2501.01073v1 [cs.LG] 2 Jan 2025

.
.

arxiv

Graph Generative Pre-trained Transformer

Xiaohui Chen' Yinkai Wang' Jiaxing He’? Yuanqi Du’® Soha Hassoun

Abstract

Graph generation is a critical task in numerous
domains, including molecular design and social
network analysis, due to its ability to model com-
plex relationships and structured data. While
most modern graph generative models utilize ad-
jacency matrix representations, this work revis-
its an alternative approach that represents graphs
as sequences of node set and edge set. We ad-
vocate for this approach due to its efficient en-
coding of graphs and propose a novel represen-
tation. Based on this representation, we intro-
duce the Graph Generative Pre-trained Trans-
former (G2PT), an auto-regressive model that
learns graph structures via next-token prediction.
To further exploit G2PT’s capabilities as a general-
purpose foundation model, we explore fine-tuning
strategies for two downstream applications: goal-
oriented generation and graph property predic-
tion. We conduct extensive experiments across
multiple datasets. Results indicate that G2PT
achieves superior generative performance on both
generic graph and molecule datasets. Further-
more, G2PT exhibits strong adaptability and ver-
satility in downstream tasks from molecular de-
sign to property prediction.

1. Introduction

Graph generation has become a crucial task in various do-
mains, from chemical discovery to social network analysis,
owing to graphs’ ability to represent complex relationships
and produce realistic, structured data (Du et al., 2021; Zhu
et al., 2022). Recent advancements in graph generative mod-
els primarily focus on permutation-invariant methods lever-
aging diffusion-based approaches (Ho et al., 2020; Austin
et al., 2021). For example, models like EDP-GNN (Niu
et al., 2020) and GDSS (Jo et al., 2022a) represent graphs us-
ing continuous adjacency matrices. In contrast, DiGress (Vi-
gnac et al., 2022) and EDGE (Chen et al., 2023) employ

discrete diffusion, treating node types and all node pairs

'Tufts University “Northeastern University *Cornell University.
Correspondence to: Xiaohui Chen <xiaohui.chen@tufts.edu>,
Liping Liu <liping.liu@tufts.edu>.

1 2

Xiaolin Xu? Liping Liu

(edges) as categorical variables. Earlier neural graph gener-
ation methods introduced permutation-dependent models,
such as GraphRNN (You et al., 2018b) and DeepGMG (Li
et al., 2018). hese approaches employed auto-regressive
frameworks (e.g., RNNs or LSTMs (Sherstinsky, 2020))
to sequentially generate graphs. For instance, GraphRNN
generates adjacency matrix entries step-by-step. DeepGMG
frames graph generation as a sequence of actions (e.g., add-
node, add-edge), and utilizes an agent-based model to learn
the action trajectories.

The discrete diffusion-based methods, in particular, gain
more attention due to it perfectly aligns with the nature of
discrete structure of graphs. However, sampling from dis-
crete diffusion models relies on the conditional-independent
assumption (Gu et al., 2017): the distribution of each entry
at time ¢ is independent of others, given the observation at
time ¢t — 1. This may lead to a poor approximation of the true
distribution, as multiple trajectories can emerge from the
current state. A similar argument is made in Campbell et al.
(2022), drawing a connection to the Tau-Leaping approxima-
tion, which allows changing multiple entries at a single time
step. Ideally, the most accurate sampling is to change only
one dimension at one timestep, or effectively, employ a large
number of denoising steps. In the graph generation problem,
this is equivalent to only change the label of one node, or
change one node pair in terms of addition, deletion or alter-
ation at a time. Such sampling schema naturally degenerates
into an any-order auto-regressive model (Hoogeboom et al.,
2021; Campbell et al., 2022).

Due to the recent success of large language models (Achiam
et al., 2023; Dubey et al., 2024), in this work, we revisit the
family of auto-regressive graph generative models. We pro-
pose a new method to represent graph as sequence. Specif-
ically, our designed sequence consists of two parts: node
definition and edge definition. The node definition is first
established to provide information about the node index
and node type. After that, the edge definition specifies how
edges are connected by using the defined node indices, as
well as the edge labels. Our propose representation is sparse
as it only define edges that explicitly exits, contrasting to
the adjacency representation. We then utilize transformer
decoder to approximate the sequence distribution via the
next-token prediction loss. We name it Graph Generative
Pre-trained Transformer (G2PT).

Graph Generative Pre-trained Transformer

Model (Rep.) Likelihood Tlustration #Network Calls #Variables Decomposition
ks Conditional
- T t—1j At 2
Diffusion (A) p(A)tI:[lp(A |A") T O(Tn?) independent
n i—1 O Q &
regressi Ay it A e ol T O 2 2 Full
Auto-regressive (A) l:HQ]1:[1 P(Ai 1A <im1, Ay <) o Y O(n?) O(n?) factorization

Auto-regressive (E)

P(Sl)HP(€i|5<i) O*g*o\gﬂo()ig* g(- g(3 O(m) O(m) factolziuzlzlltion

Table 1. Overview of graph generative model families combined with the used data representation (Rep.). n: number of nodes. m: number
of edges. In the illustration, we use solid line for edges and dash line for non-edges, (non-)edges generated at current step are colored in
blue. Our proposed G2PT is an Auto-regressive model that learns on E representation.

We further investigate the potential of fine-tuning G2PT to
perform downstream tasks such as goal-oriented generation
and graph property prediction. For goal-oriented genera-
tion, we explore the rejection sampling fine-tuning and the
reinforcement learning approaches, where both methods
elevate the probability mass of graphs of interest in the pre-
trained model distribution. For graph property prediction,
we adapt the pre-trained parameters to a target task using its
supervised objective.

We evaluate G2PT on two categories of tasks: general graph
generation tasks, including molecule and generic graph gen-
eration, and downstream tasks requiring fine-tuning, such
as goal-oriented molecular generation and molecular prop-
erty prediction. For general graph generation tasks, without
any engineering on the architectures, loss design, or input
feature augmentation, G2PT outperforms or on par with pre-
vious state-of-the-art (SOTA) baselines over seven datasets.
We also study the scaling behavior of G2PT with increasing
data and model scales. Furthermore, by fine-tuning G2PT to-
wards generating molecules with target properties, we show-
case that G2PT can be easily adapted to various generative
tasks that requires additional alignment. Finally, supervised
fine-tuning on MoleculeNet datasets demonstrates the effec-
tiveness of G2PT’s learned representations for prediction
tasks.

Contributions. Our main contributions are as follows:

* We propose a novel sequence-based representation that
efficiently encodes graphs;

¢ We introduce G2PT, a transformer decoder trained on
the new graph representation to model sequence distri-
butions via next-token prediction;

* We explore fine-tuning techniques to adapt G2PT for
downstream tasks, such as goal-oriented graph genera-
tion and graph property prediction;

* Our empirical result shows that G2PT achieves strong
performance across divers graph generation and pre-
diction tasks, outperforming or matching SOTA while
adapting specific tasks effectively.

2. A Review of Graph Generative Models.

To connect our proposed method to prior works, this section
provides an overview of existing graph generative models,
focusing on their modeling variables and likelihood defini-
tions. We emphasize diffusion and auto-regressive models,
given their demonstrated superior performance. For sim-
plicity, and without loss of generality, we assume graphs
are undirected and featureless throughout this discussion. A
comparison of different frameworks is detailed in Table 1.

Denote a graph as G = (V, E), where V' = {v1,...,v,}
is the node set and E = {ey,...,e,, } represents the edge
set. Apart from F, adjacency matrix A € {0,1}™*™ is also
commonly used to represent edge connections. Although
the adjacency matrix A is denser compared to the edge
set F/, most existing methods prefer modeling A due to
its structural advantages. In the following, we discuss the
likelihood definitions over these two representations, their
associated model decompositions, and their strength and
limitations. We assume graph size n is given.

2.1. Generative Modeling of Adjacency Matrix

The likelihood of p(A) defines a joint distribution over all
entries in the adjacency matrix. For auto-regressive graph
models (You et al., 2018b; Liao et al., 2019), the likelihood
is decomposed as follows:

n i—1

p(A) =[] p(AijlA<ici1, Ai),

i=2j=1

where the model focuses on the strictly lower-triangular
portion of the matrix. Such full-condition decomposition
is universal and expressive. However, as the number of
variables increases quadratically with the number of nodes
n, the modeling complexity escalates. Accurately approxi-
mating this distribution requires a highly expressive neural
network. Moreover, generating samples demands O(n?)
forward passes, which can be computationally intensive.

(Discrete) diffusion models (Vignac et al., 2022; Chen et al.,
2023; Qin et al., 2024), on the other hand, defines a sequence

Graph Generative Pre-trained Transformer

of latent variables A%T where A? = A. The likelihood is
obtained by marginalizing the intermediate A':” from the
joint distribution

T
p(AYT) = Hp (A1 AY), where
=1
n i—1
p(A“1AY = [T T oA 1AY),
i=1j=1

assuming entries in A*~! are independent when A is given.
This conditional independence assumption, while lowering
the computation complexity, introduces the “multi-modality
problem” that limits a model’s ability to approximate the
true distribution accurately (Gu et al., 2017). The accu-
racy of the approximation using discrete diffusion models
is further discussed by Campbell et al. (2022) under the
continuous time Markov chain framework. In a word, the
approximation is exact only if one uses a large denoising
steps during sampling, which is similar to an auto-regressive
model that changes only one entry at a time '. Empirically,
the number of denoising steps 7" in diffusion models of-
ten exceeds the expected number of edges in the generated
graphs, as operating on the adjacency matrix needs to model
both edges and non-edges.

2.2. Generative Modeling of Edge Set

While the likelihood p(A) considers all node pairs in a
graph as variables, the likelihood of p(E) only considers
entries that are actual edges. Specifically,

= pler) [[pleile<s),
=2

where each edge e; is modeled by first choosing a source
node and then selecting a destination node:

p(ei|€<i) = p(vsrc|e<i)p(vdesl|vsr0a e<i)-

This decomposition is well-suited for an auto-regressive
model since it doesn’t have a fix dimension even for graphs
of same size. When the training graphs are sparse (i.e., m <
n?), formulating such decomposition via auto-regressive
model is computationally feasible as the number of variables
is linear to m.

Despite these advantages, modeling the edge set has re-
ceived limited attention compared to adjacency matrix-
based methods. This is largely because previous efforts (Li
et al., 2018) have shown less promising results.

Remark 2.1. The architecture for modeling adjacency
matrix A can leverage modern sequence models such
as LSTM (Sherstinsky, 2020) or Transformers (Vaswani,
2017), as the homogeneous input and output space simpli-
fies the learning process. This design enables the model to

!This statement is originally claimed by Campbell et al. (2022).

focus on capturing sequential relationships without need-
ing to address varying supports or perform variable-specific
transformations. In contrast, action-based frameworks used
in models that operate on the edge set ' require more com-
plex state transition modeling (e.g., add-node, add-edge,
stop). Additionally, since nodes are incrementally added
to the graph, the logits’ length for edge prediction changes
dynamically. To address this, previous methods rely on
a edge prediction model that uses node representations as
input. However, these models are often shallow networks,
limiting their expressiveness.

In this work, we show that with proper sequence design and
model architecture choice, modeling edge set E' can achieve
superior performance while being efficient.

3. Graph Generative Pre-trained Transformer

3.1. Representing Graph as Sequence

We consider modeling a graph as a sequence of actions that
first generates all nodes of a graph, then the edges among
them. Denote a feature graph G = (V,E) Here v € V
is represented as a tuple v := (v, v'¢), where v € Z7
is the node index and v¢ € {1,..., K, } is the node type.
And e € E is represented as a triple e := (vl vid | €°),
where the first two elements define the edge connection and
e € {1,..., K.} is the edge type. For a featureless graph,
the above representation can be simplified by removing the
node and edge type definitions. A graph G with n nodes
and m edges can be represented as

id c ,id id id c id id c
[vh vl y oy Uns Uy QA5 Ugpes Udests €15+ - + 5 Usres Udest em]

nx2 mx3

Here ax is used to denote a transition from node generation
to edge generation. We illustrate it in Figure 1.

Since a graph can be encoded into different sequences by
varying the node permutation and the edge generation order-
ing. For node orderings, we index the node using a random
permutation. Based on the node indices, we obtain the edge
generation orderings via the reverse of a degree-based edge-
removal process shown in Alg. 1. Intuitively, the reverse of
such a process first constructs an “initial seed graph” and
grows it by iteratively attaching nodes to it. We also explore
the effectiveness of using other canonical edge orderings
such as breadth-first search (BFS) and depth-first search
(DFS) (details are presented in Appendix D.1).

3.2. Learning Graph Sequences via Transformer

We utilize a transformer decoder (Vaswani, 2017) for mod-
eling the graph sequences. Unlike language models, our
defined graph sequence contains tokens from different ac-
tion spaces. Here we consider using a tokenizer that unifies
all types of actions into one vocabulary.

Graph Generative Pre-trained Transformer

Graph representation

Training Transformer on Sequence representation

HEHNNBEENENENDENR> B« BEE - B
1

e A
L3

1 Index node Node Index Node Type Edge Type Special Token
[EEE

| | | | | | | | L Token ID

EAK i

Encode
Sample edge order Node

L
{ L2 03 .. 31 3 33 .. 4l 4 43 .. 5152 ..
1
— [oola T e e] - Ao e T2 |2||3|h~~
—

Node definition
(2) 2,3), 3,4), ..., (7,8)

Edge
Edge definition

Figure 1. Illustration of our proposed graph sequence representation. This representation can be viewed as a sequence of actions: first
generating all nodes (node type, node index), then explicitly adding edges (source node index, destination node index, edge type) step by
step until completion. A unified vocabulary is used to map different types of actions into a shared token space.

Algorithm 1 Degree-Based Edge Removal Process

Input: Graph G = (V, E), neighborhood function Nei(-)
Output: Sequence of removed edges o g
Initialize o < []
while £ # () do
Select vy € V' with the minimum degree.
Select vaest € Nei(vgre) with the minimum degree.
Remove edge € = (Vsrc, Vdest) from E; append e to o .
Update the degrees of v and vgest-
end while

Tokenization. Let n,; be the maximum number of nodes
of a graph dataset. The unified vocabulary lookup is then
defined as

tokenize(v'?) = ', v € {1,... N };
tokenize(v®) = v 4 nmax, v° € {1,..., K, };
tokenize(e®) = e + npax + Ky, €€ € {1,..., K.};
tokenize(ap) = Nmax + Ky + Ko + 1.

We additionally introduce special tokens [SOG] and [EOG],
representing the start and the end of the sequence generation.
We denote the tokenized sequence s = [sq,. .., sz], which
is used in the following sections.

Training loss. We use the standard language modeling
loss to minimize the negative log-likelihood
Ly (0) := —logps(s Z log po (s1]s<1),

=1

where 6 is the parameters of the model. Since the tokens
in sequence are arranged based on the defined rule, the
action space for each decoding step is limited to a subset.
For example, when the current input token is one of the
node type, its output token can only be one of the node
indices. One can impose such constraint on the output logits
vector at each step to improve the modeling accuracy. In our

experiment, we find that an unconstrained logits space can
also yield a superior performance due to the expressiveness
of transformers.

4. Fine-tuning

After pre-training a model, we further fine-tune it for down-
stream tasks. We consider generative (§4.1) and predic-
tive (§4.2) downstream tasks, where the former aims to
generate graphs with desired properties, and the latter uti-
lizes the graph embeddings learned from the transformer to
predict properties.

4.1. Goal-oriented Generation

Let z(-) be the function that estimates property z of a graph
G. In goal-oriented generation, we are interested in obtain-
ing a new model that generates graphs whose properties are
close to z* more often then the pre-trained model. Such a
setup has a broad application in the graph generation com-
munity such as drug discovery. In this work, we explore
obtaining such distribution by fine-tuning the pre-trained
model. We consider rejection sampling fine-tuning (RFT)
and reinforcement learning (RL) approaches.

Rejection sampling fine-tuning. This approach fine-tunes
the model using its own generated samples that satisfy the
desired property z*. We consider the case where the prop-
erty is a scalar, and an acceptance function m? (G) =
1|2+ —2(@)|<w 18 controlled by an distance threshold w.

The algorithm for generating the fine-tuning dataset D}j,* =
{Gy}E_, via rejection sampling is shown in Alg. 2. Note
that we expect the learned pre-trained model is able to gen-
erate graphs with desired property.

When the graph of interest has a low density in the model
distribution, RFT becomes inefficient as it rejects most of
the samples. To address this, we further propose to self-

Graph Generative Pre-trained Transformer

Algorithm 2 RFT Dataset Construction

Input: Model pg, acceptance function mi,* , data size B.
Output: Fine-tuning dataset Dz
Initialize D" «+ { }
while |DZ"| # B do

Generate G ~ pg.

if G is valid and m?" (G) = 1 then

Append G to Dz

end if

end while

Algorithm 3 SBS™ combined with RFT

Input: Model pg, thresholds list [w1 .. . ,w-], data size B.
Output: Fine-tuned model pg._.

Set 6y = 6.
fori=1,...,7do
Use ps,_, as input model, obtain Df,, < Alg. 2.

. * .
Fine-tune 6;_1 on Df,i , obtain new parameters ;.
end for

bootstrap (SBS) the RFT model to approach the target dis-
tribution. Specifically, we first define a sequence with 7
thresholds wy > ws > ... > w;,, where w, = w. Then we
can obtained a sequence of fine-tuned models by iteratively
constructing fine-tuned datasets using model trained from
previous threshold. The SBS algorithm combined with RFT
is shown in Alg. 3.

Reinforcement learning. Denote a target-relevant reward
function 7.+ (G), we consider a KL-regularized reinforce-
ment learning problem:

¢t = arg mngpd,(s) [r2+(s) — p1KL(pg(-[s)llpe(-ls))]-

We use the notation s and G interchangeable as the mapping
from s to G is deterministic. The KL divergence KL(-|-)
prevents the target model from deviating too much from the
pre-trained model.

We choose Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) to effectively train the target policy (actor
model) without sacrificing stability. We first define the
token-level reward:

(st 1)) = {0 5 % [EOG]

r([s<1,81]) s =[EOG]’

Here s, is the state of the [-th step in a finite trajectory
(sequence). We only assign a reward when the generation is
completed. The value function of state s; under a model p
is the expectation of the undiscounted future return:

VP(s<) = EP(SZZ|S<1) [T(S)]

A critic model Vy;(s<;) is then learned to approximate the
true value function V?(s.;) via minimizing the mean abso-
lute error Lyc (). We parameterize the critic model with

a transformer that is the same architecture as the pre-trained
model, except the logits head is replaced by a value head.
The parameters of the critic model are also initialized from
the pre-trained model.

We use the clipped surrogate objective Lpg_ciip(¢) in PPO to
optimize the actor model. Moreover, to mitigate possible
model degradation, we incorporate the pre-training loss
L (¢) following Zheng et al. (2023); Liu et al. (2024).

All terms combined, we minimize the objective:
Lppo((ba 7/}; 9) :Lpg-clip(¢) =+ p2['critic (7/}) + pSEpt(¢)-

Here p1, p2, p3 are loss coefficients. We provide preliminar-
ies of PPO and details of each loss term in Appendix A.

4.2. Property Prediction

Assume a labeled graph dataset C, where each instance
consists a graph G along with a label y. We fine-tune the
pre-trained model on it to learn to predict y given G. After
the sequence s is generated from G, we extract the activation
h of the final token s, output by the last transformer block
as the graph representation. To predict y, we then feed h
into a dropout layer followed by a linear layer:

p(y|s) = softmax(Dropout(Linear(h))).

We then maximize the log-likelihood E (¢ ,)~c log p(y|G).
Compared to freezing the whole transformer during training
and only update parameters of the linear layer, we found
that unlocking the latter half of the transformer blocks sig-
nificantly enhances performance.

S. Experiments
5.1. Setup

Datasets. We consider both generative tasks and predic-
tive tasks in our experiments. In generative tasks, we con-
sider training transformer decoders on molecular datasets
and generic graph datasets. For molecular datasets, we
use QM9 (Wu et al., 2018b), MOSES (Polykovskiy et al.,
2020), and GuacaMol (Brown et al., 2019). For generic
graph datasets, we adapted the widely used datasets: Planar,
Tree, Lobster, and stochastic block model (SBM). In predic-
tive tasks, we fine-tune models pre-trained from GuacaMol
datasets on various molecular property tasks using Molecu-
leNet (Wu et al., 2018a), detailed in Appendix B.4, to verify
the usefulness of the learned graph representations.

Model specifications. We train transformers with three
different sizes: (1) the small transformer has 6 transformer
layers and 6 attention head, with di04e1 = 384, leading to
approximately 10M parameters; (2) the base transformer
has 12 transformer layers and 12 attention head, with
dmodel = 768, leading to approximately 85M parameters;
(2) the large transformer has 24 transformer layers and 16 at-
tention head, with d,04e1 = 1024, leading to approximately

Graph Generative Pre-trained Transformer

Planar Tree

Model

Deg.| Clus.| Orbit] Spec.) Wavelet| V.U.N.T Deg.) Clus.J Orbit] Spec.) Wavelet| V.U.N.1
GRAN (Liao et al., 2019) Te-4 4.3e-2 9e-4 7.5e-3 1.9e-3 0 1.9e-1 8e-3 2e-2 2.8e-1 3.3e-1 0
BiGG (Dai et al., 2020) Te-4 5.7e-2 3.7e-2 1.1e-2 5.2e-3 5 1.4e-3 0.00 0.00 1.2e-2 5.8e-3 75
DiGress (Vignac et al., 2022) Te-4 7.8e-2 7.9¢e-3 9.8e-3 3.1e-3 71.5 2e-4 0.00 0.00 1.1e-2 4.3e-3 90
BwR (Diamant et al., 2023) 2.3e-2 2.6e-1 5.5e-1 4.4e-2 1.3e-1 0 1.6e-3 1.2e-1 3e-4 4.8e-2 3.9e-2 0
HSpectre (Bergmeister et al., 2023) Se-4 6.3e-2 1.7e-3 7.5e-3 1.3e-3 95 le-4 0.00 0.00 1.2e-2 4.7e-3 100
DeFoG (Qin et al., 2024) Se-4 Se-2 6e-4 7.2¢-3 1.4e-3 99.5 2e-4 0.00 0.00 1.1e-2 4.6e-3 96.5
G2PTgman 4.7e-3 2.4e-3 0.00 1.6e-2 1.4e-2 95 2e-3 0.00 0.00 7.4e-3 3.9¢-3 929
G2PThyse 1.8e-3 4.7e-3 0.00 8.1e-3 5.1e-3 100 4.3e-3 0.00 le-4 7.3e-3 5.7e-3 929
Model Lobster SBM

Deg.] Clus.| Orbit] Spec.) Wavelet| V.U.N.T Deg.) Clus.] Orbit] Spec.) Wavelet| V.UN.T
GRAN (Liao et al., 2019) 3.8e-2 0.00 le-3 2.7e-2 l.1e-2 5.5e-2 5.4e-2 5.4e-3 2.1e-2 25
BiGG (Dai et al., 2020) 0.00 0.00 0.00 9e-3 1.2e-3 6.0e-2 6.7e-2 5.9e-3 3.7e-2 10
DiGress (Vignac et al., 2022) 2.1e-2 0.00 4e-3 - 1.8e-3 4.9e-2 4.2e-2 4.5¢e-3 1.4e-3 60
BwR (Diamant et al., 2023) 3.2e-1 0.00 2.5e-1 - 4.8e-2 6.4e-2 1.1e-1 1.7e-2 8.9¢-2 7.5
HSpectre (Bergmeister et al., 2023) - - - - 1.2e-2 5.2e-2 6.7e-2 6.7e-3 2.2e-2 45
DeFoG (Qin et al., 2024) - - - - 6e-4 5.2e-2 5.6e-2 5.4e-3 8e-3 90
G2PTgman 2e-3 0.00 0.00 Se-3 e-3 100 3.5e-3 1.2e-2 Te-4 7.6e-3 9.8e-3 100
G2PThase le-3 0.00 0.00 4e-3 e-2 100 4.2¢-3 5.3e-3 3e-4 6.1e-3 6.9¢-3 100

Table 2. Generative performance on generic graph datasets.

300M parameters. We use different specifications for differ-
ent experiments according to the task complexity.

5.2. A Demonstrative Experiment using Planar Graphs

We first validate the effectiveness of our proposed graph se-
quence representation compared to the adjacency matrix. To
achieve this, we train transformer decoders on planar graphs
using both representations and evaluate their generative per-
formance. For the adjacency representation, planar graphs
are encoded as sequences of Os and 1s derived from the
strictly lower triangular matrix, with rows and columns per-
muted using BFS orderings to augment the training dataset.
Table 3 presents the quantitative and qualitative results of
the generated samples. Our proposed representation demon-
strates superior generative performance with a much smaller
set of tokens, while model learning adjacency matrices strug-
gles to capture the topological rules of the training graphs.

5.3. Generic Graph Generation

We evaluate G2PT on four generic datasets using Maximum
Mean Discrepancy (MMD) to compare the graph statistics
distributions of generated and test graphs. The evaluation
considers degree (Deg.), clustering coefficient (Clus.), orbit
counts (Orbit), spectral properties (Spec.), and wavelet statis-
tics. Moreover, we report the percentage of valid, unique,
and novel samples (V.U.N.) (Vignac et al., 2022). For this
task, we trained the G2PT,.n and G2PTy,.. models.

As shown in Table 2, G2PT demonstrates superior perfor-
mance compared to the baselines. The details about baseline
and metric are introduced in appendix B.5 The base model
achieves 11 out of 24 best scores and ranks in the top two
for 17 out of 24 metrics. The small model also demonstrates
competitive results, indicating that a lightweight model can
effectively capture the graph patterns in the datasets.

Rep. #Tokens] Deg.] Clus.] Orbit] Spec.] Wavelet] V.UN.T

A 2018 8.6e-3 le-1 8e-3 3.2e-2 6.1e-2 94

Ours 737 4.7e-3 2.4e-3 0.00 1.6e-2 1.4e-2 95
A Ours

Table 3. Generative performance comparison between the pro-
posed edge sequence and adjacency matrix representations.

5.4. Molecule Generation

De novo molecular design is a key real-world applica-
tion of graph generation. We assess G2PT’s performance
on the QM9, MOSES, and GuacaMol datasets. For the
QMO dataset, we adopt the evaluation protocol in Vignac
et al. (2022). For MOSES and GuacaMol, we utilize the
evaluation pipelines provided by their respective toolk-
its (Polykovskiy et al., 2020; Brown et al., 2019).

The quantitative results are presented in Table 4. On
MOSES, G2PT surpasses other state-of-the-art models in va-
lidity, uniqueness, FCD, and SNN metrics. We introduce the
details for metrics in appendix B.6. Notably, the FCD, SNN,
and scaffold similarity (Scaf) evaluations compare gener-
ated samples to a held-out test set, where the test molecules
have scaffolds distinct from the training data. Although the
scaffold similarity score is relatively low, the overall perfor-
mance indicates that G2PT achieves a better goodness of fit
on the training set. G2PT also delivers strong performance
on the GuacaMol and QM9 datasets. We additionally pro-
vide qualitative examples from the MOSES and GuacaMol
datasets in the table.

Graph Generative Pre-trained Transformer

Model MOSES GuacaMol
ValidityT Unique.t NoveltyT Filtersf FCDJ] SNNt1 Scaft ValidityT Unique.t NoveltyT KL Div.t FCD?T
DiGress (Vignac et al., 2022) 85.7 100 95.0 97.1 1.19 0.52 14.8 85.2 100 99.9 92.9 68
DisCo (Xu et al., 2024) 838.3 100 97.7 95.6 1.44 0.5 15.1 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2024) 90.5 99.9 92.6 99.1 1.27 0.54 16.0 98.9 98.9 97.6 96.7 727
DeFoG (Qin et al., 2024) 92.8 99.9 92.1 99.9 1.95 0.55 14.4 99.0 99.0 97.9 97.9 73.8
G2PTsman 95.1 100 91.7 97.4 .10 0.52 5.0 90.4 100 99.8 92.8 86.6
G2PThase 96.4 100 86.0 98.3 0.97 0.55 33 94.6 100 99.5 96.0 93.4
G2PTlarge 97.2 100 79.4 98.9 1.02 0.55 2.9 95.3 100 99.5 95.6 92.7
Model QM9 MOSES GuacaMol
Validity? Unique.? FCDJ Train G2PTsman G2PThase Train G2PTsman G2PThase
DiGress (Vignac et al., 2022) 99.0 96.2 - |
DisCo (Xu et al., 2024) 99.6 96.2 0.25 8
Cometh (Siraudin et al., 2024) 99.2 96.7 0.11 a
DeFoG (Qin et al., 2024) 99.3 96.3 0.12
G2PTsman 99.0 @ 0.06)
G2PThase 99.0 96.8 0.06
G2PTlarge 98.9 96.7 0.06
Table 4. Generative performance on molecular graph datasets
104 T Data RFT(> 0.6) 61 = Data RFT(< 2.0) 124 [Data RFTgpsi (> 0.4)
Pre-trained RFT(> 0.8) 54 Pre-trained RFTsps: (< 1.5) 101 Pre-trained RFTgps2(> 0.6)
81 RFT(>0.4) RFT(> 0.9) RFT(< 3.0) RFT(>0.2) RFTgpss (> 0.8)
4 1
2 61 s
& N 21 44
21 1 24
0 1 T T T T T T 0 1 T T T T T T 0 1 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0
QED Score SA Score GSK3/3 Score
(a) Rejection sampling fine-tuning (with self-bootstrap)
0.8
3.01 50 Data [0 Data 124 [0 Data
_ Pre-trained Pre-trained Pre-trained
25 PPO 061 PPO 101 PPO
2.0 81
2 . 0.4
% 1.5 i‘
e 10 0.2 '
0.5 2] ‘
0.0 : 0.0 : . . - - - 01 . . - - - -
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0
QED Score SA Score GSK3/3 Score

(b) Reinforcement learning framework (PPO)

Figure 2. Goal-oriented molecule generation using QED, SA and GSK3/3 scores. Top row (a) shows the results using RFT, and bottom

row (b) shows the results using RL.

5.5. Goal-oriented Generation

In addition to distribution learning which aims to draw inde-
pendent samples from the learned graph distribution, goal-
oriented generation is a major task in graph generation that
aims to draw samples with additional constraints or pref-
erences and is key to many applications such as molecule
optimization (Du et al., 2024).

We validate the capability of G2PT on goal-oriented gen-
eration by fine-tuning the pre-trained model. Practically,
we employ the model pre-trained on GuacaMol dataset and
select three commonly used physiochemical and binding-
related properties: quantitative evaluation of druglikeness
(QED), synthesis accessibility (SA), and the activity against

target protein Glycogen synthase kinase 3 beta (GSK3/3),
detailed in Appendix B.3. The property oracle functions
are provided by the Therapeutics Data Commons (TDC)
package (Huang et al., 2022).

As discussed in §4.1, we employ two approaches for fine-
tuning: (1) rejection sampling fine-tuning and (2) reinforce-
ment learning with PPO. Figure 2 shows that both methods
can effectively push the learned distribution to the distri-
bution of interest. Notably, RFT, with up to three rounds
of SBS, significantly shifts the distribution towards a de-
sired one. In contrast, PPO, despite biasing the distribution,
suffers from the over-regularization from the base policy,
which aims for training stability. In the most challenging

Graph Generative Pre-trained Transformer

BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg.
AttrMask (Hu et al., 2020) 70.2+£0.5 742408 62.5£04 604+0.6 68.6£9.6 739+13 7T43+£13 77.2+14 70.2
InfoGraph (Sun et al., 2020) 69.2+0.8 73.0+0.7 62.0£03 592402 75.1£5.0 74.0£1.5 745+1.8 73.9£25 70.1
ContextPred (Hu et al., 2020) 71.2+£0.9 7334+0.5 62.8+£0.3 59.3+14 73.7£4.0 72.5+22 758*1.1 78.6£1.4 709
GraphCL (You et al., 2021) 67.5+2.5 75.0+£0.5 62.8+0.2 60.1+£1.3 78.9+42 77.1£1.0 75.0+04 68.7£7.8 70.6
GraphMVP (Liu et al., 2022a) 68.5+0.2 74.5£0.0 62.7+0.1 62.3£1.6 79.0+£2.5 75014 74.8+14 76.8%+1.1 71.7
GraphMAE (Hou et al., 2022b) 70.9+0.9 75.0+0.4 64.1+0.1 59.9+0.5 81.5£2.8 76.9+2.6 76.7+0.9 81.4+14 733
G2PTman (No pre-training) 60.7£0.3 66.4+0.5 57.0£03 61.6+£0.2 67.8+1.1 458+8.5 70.1+£7.5 68.8£13 623
G2PTyase (No pre-training) 56.5+0.2 674404 57.9+0.1 602428 71.0£5.6 60.1£1.3 72.7+1.1 73.4+03 649
G2PTman 68.5+0.5 74.7+£0.2 61.2+£0.1 61.7+1.0 82.3+2.2 749+0.1 75.7+0.4 81.3£0.5 72.5
G2PThyee 71.0£04 75.0+0.3 63.0£0.5 61.9+0.2 82.1£1.1 74.5+03 76.3+04 823+1.6 733

Table 5. Results for molecule property prediction in terms of ROC-AUC. We report mean and standard deviation over three runs.

case (GSK3/3), PPO fails to sampling data with high rewards.
Conversely, RFT overcomes the barrier in the second round
(RFTggs1), where its distribution becomes flat across the
range and quickly transitions to a high-reward distribution.

5.6. Predictive Performance on Downstream Tasks

We conduct experiments on eight graph classification bench-
mark datasets from MoleculeNet (Wu et al., 2018a), strictly
following the data splitting protocol used in GraphMAE
(Hou et al., 2022a) for fair comparison. A detailed descrip-
tion of these datasets is provided in Appendix B.4.

For downstream fine-tuning, we initialize G2PT with param-
eters pre-trained on the GuacaMol dataset, which contains
molecules with up to 89 heavy atoms. We also provide
results where models are not pre-trained.

As summarized in Table 5, G2PT’s graph embeddings
demonstrate consistently strong (best or second-best) per-
formance on seven out of eight downstream tasks, achieving
an overall performance comparable to GraphMAE, a lead-
ing self-supervised learning (SSL) method. Notably, while
previous SSL approaches leverage additional features such
as 3D information or chirality, G2PT is trained exclusively
on 2D graph structural information. Overall, these results
indicate that G2PT not only excels in generation but also
learns effective graph representations.

5.7. Scaling Effects

We analyze how scaling the model size and data size will
affect the model performance using the three molecular
datasets. We use the validity score to quantify the model
performance. Results are provided in Figure 3.

For model scaling, we additionally train G2PTs with 1M,
705M, and 1.5B parameters. We notice that as model size
increases, validity score generally increases and saturates
at some point, depending on the task complexity. For in-
stance, QM9 saturates at the beginning (1M parameters)
while MOSES and GuacaMol require more than 85M (base)
parameters to achieve satisfying performance.

100
100 F - ..
*
90 / .
g
> 80
g % j
<
- 7/
70
/
] == MOSES /7 == MOSES
60 === GuacaMol / = GuacaMol
I — QM9 / — QM9
Q> 1 10 100
s s & ﬁ)@iq'\@\?’
Model size #Sequences per graph

Figure 3. Model and data scaling effects.

For data scaling, we generating multiple sequences from
the same graph to improve the diversity of the training
data. The number of augmentation per graph is chosen
from {1,10,100}. As shown, one sequence per graph is
insufficient to train transformers effectively, and improving
data diversity helps improve model performance. Similar to
model scaling, performance saturated at some point when
enough data are used.

6. Conclusion

This work revisits the graph generative models and proposes
a novel sequence-based representation that efficiently en-
codes graph structures via node and edge definitions. This
representation serves as the foundation for the proposed
Graph Generative Pre-trained Transformer (G2PT), an auto-
regressive model that effectively models graph sequences
using next-token prediction. Extensive evaluations demon-
strated that G2PT achieves remarkable performance across
multiple datasets and tasks, including generic graph and
molecule generation, as well as downstream tasks like goal-
oriented graph generation and graph property prediction.
The results highlight G2PT’s adaptability and scalability,
making it a versatile framework for various applications.
One limitation of our method is that G2PT is order-sensitive,
where different graph domains may prefer different edge
orderings. Future research could be done by exploring edge
orderings that are more universal and expressive.

Graph Generative Pre-trained Transformer

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van
Den Berg, R. Structured denoising diffusion models in
discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981-17993, 2021.

Bacciu, D., Micheli, A., and Podda, M. Edge-based se-
quential graph generation with recurrent neural networks.
Neurocomputing, 416:177-189, 2020.

Bergmeister, A., Martinkus, K., Perraudin, N., and Wat-
tenhofer, R. Efficient and scalable graph genera-
tion through iterative local expansion. arXiv preprint
arXiv:2312.11529, 2023.

Bergmeister, A., Martinkus, K., Perraudin, N., and Wat-
tenhofer, R. Efficient and scalable graph generation
through iterative local expansion, 2024. URL https:
//arxiv.org/abs/2312.11529.

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C.
Guacamol: Benchmarking models for de novo molec-
ular design. Journal of Chemical Information and
Modeling, 59(3):1096-1108, March 2019. ISSN 1549-
960X. doi: 10.1021/acs.jcim.8b00839. URL http:
//dx.doi.org/10.1021/acs.jcim.8b00839.

Campbell, A., Benton, J., De Bortoli, V., Rainforth, T., Deli-
giannidis, G., and Doucet, A. A continuous time frame-
work for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266-28279, 2022.

Campbell, A., Yim, J., Barzilay, R., Rainforth, T., and
Jaakkola, T. Generative flows on discrete state-spaces:
Enabling multimodal flows with applications to protein
co-design. arXiv preprint arXiv:2402.04997, 2024.

Chen, X., Han, X., Hu, J., Ruiz, F. J., and Liu, L. Order mat-
ters: Probabilistic modeling of node sequence for graph
generation. arXiv preprint arXiv:2106.06189, 2021.

Chen, X., Li, Y., Zhang, A., and Liu, L.-p. Nvdiff: Graph
generation through the diffusion of node vectors. arXiv
preprint arXiv:2211.10794, 2022.

Chen, X., He, J., Han, X., and Liu, L.-P. Efficient and degree-
guided graph generation via discrete diffusion modeling.
arXiv preprint arXiv:2305.04111, 2023.

Dai, H., Nazi, A., Li, Y., Dai, B., and Schuurmans, D.
Scalable deep generative modeling for sparse graphs. In
International conference on machine learning, pp. 2302—
2312. PMLR, 2020.

De Cao, N. and Kipf, T. Molgan: An implicit genera-
tive model for small molecular graphs. arXiv preprint
arXiv:1805.11973, 2018.

Diamant, N. L., Tseng, A. M., Chuang, K. V., Biancalani,
T., and Scalia, G. Improving graph generation by restrict-
ing graph bandwidth. In International Conference on
Machine Learning, pp. 7939-7959. PMLR, 2023.

Du, Y., Wang, S., Guo, X., Cao, H., Hu, S., Jiang, J., Var-
ala, A., Angirekula, A., and Zhao, L. Graphgt: Machine
learning datasets for graph generation and transformation.
In Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021.

Du, Y., Jamasb, A. R., Guo, J., Fu, T., Harris, C., Wang, Y.,
Duan, C., Lio, P.,, Schwaller, P., and Blundell, T. L. Ma-
chine learning-aided generative molecular design. Nature
Machine Intelligence, pp. 1-16, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Eijkelboom, F., Bartosh, G., Naesseth, C. A., Welling, M.,
and van de Meent, J.-W. Variational flow matching
for graph generation. arXiv preprint arXiv:2406.04843,
2024.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Miiller, J.,
Saini, H., Levi, Y., Lorenz, D., Sauer, A., Boesel, F., et al.
Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first International Conference
on Machine Learning, 2024.

Gat, 1., Remez, T., Shaul, N., Kreuk, F., Chen, R. T., Syn-
naeve, G., Adi, Y., and Lipman, Y. Discrete flow match-
ing. arXiv preprint arXiv:2407.15595, 2024.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R.
Non-autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281, 2017.

Haefeli, K. K., Martinkus, K., Perraudin, N., and Wat-
tenhofer, R. Diffusion models for graphs benefit from
discrete state spaces. arXiv preprint arXiv:2210.01549,
2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840-6851, 2020.

Hoogeboom, E., Gritsenko, A. A., Bastings, J., Poole, B.,
Berg, R. v. d., and Salimans, T. Autoregressive diffusion
models. arXiv preprint arXiv:2110.02037, 2021.

Graph Generative Pre-trained Transformer

Hou, Z., Liu, X., Cen, Y., Dong, Y., Yang, H., Wang, C.,
and Tang, J. Graphmae: Self-supervised masked graph
autoencoders. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 594-604, 2022a.

Hou, Z., Liu, X., Cen, Y., Dong, Y., Yang, H., Wang, C.,
and Tang, J. Graphmae: Self-supervised masked graph
autoencoders, 2022b. URL https://arxiv.org/
abs/2205.10803.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks, 2020. URL https://arxiv.org/abs/
1905.12265.

Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec,
J., Coley, C. W., Xiao, C., Sun, J., and Zitnik, M. Artificial
intelligence foundation for therapeutic science. Nature
chemical biology, 18(10):1033-1036, 2022.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International conference on machine
learning, pp. 10362-10383. PMLR, 2022a.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations, 2022b. URL https://arxiv.org/
abs/2202.02514.

Jo, J., Kim, D., and Hwang, S. J. Graph generation with dif-
fusion mixture. arXiv preprint arXiv:2302.03596, 2023.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, 2018.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Du-
venaud, D. K., Urtasun, R., and Zemel, R. Efficient
graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32,

2019.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. arXiv
preprint arXiv:2210.02747, 2022.

Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt, A.
Constrained graph variational autoencoders for molecule
design. Advances in neural information processing sys-
tems, 31, 2018.

Liu, S., Wang, H., Liu, W., Lasenby, J., Guo, H., and Tang,
J. Pre-training molecular graph representation with 3d
geometry, 2022a. URL https://arxiv.org/abs/
2110.07728.

10

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
arXiv preprint arXiv:2209.03003, 2022b.

Liu, Z., Lu, M., Zhang, S., Liu, B., Guo, H., Yang, Y.,
Blanchet, J., and Wang, Z. Provably mitigating overopti-
mization in rlhf: Your sft loss is implicitly an adversarial
regularizer. arXiv preprint arXiv:2405.16436, 2024.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019. URL https://arxiv.org/abs/
1711.05101.

Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M., Vanden-
Eijnden, E., and Xie, S. Sit: Exploring flow and diffusion-
based generative models with scalable interpolant trans-
formers. arXiv preprint arXiv:2401.08740, 2024.

Madhawa, K., Ishiguro, K., Nakago, K., and Abe, M. Graph-
nvp: An invertible flow model for generating molecular
graphs. arXiv preprint arXiv:1905.11600, 2019.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. Spectre: Spectral conditioning helps to overcome the
expressivity limits of one-shot graph generators, 2022.
URL https://arxiv.org/abs/2204.01613.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474-4484. PMLR,
2020.

Olivecrona, M., Blaschke, T., Engkvist, O., and Chen, H.
Molecular de-novo design through deep reinforcement
learning. Journal of cheminformatics, 9:1-14, 2017.

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golo-
vanov, S., Tatanov, O., Belyaeyv, S., Kurbanov, R., Arta-
monov, A., Aladinskiy, V., Veselov, M., Kadurin, A., Jo-
hansson, S., Chen, H., Nikolenko, S., Aspuru-Guzik, A.,
and Zhavoronkov, A. Molecular sets (moses): A bench-
marking platform for molecular generation models, 2020.
URL https://arxiv.org/abs/1811.12823.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet chemnet distance: A metric for
generative models for molecules in drug discovery, 2018.
URL https://arxiv.org/abs/1803.09518.

Qin, Y., Madeira, M., Thanou, D., and Frossard, P. Defog:
Discrete flow matching for graph generation, 2024. URL
https://arxiv.org/abs/2410.04263.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Graph Generative Pre-trained Transformer

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sherstinsky, A. Fundamentals of recurrent neural network
(rnn) and long short-term memory (Istm) network. Phys-
ica D: Nonlinear Phenomena, 404:132306, 2020.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In Artificial Neural Networks and Machine Learning—
ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part 1 27, pp. 412-422. Springer, 2018.

Siraudin, A., Malliaros, F. D., and Morris, C. Cometh:
A continuous-time discrete-state graph diffusion model.
arXiv preprint arXiv:2406.06449, 2024.

Sun, F.-Y., Hoffmann, J., Verma, V., and Tang, J. Info-
graph: Unsupervised and semi-supervised graph-level
representation learning via mutual information maximiza-

tion, 2020. URL https://arxiv.org/abs/1908.

01000.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Vignac, C., Krawczuk, 1., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Wu, M., Chen, X., and Liu, L.-P. Edge++: Improved training
and sampling of edge. arXiv preprint arXiv:2310.14441,
2023.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513-530, 2018a.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande,
V. Moleculenet: A benchmark for molecular machine
learning, 2018b. URL https://arxiv.org/abs/
1703.00564.

Xu, Z., Qiu, R., Chen, Y., Chen, H., Fan, X., Pan, M., Zeng,
Z., Das, M., and Tong, H. Discrete-state continuous-
time diffusion for graph generation. arXiv preprint
arXiv:2405.11416, 2024.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecu-
lar graph generation. Advances in neural information
processing systems, 31, 2018a.

11

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on ma-
chine learning, pp. 5708-5717. PMLR, 2018b.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen,
Y. Graph contrastive learning with augmentations, 2021.
URL https://arxiv.org/abs/2010.13902.

Zang, C. and Wang, F. Moflow: an invertible flow model for
generating molecular graphs. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 617-626, 2020.

Zheng, R., Dou, S., Gao, S., Hua, Y., Shen, W., Wang, B.,
Liu, Y., Jin, S., Liu, Q., Zhou, Y., et al. Secrets of rlhf
in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023.

Zhu, Y., Du, Y., Wang, Y., Xu, Y., Zhang, J., Liu, Q., and
Wu, S. A survey on deep graph generation: Methods
and applications. In Learning on Graphs Conference, pp.
47-1. PMLR, 2022.

Zhu, Y., Chen, D., Du, Y., Wang, Y., Liu, Q., and Wu,
S. Molecular contrastive pretraining with collaborative
featurizations. Journal of Chemical Information and
Modeling, 64(4):1112-1122, 2024.

Graph Generative Pre-trained Transformer

A. Reinforcement Learning Details
A.1. Preliminaries on Proximal Policy Optimization (PPO)

Generalized Advantage Estimation. In reinforcement learning, the Q function Q(s«;, s;) captures the expected returns
when taking an action s; at current state s;, and the value function V(s<;) captures the expected return following the
policy from a given state s;.

The advantage function A(s;,s<;), defined as the difference between the Q function and the value function, measures
whether taking action s; is better or worse than the policy’s default behavior. In practice, the Q function is estimated using
the actual rewards r; and the estimated future returns (the value function). There are two commonly used estimators, one is
the one-step Temporal Difference (TD):

Qls<i, 1) =11 + 9V (s<i41),
A(scr,s1) =+ 9V (s<rs1) — V(s<r),
and the full Monte Carlo (MC):

E - l
S<la Sl Y "y

=l

S<l,81 EV ry =V S<l),

=l

assuming finite trajectory with L steps in total. However, the TD estimator exhibits high bias and the MC estimator exhibits
high variance. The Generalized Advantage Estimation (GAE) (Schulman et al., 2015) effectively balances the high bias and
high variance smoothly using a trade-off parameter v. Let ; = r; + 7YV (s<;+1) — V(s<;), the definition of GAE is:

L

A’Y(S<l, Sl) = Z(v)\)l/_l&p =0 + A’Y(S<l+1, Sl+1).
U'=l1

GAE plays an important role in estimating the policy gradient, and will be used in the PPO algorithm.

Proximal Policy Optimization. PPO (Schulman et al., 2017) is a fundamental technique in reinforcement learning,
designed to train policies efficiently while preserving stability. It is built on the principle that gradually guides the policy
towards an optimal solution, rather than applying aggressive updates that could compromise the stability of the learning
process.

In traditional policy gradient methods, the new policy should remain close to the old policy in the parameters space. However,
proximity in parameter space does not indicate similar performance. A large update step in policy may lead to falling “off
the cliff”, thus getting a bad policy. Once it is stuck in a bad policy, it will take a very long time to recover.

PPO introduces two kinds of constraints on policy updates. The first kind is to add an KL-regularization term to the policy
gradient “surrogate” objective

~ [po(sils<t) 5

Lpg-penatry (@) = Ky [MAI] — BKL(Pga (-Is<t)Ipe (|s<1))-
Pooa (sl |S<l)

Here I@l[] is the empirical average over a finite batch of samples where sampling and optimization alternates. [is the

penalty factor. A; := AY(s<y, s;) is GAE, which is detailed in last section.

The second type is the clipped surrogate objective, expressed as

Epg—clip(¢) = El [min <p¢(81|s<l)/il, Cllp<2ws<l)), 1-— €, 1+ €> Al)] s

p¢o]d(8l|s<l) p¢old(sl|s<l

Po(sils<t)
Pogq(sils<i)
deviate from the one policy. The clipping operations prevent the policy from changing too much from the older one within

one iteration. In the following, we elaborate on how the critic model is optimized.

where is the probability ratio between the new and the old policy. And e decides how much the new policy can

12

Graph Generative Pre-trained Transformer

QM9 MOSES GuacaMol Planar Tree Lobster SBM
#Node Types 4 8 12 1 1 1 1
#Edge Types 4 4 4 1 1 1 1
Avg. #Nodes 8.79 21.67 27.83 64 64 55 104.01
Min. #Nodes 1 8 2 64 64 10 44
Max. #Nodes 9 27 88 64 64 100 187
#Training Sequences 9,773,200 141,951,200 111,863,300 12,800,000 10,000,000 12,800,000 12,800,000
Vocabulary Size 27 60 120 73 73 110 195
Max Sequence Length 85 207 614 737 383 599 3950

Table 6. Dataset statistics.

Value Function Approximation. The critic model V;;(s<;) in PPO algorithm is used to approximate the actual value
function V?(s;). We use the mean absolute value loss to minimize the difference between the predicted values and the
actual return values. Specifically, the objective is

Leritic = B [[Vip(s<t) = V(s<)l]-

Here the actual return value is estimated using GAE to balance the bias and variance:

V(S<l) = A(S<17 sl) + Villum (S<l)7

where Vi, (s<;) is collected during the sampling step in PPO. The critic loss is weight by a factor ps.

A.2. KL-regularization

As mentioned in §4.1, we adopt a KL-regularized reinforcement learning approach. Unlike the KL penalty in Lpg_penatty (),
this regularizer ensures that the policy model p4 does not diverge significantly from the reference model py. Instead of
optimizing this term directly, we incorporate it into the rewards r;. Specifically, we define:

rt = i = puKL(ps (Cllst, si)llpoCllsr, 1)),

where p; is the penalty factor. In practice, p; is set to a small value, such as 0.03, to promote exploration.

A.3. Pre-training loss

Following Zheng et al. (2023) and Liu et al. (2024), we incorporate the pre-training loss Ly(¢) o mitigate potential
degeneration in the model’s ability to produce valid sequences. This is particularly beneficial for helping the actor model
recover when it “falls off the grid” during PPO. The pre-training data is sourced from the dataset used to train the reference
model, and the loss L, (¢) is weighted by the coefficient ps.

B. Additional Experimental Details
B.1. Graph Generative Pre-training

Generative pre-training leverages graph-structured data to learn foundational representations that can be fine-tuned for
downstream tasks.

Sequence conversion. We convert graphs into sequences of tokens that represent nodes and edges. This transformation
involves encoding the molecular structure in a sequential format that captures both the composition and the order of assembly.
For instance, we iteratively process the nodes and edges, and insert special tokens to mark key points in the sequence, such
as the start and end of generation. Additionally, we apply preprocessing steps like filtering molecules by size, removing
hydrogens, or addressing dataset-specific constraints to ensure consistency and suitability for the target tasks.

Data splitting. We divide generic datasets into training, validation, and test sets based on splitting ratios 6:2:2. For the
molecular datasets, we follow the default settings of the datasets.

13

Graph Generative Pre-trained Transformer

1I0M 85M 300M
Architecture

#layers 6 12 24
#heads 6 12 16
dimodel 384 768 1024
dropout rate 0.0

Training
Lr le-4
Optimizer AdamW (Loshchilov & Hutter, 2019)
Lr scheduler Cosine
Weight decay le-1
#iterations 300000
Batch size 60 60 30
#Gradient Accumulation 8 8 16
Grad Clipping Value 1
#Warmup Iterations 2000

Table 7. Hyperparameters for graph generative pre-training.

Dataset statistics. The vocabulary size, maximum sequence length, and other parameters vary across datasets due to their
distinct molecular characteristics. We summarize the specifications in Table 6, which includes details on the number of node
types, edge types, and graphs for each dataset.

Hyperparameters. Table 7 provides hyperparameters used for training three distinct model sizes, corresponding to
approximately 10M, 85M, and 300M parameters, respectively.

B.2. Demonstration Experiment

We elaborate on how to represent adjacency matrix as sequence and train a transformer decoder on it. We choose planar
graphs as the investigation object as it requires a model to be able to capture the rule embedded in the graph. We use
G2PTpay for this experiment.

Sequence conversion. We convert a 2-D adjacency matrix into a 1-D sequence before training the models. Similar to
GraphRNN (You et al., 2018b), we consider modeling the strictly lower triangle of the adjacency matrix. To obtain sequence,
we flatten the triangle by concatenating the rows together. The ¢-th row has ¢ — 1 entries, where each entry is either O or 1.
We employ BFS to determine the node orderings, which is used to permute the rows and columns of the adjacency matrix to
reduce the learning complexity (as uniform orderings are generally harder to fit (Chen et al., 2021)).

Training transformers on adjacency matrices. After obtaining the sequence representation, we prepend and append
two special tokens, [SOG] and [EOG], to mark the start and end of the generation of each sequence. The sequence is then
tokenized using a vocabulary of size 4, and the transformer is trained on these sequences. Note that no additional token is
needed to indicate transitions between rows, as the flattened sequence maintains a fixed correspondence between positions
and the referenced node pairs. Specifically, the original row and column indices in the adjacency matrix for the i-th entry in
the sequence can be determined as:

2 - 2

row — [l+m—‘ col = i (rowfl)(row—2)'

Here [-] is the ceiling operation. Such correspondence is agnostic to graph size and can be inferred by transformers by using
positional embeddings.

14

Graph Generative Pre-trained Transformer

QED SA GSK38

¥ 1.0

A 1.0

P1 0.5

P2 0.03 0.03 0.05
P3 0.03
Advantage Normalization and Clipping Yes No No
Reward Normalization and Clipping No Yes Yes
Ratio Clipping (¢) [0.2]

Critic Value Clipping [0.2]
Entropy Regularization No
Gradient Clipping Value 1.0

Actor Lr 1.0

Critic Lr 0.5 0.5 1.0
#lterations 6000

Batch size 60

Table 8. Hyperparameters used for PPO training.

B.3. Fine-tuning G2PT for Goal-oriented Generation

For the goal-oriented generation, we fine-tune G2PT to generate molecules with desired characteristics. Specifically, we
consider three properties that are commonly used for molecule optimization whose functions are easily accessed through the
Therapeutics Data Commons (TDC) package (Huang et al., 2022).

* Quantitative evaluation of druglikeness (QED): range 0-1, the higher the more druglike.
» Synthesis accessibility (SA) score: range 1-10, the lower the more synthesizable.

e GSK3p: activity against target protein Glycogen synthase kinase 3 beta, range 0-1, the higher the better activity.

We use the 85M model pre-trained on GucaMol dataset for all experiments. Below we elaborate on how the RFT and RL
algorithms implement each optimization task (property).

Rejection-sampling fine-tuning. For RFT algorithm without SBS, we begin by generating samples using the pre-trained
model and retain only those that meet the criteria defined by the acceptance function mZ (-). We collect 200,000 qualified
samples from the generations. Then, we fine-tune the model by initializing it with pre-trained parameters. When combining
RFT with SBS, we repeat this process iteratively, using the fine-tuned model from the previous iteration for both sampling
and parameter initialization.

For QED score, we retain samples with scores exceeding thresholds of 0.4, 0.6, 0.8, or 0.9. We do not use the SBS algorithm
here, as the pre-trained model generates samples efficiently across all QED score ranges.

For SA score, we consider thresholds of {< 3.0, < 2.0, < 1.5}. We find that the pre-trained model efficiently generates
molecules with SA scores below 2.0 and 3.0 but struggles with scores below 1.5. To address this, we bootstrap the fine-tuned
model from the 2.0 threshold to the 1.5 threshold.

For GSK34, we consider thresholds in {> 0.2,> 0.4,> 0.6,> 0.8}. We observe that the pre-trained model’s score
distribution is skewed towards 0, making it challenging to generate satisfactory samples. To resolve this, we fine-tune the
model at the 0.2 threshold and progressively bootstrap it through intermediate thresholds (0.4, 0.6) up to 0.8, performing
three bootstrapping steps in total.

All models are trained for 6000 iterations, with batch size of 120 and learning rate of le-5. The learning rate gradually decay
to 0 using Cosine scheduler.

15

Graph Generative Pre-trained Transformer

Reinforcement learning. We use the PPO algorithm to further optimize the pre-trained model. In practice, the token-level
reward R([s<;, s1]) is set to 0 except when s; = [EOG]. The final reward r(s) for the three properties are designed as
follow:

P (s) = 1, ¢ max(0.2,2 x (QED(G) — 0.5)), 1)
A (s) = 1,,¢max(0.2,0.2 x (5 — SA(G)),)
r®8(s) = 1,,6(5 x (GSK3B(G)). 3)

The indicator function 1,_,4 assigns O to the final reward when the generated sequence s is invalid. We show the PPO
hyperparameters for each targeted task in Table 8.

B.4. Fine-tuning G2PT for Graph Property Prediction

Datasets. We use eight classification tasks in MoleculeNet (Wu et al., 2018a) following Zhu et al. (2024) to validate the
predictive capability of our learned representations.

The datasets cover two types of molecular properties: biophysical and physiological properties.

* Biophysical properties include (1) the HIV dataset for HIV replication inhibition, (2) the Maximum Unbiased Validation
(MUYV) dataset for virtual screening with nearst neighbor search, (3) the BACE dataset for inhibition of human (-
secretase 1 (BACE-1), and (4) the Side Effect Resource (SIDER) dataset for grouping the side effects of marketed
drugs into 27 system organ classes.

 Physiological properties include (1) the Blood-brain barrier penetration (BBBP) dataset for predicting barrier perme-
ability of molecules targeting central nervous system, (2) the Tox21, (3) the ClinTox, and (4) the ToxCast datasets that
are all associated with certain type of toxicity of the chemical compounds.

We adopt the scaffold split that divides train, validation and test set by different scaffolds, introduced by Wu et al. (2018b).

Fine-tuning details. We fine-tune G2PTj,,; and G2P Ty, pre-trained on GuacaMol dataset for the downstream tasks. We
setup the dropout rate to 0.5 and use a learning rate of 1e-4 for training the linear layer. For the half transformer blocks, we
use a learning rate of 1e-6. We use a batch size of 256 and train the models for 100 epochs. Test result with best validation
performance is reported.

B.5. Baselines

We evaluate our proposed method against a variety of baselines across different datasets. The baselines include models that
span diverse methodologies, ranging from graph neural networks to transformer-based architectures.

Generic graph datasets. The performance of baseline models on Planar, Tree, Lobster, and SBM datasets is shown
in Table 2. We consider baselines mainly from two categories: auto-regressive and diffusion graph models. Among
them, GRAN (Liao et al., 2019), BiGG (Dai et al., 2020), and BwR (Diamant et al., 2023) are auto-regressive models
that sequentially generate graphs. GRAN uses attention-based GNNs to perform block-wise generation, focusing on
dependencies between components within the graph. In contrast, BiGG addresses the challenges of efficiency by leveraging
the sparsity of real-world graphs to avoid constructing dense representations. Unlike GRAN and BiGG, BwR simplifies
the generation process further by restricting graph bandwidth. On the other hand, DiGress (Vignac et al., 2022) and
HSpectra (Bergmeister et al., 2023) are built based on diffusion frameworks. DiGress is the first approach that uses a discrete
diffusion model to iteratively modify graphs, while HSpectra focuses on multi-scale graph construction by progressively
generating graphs through localized denoising diffusion.

Molecule generation datasets. We compare G2PT against four baselines: DiGress (Vignac et al., 2022), DisCo (Xu et al.,
2024), Cometh (Siraudin et al., 2024), and DeFoG (Qin et al., 2024). Among them, DisCo and Cometh are both based on a
continuous-time discrete diffusion framework, with Cometh additionally incorporating positional encoding for nodes and
separate noising processes for nodes and edges. DeFoG adopts a discrete flow matching approach with a linear interpolation
noising process.

16

Graph Generative Pre-trained Transformer

Graph pre-training methods. We compare against several pre-training approaches for molecular property prediction, as
summarized in Table 5. The goal of Graph pre-training methods is to learn robust graph representations via exploiting the
structural information. AttrMask (Hu et al., 2020) uses attribute masking at both node and graph levels to capture local and
global features simultaneously. ContextPred (Hu et al., 2020) builds on this idea by predicting subgraph contexts, enabling
the model to understand patterns beyond individual attributes. Similarly, InfoGraph (Sun et al., 2020) focuses on multi-scale
graph representations by maximizing mutual information between graph-level embeddings and substructures. Moving to
contrastive learning approaches, GraphCL (You et al., 2021) applies graph augmentations to generate positive and negative
samples for representation learning. Building on this idea, GraphM VP (Liu et al., 2022a) incorporates both 2D molecular
topology and 3D geometric views, aligning them within a contrastive framework to enhance feature representation. In
contrast to these methods, GraphMAE (Hou et al., 2022b) adopts a generative approach, using a masked graph auto-encoder
to reconstruct node features and capture structural information.

B.6. Evaluation

Metrics for molecule datasets. As MOSES and GuacaMol are established benchmarking tools, they provide predefined
metrics for evaluating and reporting results. These metrics are briefly outlined as follows: Validity assesses the percentage
of molecules that satisfy basic valency constraints. Uniqueness evaluates the fraction of molecules represented by distinct
SMILES strings, indicating non-isomorphism. Novelty quantifies the proportion of generated molecules absent from the
training dataset. The filter score represents the percentage of molecules that satisfy the same filtering criteria applied during
test set construction. The Frechet ChemNet Distance (FCD) (Preuer et al., 2018) quantifies the similarity between molecules
in the training and test sets based on neural network-derived embeddings. SNN computes the similarity to the nearest
neighbor using the Tanimoto distance. Scaffold similarity compares the distributions of Bemis-Murcko scaffolds, and KL
divergence measures discrepancies in the distribution of various physicochemical descriptors.

For QM9 dataset, the validity metric reported in this study is calculated by constructing a molecule using RDKit and
attempting to generate a valid SMILES string from it, as this approach is commonly employed in the literature. However, as
explained by Jo et al. (2022b), this method has limitations, as it may classify certain charged molecules present in QM9 as
invalid. To address this, they propose a more lenient definition of validity that accommodates partial charges, offering a
slight advantage in their computations.

Metrics for generic graph datasets. We adopt the evaluation framework outlined by (Martinkus et al., 2022) and
(Bergmeister et al., 2024), incorporating both dataset-agnostic and dataset-specific metrics. The dataset-agnostic metrics
evaluate the alignment between the distributions of the generated graphs and the training data by analyzing general graph
properties. Specifically, we characterize graphs based on their node degrees (Deg.), clustering coefficients (Clus.), orbit
counts (Orbit), eigenvalues of the normalized graph Laplacian (Spec.), and statistics derived from a wavelet graph transform
(Wavelet). To quantify the alignment, we compute the distances between the empirical distributions of these statistics for the
generated and test graphs using Maximum Mean Discrepancy (MMD).

Subsequently, we evaluate the generated graphs using dataset-specific metrics under the V.U.N. framework, which measures
the proportions of valid (V), unique (U), and novel (N) graphs. Validity is determined by dataset-specific criteria: graphs
must be planar, tree-structured, or statistically consistent with a Stochastic Block Model (SBM) for the planar, tree, and
SBM datasets, respectively. Uniqueness evaluates the proportion of non-isomorphic graphs among the generated samples,
while novelty quantifies the proportion of generated graphs that are non-isomorphic to any graph in the training set.

B.7. Computation Resources.

We ran all pre-training tasks and all goal-oriented generation fine-tuning tasks run on 8§ NVIDIA A100-SXM4-80GB GPU
with distributed training. For PPO training and graph property prediction tasks, we ran experiments using a A100 GPU.

C. Related works

C.1. Auto-regressive Graph Generative Models

Even though graph is naturally an unordered set, auto-regressive models generate graphs sequentially, one node, edge, or
substructure at a time. GraphRNN and DeepGMG (You et al., 2018b; Li et al., 2018) prefix a canonical ordering (e.g.,
breath-first search) for the nodes and edges and generates nodes and edges associated with them step by step. On the contrary,

17

Graph Generative Pre-trained Transformer

Algorithm 4 Depth-First search edge order generation
Input: Graph G = (V, E), neighborhood function Nei.(-).
Output: Sequence of traversed edges 0.

Initialize o < [], sample vg from V.

DFS _helper (v):
for v’ € Nei(v) do
e = (v,v).
if v’ is not visited then
Append e to 0.
Call DFS _helper(v’).
else
if e ¢ o then
Append e to o .
end if
end if
end for

Run DFS helper(vg).

Algorithm 5 Breadth-First Search edge order generation
Input: Graph G = (V, E), neighborhood function Nei(-).
Output: Sequence of traversed edges 0.

Initialize o < [], sample vy from V, initialize queue < [vg).
while queue is not empty do
v <— queue.popfirst()
for v’ € Nei(v) do
e = (v,v).
if v is not visited then
append e to o g, append v’ to queue.
else
if e ¢ op then
append e to 0.
end if
end if
end for
end while

Bacciu et al. (2020) propose to generate edges first then the connected nodes subsequently. These auto-regressive models are
also broadly adapted into applications such as molecule generation. GCPN (You et al., 2018a), and REINVENT (Olivecrona
et al., 2017) both leverage pre-trained auto-regressive models to fine-tune with a reward model to generate molecules with
desired properties.

C.2. Non-auto-regressive Graph Generative Models

In addition to auto-regressive models, non-auto-regressive graph generative models can be categorized into two branches:
(1) one-shot generation and (2) iterative refinement. One-shot generation aims to generate a graph in a single step including
methods such as generative adversarial networks (De Cao & Kipf, 2018), variational auto-encoders (Simonovsky &
Komodakis, 2018; Liu et al., 2018) and normalizing flows (Madhawa et al., 2019; Zang & Wang, 2020). Nevertheless,
one-shot graph generative models often suffer from the decoding strategies such that it requires an expressive decoder to
map from latent vectors to graphs. On the other side, iterative refinement methods generate the entire graph in the first step
and then iteratively refine the generated graph to be close to a realistic graph, including diffusion (Niu et al., 2020; Jo et al.,
2022a; Vignac et al., 2022; Chen et al., 2022; 2023; Jo et al., 2023; Haefeli et al., 2022; Wu et al., 2023; Siraudin et al.,

18

Graph Generative Pre-trained Transformer

Algorithm 6 Uniform edge order genration
Input: Graph G = (V, E)
Output: Sequence of edge ordering o g
Initialize o + []
while E is not empty do
sample e from F, append e to o
Remove e from E
end while

Model Edge Orderings ~ Validity? Unique.f Novelty? Filterst FCD] SNNf{ Scaff

Degree-based 95.1 100 91.7 97.4 1.1 0.52 5.0

G2PToa DFS 91.6 100 87.1 98.0 1.2 0.55 8.9
smat - BFS 96.2 100 86.8 98.3 1.0 0.55 10.6
Uniform 62.9 100 99.4 52.0 7.0 0.38 9.5
Degree-based 96.4 100 86.0 98.3 0.97 0.55 3.3

G2PThs DFS 91.9 100 83.7 98.1 1.13 0.55 7.5
*¢ BFS 96.9 100 84.6 98.7 0.98 0.55 11.1
Uniform 80.9 100 97.0 83.9 2.14 0.46 10.3

Table 9. Sensitivity analysis on edge orderings.

2024; Xu et al., 2024) and flow matching models (Qin et al., 2024; Eijkelboom et al., 2024; Lipman et al., 2022; Liu et al.,
2022b; Esser et al., 2024; Ma et al., 2024; Campbell et al., 2024; Gat et al., 2024). As discussed in Section 2, they often
require a prefixed number of refinement steps and they need to maintain an adjacency matrix over the trajectory which is
computationally intensive.

D. Additional Results
D.1. Sensitivity Analysis of Edge Orderings

We investigate how the employed edge orderings will affect the generative performance of G2PT. Specifically, we consider
four orderings: the reverse of edge-removal process (Alg. 1), DFS ordering (Alg. 4), BFS ordering (Alg. 5), and uniform
ordering (Alg. 6). We train G2PTy, and G2PTy,,sc on MOSES dataset and evaluate the performance.

Result. Table 9 reports the performance of different edge orderings. BFS and degree-based edge-removal orderings both
exhibit superior results, while DFS orderings show moderate performance. Particularly, uniform ordering shows poor
performance in capturing the sequence distribution. This result highlights the importance of choosing the right ordering
families for generating sequences.

D.2. Additional Visualizations

We further visualize the generic graph in Figure 4, and molecular graph in Figure 5. The results show that both G2PT.1
and G2PTy,,. have the ability to capture the topological rules of the training graphs.

19

Graph Generative Pre-trained Transformer

Train G2PTman G2PThase
Tree ¢ /
Lobster
Planar :; '! : ‘ \ ‘. y
ol) il L
SBM . :?f?-,?, . |~ f ey
n'{'. "’Sjgp V ﬁ* RS ff”
Figure 4. The visualization of generic graph datasets
MOSES
= N OH o \ o 1
o) Q 4 \ 2 o o, i
Train Q——«H \ :\@ QN}/@/ ‘B— g A — écnﬂ QYQ:\)(O\”/N \ N/\/éo
OH o B — OH o‘ T o 0,
= o =0
o oy N |
N HN) /AN(\ ’ f N i
Gl o 0 = LA ‘/«Q roLor
\N M = —n \0 Br
: .) N—N> Zj//\') 6/ o—
HO— /9 N— o / N\> Y/ ¥ 3 _
—N OH
GuacaMol
0= 3 . o/N\ — , o “340
Train @ e NC \/N/Q/K @ Q‘O’?@—(- "O/ "/\ND Q\(,_<<
o / {0 7 { P . P
GzPTsmall H @Aﬁ/[&/ /D’Q=<W\©MO AQ(‘N/@ Dt< 2 "A(;?/
4 ¢ /'

GzPTbase

3

o O \“J/

Figure 5. The visualization of molecular datasets

