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A Large Language Model-based Platform for Real-Time Building Monitoring and
Occupant Interaction

Abstract

Effective management of indoor environments requires a comprehensive evaluation of health,
energy consumption, and thermal comfort. However, real-time assessment of these factors is
challenging due to the lack of integrated applications that combine IoT technology, real-time
simulation, and user-friendly interfaces for communication. To address these challenges, this
research introduces a novel platform specifically designed to manage health, energy consumption,
and thermal comfort in smart buildings, leveraging loT-based building information modeling
(BIM), cloud computing, and an Al-powered conversational suggestion system based on the large
language model (GPT). The platform integrates real-time monitoring, simulation, alerting, and
persuasion capabilities to manage health, energy consumption, and thermal comfort, enabling
responsive building environment controls by assessing tradeoffs among these dimensions and
providing timely recommendations. Additionally, it employs persuasive techniques to encourage
occupants to adopt environmentally-friendly practices. A case study in a university building
demonstrated the platform’s functionality and visualization capability. A survey assessing the
persuasive system revealed high adoption rates—95.59% for switching rooms to improve indoor
air quality and health, and 79.90% for adjusting clothing to enhance thermal comfort—indicating
strong participant willingness to adopt sustainable practices through the platform’s strategies. The
key contribution of this research is the development of a comprehensive, real-time platform that
enhances indoor environmental quality and sustainability through advanced monitoring, analysis,

and social interaction.
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Nomenclature
IoT Internet of Things
BIM Building Information Modeling
GPT Generative Pre-trained Transformer
GHG Greenhouse Gas
SBS Symptoms of Sick Building Syndrome
Al Artificial Intelligence
HVAC Heating, Ventilation, and Air Conditioning
PMV Predicted Mean Vote
PPD Predicted Percentage of Dissatisfied
IAQ Indoor Air Quality
BMS Building Management Systems
LLM Large Language Model
NLP Natural Language Processing
BIM Building Information Modeling
MEP Mechanical, Electrical, and Plumbing
CO; Carbon Dioxide
VOC Volatile Organic Compounds
PM, s Particulate Matter with an aerodynamic diamete<2.5 micrometers
PPM Parts per Million
AWS Amazon Web Services
Amazon EC2 Amazon Elastic Compute Cloud
API Application Programming Interface
Ul User Interface
VAV Variable Air Volume
Niorar () Building population at time step t
Ni(t) Occupancy in space i at time step ¢
Ii(t) Number of infectors at time step t in space i at time step t

Ainfittration,i(t)
Aventitation,i(t)
Kdeposition(t)
Kdecay(1)

q

Vi

IR

u(t)

Space infiltration air exchange rate in space i at time step t
Space mechanical ventilation rate in space i at time step t
Deposition rate of viruses at time step t

Decay rate for virus infectivity at time step t

Quanta generation rate

Volume of space i

Local infection rate

Number of quanta breathed by a susceptible occupant from time t to t + 1
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P(t) Infection risk associated with time t
T Space temperature

RH Space relative humidity

E;s Specific enthalpy

Do Vapor pressure

Ps Saturated vapor pressure

Vs Specific volume per kilogram of dry air
Cn Moisture content

Db Barometric pressure

CH County hospitalization data

IHR Infection-hospitalization ratio

Ni(t) Occupancy in space i at time step ¢

1 Introduction

In the twenty-first century, sustainable buildings have emerged as a critical focus for both
developing and developed nations [1]. Research indicates that the building sector is a major
consumer of energy, accounting for approximately 30%—40% of global energy use and over one-
third of greenhouse gas (GHG) emission [2,3], which significantly contribute to Global Warming
and Climate Change [4,5]. As such, reducing energy consumption in buildings and achieving
sustainability are imperative measures to mitigate these adverse effects. Beyond the aspect of
energy use, human perception of indoor environments plays a vital role in sustainable building
maintenance [6]. With individuals spending more than 90% of their time indoors [7], building
configuration and operation greatly influence daily activities, performance and overall well-being.
Human thermal comfort is widely recognized as a key factor in enhancing satisfaction within
indoor environments [8,9]. Additionally, the last decades have seen a notable increase in
respiratory infectious diseases (e.g., influenza [10], measles [11], SARS-CoV-2 [12-14]),
profoundly affecting global, society, and the economy. More than 90% of infectious disease
outbreaks occur indoors, particularly in densely populated public areas [15]. Therefore, alongside
energy consumption and thermal comfort, health has become a pivotal dimension of building

sustainability, necessitating robust monitoring and operational strategies to ensure occupant well-
3
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being. Consequently, it is crucial to achieve real-time assessment and analysis of the tradeoffs
between these three major dimensions, which prevents the proactive control of and response to
pandemics. Facility management teams play an essential role in making informed decisions about
control measures, and they must have a comprehensive understanding of the built environment.
Beyond the management teams, building occupants are not merely passive users; they actively
influence the environments through their interactions with building systems. These interactions
significantly impact the thermal and energy dynamics of the buildings [16,17]. Hence, it is equally
important to engage with and persuade occupants to actively participate in improving their quality
of life and contributing to a healthy and sustainable environment. Such occupancy engagement is
essential for the promotion and implementation of acceptable sustainable practices, which will

lead to improved health outcomes, enhanced comfort, and reduced energy consumption.

Low-quality indoor environments can have negative effects on residents, leading to increased
health issues such as respiratory problems, the exacerbation of asthmatic issues, headaches caused
by pollutants, and symptoms of sick building syndrome (SBS) [18]. SBS is a condition in which
occupants experience discomfort and health symptoms while spending time in a building, often
associated with poor indoor air quality and inadequate ventilation. In addition, inadequate indoor
environments can accelerate the spread of diseases, especially airborne viruses [19]. In addition to
health concerns, suboptimal indoor environments can result in reduced performance, productivity,
and discomfort among occupants [20]. Implementing effective building management measures is
crucial for facility management teams to ensure a healthy and sustainable environment while
reducing energy consumption. Hence, a timely awareness and understanding of the built
environment are essential for facility management teams to make informed decisions and take

appropriate actions. An additional challenge for facility management teams is that variations in
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occupant behavior can lead to significant differences in the built environment and building energy
consumption [21]. For example, studies have found that identical housing units can exhibit
electricity consumption variations of up to 600% during certain periods of the year [22], while
energy consumption in townhouses can vary by a factor of two [23]. These findings highlight the
significant influence of human activities and decision-making on energy use and indoor
environmental conditions. Improper occupant behaviors can also negatively impact living quality
and the built environment, having adverse effects that not only influence the occupants themselves
but also others sharing the same space. Conversely, the adoption of appropriate occupant behaviors
can result in significant energy savings and contribute to a better indoor environment for all
occupants. Therefore, the development of an integrated platform that caters to the needs of both
facility management teams as well as that of occupants is significant for ensuring the maintenance

of a sustainable and healthy built environment.

There are currently no existing integrated platforms that can consolidate the essential
functionalities of monitoring, simulation, alerting, and persuasion in the context of smart building
management. Three knowledge gaps present significant challenges in the development of such a
service. Firstly, there is the absence of an integrated technology that consolidates all the necessary
functionalities into a single platform. This platform should be capable of completing multiple tasks
in real time, including data acquisition and processing, conducting simulations for different
models, providing alerts and communication, and persuading occupants through an understanding
of their preferences. Each of these capabilities is complex and requires advanced technological
infrastructure to fully realize its functionalities. Secondly, there is the inability to simultaneously
monitor and simulate variations in health, energy, and thermal comfort in real-time, while still

considering both aspect-specific and mutually related parameters. Real-time health assessment
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poses distinct challenges, primarily stemming from the complexity of retrieving timely
epidemiological-related parameters from specific building locations. To implement effective
measures for the protection of public health and safety within buildings, it is imperative to have
access to up-to-date and location-specific data on epidemiological factors. The real-time
assessment of energy consumption and thermal comfort also faces similar difficulties, including
the development of reliable methods for the real-time simulation of occupancy fluctuations, which
would enable the tradeoff analysis between health, energy, and thermal comfort. Finally, there is
an absence of an Al-based application for the built environment that can interact with both facility
management teams and occupants as well as promote healthy behaviors and energy-saving
practices. This application should include functionalities, such as alerting facility management
teams about abnormal situations (e.g., poor indoor environment, occupant discomfort, and health
risks) while featuring a persuasive conversational system that attempts to convince occupants to
adopt environmentally friendly behaviors, actively participate in improving their living conditions,
and promote energy savings. However, current technologies lack these capabilities and often

overlook the importance of occupant engagement in building management.

To address these knowledge gaps, this research proposes the development of an integrated
platform for real-time building monitoring and communication aimed at improving overall
building management. An loT sensor network was deployed to enable real-time monitoring, which
allowed for the collection of data such as room occupancy and air quality. Off-the-shelf occupant
counters were used to determine room occupancy, while air quality sensors were used to measure
the levels of indoor pollutants like carbon dioxide (COz2), volatile organic compounds (VOC), and
fine particulate matter (PMa2.5). Cloud computing technology was used to ensure real-time data

acquisition, storage, processing, simulation of the health, energy, and comfort models, and tradeoff
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analysis. The cloud-hosted platform also allowed for all functionalities to be accessed in real time
through an integrated web-based application. To enable effective communication, the platform
incorporates two key capabilities. Firstly, it provides visualizations of the monitored data and
simulated results and is equipped with an alert system that notifies facility management teams of
any abnormalities detected in the indoor environment. This capability primarily assists facility
management teams with decision-making processes. Secondly, the platform provides
recommendations and utilizes an Al-based communication system empowered by LLM to
persuade building occupants and encourage them to adopt more environmentally friendly
measures. By raising awareness of the positive impact of such behaviors on indoor environment
quality and energy savings, occupants may be motivated to make conscious, environmentally
friendly choices. In addition, the interaction between occupants and facility management teams
allows for the adoption of occupant-preferred living environments and operation strategies,

improving occupant satisfaction.

The manuscript is structured as follows: Section 2 reviews relevant literature. Section 3 details the
study's methodology, including monitoring, simulation, and web app development. Section 4
presents the case study results, followed by a discussion and future research directions in Section

5. Section 6 concludes with a summary of key contributions.

2 Literature review

2.1 Impacts of building environment factors on health, energy, and comfort
The regulation of heating, ventilation, and air-conditioning (HVAC) systems significantly impacts
human comfort and building energy usage [24]. Indoor thermal comfort is a crucial aspect affecting

the well-being, health, and productivity of individuals within a built environment [25]. Various
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factors related to the surrounding conditions influence occupants' comfort levels. Fanger's model,
which underpins the ASHRAE-55 and ISO 7730 standards, is a widely recognized adaptive
thermal comfort model that accounts for individual differences such as metabolic rate and clothing
insulation [26]. This model was further refined to establish optimal comfort levels for occupants,
utilizing the predicted mean vote (PMV) and the predicted percentage of dissatisfied (PPD) as key
metrics [27]. Indoor air temperature has a profound effect on thermal comfort perception. Elevated
indoor temperatures can cause discomfort and health issues like heat stress, potentially leading to
more severe health problems [28,29]. Similarly, relative humidity is a critical component
influencing thermal comfort and environmental satisfaction. Low humidity levels have been
shown to increase fatigue among undergraduate students compared to higher humidity levels [30].
Air velocity also influences thermal comfort, with studies showing that increased air velocity can
lower mean skin temperature and alleviate thermal discomfort in hot and humid climates [31]. For
instance, Zhou et al. [32] found a reduction in mean skin temperatures by 0.2°C—0.6°C for every

1 m/s increase in air speed, although inconsistent ventilation patterns may reduce thermal comfort.

Beyond thermal comfort, indoor health risks have gained significant attention in recent years due
to the recognition of the role that built environments play in the spread of disease. Several disease
outbreaks have been proven to be transmitted through the airborne route, such as measles [11],
influenza [10], severe acute respiratory syndrome coronavirus (SARS-CoV) [33], and SARS-CoV-
2 [12,34]. Numerous studies have explored the impact of various built environment parameters on
the transmission dynamics of airborne pathogens. Factors such as temperature, humidity, and
airflow rate have been identified as critical determinants that influence the survival, infectivity,
and movement of pathogens within enclosed spaces [35]. For instance, research has shown that low

humidity levels can enhance the stability and transmissibility of influenza viruses [36], while
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higher temperatures and increased airflow rates can help reduce the concentration and dispersion
of airborne pathogens for influenza and SARS-CoV-2 viruses [37-39]. These findings underscore
the importance of managing indoor environments in the context of mitigating the consequences of

viral transmission.

To maintain sustainable building environments, the aim of managing and adjusting HVAC system
settings remains centered on upholding thermal comfort and promoting health, albeit at the
expense of energy consumption. The energy usage is contingent upon a multitude of factors,
including external climatic conditions and internal variables such as occupancy rates, preferences,
heat, and moisture levels [40—-42]. HVAC systems play a vital role in regulating indoor temperature
and humidity to sustain a comfortable indoor environment [43]. Notably, the COVID-19 pandemic
has heightened the significance of indoor ventilation, thereby further amplifying the energy
demands. However, the impacts of indoor environmental factors on health, energy, and comfort
remain unclear during the monitoring process due to the lack of real-time simulation capabilities.
This limitation hinders the ability to account for time-varying environmental factors and their

timely effects on the tradeoff relationships between health, energy, and comfort.

2.2 IoT-integrated digital twin

The emergence of digital twin technology has revolutionized the field of asset management and
monitoring, providing new opportunities for enhanced control and efficiency. Digital twin
technology enables the creation of a virtual counterpart that mirrors the physical asset, leveraging
the power of [oT to collect and integrate real-time data from sensors installed in the asset of interest
[44-46]. Recent studies have explored loT-integrated digital twin technologies to enhance building

management practices. Zaballos et al. [47] focused on a smart campus concept involving the
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integration of BIM tools with IoT-based sensor networks. Their work aimed to monitor the
environment, detect emotions, and provide insights into students, leading to the development of
an updated digital twin for the campus. Tagliabue et al. [48] utilized digital twin technology to
conduct a sustainability assessment of an educational building by employing an IoT-enabled
dynamic approach involving real-time evaluation to provide user-centered control of sustainability
criteria. This involved constant interaction between the digital twin and the sensors that monitored
indoor comfort, air quality conditions, and energy behavior. The digital twin framework supported
decision-making processes associated with sustainability. Yitmen et al. [49] proposed a modified
cognitive digital twin model focused on using their cognitive ability to detect actions and reasons
to inform dynamically processed optimization strategies. By integrating machine learning, cyber-
physical systems, artificial intelligence, and IoT technologies, their model aimed to support
decision-making in building lifecycle management. Shahinmoghadam et al. [50] developed a BIM-
and loT-based virtual reality tool for the assessment of real-time thermal comfort with 3D data
visualization. Zhang et al. [51] designed a multi-indicator adaptive ventilation system for indoor
air quality control, using real-time data from the IoT and a digital twin control platform. However,
none of these studies utilized loT-based digital twin technologies to monitor, model, and simulate
health and infection risks associated with hazardous viruses. In addition, the ability to analyze the
tradeoff relationships between health, energy, and thermal comfort in the context of smart building
operations remains relatively unexplored. Addressing these limitations is essential for advancing
the application of loT-based digital twin technologies aimed at maintaining a healthy and

sustainable built environment.

2.3 Communications technology in building management

Communication is an essential component of smart building monitoring and operation due to the

10
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importance of sharing information with facility management teams. Various studies have
developed different methods of sharing this information with users, including web-based and
mobile applications. Mataloto et al. [52] developed an IoT system as part of a larger building
energy management system (BEMS), including a platform that used data visualization templates
to create a dashboard that allowed facilities management to identify appropriate actions that could
lead to potential energy savings. Marinakis and Doukas [53] developed a recommendation system
for intelligent BEMS in residential settings that was capable of pushing notifications when
parameters exceeded certain thresholds as well as providing analytical, tailor-made
recommendations and energy-saving tips. Fernando et al. [54] developed a web application that
acted as a dashboard through which users could control the platform and access the energy
consumption service. Ribino et al. [55] proposed a human-like social robot-based approach to
monitoring indoor environment quality. Currently, communication systems in building operation
and management applications primarily focus on tasks such as data visualization and notifications.
Recommendations provided during communication are often targeted towards specific, singular
objectives, such as reducing energy consumption or improving IAQ. However, there remains a
significant gap in terms of the comprehensive analysis of tradeoff relationships between different
dimensions such as energy, the indoor environment, and health risks within these systems. In
addition, there is a notable knowledge gap associated with the integration of interactive tools that
can understand and communicate with users in the field of building management systems (BMS).
The effectiveness of these tools would be significantly increased should they be able to fully
comprehend simulation results and current environmental conditions, as well as understand user
concerns and preferences as expressed through natural language. Developments in this area are

expected to bridge this knowledge gap and enhance communication between users and the BMS.
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With the recent developments in natural language processing (NLP) as well as groundbreaking
advancements in large language models (LLMs) such as ChatGPT, the integration of similar
technology into communication systems is extremely promising. ChatGPT is an Al language
model developed by OpenAl based on the GPT-4 architecture [56]. Trained in a diverse range of
textual data, including scientific literature, technology articles, and other written sources, ChatGPT
is designed to generate human-like text in response to user prompts. The GPT-4 model-—upon
which ChatGPT is built—has gained a considerable amount of attention in the field of NLP [57].
Its applications span various domains, including content generation, language translation, and
virtual assistance. GPT-4 is exposed to a vast corpus of textual information during training,
including books, articles, websites, and publicly available written content. Consequently, GPT-4
is uniquely capable of parsing the suggestion features present in BMS platforms, while also having
the potential to persuade end-users to make rational changes to their behavior by providing them
with an understanding of the current condition of the building. However, the integration of this
technology into the field of BMS has not been explored in existing studies. Consequently, the novel
and unique approach of integrating a GPT-based conversational system with simulation results in

a BMS platform to provide persuasive suggestions holds significant promise.

3 Methodology

The primary objective of this study is to develop a real-time building environment management
system that leverages sensor data, simulation results, cloud computing, and a web app. This
integrated approach aims to optimize building management by providing real-time insights and
actionable recommendations for improving health, comfort, and energy efficiency. The proposed
framework comprises three phases: preparation, simulation, and web app development, as

illustrated in Figure 1.

12
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In the preparation phase, a BIM of the target building was developed, composed of mechanical,
electrical, and plumbing (MEP) as well as architectural components. This facilitates the
development of the energy model used for the EnergyPlus simulation. Specifically, the
architectural model was imported into SketchUp to represent the building envelope, while the MEP
model was utilized to configure the HVAC system, which was further refined using OpenStudio.
In addition, an IoT sensor network was set up in the building to enable the real-time monitoring of
relevant indoor environment parameters and occupancy status. In the simulation phase, a
comprehensive methodology was implemented to generate outputs describing energy
consumption, thermal comfort, and infection risks based on the collected IoT data and building
configurations. Energy consumption and thermal comfort were simulated through the EnergyPlus
API, while infection risk was simulated using programming scripts that incorporated up-to-date
disease data on the COVID-19 pandemic. During the web app development phase, the platform
that integrated the entire process, ranging from data acquisition to data visualization, was designed
and hosted on a web server environment. This phase focused on providing three primary features.
Firstly, it involved the retrieval of IoT data and up-to-date disease data from cloud storage, which
was then provided to the simulation process. Secondly, the app ran simulations and collected these
results. Finally, the interactive app visualized and communicated the simulated outcomes to users
through the integration of BIM and GPT technologies. The interactive app allowed real-time access
to health, energy, comfort, and air quality information in selected rooms of interest. The developed
platform integrated the three phases within a cloud environment, leveraging cloud computing
technology to store IoT data, perform simulations, and host the web app on the same server. This
integrated framework allowed for efficient computation and real-time communication with users

based on monitored and simulated results.
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Figure 1. Framework for the development of the web-based application.

3.1 Preparation

3.1.1 Creating the building energy model

The building energy model used in the simulations was generated by combining the building
architecture model and the MEP model. The architectural model was imported into SketchUp,
enabling adjustments to the building envelope to accurately depict the building envelope and
streamline the energy simulations. The HVAC system of the building was subsequently
incorporated into the model using OpenStudio based on the HVAC configuration from the MEP
model. These modifications were then saved, resulting in a comprehensive model that could be used

for energy simulations using EnergyPlus API.
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299  3.1.2 Configuring the IoT sensing system

300 An IoT sensing system was implemented in our case study area to allow for the real-time
301  monitoring of the building environment. The off-the-shelf [oT hardware devices were used to
302  collect data on air quality and occupancy at the room level. The architecture of this system is

303  depicted in Figure 2, illustrating the components and their connections within the IoT sensing

304  system.
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The IoT system consists of two main types of devices: [oT sensors and a wireless gateway. The off-
the-shelf 10T sensors employed in the system included TAQ sensors for monitoring indoor air
quality and a room occupancy sensor that tracked the number of people in the room. The IAQ
sensors were composed of pollutant-specific sensors, including CO,, VOC, and PM; s sensors, with
data collected and measured in parts per million (PPM) for CO,, and micrograms per cubic meter
(ng/m?) for PM; s and VOC. The VOC sensors also measured the concentration of other pollutants,
such as carbon monoxide, ethane, isoprene, and acetone. The system also collected other
environmental data, such as temperature (°C), and relative humidity (%). The room occupancy
sensor utilized overhead counters to count the number of occupants. The wireless gateway was
used to manage the IoT sensors and was responsible for collecting data from the sensors and
transmitting them to the Microsoft Azure Cloud Portal where it was saved and accessed by Amazon
Web Services (AWS) for further analysis. Figure 3 presents an example of a set-up of the hardware
environment, with the IAQ sensor highlighted in the green box, and the gateway highlighted within

a blue box.

Figure 3. An example set-up of the hardware environment.
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In addition to the hardware setup, a building-10T sensor solution website was used to create a virtual
representation of the case study site. In this virtual representation, different rooms were defined as
spaces, facilitating the mapping and identification of device locations within the building. In
addition, the website was used to create virtual devices, including the gateway and sensors, and
synchronize them with their corresponding physical devices. The status and location of these

devices were visualized on the website, with different shapes representing different devices (Figure

4).
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Figure 4. Layout of hardware in the case study site.

3.2 Simulation

Once the IAQ and occupancy data have been collected from the off-the-shelf sensors, appropriate
simulations were conducted utilizing the data. The simulation phase involves two main
components: 1) energy consumption and thermal comfort simulation, and 2) infection risk

simulation. The energy consumption and thermal comfort simulation were conducted using
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EnergyPlus API. The default setpoints for the indoor environment were configured based on
common operational scenarios. For example, during working hours, the heating and cooling
setpoints were maintained at 22°C and 26°C, respectively, while during non-working hours, the
setpoints were adjusted to 15.6°C and 26.7°C, respectively [58]. The outdoor air supply rate was set
to 0.0094 m3/s per person [59], and an economizer operational temperature of 28°C was
implemented. The default relative humidity range was set to be between 30%—-60%, considering a
comfortable living environment [60]. Real-time room occupancy was monitored using the
occupancy sensor system, which was collected, transmitted, and saved on a Windows server hosted
on an Amazon Elastic Compute Cloud (Amazon EC2). This integrated approach ensures that the
simulation process uses up-to-date occupancy information, allowing for the accurate analysis and

assessment of energy consumption, thermal comfort, and infection risks.

The web application allows facility managers to customize their desired setpoints for the indoor
environment with the capability of reading idf files as text, a file format commonly used by
EnergyPlus. When users input their desired setpoints, the application allows direct adjustments to
the idf file by overwriting the original text. This functionality provides facility managers with a
comprehensive understanding of the changes in energy consumption, thermal comfort, and
infection risks associated with their desired settings, giving them insights into the effects of

different HVAC operation strategies.

In the context of infection risk simulations, our approach considered the dynamic indoor
environment within each zone, including factors such as temperature, humidity, and ventilation
rate, as well as fluctuating occupancy levels. A derivative of the Wells—Riley equation was used

to estimate room infection risk, which was developed and described in detail in our previous
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publication [61]. This modified equation allows for the modeling of the hourly zone environment
and occupancy changes, enabling a more comprehensive assessment of infection risks. All
estimated infection risk data refers to the degree of infection risk at the time when the web app

was executed. The hourly infection risk is estimated using Eq. 1.

t+1
ut) =— x p X %; (N.(t)f C (¢, T)dT)
Niotar (t) P L\ . quanta,i
I;(t)q
¢ () =———=I(1 — —Ktota1(t) |
quanta,L( ) ViKtotal,i(t)( e ) (1)

Kiotar,i(6) = Ainfitrationi(®) + Aventitationi(t) + Kaeposition(t) + kgecay (t)

I;(t) = IR * Ni(t)

P(t) =1 — e™#®
t is the time step with a step size of one hour. N,,.,;(t) is the building population at time t. N;(t)
is the occupancy in space { at time step t, which is achieved from real-time sensing data. [;(t) is
the number of infectors at time step t in space i. Aiyfiyrration,i(t) is the space infiltration air
exchange rate in space i, dyentiration,i(t) 18 the space mechanical ventilation rate, Kgeposition (t)
is the deposition rate of viruses, and Kge.q,, (t) is the decay rate for virus infectivity. q is quanta
generation rate, set as 142 quanta/h according to the study conducted by Buonanno et al. [62]. V;
is the space volume, IR is the local infection rate (%), estimated based on the latest epidemiological
situation. u(t) is the number of quanta breathed by a susceptible occupant from time t to t + 1.
P(t) is the infection risk associated with time t. Specifically, to account for the impact of
environmental factors on the survival and persistence of viruses, the viral decay rate and viral

deposition rate are calculated using Eq. 2 [63,64].
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( r = 15%3/0.4/(1 — RH)
kdeposition = ZApgTZ/(()uaH)
kaecay = 16.9803 + 0.0622E; — 0.796p, — 21.95V
E; =1.007T — 0.026 + C,,,(2501 + 1.84T)
) Py = Ps * RH/100
27315 + T )

Pp
Cn = 0.622p,/(Pp — Dv)

_ o.c107g 172694
Ps =% T + 237.99

V, = (0.287 + 0.461C,,) *

Where T is the space temperature, RH is space relative humidity, E; is the specific enthalpy, p,, 1s
the vapor pressure, p, is the saturated vapor pressure, V; is the specific volume per kilogram of

dry air, C,, is the moisture content, and p,, is the barometric pressure.

3.3 Cloud computing

3.3.1 Real-time data retrieval and storage

Real-time data was retrieved and stored using loT sensors, including the latest updates on the
epidemic situation. The IoT data is collected using sensors deployed throughout the building,
which are then transmitted to the Amazon EC2 for storage and processing. Epidemic situation data
is obtained through an API provided by Covid Act Now [65]. This API can be integrated into the
cloud-based system, ensuring that the latest epidemic data is readily available for analysis and
simulation. Specifically, the epidemic data provided include the county hospitalizations per

100,000 people. The infection rateis then estimated using Eq. 3:

CH 3)

IR =
IHR * 100,000

where IR is the county infection rate, CH is county hospitalization data, /[HR is the infection-

hospitalization ratio [66]. IR is the prevalence parameter used in the risk simulation model.
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3.3.2 Computation of health, energy, and comfort parameters

The cloud computing approach determines the health, energy, and comfort parameters through a
combination of mathematical models and simulation programming on the cloud server. Health
parameters are calculated using the Python implementation of a revised W— R model, which is then
saved in a Windows server hosted within the AWS infrastructure. An interface was included in the
Python script to facilitate the retrieval of prevalence data from the front end of the web app,
allowing for seamless communication between the two scripts. The Windows server described

above was specifically built using the EC2 service.

The Python API provided by the EnergyPlus simulation software was used to compute the energy
consumption and thermal comfort parameters. This simulation software utilizes the building energy
model, along with real-time occupancy data, to calculate energy consumption and assess thermal
comfort. These Python scripts are responsible for triggering the simulation process as required
as well as generating the relevant outputs pertaining to energy consumption and thermal comfort.
Similar to the scripts responsible for the computation of health parameters, these Python scripts
are stored within the same Windows server hosted on AWS, ensuring timely integration and

accessibility.

3.3.3 App hosting

The web app is hosted on a Windows server, which serves as a repository for [oT data and the
Python scripts responsible for cloud computing tasks. This integrated setup allows for the smooth
integration of the app and the computing environment. Python scripts that handle various
calculations and simulations are triggered by the web app whenever necessary. To facilitate this

dynamic interaction, the web app sends inputs to the programming scripts via an XMLHttpRequest
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object. This enables users to provide inputs through the web app's user interface (Ul), which are
then passed on to the scripts for processing. The outputs generated by the Python scripts are read
by the web app using the same XMLHttpRequest object and are promptly presented using the
app’s Ul, providing users with relevant information in real time. This hosting configuration
establishes a cohesive ecosystem in which the web app and programming scripts collaborate
harmoniously, ensuring a seamless and efficient user experience. Furthermore, the web app
eliminates the need for users to install additional software, as all of the provided functions are
easily accessible through a simple URL. This streamlined approach enhances the app’s ease of use,
in terms of both setup and interactivity, allowing a broader range of potential users to benefit from
its functionalities. The app is not only designed for facility management teams but also for
occupants, workers, or anyone temporarily present in the building. By removing the requirement
for software installation, the app becomes more inclusive and user-friendly, catering to a wider
audience and ensuring convenient access to its features. The flowchart of the proposed cloud

computing system is shown in Figure 5.

-l
URL
XML Http request
Web app XML Hitp Health
request
Energy Comfort
Host Python
E+ Python API script
Cloud Cloud
i AWS i
Sensing computing Windows computing Revised Prevalence
data £ server W-R model data

Data storage

Data storage

Figure 5. Flowchart of the cloud computing system
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3.4 Web app development

The web app developed in this study incorporates several key components aimed at assisting with
facility management practices. Firstly, the app allows for the 3D visualization of the building model
and time series data visualization, allowing for the real-time monitoring of the building
environment. These visualizations aid facility managers by providing them with a comprehensive
understanding of the current state of the facility. Facility managers can adjust the setpoints of the
indoor environments based on their preference, while also providing them with any changes in the
energy consumption or building environment that may arise as a result of these changes. In
addition, an alert system allows facility managers to promptly identify and address any
abnormalities or deviations from the desired conditions by providing timely alerts and notifications.
An Al-based persuasion system was also developed to encourage desirable occupant behaviors
and preferences. This integrated system provides facility managers with a deeper understanding of
occupant-preferred measures, fostering effective interactions between occupants and facility
managers. By leveraging Al technologies, this system offers personalized recommendations and
suggestions to optimize both occupant satisfaction and facility management efficiency. Together,
these components encompass a robust methodology that integrates visualization, alerts and
notifications, and Al-based persuasion systems that allow facility managers to effectively monitor,

respond to, and engage with the built environment and its occupants.

3.4.1 Visualizations

The web app was developed using the NodeJS and Bootstrap frameworks, creating a user-friendly
interface that facilitates efficient data visualization and interaction. One notable feature of the app
is the 3D visualization of the building architectural model made possible through its integration

with Autodesk Platform Services. This functionality allows users to select specific rooms of
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interest and observe them highlighted within the 3D building model. The 3D view of the building
model can also highlight specific rooms to emphasize the presence of any abnormalities, drawing
attention to rooms that require immediate attention or further investigation, aiding in effective
decision-making and the prioritization of actions. The 3D building model is also fully interactive,
allowing users to zoom in, pan around, and explore different parts of the building. This immersive
and interactive visualization system enhances the user experience and provides users with a better
spatial understanding of the layout of the building. Example visualization of the 3D building and

the described functions can be found in Section 4.

The app is also capable of visualizing the fluctuation of key parameters over time. Line plots are
used to illustrate the dynamic changes in energy infection risk, energy consumption, and thermal
comfort in specific rooms, allowing users to easily observe trends and identify potential areas of
concern. Line plots are also utilized to visualize room temperature, humidity, and ventilation,
providing insights into indoor environmental conditions. Finally, line plots are also used to show
the cumulative infection risks of each room, allowing users to assess their individual infection risks
based on the time spent in each room. This information can be used for high-infection risk alerts

and proactive measures. Sample line plots can be found in in Section 4.3.

3.4.2 Alerting system

An alerting system was integrated into the app to provide comprehensive guidance and support to
facilities management. This system utilizes simulation results associated with the user’s selected
room to proactively trigger alerts. An alert can be triggered based on the following conditions:

1. Cumulative Infection Risk: If the cumulative infection risk exceeds a predetermined threshold

(e.g., 1%), then an automatic alert is triggered, notifying facility managers of potential health
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risks and providing recommendations on various mitigation measures, such as increasing
ventilation, reducing room occupancy, and implementing disinfection strategies such as the
use of ultraviolet lights.

2. Relative Humidity: When the relative humidity falls below 30% or exceeds 60%, an alert will
be sent to facility managers. This threshold is established because various bacteria species that
contaminate humidification and air-conditioning equipment thrive outside this humidity range
[60]. An alert will be sent to facility managers, informing them about these humidity-related
issues. These issues can be mitigated through the activation of humidifiers or dehumidifiers at
low or high humidity, respectively.

3. Thermal Comfort: Alerts are pushed if the thermal comfort levels deviate from predefined
thresholds, such as when the predicted mean vote (PMV) exceeds 1 or falls below -1. This
allows facility managers to take timely action in response to comfort-related concerns, such as
adjusting the room temperature setpoints.

4. Indoor air quality (IAQ): An alert is triggered when the IAQ exceeds acceptable thresholds.
These thresholds are set for specific parameters, which are 500 ppm [67], 15 pg/m3 [68], and
500 pg/m3 [69] for the concentration of CO2, PMz2s, and VOCs, respectively. Exceeding these
thresholds indicates that the IAQ may pose potential health risks, and facility management
teams should take actions to address the situation, such as increasing the room ventilation rate

or reducing the concentration of pollutants.

3.4.3 Al-based persuasion system
The functionality of the web app extends beyond facility managers and can cater to the needs of
other users, such as occupants or workers, by providing them with information about the facility

as well as receiving and providing suggestions to their concerns. In addition to the visualization
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capabilities described earlier, the app incorporates an Al-based persuasion system that offers
personalized suggestions to this user group through the use of conversations informed by the
current environment data and simulation results. This persuasion system takes the form of a
conversational interface powered by the highly regarded GPT-4 LLM [70]. This LLM has been
specifically optimized for conversational tasks and is thus highly effective at generating

meaningful responses.

The LLM has three main functions: data retrieval, data comparison, and the provision of
suggestions. After the web app simulates the current state of the building, the real-time
environmental data from [oT sensors (such as IAQ and temperature) and the simulation results
(including energy consumption, thermal comfort, and infection risk) are automatically transmitted
to the GPT model through the OpenAl API [71] in the JSON format. The LLM then utilizes the
retrieved JSON data to identify differences between neutral conditions (e.g., an indoor temperature
set at 24°C) and current conditions, such as variations in simulated energy use. The LLM is trained
using predefined decision-tree-based training phrases to provide conversational suggestions to

end-users. To ensure accurate responses, a manual check is performed after each training session.

Users can engage with the app's conversational Ul to express their concerns, share their feelings,
or ask questions about the current environment. The LLM is capable of providing relevant and
personalized responses based on the real-time data it receives. This comprehensive approach
allows the app to provide users with appropriate guidance and effectively address their specific
concerns, fostering an informative, user-centric experience. The fundamental concepts behind the
persuading system are founded in the tradeoff relationships between health, energy, and thermal

comfort. Two adaptive persuasion algorithms were developed in this study: one focused on the
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occupant’s perception of thermal comfort and the other on their perception of the IAQ. These
qualities are important for occupants, as they directly relate to what occupants can feel and are most
concerned about in an indoor environment. The persuasion algorithms are presented using a
decision-tree format and are utilized as training data for the GPT. Specifically, they were provided
in the form of descriptive phrases, allowing the model to learn and understand how to generate
effective and persuasive suggestions. Figure 6 provides a comprehensive illustration of the entire

process.

Simulated results

-————==== OpenAl AP1 /7
; )| -/ JSON P LLM ‘/— Training

0 Energy phrases
. consumption | 4
Thermal
comfort ’ RN
| /"-7-- . . -
! ) 1 ‘ Wel-)—based R ~ Persuading Decision-tree
‘ Infection risk | ! user interface \ system 4 algorithm
i/ ! "\,{_’_,_7 —
i [ Persuading
I IAQ data | ' User in
I puts
: : suggestions Weather
— H condition
Temperature
data .

Monitored data -

Figure 6. Integrated operations of the Al-based persuasion system.

3.4.3.1 Adaptive persuasion algorithm based on user perception of thermal comfort

The first of the two adaptive persuasion algorithms utilized in the app focuses on the user's
perception of thermal comfort. The algorithm involves three decisions, with the result of each
decision based on user input or environmental conditions. A demonstration of how outputs are

generated by the persuasion algorithm is shown in Figure 7. The algorithm distinguishes between
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cooling and heating seasons based on the current date retrieved from the device’s system time,
focusing solely on these periods because discomfort is more likely during these seasons. During
the shoulder season, when neither cooling nor heating is necessary, dynamically adjusting the
temperature setpoints is not required, as the indoor temperature is likely to remain within the
comfortable range. Therefore, to prioritize energy savings, the algorithm is only active during the
cooling and heating periods. After identifying the current weather conditions, the algorithm obtains
the occupant’s thermal perception through the conversational interface, capturing their feelings
about the state of the indoor thermal environment. It then compares the current temperature—
acquired from real-time IoT sensing data—with the preset neutral temperature (e.g., 24°C). The
simulation results under current and neutral conditions are then used to calculate the difference in
energy use. Based on the outcomes of these three decisions, the algorithm generates eight

distinct scenarios, with specific suggestions and persuasive phrases formulated for each scenario.
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Figure 7. Outputs of the persuasion algorithm according to the occupant perception of indoor

temperature and environmental conditions.

The contents of the persuasion system were developed by considering the tradeoff between energy
consumption and thermal sensation. If changing temperature setpoints will result in increased
energy use, the system initially recommends that users change their clothing levels to reduce
energy consumption. If changing setpoints will reduce energy use while also satisfying user
thermal requirements, the system will suggest adjusting setpoints accordingly. To enhance user
engagement, the system provides suggestions while demonstrating the energy savings achieved by
user actions. This approach helps users better understand the impact of their behavioral changes

while making the system more persuasive, improving thermal comfort and energy conservation by
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encouraging the active participation and collaboration of occupants.

In each scenario, multiple recommendations are offered to users, allowing them to choose their

preferred course of action. The system then responds according to user choices and informs the

facility management teams of the user’s preference. The detailed persuading phrases based on
different scenarios are as follows:

e Scenario 1 (cooling season, the user feels hot, and the current temperature is higher than
neutral): Shall I communicate with the facility managers and advise them to lower the indoor
temperature? Alternatively, if you are comfortable adjusting your clothing to lighter attire, it
could potentially save an estimated Y kWh of energy (where Y is the number retrieved from
the result of cloud-computed energy simulation). Please let me know your preference regarding
contacting the facility managers.

e Scenario 2 (cooling season, the user feels hot, and the current temperature is lower than neutral):
The current temperature is already below the neutral level, and further lowering it may cause
people to feel cold. In this situation, I recommend considering removing some clothing to help
you feel more comfortable and alleviate your thermal discomfort.

e Scenario 3 (cooling season, the user feels cold, and the current temperature is higher than
neutral): The current temperature is already higher than the neutral level. In this case, I
recommend wearing an additional light blanket if you're still feeling chilly.

e Scenario 4 (cooling season, the user feels cold, and the current temperature is lower than
neutral): The current temperature is below the neutral level. I will inform the facility managers
to increase the temperature cooling setpoint, which will help save energy by Y kWh.

e Scenario 5 (heating season, the user feels hot, and the current temperature is higher than

neutral): The current temperature is above the neutral level. I will communicate with the
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facility managers to lower the temperature heating setpoint, which will help save energy by Y
kWh.

e Scenario 6 (heating season, the user feels hot, and the current temperature is lower than neutral):
The current temperature is already below the neutral level, and further lowering it may cause
people to feel cold. In this situation, I recommend considering removing some clothing to help
you feel more comfortable and alleviate your thermal discomfort.

e Scenario 7 (heating season, the user feels cold, and the current temperature is higher than
neutral): The current temperature is already higher than the neutral level, and further increasing
it may cause people to feel hot and lead to higher energy consumption. In this situation, I
recommend removing some layers of clothing to help you feel more comfortable and reduce
the need for additional adjustments to the indoor temperature.

e Scenario 8 (heating season, the user feels cold, and the current temperature is lower than
neutral): Should I communicate with the facility managers to increase the temperature?
Alternatively, you could put on more layers of clothing to help us save Y energy. Please let me

know your preference regarding contacting the facility managers.

3.4.3.2 Sample training phrases and training process

This section provides a comprehensive illustration of the training process through sample training
phrases. Taking advantage of the LLM, all training phrases were formulated in natural language.
The simulated and monitored data were transferred and demonstrated to the LLM by employing
the following phrase: “Below is a JSON format simulation result of a building's room level
infection risk, energy usage in kWh, ventilation rate in air change per hour, humidity condition in
%, thermal comfort in PMV, temperature condition in °C,and indoor air quality in ppm. The

outcomes pertain to each room, with the ‘ZoneRoomNumber’ key indicating the room numbers.
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Please respond to user questions based on this data.” In this phrase, the key was defined and stored

in the JSON data.

To quantify the energy saving attributed to user behavior, the LLM was trained to generate
simulated results based on a neutral temperature (e.g., 24°C). These outcomes are subsequently
employed to conduct a comparison between the simulated results under current and neutral
temperature conditions. Here are the training phrases that illustrate this process: “Displayed below
is the result data in JSON format based on neutral temperature. The ‘ZoneRoomNumber’ key
indicates the room number, and the ‘ZoneHourlyEnergy’ key presents room-level energy usage
computed at the neutral temperature. To calculate energy savings, integrate the baseline data
represented by the neutral temperature result with the previously provided simulation result based
on the current temperature. By subtracting the room-level energy usage depicted in the neutral
temperature result data from the corresponding data in the simulation conducted at the current
temperature, you can quantify the energy conserved. Proceed to inform the user about the amount

of energy saving."

Here are the example training phrases of the decision tree-based algorithm, utilizing the first
branch of the decision tree — "during cooling season, when the user feels hot," with Scenarios 1
and 2. The phrase is as follows: “If the user feels hot, respond with two suggestions, presenting
them together. The first suggestion is: Should I communicate with the facility managers and
recommend lowering the indoor temperature? The second suggestion is: If you're open to adjusting
your clothing to lighter attire, it could potentially save energy. Please inform me of your preference
regarding contacting the facility managers. Provide full information, and no more additional

suggestions beyond these. If the user then expresses the need for you to contact the facility
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manager, inform them that you will take care of it. If the user indicates they don't require your
assistance, express gratitude for their energy-saving contribution and furnish them with the amount
of energy saved for an hour based on the simulation and baseline data. Begin by asking the user for
their choice. Display the energy-saving result exclusively if the user selects the second option

mentioned above.”

For each scenario, similar training phrases are formulated according to the weather condition, user
feelings, and current room temperature. The intent behind these phrases is to suggest strategies for
enhancing thermal comfort and offering energy-saving recommendations that align with the
ongoing circumstances, and guarantee the accurate and appropriate recommendations for users
based on the scenarios. Coupled with the NLP capabilities of the LLM, the algorithm comprehends

various user inputs and offers a range of sentences to articulate the suggestions.

3.4.3.3 Adaptive persuasion algorithm based on user perception of IAQ

Like the algorithm described in Section 3.4.3.1, this algorithm generates responses based on three
key decisions (Figure 8), involving a consideration of the environmental conditions, user
perception, and health risks. It first prompts the user to input their perception of the air quality
through the conversational interface of the application. Itthen compares the current infection risk
level to a predefined risk threshold to determine if the room's infection risk is high. Finally, it
evaluates the IAQ with close consideration of the concentration of air pollutants such as COz,
PM:;s, and VOC. This data is gathered in real-time through IoT sensing devices and compared
against preset thresholds as demonstrated in Section 3.4.2. From this data, the algorithm generates

outputs based on one of six scenarios.

33



663

664

665

666

667

668

669

670

671

672

673

674

675

676

If infection
risk is high

If infection
risk is high

P —— —— _—
Good . \I / \] / '\i
| | |
> Scenario 1 | | Scenario 3 : | Scenario 5 :
l | ! | ' 1
| : . ' : . I : ' I
Scenario 2 | | Scenario 4 | | Scenario 6 |
l ! \ I \ l,
N e -~ e e Vs e /7
Yes IfTAQ is No

acceptable

Figure 8. Outputs of the persuasion algorithm according to the occupant perception of

the TAQ.

The system considers two crucial factors: the health risks associated with airborne diseases and air
pollutants. The system acquires the infection risk through real-time simulation results, while the
health risks related to air pollutants are obtained from the IoT monitoring system. The algorithm
presents users with different mitigation measures, allowing themto choose the option that best
aligns with their preferences. The persuasion system’s initial strategy is to encourage occupants to
consider moving to another room, which helps to reduce potential health risks while minimizing
the need for the extensive implementation of mitigation measures, thus promoting energy and cost
savings. Furthermore, the system acts as a communicative link between the building occupants
and the facility management teams, providing insights into occupant preferences and needs. This

promotes the adoption of preferred mitigation measures, leading to a healthier environment, energy
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savings, and improved occupant satisfaction. The detailed persuading phrases based on different

scenarios are as follows:

Scenario 1 (the user feels good, infection risk is high, and IAQ is acceptable): Although the air
quality in this room may feel comfortable, it's important to be aware that the current infection
risks are high. To address this concern, I strongly recommend moving to another room. The
healthy room numbers are Z (recommended rooms are determined based on risk simulation).
Would you be willing to move to one of these healthier rooms? (Response from the user). If
moving to another room is not feasible for you, I can promptly contact the facility management
teams to implement one of three mitigation measures: 1. An increase in room ventilation. 2.
Room disinfection procedures. 3. Occupancy control measures. Which of these mitigation
measures would you prefer?

Scenario 2 (the user feels good, infection risk is high, IAQ not acceptable): While you may
currently feel good, it's crucial to be aware that both the infection risks and the air quality in
this room are not at an acceptable level. To address these concerns, I strongly suggest moving
to another room, such as room Zi, Z2, or Z3. If you do not wish to or cannot change rooms, I
can contact the facility manager to increase the ventilationrate in this room.

Scenario 3 (the user feels bad, infection risk is high, IAQ is acceptable): Thank you for
expressing your concerns. The current room's infection risk is indeed not at an acceptable level
for maintaining a healthy environment. (At this point, the same recommendations from
Scenario 1 will be provided).

Scenario 4 (the user feels bad, infection risk is high, IAQ is acceptable): Thank you for
acknowledging the concerns. It is crucial to note that both the infection risk and the air quality
in the room are not at a healthy level. (Same recommendations from Scenario 2 will be

provided).
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e Scenario 5 (the user feels bad, infection risk is low, IAQ is acceptable): Although you feel
unwell, please note that the room environment is healthy and has an acceptable level of air
quality. However, considering your discomfort, I recommend taking a break outside the
building to refresh yourself.

e Scenario 6 (the user feels bad, infection risk is low, IAQ not acceptable): Thank you for
expressing your concerns. The air quality in this room is not at an acceptable level, which can
potentially affect your performance and well-being. (Same recommendation from Scenario 2

will be provided).

3.4.3.5 Majority-preference based environment control algorithm

In scenarios where occupants in the same room have opposite preferences, the app employs a
decision-making algorithm based on majority feedback to ensure overall satisfaction. This process
leverages the capabilities of the GPT-4 model to analyze communication logs and generate
preference data, which is then used to guide adjustments in the building environment. When
multiple occupants provide feedback about their comfort levels or preferences, the app collects
and analyzes this data to determine the majority preference. This approach ensures that
environmental adjustments, such as temperature or ventilation changes, align with the preferences

of the majority, promoting a balanced and satisfactory indoor environment for most occupants.

The GPT-4 model plays an essential role in this process by generating tags based on the
communication logs of the occupants. Each time an occupant interacts with the app and expresses
apreference (e.g., feeling too hot or cold), the GPT-4 model analyzes these interactions and assigns
tags that represent these preferences. These tags are then aggregated to provide a clear picture of

the overall preferences within a room. The generated preference data is saved in the cloud,
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allowing for real-time updates and access by the app. This cloud-based storage ensures that the
data is always up-to-date and can be accessed timely to make informed decisions. The app
continuously updates the preference data as new feedback is received, ensuring that the decisions

reflect the current preferences of the occupants.

To implement this algorithm, the app follows several steps: 1) it collects feedback from all
occupants in the room through the conversational interface; 2) GPT-4 analyzes the communication
logs and generates preference tags for each occupant; 3) the tags are aggregated in the cloud to
determine the majority preference; 4) based on this majority preference, the app makes decisions
about environmental adjustments; and 5) the app continuously updates the preference data as new

feedback is received, ensuring that decisions remain relevant and accurate.

For example, in a room with ten occupants where six occupants report feeling too hot while four
report feeling too cold, the GPT-4 model tags these preferences and saves them in the cloud. The
app aggregates this data and determines that the majority of occupants prefer a cooler environment.
Consequently, the app will adjust the temperature settings to lower the room temperature, aligning
with the majority preference. By using majority feedback and leveraging the analytical capabilities
of GPT-4, the app ensures that the environmental conditions in shared spaces are optimized for the
greatest number of occupants, enhancing overall comfort and satisfaction. The flowchart of the

Majority-preference based environment control algorithm is shown in Figure 9.

37



745

746

747

748

749

750

751

752

753

754

755

756

757

758

atural language
communication 3

atural language atural language atural language atural language
communication 1 communication 2 communication 4 communication 5

y

GPT-Based
LLM
v v v v v
Feel hot Feel hot Feel cold Feel hot Feel cold

I I I I
Send to cloud

ﬂ Cloud computing

Based on majority preference

Operation
strategy

Figure 9. The flowchart of the Majority-preference based environment control algorithm

4 Case study

This section presents the development of a real-time, cloud-based, integrated platform aimed at
monitoring three major aspects of building management, including energy consumption, thermal
comfort, infection risks, and overall building environments, as well as communicating this
information to users. The infrastructure integrates various components, such as sensor APIs, web
servers, cloud computing, and EnergyPlus simulations. The UI of the web app was designed to
communicate the dynamic information collected to facility management teams. To demonstrate
the application's capabilities, a case study was conducted using a section of the Zeanah Engineering
Complex, the largest academic building on the campus of The University of Tennessee, Knoxville,
with the results of the simulation presented within the app. This platform offers a comprehensive

solution for real-time monitoring, analysis, and communication in building management scenarios.
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4.1 Energy model generation

The capabilities of the platform were demonstrated by using a specific section of the Zeanah
building as a case study. The selected region included the left wings of the second floor, which is
composed of various spaces, including seven classrooms, thirteen offices, two laboratories, one
learning space, one wellness room, two restrooms, two stair rooms, one electric room, and one
data room. The total area of this building section is approximately 1848.9 m?, and the layout of the
building is presented in Figure 10. The HVAC systems employed in the building include three
centralized variable air volume (VAV) systems equipped with economizers. Figure 11 illustrates
a sample configuration of a deployed HVAC system. The building uses both gas and electricity as
primary fuel sources. The heating system utilizes gas boilers, while the cooling system uses a
packaged air conditioning unit (PACU). A VAV box with a reheat function is installed within each
zone to regulate the airflow and temperature. The architectural model was imported into SketchUp
using OpenStudio plugin to accurately represent the building envelope and facilitate the energy
simulation process. OpenStudio was then used to incorporate the building’s HVAC systems into
the model based on the configuration provided in the MEP model. These modifications resulted in

a comprehensive model for energy simulation using EnergyPlus as described in Section 3.2.

Figure 10. The architectural configuration of the selected building section.

39



776

777

778

779

780

781

782

o |
= o—iit
< =
L) ] 3 (<} &
’ -2
.......... Sk b\t 2 2 2 Dty A -
r s Demand Equipment
] Q
L o L -

Figure 11. Diagrammatic representation of the HVAC configuration in the selected building

section.

4.2 Web app Ul

The web app Ul was designed with a focus on user-friendliness and clarity. Emphasizing simplicity
and intuitive navigation, the interface is easy to use and comprehend. The concise design, paired
with a single-page display, allows users to efficiently access and absorb information. The core

design principles and features are demonstrated on the main page of the web app (Figure 12).
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Figure 12. The Ul of the web app. (a) Main page and (b) simulation results visualized using line

plots.

4.3 Sample simulation results

A test simulation was conducted to demonstrate the visualization capabilities of the web app. This
simulation utilized data and information specifically collected from classroom 278, located on the
second floor of the Zeanah building. The simulation was performed for a whole day using weather
and [oT data retrieved on June 22, 2023. The simulated hourly outcomes included infection risk,
cumulative infection risk, energy consumption, and thermal comfort. Room temperature, relative
humidity, occupancy, and the concentration of different pollutants were monitored by the IoT
sensors. Figure 13 illustrates the time series results of the simulation and monitoring for room 278,

as would be presented within the app’s UL
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Figure 13. Simulation results from a sample room. Hourly outcomes included: (a) infection risk

(%); (b) PM2.s (PPM); (c) Energy consumption (kWh); (d) Thermal comfort (PMV); (e)

Occupancy (no. of persons); (f) Relative humidity (%).

4.4 Alerting system and conversational persuasion system

The app’s alerting system is designed to automatically trigger when predefined thresholds are
exceeded. Popup alerts are displayed immediately after the user selects a room. To provide a
comprehensive view of the alerts related to the selected room, all identified alerts are presented
using a dropdown menu. Users can conveniently explore the dropdown menu and select specific

problems they are interested in and access the relevant suggestions. In addition, the app utilizes a
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persuasive conversational interface powered by GPT-4 to provide appropriate suggestions and
recommendations. Users can engage in a conversation-like interaction to receive personalized

suggestions based on user inputs and current environmental conditions.

Figure 14 illustrates the visual representation of the alerting system and the conversational interface
within the app. This user-friendly design allows users to easily navigate and access alert
information, obtain tailored suggestions, and engage in interactive conversations to enhance their

experience and address specific concerns.

(a) (b)

Figure 14. The Ul of (a) The alerting system and (b) the GPT-powered suggestion system.

In addition to offering persuasive strategies, the Al-empowered conversational persuasion system
also encourages user participation by offering the user several energy-saving tips by considering
the tradeoffs between energy consumption, thermal comfort, and infection risks. By explicitly
informing the user of the amount of energy saved, this approach helps occupants better understand
the positive effects of their actions and promotes responsible behavior. Furthermore, the system
not only encourages positive occupant behavior but also provides multiple mitigation measures that
occupants can choose from. These measures can be implemented by the facility management
teams, offering occupants a range of options based on their preferences to address their specific

needs. Figure 14(b) illustrates an example of the persuasion system's response when the user feels
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overly hot in a room. The system suggests adjusting their clothing as a potential solution that
addresses the user's discomfort. To enhance the persuasiveness of these suggestions, the app
presents the estimated potential energy savings that can be achieved through clothing adjustments.
By indicating the potential energy savings and environmental benefits tied to specific actions, users
are encouraged to adopt sustainable behaviors, resulting in a more informed and eco-conscious user

experience.

A sample conversation between the LLM-powered persuasion system and an occupant is provided
in Table 1, demonstrating the interactive nature of the system and how it facilitates informative
discussions. This dialogue exemplifies the interactive capabilities of the LLM-powered assistant,

allowing for personalized suggestions and engaging conversations.

Table 1. Sample conversation between the LLM-powered assistant and an occupant.

Occupant |[[ feel hot in room 278.

Assistant  [['m sorry to hear that you're feeling hot in room 278. I have two suggestions for you:
1. Should I communicate with the facility managers and advise them to lower the
indoor temperature?
2. If you are willing to adjust your clothing to a lighter attire, it could potentially
save energy.

Please let me know your preference regarding contacting the facility managers.

Occupant [[ can adjust my clothing.

Assistant  [That's great! Adjusting your clothing to a lighter attire can help you stay comfortable]
and save energy. Thank you for contributing to energy conservation.

Based on the simulation data, by not adjusting the temperature setting for an hour, you|
have saved a total of 1.853 kWh of energy.

Thank you for your effort in conserving energy! If you have any other questions o

need further assistance, please let me know.
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4.5 Capability of the persuasive system

Surveys were conducted to graduate students majored in civil engineering in Nanjing Tech To
validate the effectiveness of the developed persuasive system, a survey was conducted with 68
university students to assess their willingness to adopt environmentally friendly measures. The
survey included 12 questions, each representing scenarios from two adaptive persuasion
algorithms: one based on user perception of thermal comfort (Section 3.4.3.1) and the other on
IAQ perception (Section 3.4.3.3). Participants were presented with scenarios and corresponding
suggested actions, choosing "yes" or "no" to indicate their willingness to take the proposed
measures. The scenarios covered six questions related to thermal comfort perception (Q1 to Q6)
and six related to TAQ perception (Q7 to Q12), as shown in Figure 15 and Table S1 (Appendix A).

The detailed survey questions are listed in Appendix B.

70 1
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Figure 15. Participant willingness of adopting environmentally friendly measures

Figure 15 indicates that a majority of participants are willing to adopt environmentally friendly
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measures for energy-saving purposes, highlighting the effectiveness of the persuasive system in
promoting sustainable behaviors. Notably, suggestions for achieving better indoor air quality and
health by switching rooms had a higher average adoption rate (95.59%) compared to suggestions
for adjusting clothing to enhance thermal comfort (79.90%). This difference suggests that
participants prioritize air quality, particularly during pandemic concerns, over thermal comfort
adjustments, which can be difficult to achieve if clothing options are limited or if a blanket is not
readily available. Overall, the strong positive response across all scenarios demonstrates the
system's capability to encourage sustainable practices through its persuasive strategies, supporting

its potential for building energy conservation.

S Discussion

This study proposes the use of an innovative real-time integrated platform for building
management that integrates a variety of features from building environment monitoring to the
effective communication of information with the express purpose of fostering a healthy and
sustainable built environment. To demonstrate the capabilities of the platform, a case study was
conducted within a section of Zeanah Engineering Complex in Knoxville, Tennessee. The
building’s architectural model and MEP model were used to create a building energy model, which
served as the basis for the digital twin. An IoT sensor network was deployed throughout the
selected study area to allow for comprehensive building monitoring. This network continuously
collects real-time data on various environmental factors in each room, including temperature,

humidity, as well as the concentrations of pollutants such as CO2, PMz.5, and VOC. The platform

conducts simulations at the room level to assess three major aspects that are essential for building
sustainability: health, energy consumption, and thermal comfort. The UI of the platform facilitates

information sharing and visualization for facility management teams and occupants and uses an
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enhanced communications system involving a conversational persuasion system to provide

occupants with a user-friendly experience.

5.1 Health aspects of building management

The occurrence of several severe pandemics over the past two decades, including influenza, SARS,
and COVID-19 pandemic, has emphasized the critical significance of health considerations in
building management. Although the threat of the COVID-19 pandemic has subsided recently, the
need to prevent potential disease outbreaks remains essential due to the pandemic’s devastating
impact on human lives and the economy. Airborne transmitted diseases pose a particularly severe
threat due to their potentially rapid spread and limited means of transmission control. Indoor
environments, often lacking adequate ventilation in typical operation scenarios, can become
breeding grounds for airborne viruses. Hence, the development and implementation of a health-
focused platform that monitors indoor environments is vital in curbing potential disease outbreaks.
In addition to disease transmission, traditional concerns about IAQ continue to be significant in
building management. Low-quality indoor environments can adversely affect occupants’ health,
leading to increased absenteeism due to SBS as well as reduced productivity and performance
among occupants and workers. SBS is primarily caused by contamination from various pollutants
and insufficient indoor ventilation [72]. Consequently, IAQ detection was also considered in this
study as a means of mitigating health risks and ensuring a healthier and more productive indoor

environment.

It is essential to recognize that mitigation measures, such as increased ventilation, can effectively
address health risks arising from both airborne diseases and pollutants. However, these two aspects

should be considered separately to improve building performance. During pandemics, it becomes
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crucial to prioritize the reduction of disease transmission; consequently, room ventilation rates
must be set to higher levels to enhance air circulation and minimize the risks of infection. Despite
the implementation of these measures, the infection risks can remain high depending on the current
state of the epidemic, while the IAQ can remain at low levels. Conversely, during non-pandemic
periods, priority shifts to the management of IAQ during building operations. Maintaining a high-
quality indoor environment is essential to promote the well-being and productivity of occupants

and workers.

5.2 Interoperability achieved by cloud computing

To conduct real-time energy simulations, researchers often rely on additional software for
programming and data storage. In general, the energy simulation process is conducted locally
before the data is transferred to a cloud server for retrieval. For instance, Pang et al. [73] introduced
a framework for the real-time performance assessment of entire buildings, utilizing Building
Controls Virtual Test Bed (BCVTB) as the software platform to which inputs from the Energy
Management and Control System (EMCS) were provided. The acquired data were then sent to
EnergyPlus for simulation, with the results archived in a separate database. Pallonetto et al. [74]
proposed a grid co-simulation software platform that integrated BCVTB with a MySQL database
using Java Database Connectivity (JDBC). By accessing the database, this platform allowed for
real-time simulation and visualization through a web application. However, such approaches still
require the local installation of BCVTB software, which poses challenges to users, impacting
accessibility and ease of use. The need for additional software installation may limit user’s access
to information, especially in the context of the wide variety of user devices, excluding potential
users who may not require the app for professional purposes but still seek information or

interaction about the building environment. In this study, a cloud-based integrated platform was
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developed to address these problems. This technology allows for interoperability within the same
device, eliminating the need for additional software installation. This cloud-based approach
supports cross-platform accessibility, allowing users to easily access the platform from any device
and at any time (as long as they have Internet access) through the simple use of a URL. This
innovation allows for room-level monitoring and simulation, laying the foundation for efficient

building operations.

5.3 Human-centric conversational persuasion system

In recent years, there has been a growing emphasis on human-centric building operation
technologies, driven by an increased recognition of the significance of human perception and
satisfaction in establishing a comfortable and sustainable building environment. This emphasis is
rooted in the fundamental understanding that humans are the primary users and occupants of
buildings. In this context, Abdelrahman et al. [75] introduced a spatial-temporal occupant
preference sampling method, leveraging BIM technology, to optimize personal comfort. The
participants were asked to answer thermal comfort questionaries during their work activities.
Favero et al. [76] proposed human-in-the-loop methods for occupant-centric building operation
with the focus on human thermal perception. Through the recruitment of participants, trials were
conducted involving varying thermal exposures, and participants were required to provide
feedback on thermal perception at predefined intervals. However, these approaches overlook the
challenges associated with fostering occupants' willingness to provide frequent feedback through
surveys in real-world building operation applications. Furthermore, it has been observed that
individuals may be less inclined to engage with surveys featuring repetitive questions and lacking
in responsive interactions in accordance with the feedback they provide. Bresa et al. [77] identified

occupant preferences and predicted the likelihood of occupant interactions based on behavioral
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science theory. This research indicated the fact that prevailing building control methods often fall
short of aligning with the viewpoints and preferences of building occupants. This research found
that the primary motivation for individuals to interact with building controls is their desire to
contribute positively to energy conservation. This finding underscores the significance of
energy savings as a major expected outcome, which is in accordance with the motivator for

encouraging occupant interaction in our app.

This study introduced an innovative Al-based conversational persuasion system powered by GPT
as the large language model that can generate personalized responses to specific user inputs. The
development of this conversational system expands the scope of human-centric interactive services
in the context of smart building operations. While such technologies are finding wide usage in
fields like healthcare and services, it has not been extensively applied to the field of building
management for indoor environments. This conversational system bridges this gap, allowing
facility management teams to promptly address occupant needs and preferences. It also enhances
occupant participation and fosters a healthier and more sustainable building environment. This
system offers significant improvements in the interactive process compared to traditional
conversational agents or chatbots. Traditional chatbots tend to provide consistent, rigid responses
to similar questions, leading to user boredom and dissatisfaction due to repetitive interactions.
However, the integration of a LLM-empowered interface as a conversational tool addresses these
issues while introducing several advantages. Firstly, the widespread usage and human-like
interface of LLM contribute to improving the users’ trust and acceptance of the information
provided, establishing credibility and fostering user engagement. Furthermore, the ability of LLMs
to generate diverse sentences during communication ensures dynamic and varied conversations

enhances the overall user experience, and makes interactions more engaging and enjoyable. This
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contributes to increased user satisfaction and promotes sustained user engagement with the system.

The monitoring data and simulated results are automatically transferred to the GPT model in real
time. Through a comprehensive, predefined set of training phrases, the system gains the ability to
understand the current environmental conditions and respond appropriately to user inputs by
providing accurate and relevant responses. In particular, information regarding the tradeoffs
between health, energy use, and thermal comfort serves as a powerful motivator, causing building
occupants to actively engage with and embrace energy-saving strategies. The use of human-like
conversational tones to demonstrate energy savings allows occupants to gain a sense of awareness
regarding their actions and informs them of their direct impact on the building's overall
performance. This creative approach allows for the effective and relatable visualization of energy
consumption, making it easier for occupants to understand the extent of the environmental
implications of their daily activities. This engagement encourages occupants to take a more active

role in enhancing indoor environments and living quality through their participation.

While this study estimates indoor infection risks for specific viruses, environmental factors like
temperature and humidity can affect different pathogens differently, especially when multiple are
present, highlighting the need for further exploration to determine optimal indoor environments
and mitigation measures. Another limitation is our reliance on a student population for participant
feedback, which may introduce participation bias, as students might be more inclined to
collaborate or may not fully express their feelings about thermal comfort and indoor air quality,
potentially leading to unrepresentative data. Future studies should explore long-term and
personalized feedback mechanisms to enhance the willingness of information sharing. In addition,

although we focus on controlling mechanical ventilation systems, it is important to acknowledge
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the positive impact of natural ventilation on indoor health; future research could enhance the
platform by incorporating multiple types of ventilation systems. Studies on human behavior could
lead to more effective persuasive methods, improving user experience and encouraging greater
participation and interaction. Future research directions include conducting quantitative
assessments of the platform's performance, such as evaluating the efficacy of comfort, health, and
energy-saving measures, and quantifying occupant participation and behavior modification

achieved through its use.

6 Conclusion

The COVID-19 pandemic and other severe airborne diseases have underscored the critical need
for effective health monitoring in facilities management, as improper strategies can have serious
public health implications. Consequently, the simultaneous monitoring of health risks, energy
consumption, and thermal comfort is now essential for maintaining sustainable built environments.
This study introduces a real-time, cloud-based integrated platform that significantly advances
adaptive built environment management. The platform stands out for several key reasons:

o Consolidated Functionality: It combines all essential functionalities into a single system,
ensuring efficient data exchange and interoperability across devices.

o Real-Time Simulation: It enables real-time simulations of critical aspects of smart building
management—specifically health, energy, and thermal comfort—using data from IoT
sensing networks and cloud computing technologies.

e Al-Based Persuasion: The platform features an Al-based conversational agent designed to
encourage healthy occupant behaviors and energy-saving practices, effectively balancing

the tradeoffs between health, energy, and thermal comfort.
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A survey conducted to assess the effectiveness of the persuasive system revealed high adoption
rates (95.59%) for suggestions related to improving indoor air quality and health, compared to
79.90% for adjusting clothing to enhance thermal comfort. This indicates a strong willingness

among participants to adopt sustainable practices under the platform's persuasive strategy.

By providing real-time, room-level information and comprehensive views of the building
environment, the platform allows facility management teams to visualize the impact of their
decisions and adjust environmental setpoints accordingly. The integrated persuasion system
further enhances interactions between occupants and management, promoting behaviors that
support sustainability. By taking occupant preferences into account, the platform not only
improves occupant satisfaction but also contributes to the overall sustainability of the building. A
case study conducted in a university building section demonstrated the platform’s capabilities and
the extensive information it can provide, reinforcing the potential for this system to drive energy

conservation and sustainable practices.
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Appendix A

Table S1. Distribution of survey responses on participant willingness.

Answers Q1 Q2 Q3 Q4 Q5 Q6
Yes responses 44 52 56 58 59 57
No responses 24 16 12 10 9 11
Yes rate (%) 64.71 76.47 82.35 85.29 86.76 83.82
No rate (%) 35.29 23.53 17.65 14.71 13.24 16.18
Answers Q7 Q8 Q9 Q10 Q11 Q12
Yes responses 65 67 67 65 62 64
No responses 3 1 1 3 6 4
Yes rate (%) 95.59 98.53 98.53 95.59 91.18 94.12
No rate (%) 4.41 1.47 1.47 4.41 8.82 5.88
Appendix B

Below are the survey questions depicted in Section 4.5.

1. In summer, you feel a bit hot, and the current room temperature is slightly higher than the
optimal temperature (e.g., 24°C). We suggest that you wear cooler clothing to save some energy.
Compared to directly lowering the air conditioning, would you be willing to accept this
suggestion?

2. In summer, you feel a bit hot, but the current room temperature is already lower than the optimal
temperature. We suggest that you remove a few layers of clothing to cool down. Would you be
willing to do this?

3. In summer, you feel a bit cold, but the current room temperature is actually higher than the
optimal temperature. We suggest that you wear more clothing or use a blanket so that you don't
have to increase the air conditioning. Would you be willing to do this?

4. In winter, you feel a bit hot, but the current room temperature is already lower than the optimal
temperature. We suggest that you remove a few layers of clothing to cool down. Would you be
willing to do this?

5. In winter, you feel a bit cold, but the current room temperature is already higher than the optimal
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temperature. We suggest that you wear more clothing so that you don't have to increase the heating.
Would you be willing to do this?

6. In winter, you feel a bit cold, and the current room temperature is indeed slightly lower than the
optimal temperature. We can ask the management to increase the heating, but you can also wear
more clothing to save energy. Would you be willing to do this?

7. You feel that the indoor air quality is good, but according to calculations, the risk of infectious
disease transmission in this room is high. We suggest that you move to a room with a more suitable
environment. Would you be willing to move?

8. You feel that the indoor air quality is not very good, and the risk of infectious disease
transmission in this room is high. We suggest that you move to a room with a more suitable
environment. Would you be willing to move?

9. You feel that the air quality is poor, but in fact, the indoor air quality is good. However,
according to calculations, the risk of infectious disease transmission in this room is high. We
suggest that you move to a room with a more suitable environment. Would you be willing to move?
10. You feel that the indoor air quality is poor, and indeed the air quality is quite bad. At the same
time, the risk of infectious disease transmission in this room is high. We suggest that you move to
a room with a more suitable environment. Would you be willing to move?

11. You feel that the indoor air quality is poor, but in fact, the indoor air quality is good, and the
risk of infection is low. Although you feel uncomfortable, the overall environment is good. We
suggest that you take a temporary break outside to relax and alleviate discomfort. Would you be
willing to do this?

12. You feel that the indoor air quality is poor, and indeed the air quality is quite bad, but the risk
of infection is low. We suggest that you move to a room with better air quality. Would you be

willing to move?
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