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ABSTRACT

Defining fairness in algorithmic contexts is challenging, particu-
larly when adapting to new domains. Our research introduces a
novel method for learning and applying group fairness preferences
across different classification domains, without the need for manual
fine-tuning. Utilizing concepts from inverse reinforcement learn-
ing (IRL), our approach enables the extraction and application of
fairness preferences from human experts or established algorithms.
We propose the first technique for using IRL to recover and adapt
group fairness preferences to new domains, offering a low-touch
solution for implementing fair classifiers in settings where expert-
established fairness tradeoffs are not yet defined.
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1 INTRODUCTION

Achieving algorithmic fairness in new domains presents a distinct
challenge. Unlike standard performance metrics like precision and
recall, where it is relatively simple to select the appropriate measure,
selecting the right fairness metric is far more nuanced. It involves
striking a delicate balance between multiple, often conflicting [17],
desiderata in order to find the appropriate level of trade-offs for the
given domain. Current practices largely rely on manual fine-tuning
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to adapt fairness criteria for each new context, which is a signifi-
cant burden to implementing fairness in practice [19]. This work
introduces a novel framework for extracting and applying domain-
agnostic fairness objectives, or fairness preferences, learned from
either human or algorithmic experts, to data exhibiting covariate
shifts or residing in entirely new domains. Our approach reduces
the need for manual fine-tuning, fostering transferable fairness
criteria.

We leverage concepts from inverse reinforcement learning (IRL)
to infer an expert’s implicit fairness preferences from their past
actions or “demonstrations.” Consider, for instance, a university
admissions board recognized for its fair practices. By analyzing
their historical decisions, we can extract their inherent fairness
principles guiding their choices, and then use these principles to
design fair policies in new contexts. This mirrors the IRL objec-
tive: given a policy (in this case, the admissions decisions), uncover
the underlying reward function (fairness preferences) that informs
it. Our central inquiry is whether IRL techniques can effectively
capture expert group fairness preferences through such demonstra-
tions, and whether these learned preferences can subsequently be
used to train classifiers that exhibit fairness in new domains. To
the best of our knowledge, this paper represents the first attempt
to do so.

We consider the following scenario: given a classification dataset,
and a set expert decisions (i.e. predictions), try to recover the ex-
pert’s fairness preferences so that we can use them to compute
new classifiers that generalize these fairness preferences to new
datasets. Following the feature matching technique of Abbeel and
Ng’s classical IRL approach [1], we seek a reward function (fairness
preferences) who’s optimal classifier behaves “similarly” to the ex-
pert, where “similarly” refers to how similar they perform on a set
of fairness measures and related metrics.

Our objective is not to provide the “best” IRL approach to learn-
ing group fairness preferences. Rather, the focus of this work is
to answer the following question: is it feasible to use IRL to ex-
tract and transfer fairness knowledge, embodied in algorithmic or
human demonstrations, to train fair classifiers in domains where
fairness has not yet been explicitly defined? To this end, we offer
two primary technical contributions. First, in Section 3, we propose
a novel method that frames group fairness in classification as an
IRL problem, with the reward function’s weights reflecting experts’
fairness preferences. Second, in Section 4, we present an algorithm
inspired by the classical max-margin IRL approach of Abbeel and
Ng [1]. Our algorithm effectively extracts fairness preferences from
expert demonstrations and uses them to train a new classifier on ei-
ther the original demonstrator domain or entirely new domains. In



FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

Section 5 we show through experiments on the Adult, ACSIncome,
and Boston Housing datasets that our approach can (i) recover ex-
pert fairness preferences, (ii) leverage these preferences to learn fair
policies robust to covariate shift, and (iii) transfer these learned fair-
ness preferences to learn fair policies in entirely new domains. In
Section 6 we discuss the limitations of our work, outline promising
avenues for future research, and provide concluding remarks.

1.1 Related Work

Preference Elicitation. Our objective relates to that of preference
elicitation [6], in which a user is repeatedly asked to decide on a
pair of choices to help the user efficiently define their preferences.
Preference elicitation has been studied in the fairness setting [14, 15]
to learn fairness objectives from noisy user feedback. Our work
differs in that we do not assume that there is a user to repeatedly
solicit feedback from in the domain which we aim to implement
fairness.

Fairness tradeoffs. There is often debate around which fairness
metric is relevant to a particular application. For instance, Kleinberg
et al. [17] show that it is not possible to simultaneously satisfy
several common group fairness metrics. Therefore, finding efficient
tradeoffs between fairness metrics is a desirable quality in any
fairness algorithm. Our approach works well in this environment
by identifying the fairness tradeoffs made by an existing algorithm,
which could be used to extend the algorithm to more settings, or
purely as insight into the objectives of the decision-maker.

IRL and Imitation Learning. Our work leverages IRL [1, 3, 18, 26],
which recovers a reward function based on a set of policy demon-
strations in an MDP environment. Our work also relates to imitation
learning, where the goal is to learn a policy that imitates an expert
by observing their demonstrations. Memarrast et al. [21] provide
an imitation learning approach that leverages subdominance mini-
mization [25] to improve on the decisions of a suboptimal human
trying to achieve fairness. However, their technique does not at-
tempt to recover the fairness objectives of the demonstrator, which
prevents it from being used to transfer fairness preferences.

Learning fair representations. Madras et al. [20] use adversarial
methods to learn fair data representations that are robust to third-
party vendors with unknown objectives learning predictors from
the data. Oneto et al. [22] expand on this by using multitask learn-
ing to enhance how fairness generalizes over varied applications.
Both approaches share our focus on generalizing fairness to new
contexts.

Covariate shift. When training a classifier on a set of training
data, it is typically assumed that the training distribution matches
the test distribution. Covariate shift [24] is the problem when this
assumption does not hold, and the distribution changes between
the training and test data. Prior work has addressed this by training
a fair classifier using a robust optimization approach [23] or weight
perturbation [16]. IRL provides an alternative by learning a portable
representation of the classifier’s objectives which allows for training
an alternative in the face of covariate shifts, even with only black-
box access to the original classifier.

52

Jack Blandin and lan Kash

2 PRELIMINARIES

Here we provide prerequisite information for the two domains we
marry: group fairness in classification and IRL.

2.1 Group Fairness in Classification

We focus on binary classification tasks. Following Hardt et al. [12],
we consider an n-record dataset drawn iid from a population rep-
resented by the joint distribution of (Z, X, Y) where each record
(zi, xi, y;) represents a single individual and consists of a binary
sensitive attribute z; € {0,1}; a k-length vector of discrete, non-
sensitive attributes x; € 7k ; and a binary label y; € {0,1}. The
classification goal is to fit a classifier C(Z,X) = ¥ € {0,1} that
maximizes some measure of efficiency. For instance, a common
efficiency metric is to maximize accuracy, which we can model as a
loss function L : (Z,X,Y, 1?) — R:

~ 1 n-1
Lpee(Z XY, 7)== 3" 11

1)
The goal in group fairness is to also optimize for one or more fairness
metrics in addition to efficiency. For instance, one common group
fairness metric is demographic parity, which requires the probability
that an individual receives a positive prediction be independent of

their protected attribute:
P(Y=1|Z=0)=P(Y=1|Z=1) .

i=y; -

@
Similar to demographic parity is equal opportunity [12], which adds
a qualification condition to the constraint:

P(Y=1|Y=1,Z=0)=P(Y=1|Y=1,Z=1). 3)

2.2 MDPs

In order to understand how IRL algorithms work, which our own
techniques build on, it is helpful to understand the domain they are
defined for: Markov Decision Processes (MDPs). An MDP consists
of a six-tuple (S, A, T,y, p,R), where S is a set of states, A is a set
of actions, T(s,a,s’) gives the probability of landing in state s’
after taking action a in state s, y € [0, 1] is a discount rate for
future utility, p is a probability distribution over the initial state
where p(s) is the probability of starting in state s, and R(s, a) is the
reward for taking action a in state s. The goal of an MDP is to find
a policy 7 : S — A that maximizes the expected discounted sum of
rewards. There are many techniques for finding or approximating
optimal policies, but the most relevant one for our purposes is linear
programming. The following simple linear program allows us to
find an optimal policy given rewards R:
A* — argmaxz Z A(s,a)R(s,a)
A seSacA
st. A(s’,a’) 20Vs" €8S,a’ € A;
Z As’,a") = p(s’) +yZ Z A(s,a)T(s,a,s") Vs € S

a’eA seSacA

©)

where A(s, a) is the occupancy measure for state s and action a. We
compute the optimal policy directly from A*.

2.3 IRL

IRL infers a reward function directly from an MDP policy. Given
an expert demonstration policy z%, ! the objective is to construct

!Demonstrations may also be in the form of trajectories.
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the expert’s unknown reward function RE that 7 is optimizing.
Many IRL algorithms assume that

RE(s) = wF - ¢(s) (5)

where ¢ : S — Rk maps each state to a k-length vector of features
and wF is a vector of feature weights. The features ¢ are curated
manually or algorithmically to reduce the dimensionality of the
state space, which makes IRL more tractable. Their more relevant
representation is their expected discounted accumulated value vec-
tor under some policy . These are referred to more succinctly as
the policy’s feature expectations p(m), which are defined as

p(r) =ELY " y'¢(s) | m] e RF (©)

Therefore, a policy’s feature expectations refer to how often the
policy encounters each of the ¢ features. So in some sense they are
a compact description of the policy, which make them useful for
IRL approaches that use feature matching to recover the expert’s
reward. Feature matching works as follows: in order to recover
the expert’s unknown reward function RE, find a candidate reward
function RE who’s optimal policy 7L behaves similarly to the ex-
pert’s demonstrations 7F, where “similarly” is defined in terms
of the difference in feature expectations. Finding such a reward
then reduces to finding weights wl such that their optimal policy
achieves feature expectations y (L) similar to those of the expert

p(rE):
(7)

wl argmin argmin w - [y(nE) —pu(m)] .
T

Abbeel and Ng’s approach [1], which we build on, implements
Equation 7 with a loop where each iteration learns a new policy by
maximizing a candidate w’. In our setting, this can be computed
using Equation 4 and an LP-solver.

3 MODELING GROUP FAIRNESS AS IRL

Here we provide our first primary contribution: a way to model
group fairness in classification as an IRL problem where the learned
reward weights represent the expert’s fairness and efficiency pref-
erences.

3.1 Problem Statement

In this paper we assume that the desired notion of fairness can be
demonstrated by a human or algorithmic expert, or that they already
exist as a dataset. We assume the expert is optimizing for at least one
efficiency metric, at least one fairness metric, or a combination of
efficiency and fairness metrics. The expert provides demonstrations
by making m predictions ¥ on a set of inputs (Z, X) sampled from an
n-record classification dataset (Z, X, Y). Our objective is to recover
the expert’s preferences from a set of demonstrations (Z,X,Y, )7).

3.2 Group Fairness as Weighted Rewards

We desire to use IRL techniques to recover the expert’s fairness
and efficiency preferences from their demonstrations. In order to
do this, we represent the group fairness in classification problem
as a single reward function R(Z, X, Y, f/) — R. As a representative
example, suppose our efficiency objective is to optimize accuracy,
and our fairness objectives are to optimize demographic parity and
equal opportunity. This corresponds to minimizing Equation (1)
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Figure 1: A simple two-record group fairness classification dataset
represented as an MDP. The left circle represents one record
(z0,%0, o) = (0,0,0) and the right circle the other (z;,x1,y;) =
(1,0, 1). State transitions correspond to a new record being sampled.
¥=0 | ¥=1

1 Prob=5

Prob=.5

subject to Equations (2) and (3). We can represent this as a single
reward function by representing demographic parity and equal
opportunity constraints as minimizations of their violations, and
combining them with Equation (1) as a single linear weighted sum:

R(Z,X,Y,V) = wiRacc + woRpenpar + W3 Reqopp ®)
1 n-1
where Racc(Z,X,Y,Y) = — Z Lgi=y; s ©)
n
=0
. Z(l:_ol L gi=1nz;=0 Z:(l:_ol Lgi=inzi=1
Rpenpar (Z,X,Y,Y) = - | = n—1 - = n—1 » (10)
Zi:o 10 Zi=0 Lzi=1

Zn—l 15
i=0 Yi=1Ay;=1Az;=0

n-1
Zl’:o ILyi=1/\zi=0

Zn—l 15
_ i=0 Yi=1Ay;=1Az;=1
n-1 :

Reqopp (Z,X,Y,Y) = - ‘
i=0

1 Yyi=1Az;=1

(11)
Here, w; represents the linear weight for accuracy, wy for demo-
graphic parity, and w3 for equal opportunity. Next we need to
decide on the values for each weight. This setup resembles that
of IRL—notice the similarity between Equation (5) and (8) . The
features ¢ in Equation (5) parallel the efficiency and fairness metrics
in Equation (8). Therefore, if we are able to model our efficiency
and fairness metrics as features ¢, we can compute their feature
expectations for the expert’s demonstrations p(7F), which we can
use to recover w via Equation (7).

3.3 Fairness Feature Expectations

In order to find the expert’s efficiency and fairness preferences, we
need to define feature expectations such that policies with match-
ing expectations exhibit similar fairness measures. These feature
expectations can include both explicit fairness measures like demo-
graphic parity (positive rate parity) and complementary metrics; not
technically fairness metrics but components of fairness measures,
such as the positive rate for each protected group. Furthermore, in
order to enable our IRL Algorithm (Section 4) that makes use of
linear programming, we need the feature expectations to be linear
functions of A.

To produce these feature expectations, one might consider at-
tempting to construct features ¢ whose expected discounted sums
(Equation (6)) yield the desired metrics. For composite feature ex-
pectations, such as group positive rate (P(Y | Z=2)Vze{01}),
this is no issue. For most group fairness metrics, however, this is
not possible since they contain an absolute value, which breaks the
linearity assumption. Fortunately, most fairness metrics can be rep-
resented directly as feature expectations, rather than the expected
discounted sums of features, which is ultimately the goal anyway.
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Algorithm 1 FairIRL learns the expert’s fairness preferences from a set of demonstrations. From these learned preferences, FairIRL
computes a new classifier for either the expert’s domain, or an entirely new domain.

Input: (Z,X,Y, ?E)
Input: FEATEXPGEN
Input: (Z/,X’,Y’)
Output: wk’
Output: cl

: uF « FeaTExPGEN(Z, X, Y, YF)

: CL[0] « arandom initial classifier

- YL« CL{0](Z,X)

: pb[0] = FEATEXPGEN(Z, X, Y, YL)

: 0] o0

i—20

: while t[i] > € A argmin(¢) =i do
X — {pE pt 0], ... pE i1}
YIRL — {1, 0, eees 0}

SVM «— SVM.FIT(XIRL, yIRL)

wl[i] « SWM.Weights

t[i+1] « SVM.MARGIN

Clli+1] « LP(W[i], (Z,X,Y))
YL CHi+1](Z,X)

pL[i + 1] « FeaTExPGEN(Z, X, Y, ?L)
ie—i+1

: end while

: i* « argmin(t)

s wk e wh[i*]

- CY — 1P(wE K, (Z/,X",Y"))

T R R S B N e

P Sy S
I S AR AR~ > ol -

> Expert demonstrations on source dataset
> Feature expectation generator

> Target dataset

> Learned reward weights

> Learned classifier for target dataset

> Compute expert feature expectations

> Generate any classifier as a starting point for learner

> Generate predictions for initial learner classifier

> Generate feature expectations for initial learner classifier
> Initialize error array, and set initial value to infinity

> Initialize counter

> Stop if error below € convergence threshold or if error starts increasing
> SVM inputs are expert and learned feat. exp.
> Expert feat. exp. are the “ones”, learned are “zeros”

> Fit the SVM to distinguish pf from pt

> Extract weights from SVM that best separate pf from p
> Set the SVM hyperplane margin as this iteration’s error
> Solve LP for w"[i] on source data

> Generate predictions from learned classifier

> Generate feature expectations for CL[i + 1]

> Increment counter

> Find the iteration with the lowest error
> The weights with the lowest error are the final weights wk”
> Solve LP for wk" and feat. exp. constraints K on target dataset

In other words, there is no ¢ such that we can represent absolute
value fairness metrics as p = B[} x5 $(z,x,y,9)], but we can
represent them as expectations of some function over the entire set
of demonstrations p = E[f(Z, X, Y, Y)]. We can do this by repre-
senting them directly as state-action stationary distributions A of a
special-case MDP. This special case MDP is a classification problem,
specifically a group fairness classification problem, represented
in MDP form. In short, this special-case MDP is characterized by
single-step trajectories (y = 0), where each state transition is a
sample (zj, xj, y;) from the classification dataset (Z, X, Y), and the
MDP actions correspond to classifier predictions C(z;, x;) — ¥i.
This simplifies the second constraint from Equation (4), resulting
in a new linear program:

A" « argmax Z Z A(s, a)R(s, a)
/1 S a
st. A(s’,d’) >0V s’ €8S,a" €A
Zl(s', ad)y=p(s')Vs €es.
a/

(12)

Figure 1 shows a simple example of this special-case MDP.

Next, we demonstrate two examples of how to represent efli-
ciency and fairness metrics as linear combinations of 1. We do so
for one efficiency metric (accuracy) and one fairness metric (equal
opportunity). Starting with accuracy, we can rewrite Equation (9)
using the A(s, a) variables from Equation (12) as

n-1
HAcc = Zi=0 A(si. a;) (13)

where s; = (2, xj, y;) and a; = y;. Thus piacc is linear in A as desired.
However, as previously mentioned, many group fairness notions are
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inherently non-linear. Using equal opportunity as a representative
example, we can rewrite Equation (11) to get

> A(sin1) )y A(si1)
_ | tilyi=0Az;=0} _Milyi=0nz=1} (14)
Heqopp = Y SAsia) Y YAGia)

{ilyi=0Az;=0} @ {ilyi=0Az;=1} @

We can simplify this by observing that the denominators are inde-
pendent of A since they are proportional to the number of qualified
individuals from each group, which are constants. However, this
still leaves a non-linearity due to the absolute value for a given
dataset. Replacing the Equation (14) denominators with the appro-
priate constants, we can rewrite pgqopp as:

min(co Z A(si, 1) — ¢ Z A(si, 1),

{ilyi=0Az;=0} {ilyi=0nz;=1} (15)
c1 Z A(sin 1) —co Z A(Si’l))-
{ilyi=0nz;=1} {ilyi=0Az;=0}

While this “feature expectation” is non-linear, it is the minimum
of two linear terms. Thus we can solve the mathematical program
from Equation (12) by using a standard trick to encode a minimum
in a linear program. So we add pqopp as a variable to our Equation
(12) linear program along with the following two constraints:

peopp S0, Alspl)—er Y Alsi1),

{2ly;i=0,z;=0} {ilyi=0,z;=1}
(16)
peop Sty Alspl)—co Y. Alsi1).
{ilyi=0.z;=1} {ilyi=0,z;=0}

Summarizing, we represent equal opportunity as the minimum
of two linear feature expectations, which integrates easily with our
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Table 1: Feature expectations and performance measures used in our experiments.

Shorthand | Description Definition Feat Exp?
Acc Accuracy P(Y=Y) Yes
DemPar Demographic Parity (positive rate parity) 1-|P(Y=1]|Z=0)-P(Y=1|Z=1)| Yes
EqOpp Equal Opportunity (true positive rate parity) | 1 — IP(Y=1|Z=0Y=1)-P(¥Y=1]Z=1Y=1)| | Yes
TNRPar True Negative Rate Parity 1- |P(1?:0 | Z=0,Y=0) —P(f/:o | Z=1,Y=0)| | Yes
PR_Z0 Positive Rate for the Z = 0 group P(Y=1|Z=0) Yes
PR_Z1 Positive Rate for the Z = 1 group P(Y=1|Z=1) Yes
NR_Z0 Negative Rate for the Z = 0 group P(Y=0|Z=0) Yes
NR_Z1 Negative Rate for the Z = 1 group PY=0|Z=1) Yes
TPR_Z0 True Positive Rate for the Z = 0 group P(Y=1|Z=0,Y=1) Yes
TPR_Z1 True Positive Rate for the Z = 1 group P(Y=1|Z=1Y=1) Yes
TNR_Z0 True Negative Rate for the Z = 0 group P(Y=0|Z=0,Y=0) Yes
TNR_Z1 True Negative Rate for the Z = 1 group P(Y=0|Z=1,Y=0) Yes
FPRPar False Positive Rate Parity 1-|P(Y=1|Z=0,Y=0)-P(Y=1|Z=1Y=0)| | No
FNRPar False Negative Rate Parity 1-|P(Y=0|Z=0Y=1)-P(Y=0|Z=1,Y=1)| | No
PrPar Predictive Parity 1-|P(Y=1|Z=0Y=1)-P(Y=1]|Z=1Y=1)| | No
NPrPar Negative Predictive Parity 1-|P(Y=0]Z=0Y=0)-P(Y=0|Z=1Y=0)| | No

linear program in Equation (12). Although we provided an example
for equal opportunity, this approach extends to many other group
fairness notions, including demographic parity, equalized odds [12],
false positive and false negative error rate balance [7], accuracy
parity [4], predictive equality [7], and treatment equality [4]. While
this strategy extends to many fairness metrics, it does not extend to
all. Specifically, it does not work for fairness metrics that condition
on Y, such as predictive parity P(Y =1 | Y=1,Z=0)=P( =
1] Y =1,Z = 1) since then the Equation (14) denominators are
no longer constants. However, as we later show in our Section 5
experiments, our approach is often still effective at replicating these
fairness preferences even if it does not model them directly as
feature expectations.

3.4 Resolving Y Observability Issue

Addressing group fairness in classification as an IRL problem presents
one more challenge. In our approach, as described in our problem
statement, we consider demonstrations as samples from (Z, X, Y, f/)
adhering to the fully observable MDP assumption of IRL. However,
the expert classifier does not have access to Y, affecting the use
of features involving Y. For example, an expert demonstrating a
preference for accuracy will inevitably make errors, but IRL, with
full access to Y, could misleadingly train a perfectly accurate classi-
fier. This scenario would incorrectly suggest that any inaccuracy
in expert decisions is intentional, potentially skewing the learned
weights wl. To address this, we cannot simply exclude Y from
FairIRL, as it relies on a linear program including Y-dependent
fairness objectives and constraints. Instead, introduce a new con-
straint in our linear program, ensuring all CL classifier decisions
are independent of Y:

Mzi, xi,y = 0,a) = Mz, x5,y = La) Vz,x,a. (17)

This "masks” Y from the FairIRL, preventing misattribution of
rewards due to having Y-access when the expert did not.
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4 ALGORITHM

In this section we propose our second primary contribution, the
FairIRL algorithm. We begin by offering a high-level overview of
FairIRL in Section 4.1, and then provide the technical details in
Section 4.2.

Figure 2: An illustrative example of three iterations of
FairIRL. We limit the visual to just two objectives to keep it
two-dimensional. Notice that the green arrow, which repre-
sents the learned reward weights w’, aligns closer and closer
with the expert demonstrator’s reward weights w® (black
arrow), which faces upward.

Expert Optimizing Equal Opportunity only wh= {0, 1} 4

Iteration 1 Iteration 2 Iteration 3

g @ g @ g @
g g @ g ® @
&l @ §l@ -
© © ©
g g g
Accuracy Accuracy Accuracy

@ Expert feat. exp's HE
(O Learned feat. exp's k"

SVM hyperplane
Learned reward weights wt

4.1 Algorithm Overview

The FairIRL algorithm accepts demonstrations from an expert
classifier and deduces the underlying reward weights being op-
timized for by the expert. It then generates a new classifier that
optimizes for the learned weights, applicable to either the original
domain of expert demonstrations or an alternative group fairness
classification dataset. Internally, FairIRL repeatedly learns a new
classifier, and then tries to distinguish the expert’s classifier from
all previously learned classifiers classifier, by using an SVM to draw
a hyperplane that maximizes the margin between the point repre-
sented by the expert’s feature expectations and all learned feature
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Figure 3: The fairness “preference” weights learned by FairIRL across 25 trials (per expert) on the Adult dataset. The boxplots
show the quartile ranges with the horizontal black line as the median.

Expert: HardtDemPar Expert: HardtEqOpp

04
i i -

o1 =B BE_ =5
0.0

0.1 B

02

expectations. The unit vector orthogonal to the hyperplane repre-
sents the learned weights wr, which characterizes the algorithm’s
best guess at the expert’s reward function (fairness preferences).
Therefore, each iteration adds a new learned classifier as a negative
training example to the SVM, so the hyperplane in each subsequent
iteration gets better and better at distinguishing the expert’s feature
expectations from the learned feature expectations. Figure 2 shows
an illustrative example of three FairIRL iterations.

4.2 FairlIRL

More concretely, FairIRL works as follows. FairIRL accepts three
inputs: a set of expert demonstrations (Z, X, Y, YE ) , a feature expec-
tation generator FEATEXPGEN : (Z,X,Y, V) > pue (R} 3k >0,
and a target dataset (Z’,X’,Y’) . and returns two outputs: a set
of weights w’, representing the algorithm’s belief of the expert’s
reward function, and a new classifier C* optimal for weights w’ on
the target dataset. This target dataset can be either the source dataset
from which expert demonstrations were provided, or a different
dataset conforming to the group fairness classification problem
outlined in Section 2.1, and where FEATEXPGEN is well-defined.

FairIRL builds on the max-margin IRL algorithm of Abbeel and
Ng [1]. It seeks a reward function R whose optimal classifier CL
yields feature expectations within € of those of the expert’s demon-
strations, which presumably optimize the expert’s unknown reward
function RE = w¥ . ;E. Both their approach, and ours, reduce to
seeking feature expectations y’ within e of the expert’s feature
expectations yE. Algorithm 1 shows the key parts of our FairIRL
algorithm. Relative to those of Abbeel and Ng, the major techni-
cal innovations are our way of computing “feature expectations”
for non-linear fairness metrics (FEATExPGEN) and our LP-based
approach to finding an optimal classifier (LP).

The algorithm begins by processing expert demonstrations on
a source dataset (Z,X, 7Y, YE ), using feature expectation generator
FEATEXPGEN. A random classifier is initialized as the first “learned”
classifier. This classifier is used to generate predictions, which then
further generate the first set of learned feature expectations. The
core of the algorithm is the while loop, where it repeatedly fits an
SVM to distinguish the expert’s feature expectations yF from the
learned feature expectations i~ by computing the hyperplane that
maximizes the margin between them (Line 10). Line 11 computes
the unit vector orthogonal to the hyperplane to get the learned
reward weights w'[i]; Line 12 computes the hyperplane margin
(error); and Line 13 computes a new learned classifier CL[i] by

56

Expert: EqQOddsRed Expert: BoundedGrouplLoss

optimizing for the learned weights using the linear program defined
in Sections 3.2-3.4.

Each iteration of the loop adds another learned feature expecta-
tion to u' which are the negative training examples for the SVM.
Therefore, with each iteration, the SVM hyperplane becomes in-
creasingly better at distinguishing the expert’s feature expectations
from the learned feature expectations, and so the learned reward
weights wl' become increasingly more similar to the expert’s true re-
ward. The iterative process continues until the error (SVM margin)
falls below a pre-defined threshold e, indicating convergence, or if
the error starts increasing. Increasing error suggests the learner is
outperforming the expert on their own objectives, since this results
in the feature expectations become inseparable by a linear boundary.
The while loop stops when this happens since any further efforts to
draw a hyperplane result in inaccurate weights. Once the algorithm
converges, it selects the set of weights (wk") corresponding to the
iteration with the lowest error. 2 The final step involves applying
the Section 3 linear program for weights wl" on the target dataset,
which we then use to compute final learned classifier cL's

5 EXPERIMENTS

We aim to answer the following question: can we leverage existing
fairness knowledge, embodied in algorithms or human experts, to
learn fair classifiers in new domains where fairness has not been
explicitly established? We decompose this into three questions,
which we systematically address with a subsequent experiment:

(1) Recovery: Can we effectively capture the fairness preferences
embedded within existing algorithms or expert demonstra-
tions? This is the focus of Section 5.1.

(2) Generalization: Assuming successful recovery, are these pref-
erences robust in that they can be used to generate new fair
policies after a covariate shift? This is the focus of Section 5.2.

(3) Transfer Learning: Can we transfer these learned fairness
preferences across different contexts, effectively bridging
the gap between established fairness knowledge and its ap-
plication in new domains? This is the focus of Section 5.3.

The last iteration of the loop has the lowest error unless FairIRL was able to outper-
form the expert, in which case it is the second to last.

3Although our proposed FairIRL implementation uses the sensitive attribute Z in
both training and inference for simplicity, it is only needed during training for feature
expectation matching. Once the weights are learned, access Z is no longer required,
so if desired we could omit Z at inference by computing a classifier (Line 20) that does
not have access to Z as an input using any standard method that can optimize our
weights.
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Figure 4: Observed feature expectation measures of three different classifiers on the second split of the Adult dataset. Expert
(blue): is the original expert demonstrator. FairIRL (orange): the classifier computed by optimizing the weights it learned.
BehClone (green): the classifier computed by training a model to predict the expert’s predictions directly.
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For each of the 25 trials in our experiments, we train four classi-
fiers using known fairness algorithms. These trained classifiers act
as our “experts”, and generate “demonstrations” by predicting on
hold-out portions of the same datasets.

Datasets. We consider three well-studied fairness classification
datasets: Adult [8], ACSIncome [9], and Boston Housing [13]. The
aim of Adult is to predict an individual’s annual income, while AC-
SIncome, a larger alternative, allows for analysis of covariate shifts
due to its geographic segmentation. The goal of Boston Housing is
to predict district median real estate values, which we convert to
binary outcomes based on the median value. In both the Adult and
ACSIncome datasets, we set race as the protected attribute, with
white individuals labeled as Z = 1 and non-white as Z = 0. For
Boston Housing, we also consider race as the protected attribute,
and we make it binary based on whether the proportion of Black
residents in a district is higher than the overall median.

Feature Expectations and Fairness Measures. Table 1 shows our
selection of feature expectations, which are used by FairIRL to
determine classifier similarity. We tested several combinations of
features and found this set to be the most reliable across differ-
ent situations. We compute these feature expectations using the
method described in Section 3.3. Three of the feature expectations
correspond to fairness measures (DemPar, EqOpp, TNRPar), but there
are additional fairness measures we wish to use when evaluating
how well FairIRL generalizes to fairness not explicitly captured
as feature expectations. Table 1 also shows the full set of fairness
and efficiency measures we use to evaluate the performance of our
fair classifiers.

Generating Demonstrations and Learning Classifiers. The dataset
is divided into three splits: 40% for the first split, and 30% each for
the second and third splits. the first split trains the expert demon-
strator classifiers. The trained experts make predictions on the
second split to generate the demonstrations. These demonstrations
are then used by FairIRL to learn the reward weights. The third
split is used to evaluate both the expert and the learned classifiers.
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This process is repeated 25 times with different random samples
of 25,000 records (pre-split) each. We utilize four distinct fairness
classification algorithms as our experts. The first two, HardtDemPar
and HardtEqOpp [12], are post-processing techniques optimizing
for demographic parity and equal opportunity, respectively, with
fairness objectives explicitly represented as feature expectations.
The other two algorithms, EqOddsRed and BoundedGroupLoss, pro-
vide insights into FairIRL’s performance when expert preferences
are not explicitly captured as feature expectations. Eq0ddsRed is
a reduction technique focusing on minimizing the equalized odds
difference, and BoundedGroupLoss aims to keep prediction errors
within certain bounds for different groups. [2] All experts are gen-
erated using the Fairlearn Python package [5], with XGBoost as
their estimator.

Benchmark. To evaluate FairIRL’s performance in adapting fair-
ness preferences, we use behavioral cloning as a baseline. This
method aims to replicate the expert’s predictions directly by train-
ing classifiers to predict the expert’s own Y predictions. These
classifiers, which are XGBoost classifiers, match their experts’ esti-
mator structure. By comparing FairIRL’s performance to that of
these cloned models, we can assess how effectively FairIRL cap-
tures the objectives of the expert, as opposed to just trying to mimic
expert behaviors.

5.1 Recovery: Learning Expert Fairness
Preferences

We begin our investigation into FairIRL’s ability to recover fair-
ness preferences by visually inspecting the learned weights for
any noticable patterns that align with known fairness objectives.
Figure 3 shows the weights learned from four experts using the
Adult dataset. Key observations include HardtDemPar showing a
prominent DemPar weight, consistent with its fairness goal, and
HardtEqOpp following suit with a high EqOpp weight. EqOddsRed,
lacking an explicit feature expectation matching its objective, ex-
hibits polarizing values for EqOpp and TNRPar. This aligns with
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Figure 5: Fairness performance on Adult dataset. Expert (blue): experts trained on first split, then evaluated on third split.
FairIRL (orange): classifiers computed by optimizing weights learned from expert demos (second split), then evaluated on third
split. BehClone (green): behavioral clone classifiers trained to predict expert on second split, then evaluated on third split.
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equalized odds being a composite of EqOpp and FPRPar, the latter
being 1—-TNRPar . BoundedGroupLoss shows a mild resemblance to
HardtEqOpp but lacks distinct patterns. Next, we directly measure
the feature expectations of classifiers trained with these weights,
ensuring they match those of the expert. Fig. 4 shows the feature
expectations  of the classifiers predicting on the third dataset split.
FairIRL consistently outperforms behavioral cloning in replicating
expert predictions, except for BoundedGroupLoss where the gap is
marginally wider. FairIRL’s ability to match feature expectations
on unseen data is encouraging, but it does not guarantee the ability
to generalize to all fairness preferences. This is because FairIRL op-
timizes for feature matching explicitly, and not all fairness measures
are captured as feature expectations. A more robust assessment of
FairIRL involves evaluating its performance on fairness measures
not directly included in feature expectations. This evaluation tests
its ability to generalize fairness beyond its explicitly defined fea-
tures. In Figure 5, we compare various fairness measures, both those
modeled by feature expectations and others that are not. The re-
sults show that FairIRL classifiers align more closely with experts
HardtDemPar, HardtEqOpp, and EqOddsRed than those learned by
behavioral cloning, indicating FairIRL’s proficiency in understand-
ing and applying fairness preferences to unseen data. Furthermore,
we see that FairIRL actually outperforms the expert in several in-
stances, suggesting its potential to improve upon expert algorithms.
With BoundedGroupLoss, FairIRL slightly lags behind behavioral
cloning in matching the expert’s behavior, opting instead for a trade-
off that favors other fairness dimensions. This indicates that even
when FairIRL diverges from the expert, it does so strategically to
achieve a favorable tradeoff in other fairness dimensions.

Comparing FairIRL’s learned classifier fairness performance
against the experts’ not only validates the recovery of expert fair-
ness preferences, but also reveals some practical potential. For in-
stance, even if a practitioner had access to a fair expert for their do-
main, FairIRL may enable the expert to be more robust, as demon-
strated by HardtDemPar and HardtEqOpp in Figure 5.

4To reduce new terminology, we continue to use the expression “feature expectations”
even when referring to the realized values over a set of predictions.
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5.2 Generalization: Preserving Fairness
Preferences Despite Covariate Shift

Section 5.1 showed that FairIRL can successfully extended expert
fairness preferences within the same domain. However, it would be
even better if it could adapt these preferences to different domains,
particularly those with shifted data distributions where fairness
considerations change due to different population demographics.
For instance, a classifier that is fair for one U.S. state may not
be fair in others, since U.S. states have different population de-
mographics. As an explicit example, suppose we are seek a fair
classifier to predict household income for Mississippi residents, but
we only have fair demonstrations on Massachusetts, a state with
much higher average incomes. We model this as an experiment
by training FairIRL on expert demonstrations on the ACSIncome
Massachusetts to learn fairness preferences. We then apply those
preferences to train new fair classifiers on the Mississippi ACSIn-
come dataset. For comparison, we also train a behavioral cloning
model that mimics the expert’s predictions on the Massachusetts
data.

Figure 6 shows the learned weights and performance on the
Mississippi dataset. FairIRL consistently outperforms behavioral
cloning, especially when the expert prioritizes fairness over pure
accuracy (e.g., HardtDemPar, HardtEqOpp). Also, as we saw in Sec-
tion 5.1, it even surpasses the expert on some fairness metrics in
these scenarios. For Eq0OddsRed and BoundedGroupLoss, FairIRL
matches the expert and consistently outperforms behavioral cloning,
except for PrPar and NPrPar where it deviates slightly more. The
observed discrepancy in PrPar and NPrPar aligns with FairIRL’s
limitations in directly representing fairness measures that condition
on predicted labels f/, as explained in Section 3.3.

Our findings have two key implications. First, they showcase
FairIRL’s ability to adapt expert fairness preferences to new do-
mains, even when faced with significant covariate shift. This holds
promise for real-world applications, where data distributions typi-
cally differ across populations. Second, FairIRL’s ability to outper-
form the expert in certain scenarios suggests it can not only learn
from expert guidance but also potentially improve upon it.
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Figure 6: Top: weights learned from Massachusetts (MA) demos. Bottom: fairness performance on ACSIncome Mississippi (MS)
using MA-learned weights. Expert (blue): experts trained on MS directly. FairIRL (orange): weights learned from MA demos to
compute classifiers on MS. BehClone (green): classifiers trained to predict MA demos predictions.
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Figure 7: Transferring fairness preferences. Classifiers computed for Boston Housing using weights learned from Adult. Expert
(blue): expert classifiers trained directly on the Boston Housing dataset. FairIRL (orange): classifiers computed by optimizing
weights learned from expert demonstrations on the Adult dataset, and then computing their optimal classifier on the Boston
Housing dataset. Note that BehClone cannot make predictions in this context.
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Preferences to New Datasets pute new classifiers on the Boston dataset, without ever showing
Sections 5.1 and 5.2 showed that FairIRL’s learned weights en- any expert demonstrations in the target domain. Essentially, the
abled new classifiers to extend the expert’s fairness preferences learr}ed weights are .the sole communication channel for the ex-
to, even with covariate shift. However, a crucial question remains: pert's preferences. Figure 7 reveals the results. The HardtDemPar
can these weights generalize fairness preferences across different and HardFEqup FairIRL-learned clas.s1fj1ers, trained solely from
domains? This experiment aims to answer this question by ex- Adult weights, perform remarkably similar to the expert on the

ploring domain-invariant transfer of fairness preferences. We take target domain, despite never seeing any expert dem9nstrat10ns.
Notably, EqOddsRed and BoundedGroupLoss also achieve decent
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Figure 8: FairIRL Performance. Left: Error vs number of iterations. Right: Runtime vs input feature size.
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performance, even though their objectives aren’t explicitly rep-
resented as feature expectations. This is significant because, for
at least some cases, the learned weights truly represent domain-
agnostic fairness preferences.

5.4 Performance Analysis

We conclude our experiments with a brief performance analysis.
Figure 8 shows the convergence speed and runtime of FairIRL. The
left plot shows the average error (SVM margin) at each iteration of
the FairIRL while loop on the Adult dataset, using Section 5.1 pa-
rameters. We see that it converges quickly for all experts, reaching
stable error before 15 iterations. The right plot shows the wallclock
runtime of the full FairIRL algorithm, as as we vary the model in-
put size (number of distinct (z, x) pairs). > We observe a polynomial
scaling of runtime with input size for each expert.

6 CONCLUSION

We offer a technique to frame group fairness in classification as
an IRL problem, where the reward weights reflect expert fairness
preferences. Our IRL-based algorithm (FairIRL), capable of extract-
ing these preferences from demonstrations, trains classifiers that
extend the experts’ fairness preferences to unseen data on the orig-
inal domain, or in new domains. Experimental results on the Adult,
ACSIncome, and Boston Housing datasets validate our approach’s
ability to recover expert fairness preferences, learn new fair policies
after covariate shifts, and apply these preferences in new domains.

We acknowledge certain limitations. First, as is the nature of
IRL, if the expert demonstrator is biased, our IRL approach may
also learn this bias. Second, non-identifiability in IRL, where multi-
ple distinct reward functions can equally explain observed expert
behavior, introduces complexities in ensuring the consistent appli-
cation of fairness objectives when moving to new domains. Third,
our method cannot represent all group fairness metrics like calibra-
tion or predictive parity, but as shown in our experiments, it can
still match fairness measures it does not directly optimize.

Future work could extend in several directions. Our experiments
hinted that FairIRL can sometimes surpass experts in their own
fairness objectives, suggesting a future line of work to better un-
derstand how, and to what extent, FairIRL can be leveraged to
improve a suboptimal demonstrator. Furthermore, The variability

5 All input features are treated as categorical by both the expert and FairIRL, including
numeric ones which are binned by quantile thresholds.
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in FairIRL’s performance across datasets and experts suggests fu-
ture research on the robustness and consistency of transferring
learned fairness objectives. One might consider more advanced IRL
techniques, such as Guided Cost Learning [10] which uses impor-
tance sampling to focus on demonstrations likely to be relevant in
the target domain. Other IRL algorithms, such as Maximum Entropy
IRL [26] or Adversarial IRL [11], could also yield more generalizable
fairness preferences. Last, research into alternative optimization
techniques could capture fairness metrics conditioned on predicted
outcomes.
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