arXiv:2210.01172v1 [math.NT] 3 Oct 2022

Fast Computation of Generalized Dedekind Sums

Preston Tranbarger Jessica Wang
prestontranbarger@tamu.edu jwang22@wpi.edu
Department of Mathematics Department of Mathematical Sciences

Texas A&M University Worcester Polytechnic Institute

College Station, TX 77843-3368, U.S.A. Worcester, MA 01609-2280, U.S.A.
Abstract

We construct an algorithm that reduces the complexity for computing generalized Dedekind
sums from exponential to polynomial time. We do so by using an efficient word rewriting process
in group theory.

1 Introduction and Main Result

The classical Dedekind sum is well-studied both inside and outside of number theory due to its
connections with the Dedekind eta function and its applications in topology and combinatorial
geometry. For more background on classical Dedekind sums, we refer the reader to [RG72].

Let h and k be coprime integers with k > 0. The classical Dedekind sum is defined as

s(hyk) = i:l B (Z) B <};:) ,

where Bj(x) is the first Bernoulli function

0, ifxeZ
Bl(x){ 1

r— |z] — 5, otherwise.

The classical Dedekind sum satisfies the following reciprocity property ([RGT2]):

1 /h 1 k 1
s(h, k) = s(k,h)+12(k+hk+h) 1
Using the definition of classical Dedekind sum, it is readily seen that it can be computed in O(k)
time. However, one can obtain an O(log(k)) time algorithm to compute the classical Dedekind sum
using the reciprocity property ([BR15]).

The generalized Dedekind sum associated with newform Eisenstein series was introduced by
Stucker, Vennos, and Young in [SVY20]. Since then, various aspects of generalized Dedekind sums
have been studied, including the kernel ([NRY21], [LVBY21]), the image ([Maj22]), and their general
behaviour ([DG20]).

mailto:prestontranbarger@tamu.edu
mailto:jwang22@wpi.edu

Definition 1.1. Lety = (‘é Z) € To(q1q2) with primitive Dirichlet characters x1, X2 and respective
conductors qi,qa. Let q1,q2 > 1 and x1x2(—1) = 1, then

o (0 8) -2 (50w (2) (54 7))

j=1i=1
The generalized Dedekind sum has the following crossed homomorphism property.

Lemma 1.2 (Crossed Homomorphism Property [SVY20]). Let v1,7v2 € T'o(q1g2). Then

Sx1.x2 (1172) = Sx1:x2 (1) + w(’Yl)SM,m (72),
where ¢(‘; Z) = x1X2(d).

Remark. In Lemma 1.2, ¥(v) is trivial on T'1(q1g2), s0 Sy,,x, may be viewed as an element of
Hom(T'1(q12), C).

Note that it requires O(cq;) time to compute a generalized Dedekind sum from the definition.
Similar to the classical Dedekind sums, we are interested in constructing a faster algorithm. Instead
of using the reciprocity property, we provide an alternative approach using a word-rewriting process.

Theorem 1.3. Given primitive Dirichlet characters x1,x2 and respective conductors q1,qe > 1
such that x1x2(—1) = 1. Let v = (25) € To(quqe). For fized q1,qz, the time complexity of finding
Syi.xe (7) as a function of v is O(log(c)).

Remark. The algorithm for Theorem 1.3 can be found in Section 3.1. We give the specific details
of our model of computation in Section 3.2.

Before diving into the technicalities of the algorithm, we provide the reader with a general
outline. Given v € T'1(g1¢2) < SL2(Z) written as a word in the generators of SLy(Z), we can apply
the Reidemeister rewriting process to express it as a word in the elements of a particular generating
set of I'1(q1¢g2). By precomputing the Dedekind sum of each element of this generating set, we
can use Lemma 1.2 to compute any Dedekind sum. However, in using the Reidemeister rewriting
process, the length of the word can be exponentially large in terms of the logarithms of the entries of
~. Therefore, to achieve the polynomial time in Theorem 1.3, we modify the Reidemeister rewriting
process, as in Theorem 2.10 below, to collect the exponents of successive letters in the rewritten
word. In the specific case of I'1(g1¢2), we develop a useful identity in Lemma 2.15 to ensure a finite
alphabet.

2 Preliminaries

2.1 General Preliminaries

In this section we will define some general group theoretic definitions and results which will aid in
the construction of the algorithm. For the rest of this subsection, we let G be a finitely generated
group and H be a subgroup of G. We will work with specific groups in Section 2.2.

Definition 2.1. We say T is a right transversal of H in G if each right coset of H in G contains
exactly one element of T. Moreover, T must contain the identity.

Note that a transversal differs from an arbitrary set of coset representatives in that it must
contain an identity. This fact proves to be essential for later preliminaries.

Definition 2.2. Given a right transversal T of H in G, a right coset representative function for
T is a mapping: G — T wvia g — g, where G is the unique element in T such that Hg = HGg.

We present a simple lemma which will be used repeatedly throughout this paper.

Lemma 2.3. Given a right transversal of H in G and a, b € G,

@\‘
S

ab = ab.
Proof. By Definition 2.2, H(ab) = H(ab) = (Ha)b = (Ha)b = H(ab) = H (ab). O
We continue by defining an important function and exploring some of its properties.
Definition 2.4. Given a right transversal of H in G and a,b € G, we define
Ul(a,b) = ab(ab)~*.
Lemma 2.5. Given a right transversal of H in G and a,b € G, then U(a,b) € H.
Proof. By Definition 2.2, Hab = Hab, thus Hab(ab)™' = H, so ab(ab)~! € H. O

Given a finite set of generators for a group, we use the information thus far to describe a set of
generators for a given subgroup.

Lemma 2.6 (Schreier’s Lemma [MKS04, Theorem 2.7]). Let S be a set which finitely generates G,
and let T be a right transversal of H in G. The set of Schreier generators

{U(t,s) :teT,seS}
generates H.

Remark. We say a set generates a group if every element in the group can be expressed as a
combination of elements in the set and their inverses.

We now describe a rewriting process.

Theorem 2.7 (Reidemeister Rewriting Process [MKS04, Corollary 2.7.2]). Let G = (g1, -+ , gn)-
Let h = ggtge? -+~ gqr € H (where e, = £1) be a word in the g;. Fir a right transversal of H in G.
Define the mapping T of the word h by

7(h) = U(P1,94,)" U (P2, 945) - U(Dr Gg,)"

where

p = L 900 gay i e =1
9an9a: - 9ar i e =—1.
Then 7(h) = h, for all h € H.

The Reidemeister rewriting process allows us to express a word in the generators of G as a word
in the Schreier generators of H (using Lemma 2.6).

Example 2.8. Let G = (g1, , gn), and H be a subgroup of G. Let h = glglglgglggl € H, then
by Theorem 2.7,

m(h) =U(1,91)U (g1, gl)U(E; gl)U(gf’gg’l,gz)flU(gi"gir"?gz)*l = h. (1)

Note that Theorem 2.7 requires e, = £1 (for example, h must be written as g1919195 1g2_ L
not g3g, ?). Since the length of 7(h) is the same as the length of h, this rewriting process is often
inefficient. We provide Theorem 2.10 to reduce the number of computations, which requires the
lemma below.

Lemma 2.9. Leta,b € G and k € Z~qg. Given a right transversal of H in G, the following product
identities hold:

Ula, b*) = U(a, b)U(ab, b) ... U (abb~1, b), (2)
Ula, b™*) =U(ab=1,) "' U(ab=2,)" ... U(abF, b) " (3)
Proof. By Definition 2.4 the right hand side of (2) equals
1 =1 - =1
ab (@) " abb (abb) ...abFTh (abiTh) . (4)
Applying Lemma 2.3, this simplies to
1l o =1 =, (= T
ab(ab) " abb(ab?) " abF b (@F) (5)

Note that many terms cancel, so (5) becomes ab* (ﬂ)_l = U(a, b*). The proof of (3) follows in a
similar manner, though care is required in handling the inverses. O

Theorem 2.10 (Modified Reidemeister Rewriting Process). Given a right transversal of H in G,

let G = (g1, " ,gn). Let h =gglgs?---gs- € H (where a; € Zyo) be a word in powers of the g;.

Define the mapping T of the word h by

7(h) = U(p1, 95)U (P25 952) -~ U(prs 9q7)5

where
ak—1

Pk = a1 94z~ ax"1 -
Then 7(h) = h, for all h € H.

Proof. This follows by applying Lemma 2.9 to Theorem 2.7. O

We illustrate Theorem 2.10 and its proof by an example.

Example 2.11. Continuing with the assumptions in Example 2.8, we now write A = g1919195 ! gy !
g3952 € H. We want to show (as Theorem 2.10 claims) that 7(h) = U(1,¢3)U(g3, g5). From
Lemma 2.9, we have

U1, g7) = U1 90)U(g1,91)U (97, 91).
Ulgi.9:%) = Ulgigs.92) " Ulgig,*.9) "
So (1) becomes
7(h) = U(L.g)U (g3, 95 %) = h,
which is in the form of Theorem 2.10.

As desired, this process provides us with a product expansion with far fewer terms than that of
Theorem 2.7.

2.2 Specific Preliminaries

Let us now consider the subgroup I'; (N) of SLo(Z).

s=(0 0) =00 1)

The following lemma is well known.

Definition 2.12. Let

Lemma 2.13 ([Iwa97, Theorem 1.1]). We have
SLy(Z) = (S, T).

More specifically, any matric M € SLy(Z) can be decomposed into the following form:

M= (‘Cl Z) — LTUST2S . T 18T, (6)

Note that —I = S2.
Remark. One can quickly compute the values of the a; via a variant on the Fuclidean algorithm.

Remark. In (6), the sum of the |a;| grows as O(c) but r grows as O(log(c)) (this follows as a
consequence of the above remark and [Knu97, Section 4.5.3]). This is significant because the original
Reidemeister rewriting process treats M as a word in S and T with length (|a1]+- - -+|a.])+r = O(c).
The modified Reidemeister rewriting process treats M as a word in the powers of S and T with length
2r which grows as O(log(c)).

In the case of I'y (V) in SL2(Z), the modified Reidemeister rewriting process allows us to express
a word in the generators of SLy(Z) as a word in the elements of 'y (N) with the form U (I, g*), where I
is in a right transversal of I'1 (V) in SLy(Z) and g € {S,T'} and k € Z. However, since k is arbitrarily
large, this set of elements is infinite. We present a way to reduce this infinite set to a finite set.

Lemma 2.14. Given a right transversal of I'y(N) in SLy(Z),

MTN =M
for all M € SLy(Z).

Proof. Note TN € T'(N). Since I'(N) is normal in SLy(Z), we have MTN M~ € T(N) < I';(N)
for all M € SLy(Z). Thus Ty (N)MTN = T'y(N)M and MTN = J. 0

Lemma 2.15. Let a = gN +r for 0 <r < N and let M € SLy(Z). Given a right transversal of
UM, T*)=U(M,TV)U(M, T").

Proof. Beginning with Definition 2.4, we have

_ I ———

U (M, T%) = M1* (MT*) . (7)

By applying Lemma 2.14, expanding 7%, and multiplying by the identity I = (M)~1M, (7) becomes
MTeN (M) MT(MTT) .

By Lemmas 2.3 and 2.14, M = M = MTN. Since MTN (M)~! = (MTN(M)~1), we get that
(7) equals
— ——— —1\7__ ——\ —1
(MTN (arrV)) M1 (M) . O
Using Lemma 2.15 in conjunction with Theorem 2.10, we can rewrite every word in the genera-
tors of SLy(Z) as a word in the letters of a finite subset of T'; (V). This is central to our algorithm
in Section 3.1. However, before we are able to present this algorithm, we need a few more results

describing the structure of congruence subgroups of SL2(Z). One can find these results in many
sources, including [Ste07].

Lemma 2.16. We have)
i) : o] = N (1),

[TCo(N): SLa(Z)] =N

[[1(N) : SLy(Z)] = N?

Lemma 2.17. There exists a bijection T'1(N)\I'o(N) = (Z/NZ)* wvia

(“ b) — d mod N.
c d

Lemma 2.18 ([Ste07, Proposition 8.6]). Let P = {(¢,d) : ¢,d € Z/NZ, gcd(c,d, N) = 1}. There
exists a bijection I'1(N)\SL2(Z) — P via

<Z Z) ++ (¢mod N, d mod N).

3 Algorithm

In this section, we provide an algorithm for computing the generalized Dedekind sums and a time
complexity analysis for each step of the algorithm. We also compare our algorithm to the naive
algorithm of simply using Definition 1.1. We divide our algorithm into precomputations (which
only needs to be computed once for each pair of characters) and the main computation.

3.1 Stating the Algorithm

Let N = ¢1¢» for primitive Dirichlet characters x1, x2 with respective conductors q1, g2. Let g1, g2 >
1 and x1x2(—1) = 1. Given 7o = (2 Y) € To(N), we present an algorithm to find Sy, v, (70)-

Group Theoretic Precomputation
e Find a right transversal Tr, of I'y (V) in T'o(N) (using Lemma 2.17).
e Find a right transversal Tgr,,(z) of I'1 (V) in SL2(Z) (using Lemma 2.18).
e Find the set U = {U(t,T%) : t € Tsry),1 < i < NYU{U(t,5%) 1 t € Tar,2),0 < k < 2}
Note this set includes the set of the Schreier generators of I'1 (N) in SLy(Z) (see Lemma 2.6).

Dedekind Sum Precomputation
e Use Definition 1.1 to compute the Dedekind sums Sy, , (7r,)-

e Use Definition 1.1 to compute the Dedekind sums Sy, y, ().

The Main Computation

We write 9 = 719, where v; € I'1(N) and g € Tr,. Let g — g denote the right coset representative
function uniquely described by sy, (z) per Definition 2.2. By Lemma 1.2,

SXLXQ (’YO) = SXLXQ (71) + SX17X2 (g)

Since g € Try, Syi,x.(g9) has been precomputed, so we are now only concerned with Sy, y,(71).
Using Lemma 2.13, we write

v =T ST*2S .. T 18T,
Using Theorem 2.10, we rewrite
T(Vl) = U(]Tla Tal)U(plTal) S)U(ZTQa z-'az)lj(pQZWl2) S) o U(ﬁv TaT)U(pT'TaTa :tl) =M, (8)

where
pp =TNS8T"?S ... TS,

Now we apply Lemma 2.15. For each exponent of T', we write a; = ¢;N +7; with 0 < r; < N. Then
U(pi, T%) = U (p;, T)U (i,). 9)

We apply the Dedekind sum to (9). Since & C I';(N), by Lemma 1.2,
Sxioxa (U(07: T)) = iSyiixa (U (00 T)) + Sy xe (U(07.17)) - (10)

Using (8) and (9), we can express 71 as a product of elements in . Applying Lemma 1.2 to
Sy1.xe (T(711)) and expanding via (10), we acquire the desired Dedekind sum, each term of which
has been precomputed.

Remark. Given Tsr,z) and g € SLy(Z), we can use Proposition 2.18 to determine g.

Example Computation

Consider T'g(9). Let x1 = x2 be the primitive character modulo 3 with conductors ¢; = g2 = 3. We
want to compute Sy, , (7o) where
(17 32
o= (9 17) '

From the precomputations, we acquire a right transversal of T'1(9) in T'(9)

)
Tro ={(59):(82),(53):(§35),(57). (59}
a right transversal of T'1(9) in SLo(Z)

’TSLz(Z) = {((1)(1))7(8%)7(52)7(3%%(3%% ’(g1%)7(2%%(%%%)7(5?)7(%127)}’
and the set
U={UET):t € Tsrymy), 1 <i<9PU{UESY) 1t € Tery@), 0 < k <2}

From the precomputations, we also acquire the Dedekind sums Sy, y,(7r,) and Sy, v, (). By
Lemma 2.17, we can write 79 = 19, where

= (%) €9 and g=(5])€Tn,

Since g € Try, Sy, ,x»(9) has been precomputed, so now we only need to compute Sy, y,(71). Using
Lemma 2.13, we compute

v = -—T'ST 28T 28T~ 28T 2ST 28T 2ST~2ST~*'ST~!. (11)
Applying Theorem 2.10 to (11) with all p; written in matrix forms, we get
() =U((§9), THU((6 1), 9)U((1 %), T)U((1 23),9) -+
U((1 :173),T_11)U((15 18512)75)(]((152 185)aT_1)U((18512 117337)’ _[) = .
Applying Lemmas 2.15 and 2.18 to each term of the above product, we get the following computa-
tion.

U((Z8 7)., T =U"2((15),T)U((13),T7), U((% 5).8) =U((15),9),
U 9).T7") =015). T)U(§5),T%), U((§2 2%).—1) = U(§ 1), 5%).
Note that every term on the right hand side of these equalities are in the precomputed set U.
Thus, using Lemma 1.2,

Sy (1) = 07 Syt o (U9 T7) + Sy xa (U5 9). T) + Spa o (U((§9),9))
1S (U8, T9) + S e (U((18). T7)) + Sy e (U((19), 9))
=2 S (U((18):T9) + S e (U((1 1), T7)) + Sy, e (U((15), 5))
-1 SX17X2 (U((g g)’TQ)) + SX17X2 (U((g §)7T8)) + SX17X2 (U((g g)? SZ))
Now, using the precomputed Dedekind sums, Sy, v, (70) = Sy1.x2(71) + Sx1,x2(9) =0

Remark. This ezample shows that vo = (4 $2) lies in the kernel of this Dedekind sum. For more

information on the kernel of Dedekind sums, we refer the reader to [NRY21, LVBY21].

3.2 Analysis of Algorithm

First we discuss a simplified model of our computation. We consider a matrix multiplication as one
operation. Since we work in SLy(Z), we assume computing the inverse of a matrix takes constant
time. Since the Dedekind sums lie in cyclotomic extensions of QQ, we can represent any Dedekind
sum as a linear combination of powers of a given root of unity. Adding and multiplying these linear
combinations is rather trivial, so we assume that addition and multiplication of Dedekind sums
take constant time.

Lemma 3.1. Given g € SLy(Z) and the right transversals Tsy,(z) or Tr,, finding g under the right
coset representative function for T'1(N)\I'o(N) or I'1(N)\SLy(Z) requires O(1) time.

Proof. We simply use the bijections stated in Lemmas 2.17 and 2.18 to find the transversals. [

Proposition 3.2. In Section 3.1, the time complexity of the group theoretic precomputations is
O(N3).

Proof. The most computationally expensive step is finding the set U = {U(t,T) : t € TsLy(z), 1 <
i < N}YU{U(t,S*) : t € Tg1,(2),0 < k < 2}. This set has at most (N + 3)|Tg1,(z)| elements, thus
[U| grows as O(N?). Since we define matrix multiplication as one operation and determining the
transversal of an element under the right coset representative function takes O(1) time (by Lemma
3.1), it follows that the total time to compute the elements of U takes O(N?3) time. O

Proposition 3.3. Given v € To(N), the time complezity of the Dedekind sum precomputations for
finding Sy, x, (Tr, UU) is O(N3Cqy), where C denotes the mazimum absolute value of the lower-left
entry of the elements in Tr, UU.

Note that C is solely dependent on the value of N.
Proof. Using Lemma 2.16, we have

T3 (N) = To(N)] + | = N (T (1 - %)) v (TT0- %)) — O(N).

p|N p|N

Since it takes O(cq1) steps to compute the Dedekind sum of a matrix with lower-left entry ¢ from
Definition 1.1, it takes O(N3Cqy) steps to compute the Dedekind sum of all elements in Tr, UU. O

Definition 3.4. Let v = £T%S5T*2S ... T% € SLy(Z). We say T or S is a letter, and 2k is the
length of ~y.

Recall that Theorem 1.3 states that the main computation algorithm provided in Section 3.1
has time complexity O(log(c)). We provide a proof below.

Proof of Theorem 1.3. We claim that the time complexity for the modified Reidemeister rewriting
process (Theorem 2.10) is O(log(c)). In (8), given p;, each p,11 takes one operation to compute
(through multiplying by a matrix on the right). We know that 2k grows in O(log(c)) due to Lemma
2.13, hence it takes O(log(c)) steps to compute all p;. By Lemma 3.1 given g € SLs(Z), finding

the corresponding element g in Tr, has complexity O(1). Hence in (8), each of the U-functions
takes O(1) time to compute. Since v, has length 2k, it also takes O(log(c)) steps to compute the
U-functions given p;. Hence the time complexity for the modified Reidemeister rewriting process is
O(log(¢)) + O(log(c)) = O(log(c)).

Note that reducing the power of a generator in (9) using Lemma 2.15 and looking up the
precomputed Dedekind sum of each letter both have complexity O(1), which does not affect the
time complexity of the algorithm. O

3.3 Comparison of Algorithms

In this section, we give some experimental evidence for the speed of our algorithm in comparison
to that which uses Definition 1.1 (using the implementations found in Section 3.4)

Example 3.5. Consider I'g(28). Let x; be the primitive Dirichlet character with conductor
¢1 = 4, and let xo be the primitive Dirichlet character with conductor g2 = 7 such that x2(3) =
exp(2mi(5/6)). We let v = (24) where ¢ = 28k, 0 < a < ¢, and ged(a,c) = 1. We choose b
and d such that the exponent a, is 0 after applying Lemma 2.13. We compute the Dedekind sum
Sy1.xo () of all matrices that satisfy the conditions, and graph the logarithm of the average time it
takes to compute each k.

Per formance Comparison

Computation Method
De finition

—— Algorithm

Logarithm of Average Time per Matriz (s)

0 20 40 60 80 100 120
k

Note that the performance of the algorithm always exceeded that of the definition for this pair
of characters.

Example 3.6. Now we present an example for a large matrix. Consider T'g(35). Let x; be the
primitive Dirichlet character with conductor ¢; = 5 such that x1(2) = —i, and let x2 be the
primitive Dirichlet character with conductor g2 = 7 such that x2(3) = exp(27i(1/3)). Let v =

46741638 43234369
<43234205 39990117

15 hours), whereas it takes 5.128 * 102 seconds using our algorithm.

). Computing Sy, y,(7) by Definition 1.1 takes 5.531 % 10* seconds (around

10

3.4 Code

The algorithm discussed has been implemented using Sage. The reader can find the code at
https://github.com/prestontranbarger/NFDSFastComputation.

Acknowledgements

This research was conducted at the 2022 REU hosted at Texas A&M University and supported by
the National Science Foundation (DMS-2150094). The authors would like to thank Dr. Matthew
Young for his continued support and input throughout the duration of the REU. The authors would
like to thank Agniva Dasgupta for his immense help and feedback. The authors would also like to
thank Mitch Majure for his input and contributions.

References

[BR15] Matthias Beck and Sinai Robins. Computing the continuous discretely. Undergraduate
Texts in Mathematics. Springer, New York, second edition, 2015.

[DG20] Travis Dillon and Stephanie Gaston. An average of generalized Dedekind sums. J.
Number Theory, 212:323-338, 2020.

[Iwa97] H. Iwaniec. Topics in Classical Automorphic Forms. Graduate studies in mathematics.
American Mathematical Soc., 1997.

[Knu97] Donald E. Knuth. The Art of Computer Programming Volume II: Seminumerical Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., USA, 1997.

[LVBY21] Alexis LaBelle, Emily Van Bergeyk, and Matthew P. Young. Reciprocity and the kernel
of Dedekind sums. arXiv: 2110.12269, 2021.

[Maj22] Mitch Majure. Algebraic properties of the values of newform Dedekind sums. arXiv:
2208.13060, 2022.

[MKS04] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial group theory.
Dover Publications, Inc., Mineola, NY, second edition, 2004.

[NRY21] Evuilynn Nguyen, Juan J. Ramirez, and Matthew P. Young. The kernel of newform
Dedekind sums. J. Number Theory, 223:53-63, 2021.

[RG72] Hans Rademacher and Emil Grosswald. Dedekind sums. The Carus Mathematical Mono-
graphs, No. 16. Mathematical Association of America, Washington, D.C., 1972.

[Ste0T7] William Stein. Modular forms, a computational approach, volume 79 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2007.

[SVY20] T. Stucker, A. Vennos, and M. P. Young. Dedekind sums arising from newform Eisenstein

series. Int. J. Number Theory, 16(10):2129-2139, 2020.

11

https://github.com/prestontranbarger/NFDSFastComputation

	1 Introduction and Main Result
	2 Preliminaries
	2.1 General Preliminaries
	2.2 Specific Preliminaries

	3 Algorithm
	3.1 Stating the Algorithm
	3.2 Analysis of Algorithm
	3.3 Comparison of Algorithms
	3.4 Code

