23(5):2870. 

[DOI] [PubMed] [PMC]

14. 

Jawad B, Adhikari P, Podgornik R, Ching WY. Binding interactions between receptor-binding domain of 

spike protein and human angiotensin converting enzyme-2 in omicron variant. J Phys Chem Lett. 

2022;13(17):3915-3921. 

[DOI] [PubMed] [PMC]

15. 

Jawad B, Adhikari P, Podgornik R, Ching WY. Key interacting residues between RBD of SARS-CoV-2 

and ACE2 receptor: Combination of molecular dynamic simulation and density functional calculation. J 

Chem Inf Model. 2021;61(9):4425-4441. 

[DOI] [PubMed]

16. 

Chen C, Boorla VS, Banerjee D, Chowdhury R, Cavener VS, Nissly RH. et al. Computational prediction 

of the effect of amino acid changes on the binding affinity between SARS-CoV-2 spike RBD and human 

ACE2. Proc Natl Acad Sci. 2021;118(42):e2106480118. 

[DOI] [PubMed] [PMC]

17. 

Ching WY, Adhikari P, Jawad B, Podgornik R. Towards Quantum-Chemical Level Calculations of 

SARS-CoV-2 Spike Protein Variants of Concern by First Principles Density Functional Theory. 

Biomedicines. 2023;11(2):517. 

[DOI] [PubMed] [PMC]

18. 

Jawad B, Adhikari P, Podgornik R, Ching WY. Impact of BA.1, BA.2, and BA.4/BA.5 Omicron 

Mutations on Therapeutic Monoclonal Antibodies. Comput Biol Med. 2023;167(7):107576. 

[DOI] [PubMed]

19. 

Srivastava N, Garg P, Srivastava P, Seth PK. A molecular dynamics simulation study of the ACE2 

receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ. 

2021;9(1):e11171. 

[DOI] [PubMed] [PMC]

20. 

Celik I, Khan A, Dwivany FM, Fatimawali U, Wei DQ, Tallei TE. Computational prediction of the effect 

of mutations in the receptor-binding domain on the interaction between SARS-CoV-2 and human ACE2. 

Mol Divers. 2022;26(6):3309-3324. 

[DOI] [PubMed]

21. 

Bishop CM. Pattern recognition and machine learning.1st ed. New York: Springer; 2006.22. 

Wang H, Ma C, Zhou L. A brief review of machine learning and its application. In: Proceeding of the 

2009 international conference on information engineering and computer science; 2009 Dec 19-20; 

Wuhan, China. New York: IEEE; 2009. p. 1-4.

23. 

Hansen K, Biegler F, Ramakrishnan R, Pronobis W, von Lilienfeld OA, Muller KR, et al. Machine 

learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical 

space. J Phys Chem Lett. 2015;6(12):2326-2331. 

[DOI] [PubMed] [PMC]

24. 

Du XK, Guo P, Wu XH, Zhang SQ. Examination of machine learning for assessing physical effects: 

Learning the relativistic continuum mass table with kernel ridge regression. Chin Phys C. 

2023;47(7):074108. 

[DOI]

25. 

https://doi.org/10.1038/s41586-020-2180-5
https://pubmed.ncbi.nlm.nih.gov/32225176
https://doi.org/10.3390/ijms23052870
https://pubmed.ncbi.nlm.nih.gov/35270013
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911136
https://doi.org/10.1021/acs.jpclett.2c00423
https://pubmed.ncbi.nlm.nih.gov/35481766
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063111
https://doi.org/10.1021/acs.jcim.1c00560
https://pubmed.ncbi.nlm.nih.gov/34428371
https://doi.org/10.1073/pnas.2106480118
https://pubmed.ncbi.nlm.nih.gov/34588290
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594574
https://doi.org/10.3390/biomedicines11020517
https://pubmed.ncbi.nlm.nih.gov/36831053
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953097
https://doi.org/10.1016/j.compbiomed.2023.107576
https://pubmed.ncbi.nlm.nih.gov/37871435
https://doi.org/10.7717/peerj.11171
https://pubmed.ncbi.nlm.nih.gov/33981493
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074842
https://doi.org/10.1007/s11030-022-10392-x
https://pubmed.ncbi.nlm.nih.gov/35138508
https://doi.org/10.1021/acs.jpclett.5b00831
https://pubmed.ncbi.nlm.nih.gov/26113956
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476293
https://doi.org/10.1088/1674-1137/acc791


BME Horizon 

Adhikari P, Jawad B, Rao P, Podgornik R, Ching WY. Delta variant with P681R critical mutation 

revealed by ultra-large atomic-scale ab initio simulation: Implications for the fundamentals of 

biomolecular interactions. Viruses. 2022;14(3):465. 

[DOI] [PubMed] [PMC]

26. 

Han P, Li L, Liu S, Wang Q, Zhang D, Xu Z, et al. Receptor binding and complex structures of human 

ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell. 2022;185(4):630-640. 

[DOI] [PubMed] [PMC]

27. 

Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham III TE, DeBolt S, et al. AMBER, a package 

of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics 

and free energy calculations to simulate the structural and energetic properties of molecules. Comput 

Phys Commun. 1995;91(1-3):1-41. 

[DOI]

28. 

VASP [Internet]. The Vienna Ab initio Simulation Package: atomic scale materials modelling from first 

principles [cited 2023 Jun 1]. Available from: https://www.vasp.at/

29. 

Ching WY, Rulis P. Electronic Structure Methods for Complex Materials: The orthogonalized linear 

combination of atomic orbitals. London: Oxford University Press; 2012.

30. 

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 

1996;77(18):3865-3868. 

[DOI] [PubMed]

31. 

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys 

Rev B. 1999;59(3):1758-1775. 

[DOI]

32. 

Adhikari P, Ching WY. Amino acid interacting network in the receptor-binding domain of SARS-CoV-2 

spike protein. RSC Adv. 2020;10(65):39831-39841. 

[DOI] [PubMed] [PMC]

33. 

Adhikari P, Li N, Shin M, Steinmetz NF, Twarock R, Podgornik R, et al. Intra-and intermolecular 

atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: implication for 

ACE2 receptor binding. Phys Chem Chem Phys. 2020;22(33):18272-18283. 

[DOI] [PubMed]

34. 

Wang R, Wang L, Zhang J, He M, Xu J. XGBoost machine learning algorism performed better than 

regression models in predicting mortality of moderate-to-severe traumatic brain injury. World 

Neurosurg. 2022;163:e617-e622. 

[DOI] [PubMed]

35. 

Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol. 

1996;58(1):267-288. 

[DOI]

36. 

Hoerl AE, Kennard RW. Ridge regression: Biased estimation for nonorthogonal problems. 

Technometrics. 1970;12(1):55-67. 

[DOI]

37. 

Abu-Mostafa YS, Magdon-Ismail M, Lin HT. Learning from data. New York: AMLBook; 2012.38. 

Refaeilzadeh P, Tang L, Liu H. Cross-validation. In: Liu L, Özsu MT, editors. Encyclopedia of Database 

Systems. Boston: Springer; 2009. p. 532-538.  

[DOI]

39. 

https://doi.org/10.3390/v14030465
https://pubmed.ncbi.nlm.nih.gov/35336872
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955942
https://doi.org/10.1016/j.cell.2022.01.001
https://pubmed.ncbi.nlm.nih.gov/35093192;
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733278
https://doi.org/10.1016/0010-4655(95)00041-D
https://www.vasp.at/
https://doi.org/10.1103/PhysRevLett.77.3865
https://pubmed.ncbi.nlm.nih.gov/10062328
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1039/d0ra08222h
https://pubmed.ncbi.nlm.nih.gov/35515388
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057398
https://doi.org/10.1039/D0CP03145C
https://pubmed.ncbi.nlm.nih.gov/32756685
https://doi.org/10.1016/j.wneu.2022.04.044
https://pubmed.ncbi.nlm.nih.gov/35430400
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1007/978-0-387-39940-9_565


Vol 2 Issue 1

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine 

learning in Python. J Mach Learn Res. 2011;12:2825-2830. 

[DOI]

40. 

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array 

programming with NumPy. Nature. 2020;585(7825):357-362. 

[DOI] [PubMed] [PMC]

41. 

Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd 

international conference on knowledge discovery and data mining; 2016 Aug 13-17; San Francisco, 

USA. New York: ACM; 2016. p. 785-794.  

[DOI]

42. 

Roberts M, Driggs M, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and 

recommendations for using machine learning to detect and prognosticate for COVID-19 using chest 

radiographs and CT scans. Nat Mach Intell. 2021;3(3):199-217. 

[DOI]

43. 

Huang F, Chen L, Guo W, Zhou X, Feng K, Huang T, et al. Identifying COVID-19 severity-related 

SARS-CoV-2 mutation using a machine learning method. Life. 2022;12(6):806. 

[DOI] [PubMed] [PMC]

44. 

Burukanli M, Yumusak N. COVID-19 virus mutation prediction with LSTM and attention mechanisms. 

Comput J. 2024;67(10):2934-2944. 

[DOI]

45. 

Han J, Liu T, Zhang X, Yang Y, Shi Y, Li J, et al. D3AI-Spike: A deep learning platform for predicting 

binding affinity between SARS-CoV-2 spike receptor binding domain with multiple amino acid 

mutations and human angiotensin-converting enzyme 2. Comput Biol Med. 2022;151(Pt A):106212. 

[DOI] [PubMed] [PMC]

46. 

https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1038/s41586-020-2649-2
https://pubmed.ncbi.nlm.nih.gov/32939066
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759461
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1038/s42256-021-00307-0
https://doi.org/10.3390/life12060806
https://pubmed.ncbi.nlm.nih.gov/35743837
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225528
https://doi.org/10.1093/comjnl/bxae058
https://doi.org/10.1016/j.compbiomed.2022.106212
https://pubmed.ncbi.nlm.nih.gov/36327885
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597563

