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A Large Language Model-based Platform for Real-Time Building Monitoring and 1 

Occupant Interaction 2 

Abstract 3 

Effective management of indoor environments requires a comprehensive evaluation of health, 4 

energy consumption, and thermal comfort. However, real-time assessment of these factors is 5 

challenging due to the lack of integrated applications that combine IoT technology, real-time 6 

simulation, and user-friendly interfaces for communication. To address these challenges, this 7 

research introduces a novel platform specifically designed to manage health, energy consumption, 8 

and thermal comfort in smart buildings, leveraging IoT-based building information modeling 9 

(BIM), cloud computing, and an AI-powered conversational suggestion system based on the large 10 

language model (GPT). The platform integrates real-time monitoring, simulation, alerting, and 11 

persuasion capabilities to manage health, energy consumption, and thermal comfort, enabling 12 

responsive building environment controls by assessing tradeoffs among these dimensions and 13 

providing timely recommendations. Additionally, it employs persuasive techniques to encourage 14 

occupants to adopt environmentally-friendly practices. A case study in a university building 15 

demonstrated the platform’s functionality and visualization capability. A survey assessing the 16 

persuasive system revealed high adoption rates—95.59% for switching rooms to improve indoor 17 

air quality and health, and 79.90% for adjusting clothing to enhance thermal comfort—indicating 18 

strong participant willingness to adopt sustainable practices through the platform’s strategies. The 19 

key contribution of this research is the development of a comprehensive, real-time platform that 20 

enhances indoor environmental quality and sustainability through advanced monitoring, analysis, 21 

and social interaction. 22 
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Nomenclature 27 

IoT Internet of Things 

BIM Building Information Modeling 

GPT Generative Pre-trained Transformer 

GHG Greenhouse Gas 

SBS Symptoms of Sick Building Syndrome  

AI Artificial Intelligence 

HVAC Heating, Ventilation, and Air Conditioning 

PMV Predicted Mean Vote 

PPD Predicted Percentage of Dissatisfied 

IAQ Indoor Air Quality 

BMS Building Management Systems 

LLM Large Language Model 

NLP Natural Language Processing 

BIM Building Information Modeling 

MEP Mechanical, Electrical, and Plumbing  

CO2 Carbon Dioxide 

VOC Volatile Organic Compounds 

PM2.5                       Particulate Matter with an aerodynamic diamete≤2.5 micrometers 

PPM Parts per Million 

AWS Amazon Web Services 

Amazon EC2            Amazon Elastic Compute Cloud 

API Application Programming Interface 

UI                               User Interface 

VAV                        Variable Air Volume 𝑁𝑡𝑜𝑡𝑎𝑙(𝑡) Building population at time step 𝑡 𝑁𝑖(𝑡)  Occupancy in space 𝑖 at time step 𝑡 𝐼𝑖(𝑡) Number of infectors at time step 𝑡 in space 𝑖 at time step 𝑡 𝜆𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡)       Space infiltration air exchange rate in space 𝑖 at time step 𝑡 𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡)      Space mechanical ventilation rate in space 𝑖 at time step 𝑡 𝑘de𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡) Deposition rate of viruses at time step 𝑡 𝑘decay(𝑡) Decay rate for virus infectivity at time step 𝑡 𝑞 Quanta generation rate 𝑉𝑖 Volume of space 𝑖 
IR Local infection rate 𝜇(𝑡) Number of quanta breathed by a susceptible occupant from time 𝑡 to 𝑡 + 1 
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𝑃(𝑡) Infection risk associated with time 𝑡 𝑇 Space temperature  𝑅𝐻 Space relative humidity  𝐸𝑠 Specific enthalpy  𝑝𝑣 Vapor pressure  𝑝𝑠 Saturated vapor pressure  𝑉𝑠 Specific volume per kilogram of dry air 𝐶𝑚 Moisture content  𝑝𝑏 Barometric pressure 𝐶𝐻 County hospitalization data  𝐼𝐻𝑅            Infection-hospitalization ratio  𝑁𝑖(𝑡)  Occupancy in space 𝑖 at time step 𝑡 
 28 

1 Introduction 29 

In the twenty-first century, sustainable buildings have emerged as a critical focus for both 30 

developing and developed nations [1]. Research indicates that the building sector is a major 31 

consumer of energy, accounting for approximately 30%–40% of global energy use and over one-32 

third of greenhouse gas (GHG) emission [2,3], which significantly contribute to Global Warming 33 

and Climate Change [4,5]. As such, reducing energy consumption in buildings and achieving 34 

sustainability are imperative measures to mitigate these adverse effects. Beyond the aspect of 35 

energy use, human perception of indoor environments plays a vital role in sustainable building 36 

maintenance [6]. With individuals spending more than 90% of their time indoors [7], building 37 

configuration and operation greatly influence daily activities, performance and overall well-being. 38 

Human thermal comfort is widely recognized as a key factor in enhancing satisfaction within 39 

indoor environments [8,9]. Additionally, the last decades have seen a notable increase in 40 

respiratory infectious diseases (e.g., influenza [10], measles [11], SARS-CoV-2 [12–14]), 41 

profoundly affecting global, society, and the economy. More than 90% of infectious disease 42 

outbreaks occur indoors, particularly in densely populated public areas [15]. Therefore, alongside 43 

energy consumption and thermal comfort, health has become a pivotal dimension of building 44 

sustainability, necessitating robust monitoring and operational strategies to ensure occupant well-45 
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being. Consequently, it is crucial to achieve real-time assessment and analysis of the tradeoffs 46 

between these three major dimensions, which prevents the proactive control of and response to 47 

pandemics. Facility management teams play an essential role in making informed decisions about 48 

control measures, and they must have a comprehensive understanding of the built environment. 49 

Beyond the management teams, building occupants are not merely passive users; they actively 50 

influence the environments through their interactions with building systems. These interactions 51 

significantly impact the thermal and energy dynamics of the buildings [16,17]. Hence, it is equally 52 

important to engage with and persuade occupants to actively participate in improving their quality 53 

of life and contributing to a healthy and sustainable environment. Such occupancy engagement is 54 

essential for the promotion and implementation of acceptable sustainable practices, which will 55 

lead to improved health outcomes, enhanced comfort, and reduced energy consumption. 56 

 57 

Low-quality indoor environments can have negative effects on residents, leading to increased 58 

health issues such as respiratory problems, the exacerbation of asthmatic issues, headaches caused 59 

by pollutants, and symptoms of sick building syndrome (SBS) [18]. SBS is a condition in which 60 

occupants experience discomfort and health symptoms while spending time in a building, often 61 

associated with poor indoor air quality and inadequate ventilation. In addition, inadequate indoor 62 

environments can accelerate the spread of diseases, especially airborne viruses [19]. In addition to 63 

health concerns, suboptimal indoor environments can result in reduced performance, productivity, 64 

and discomfort among occupants [20]. Implementing effective building management measures is 65 

crucial for facility management teams to ensure a healthy and sustainable environment while 66 

reducing energy consumption. Hence, a timely awareness and understanding of the built 67 

environment are essential for facility management teams to make informed decisions and take 68 

appropriate actions. An additional challenge for facility management teams is that variations in 69 
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occupant behavior can lead to significant differences in the built environment and building energy 70 

consumption [21]. For example, studies have found that identical housing units can exhibit 71 

electricity consumption variations of up to 600% during certain periods of the year [22], while 72 

energy consumption in townhouses can vary by a factor of two [23]. These findings highlight the 73 

significant influence of human activities and decision-making on energy use and indoor 74 

environmental conditions. Improper occupant behaviors can also negatively impact living quality 75 

and the built environment, having adverse effects that not only influence the occupants themselves 76 

but also others sharing the same space. Conversely, the adoption of appropriate occupant behaviors 77 

can result in significant energy savings and contribute to a better indoor environment for all 78 

occupants. Therefore, the development of an integrated platform that caters to the needs of both 79 

facility management teams as well as that of occupants is significant for ensuring the maintenance 80 

of a sustainable and healthy built environment. 81 

 82 

There are currently no existing integrated platforms that can consolidate the essential 83 

functionalities of monitoring, simulation, alerting, and persuasion in the context of smart building 84 

management. Three knowledge gaps present significant challenges in the development of such a 85 

service. Firstly, there is the absence of an integrated technology that consolidates all the necessary 86 

functionalities into a single platform. This platform should be capable of completing multiple tasks 87 

in real time, including data acquisition and processing, conducting simulations for different 88 

models, providing alerts and communication, and persuading occupants through an understanding 89 

of their preferences. Each of these capabilities is complex and requires advanced technological 90 

infrastructure to fully realize its functionalities. Secondly, there is the inability to simultaneously 91 

monitor and simulate variations in health, energy, and thermal comfort in real-time, while still 92 

considering both aspect-specific and mutually related parameters. Real-time health assessment 93 
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poses distinct challenges, primarily stemming from the complexity of retrieving timely 94 

epidemiological-related parameters from specific building locations. To implement effective 95 

measures for the protection of public health and safety within buildings, it is imperative to have 96 

access to up-to-date and location-specific data on epidemiological factors. The real-time 97 

assessment of energy consumption and thermal comfort also faces similar difficulties, including 98 

the development of reliable methods for the real-time simulation of occupancy fluctuations, which 99 

would enable the tradeoff analysis between health, energy, and thermal comfort. Finally, there is 100 

an absence of an AI-based application for the built environment that can interact with both facility 101 

management teams and occupants as well as promote healthy behaviors and energy-saving 102 

practices. This application should include functionalities, such as alerting facility management 103 

teams about abnormal situations (e.g., poor indoor environment, occupant discomfort, and health 104 

risks) while featuring a persuasive conversational system that attempts to convince occupants to 105 

adopt environmentally friendly behaviors, actively participate in improving their living conditions, 106 

and promote energy savings. However, current technologies lack these capabilities and often 107 

overlook the importance of occupant engagement in building management. 108 

 109 

To address these knowledge gaps, this research proposes the development of an integrated 110 

platform for real-time building monitoring and communication aimed at improving overall 111 

building management. An IoT sensor network was deployed to enable real-time monitoring, which 112 

allowed for the collection of data such as room occupancy and air quality. Off-the-shelf occupant 113 

counters were used to determine room occupancy, while air quality sensors were used to measure 114 

the levels of indoor pollutants like carbon dioxide (CO2), volatile organic compounds (VOC), and 115 

fine particulate matter (PM2.5). Cloud computing technology was used to ensure real-time data 116 

acquisition, storage, processing, simulation of the health, energy, and comfort models, and tradeoff 117 
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analysis. The cloud-hosted platform also allowed for all functionalities to be accessed in real time 118 

through an integrated web-based application. To enable effective communication, the platform 119 

incorporates two key capabilities. Firstly, it provides visualizations of the monitored data and 120 

simulated results and is equipped with an alert system that notifies facility management teams of 121 

any abnormalities detected in the indoor environment. This capability primarily assists facility 122 

management teams with decision-making processes. Secondly, the platform provides 123 

recommendations and utilizes an AI-based communication system empowered by LLM to 124 

persuade building occupants and encourage them to adopt more environmentally friendly 125 

measures. By raising awareness of the positive impact of such behaviors on indoor environment 126 

quality and energy savings, occupants may be motivated to make conscious, environmentally 127 

friendly choices. In addition, the interaction between occupants and facility management teams 128 

allows for the adoption of occupant-preferred living environments and operation strategies, 129 

improving occupant satisfaction. 130 

 131 

The manuscript is structured as follows: Section 2 reviews relevant literature. Section 3 details the 132 

study's methodology, including monitoring, simulation, and web app development. Section 4 133 

presents the case study results, followed by a discussion and future research directions in Section 134 

5. Section 6 concludes with a summary of key contributions. 135 

 136 

2 Literature review 137 

2.1 Impacts of building environment factors on health, energy, and comfort 138 

 The regulation of heating, ventilation, and air-conditioning (HVAC) systems significantly impacts 139 

human comfort and building energy usage [24]. Indoor thermal comfort is a crucial aspect affecting 140 

the well-being, health, and productivity of individuals within a built environment [25]. Various 141 
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factors related to the surrounding conditions influence occupants' comfort levels. Fanger's model, 142 

which underpins the ASHRAE-55 and ISO 7730 standards, is a widely recognized adaptive 143 

thermal comfort model that accounts for individual differences such as metabolic rate and clothing 144 

insulation [26]. This model was further refined to establish optimal comfort levels for occupants, 145 

utilizing the predicted mean vote (PMV) and the predicted percentage of dissatisfied (PPD) as key 146 

metrics [27]. Indoor air temperature has a profound effect on thermal comfort perception. Elevated 147 

indoor temperatures can cause discomfort and health issues like heat stress, potentially leading to 148 

more severe health problems [28,29]. Similarly, relative humidity is a critical component 149 

influencing thermal comfort and environmental satisfaction. Low humidity levels have been 150 

shown to increase fatigue among undergraduate students compared to higher humidity levels [30]. 151 

Air velocity also influences thermal comfort, with studies showing that increased air velocity can 152 

lower mean skin temperature and alleviate thermal discomfort in hot and humid climates [31]. For 153 

instance, Zhou et al. [32] found a reduction in mean skin temperatures by 0.2°C–0.6°C for every 154 

1 m/s increase in air speed, although inconsistent ventilation patterns may reduce thermal comfort. 155 

 156 

Beyond thermal comfort, indoor health risks have gained significant attention in recent years due 157 

to the recognition of the role that built environments play in the spread of disease. Several disease 158 

outbreaks have been proven to be transmitted through the airborne route, such as measles [11], 159 

influenza [10], severe acute respiratory syndrome coronavirus (SARS-CoV) [33], and SARS-CoV-160 

2 [12,34]. Numerous studies have explored the impact of various built environment parameters on 161 

the transmission dynamics of airborne pathogens. Factors such as temperature, humidity, and 162 

airflow rate have been identified as critical determinants that influence the survival, infectivity, 163 

and movement of pathogens within enclosed spaces [35]. For instance, research has shown that low 164 

humidity levels can enhance the stability and transmissibility of influenza viruses [36], while 165 
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higher temperatures and increased airflow rates can help reduce the concentration and dispersion 166 

of airborne pathogens for influenza and SARS-CoV-2 viruses [37–39]. These findings underscore 167 

the importance of managing indoor environments in the context of mitigating the consequences of 168 

viral transmission. 169 

 170 

To maintain sustainable building environments, the aim of managing and adjusting HVAC system 171 

settings remains centered on upholding thermal comfort and promoting health, albeit at the 172 

expense of energy consumption. The energy usage is contingent upon a multitude of factors, 173 

including external climatic conditions and internal variables such as occupancy rates, preferences, 174 

heat, and moisture levels [40–42]. HVAC systems play a vital role in regulating indoor temperature 175 

and humidity to sustain a comfortable indoor environment [43]. Notably, the COVID-19 pandemic 176 

has heightened the significance of indoor ventilation, thereby further amplifying the energy 177 

demands. However, the impacts of indoor environmental factors on health, energy, and comfort 178 

remain unclear during the monitoring process due to the lack of real-time simulation capabilities. 179 

This limitation hinders the ability to account for time-varying environmental factors and their 180 

timely effects on the tradeoff relationships between health, energy, and comfort. 181 

 182 

2.2 IoT-integrated digital twin 183 

The emergence of digital twin technology has revolutionized the field of asset management and 184 

monitoring, providing new opportunities for enhanced control and efficiency. Digital twin 185 

technology enables the creation of a virtual counterpart that mirrors the physical asset, leveraging 186 

the power of IoT to collect and integrate real-time data from sensors installed in the asset of interest 187 

[44–46]. Recent studies have explored IoT-integrated digital twin technologies to enhance building 188 

management practices. Zaballos et al. [47] focused on a smart campus concept involving the 189 
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integration of BIM tools with IoT-based sensor networks. Their work aimed to monitor the 190 

environment, detect emotions, and provide insights into students, leading to the development of 191 

an updated digital twin for the campus. Tagliabue et al. [48] utilized digital twin technology to 192 

conduct a sustainability assessment of an educational building by employing an IoT-enabled 193 

dynamic approach involving real-time evaluation to provide user-centered control of sustainability 194 

criteria. This involved constant interaction between the digital twin and the sensors that monitored 195 

indoor comfort, air quality conditions, and energy behavior. The digital twin framework supported 196 

decision-making processes associated with sustainability. Yitmen et al. [49] proposed a modified 197 

cognitive digital twin model focused on using their cognitive ability to detect actions and reasons 198 

to inform dynamically processed optimization strategies. By integrating machine learning, cyber-199 

physical systems, artificial intelligence, and IoT technologies, their model aimed to support 200 

decision-making in building lifecycle management. Shahinmoghadam et al. [50] developed a BIM-201 

and IoT-based virtual reality tool for the assessment of real-time thermal comfort with 3D data 202 

visualization. Zhang et al. [51] designed a multi-indicator adaptive ventilation system for indoor 203 

air quality control, using real-time data from the IoT and a digital twin control platform. However, 204 

none of these studies utilized IoT-based digital twin technologies to monitor, model, and simulate 205 

health and infection risks associated with hazardous viruses. In addition, the ability to analyze the 206 

tradeoff relationships between health, energy, and thermal comfort in the context of smart building 207 

operations remains relatively unexplored. Addressing these limitations is essential for advancing 208 

the application of IoT-based digital twin technologies aimed at maintaining a healthy and 209 

sustainable built environment. 210 

 211 

2.3 Communications technology in building management 212 

Communication is an essential component of smart building monitoring and operation due to the 213 
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importance of sharing information with facility management teams. Various studies have 214 

developed different methods of sharing this information with users, including web-based and 215 

mobile applications. Mataloto et al. [52] developed an IoT system as part of a larger building 216 

energy management system (BEMS), including a platform that used data visualization templates 217 

to create a dashboard that allowed facilities management to identify appropriate actions that could 218 

lead to potential energy savings. Marinakis and Doukas [53] developed a recommendation system 219 

for intelligent BEMS in residential settings that was capable of pushing notifications when 220 

parameters exceeded certain thresholds as well as providing analytical, tailor-made 221 

recommendations and energy-saving tips. Fernando et al. [54] developed a web application that 222 

acted as a dashboard through which users could control the platform and access the energy 223 

consumption service. Ribino et al. [55] proposed a human-like social robot-based approach to 224 

monitoring indoor environment quality. Currently, communication systems in building operation 225 

and management applications primarily focus on tasks such as data visualization and notifications. 226 

Recommendations provided during communication are often targeted towards specific, singular 227 

objectives, such as reducing energy consumption or improving IAQ. However, there remains a 228 

significant gap in terms of the comprehensive analysis of tradeoff relationships between different 229 

dimensions such as energy, the indoor environment, and health risks within these systems. In 230 

addition, there is a notable knowledge gap associated with the integration of interactive tools that 231 

can understand and communicate with users in the field of building management systems (BMS). 232 

The effectiveness of these tools would be significantly increased should they be able to fully 233 

comprehend simulation results and current environmental conditions, as well as understand user 234 

concerns and preferences as expressed through natural language. Developments in this area are 235 

expected to bridge this knowledge gap and enhance communication between users and the BMS. 236 

 237 
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With the recent developments in natural language processing (NLP) as well as groundbreaking 238 

advancements in large language models (LLMs) such as ChatGPT, the integration of similar 239 

technology into communication systems is extremely promising. ChatGPT is an AI language 240 

model developed by OpenAI based on the GPT-4 architecture [56]. Trained in a diverse range of 241 

textual data, including scientific literature, technology articles, and other written sources, ChatGPT 242 

is designed to generate human-like text in response to user prompts. The GPT-4 model—upon 243 

which ChatGPT is built—has gained a considerable amount of attention in the field of NLP [57]. 244 

Its applications span various domains, including content generation, language translation, and 245 

virtual assistance. GPT-4 is exposed to a vast corpus of textual information during training, 246 

including books, articles, websites, and publicly available written content. Consequently, GPT-4 247 

is uniquely capable of parsing the suggestion features present in BMS platforms, while also having 248 

the potential to persuade end-users to make rational changes to their behavior by providing them 249 

with an understanding of the current condition of the building. However, the integration of this 250 

technology into the field of BMS has not been explored in existing studies. Consequently, the novel 251 

and unique approach of integrating a GPT-based conversational system with simulation results in 252 

a BMS platform to provide persuasive suggestions holds significant promise. 253 

 254 

3 Methodology 255 

The primary objective of this study is to develop a real-time building environment management 256 

system that leverages sensor data, simulation results, cloud computing, and a web app. This 257 

integrated approach aims to optimize building management by providing real-time insights and 258 

actionable recommendations for improving health, comfort, and energy efficiency. The proposed 259 

framework comprises three phases: preparation, simulation, and web app development, as 260 

illustrated in Figure 1.  261 
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 262 

In the preparation phase, a BIM of the target building was developed, composed of mechanical, 263 

electrical, and plumbing (MEP) as well as architectural components. This facilitates the 264 

development of the energy model used for the EnergyPlus simulation. Specifically, the 265 

architectural model was imported into SketchUp to represent the building envelope, while the MEP 266 

model was utilized to configure the HVAC system, which was further refined using OpenStudio. 267 

In addition, an IoT sensor network was set up in the building to enable the real-time monitoring of 268 

relevant indoor environment parameters and occupancy status. In the simulation phase, a 269 

comprehensive methodology was implemented to generate outputs describing energy 270 

consumption, thermal comfort, and infection risks based on the collected IoT data and building 271 

configurations. Energy consumption and thermal comfort were simulated through the EnergyPlus 272 

API, while infection risk was simulated using programming scripts that incorporated up-to-date 273 

disease data on the COVID-19 pandemic. During the web app development phase, the platform 274 

that integrated the entire process, ranging from data acquisition to data visualization, was designed 275 

and hosted on a web server environment. This phase focused on providing three primary features. 276 

Firstly, it involved the retrieval of IoT data and up-to-date disease data from cloud storage, which 277 

was then provided to the simulation process. Secondly, the app ran simulations and collected these 278 

results. Finally, the interactive app visualized and communicated the simulated outcomes to users 279 

through the integration of BIM and GPT technologies. The interactive app allowed real-time access 280 

to health, energy, comfort, and air quality information in selected rooms of interest. The developed 281 

platform integrated the three phases within a cloud environment, leveraging cloud computing 282 

technology to store IoT data, perform simulations, and host the web app on the same server. This 283 

integrated framework allowed for efficient computation and real-time communication with users 284 

based on monitored and simulated results. 285 
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 286 

Figure 1. Framework for the development of the web-based application. 287 

 288 

3.1 Preparation 289 

3.1.1 Creating the building energy model 290 

The building energy model used in the simulations was generated by combining the building 291 

architecture model and the MEP model. The architectural model was imported into SketchUp, 292 

enabling adjustments to the building envelope to accurately depict the building envelope and 293 

streamline the energy simulations. The HVAC system of the building was subsequently 294 

incorporated into the model using OpenStudio based on the HVAC configuration from the MEP 295 

model. These modifications were then saved, resulting in a comprehensive model that could be used 296 

for energy simulations using EnergyPlus API. 297 

 298 
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3.1.2 Configuring the IoT sensing system 299 

An IoT sensing system was implemented in our case study area to allow for the real-time 300 

monitoring of the building environment. The off-the-shelf IoT hardware devices were used to 301 

collect data on air quality and occupancy at the room level. The architecture of this system is 302 

depicted in Figure 2, illustrating the components and their connections within the IoT sensing 303 

system. 304 

Figure 2. Architecture of the IoT system.305 
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The IoT system consists of two main types of devices: IoT sensors and a wireless gateway. The off-306 

the-shelf IoT sensors employed in the system included IAQ sensors for monitoring indoor air 307 

quality and a room occupancy sensor that tracked the number of people in the room. The IAQ 308 

sensors were composed of pollutant-specific sensors, including CO2, VOC, and PM2.5 sensors, with 309 

data collected and measured in parts per million (PPM) for CO2, and micrograms per cubic meter 310 

(µg/m3) for PM2.5 and VOC. The VOC sensors also measured the concentration of other pollutants, 311 

such as carbon monoxide, ethane, isoprene, and acetone. The system also collected other 312 

environmental data, such as temperature (°C), and relative humidity (%). The room occupancy 313 

sensor utilized overhead counters to count the number of occupants. The wireless gateway was 314 

used to manage the IoT sensors and was responsible for collecting data from the sensors and 315 

transmitting them to the Microsoft Azure Cloud Portal where it was saved and accessed by Amazon 316 

Web Services (AWS) for further analysis. Figure 3 presents an example of a set-up of the hardware 317 

environment, with the IAQ sensor highlighted in the green box, and the gateway highlighted within 318 

a blue box. 319 

 320 

Figure 3. An example set-up of the hardware environment. 321 
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In addition to the hardware setup, a building-IoT sensor solution website was used to create a virtual 322 

representation of the case study site. In this virtual representation, different rooms were defined as 323 

spaces, facilitating the mapping and identification of device locations within the building. In 324 

addition, the website was used to create virtual devices, including the gateway and sensors, and 325 

synchronize them with their corresponding physical devices. The status and location of these 326 

devices were visualized on the website, with different shapes representing different devices (Figure 327 

4). 328 

 329 

Figure 4. Layout of hardware in the case study site. 330 

 331 

3.2 Simulation 332 

Once the IAQ and occupancy data have been collected from the off-the-shelf sensors, appropriate 333 

simulations were conducted utilizing the data. The simulation phase involves two main 334 

components: 1) energy consumption and thermal comfort simulation, and 2) infection risk 335 

simulation. The energy consumption and thermal comfort simulation were conducted using 336 
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EnergyPlus API. The default setpoints for the indoor environment were configured based on 337 

common operational scenarios. For example, during working hours, the heating and cooling 338 

setpoints were maintained at 22°C and 26°C, respectively, while during non-working hours, the 339 

setpoints were adjusted to 15.6°C and 26.7°C, respectively [58]. The outdoor air supply rate was set 340 

to 0.0094 m3/s per person [59], and an economizer operational temperature of 28°C was 341 

implemented. The default relative humidity range was set to be between 30%–60%, considering a 342 

comfortable living environment [60]. Real-time room occupancy was monitored using the 343 

occupancy sensor system, which was collected, transmitted, and saved on a Windows server hosted 344 

on an Amazon Elastic Compute Cloud (Amazon EC2). This integrated approach ensures that the 345 

simulation process uses up-to-date occupancy information, allowing for the accurate analysis and 346 

assessment of energy consumption, thermal comfort, and infection risks. 347 

 348 

The web application allows facility managers to customize their desired setpoints for the indoor 349 

environment with the capability of reading idf files as text, a file format commonly used by 350 

EnergyPlus. When users input their desired setpoints, the application allows direct adjustments to 351 

the idf file by overwriting the original text. This functionality provides facility managers with a 352 

comprehensive understanding of the changes in energy consumption, thermal comfort, and 353 

infection risks associated with their desired settings, giving them insights into the effects of 354 

different HVAC operation strategies. 355 

 356 

In the context of infection risk simulations, our approach considered the dynamic indoor 357 

environment within each zone, including factors such as temperature, humidity, and ventilation 358 

rate, as well as fluctuating occupancy levels. A derivative of the Wells–Riley equation was used 359 

to estimate room infection risk, which was developed and described in detail in our previous 360 
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publication [61]. This modified equation allows for the modeling of the hourly zone environment 361 

and occupancy changes, enabling a more comprehensive assessment of infection risks. All 362 

estimated infection risk data refers to the degree of infection risk at the time when the web app 363 

was executed. The hourly infection risk is estimated using Eq. 1. 364 

𝜇(𝑡) = 1𝑁𝑡𝑜𝑡𝑎𝑙(𝑡)  ×  𝑝̅  ×  𝛴𝑖 (𝑁𝑖(𝑡)∫ 𝐶𝑞𝑢𝑎𝑛𝑡𝑎,𝑖𝑡+1
𝑡 (𝑡, 𝜏)𝑑𝜏) 

𝐶𝑞𝑢𝑎𝑛𝑡𝑎,𝑖(𝑡) = 𝐼𝑖(𝑡)𝑞𝑉𝑖𝐾𝑡𝑜𝑡𝑎𝑙,𝑖(𝑡) (1 − 𝑒−𝐾𝑡𝑜𝑡𝑎𝑙(𝑡)) 𝐾𝑡𝑜𝑡𝑎𝑙,𝑖(𝑡) = 𝜆𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡)  + 𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡)  +  𝑘𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡)  + 𝑘𝑑𝑒𝑐𝑎𝑦(𝑡) 𝐼𝑖(𝑡) =  𝐼𝑅 ∗  𝑁𝑖(𝑡) 𝑃(𝑡) =  1 − 𝑒−𝜇(𝑡) 

 

 

(1) 

𝑡 is the time step with a step size of one hour. 𝑁𝑡𝑜𝑡𝑎𝑙(𝑡) is the building population at time 𝑡. 𝑁𝑖(𝑡) 365 

is the occupancy in space 𝑖 at time step 𝑡, which is achieved from real-time sensing data. 𝐼𝑖(𝑡) is 366 

the number of infectors at time step 𝑡 in space 𝑖. 𝜆𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡)  is the space infiltration air 367 

exchange rate in space 𝑖, 𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡) is the space mechanical ventilation rate,  𝑘𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡) 368 

is the deposition rate of viruses, and 𝑘𝑑𝑒𝑐𝑎𝑦(𝑡) is the decay rate for virus infectivity. 𝑞 is quanta 369 

generation rate, set as 142 quanta/h according to the study conducted by Buonanno et al. [62]. 𝑉𝑖 370 

is the space volume, 𝐼𝑅 is the local infection rate (%), estimated based on the latest epidemiological 371 

situation. 𝜇(𝑡) is the number of quanta breathed by a susceptible occupant from time 𝑡 to 𝑡 + 1. 372 𝑃(𝑡)  is the infection risk associated with time 𝑡. Specifically, to account for the impact of 373 

environmental factors on the survival and persistence of viruses, the viral decay rate and viral 374 

deposition rate are calculated using Eq. 2 [63,64]. 375 
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{  
   
   
  𝑟 =  𝑟0 ∗ √0.4/(1 −  𝑅𝐻)3𝑘𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 2𝛥𝜌𝑔𝑟2 (9𝜇𝑎𝐻)⁄𝑘𝑑𝑒𝑐𝑎𝑦 =  16.9803 +  0.0622𝐸𝑠 −  0.796𝑝𝑣 −  21.95𝑉𝑠𝐸𝑠 = 1.007𝑇 −  0.026 + 𝐶𝑚(2501 +  1.84𝑇) 𝑝𝑣 = 𝑝𝑠 ∗ 𝑅𝐻 100⁄𝑉𝑠 = (0.287 +  0.461𝐶𝑚) ∗  273.15 +  𝑇𝑝𝑏𝐶𝑚 = 0.622𝑝𝑣 (𝑝𝑏 − 𝑝𝑣)⁄𝑝𝑠 = 0.61078 17.2694𝑇𝑇 + 237.99

 

 

 

 

(2) 

Where 𝑇 is the space temperature, 𝑅𝐻 is space relative humidity, 𝐸𝑠  is the specific enthalpy, 𝑝𝑣 is 376 

the vapor pressure, 𝑝𝑠 is the saturated vapor pressure, 𝑉𝑠 is the specific volume per kilogram of 377 

dry air, 𝐶𝑚 is the moisture content, and 𝑝𝑏  is the barometric pressure. 378 

 379 

3.3 Cloud computing 380 

3.3.1 Real-time data retrieval and storage 381 

Real-time data was retrieved and stored using IoT sensors, including the latest updates on the 382 

epidemic situation. The IoT data is collected using sensors deployed throughout the building, 383 

which are then transmitted to the Amazon EC2 for storage and processing. Epidemic situation data 384 

is obtained through an API provided by Covid Act Now [65]. This API can be integrated into the 385 

cloud-based system, ensuring that the latest epidemic data is readily available for analysis and 386 

simulation. Specifically, the epidemic data provided include the county hospitalizations per 387 

100,000 people. The infection rate is then estimated using Eq. 3: 388 

𝐼𝑅 = 𝐶𝐻𝐼𝐻𝑅 ∗ 100,000 
(3) 

where 𝐼𝑅 is the county infection rate, 𝐶𝐻 is county hospitalization data, 𝐼𝐻𝑅 is the infection-389 

hospitalization ratio [66]. 𝐼𝑅 is the prevalence parameter used in the risk simulation model. 390 

 391 
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3.3.2 Computation of health, energy, and comfort parameters 392 

The cloud computing approach determines the health, energy, and comfort parameters through a 393 

combination of mathematical models and simulation programming on the cloud server. Health 394 

parameters are calculated using the Python implementation of a revised W– R model, which is then 395 

saved in a Windows server hosted within the AWS infrastructure. An interface was included in the 396 

Python script to facilitate the retrieval of prevalence data from the front end of the web app, 397 

allowing for seamless communication between the two scripts. The Windows server described 398 

above was specifically built using the EC2 service. 399 

 400 

The Python API provided by the EnergyPlus simulation software was used to compute the energy 401 

consumption and thermal comfort parameters. This simulation software utilizes the building energy 402 

model, along with real-time occupancy data, to calculate energy consumption and assess thermal 403 

comfort. These Python scripts are responsible for triggering the simulation process as required 404 

as well as generating the relevant outputs pertaining to energy consumption and thermal comfort. 405 

Similar to the scripts responsible for the computation of health parameters, these Python scripts 406 

are stored within the same Windows server hosted on AWS, ensuring timely integration and 407 

accessibility. 408 

 409 

3.3.3 App hosting 410 

The web app is hosted on a Windows server, which serves as a repository for IoT data and the 411 

Python scripts responsible for cloud computing tasks. This integrated setup allows for the smooth 412 

integration of the app and the computing environment. Python scripts that handle various 413 

calculations and simulations are triggered by the web app whenever necessary. To facilitate this 414 

dynamic interaction, the web app sends inputs to the programming scripts via an XMLHttpRequest 415 
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object. This enables users to provide inputs through the web app's user interface (UI), which are 416 

then passed on to the scripts for processing. The outputs generated by the Python scripts are read 417 

by the web app using the same XMLHttpRequest object and are promptly presented using the 418 

app’s UI, providing users with relevant information in real time. This hosting configuration 419 

establishes a cohesive ecosystem in which the web app and programming scripts collaborate 420 

harmoniously, ensuring a seamless and efficient user experience. Furthermore, the web app 421 

eliminates the need for users to install additional software, as all of the provided functions are 422 

easily accessible through a simple URL. This streamlined approach enhances the app’s ease of use, 423 

in terms of both setup and interactivity, allowing a broader range of potential users to benefit from 424 

its functionalities. The app is not only designed for facility management teams but also for 425 

occupants, workers, or anyone temporarily present in the building. By removing the requirement 426 

for software installation, the app becomes more inclusive and user-friendly, catering to a wider 427 

audience and ensuring convenient access to its features. The flowchart of the proposed cloud 428 

computing system is shown in Figure 5. 429 

 430 

Figure 5. Flowchart of the cloud computing system 431 

 432 
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3.4 Web app development 433 

The web app developed in this study incorporates several key components aimed at assisting with 434 

facility management practices. Firstly, the app allows for the 3D visualization of the building model 435 

and time series data visualization, allowing for the real-time monitoring of the building 436 

environment. These visualizations aid facility managers by providing them with a comprehensive 437 

understanding of the current state of the facility. Facility managers can adjust the setpoints of the 438 

indoor environments based on their preference, while also providing them with any changes in the 439 

energy consumption or building environment that may arise as a result of these changes. In 440 

addition, an alert system allows facility managers to promptly identify and address any 441 

abnormalities or deviations from the desired conditions by providing timely alerts and notifications. 442 

An AI-based persuasion system was also developed to encourage desirable occupant behaviors 443 

and preferences. This integrated system provides facility managers with a deeper understanding of 444 

occupant-preferred measures, fostering effective interactions between occupants and facility 445 

managers. By leveraging AI technologies, this system offers personalized recommendations and 446 

suggestions to optimize both occupant satisfaction and facility management efficiency. Together, 447 

these components encompass a robust methodology that integrates visualization, alerts and 448 

notifications, and AI-based persuasion systems that allow facility managers to effectively monitor, 449 

respond to, and engage with the built environment and its occupants. 450 

 451 

3.4.1 Visualizations 452 

The web app was developed using the NodeJS and Bootstrap frameworks, creating a user-friendly 453 

interface that facilitates efficient data visualization and interaction. One notable feature of the app 454 

is the 3D visualization of the building architectural model made possible through its integration 455 

with Autodesk Platform Services. This functionality allows users to select specific rooms of 456 
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interest and observe them highlighted within the 3D building model. The 3D view of the building 457 

model can also highlight specific rooms to emphasize the presence of any abnormalities, drawing 458 

attention to rooms that require immediate attention or further investigation, aiding in effective 459 

decision-making and the prioritization of actions. The 3D building model is also fully interactive, 460 

allowing users to zoom in, pan around, and explore different parts of the building. This immersive 461 

and interactive visualization system enhances the user experience and provides users with a better 462 

spatial understanding of the layout of the building. Example visualization of the 3D building and 463 

the described functions can be found in Section 4. 464 

 465 

The app is also capable of visualizing the fluctuation of key parameters over time. Line plots are 466 

used to illustrate the dynamic changes in energy infection risk, energy consumption, and thermal 467 

comfort in specific rooms, allowing users to easily observe trends and identify potential areas of 468 

concern. Line plots are also utilized to visualize room temperature, humidity, and ventilation, 469 

providing insights into indoor environmental conditions. Finally, line plots are also used to show 470 

the cumulative infection risks of each room, allowing users to assess their individual infection risks 471 

based on the time spent in each room. This information can be used for high-infection risk alerts 472 

and proactive measures. Sample line plots can be found in in Section 4.3. 473 

 474 

3.4.2 Alerting system 475 

An alerting system was integrated into the app to provide comprehensive guidance and support to 476 

facilities management. This system utilizes simulation results associated with the user’s selected 477 

room to proactively trigger alerts. An alert can be triggered based on the following conditions: 478 

1. Cumulative Infection Risk: If the cumulative infection risk exceeds a predetermined threshold 479 

(e.g., 1%), then an automatic alert is triggered, notifying facility managers of potential health 480 
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risks and providing recommendations on various mitigation measures, such as increasing 481 

ventilation, reducing room occupancy, and implementing disinfection strategies such as the 482 

use of ultraviolet lights. 483 

2. Relative Humidity: When the relative humidity falls below 30% or exceeds 60%, an alert will 484 

be sent to facility managers. This threshold is established because various bacteria species that 485 

contaminate humidification and air-conditioning equipment thrive outside this humidity range 486 

[60]. An alert will be sent to facility managers, informing them about these humidity-related 487 

issues. These issues can be mitigated through the activation of humidifiers or dehumidifiers at 488 

low or high humidity, respectively. 489 

3. Thermal Comfort: Alerts are pushed if the thermal comfort levels deviate from predefined 490 

thresholds, such as when the predicted mean vote (PMV) exceeds 1 or falls below -1. This 491 

allows facility managers to take timely action in response to comfort-related concerns, such as 492 

adjusting the room temperature setpoints. 493 

4. Indoor air quality (IAQ): An alert is triggered when the IAQ exceeds acceptable thresholds. 494 

These thresholds are set for specific parameters, which are 500 ppm [67], 15 μg/m3 [68], and 495 500 μg/m3 [69] for the concentration of CO2, PM2.5, and VOCS, respectively. Exceeding these 496 

thresholds indicates that the IAQ may pose potential health risks, and facility management 497 

teams should take actions to address the situation, such as increasing the room ventilation rate 498 

or reducing the concentration of pollutants. 499 

 500 

3.4.3 AI-based persuasion system 501 

The functionality of the web app extends beyond facility managers and can cater to the needs of 502 

other users, such as occupants or workers, by providing them with information about the facility 503 

as well as receiving and providing suggestions to their concerns. In addition to the visualization 504 
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capabilities described earlier, the app incorporates an AI-based persuasion system that offers 505 

personalized suggestions to this user group through the use of conversations informed by the 506 

current environment data and simulation results. This persuasion system takes the form of a 507 

conversational interface powered by the highly regarded GPT-4 LLM [70]. This LLM has been 508 

specifically optimized for conversational tasks and is thus highly effective at generating 509 

meaningful responses. 510 

 511 

The LLM has three main functions: data retrieval, data comparison, and the provision of 512 

suggestions. After the web app simulates the current state of the building, the real-time 513 

environmental data from IoT sensors (such as IAQ and temperature) and the simulation results 514 

(including energy consumption, thermal comfort, and infection risk) are automatically transmitted 515 

to the GPT model through the OpenAI API [71] in the JSON format. The LLM then utilizes the 516 

retrieved JSON data to identify differences between neutral conditions (e.g., an indoor temperature 517 

set at 24°C) and current conditions, such as variations in simulated energy use. The LLM is trained 518 

using predefined decision-tree-based training phrases to provide conversational suggestions to 519 

end-users. To ensure accurate responses, a manual check is performed after each training session. 520 

 521 

Users can engage with the app's conversational UI to express their concerns, share their feelings, 522 

or ask questions about the current environment. The LLM is capable of providing relevant and 523 

personalized responses based on the real-time data it receives. This comprehensive approach 524 

allows the app to provide users with appropriate guidance and effectively address their specific 525 

concerns, fostering an informative, user-centric experience. The fundamental concepts behind the 526 

persuading system are founded in the tradeoff relationships between health, energy, and thermal 527 

comfort. Two adaptive persuasion algorithms were developed in this study: one focused on the 528 



 27 

occupant’s perception of thermal comfort and the other on their perception of the IAQ. These 529 

qualities are important for occupants, as they directly relate to what occupants can feel and are most 530 

concerned about in an indoor environment. The persuasion algorithms are presented using a 531 

decision-tree format and are utilized as training data for the GPT. Specifically, they were provided 532 

in the form of descriptive phrases, allowing the model to learn and understand how to generate 533 

effective and persuasive suggestions. Figure 6 provides a comprehensive illustration of the entire 534 

process. 535 

 536 

Figure 6. Integrated operations of the AI-based persuasion system. 537 

 538 

3.4.3.1 Adaptive persuasion algorithm based on user perception of thermal comfort  539 

The first of the two adaptive persuasion algorithms utilized in the app focuses on the user's 540 

perception of thermal comfort. The algorithm involves three decisions, with the result of each 541 

decision based on user input or environmental conditions. A demonstration of how outputs are 542 

generated by the persuasion algorithm is shown in Figure 7. The algorithm distinguishes between 543 
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cooling and heating seasons based on the current date retrieved from the device’s system time, 544 

focusing solely on these periods because discomfort is more likely during these seasons. During 545 

the shoulder season, when neither cooling nor heating is necessary, dynamically adjusting the 546 

temperature setpoints is not required, as the indoor temperature is likely to remain within the 547 

comfortable range. Therefore, to prioritize energy savings, the algorithm is only active during the 548 

cooling and heating periods. After identifying the current weather conditions, the algorithm obtains 549 

the occupant’s thermal perception through the conversational interface, capturing their feelings 550 

about the state of the indoor thermal environment. It then compares the current temperature—551 

acquired from real-time IoT sensing data—with the preset neutral temperature (e.g., 24°C). The 552 

simulation results under current and neutral conditions are then used to calculate the difference in 553 

energy use. Based on the outcomes of these three decisions, the algorithm generates eight 554 

distinct scenarios, with specific suggestions and persuasive phrases formulated for each scenario. 555 
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 556 

Figure 7. Outputs of the persuasion algorithm according to the occupant perception of indoor 557 

temperature and environmental conditions. 558 

 559 

The contents of the persuasion system were developed by considering the tradeoff between energy 560 

consumption and thermal sensation. If changing temperature setpoints will result in increased 561 

energy use, the system initially recommends that users change their clothing levels to reduce 562 

energy consumption. If changing setpoints will reduce energy use while also satisfying user 563 

thermal requirements, the system will suggest adjusting setpoints accordingly. To enhance user 564 

engagement, the system provides suggestions while demonstrating the energy savings achieved by 565 

user actions. This approach helps users better understand the impact of their behavioral changes 566 

while making the system more persuasive, improving thermal comfort and energy conservation by 567 
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encouraging the active participation and collaboration of occupants. 568 

 569 

In each scenario, multiple recommendations are offered to users, allowing them to choose their 570 

preferred course of action. The system then responds according to user choices and informs the 571 

facility management teams of the user’s preference. The detailed persuading phrases based on 572 

different scenarios are as follows: 573 

• Scenario 1 (cooling season, the user feels hot, and the current temperature is higher than 574 

neutral): Shall I communicate with the facility managers and advise them to lower the indoor 575 

temperature? Alternatively, if you are comfortable adjusting your clothing to lighter attire, it 576 

could potentially save an estimated Y kWh of energy (where Y is the number retrieved from 577 

the result of cloud-computed energy simulation). Please let me know your preference regarding 578 

contacting the facility managers. 579 

• Scenario 2 (cooling season, the user feels hot, and the current temperature is lower than neutral): 580 

The current temperature is already below the neutral level, and further lowering it may cause 581 

people to feel cold. In this situation, I recommend considering removing some clothing to help 582 

you feel more comfortable and alleviate your thermal discomfort. 583 

• Scenario 3 (cooling season, the user feels cold, and the current temperature is higher than 584 

neutral): The current temperature is already higher than the neutral level. In this case, I 585 

recommend wearing an additional light blanket if you're still feeling chilly. 586 

• Scenario 4 (cooling season, the user feels cold, and the current temperature is lower than 587 

neutral): The current temperature is below the neutral level. I will inform the facility managers 588 

to increase the temperature cooling setpoint, which will help save energy by Y kWh. 589 

• Scenario 5 (heating season, the user feels hot, and the current temperature is higher than 590 

neutral): The current temperature is above the neutral level. I will communicate with the 591 
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facility managers to lower the temperature heating setpoint, which will help save energy by Y 592 

kWh. 593 

• Scenario 6 (heating season, the user feels hot, and the current temperature is lower than neutral):  594 

The current temperature is already below the neutral level, and further lowering it may cause 595 

people to feel cold. In this situation, I recommend considering removing some clothing to help 596 

you feel more comfortable and alleviate your thermal discomfort. 597 

• Scenario 7 (heating season, the user feels cold, and the current temperature is higher than 598 

neutral): The current temperature is already higher than the neutral level, and further increasing 599 

it may cause people to feel hot and lead to higher energy consumption. In this situation, I 600 

recommend removing some layers of clothing to help you feel more comfortable and reduce 601 

the need for additional adjustments to the indoor temperature. 602 

• Scenario 8 (heating season, the user feels cold, and the current temperature is lower than 603 

neutral): Should I communicate with the facility managers to increase the temperature? 604 

Alternatively, you could put on more layers of clothing to help us save Y energy. Please let me 605 

know your preference regarding contacting the facility managers. 606 

 607 

3.4.3.2 Sample training phrases and training process 608 

This section provides a comprehensive illustration of the training process through sample training 609 

phrases. Taking advantage of the LLM, all training phrases were formulated in natural language. 610 

The simulated and monitored data were transferred and demonstrated to the LLM by employing 611 

the following phrase: “Below is a JSON format simulation result of a building's room level 612 

infection risk, energy usage in kWh, ventilation rate in air change per hour, humidity condition in 613 

%, thermal comfort in PMV, temperature condition in °C, and indoor air quality in ppm. The 614 

outcomes pertain to each room, with the ‘ZoneRoomNumber’ key indicating the room numbers. 615 
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Please respond to user questions based on this data.” In this phrase, the key was defined and stored 616 

in the JSON data. 617 

 618 

To quantify the energy saving attributed to user behavior, the LLM was trained to generate 619 

simulated results based on a neutral temperature (e.g., 24°C). These outcomes are subsequently 620 

employed to conduct a comparison between the simulated results under current and neutral 621 

temperature conditions. Here are the training phrases that illustrate this process: “Displayed below 622 

is the result data in JSON format based on neutral temperature. The ‘ZoneRoomNumber’ key 623 

indicates the room number, and the ‘ZoneHourlyEnergy’ key presents room-level energy usage 624 

computed at the neutral temperature. To calculate energy savings, integrate the baseline data 625 

represented by the neutral temperature result with the previously provided simulation result based 626 

on the current temperature. By subtracting the room-level energy usage depicted in the neutral 627 

temperature result data from the corresponding data in the simulation conducted at the current 628 

temperature, you can quantify the energy conserved. Proceed to inform the user about the amount 629 

of energy saving." 630 

 631 

Here are the example training phrases of the decision tree-based algorithm, utilizing the first 632 

branch of the decision tree – "during cooling season, when the user feels hot," with Scenarios 1 633 

and 2. The phrase is as follows: “If the user feels hot, respond with two suggestions, presenting 634 

them together. The first suggestion is: Should I communicate with the facility managers and 635 

recommend lowering the indoor temperature? The second suggestion is: If you're open to adjusting 636 

your clothing to lighter attire, it could potentially save energy. Please inform me of your preference 637 

regarding contacting the facility managers. Provide full information, and no more additional 638 

suggestions beyond these. If the user then expresses the need for you to contact the facility 639 



 33 

manager, inform them that you will take care of it. If the user indicates they don't require your 640 

assistance, express gratitude for their energy-saving contribution and furnish them with the amount 641 

of energy saved for an hour based on the simulation and baseline data. Begin by asking the user for 642 

their choice. Display the energy-saving result exclusively if the user selects the second option 643 

mentioned above.” 644 

 645 

For each scenario, similar training phrases are formulated according to the weather condition, user 646 

feelings, and current room temperature. The intent behind these phrases is to suggest strategies for 647 

enhancing thermal comfort and offering energy-saving recommendations that align with the 648 

ongoing circumstances, and guarantee the accurate and appropriate recommendations for users 649 

based on the scenarios. Coupled with the NLP capabilities of the LLM, the algorithm comprehends 650 

various user inputs and offers a range of sentences to articulate the suggestions. 651 

 652 

3.4.3.3 Adaptive persuasion algorithm based on user perception of IAQ 653 

Like the algorithm described in Section 3.4.3.1, this algorithm generates responses based on three 654 

key decisions (Figure 8), involving a consideration of the environmental conditions, user 655 

perception, and health risks. It first prompts the user to input their perception of the air quality 656 

through the conversational interface of the application. It then compares the current infection risk 657 

level to a predefined risk threshold to determine if the room's infection risk is high. Finally, it 658 

evaluates the IAQ with close consideration of the concentration of air pollutants such as CO2, 659 

PM2.5, and VOC. This data is gathered in real-time through IoT sensing devices and compared 660 

against preset thresholds as demonstrated in Section 3.4.2. From this data, the algorithm generates 661 

outputs based on one of six scenarios. 662 
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 663 

Figure 8. Outputs of the persuasion algorithm according to the occupant perception of 664 

the IAQ. 665 

 666 

The system considers two crucial factors: the health risks associated with airborne diseases and air 667 

pollutants. The system acquires the infection risk through real-time simulation results, while the 668 

health risks related to air pollutants are obtained from the IoT monitoring system. The algorithm 669 

presents users with different mitigation measures, allowing them to choose the option that best 670 

aligns with their preferences. The persuasion system’s initial strategy is to encourage occupants to 671 

consider moving to another room, which helps to reduce potential health risks while minimizing 672 

the need for the extensive implementation of mitigation measures, thus promoting energy and cost 673 

savings. Furthermore, the system acts as a communicative link between the building occupants 674 

and the facility management teams, providing insights into occupant preferences and needs. This 675 

promotes the adoption of preferred mitigation measures, leading to a healthier environment, energy 676 
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savings, and improved occupant satisfaction. The detailed persuading phrases based on different 677 

scenarios are as follows: 678 

• Scenario 1 (the user feels good, infection risk is high, and IAQ is acceptable): Although the air 679 

quality in this room may feel comfortable, it's important to be aware that the current infection 680 

risks are high. To address this concern, I strongly recommend moving to another room. The 681 

healthy room numbers are Z (recommended rooms are determined based on risk simulation). 682 

Would you be willing to move to one of these healthier rooms? (Response from the user). If 683 

moving to another room is not feasible for you, I can promptly contact the facility management 684 

teams to implement one of three mitigation measures: 1. An increase in room ventilation. 2. 685 

Room disinfection procedures. 3. Occupancy control measures. Which of these mitigation 686 

measures would you prefer? 687 

• Scenario 2 (the user feels good, infection risk is high, IAQ not acceptable): While you may 688 

currently feel good, it's crucial to be aware that both the infection risks and the air quality in 689 

this room are not at an acceptable level. To address these concerns, I strongly suggest moving 690 

to another room, such as room Z1, Z2, or Z3. If you do not wish to or cannot change rooms, I 691 

can contact the facility manager to increase the ventilation rate in this room. 692 

• Scenario 3 (the user feels bad, infection risk is high, IAQ is acceptable): Thank you for 693 

expressing your concerns. The current room's infection risk is indeed not at an acceptable level 694 

for maintaining a healthy environment. (At this point, the same recommendations from 695 

Scenario 1 will be provided). 696 

• Scenario 4 (the user feels bad, infection risk is high, IAQ is acceptable): Thank you for 697 

acknowledging the concerns. It is crucial to note that both the infection risk and the air quality 698 

in the room are not at a healthy level. (Same recommendations from Scenario 2 will be 699 

provided). 700 
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• Scenario 5 (the user feels bad, infection risk is low, IAQ is acceptable): Although you feel 701 

unwell, please note that the room environment is healthy and has an acceptable level of air 702 

quality. However, considering your discomfort, I recommend taking a break outside the 703 

building to refresh yourself. 704 

• Scenario 6 (the user feels bad, infection risk is low, IAQ not acceptable): Thank you for 705 

expressing your concerns. The air quality in this room is not at an acceptable level, which can 706 

potentially affect your performance and well-being. (Same recommendation from Scenario 2 707 

will be provided). 708 

 709 

3.4.3.5 Majority-preference based environment control algorithm 710 

In scenarios where occupants in the same room have opposite preferences, the app employs a 711 

decision-making algorithm based on majority feedback to ensure overall satisfaction. This process 712 

leverages the capabilities of the GPT-4 model to analyze communication logs and generate 713 

preference data, which is then used to guide adjustments in the building environment. When 714 

multiple occupants provide feedback about their comfort levels or preferences, the app collects 715 

and analyzes this data to determine the majority preference. This approach ensures that 716 

environmental adjustments, such as temperature or ventilation changes, align with the preferences 717 

of the majority, promoting a balanced and satisfactory indoor environment for most occupants. 718 

 719 

The GPT-4 model plays an essential role in this process by generating tags based on the 720 

communication logs of the occupants. Each time an occupant interacts with the app and expresses 721 

a preference (e.g., feeling too hot or cold), the GPT-4 model analyzes these interactions and assigns 722 

tags that represent these preferences. These tags are then aggregated to provide a clear picture of 723 

the overall preferences within a room. The generated preference data is saved in the cloud, 724 
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allowing for real-time updates and access by the app. This cloud-based storage ensures that the 725 

data is always up-to-date and can be accessed timely to make informed decisions. The app 726 

continuously updates the preference data as new feedback is received, ensuring that the decisions 727 

reflect the current preferences of the occupants. 728 

 729 

To implement this algorithm, the app follows several steps: 1) it collects feedback from all 730 

occupants in the room through the conversational interface; 2) GPT-4 analyzes the communication 731 

logs and generates preference tags for each occupant; 3) the tags are aggregated in the cloud to 732 

determine the majority preference; 4) based on this majority preference, the app makes decisions 733 

about environmental adjustments; and 5) the app continuously updates the preference data as new 734 

feedback is received, ensuring that decisions remain relevant and accurate. 735 

 736 

For example, in a room with ten occupants where six occupants report feeling too hot while four 737 

report feeling too cold, the GPT-4 model tags these preferences and saves them in the cloud. The 738 

app aggregates this data and determines that the majority of occupants prefer a cooler environment. 739 

Consequently, the app will adjust the temperature settings to lower the room temperature, aligning 740 

with the majority preference. By using majority feedback and leveraging the analytical capabilities 741 

of GPT-4, the app ensures that the environmental conditions in shared spaces are optimized for the 742 

greatest number of occupants, enhancing overall comfort and satisfaction. The flowchart of the 743 

Majority-preference based environment control algorithm is shown in Figure 9. 744 
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 745 

Figure 9. The flowchart of the Majority-preference based environment control algorithm 746 

 747 

4 Case study 748 

This section presents the development of a real-time, cloud-based, integrated platform aimed at 749 

monitoring three major aspects of building management, including energy consumption, thermal 750 

comfort, infection risks, and overall building environments, as well as communicating this 751 

information to users. The infrastructure integrates various components, such as sensor APIs, web 752 

servers, cloud computing, and EnergyPlus simulations. The UI of the web app was designed to 753 

communicate the dynamic information collected to facility management teams. To demonstrate 754 

the application's capabilities, a case study was conducted using a section of the Zeanah Engineering 755 

Complex, the largest academic building on the campus of The University of Tennessee, Knoxville, 756 

with the results of the simulation presented within the app. This platform offers a comprehensive 757 

solution for real-time monitoring, analysis, and communication in building management scenarios. 758 
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4.1 Energy model generation 759 

The capabilities of the platform were demonstrated by using a specific section of the Zeanah 760 

building as a case study. The selected region included the left wings of the second floor, which is 761 

composed of various spaces, including seven classrooms, thirteen offices, two laboratories, one 762 

learning space, one wellness room, two restrooms, two stair rooms, one electric room, and one 763 

data room. The total area of this building section is approximately 1848.9 m2, and the layout of the 764 

building is presented in Figure 10. The HVAC systems employed in the building include three 765 

centralized variable air volume (VAV) systems equipped with economizers. Figure 11 illustrates 766 

a sample configuration of a deployed HVAC system. The building uses both gas and electricity as 767 

primary fuel sources. The heating system utilizes gas boilers, while the cooling system uses a 768 

packaged air conditioning unit (PACU). A VAV box with a reheat function is installed within each 769 

zone to regulate the airflow and temperature. The architectural model was imported into SketchUp 770 

using OpenStudio plugin to accurately represent the building envelope and facilitate the energy 771 

simulation process. OpenStudio was then used to incorporate the building’s HVAC systems into 772 

the model based on the configuration provided in the MEP model. These modifications resulted in 773 

a comprehensive model for energy simulation using EnergyPlus as described in Section 3.2. 774 

Figure 10. The architectural configuration of the selected building section. 775 
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Figure 11. Diagrammatic representation of the HVAC configuration in the selected building 776 

section. 777 

4.2 Web app UI 778 

The web app UI was designed with a focus on user-friendliness and clarity. Emphasizing simplicity 779 

and intuitive navigation, the interface is easy to use and comprehend. The concise design, paired 780 

with a single-page display, allows users to efficiently access and absorb information. The core 781 

design principles and features are demonstrated on the main page of the web app (Figure 12). 782 
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 783 

(a) (b) 

Figure 12. The UI of the web app. (a) Main page and (b) simulation results visualized using line 784 

plots. 785 

 786 

4.3 Sample simulation results 787 

A test simulation was conducted to demonstrate the visualization capabilities of the web app. This 788 

simulation utilized data and information specifically collected from classroom 278, located on the 789 

second floor of the Zeanah building. The simulation was performed for a whole day using weather 790 

and IoT data retrieved on June 22, 2023. The simulated hourly outcomes included infection risk, 791 

cumulative infection risk, energy consumption, and thermal comfort. Room temperature, relative 792 

humidity, occupancy, and the concentration of different pollutants were monitored by the IoT 793 

sensors. Figure 13 illustrates the time series results of the simulation and monitoring for room 278, 794 

as would be presented within the app’s UI. 795 

  796 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 13. Simulation results from a sample room. Hourly outcomes included: (a) infection risk 797 

(%); (b) PM2.5 (PPM); (c) Energy consumption (kWh); (d) Thermal comfort (PMV); (e) 798 

Occupancy (no. of persons); (f) Relative humidity (%). 799 

 800 

4.4 Alerting system and conversational persuasion system 801 

The app’s alerting system is designed to automatically trigger when predefined thresholds are 802 

exceeded. Popup alerts are displayed immediately after the user selects a room. To provide a 803 

comprehensive view of the alerts related to the selected room, all identified alerts are presented 804 

using a dropdown menu. Users can conveniently explore the dropdown menu and select specific 805 

problems they are interested in and access the relevant suggestions. In addition, the app utilizes a 806 
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persuasive conversational interface powered by GPT-4 to provide appropriate suggestions and 807 

recommendations. Users can engage in a conversation-like interaction to receive personalized 808 

suggestions based on user inputs and current environmental conditions. 809 

 810 

Figure 14 illustrates the visual representation of the alerting system and the conversational interface 811 

within the app. This user-friendly design allows users to easily navigate and access alert 812 

information, obtain tailored suggestions, and engage in interactive conversations to enhance their 813 

experience and address specific concerns. 814 

  

(a) (b) 

Figure 14. The UI of (a) The alerting system and (b) the GPT-powered suggestion system. 815 

 816 

In addition to offering persuasive strategies, the AI-empowered conversational persuasion system 817 

also encourages user participation by offering the user several energy-saving tips by considering 818 

the tradeoffs between energy consumption, thermal comfort, and infection risks. By explicitly 819 

informing the user of the amount of energy saved, this approach helps occupants better understand 820 

the positive effects of their actions and promotes responsible behavior. Furthermore, the system 821 

not only encourages positive occupant behavior but also provides multiple mitigation measures that 822 

occupants can choose from. These measures can be implemented by the facility management 823 

teams, offering occupants a range of options based on their preferences to address their specific 824 

needs. Figure 14(b) illustrates an example of the persuasion system's response when the user feels 825 
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overly hot in a room. The system suggests adjusting their clothing as a potential solution that 826 

addresses the user's discomfort. To enhance the persuasiveness of these suggestions, the app 827 

presents the estimated potential energy savings that can be achieved through clothing adjustments. 828 

By indicating the potential energy savings and environmental benefits tied to specific actions, users 829 

are encouraged to adopt sustainable behaviors, resulting in a more informed and eco-conscious user 830 

experience. 831 

 832 

A sample conversation between the LLM-powered persuasion system and an occupant is provided 833 

in Table 1, demonstrating the interactive nature of the system and how it facilitates informative 834 

discussions. This dialogue exemplifies the interactive capabilities of the LLM-powered assistant, 835 

allowing for personalized suggestions and engaging conversations. 836 

 837 

Table 1. Sample conversation between the LLM-powered assistant and an occupant. 838 

Occupant I feel hot in room 278. 

Assistant I'm sorry to hear that you're feeling hot in room 278. I have two suggestions for you: 

  1. Should I communicate with the facility managers and advise them to lower the 

indoor temperature? 

  2. If you are willing to adjust your clothing to a lighter attire, it could potentially 

save energy. 

Please let me know your preference regarding contacting the facility managers. 

Occupant I can adjust my clothing. 

Assistant That's great! Adjusting your clothing to a lighter attire can help you stay comfortable 

and save energy. Thank you for contributing to energy conservation. 

Based on the simulation data, by not adjusting the temperature setting for an hour, you 

have saved a total of 1.853 kWh of energy. 

Thank you for your effort in conserving energy! If you have any other questions or 

need further assistance, please let me know. 
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4.5 Capability of the persuasive system 839 

Surveys were conducted to graduate students majored in civil engineering in Nanjing Tech To 840 

validate the effectiveness of the developed persuasive system, a survey was conducted with 68 841 

university students to assess their willingness to adopt environmentally friendly measures. The 842 

survey included 12 questions, each representing scenarios from two adaptive persuasion 843 

algorithms: one based on user perception of thermal comfort (Section 3.4.3.1) and the other on 844 

IAQ perception (Section 3.4.3.3). Participants were presented with scenarios and corresponding 845 

suggested actions, choosing "yes" or "no" to indicate their willingness to take the proposed 846 

measures. The scenarios covered six questions related to thermal comfort perception (Q1 to Q6) 847 

and six related to IAQ perception (Q7 to Q12), as shown in Figure 15 and Table S1 (Appendix A). 848 

The detailed survey questions are listed in Appendix B. 849 

 850 

Figure 15. Participant willingness of adopting environmentally friendly measures 851 

 852 

Figure 15 indicates that a majority of participants are willing to adopt environmentally friendly 853 
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measures for energy-saving purposes, highlighting the effectiveness of the persuasive system in 854 

promoting sustainable behaviors. Notably, suggestions for achieving better indoor air quality and 855 

health by switching rooms had a higher average adoption rate (95.59%) compared to suggestions 856 

for adjusting clothing to enhance thermal comfort (79.90%). This difference suggests that 857 

participants prioritize air quality, particularly during pandemic concerns, over thermal comfort 858 

adjustments, which can be difficult to achieve if clothing options are limited or if a blanket is not 859 

readily available. Overall, the strong positive response across all scenarios demonstrates the 860 

system's capability to encourage sustainable practices through its persuasive strategies, supporting 861 

its potential for building energy conservation. 862 

 863 

5 Discussion 864 

This study proposes the use of an innovative real-time integrated platform for building 865 

management that integrates a variety of features from building environment monitoring to the 866 

effective communication of information with the express purpose of fostering a healthy and 867 

sustainable built environment. To demonstrate the capabilities of the platform, a case study was 868 

conducted within a section of Zeanah Engineering Complex in Knoxville, Tennessee. The 869 

building’s architectural model and MEP model were used to create a building energy model, which 870 

served as the basis for the digital twin. An IoT sensor network was deployed throughout the 871 

selected study area to allow for comprehensive building monitoring. This network continuously 872 

collects real-time data on various environmental factors in each room, including temperature, 873 

humidity, as well as the concentrations of pollutants such as CO2, PM2.5, and VOC. The platform 874 

conducts simulations at the room level to assess three major aspects that are essential for building 875 

sustainability: health, energy consumption, and thermal comfort. The UI of the platform facilitates 876 

information sharing and visualization for facility management teams and occupants and uses an 877 
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enhanced communications system involving a conversational persuasion system to provide 878 

occupants with a user-friendly experience. 879 

 880 

5.1 Health aspects of building management 881 

The occurrence of several severe pandemics over the past two decades, including influenza, SARS, 882 

and COVID-19 pandemic, has emphasized the critical significance of health considerations in 883 

building management. Although the threat of the COVID-19 pandemic has subsided recently, the 884 

need to prevent potential disease outbreaks remains essential due to the pandemic’s devastating 885 

impact on human lives and the economy. Airborne transmitted diseases pose a particularly severe 886 

threat due to their potentially rapid spread and limited means of transmission control. Indoor 887 

environments, often lacking adequate ventilation in typical operation scenarios, can become 888 

breeding grounds for airborne viruses. Hence, the development and implementation of a health-889 

focused platform that monitors indoor environments is vital in curbing potential disease outbreaks. 890 

In addition to disease transmission, traditional concerns about IAQ continue to be significant in 891 

building management. Low-quality indoor environments can adversely affect occupants’ health, 892 

leading to increased absenteeism due to SBS as well as reduced productivity and performance 893 

among occupants and workers. SBS is primarily caused by contamination from various pollutants 894 

and insufficient indoor ventilation [72]. Consequently, IAQ detection was also considered in this 895 

study as a means of mitigating health risks and ensuring a healthier and more productive indoor 896 

environment. 897 

 898 

It is essential to recognize that mitigation measures, such as increased ventilation, can effectively 899 

address health risks arising from both airborne diseases and pollutants. However, these two aspects 900 

should be considered separately to improve building performance. During pandemics, it becomes 901 
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crucial to prioritize the reduction of disease transmission; consequently, room ventilation rates 902 

must be set to higher levels to enhance air circulation and minimize the risks of infection. Despite 903 

the implementation of these measures, the infection risks can remain high depending on the current 904 

state of the epidemic, while the IAQ can remain at low levels. Conversely, during non-pandemic 905 

periods, priority shifts to the management of IAQ during building operations. Maintaining a high-906 

quality indoor environment is essential to promote the well-being and productivity of occupants 907 

and workers. 908 

 909 

5.2 Interoperability achieved by cloud computing 910 

To conduct real-time energy simulations, researchers often rely on additional software for 911 

programming and data storage. In general, the energy simulation process is conducted locally 912 

before the data is transferred to a cloud server for retrieval. For instance, Pang et al. [73] introduced 913 

a framework for the real-time performance assessment of entire buildings, utilizing Building 914 

Controls Virtual Test Bed (BCVTB) as the software platform to which inputs from the Energy 915 

Management and Control System (EMCS) were provided. The acquired data were then sent to 916 

EnergyPlus for simulation, with the results archived in a separate database. Pallonetto et al. [74] 917 

proposed a grid co-simulation software platform that integrated BCVTB with a MySQL database 918 

using Java Database Connectivity (JDBC). By accessing the database, this platform allowed for 919 

real-time simulation and visualization through a web application. However, such approaches still 920 

require the local installation of BCVTB software, which poses challenges to users, impacting 921 

accessibility and ease of use. The need for additional software installation may limit user’s access 922 

to information, especially in the context of the wide variety of user devices, excluding potential 923 

users who may not require the app for professional purposes but still seek information or 924 

interaction about the building environment. In this study, a cloud-based integrated platform was 925 
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developed to address these problems. This technology allows for interoperability within the same 926 

device, eliminating the need for additional software installation. This cloud-based approach 927 

supports cross-platform accessibility, allowing users to easily access the platform from any device 928 

and at any time (as long as they have Internet access) through the simple use of a URL. This 929 

innovation allows for room-level monitoring and simulation, laying the foundation for efficient 930 

building operations. 931 

 932 

5.3 Human-centric conversational persuasion system 933 

In recent years, there has been a growing emphasis on human-centric building operation 934 

technologies, driven by an increased recognition of the significance of human perception and 935 

satisfaction in establishing a comfortable and sustainable building environment. This emphasis is 936 

rooted in the fundamental understanding that humans are the primary users and occupants of 937 

buildings. In this context, Abdelrahman et al. [75] introduced a spatial-temporal occupant 938 

preference sampling method, leveraging BIM technology, to optimize personal comfort. The 939 

participants were asked to answer thermal comfort questionaries during their work activities. 940 

Favero et al. [76] proposed human-in-the-loop methods for occupant-centric building operation 941 

with the focus on human thermal perception. Through the recruitment of participants, trials were 942 

conducted involving varying thermal exposures, and participants were required to provide 943 

feedback on thermal perception at predefined intervals. However, these approaches overlook the 944 

challenges associated with fostering occupants' willingness to provide frequent feedback through 945 

surveys in real-world building operation applications. Furthermore, it has been observed that 946 

individuals may be less inclined to engage with surveys featuring repetitive questions and lacking 947 

in responsive interactions in accordance with the feedback they provide. Bresa et al. [77] identified 948 

occupant preferences and predicted the likelihood of occupant interactions based on behavioral 949 
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science theory. This research indicated the fact that prevailing building control methods often fall 950 

short of aligning with the viewpoints and preferences of building occupants. This research found 951 

that the primary motivation for individuals to interact with building controls is their desire to 952 

contribute positively to energy conservation. This finding underscores the significance of 953 

energy savings as a major expected outcome, which is in accordance with the motivator for 954 

encouraging occupant interaction in our app. 955 

 956 

This study introduced an innovative AI-based conversational persuasion system powered by GPT 957 

as the large language model that can generate personalized responses to specific user inputs. The 958 

development of this conversational system expands the scope of human-centric interactive services 959 

in the context of smart building operations. While such technologies are finding wide usage in 960 

fields like healthcare and services, it has not been extensively applied to the field of building 961 

management for indoor environments. This conversational system bridges this gap, allowing 962 

facility management teams to promptly address occupant needs and preferences. It also enhances 963 

occupant participation and fosters a healthier and more sustainable building environment. This 964 

system offers significant improvements in the interactive process compared to traditional 965 

conversational agents or chatbots. Traditional chatbots tend to provide consistent, rigid responses 966 

to similar questions, leading to user boredom and dissatisfaction due to repetitive interactions. 967 

However, the integration of a LLM-empowered interface as a conversational tool addresses these 968 

issues while introducing several advantages. Firstly, the widespread usage and human-like 969 

interface of LLM contribute to improving the users’ trust and acceptance of the information 970 

provided, establishing credibility and fostering user engagement. Furthermore, the ability of LLMs 971 

to generate diverse sentences during communication ensures dynamic and varied conversations 972 

enhances the overall user experience, and makes interactions more engaging and enjoyable. This 973 
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contributes to increased user satisfaction and promotes sustained user engagement with the system. 974 

 975 

The monitoring data and simulated results are automatically transferred to the GPT model in real 976 

time. Through a comprehensive, predefined set of training phrases, the system gains the ability to 977 

understand the current environmental conditions and respond appropriately to user inputs by 978 

providing accurate and relevant responses. In particular, information regarding the tradeoffs 979 

between health, energy use, and thermal comfort serves as a powerful motivator, causing building 980 

occupants to actively engage with and embrace energy-saving strategies. The use of human-like 981 

conversational tones to demonstrate energy savings allows occupants to gain a sense of awareness 982 

regarding their actions and informs them of their direct impact on the building's overall 983 

performance. This creative approach allows for the effective and relatable visualization of energy 984 

consumption, making it easier for occupants to understand the extent of the environmental 985 

implications of their daily activities. This engagement encourages occupants to take a more active 986 

role in enhancing indoor environments and living quality through their participation. 987 

 988 

While this study estimates indoor infection risks for specific viruses, environmental factors like 989 

temperature and humidity can affect different pathogens differently, especially when multiple are 990 

present, highlighting the need for further exploration to determine optimal indoor environments 991 

and mitigation measures. Another limitation is our reliance on a student population for participant 992 

feedback, which may introduce participation bias, as students might be more inclined to 993 

collaborate or may not fully express their feelings about thermal comfort and indoor air quality, 994 

potentially leading to unrepresentative data. Future studies should explore long-term and 995 

personalized feedback mechanisms to enhance the willingness of information sharing. In addition, 996 

although we focus on controlling mechanical ventilation systems, it is important to acknowledge 997 
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the positive impact of natural ventilation on indoor health; future research could enhance the 998 

platform by incorporating multiple types of ventilation systems. Studies on human behavior could 999 

lead to more effective persuasive methods, improving user experience and encouraging greater 1000 

participation and interaction. Future research directions include conducting quantitative 1001 

assessments of the platform's performance, such as evaluating the efficacy of comfort, health, and 1002 

energy-saving measures, and quantifying occupant participation and behavior modification 1003 

achieved through its use. 1004 

 1005 

6 Conclusion 1006 

The COVID-19 pandemic and other severe airborne diseases have underscored the critical need 1007 

for effective health monitoring in facilities management, as improper strategies can have serious 1008 

public health implications. Consequently, the simultaneous monitoring of health risks, energy 1009 

consumption, and thermal comfort is now essential for maintaining sustainable built environments. 1010 

This study introduces a real-time, cloud-based integrated platform that significantly advances 1011 

adaptive built environment management. The platform stands out for several key reasons: 1012 

• Consolidated Functionality: It combines all essential functionalities into a single system, 1013 

ensuring efficient data exchange and interoperability across devices. 1014 

• Real-Time Simulation: It enables real-time simulations of critical aspects of smart building 1015 

management—specifically health, energy, and thermal comfort—using data from IoT 1016 

sensing networks and cloud computing technologies. 1017 

• AI-Based Persuasion: The platform features an AI-based conversational agent designed to 1018 

encourage healthy occupant behaviors and energy-saving practices, effectively balancing 1019 

the tradeoffs between health, energy, and thermal comfort. 1020 

 1021 
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A survey conducted to assess the effectiveness of the persuasive system revealed high adoption 1022 

rates (95.59%) for suggestions related to improving indoor air quality and health, compared to 1023 

79.90% for adjusting clothing to enhance thermal comfort. This indicates a strong willingness 1024 

among participants to adopt sustainable practices under the platform's persuasive strategy. 1025 

 1026 

By providing real-time, room-level information and comprehensive views of the building 1027 

environment, the platform allows facility management teams to visualize the impact of their 1028 

decisions and adjust environmental setpoints accordingly. The integrated persuasion system 1029 

further enhances interactions between occupants and management, promoting behaviors that 1030 

support sustainability. By taking occupant preferences into account, the platform not only 1031 

improves occupant satisfaction but also contributes to the overall sustainability of the building. A 1032 

case study conducted in a university building section demonstrated the platform’s capabilities and 1033 

the extensive information it can provide, reinforcing the potential for this system to drive energy 1034 

conservation and sustainable practices. 1035 
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Appendix A 1042 

Table S1. Distribution of survey responses on participant willingness. 1043 

Answers Q1 Q2 Q3 Q4 Q5 Q6 

Yes responses 44 52 56 58 59 57 

No responses 24 16 12 10 9 11 

Yes rate (%) 64.71 76.47 82.35 85.29 86.76 83.82 

No rate (%) 35.29 23.53 17.65 14.71 13.24 16.18 

Answers Q7 Q8 Q9 Q10 Q11 Q12 

Yes responses 65 67 67 65 62 64 

No responses 3 1 1 3 6 4 

Yes rate (%) 95.59 98.53 98.53 95.59 91.18 94.12 

No rate (%) 4.41 1.47 1.47 4.41 8.82 5.88 
 1044 

Appendix B 1045 

Below are the survey questions depicted in Section 4.5. 1046 

1. In summer, you feel a bit hot, and the current room temperature is slightly higher than the 1047 

optimal temperature (e.g., 24°C). We suggest that you wear cooler clothing to save some energy. 1048 

Compared to directly lowering the air conditioning, would you be willing to accept this 1049 

suggestion? 1050 

2. In summer, you feel a bit hot, but the current room temperature is already lower than the optimal 1051 

temperature. We suggest that you remove a few layers of clothing to cool down. Would you be 1052 

willing to do this? 1053 

3. In summer, you feel a bit cold, but the current room temperature is actually higher than the 1054 

optimal temperature. We suggest that you wear more clothing or use a blanket so that you don't 1055 

have to increase the air conditioning. Would you be willing to do this? 1056 

4. In winter, you feel a bit hot, but the current room temperature is already lower than the optimal 1057 

temperature. We suggest that you remove a few layers of clothing to cool down. Would you be 1058 

willing to do this? 1059 

5. In winter, you feel a bit cold, but the current room temperature is already higher than the optimal 1060 
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temperature. We suggest that you wear more clothing so that you don't have to increase the heating. 1061 

Would you be willing to do this? 1062 

6. In winter, you feel a bit cold, and the current room temperature is indeed slightly lower than the 1063 

optimal temperature. We can ask the management to increase the heating, but you can also wear 1064 

more clothing to save energy. Would you be willing to do this? 1065 

7. You feel that the indoor air quality is good, but according to calculations, the risk of infectious 1066 

disease transmission in this room is high. We suggest that you move to a room with a more suitable 1067 

environment. Would you be willing to move? 1068 

8. You feel that the indoor air quality is not very good, and the risk of infectious disease 1069 

transmission in this room is high. We suggest that you move to a room with a more suitable 1070 

environment. Would you be willing to move? 1071 

9. You feel that the air quality is poor, but in fact, the indoor air quality is good. However, 1072 

according to calculations, the risk of infectious disease transmission in this room is high. We 1073 

suggest that you move to a room with a more suitable environment. Would you be willing to move? 1074 

10. You feel that the indoor air quality is poor, and indeed the air quality is quite bad. At the same 1075 

time, the risk of infectious disease transmission in this room is high. We suggest that you move to 1076 

a room with a more suitable environment. Would you be willing to move? 1077 

11. You feel that the indoor air quality is poor, but in fact, the indoor air quality is good, and the 1078 

risk of infection is low. Although you feel uncomfortable, the overall environment is good. We 1079 

suggest that you take a temporary break outside to relax and alleviate discomfort. Would you be 1080 

willing to do this? 1081 

12. You feel that the indoor air quality is poor, and indeed the air quality is quite bad, but the risk 1082 

of infection is low. We suggest that you move to a room with better air quality. Would you be 1083 

willing to move? 1084 
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