
Citation: Aikins, G.; Jagtap, S.;

Nguyen, K.-D. A Robust Strategy for

UAV Autonomous Landing on a

Moving Platform under Partial

Observability. Drones 2024, 8, 232.

https://doi.org/10.3390/

drones8060232

Academic Editor: Bo Li

Received: 2 May 2024

Revised: 21 May 2024

Accepted: 27 May 2024

Published: 30 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Robust Strategy for UAV Autonomous Landing on a Moving
Platform under Partial Observability

Godwyll Aikins, Sagar Jagtap and Kim-Doang Nguyen *

Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA;

gaikins2015@my.fit.edu (G.A.)

* Correspondence: knguyen@fit.edu

Abstract: Landing a multi-rotor uncrewed aerial vehicle (UAV) on a moving target in the presence

of partial observability, due to factors such as sensor failure or noise, represents an outstanding

challenge that requires integrative techniques in robotics and machine learning. In this paper, we

propose embedding a long short-term memory (LSTM) network into a variation of proximal policy

optimization (PPO) architecture, termed robust policy optimization (RPO), to address this issue.

The proposed algorithm is a deep reinforcement learning approach that utilizes recurrent neural

networks (RNNs) as a memory component. Leveraging the end-to-end learning capability of deep

reinforcement learning, the RPO-LSTM algorithm learns the optimal control policy without the need

for feature engineering. Through a series of simulation-based studies, we demonstrate the superior

effectiveness and practicality of our approach compared to the state-of-the-art proximal policy

optimization (PPO) and the classical control method Lee-EKF, particularly in scenarios with partial

observability. The empirical results reveal that RPO-LSTM significantly outperforms competing

reinforcement learning algorithms, achieving up to 74% more successful landings than Lee-EKF and

50% more than PPO in flicker scenarios, maintaining robust performance in noisy environments and

in the most challenging conditions that combine flicker and noise. These findings underscore the

potential of RPO-LSTM in solving the problem of UAV landing on moving targets amid various

degrees of sensor impairment and environmental interference.

Keywords: deep reinforcement learning; unmanned aerial vehicles; partial observability; model-

free control

1. Introduction

Over the past decade, uncrewed aerial vehicles (UAVs) and their applications have
gained increased importance and attention in various domains, such as military operations,
search and rescue missions, agriculture, and surveillance [1–3]. However, one major
challenge in UAV operations is landing on a dynamic target, such as a moving vehicle
or a ship. The capability to land on a moving target has numerous practical applications,
including delivering supplies to moving vehicles [4], providing aerial support to moving
troops, and inspecting mobile infrastructure [5]. In [6–8], landing on a moving platform
was tackled with several techniques that solved the problem analytically and performed
well under restricted conditions and assumptions.

The robustness of autonomous UAV landings on mobile platforms hinges on the
accurate localization of both the UAV and the target, adherence to a predetermined flight
trajectory despite environmental disturbances like wind, and the development of a system
that autonomously executes landings without external aids, such as motion capture systems
or fiducial markers.

Achieving full autonomy and robustness typically requires UAV systems equipped
with visual and inertial sensors. The integration of the sensors enables onboard state
estimation and detection of the landing platform. Although visual-inertial odometry (VIO)

Drones 2024, 8, 232. https://doi.org/10.3390/drones8060232 https://www.mdpi.com/journal/drones

Drones 2024, 8, 232 2 of 20

and visual servoing have been extensively researched for UAV landings on moving targets,
a gap remains in addressing the challenges posed by scenarios with limited observability,
such as missing detection of the target due to occlusion, weather, or motion blur, which pose
serious threats to the methods. In [9], researchers formulated a visual servoing technique
for the autonomous landing of UAVs on a platform capable of speeds up to 15 km/h. Of the
19 conducted trials, 17 were successful. The two unsuccessful attempts were attributed to
the platform not being detected. Overcoming issues such as intermittent platform detection
is essential for ensuring the safe and reliable landing of drones on mobile targets.

Equally important is addressing sensor failure. Inertial measurement units (IMUs),
GPS, compasses, barometers, and other sensors that enable autonomous UAV flight are
susceptible to a number of malfunctions, including magnetic field interference, turbulence-
induced disconnections, or sensor malfunctions that lead to altered or missing sensor
data. The literature suggests fault-tolerant methods that involve distinct modules for rapid
sensor failure detection and subsequent system reconfiguration to either compensate for
lost data or switch to backup systems [10]. Nevertheless, a paucity of literature explores
the occurrence of sensor failures amid the execution of landing maneuvers.

In this paper, we emphasize the significance of addressing partially observable sce-
narios in landing drones on moving targets and propose fusing robust policy optimization
(RPO) with long short-term memory (LSTM) as an appropriate framework. Adopting an
end-to-end fault-tolerant control strategy enables the UAV to address sensor failures or
detection lapses by processing all fault-tolerant control stages through a unified model.
Additionally, employing a learning-based control approach facilitates the training of neural
networks to address a variety of fault scenarios. While existing research explores the coop-
erative interaction between UAVs and uncrewed ground vehicles (UGVs), our approach
assumes no communication or coordination occurs during landing.

The contributions of this work with respect to prior literature are as follows: (a) We
formulate an end-to-end RPO-LSTM reinforcement learning framework that tackles the
challenging task of landing a UAV with missing sensor data on a moving target. (b) We
validate the proposed approach through extensive simulation experiments, which include
partial observability due to factors such as sensor failure or sensor noise. (c) We illustrate
that adding memory to a UAV RL agent leads to higher rewards compared to conventional
deep reinforcement learning algorithms, thus substantially improving system performance.

Structure

The remainder of the paper is organized as follows. Section 2 discussed previous
works on autonomous UAV landing. Section 3 delves into the technical framework of
our method and details the formulation of the UAV landing task as a POMDP and the
network architecture and training. Section 4 outlines the use of the NVIDIA Isaac Gym
simulator, describes the training process, and establishes performance metrics. The results
are presented to demonstrate RPO-LSTM’s performance compared to other methods under
diverse partial observability scenarios. Section 5 dissects the impact of individual compo-
nents in the RPO-LSTM architecture. Finally, Section 6 provides a conclusion to the paper,
summarizing the findings and suggesting avenues for future investigation.

2. Literature Review

The challenge of landing UAVs on moving targets is an active area of research, with
various approaches developed to tackle the complexities of dynamic environments and
limited sensor data. Researchers seek to enable robust, fully autonomous UAV landings
on diverse moving platforms. Given the multifaceted nature of the challenge, much of the
literature focuses on specialized solutions for individual components. Proposed solutions
aim to achieve the precise localization of both the UAV and the target, ensure robust
trajectory following, or develop systems capable of autonomous landing without the need
for external infrastructure.

Drones 2024, 8, 232 3 of 20

Extensive research has been dedicated to exploring various methods for the state
estimation of the UAV and UGV. Prior work utilized motion capture systems [11], GPS [12],
or computer vision [13] to obtain pose estimates of the UAV and UGV. Recent advancements
in computer vision have enabled onboard localization and pose estimation, reducing the
dependency on external infrastructure for maneuver execution. Early research by [13–15]
relied on visual fiducial systems to facilitate relative pose estimation between the drone
and the target, simplifying the maneuver to just requiring a camera and a marker externally.
Present-day research has pivoted toward machine learning techniques for platform detec-
tion and relative pose estimation, leading to a proliferation of visual servoing methods [9].

The most common challenge with vision-based systems in UAV landing on a moving
target is partial observability, particularly when detecting highly dynamic moving targets.
Visual servoing methods, which rely on visual feedback for control, are particularly affected
by partial observabilities, as they require the landing platform to be visible throughout the
entire landing maneuver. Partial observability poses significant difficulties in accurately
tracking the moving platform and maintaining stable and safe landing trajectories.

A diverse array of control strategies has been employed to govern UAVs during
landing maneuvers. The strategies range from classical methods, such as proportional–
integral–derivative (PID) [13] and linear quadratic regulator (LQR) [16], to contemporary
approaches, like model predictive control (MPC) [17], and even learning-based techniques,
such as reinforcement learning [18]. The methodologies are instrumental in executing ro-
bust trajectory tracking amidst uncertainties and disturbances. Nevertheless, the majority of
literature that utilizes classical control methods often overlooks notable disturbances. To en-
hance the resilience of classical methods against disturbances and uncertainties, numerous
adaptive mechanisms are required to be integrated into the control loop. The mechanisms
dynamically adjust the controller parameters in response to the observed behavior of the
system. In pursuit of mitigating external disturbances, some studies have turned to MPC.
Notably, the work in [17] incorporated a boundary layer sliding controller, enabling a
quadcopter to land under wind conditions with speeds reaching up to 8 m/s.

Recent studies have increasingly focused on learning-based methods, especially re-
inforcement learning (RL), for the task of landing on moving platforms. The shift aims
to address the inherent complexities associated with model-based approaches. RL-based
control systems are noted for their robustness, adapting to a wide range of changes in
system dynamics and unexpected disturbances, areas where static model-based controllers
falter. Prior works have developed RL algorithms that are resilient to perturbations in
the environment dynamics [19–21], observations [22–25], and actions [26]. The robust RL
algorithms can learn optimal policies that maximize returns in the worst-case environments.
For instance, ref. [27] introduced a resilient RL algorithm capable of executing end-to-end,
vision-based control for landing on a moving ship platform, even under windy conditions.
Similarly, ref. [18] proposed a robust RL strategy designed to accommodate variations in
system dynamics while landing on a moving target. While RL is predominantly applied
for robust, end-to-end control in landing scenarios, research exploring its use in managing
partial observability caused by missing sensor data remains scant.

The literature addressing the issue of missing observations is sparse. Some studies,
such as [7,12], have addressed the challenge of temporarily missing detections by employing
an extended Kalman filter (EKF). The methods predict the pose of a moving target using a
dynamic model that assumes constant velocity. However, the effectiveness of the approach
is considerably constrained by its assumptions. Recent studies, along with the uncertainties
they address, are detailed in Table 1.

To fill the gap between optimality and control with partial observabilities, this work
proposes to integrate a type of RNN, LSTM [28], into the RPO [29] architecture to capture
long-range dependencies in sequential sensing data and handle variable-length signal
sequences. The main goal is to discover missing patterns in sensing signals that have
missing readings due to faulty sensors and to achieve the desired landing performance
despite the partial observabilities in the environment. To highlight the significance of

Drones 2024, 8, 232 4 of 20

the memory element in addressing the issue, our research contrasts traditional methods
employing an EKF with our approach and evaluates it against the baseline proximal policy
optimization (PPO) algorithm as referenced in [30]. PPO is a simple RL algorithm that is
easy to implement and tune while achieving state-of-the-art performance, stability, reliabil-
ity, and sample efficiency. When using RL to learn the optimal control policy with UAVs,
PPO has become the preferred option. For instance, researchers deployed an RL PPO-based
algorithm that enables a UAV to navigate through unknown/random environments [31].
PPO was also used as an uncrewed traffic manager to lead autonomous uncrewed aircraft
systems to their destinations while avoiding obstacles through continuous control. In [32],
a fully autonomous UAV controller was developed to steer a drone toward a moving target
using PPO.

Table 1. Comparison of control algorithms in related works and their respective uncertainties and

disturbances investigated.

Paper Control Algorithm Uncertainty/Disturbance Tackled

[17] MPC Wind
[27] DDPG-RL Wind
[33] DrQv2-RL Noisy Sensor
[7] PID Missing Platform Detection

[13] PID Wind
[12] PID Noisy Sensor
[34] MPC Wind
[15] Visual Servo Wind

3. Methodology

The methodology section, which outlines the technical approach to address the UAV
landing problem under partial observability, starts with Section 3.1, providing a basis for
MDPs and POMDPs. Section 3.2 defines the task as a POMDP, specifying the observations,
actions, and reward structure. Section 3.3 presents the innovative actor–critic design with
a unique information flow separation, along with LSTM integration for sequential data.
Section 3.4 details the RPO-based learning process, including policy updates, exploration,
and LSTM training. Finally, Section 3.5 highlights the advantages of the approach and
provides an algorithm outlining the RPO-LSTM training process.

3.1. Preliminaries

The Markov decision process (MDP) is a mathematical framework for a stochastic
environment in which the state of the system is observable and follows the Markov property.
The MDP is defined by a 4-tuple (S, A, P, R): state space (S), action space (A), transiton
probability (P), and reward (R). However, a partially observable Markov decision pro-
cess (POMDP) describes situations in which the system’s state is not entirely observable.
POMDP is defined by a 6-tuple (S, A, P, R, O, Ω), where S, A, P, and R are identical to
the MDP but with an additional observation space (O) and observation model (Ω). In a
POMDP, the agent cannot directly observe the underlying state. An illustration of the MDP
and POMDP as dynamic decision networks are shown in Figure 1. One way of dealing
with POMDPs is by giving memory to the agent. Recurrent reinforcement learning (RRL) is
a special kind of RL that integrates RNNs into the RL framework. RNNs allow an RL agent
to keep and update memory of past states and actions, allowing for a better understanding
of the current state and making more informed decisions. RRL is especially useful in
sequential decision-making tasks, in which the recent action depends on the previous state
and action.

Drones 2024, 8, 232 5 of 20

(a) (b)

Figure 1. Illustration of (a) MDP dynamic decision networks and (b) POMDP as dynamic deci-

sion networks.

3.2. Problem Formulation

The objective of this paper is to formulate an innovative RL architecture for UAVs to
land on a dynamic target with partial observability. The new RL architecture is grounded in
the idea of integrating agent memory, enabled by LSTM, into the RPO framework. The work
also evaluates the new integrative RPO-LSTM architecture as a desirable controller for a
multi-rotor UAV in the presence of disturbances and uncertainties, which entails devel-
oping a control policy that maps the current state of the UAV and mobile platform to the
UAV’s thrust commands to regulate its altitude and orientation for successful landing. We
formulate the control problem as a POMDP where the agent must make decisions based
on improper observations rather than the true state of the environment. In the following
sections, observations, actions, and rewards are explained in further detail in the context of
the task.

3.2.1. Observations

During each time step, the RL agent is supplied with a sequence of observations that
is composed of the drone’s current state and position relative to the moving platform.
The observations are contained in a 13 × 1 vector [d, v, ω, q]¦, where d, v, ω, and q
represent the drone’s 3D distance to the moving platform, 3D linear velocity, 3D angular
velocity, and 4D quaternion, respectively.

3.2.2. Actions

Our UAV model has four control inputs: two clockwise and two counterclockwise
rotors. The actor network takes in the observation vector and produces a 4× 1 action vector
that comprises the thrust values assigned to each rotor, representing the control input.
The action space is denoted as at = [T1, T2, T3, T4], where at is the vector at time step t and
Ti represents the thrust magnitude for each rotor. The control commands vary individually
for each rotor, which enables flexible and dynamic flight behaviors.

The actor network incorporates a Tanh activation function at the concluding layer to
confine the range of control commands, ensuring compatibility with the physical capabili-
ties of the UAV. Subsequently, the agent executes the derived actions in a continuous cycle
until the defined goal is successfully attained.

3.2.3. Rewards

The reward function considers various aspects of the landing maneuver. The distance
between the drone and the moving platform is included in the reward function. Moreover,
a shaping function is employed to distinguish the significance of minimizing the position
and velocity with respect to the moving platform and the generated actions. The agent
learns to minimize the position relative to the moving platform and subsequently opti-
mize its actions to produce smoother velocity references, which leads to a less aggressive
movement. The reward components are described as follows.

Drones 2024, 8, 232 6 of 20

• The distance reward (rdist) represents the distance between the UAV and the dynamic
platform, encouraging the UAV to maintain appropriate proximity:

rdist =
1

1 + |distance|2
(1)

• The yaw reward (rΓ) aims to discourage excessive yawing and promote stable heading
orientation when close to the platform:

rΓ =
1

1 + |yaw|2
(2)

• The pitch reward (rϕ) is associated with the UAV’s pitch when near the moving
platform, emphasizing the need to keep the UAV upright during close interaction:

rϕ =
1

1 + |pitch|2
(3)

By considering the reward components, the UAV’s behavior is effectively guided
and optimized for improved performance and safety. The reward function also considers
the quadcopter’s orientation during the landing process. The overall reward function is
summarized by the following expression:

Rt = rdist + rdist(1 + rΓ + rϕ) (4)

This multiplicative reward structure underscores the significance of the UAV’s orienta-
tion in correlation with its distance from the target. The underlying principle is that as the
UAV nears the landing platform, maintaining the correct orientation becomes increasingly
imperative. Conversely, when the UAV is further away, precise orientation is less crucial.

3.3. Network Architecture

To achieve the goal of successfully landing a UAV onto a moving platform under
conditions of limited observability, we establish an actor–critic RL architecture. The archi-
tecture is composed of two distinct components: an actor network and a critic network.
The actor, characterized by parameters θ, is designed to take inputs [d, v, ω, q]¦, which
represent the UAV’s 3D distance to the moving platform, 3D linear velocity, 3D angular
velocity, and the 4D quaternion, respectively. The actor then generates actions containing
the thrust values of the four individual rotors, as outlined in Section 3.2.2, guided by a
policy denoted as πθ . On the other hand, the critic serves as an action-value evaluator,
which supplies a value that gauges the effectiveness of the computed action within the
given state. During the training process, the two networks are collectively optimized.

The key innovation of our architecture, as compared to the traditional actor–critic
framework, is the separation of observation and state in accordance with the actor and
the critic. Specifically, we feed the observations to the actor and the states to the critic
during the training process. The states encapsulate accurate ground-truth information
about the environment, including the UAV’s state and the states of all sensors. Conversely,
the observations comprise sensor data perceived by the robot, which, in the POMDP setting,
contains noise, inaccuracies, and missing information. The innovative approach of feeding
the actor with the POMDP observations and the critic with states serves a distinct purpose
that empowers the actor to deduce the actual states of the UAV and moving platform
based on the partial observations received. The complete network architecture is shown in
Figure 2.

Drones 2024, 8, 232 7 of 20

Figure 2. The architecture of RPO-LSTM, highlighting the distinctive separation of information flow

between the actor and critic networks. The critic network benefits from additional observations,

contributing to robust value estimation, while the actor network utilizes partial observations, enabling

adaptive and efficient decision-making in dynamic environments.

3.3.1. Actor

The observations taken by the actor are processed through a series of hidden layers
with substantial depth. The outputs from these deep neural networks are then fed into an
LSTM network, which is responsible for extracting temporal patterns within the observation
and learning the policy for the precision landing task. The LSTM network maintains a
memory cell that can store information across time steps, allowing the network to learn
long-term dependencies and make decisions based on previous observations. The output
of the LSTM network is in the form of a probability distribution over possible actions.
The agent selects an optimal action to take for the UAV. The selected action is then executed
in the environment, which then responds by providing a new set of observations.

3.3.2. Critic

After receiving the state from the environment, as described in Section 3.2.1, it under-
goes processing through a multi-layer perceptron (MLP). The MLP’s role is to approximate
the value function associated with the states. Subsequently, the actor updates its policy
based on the output of the value function provided by the critic. The value function
approximated by the critic is defined as

Vψ(s) = Êt[Gt | St = s]

= Êt

[

Rt+1 + γRt+2 + γ2Rt+3 + . . . | St = s
]

= Êt[Rt+1 + γ(Rt+2 + γRt+3 + . . .) | St = s] (5)

= Êt[Rt+1 + γGt+1 | St = s]

= Êt

[

Rt+1 + γVψ(st+1) | St = s
]

In this equation, Gt represents the cumulative sum of rewards starting from time t onward,
Rt is the immediate reward at time step t, and γ is the discount factor, which determines
the weight given to future rewards. The equation establishes a recursive relationship
expressing the value function (Vψ(s)) as a measure of the desirability of a given state with
respect to expected future rewards.

Drones 2024, 8, 232 8 of 20

3.4. Network Training

The proposed UAV landing algorithm is an on-policy method that seeks to improve
the training stability of a control policy by limiting the change made to the policy at each
training epoch by avoiding having too large of a policy update. In our training of the deep
reinforcement learning agent, we leverage the following policy-gradient objective function:

LPG(θ) = Êt[log πθ(at|st)Ât] (6)

where Êt denotes the empirical return over a batch of samples, πθ is a stochastic policy,
and Ât is the estimator of the advantage function at time t. By taking the gradient ascent
of the equation above, the agent takes actions that lead to higher rewards and avoids
harmful actions.

The objective function of the gradient method is optimized by constraining the policy
updates to ensure that the new policy is not too different from the old policy. The idea is to
constrain the policy change in a small range using a clip. This new objective function, the
clipped surrogate objection function, is defined as follows:

LCLIP(θ) = Êt

[

min
(

rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]

(7)

where rt(θ) is the probability ratio of the policy at time t with parameter θ and the policy at
time t and ϵ is a clipping parameter that controls the size of the update. The probability
ratio function is designed as follows:

rt(θ) =
πθ(at|st)

πθold
(at|st)

. (8)

where πθ(at|st) is the probability of taking action at in state st under policy πθ with
parameter θ and πθold

(at|st) is the probability of taking the same action under the old policy
with parameter θold. The ratio represents the change in the probability of taking an action
under the new policy compared to the old policy.

The first term of (7), rt(θ)Ât, replaces the logarithmic probability typically used in (6).
The ratio rt(θ) is multiplied by the advantage Ât to obtain the left part of the new objective
function. However, without a constraint, a large change in the probability of taking an
action under the new policy compared to the old policy can lead to a significant policy
gradient step and an excessive policy update. Therefore, this algorithm imposes a constraint
that limits the size of policy updates by clipping the probability ratio to a value between
1− ϵ and 1 + ϵ. This results in a clipped surrogate objective function that balances between
the benefits of a large update and the risks of destabilizing the policy. The minimum
between the clipped and unclipped objective is taken to make the final objective a lower
bound of the unclipped objective.

The critic parameters are updated using

ψ← ψ + ³v ·
1

n ∑
i

∇ψVψ(st)(yt −Vψ(st)) (9)

Here, ψ represents the value function’s parameter vector, ³v is the learning rate, n is the
number of collected samples, ∇ψVψ(st) is the gradient of the value function, and yt is the
target value at time step t.

The actor parameters are updated using

θ ← θ + ³π ·
1

n ∑
k

∇θ min(wt(θ)At, clip(wt(θ), 1− ϵ, 1 + ϵ)At) (10)

Drones 2024, 8, 232 9 of 20

Here, θ represents the policy’s parameter vector, ³π is the learning rate, n is the number
of collected samples, ∇θ is the gradient of the policy, wt(θ) measures the policy difference

wt(θ) =
πθ(at |ot)

πθold
(at |ot)

, and At is the advantage function.

3.5. Properties of the Methodology

Traditional approaches to UAV landings on mobile platforms typically utilize a modu-
lar framework comprising distinct components for UAV state estimation, moving target
estimation, trajectory planning, and UAV control, as exemplified in Figure 3. In contrast,
our method proposes an end-to-end control policy that consolidates the modules into a
singular neural network. Our work not only encompasses these tasks but also extends to
managing partial observabilities adeptly. To achieve end-to-end control, we synthesize ex-
isting methods into an integrated framework tailored for landing on dynamic targets under
conditions of partial observability. We draw upon [29] to enhance exploration strategies,
employ LSTM networks [28] for capturing temporal dependencies in sequential sensor
data, and utilize asymmetric actor-critic methods akin to [35] to enable the network to
deduce missing information. The contribution of the methodologies to our framework
is explained in subsequent sections. Algorithm 1 demonstrates how these modules are
integrated and trained in unison.

Figure 3. A schematic representing a typical framework using classical control methods vs. our

end-to-end RL framework.

3.5.1. Fostering Enhanced Exploration Strategies

The inherent stochasticity in policy gradient methods gradually diminishes during
training. This leads to a reduction in the exploratory nature of the policy. To stimulate a
more exploratory approach, we implemented a distribution mechanism for representing
continuous actions, complementing the foundational parameterized Gaussian distribution.
In our work, the policy network’s output still encompasses the Gaussian distribution’s
mean and standard deviation. A key innovation is the integration of a random value
z ∼ U(−³, ³) into the mean µ, resulting in a perturbed mean µ′ = µ + z. Subsequently,
actions are sampled from the perturbed Gaussian distribution a ∼ N (µ′, Ã). Notably, the re-
sultant distribution displays a broader shape compared to the conventional Gaussian. As a
consequence, the sampled values exhibit a wider dispersion around the mean, in contrast
to the tighter clustering observed in the case of the standard Gaussian distribution.

3.5.2. Capturing Long-Range Dependencies in Sequential Sensing Data

One of the key contributions of this work is the ability to deal with imperfect or
flickering data under partial observability. This goal is accomplished by embedding the
LSTM network into the RL actor network. LSTM is a type of RNN that is commonly used
in machine-learning research for learning spatial-temporal features and sequence modeling.
Unlike traditional RNNs, LSTM cells are designed to selectively retain or forget information
from previous time steps as shown in Figure 4. This allows our RL agent to effectively
learn from long-term dependencies in sequential sensing data despite flickering due to
faulty sensors.

Each LSTM cell is composed of several gates that control the flow of information:
forget gates, input gates, and output gates. The forget gate determines which information

Drones 2024, 8, 232 10 of 20

from the previous cell state to forget, while the input gate decides which new information
to add to the cell state. The output gate controls which information from the current cell
state to output to the next time step. Using this gated-like structure, the RL agent can
selectively transmit sequential sensing data while preserving temporal information within
each cell state.

Figure 4. The LSTM cell employs specialized gates to control information flow. The ‘Forget Gate’

ft determines what to retain or forget from the previous cell state, while the ‘Input Gate’ it and

‘Candidate Cell State’ C̃t determine new information to add. The cell state Ct updates accordingly.

The ‘Output Gate’ ot regulates the information to be output as the hidden state ht, making LSTM

effective for capturing long-term dependencies in sequential data.

3.5.3. Learning to Infer Missing Information

By separating the flow of data into the actor and the critic in our RL framework, we
leverage the privilege that the critic can tap into the state information that is not available
to the actor, which can only partially observe the measurements. This encompasses noise-
less observations and supplementary data into the critic network. The incorporation of
these additional inputs serves a dual purpose. Firstly, it streamlines the task of acquiring
accurate value estimates, as fewer aspects need to be inferred. Secondly, this streamlined
learning process indirectly teaches the actor to adeptly infer the absent information, thereby
enhancing its capability to handle partial observations effectively. The key link between the
actor and the critic is the advantage function. The advantage of a state–action pair A(s, a)
quantifies how much better the chosen action is compared to the average expected value at
that state. It is calculated as the difference between the actual value (or Q-value) and the
predicted value (V-value) of the critic.

A(s, a) = Q(s, a)−V(s) (11)

Fundamentally, the actor’s decision-making process is influenced by the disparity in
advantage values among different actions. When an action demonstrates a substantial
advantage, implying its potential for more favorable outcomes, the actor adjusts its decision
strategies. This translates to an increased likelihood of selecting the advantageous action
when encountering similar circumstances. Consequently, the actor concentrates on actions
with higher reward potential, thereby enhancing the intelligence and efficacy of its decision-
making. For our variation of RPO, the advantage is solved with a temporal difference (TD)

Drones 2024, 8, 232 11 of 20

error estimation, which is the difference between the predicted and actual output of the
value function over successive time steps.

A(s, a) = Rt(s, a) + γ ·Vψ(s
′)−Vψ(s) (12)

where Rt(s, a) is the immediate reward (4) associated with taking action a in state s. The γ

corresponds to the discount factor. The function Vψ(s) denotes the value function as-
signed to state s formulated in (5), while Vψ(s′) signifies the value function assigned to the
subsequent state s′ resulting from the execution of action a in state s.

Algorithm 1 Training of RPO-LSTM

1: Initial policy parameters θ0, initial value function parameters ψ0, LSTM hidden states
2: while not done do
3: for each environment step do
4: µ, Ã← πθ(·|ot)
5: at ∼ N (µ, Ã)
6: st+1 ∼ P(st+1|st, at)
7: rt ∼ R(st, at)
8: D ← D ∪ {(st, at, rt, ot, st+1)}
9: end for

10: for each state st and observation ot do
11: µ, Ã← πθ(·|ot)
12: z ∼ U(−³, ³)
13: µ′ = µ + z
14: prob← N (µ′, Ã)
15: logp← prob(at)
16: end for
17: θold ← θ
18: for each update step do
19: Reset LSTM hidden states at the start of each episode or sequence
20: Sample n samples {(st, at, rt, ot, st+1)} from D
21: Update value function:
22: for each (st, at, rt, s′t) do
23: Compute target values yt using Temporal Difference (¼)
24: end for
25: ψ← ψ + ³v ·

1
n ∑i∇ψVψ(st)(yt −Vψ(st))

26: Update policy:
27: for each (st, at, rt, ot, st+1) do
28: Compute advantage At using Vψ and Generalized Advantage Estimation
29: end for
30: wt(θ)←

πθ(at |ot)
πθold

(at |ot)

31: θ ← θ + ³π ·
1
n ∑i∇θ min(wt(θ)At, clip(wt(θ), 1− ϵ, 1 + ϵ)At)

32: Perform Backpropagation Through Time (BPTT) for LSTM update
33: end for
34: end while

4. Simulation Setup and Results

In this section, we provide a comprehensive overview of the simulation environments
that were meticulously configured to conduct our simulation experiments. We delve
into the specifics of designing the environments to replicate the conditions under which
the RPO-LSTM algorithm operates to guarantee a relevant and rigorous testing ground.
Additionally, we outline the training regimen of the RPO-LSTM algorithm, detailing the
parameters and computational resources utilized, followed by a presentation of the experi-
mental procedures, including the various scenarios and metrics employed to evaluate the
performance of the RPO-LSTM algorithm in simulated environments.

Drones 2024, 8, 232 12 of 20

4.1. Simulation Setup

To validate the proposed framework, we conducted experiments using the NVIDIA
Isaac Gym, which is a GPU-accelerated high-fidelity physics simulator that has demonstra-
bly facilitated successful sim-to-real transfer for various robots, as evidenced by research on
drones [36], manipulators [37], legged robots [38], and humanoid robots [39]. In this simu-
lation, we created an environment that includes both the UAV and the moving platform,
which is a Clearpath Husky UGV in our case.

To train a robust UAV agent, we intentionally constructed partially observable scenar-
ios by modifying the flow of data to the RL algorithm. Specifically, we created POMDPs
consisting of an MDP version and three additional POMDP versions of the task. The MDP
version had a fully observable state space, while the POMDP versions simulated different
scenarios that affected the observability of the landing maneuver. The first POMDP sce-
nario included sensor noise that gradually increased over time. The second simulated a
case in which remote sensor data were lost during long-distance transmission, which we
denoted as flicker; the entire 13 × 1 observations vector experienced intermittent zeroing
out with varying frequency. The third scenario combined the effects of noise and flicker
and created a composite challenge that reflected real-world complexities. We leveraged the
Isaac Gym’s flexibility to manipulate sensor sampling rates to make the controller robust to
varying sensor latencies. During training, we randomized the sampling frequency of each
simulated sensor within a range of 10 Hz to 60 Hz. The approach exposed the controller to
a diverse set of conditions, including those that may arise from real-world sensor delays,
ensuring a more comprehensive evaluation of its performance.

4.2. Training Details

NVIDIA Isaac Gym’s parallel training capabilities make training multiple agents
simultaneously using GPU acceleration possible. Using such capabilities, we trained
4098 agents in parallel, which reduced the training time to 15 min. Figure 5 illustrates the
parallel training framework in the environment. The agents were trained for a total of
500 iterations and experienced about 33 million steps in 15 min.

Figure 5. The simulation workspace in Isaac Gym shows 4098 agents training simultaneously. Each

environment consists of a UAV and a Husky UGV and is separate. One environment cannot interact

with another.

At the commencement of each episode, the initial positions of the agent and the
moving platform were randomized. The UAV was positioned within a five-meter radius
of the UGV. To add variability, the UGV’s trajectory was altered at the beginning of each
episode, with the UGV following one of thirty predefined trajectories at speeds reaching up
to 2.2 mph. A sample landing trajectory is shown in Figure 6. During testing, the UGV was
set on random trajectories that were not encountered during the training phase. The episode
would reset if the UAV strayed beyond an eight-meter threshold from the moving platform

Drones 2024, 8, 232 13 of 20

or if it made contact with the ground. Of importance, no interactive communication or
coordinated behavior occurred between the Husky and the UAV during landing.

Figure 6. Trajectory of UAV landing on moving platform.

During the early training epochs, the UAV agents could not fly and crashed to the
ground. However, as training progressed, the agents learned to track the moving platform.
The UAVs crashed into the moving platform when landing, so an orientation parameter
was added to the reward function to address the issue. After the training epochs, the UAV
tracked and landed on the moving platform consistently. The training rewards of the fully
observed states are shown in Figure 7. In the MDP environment, the training performance
of the RPO-LSTM algorithm is comparable to that of the state-of-the-art PPO. After training,
the agents were retrained with various partial observabilities, with each POMDP trained
for 500 iterations. The simulation was run on a desktop PC with an Intel i7-11700K CPU,
NVIDIA RTX 3060, and 64 GB of RAM.

Figure 7. Average training rewards for the MDP scenario with no partial observability. It is observed

that RPO-LSTM is able to perform as well as PPO in the MDP scenario.

Drones 2024, 8, 232 14 of 20

4.3. Performance Metrics

We utilized two metrics, namely, the average training reward and successful landing
rate, to assess the effectiveness of the algorithms. The evaluation framework encompasses
both learning progress and task accomplishment, thereby providing comprehensive insights
into the algorithms’ performance.

1. Average Training Reward. Employing an average training reward is a prevalent
approach to evaluating machine-learning algorithms, particularly in RL contexts.
The metric serves as a performance gauge, reflecting how effectively an agent learns
and evolves while interacting with the environment. In our context, we computed the
average rewards by evaluating Equation (4) at intervals of 16 steps.

2. Successful Landing Metric. Incorporating a successful landing as a performance
indicator establishes a pragmatic and direct assessment of algorithm effectiveness in
executing the pivotal task. A successful landing is defined as follows:

SL =







1, if distance between UAV and UGV is
below 20 cm and contact is made

0, otherwise
(13)

The metric is calculated in 100 trials for each POMDP method. The dual metrics
offer a comprehensive evaluation framework encapsulating the learning trajectory through
rewards and ultimate fulfillment of the task through successful landings.

4.4. Results

This section presents a thorough evaluation of our proposed RPO-LSTM algorithm,
tested across a spectrum of scenarios and measured against predefined metrics. We assessed
our method against the established PPO algorithm, a benchmark in robotic RL, and a
traditional approach that integrates the geometric Lee controller [40] with an EKF. Figure 8
illustrates the comparative training rewards between our RPO-LSTM and the conventional
PPO within POMDP settings. Additionally, Table 2 details the successful landing rates of
the PPO, Lee-EKF, and RPO-LSTM algorithms under various POMDP conditions, such
as flickering, noise, and their combinations. The comparative analysis across the metrics
consistently demonstrates the superior performance of our RPO-LSTM algorithm, which
achieved a higher success rate in landings amid diverse conditions of uncertainty.

Table 2. Successful landings.

POMDP PPO RPO-LSTM Lee-EKF

NO POMDP (MDP) 100 100 100
Flicker 0.3 82 100 37
Flicker 0.4 41 100 18
Flicker 0.5 19 92 15
Random Noise 0.15 96 99 97
Random Noise 0.20 96 97 98
Random Noise 0.25 87 98 98
Flicker 0.1 + Noise 0.15 99 99 54
Flicker 0.1 + Noise 0.20 88 100 66
Flicker 0.1 + Noise 0.25 79 98 59

Drones 2024, 8, 232 15 of 20

POMDPs

0 1 2 3

Steps

0

2

4

6

A
v
e
ra

g
e
 R

e
w

a
rd

s

Flicker=0.3

0 1 2 3

Steps

0

2

4

6

Flicker=0.4

0 1 2 3

Steps

0

2

4

6

Flicker=0.5

0 1 2 3

Steps

0

2

4

6

A
v
e
ra

g
e
 R

e
w

a
rd

s

Noise=0.15

0 1 2 3

Steps

0

2

4

6

Noise=0.2

0 1 2 3

Steps

0

2

4

6

Noise=0.25

0 1 2 3

Steps

0

2

4

6

A
v
e
ra

g
e
 R

e
w

a
rd

s

Flicker 0.1, Noise 0.15

0 1 2 3

Steps

0

2

4

6

Flicker 0.1, Noise 0.20

0 1 2 3

Steps

0

2

4

6

Flicker 0.1, Noise 0.25

PPO RPO-LSTM

Figure 8. The training rewards for the task of landing the UAV on the moving platform, where, for

easy comparison, only average values are plotted.

4.4.1. Comparison with PPO

The most intriguing findings and behaviors emerged within the context of flickering
POMDPs. Particularly, our RPO-LSTM method demonstrated a substantial performance
advantage over PPO in scenarios involving flickering conditions. Notably, with up to
50% flicker, our RPO-LSTM algorithm in a POMDP environment achieved comparable
performance to the MDP counterpart (i.e., nearly perfect successful landing rate as shown
in Table 2), indicating robust adaptation in the presence of flicker. In the case of PPO,
inference revealed that the UAV adeptly tracked and successfully landed on the moving
platform under flicker conditions of up to 30%; beyond this threshold, its ability to execute
successful landing maneuvers dramatically declined. Specifically, at 50% flickering, our
RPO-LSTM method exhibited a better training performance with substantially higher
rewards than the PPO method (Figure 8). At 50% flickering, the PPO method only managed
19 successful landings out of 100 trials, while our RPO-LSTM method still maintained
a 92% successful landing rate (Table 2). Additionally, our RPO-LSTM method exhibited
impressive consistency and achieved successful landings on the moving platform even
under challenging conditions of up to 50% flicker.

In the context of the random noise POMDP, we intentionally introduced varying levels
of noise as a means of evaluating the algorithms’ performance and adaptability. The noise
levels were systematically tested across a range from a 15 to 25% noise-to-signal ratio.
Notably, both the PPO and RPO-LSTM algorithms showcased remarkable resilience in
effectively handling observations corrupted by noise, as seen in Table 2. When disturbed
by substantial levels of noise, our RPO-LSTM method exhibited a better ability to converge
to policies that yielded reasonably effective outcomes than the state-of-the-art PPO method
(middle row in Figure 8). The results underscore RPO-LSTM’s ability to learn and adapt
within the complex and noisy environments typical of the real world.

The consistent performance of both algorithms across diverse levels of random noise
further accentuates their proficiency in adapting and executing successful landings in the

Drones 2024, 8, 232 16 of 20

presence of sensory noise. While both PPO and RPO-LSTM demonstrate robust perfor-
mance, an intriguing distinction is evident in the recurrent architecture of RPO-LSTM,
which appears to offer an inherent advantage by enabling notably higher training rewards
to be maintained(Figure 8) and success rate (Table 2) as noise levels increase. This sug-
gests that our RPO-LSTM’s ability to harness temporal dependencies through recurrent
connections contributes to its stability in noisy conditions, allowing it to maintain accurate
decision-making even amidst heightened sensory uncertainties.

Within the framework of the flicker-plus-noise POMDP, our experimentation involved
maintaining a constant flicker level of 10% while varying the intensity of random noise
between 15 and 25%. The approach enabled us to observe the effects of simultaneous
disturbances of flicker and noise on the performance of the algorithms. Interestingly,
the incorporation of flickers into noisy measurements noticeably impacted the landing
performance of the PPO RL algorithm in comparison to scenarios involving random noise
alone when the noise-to-signal ratio was above 20% (Table 2). The degradation in PPO’s
performance under the combination of flickers and noise suggests that the PPO algorithm’s
adaptability is more challenged when multiple sources of uncertainty interact.

Overall, the flicker-plus-noise POMDP scenarios underscore the adeptness of RPO-
LSTM in handling complex and multi-dimensional challenges. The integration of flickers
and noise did not impede its ability to execute successful landings, as seen in Table 2.
This observation emphasizes the algorithm’s inherent adaptability and capacity to learn
in complex environments with different types of uncertainties. The unwavering success
rates across these diverse scenarios reflect the algorithm’s capability to navigate intricate
real-world situations with great consistency. The demonstration of their potential show-
cases its readiness for dependable UAV autonomous landing on moving platforms under
partial observability.

4.4.2. Comparison with Lee-EKF

In our comparative analysis, we juxtaposed our RPO-LSTM algorithm with a classical
control method, implementing a system for UAV landing on a moving platform using Lee
control and an EKF, akin to the approach described in [41]. The Lee-EKF setup underwent
the same simulation tests as the PPO and RPO-LSTM methods.

Under conditions of full observability, the Lee-EKF controller exhibited optimal per-
formance that is attributed to the manually designed trajectory planner, fine-tuned for
executing smooth and non-aggressive landing maneuvers.

However, the Lee-EKF’s efficacy significantly deteriorated in the presence of the flicker
POMDP. Vulnerability to flicker effects stems from the controller’s inability to discern
and disregard erroneous data. Consequently, when flicker events reset state readings to
zero, the Lee-EKF erroneously acts on these nullified observations instead of dismissing
them. In contrast, the RPO-LSTM demonstrated enhanced resilience in such POMDP
scenarios. Through the process of reinforcement learning, it acquires the capability to
identify and discard sensor data recognized as spurious. Under the flicker POMDP, the Lee-
EKF managed to achieve successful landings primarily in instances when the UAV was
initialized in proximity to the moving target.

As depicted in Table 2, the performance of the Lee-EKF controller closely mirrors
that of our RPO-LSTM algorithm under noisy conditions. The robustness of the Lee-
EKF to noise interference is largely due to the EKF’s inherent noise-filtering capabilities,
evidenced by the minimal impact on performance when the noise-to-signal ratio was
increased from 15 to 25%, a testament to the EKF’s effectiveness. Both the Lee-EKF and
RPO-LSTM operated consistently despite increased noise levels. The instances of failed
landings primarily occurred when the UAV was initialized too close to the moving target,
leading to immediate collisions. Under noisy conditions, the trajectory patterns of all tested
methods remained largely unchanged compared to scenarios devoid of POMDP influences.

However, when subjected to environments compounded by flicker and noise within a
POMDP framework, the RPO-LSTM algorithm’s superiority becomes evident. The Lee-

Drones 2024, 8, 232 17 of 20

EKF’s performance suffered significantly under such conditions because of its heightened
susceptibility to flicker disturbances.

5. Ablation Study

In this section, we perform an ablation study to isolate the impact of key components
within our RPO-LSTM architecture. Specifically, we investigate the effects of (1) enhanced
exploration strategies (RPO), (2) the asymmetric actor–critic information flow (RPO+Critic),
and (3) the integration of memory (RPO+LSTM). RPO+LSM indicates the integration of the
LSTM network with RPO without the assymetric critic. For the ablation study, our RPO-
LSTM is referred to as RPO-Full to indicate a combination of all the components. The study
spans three POMDP scenarios—flicker in more than 100 maneuvers at 30%, random noise
at 25%, and their combination. We present the outcomes in terms of maximum training
rewards and successful landing rates in Tables 3 and 4. Crucially, a consistent random seed
is used for all ablations in each POMDP scenario to guarantee that performance variations
are solely attributable to the specific architectural components tested rather than differences
in the observed scenarios.

Table 3. Ablation: max training rewards.

POMDP PPO RPO RPO+Critic RPO+LSTM RPO-Full

Flicker 0.3 4.88 ± 1.4 4.23 ± 1.2 6.54 ± 1.6 6.48 ± 1.5 6.50 ± 1.5
Random Noise 0.25 5.73 ± 1.4 6.05 ± 1.4 6.56 ± 1.5 6.45 ± 1.4 6.62 ± 1.5
Flicker 0.1 + Noise 0.25 5.78 ± 1.4 5.88 ± 1.7 6.66 ± 1.5 6.45 ± 1.5 6.55 ± 1.5

Table 4. Ablation: successful landings.

POMDP PPO RPO RPO+Critic RPO+LSTM RPO-Full

Flicker 0.3 82 81 80 92 100
Random Noise 0.25 87 92 87 94 98
Flicker 0.1 + Noise 0.25 79 92 96 83 98

5.1. Effect of Exploration

RPO shows an increase in performance when compared to PPO in terms of both
maximum training rewards and successful landings, which is attributed to RPO’s enhanced
exploration capabilities. Examining the flight trajectories reveals that the RPO’s trajectory
closely mirrors that of the PPO. Notably, both algorithms exhibit a pronounced aggres-
siveness in their initial descent toward the moving platform. The similarity in trajectory
suggests that the primary distinction in performance arises from RPO’s ability to han-
dle uncertainties better during exploration, rather than differences in the fundamental
trajectory planning.

5.2. Effect of Asymmetric Actor–Critic

The ablation study reveals compelling insights regarding the differential impacts of
providing the critic with full state information while limiting the actor to partial states.
The approach resulted in significantly elevated training rewards, suggesting an efficient
learning process during the training phase. However, the improvement was marginal when
compared to the PPO, and it underperformed relative to the RPO in terms of successful
landings. The discrepancy hints at a potential issue of overfitting, where the model is
too specialized to the training environment, compromising its generalizability to new or
varied conditions. Notably, a majority of unsuccessful landings occurred at the onset of the
maneuver, indicating that the system’s handling of initial data loss was not as effective as
that of other components in the architecture.

5.3. Effect of Adding Memory

The ablation study’s findings indicate that the inclusion of a memory component
distinctly impacted the on performance metrics. Specifically, the training rewards of the

Drones 2024, 8, 232 18 of 20

RPO with memory were intermediate, falling between those of RPO+Critic and the full
RPO-Full configuration. However, in terms of successful landings, RPO+LSTM surpassed
RPO+Critic, suggesting an advantage in operational effectiveness. Contrary to expectations,
RPO+LSTM’s performance was notably inferior to both RPO and RPO+Critic in scenarios
combining flicker and noise. Interestingly, the flight trajectory associated with RPO+LSTM
was observed to be the smoothest, indicating a less aggressive approach to the landing
maneuver compared to the complete RPO-Full algorithm. The smoother trajectory implies
a more cautious strategy, potentially prioritizing stability over the speed and assertiveness
seen in other configurations.

6. Conclusions and Future Works

In this paper, we address the challenging task of landing a UAV on a dynamic target
under partial observabilities. To solve this task, we developed an end-to-end RPO-LSTM
reinforcement learning framework adept at managing incomplete sensor data and envi-
ronmental noise through the utilization of temporal patterns and memory mechanisms.
Validated in the high-fidelity simulation environment of Isaac Gym, our method demon-
strated superior performance in executing landings on moving targets under conditions
of partial observability. The RPO-LSTM algorithm consistently surpassed both the PPO
learning-based method and the conventional Lee-EKF approach. In flicker scenarios, RPO-
LSTM achieved up to 74% more successful landings than Lee-EKF and 50% more than PPO.
In noisy environments, while all methods were effective, RPO-LSTM still outperformed
PPO by 7% and Lee-EKF by 1%. In the compounded challenge of flicker and noise, RPO-
LSTM maintained robust performance, exceeding PPO and Lee-EKF by as much as 11%
and 41%, respectively.

In future work, we aim to transition our framework from simulation to real-world
applications. Considering the demonstrated superiority of transformers over RNNs across
various tasks, our future endeavors will focus on developing a robust reinforcement learn-
ing algorithm that harnesses the power of transformers to address this complex problem.

Author Contributions: Conceptualization, G.A. and S.J.; methodology, G.A. and K.-D.N.; simulation,

G.A. and S.J.; data analysis and interpretation, G.A. and K.-D.N.; manuscript preparation, G.A.

and K.-D.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Science Foundation under Grants #2245022 and

#2138206.

Data Availability Statement: The data that support the findings of this study are available from the

corresponding author upon reasonable request.

Acknowledgments: We would like to express our sincere gratitude to Omar Qasem for his valuable

assistance in reviewing our experiments and revising our paper. His insightful comments and

suggestions greatly improved the quality and clarity of our work.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Doitsidis, L.; Weiss, S.; Renzaglia, A.; Achtelik, M.W.; Kosmatopoulos, E.; Siegwart, R.; Scaramuzza, D. Optimal surveillance

coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision. Auton. Robot. 2012, 33, 173–188.

[CrossRef]

2. Cherubini, A.; Papini, A.; Vertechy, R.; Fontana, M. Airborne Wind Energy Systems: A review of the technologies. Renew. Sustain.

Energy Rev. 2015, 51, 1461–1476. [CrossRef]

3. Williams, A.; Yakimenko, O. Persistent mobile aerial surveillance platform using intelligent battery health management and drone

swapping. In Proceedings of the 2018 4th International Conference on Control, Automation and Robotics (ICCAR), Auckland,

New Zealand, 20–23 April 2018; pp. 237–246.

4. Scott, J.; Scott, C. Drone delivery models for healthcare. In Proceedings of the 50th Hawaii International Conference on System

Sciences, Hilton Waikoloa Village, HI, USA, 4–7 January 2017.

Drones 2024, 8, 232 19 of 20

5. Arora, S.; Jain, S.; Scherer, S.; Nuske, S.; Chamberlain, L.; Singh, S. Infrastructure-free shipdeck tracking for autonomous landing.

In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;

pp. 323–330.

6. Hu, B.; Lu, L.; Mishra, S. Fast, safe and precise landing of a quadrotor on an oscillating platform. In Proceedings of the 2015

American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 3836–3841.

7. Falanga, D.; Zanchettin, A.; Simovic, A.; Delmerico, J.; Scaramuzza, D. Vision-based autonomous quadrotor landing on a moving

platform. In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai,

China, 11–13 October 2017; pp. 200–207.

8. Liu, X.; Zhang, S.; Tian, J.; Liu, L. An onboard vision-based system for autonomous landing of a low-cost quadrotor on a novel

landing pad. Sensors 2019, 19, 4703. [CrossRef] [PubMed]

9. Keipour, A.; Pereira, G.A.S.; Bonatti, R.; Garg, R.; Rastogi, P.; Dubey, G.; Scherer, S. Visual Servoing Approach to Autonomous

UAV Landing on a Moving Vehicle. Sensors 2022, 22, 6549. [CrossRef] [PubMed]

10. Fourlas, G.K.; Karras, G.C. A Survey on Fault Diagnosis and Fault-Tolerant Control Methods for Unmanned Aerial Vehicles.

Machines 2021, 9, 197. [CrossRef]

11. Rodriguez-Ramos, A.; Sampedro, C.; Bavle, H.; De La Puente, P.; Campoy, P. A deep reinforcement learning strategy for UAV

autonomous landing on a moving platform. J. Intell. Robot. Syst. 2019, 93, 351–366. [CrossRef]

12. Jung, W.; Kim, Y.; Bang, H. Target state estimation for vision-based landing on a moving ground target. In Proceedings of the 2016

International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 657–663. [CrossRef]

13. Keller, A.; Ben-Moshe, B. A Robust and Accurate Landing Methodology for Drones on Moving Targets. Drones 2022, 6, 98.

[CrossRef]

14. Xu, L.; Luo, H. Towards autonomous tracking and landing on moving target. In Proceedings of the 2016 IEEE International

Conference on Real-Time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016; pp. 620–628. [CrossRef]

15. Serra, P.; Cunha, R.; Hamel, T.; Cabecinhas, D.; Silvestre, C. Landing of a Quadrotor on a Moving Target Using Dynamic

Image-Based Visual Servo Control. IEEE Trans. Robot. 2016, 32, 1524–1535. [CrossRef]

16. Hu, B.; Mishra, S. Time-Optimal Trajectory Generation for Landing a Quadrotor Onto a Moving Platform. IEEE/ASME Trans.

Mechatronics 2019, 24, 585–596. [CrossRef]

17. Paris, A.; Lopez, B.T.; How, J.P. Dynamic Landing of an Autonomous Quadrotor on a Moving Platform in Turbulent Wind

Conditions. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France,

31 May–31 August 2020; pp. 9577–9583. [CrossRef]

18. Xia, K.; Huang, Y.; Zou, Y.; Zuo, Z. Reinforcement Learning Control for Moving Target Landing of VTOL UAVs with Motion

Constraints. IEEE Trans. Ind. Electron. 2024, 71, 7735–7744. [CrossRef]

19. Jiang, Y.; Li, C.; Dai, W.; Zou, J.; Xiong, H. Monotonic robust policy optimization with model discrepancy. In Proceedings of the

International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 4951–4960.

20. Mankowitz, D.J.; Levine, N.; Jeong, R.; Shi, Y.; Kay, J.; Abdolmaleki, A.; Springenberg, J.T.; Mann, T.; Hester, T.; Riedmiller, M.

Robust reinforcement learning for continuous control with model misspecification. arXiv 2019, arXiv:1906.07516.

21. Qasem, O.; Gao, W. Robust Policy Iteration of Uncertain Interconnected Systems with Imperfect Data. IEEE Trans. Autom. Sci.

Eng. 2023, 21, 1214–1222. [CrossRef]

22. Meng, L.; Gorbet, R.; Kulić, D. Memory-based deep reinforcement learning for POMDPs. In Proceedings of the 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021;

pp 5619–5626.

23. Wang, Y.; He, H.; Tan, X. Robust reinforcement learning in POMDPs with incomplete and noisy observations. arXiv 2019,

arXiv:1902.05795.

24. Aikins, G.; Jagtap, S.; Gao, W. Resilience Analysis of Deep Q-Learning Algorithms in Driving Simulations Against Cyberattacks.

In Proceedings of the 2022 1st International Conference On AI In Cybersecurity (ICAIC), Houston, TX, USA, 24–26 May 2022;

pp. 1–6.

25. Hickling, T.; Aouf, N.; Spencer, P. Robust Adversarial Attacks Detection based on Explainable Deep Reinforcement Learning for

UAV Guidance and Planning. IEEE Trans. Intell. Veh. 2023, 8, 4381–4394. [CrossRef]

26. Gleave, A.; Dennis, M.; Wild, C.; Kant, N.; Levine, S.; Russell, S. Adversarial Policies: Attacking Deep Reinforcement Learning.

In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

27. Saj, V.; Lee, B.; Kalathil, D.; Benedict, M. Robust Reinforcement Learning Algorithm for Vision-based Ship Landing of UAVs.

arXiv 2022, arXiv:2209.08381.

28. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

29. Rahman, M.M.; Xue, Y. Robust Policy Optimization in Deep Reinforcement Learning. arXiv 2022, arXiv:2212.07536.

30. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.

31. Chikhaoui, K.; Ghazzai, H.; Massoud, Y. PPO-based Reinforcement Learning for UAV Navigation in Urban Environments. In

Proceedings of the 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Fukuoka, Japan,

7–10 August 2022; pp. 1–4.

Drones 2024, 8, 232 20 of 20

32. Piponidis, M.; Aristodemou, P.; Theocharides, T. Towards a Fully Autonomous UAV Controller for Moving Platform Detection

and Landing. In Proceedings of the 2022 35th International Conference on VLSI Design and 2022 21st International Conference

on Embedded Systems (VLSID), Bangalore, India, 26 February–2 March 2022; pp. 180–185.

33. Ladosz, P.; Mammadov, M.; Shin, H.; Shin, W.; Oh, H. Autonomous Landing on a Moving Platform Using Vision-Based Deep

Reinforcement Learning. IEEE Robot. Autom. Lett. 2024, 9, 4575–4582. [CrossRef]

34. Feng, Y.; Zhang, C.; Baek, S.; Rawashdeh, S.; Mohammadi, A. Autonomous Landing of a UAV on a Moving Platform Using

Model Predictive Control. Drones 2018, 2, 34. [CrossRef]

35. Pinto, L.; Andrychowicz, M.; Welinder, P.; Zaremba, W.; Abbeel, P. Asymmetric Actor Critic for Image-Based Robot Learning. In

Proceedings of the 14th Robotics: Science and Systems, RSS 2018, Pittsburgh, PA, USA, 26–30 June 2018; Kress-Gazit, H., Srinivasa,

S., Howard, T., Atanasov, N., Eds.; MIT Press Journals: Cambridge, MA, USA , 2018. [CrossRef]

36. Nahrendra, I.M.A.; Tirtawardhana, C.; Yu, B.; Lee, E.M.; Myung, H. Retro-RL: Reinforcing Nominal Controller with Deep

Reinforcement Learning for Tilting-Rotor Drones. IEEE Robot. Autom. Lett. 2022, 7, 9004–9011. [CrossRef]

37. Urain, J.; Funk, N.; Peters, J.; Chalvatzaki, G. SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion

optimization through diffusion. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA),

London, UK, 29 May–2 June 2023; pp. 5923–5930. [CrossRef]

38. Margolis, G.B.; Agrawal, P. Walk these ways: Tuning robot control for generalization with multiplicity of behavior. In Proceedings

of the Conference on Robot Learning, Atlanta, GA, USA, 6–9 November 2023; pp. 22–31.

39. Radosavovic, I.; Xiao, T.; Zhang, B.; Darrell, T.; Malik, J.; Sreenath, K. Real-world humanoid locomotion with reinforcement

learning. Sci. Robot. 2024, 9, eadi9579. [CrossRef] [PubMed]

40. Lee, T.; Leok, M.; McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE(3). In Proceedings of the 49th IEEE

Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5420–5425. [CrossRef]

41. Araar, O.; Aouf, N.; Vitanov, I. Vision based autonomous landing of multirotor UAV on moving platform. J. Intell. Robot. Syst.

2017, 85, 369–384. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Literature Review
	Methodology
	Preliminaries
	Problem Formulation
	Observations
	Actions
	Rewards

	Network Architecture
	Actor
	Critic

	Network Training
	Properties of the Methodology
	Fostering Enhanced Exploration Strategies
	Capturing Long-Range Dependencies in Sequential Sensing Data
	Learning to Infer Missing Information

	Simulation Setup and Results
	Simulation Setup
	Training Details
	Performance Metrics
	Results
	Comparison with PPO
	Comparison with Lee-EKF

	Ablation Study
	Effect of Exploration
	Effect of Asymmetric Actor–Critic
	Effect of Adding Memory

	Conclusions and Future Works
	References

