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Abstract—Continuum robots navigate narrow, winding pas-
sageways while safely and compliantly interacting with their
environments. Sensing the robot’s shape under these conditions is
often done indirectly, using a few coarsely distributed (e.g. strain
or position) sensors combined with the robot’s mechanics-based
model. More recently, given high-fidelity shape data, external
interaction loads along the robot have been estimated by solving
an inverse problem on the mechanics model of the robot. In this
paper, we argue that since shape and force are fundamentally
coupled, they should be estimated simultaneously in a statistically
principled approach. We accomplish this by applying continuous-
time batch estimation directly to the arclength domain. A general
continuum robot model serves as a statistical prior which is fused
with discrete, noisy measurements taken along the robot’s back-
bone. The result is a continuous posterior containing both shape
and load functions of arclength, as well as their uncertainties. We
first test the approach with a Cosserat rod, i.e. the underlying
modeling framework that is the basis for a variety of continuum
robots. We verify our approach numerically using distributed
loads with various sensor combinations. Next, we experimentally
validate shape and external load errors for highly concentrated
force distributions (point loads). Finally, we apply the approach to
a tendon-actuated continuum robot demonstrating applicability
to more complex actuated robots.

Index Terms—Soft robots, continuum mechanics, state es-
timation, stochastic processes, Gaussian process regression,
continuous-time batch estimation

I. INTRODUCTION

Continuum robots are compliant manipulators that bend
continuously based on actuation and/or environmental inter-
action. A slender profile coupled with tentacle-like motion
capabilities make continuum robots well-suited for a variety
of applications that are challenging for traditional rigid-link
robots. Thus, models have emerged which can compute a
continuum robot’s shape given actuator values and external
loads applied to the robot [1]-[6]. However, unmodeled effects
(e.g. tendon friction), and unknown external loads applied to
the robot (e.g. environmental contact) will cause a discrepancy
between the predicted shape of a robot and its actual shape.
Therefore, sensors have been integrated into the robot to help
infer its shape and external loading conditions.
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An early approach to incorporating sensors was simply to fit
a parametric curve to a set of position measurements, without
reference to the robot’s mechanics-based model [7], [8]. Since
robot models can provide additional prior information for
improved accuracy, several groups have implemented model-
based shape sensing techniques [9], [10]. Shi et al. [11] provide
an extensive survey of continuum robot shape sensing meth-
ods. Overall, electromagnetic-tracking, intraoperative imaging,
and fiber optic sensors have been successful. Of these, optical
Fiber Bragg Grating (FBG) sensors have recently received
considerable attention [12], [13], ultimately enabling FBG-
based closed-loop control for continuum robots [14]-[18].

Since external forces act to deform continuum robots, shape
sensing is actually coupled to external load sensing. Further-
more, external force knowledge is inherently useful in its own
right. Researchers began estimating forces by assuming that
the load was concentrated at the robot’s tip; the 3D force vector
was inferred based on sensor data [19]-[22]. Perhaps the most
straightforward method to estimate tip force is to attach a small
load cell to the distal end of the robot. While researchers have
explored this approach [23]-[28], load cell size still precludes
their application in many cases.

Instead of sensing tip forces directly, robot actuator efforts
can be used to infer tip force without any additional hardware
(i.e. intrinsic force sensing). Xu et al. first investigated intrinsic
tip force sensing [19] for a push-pull style continuum robot.
The method was expanded in [20] to consider estimation of
full 6D wrenches at the robot’s tip. Such intrinsic force sensing
is an ongoing area of research and has recently been applied
to parallel continuum robots [21].

The compliance of continuum robots also facilitates a
deflection-based type of force sensing [29], [30]. Because the
robot’s shape is a function of the applied forces, loads can be
estimated based on shape data. A probabilistic approach was
explored by Rucker et al. [22] where tip force was estimated
based on tip pose observations. The mapping between deflec-
tion and force was shown to be ill-conditioned, highlighting
the need of a principled statistical solution. Recently, shape-
based tip force sensing has been applied extensively to catheter
robots in minimally invasive surgery [31]-[33]. While mainly
used for shape sensing, FBG arrays have also been used for
tip force sensing [34], [35].

Toward generalizing these approaches, researchers have
dropped the tip force assumption to estimate multiple discrete
loads along continuum robot backbones [36]-[39]. For non-
slender soft robots, 3D finite element elasticity models can
be inverted to map deflections to forces globally [40], [41],



but slender continuum robots have an ill-conditioned mapping,
mainly due to their high axial stiffness. Nevertheless, shape-
based estimation of distributed loads along a Cosserat rod was
presented in [42] and extended to tendon-driven continuum
robots in [43]. In this optimization approach, the force distri-
bution was parameterized (e.g. Fourier series) so that shape
error could be minimized by varying the parameters. The
Gaussian force parameterization was designed to mitigate the
ill-conditioning that is inherent to the distributed force sensing
problem.

Due to ill-conditioning, all previous distributed load estima-
tion efforts have made two simplifying assumptions on the na-
ture of the external loads, which we detail in Section IV-A. Our
method does not theoretically require these assumptions, but
we do apply them in our experiments. Further, the assumptions
are broadly applicable in low friction environments. Perhaps
most notably, surgical robots and catheters [44] often interact
with lubricious anatomical structures which impart minimal
friction. Furthermore, normal forces often dominate friction in
general, such as during smooth metal contact (e.g. aerospace
inspection/repair [45]) and potentially underwater [45], where
environmental contact would be lubricated. Moreover, even
when friction is significant, it still may be useful to estimate
normal forces alone. This approximation could be useful for
contact detection or human-robot interaction.

While much progress has been made, force estimation
work to date essentially treats shape data as a ground truth
and relies on a fundamentally low-dimensional force param-
eterization to smooth the force estimate and make it robust
to shape noise. Since shape measurements inherently con-
tain uncertainty, we propose that they should be treated as
such and estimated simultaneously in a statistically principled
framework, explicitly accounting for the uncertainty in both
shape and force. This enables Bayesian statistical inference to
accomplish the smoothing, while keeping the force estimation
high-dimensional. This approach has precedent in early work
[22] which simultaneously estimated force and position at the
tip only. Here we extend that basic philosophy to estimate
force and position everywhere along the robot. Note that
while estimation of continuum robot state in arclength has
been previously explored [46], [47], external forces were not
included in the model.

Our approach repurposes a concept originally developed for
the time domain. Continuous-time batch estimation has been
successfully applied to mobile robotics for localization and
mapping tasks [48]-[50]. A mobile robot’s state evolves over
time, which is a single parameter. Analogously, the state of a
continuum robot evolves over arclength, which is also a single
parameter. Therefore, continuous-time batch estimation can be
directly applied to the arclength domain.

Lilge et al. [51] have recently exploited this connection
by using Gaussian process regression to elegantly estimate
the shape of passive Cosserat rods directly on the special
Euclidean group SE(3) with good results. However, robot
actuation was not incorporated in the model, and estimation of
external forces was left to future work. In contrast, we show
how to estimate both force and shape simultaneously, and the
approach is built for general continuum robot models with

actuation inputs, in addition to elastic rod models.

In this paper, we apply state estimation concepts to a
general continuum robot model. As robot shape and applied
loads are fundamentally coupled, we jointly estimate these
functions along the robot backbone. The method is statistically
principled: stochastic processes are estimated from observed
data based on uncertain robot/measurement models, and uncer-
tainties of all estimates are given. First, we apply the method to
the Cosserat rod, which is the basis for many continuum robot
models. We test the approach in simulation to estimate truly
distributed loads, analyzing estimation error with a variety of
practical sensor combinations. Next, we validate shape and
highly concentrated point force estimates with experiments.
Finally, we apply the approach to a tendon-actuated robot with
promising results. The specific contributions of our work are:

1) A method for simultaneous estimation of continuum
robot shape and external loads using continuous batch
estimation on a general robot model.

2) Numerical analysis of the estimates produced by this
method with distributed loads under many simulated
sensor combinations.

3) Experimental analysis of the method with highly con-
centrated force distributions (point loads), using both a
Cosserat rod and a tendon-actuated robot.

II. ROBOT STATE AND MEASUREMENT MODELS
A. Continuum Robot Model

The mechanics model of a continuum robot describes how
the state of the robot 7 evolves with respect to a spatial
variable s: the distance along the robot’s backbone. This state
7 typically contains kinematic variables which are related to
internal mechanical strains. In general, distributed force and
moment functions v(s),v;(s) : R ~ R3 act along the
robot’s backbone to continuously deform the robot’s state.
Note that while our method operates on distributed loads, it
is possible to estimate concentrated force distributions (point
loads) with our method (see Section VI). In this case, the
estimated distribution should ideally be concentrated at the
load application locations, approximating impulse functions.

Using the common “white noise notation” (see Appendix
A), the continuum robot is modeled by a set of nonlinear,
stochastic ordinary differential equations in the arclength pa-

rameter s:
7(s) = h(n(s),v(s), wn(s)’ s)
w, (s) ~ GP(0,Qyd(s — ')
where we have stacked the input loading functions into a single
vector: v(s) = (vy(s), v;(s)). The robotic actuation variables
(e.g. rod rotations, tendon tensions) take the form of boundary
conditions for the above equation (see Section III-B).

To account for model inaccuracies (e.g. manufacturing im-
perfections), we adopt a standard approach of injecting zero-
mean, white Gaussian noise w,,(s) into the state equation (1).
The notation w,,(s) ~ GP(0,Q,0(s—s")) means that w,(s) is
a Gaussian process with a mean of zero and covariance func-
tion Q,0(s — s"). The delta function is zero when computing
the covariance between distinct points in arclength (s # s');
therefore the noise w, (s) is not correlated in arclength (i.e.

)



white noise). The power spectral density matrix (), specifies
the magnitude of the noise in each direction. Broadly speaking,
a larger @),, implies that more noise is injected into the model.

We additionally note that (1) implicitly parameterizes the
Lie group SE(3) into a vector space. In simple models,
it is possible to define probabilities and perform estimation
directly on SE(3) [51]-[54]. However, computing the prior
over SE(3) with a general continuum robot model is not
straightforward.

B. Stacked Robot and Distributed Load States

Given a prior distribution on the external load function v(s)
and information about the boundary conditions (e.g. actuation
variables), one could in principle compute the probability
distribution of the state 77(s) using stochastic integration. A
very common approach would be to model the unknown
process v(s) as Brownian motion:

w,(s) ~ GP(0,Q.,0(s — ). (2

Again, the matrix @, is tunable: during estimation, a larger
@, will produce quickly changing, noisy force estimates, and
a smaller value will produce smoother functions.

Again using white noise notation (Appendix A), Equations
(1) and (2) can now be stacked together into a single stochastic
ordinary differential equation:

e |
()= [10)] = £l w99
w(s) ~ GP(0,Qd(s — s')).

The new process noise w(s) now encompasses both modeling
uncertainty w,, as well as the white noise process w, which
controls the evolution of wv(s). The reason for stacking the
states together x(s) = (n(s),v(s)) will be explained in the
next section.

v(s) = wy(s);

3)

C. Solving an Inverse Problem with State Estimation

Previous literature has established that distributed load es-
timation in continuum robotics is fundamentally an inverse
problem [43]. Indeed, the unknown distributed load function
v(s) is an input to the state equation (1), and this input is to be
determined from some measured output. The current approach
is to parameterize the distributed load functions (e.g. Fourier
series) and then least-squares solve for the coefficients which
match the model with the measurements as closely as possible.
Our approach instead transforms the inverse problem into a
state estimation problem.

The reason for the stacking in (3) is so that we can use
powerful state estimation techniques to estimate the full state-
curve x(s) = (n(s),v(s)), which includes both shape and
external load information. By defining a dynamic model for
v(s) and then stacking it together with the robot states 7(s),
we no longer have an unknown input function, and all of the
unknowns can be estimated. The overall approach of stacking
unknown inputs into the state is a common and effective
approach [49] but has not been previously applied to external
load estimation.

It is important to note that state estimation also allows for
the estimation of static system parameters. Such unknown
parameters can be stacked into the state as well, and their
derivatives should be set to zero in (3). We used this approach
in our experiments (Section VI) to calibrate our rod’s bending
stiffness.

D. Nonlinear Measurement Model

Given the prior model, we seek to incorporate sensor
data for accurate estimation. We assume a general nonlinear
discrete measurement model of the form

Yr = g(x(sk), N, k), 4

where y, € R™ is a measurement at arclength s; and
ni, ~ N(0, Ry) is zero-mean Gaussian measurement noise
with covariance Ry.

This model could represent any system which produces data
corrupted by noise from continuum robot states. In this paper,
we specifically consider position measurements as well as
surface strain measurements along the robot.

III. CONTINUOUS-ARCLENGTH BATCH ESTIMATION

Continuous batch estimation is a method to estimate a
continuous state-curve x(s) given a dynamic model f and
noisy observations yj; based on a measurement model g.
We emphasize that batch estimation does not recursively step
along arclength. Instead, the entire function x(s) is solved for
in one optimization given the full batch of measurements yj.
This is an established approach in the time domain [50], [55],
[56] and has been applied to a Cosserat rod model for shape
estimation [S1]. Here we explain continuous batch estimation
for a general continuum robot model (3).

In particular, we use the Gaussian process regression ap-
proach [49] which has been used for simultaneous trajectory
estimation and mapping for mobile robots [48]. In this section,
we outline the approach for continuum robots and point the
reader to [49] for a detailed explanation of the underlying
algorithm.

A. Gaussian Process Regression

In this method, a continuous Gaussian process [57] is fit
to both the dynamic model (3) and the measurements (4)
simultaneously. Given boundary conditions (Section III-B), the
model (3) represents a continuous prior distribution of the
robot state. We assume that this prior can be written as a
Gaussian Process

z(s) ~ GP(&(s), P(s,s)),  s,8 > s (5)

specified by the mean and covariance functions &(s) and
P(s,5')) in arclength. We note that there is substantial liter-
ature for generating such distributions using methods of error
propagation on motion groups [58]-[60].

Among other quantities, the state vector «(s) contains both
shape and external load information (see (3)). Therefore, given
(5), we immediately have prior distributions for both the robot
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Fig. 1. Prior knowledge about robot shape (from mechanics models) and
external loads is combined with observed data to produce a continuous poste-
rior estimate of both shape and distributed loads simultaneously. Importantly,
uncertainties (shaded regions) in the prior and measurements are mapped to
uncertainties in the estimate.

shape and distributed load functions (see Figure 1A). In the
figure, the two solid lines indicate the prior means based on
#(s). The shaded regions represent the prior uncertainties,
based on the covariance function P(s,s’)).

As mentioned, the estimator combines the prior (5) with
measured data (Figure 1B) to produce the posterior distribution
of the continuum robot state, which is also a Gaussian process:

x(s) ~ GP(&(s), P(s,s")),

The posterior mean and covariance functions &(s) and P(s, s)
together form the best estimate of the robot state given
all available information. Accordingly, the robot shape and
external load functions can be immediately extracted from (6),
as illustrated by Figure 1C. Thus, estimation solves for the
optimal mean functions (solid lines in 1C). The covariance
functions (shaded regions in 1C) are also updated and are
ideally much smaller than in Figure 1A indicating a precise
solution.

The posterior (6) is essentially computed by solving an
optimization problem with two cost terms: one for deviations
from the prior (5) and one for deviations from the mea-
surements (4). This is implemented by combining linearized-
Guassian estimation with the Gaussian process interpolation
equations in one dimension [57]. The algorithm is iterative
and updates both the prior and the posterior functions in each

5,8 > 5. (6)

iteration to eventually produce the ultimate goal: Z(s) and
P(s,s")). Because this algorithm translates directly from the
time domain, we point the reader to Chapter 4.4 of [49] for

details.

B. Imposing Boundary Conditions

State information at the endpoints is often necessary in
continuum robot computations [1], [4]. For example, pose is
often known at the robot base, and internal strain known at
the tip. Notably, robotic actuation variables also manifest as
boundary values (e.g. tendon actuation tensions) which must
be incorporated. We impose such boundary values using a
“soft constraint” approach described here.

In the algorithm, we are free to specify the prior distribution
at the base of the robot (&(sg),P(sg)) based on known
boundary values. Note that these values can be found in [49]
as the first entries in the “lifted prior’:

Z(s0)

5 p = [P(si’sj)]ij . (7)

8«
I

E(sk)
However, we usually only know partial state information at
the base (e.g. pose but not strain). Therefore, we set the
known variables in &(sg) (e.g. pose) to their measured values
and all other values to zero. Our confidence in the different
components of &(sg) is reflected in P(sq) appropriately. For
the known quantities (e.g. pose), the covariance is set to small
values. For the unknown quantities (e.g. strain), the covariance
is set to a large number so that there will be minimal cost
associated with large deviations. The tip boundary value works
similarly but with the prior distribution (%(sg), P(sx)).

We note that while boundary information is common, these
soft constraints can actually be set at any point in arclength.
This could be exploited to define a remote center of motion for
example [47]. Furthermore, soft constraints naturally enable
the incorporation of boundary value uncertainties, which could
be useful with noisy actuators.

These soft boundary values also enable a straightforward
method for 3D tip force sensing. If tip loads are expected, one
could set the prior internal strain covariance to a reasonably
high value at the tip. After estimation, posterior strain can be
directly converted into sensed tip loads (and uncertainties).

IV. COSSERAT ROD MODEL APPLICATION

As a first step toward more complex continuum robots, here
we apply the method to the Cosserat rod model that we use
in our experiments (see Figure 2). The shape is described by
the position of the rod center line p(s) and its rotation matrix
R(s) € SO(3) which vary with arclength s. These functions

are related to the linear and angular rates g(s) and w(s) by
p= Rq

: . ®)

R = Ru,

where the = operator generates skew-symmetric matrix from
the space R? as defined in [61].



Fig. 2. Illustration of the geometric quantities in the Cosserat rod model.

For state estimation, it is generally more convenient to use
a minimal representation for R [50]. We choose to represent
R using XY Z Euler angles € R3. We can write out R as

Ca2C3 —C283 S9
R=| si182¢3 +c183 —818283 +c1c3 —51C2 9
—C182¢3 + 8183 €15283 + 51C3 C1C2

where, for example, co stands for cos f,. We can differentiate
this matrix and substitute into R = R4 to obtain the following
useful relationship between curvature and Euler angle rates
[62]:

cs _s3
. Cc2 Cc2 0 1
0= S3 c3 Olu=5 "u. (10)
__Sa2€3 5283 1
Cc2 Cc2

We note that this representation does introduce a singularity
(i.e. when cosfy = 0, .S loses rank), but we did not observe
ill-conditioning in our experiments because we designed the
apparatus to avoid such configurations.
Thus, written in terms of material strains, the full Cosserat

rod model is

p = Rq

0=25"u

4=4q" - K (K + Ke)(q - %) + BT vy)

u=1u" — Kl;l((’llet + Kb;)(u — 'u,*)

+ ‘ste(q - q*) + RT'UI)

Y

'l.)f = wf
v = wy,

where v (s) and v;(s) are the distributed force and moment as
shown in Figure 2, and w; and w; are their related white noise
processes. These loading states cause changes in the linear and
angular rates (¢ — ¢*) and (u — u*) relative to their original
values ¢* and uw*. These changes are fundamentally caused
by local shear/elongation K. and bending/torsion Ky, effects.

A very common scenario is that the rod is initially straight
with negligible shear and extension effects compared to bend-
ing/torsion [1]. In this case, the equations reduce considerably:

p = Re3

6=S"'"KzrR"m

e (12)
m=—-pXxXn-—u

Vf = wy

'i)l = wy,

where e3 = (0,0, 1) and the internal moment m is related to
the curvature u by

m = RKy(u —u"). (13)

In our rod experiments (Section VI), the measured base
pose and the assumed zero tip strain were used as boundary
conditions.

A. External Load Assumptions for Experiments

Our overall method (Sections II and III) is general and
imposes no constraints on the distributed loading functions v
and v;. However, in our experiments, we make two simplifying
assumptions on the nature of these functions. As discussed
in Section I, ill-conditioning has made these assumptions
standard for distributed loads, but they are broadly applicable
when normal forces dominate friction.

First, a standard assumption in force sensing literature is
that the distributed moment function v;(s) is zero [38], [42],
[43]. Such distributed moments could possibly be caused by
frictional surface contacts that impart a moment about the
local robot backbone point. Therefore, neglecting distributed
moments is a reasonable assumption when friction is negli-
gible or when the robot is sufficiently thin, as is the case
in our experiments. Note that v;(s) = 0 does not imply the
absence of internal moments m. External forces v (s) are still
propagated through the state equation to produce nonzero m.

Second, as noted by Khan et al.,, [35], slender robots
generally have high axial stiffness relative to their bending
stiffness such that axial strains are negligible. Thus, axial
components of distributed force cannot reliably be estimated
from strain or deflection data alone. Therefore, prior works
[38], [42], [43] assume that the distributed force function
vs(s) is orthogonal to the rod backbone curve, and we also
adopt this assumption for our experiments. This assumption is
valid when neglecting friction forces which may occur in the
axial direction [43]. Note that if tip force sensing is included
in the estimation (see Section III-B), the tip force vector could
still be a general 3D vector.

Now, the second assumption means that v; must lie in the
local X — Y plane. Therefore, we can reparameterize vy in
the local frame in 2D: v, (s) : R — R2. After incorporating
the two assumptions, the prior rod model becomes

p = Res

6=S5"'K;LR"m

C | Vay

n = R{ 0 } (14)
m=—-pXxXmn
Vgy = Wy

where
Wgy ~ g'P(O, mea(s - S/))

Practically speaking, we can assume that the forces have
equal variance in the local x and y directions so that Q,, =

diag(Qy, Qy)-



B. Measurements

We consider two main types of measurements in this paper.
The first is the 3D position of the rod at known locations along
the rod’s backbone. This suggests the following observation
equation:

g1(x) = p+ ny,, 15)

where ny, is 3D Gaussian noise added to the position mea-
surements.

In our simulations (Section V), we will additionally con-
sider taking strain measurements along the rod. The general
relationship between mechanical strains v, V.4, and €, and
the kinematic quantities « and q is [63]

[’sz VYzy ez]T = (q—q*)—’l" X (U_U*)’ (16)

where r = (z,y,0) is the vector from the rod’s neutral axis
to the test point, expressed in the body frame. The strains 7.,
and v, are the shear strains normal to the local z axis and
in the local z and y directions respectively, while €, is the
normal strain in the local z direction.

The practical scenario that we study in this paper is the case
where at each arclength measurement point, we attach two
strain gauges to the rod surface. This situation is motivated by
FBG sensor arrays which can be used to infer 3D rod shape
from elongation €, measurements.

In our simulations, we fix strain gauges at surface points
r = (p,0,0) and r = (0, p,0) to measure the normal strain
€. In other words, at each measurement point, two gauges are
positioned 90° radially from one another, along the local X
and Y axes. Plugging these in to (16) and stacking the two
resulting €,’s, we get the following observation equation:

o |1 —u
(@) = (on =) 3]+ e a0
1
where 1, is 2D additive Gaussian noise. In the case that there
is negligible shear or elongation, this simply reduces to
U
go(@) = p { } . a8)
Thus, two strain gauges used in this 90° radial configuration
essentially serve to measure rod curvature, scaled by rod
radius.

V. DISTRIBUTED LOAD SIMULATIONS

Here we test the estimation approach in a wide variety of
practical scenarios with a series of numerical experiments.
Specifically, we apply truly distributed loads to the model
to compare with estimation results. During each scenario, we
analyze the effect on estimation accuracy of two noise vari-
ables: the number of measurements N and the measurement
uncertainty o. Ultimately, for each scenario, we build a heat
map to analyze the relationship between estimation error and
these two noise variables.

In our simulations, we compare two common data sources:
position data g; and strain measurements g-» taken along
the rod. Furthermore, we consider two additional scenarios
First, in order to improve distributed load estimation, we
consider the case where the base load is measured by means

of a 6 DOF force sensor. This is implemented by setting
the prior boundary values for n(sg) and m(sp) to be their
measured values (see Section III-B). Second, when using strain
measurements, integration drift may become substantial at the
tip; therefore, we consider the case where the tip position is
additionally measured by means of an attached sensor (e.g.
magnetic tracking coil). This is implemented by setting the
final boundary value for p(ss) to be the measurement.

In summary, we test four scenarios in our numerical ex-
periments: i) position only, ii) position + base load, iii) strain
only, and iv) strain + tip position. We vary the number of
measurements N and the measurement uncertainty ¢ in each
case.

A. Data Generation

To generate ground truth data, we chose to apply a linear
combination of three Gaussian functions to the rod model. The
idea is that distributed loads from environmental contact may
resemble bell curves [43]. We note that the estimator does not
know how this ground truth load profile was generated and
assumes that the function has the general Brownian motion
prior in (14). Each Gaussian function has four parameters:
location along the rod, width of the curve, height, and the
angle around the rod. Each parameter was chosen uniformly
at random in simulation; the distributed load was formed by
adding the functions together.

After generating ground truth applied loads, the Cosserat
rod equations were solved using a standard shooting method
to generate ground truth data sets. In our simulations, we use
a 1.5 mm diameter solid rod with Young’s modulus of 207
GPa. This process was repeated to produce 50 ground truth
data sets.

B. Estimation Procedure

For each of the ground truth data sets, we test each of
the four scenarios while varying both the two noise vari-
ables o and N. For the position scenarios, we consider four
levels of standard deviations o: 10',10°,107!, and 102
mm. For the strain scenarios, we consider standard deviations
o of 10%,10%,10°, and 10! p-strain. In all scenarios, we
considered five different values for IN: 5,15,50,150, and
500. Overall, this amounted to 80 different estimations for
each of the 50 ground truth data sets. For each estimation,
first the data set (either ground truth strain or position) was
subsampled according to N and Gaussian noise was added
to the measurements according to o. Estimation was then
performed with Q,, = diag(107'1,107!!). We note that
during estimation, a small percentage of cases did not converge
which could be remedied by a better initialization.

We detail the output from one example estimation scenario
in Figure 3. In this example, the full state is estimated based
on N = 50 strain measurements g, which are corrupted by
o = 10° p-strain of noise. Note that this is a strain + tip
position example, which includes an embedded tip position
sensor to mitigate strain integration drift.
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Fig. 3. Typical results taken from one of our 4000 shape/load estimation
simulations. Top: In this example, estimation of the shape (green) and
distributed loads (blue) is based on 50 bending strain sensors placed along
to rod (red dots) and one single position sensor at the distal tip. Center: The
shape estimation results indicate excellent agreement with the ground truth.
Note that the small uncertainty cannot be visualized at this scale. Bottom: The
external load estimation results show good agreement with the ground truth
in this example.

All of such 4000 estimated states were then compared to
their corresponding ground truth. Specifically, both the RMS
shape and distributed load errors were computed with respect
to arclength for each of these simulations. The errors were
then averaged over all simulation cases for each combination
of noise variables o and N. Thus, average shape error e,
was plotted versus the two noise variables in a heat map in
Figure 4. A similar heat map was constructed for distributed
load error e in Figure 5. In both figures, plots of the four
different sensing scenarios are shown for comparison. Note
that we have normalized shape error e,, as a percentage of the
rod’s length and force error es as a percentage of the RMS
applied load over all test cases.

In summary, in this section, we simulated many shape/load
estimations using four different sensing scenarios and many
different combinations of measurement noise variables for
comparison. We used these simulations to generate heat maps
(Figures 4 and 5) to illustrate the effect of the noise variables
on shape and distributed load estimation error for each of the
four sensing scenarios.

VI. POINT LOAD EXPERIMENTS

Here we experimentally evaluate our approach by applying
point loads to deform a Cosserat rod; state estimation is based
on position measurements taken from a laser scanner. To
assess performance, we compare the estimate to measured
values for both shape and external loads. Thus, shape error,
force magnitude error, and force location error are all fully
characterized.

In these experiments, we apply point forces, which are
mathematically described by impulse functions. Ideally, the
estimated force distribution should be concentrated at the
ground-truth location. Due to the ill-conditioning present [43],
this assessment actually represents a worst-case stress test for
our method, which we later discuss (Section VIII-D). We note
that while true distributed loads are possible to apply, they are
not feasible to measure accurately for ground-truth comparison
with the solution. Therefore, we follow prior work [42], [43]
and evaluate truly distributed loads in simulation (Section V)
and use point loads for our experiments.

A. Data Collection

To collect measured shape and force data, we used the setup
shown in Figure 6. The FARO Quantum Max laser scanning
arm (FARO Technologies, Inc., Lake Mary, FL, USE) is a
mechanical linkage with several encoded joints with a laser
scanner attached to its proximal link. Data from the encoders
and the laser together enable 3D rod shape outputs. An ATI
Mini 40 6D force/torque sensor (ATI Industrial Automation,
Apex, NC, USA) was attached to the 500 mm Nitinol tube
(radius 2 mm, wall thickness 0.2 mm) to measure applied
forces.

During each test, weights were hung by cables passing
through pulleys held in space by lockable holding arms. The
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the RMS applied force over all simulations which was 0.27 N/m.

weights used in each of our tests are recorded in Table I.
The cables were then tied to the rod to force it into deflected
shapes. A machinist square was used to ensure that the applied
loads were normal to the rod.

The whole apparatus was then scanned with the laser
scanning arm to capture the shape of the rod as well as the
force application points. Special care was taken to sweep the
laser scanner over the rod from base to tip multiple times to
capture the pose of the rod accurately. A clustering algorithm
based on fitting the rod surface data to consecutive cylinders
was used to transform the acquired point cloud data into
measurements yj, versus arclength s;. Over our 9 data sets, the
average number of backbone points was 258 after this process.

B. Estimating Rod Stiffness Parameter

The estimates output by our method depend on the rod’s
bending stiffness; therefore, it is crucial that this value be
calibrated to achieve accurate force estimation. We note that
anecdotally, our experiments depend minimally on the tor-
sional stiffness, so we forgo torsional stiffness calibration in
our experiments.

As noted in Section II-C, continuous-arclength estimation
can also be used to estimate static parameters. This is how
we calibrate the bending stiffness parameter k; required for
our experiments. Toward this, we first collected a data set (see
Table I) of a known load applied to the rod’s tip. As described
in Section II-C, the unknown k; is stacked the state, and we
define the following state equation to model the rod under tip

loading conditions:

p = Re3

0=S5"KgR"

oo ferimm (19)
m=—-pxXn

ky=0

where we note that n is constant and equal to the applied load,
and vy = 0 because only tip loading was present. Because the
rod was uniform in arclength, the bending stiffness parameter
is constant (I%b = 0). We note that even though the parameter
is static, its constant mean and variance functions are unknown
until the calibration is complete.

Given the measured position data, this system is then
estimated using the same algorithm as before to determine
the state versus arclength (including the constant bending
stiffness). The results of this process, including the theoretical
values of k; based on rod geometry with a Young’s modulus
of 50 GPa, are shown in Table II.

C. Dependence on Qy

The results of our shape/load estimation depend heavily on
the power spectral density matrix @Q,, = diag(Q, Q). A
large value for @y would allow for a more noisy, quickly
changing force distribution, but a small ¢}y would yield slowly
changing, smooth force estimates. This is illustrated in Figure
7 where we have performed our estimation (using the One
Force 1 data set) with different values for () y. As shown in the
figure, a value of Q; = 107 strikes a compromise between



TABLE I
TABLE OF APPLIED LOAD MAGNITUDES AND CORRESPONDING ARCLENGTH POSITIONS FOR ROD ESTIMATION EXPERIMENTS

Calibration One Force  One Force  One Force  One Force One Force Two Force  Two Force  Two Force
#1 #2 #3 #4 #5 #1 #2 #3
Load 1 Magnitude (N) 0.49 0.15 0.25 0.59 0.35 0.27 0.69 0.98 0.98
Load 1 Arclength (mm) 177 275 275 141 234 215 163 180 162
Load 2 Magnitude (N) — — — — — — 0.30 0.35 0.35
Load 2 Arclength (mm) — — — — — — 372 416 406

© ©

Fig. 6. Experimental setup to measure both the shape and point loads along
a rod (A). Weights (C) are hung by cables through pulleys (B) attached to
the test jig to apply point loads deforming the rod. During loading, thousands
of rod shape measurements are collected by a laser scanning arm (E). This
scanner additionally provides the location of the point forces. A force sensor
attached to the rod base (D) provides the forces themselves. Knowledge of
shape and applied loads enables evaluation of our method.

TABLE II
CALIBRATION OF THE BENDING STIFFNESS PARAMETER kj, (KN-MM?)
FOR THE NITINOL ROD USED IN OUR EXPERIMENTS.

Prior  Calibrated
Value 23.05 8.33
Std. Dev.  100.0 0.32

load centralization and noise rejection, which we discuss in
Section VIII-D. Therefore, we qualitatively choose to use this
value throughout our experiments.

D. State Estimation Accuracy

To achieve the best case results, we first ran our estimator
on each of our 8 data sets using all of the available shape
measurements. The resulting estimated rod shapes and force
distributions as well as the measured point loads are shown in
Figure 8.

Next, we quantitatively evaluate the ability of our method
to estimate force magnitude and location along the rod. To
do this, we perform a series of estimations with the five One
Force data sets. For each data set, we perform an estimation
down sampling to 3, 5, 10, 25, 50, 100, and 200 position
measurements. For each estimation, we first compute the RMS
position error between the estimated shape and the measured
shape. Next, we integrate the estimated distributed load across
the rod. This value should be equal to the force acquired
from the load sensor at the rod base, so we take the norm
of this difference to be the force magnitude error. Finally, we
take the location of the maximal value of distributed load as
our estimate of the force location. Therefore, the difference
between this value and the force location based on the laser
scanner was taken as the force location error. These errors in
each data set were then averaged across the different numbers
of measurements. The results are shown in Figure 9.

Finally, we qualitatively evaluate the effect of the number of
shape measurements on the estimated distributed load. Toward
this, we subsampled the One Force 1 data set to 5, 50, and
200 data points and performed estimation in each case. The
results are shown in Figure 10.

VII. ESTIMATION WITH A TENDON-ACTUATED ROBOT

To demonstrate the method on a more complex continuum
robot, we next applied the method to the tendon-actuated robot
in Figure 11, which has been used in prior work on external
force sensing [43]. The robot’s 1.4 mm diameter circular
backbone was made of a 40 cm length of spring steel. A
single actuated tendon, 14 mm away from the backbone, was
routed through 9 spacer disks spaced in 5 cm intervals. Optical
markers were attached to each of the spacers for 3D tracking.
A linear actuator was used to prescribe the length of the
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Fig. 7. Effect of Qy on distributed load estimation. Larger values allow for quickly changing force profiles which can overfit to noise (left). Small values result
in more smoothly varying estimates which may not capture the concentrated nature of point loads (right). We chose a compromise between load centralization
and noise rejection (center).
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Fig. 8. Estimated shape and distributed load profiles for the 8 data sets. For each test case, the green tube illustrates the estimated rod shape, the red arrow
represents the known (from laser scanner) point load on the rod, and the blue arrows represent the estimated distributed load along the rod.
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Fig. 10. Effect of the number of position measurements on estimated external load for the One Force 1 data set. More measurements result in distributed
loads that are more centralized, and reasonably good results can be achieved with relatively few data points.

Fig. 11. Setup to apply our method to a tendon-actuated continuum robot.
Strings (A) are attached to the robot for external load application. A single
tendon (C) is tensioned by a linear actuator (D) to deform the robot. All
strings terminate at load cells (B) for force measurement.

tendon with a load cell in line to measure tendon tension. For
load application, Kevlar threads were attached at two points
on the robot. The opposite ends were fixed to load cells for
measurement.

The tendon was actuated to 2.0 cm, and two loads (6.44
and 1.24 N) were applied to the robot at s = 10 and
s = 30 cm. The positions of the optical markers were
measured with a Micron tracker, and (with known offsets)
produced 9 measurements along the backbone. These position
measurements were the data y; used for estimation.

We used the general tendon routing model in [4] to model
the robot. Again, this was stacked with ¥, to form the full
set of state equations. Given this model, y, and appropriate
tip boundary conditions (tendon tension and moment), the
estimation was performed. The results are shown in Figure

Fig. 12. Tendon robot estimation example. The backbone shape closely
matches the acquired position data points (red dots), and the shape of the
distributed load function roughly approximates the applied point loads (red
arrows).

12.

VIII. DISCUSSION
A. Shape Estimation

Overall, accurate shape estimation did not require very
many measurements. Indeed, we achieved errors of less than
2% of the rod’s length with 5 measurements in simulation
(Figure 4), and only 3 position measurements in our experi-
ments (Figure 9). When estimating from strain measurements,
addition of a tip position sensor significantly reduced the shape
error when using few or noisy strain measurements in our
simulations (Figure 4).



Overall, strain and position measurements yielded com-
parable shape errors in our simulations. Both data sources
were able to quickly achieve submillimetric error as the
number of measurements increased (or as noise decreased).
Therefore, either position or strain data are appropriate for
shape estimation. If the number of strain sensors is small or the
sensors are noisy, a tip position sensor could further improve
accuracy.

B. Distributed Load Estimation

In our simulations (Figure 5), the distributed force functions
matched the ground truth curves better when using strain mea-
surements, as opposed to position. With strain measurements,
the average RMS distributed load error could be brought down
to a reasonable 1.8% of the RMS applied distributed loads. In
the specific case of a sensor with 1 p strain of error, this
average error was about 5% with 500 strain measurements
(which could be reasonable when using an FBG array).

When instead using position measurements, the error was
26% in the best case (500 measurements with 0.01 mm of po-
sition noise). With an additional base force sensor, error could
be further improved to 18%. Overall, strain measurements
appear to be superior to position measurements for distributed
load estimation. If only position data is available, performance
could be improved by adding a base force sensor.

C. Point Load Estimation

In our point load experiments, the method performed well
in terms of average force magnitude error (0.07 N) and force
location error (7.5 mm) compared with [42] (0.3 N and 6
mm). Additionally, we found that only a few position data
points need to be gathered for good force estimation results
(Figure 10). However, diminishing returns were seen only after
50 position data points.

While our method can handle general applied loads, we
chose to apply standard external load assumptions in our
experiments (see Section IV-A). Future work could relax these
assumptions in order to experimentally validate our method in
high friction environments. Note that this may exacerbate ill-
conditioning; more sensing/data could be required for accurate
results.

Additionally, the ground-truth loads in our simulations were
smooth distributed functions (see Figure 3); however, the wires
in our experiments applied highly concentrated force distribu-
tions (point loads) to the robot. While smooth force distribu-
tions could be produced experimentally, it is very challenging
to measure a ground-truth distributed load function. That is
why we followed the point load conventions in the literature
[42], [43] in our physical experiments (Section VI) and verified
the ability to estimate smoothly varying distributed loads in
simulation (Section V), where exact ground-truth is available.
Verifying smooth distributed loads in physical experiments
could be another topic for future work.

D. llI-Conditioning and Choice of Prior

When estimating point loads, the force distribution should
ideally be concentrated at the point of application, closely

approximating an impulse function. There is a significant
difference between the applied loads and our estimated dis-
tributions in Figure 8: the continuous estimation does not
fully capture the concentrated nature of the point load in
many of our results. Nevertheless, the reconstructed shape is
accurate, which highlights the ill-conditioning present in the
problem [43]. The “sharpness” of the estimated distributed
load (and thus its ability to capture truly concentrated loads)
is dictated by the prior parameter ()¢ in our approach. More
highly concentrated estimations are possible if Q) is larger,
but this comes with the trade-off of increased susceptibility to
noise (see Figure 7), which is again due to the ill-conditioning.
Thus, our concentrated loading experiment actually represents
the most challenging case on which to test our estimation
approach: a worst-case “stress test”.

While this ill-conditioning could be improved by using
strain measurements instead of position, it can also be partially
explained by our choice of prior on the distributed load
process vy(s). While mathematically convenient, Brownian
motion (2) may not capture typical distributed force profiles,
especially concentrated ones. Therefore, better results could
be achieved with a prior vy (s) which more closely matches
the types of functions expected. In prior work, this was
accomplished by choosing appropriate parameterizations (e.g.
combinations of Gaussians) for the distributed load vy(s)
and then least-squares solving for the coefficients [43]. This
approach basically constrains the prior on v(s) directly, and
future work could statistically formalize such a prior with a
state estimation approach.

E. Tendon Robot Estimation and Efficiency

Our tendon-driven robot results (Figure 12) demonstrate
that our method is feasible on actuated prototypes. Indeed,
the estimated shape of the robot’s backbone closely matched
the acquired data with 4.1 mm RMS position error between
the optically tracked points and the model. Furthermore, the
shape of the distributed force function was a reasonable
approximation to the applied point loads, given the low number
of position measurements available.

Across our experiments, the average run time was 4.01 sec-
onds. Currently, this is not fast enough for real-time applica-
tion. This is at least partly because our prototype method was
implemented in MATLAB with minimal code optimization.
With careful implementation in a compiled language running
on powerful hardware, the method could be made many times
faster, approaching real-time application.

IX. CONCLUSION

In this paper, we proposed a method which simultaneously
estimates continuum robot shape and external loads. We first
performed a series of simulations to analyze the method’s
performance with distributed applied loads in a variety of sce-
narios. Second, we experimentally evaluated our method in the
practical case of point load application achieving shape errors
of 2% of the rod’s length with only 3 position measurements
taken along the rod. Furthermore, our method was accurate to
0.07 N and 7.5 mm in estimating point force magnitude and



location respectively. Finally, we demonstrated the feasibility
of the method in actuated systems by applying the method to
a tendon-driven continuum robot.

Future work could study real-time application to more com-
plex continuum robots using an FBG array, which can output
thousands of accurate strain measurements along the robot’s
backbone. Specifying a more appropriate prior distributed load
function or the inclusion of additional data sources (e.g. base
load or tip position) may significantly improve estimation
accuracy.

As this approach continues to be adapted and refined, it
could have many impacts across the spectrum of continuum
and soft robotics. In minimally invasive surgery, accurate
estimation of interaction forces will provide important safe-
guards against tissue damage and could enhance surgical
performance through haptic feedback. For larger scale soft
robots, the approach could enable advancements in whole arm
manipulation, locomotion, and safe human-robot interaction.

APPENDIX A
WHITE NOISE NOTATION

Many of the differential equations in this paper (e.g. the
main state equation (3)) imply that a derivative equals some
function of white noise. Technically, these derivatives will
not exist in general (e.g. simple Brownian motion (2) is not
differentiable). In spite of this technicality, the “white noise
notation” that we use is often used in robotics [47], [49] as
well as stochastic modelling texts [64] to intuitively describe a
system model. However, white noise notation should actually
be interpreted as a representation of the more proper differen-
tial notation. For example, in linear systems driven by white
noise, the white noise notation

©(t) = F(t)z(t) + Gt)w(t) (20)

should be interpreted as the stochastic differential equation

dz(t) = F(t)z(t)dt + G(t)dB(t) 1)

where (3(t) is the Brownian motion associated with white
noise w(t) [64].

This differential notation highlights the stochastic integra-
tion necessary to obtain the solution process x(t). After
carrying out the integration, deterministic functions for the
mean and covariance statistics can be calculated:

m, = (I)(t,to)mm(to)
Puy = ®(t,t0) Pus (to)®T (¢, o)
+/t (I)(t,T)G(T)Q(T)GT(T)(I)T(t,T)dT.

0

(22)

The Gaussian process regression framework that we follow
[49] does not require us to carry out stochastic integration
computations. Instead it uses linearized-Gaussian estimation to
compute the posterior mean and covariance functions directly
with standard Riemannian integration. In other words, we skip
from (20) directly to the deterministic functions of interest
(22). Therefore, throughout this paper, we have opted to use
the more accessible white noise notation.
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