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Abstract

Graph generation is a critical task in numerous

domains, including molecular design and social

network analysis, due to its ability to model com-

plex relationships and structured data. While

most modern graph generative models utilize ad-

jacency matrix representations, this work revis-

its an alternative approach that represents graphs

as sequences of node set and edge set. We ad-

vocate for this approach due to its efficient en-

coding of graphs and propose a novel represen-

tation. Based on this representation, we intro-

duce the Graph Generative Pre-trained Trans-

former (G2PT), an auto-regressive model that

learns graph structures via next-token prediction.

To further exploit G2PT’s capabilities as a general-

purpose foundation model, we explore fine-tuning

strategies for two downstream applications: goal-

oriented generation and graph property predic-

tion. We conduct extensive experiments across

multiple datasets. Results indicate that G2PT

achieves superior generative performance on both

generic graph and molecule datasets. Further-

more, G2PT exhibits strong adaptability and ver-

satility in downstream tasks from molecular de-

sign to property prediction.

1. Introduction

Graph generation has become a crucial task in various do-

mains, from chemical discovery to social network analysis,

owing to graphs’ ability to represent complex relationships

and produce realistic, structured data (Du et al., 2021; Zhu

et al., 2022). Recent advancements in graph generative mod-

els primarily focus on permutation-invariant methods lever-

aging diffusion-based approaches (Ho et al., 2020; Austin

et al., 2021). For example, models like EDP-GNN (Niu

et al., 2020) and GDSS (Jo et al., 2022a) represent graphs us-

ing continuous adjacency matrices. In contrast, DiGress (Vi-

gnac et al., 2022) and EDGE (Chen et al., 2023) employ

discrete diffusion, treating node types and all node pairs
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(edges) as categorical variables. Earlier neural graph gener-

ation methods introduced permutation-dependent models,

such as GraphRNN (You et al., 2018b) and DeepGMG (Li

et al., 2018). hese approaches employed auto-regressive

frameworks (e.g., RNNs or LSTMs (Sherstinsky, 2020))

to sequentially generate graphs. For instance, GraphRNN

generates adjacency matrix entries step-by-step. DeepGMG

frames graph generation as a sequence of actions (e.g., add-

node, add-edge), and utilizes an agent-based model to learn

the action trajectories.

The discrete diffusion-based methods, in particular, gain

more attention due to it perfectly aligns with the nature of

discrete structure of graphs. However, sampling from dis-

crete diffusion models relies on the conditional-independent

assumption (Gu et al., 2017): the distribution of each entry

at time t is independent of others, given the observation at

time t−1. This may lead to a poor approximation of the true

distribution, as multiple trajectories can emerge from the

current state. A similar argument is made in Campbell et al.

(2022), drawing a connection to the Tau-Leaping approxima-

tion, which allows changing multiple entries at a single time

step. Ideally, the most accurate sampling is to change only

one dimension at one timestep, or effectively, employ a large

number of denoising steps. In the graph generation problem,

this is equivalent to only change the label of one node, or

change one node pair in terms of addition, deletion or alter-

ation at a time. Such sampling schema naturally degenerates

into an any-order auto-regressive model (Hoogeboom et al.,

2021; Campbell et al., 2022).

Due to the recent success of large language models (Achiam

et al., 2023; Dubey et al., 2024), in this work, we revisit the

family of auto-regressive graph generative models. We pro-

pose a new method to represent graph as sequence. Specif-

ically, our designed sequence consists of two parts: node

definition and edge definition. The node definition is first

established to provide information about the node index

and node type. After that, the edge definition specifies how

edges are connected by using the defined node indices, as

well as the edge labels. Our propose representation is sparse

as it only define edges that explicitly exits, contrasting to

the adjacency representation. We then utilize transformer

decoder to approximate the sequence distribution via the

next-token prediction loss. We name it Graph Generative

Pre-trained Transformer (G2PT).
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Graph Generative Pre-trained Transformer

Model (Rep.) Likelihood Illustration #Network Calls #Variables Decomposition

Diffusion (A) p(AT )
T∏

t=1

p(At−1|At) T O(Tn2)
Conditional

independent

Auto-regressive (A)

n∏

i=2

i−1∏

j=1

p(Ai,j |A<i,<i−1,Ai,<j) O(n2) O(n2)
Full

factorization

Auto-regressive (E) p(e1)
m∏

i=2

p(ei|e<i) O(m) O(m)
Full

factorization

Table 1. Overview of graph generative model families combined with the used data representation (Rep.). n: number of nodes. m: number

of edges. In the illustration, we use solid line for edges and dash line for non-edges, (non-)edges generated at current step are colored in

blue. Our proposed G2PT is an Auto-regressive model that learns on E representation.

We further investigate the potential of fine-tuning G2PT to

perform downstream tasks such as goal-oriented generation

and graph property prediction. For goal-oriented genera-

tion, we explore the rejection sampling fine-tuning and the

reinforcement learning approaches, where both methods

elevate the probability mass of graphs of interest in the pre-

trained model distribution. For graph property prediction,

we adapt the pre-trained parameters to a target task using its

supervised objective.

We evaluate G2PT on two categories of tasks: general graph

generation tasks, including molecule and generic graph gen-

eration, and downstream tasks requiring fine-tuning, such

as goal-oriented molecular generation and molecular prop-

erty prediction. For general graph generation tasks, without

any engineering on the architectures, loss design, or input

feature augmentation, G2PT outperforms or on par with pre-

vious state-of-the-art (SOTA) baselines over seven datasets.

We also study the scaling behavior of G2PT with increasing

data and model scales. Furthermore, by fine-tuning G2PT to-

wards generating molecules with target properties, we show-

case that G2PT can be easily adapted to various generative

tasks that requires additional alignment. Finally, supervised

fine-tuning on MoleculeNet datasets demonstrates the effec-

tiveness of G2PT’s learned representations for prediction

tasks.

Contributions. Our main contributions are as follows:

• We propose a novel sequence-based representation that

efficiently encodes graphs;

• We introduce G2PT, a transformer decoder trained on

the new graph representation to model sequence distri-

butions via next-token prediction;

• We explore fine-tuning techniques to adapt G2PT for

downstream tasks, such as goal-oriented graph genera-

tion and graph property prediction;

• Our empirical result shows that G2PT achieves strong

performance across divers graph generation and pre-

diction tasks, outperforming or matching SOTA while

adapting specific tasks effectively.

2. A Review of Graph Generative Models.

To connect our proposed method to prior works, this section

provides an overview of existing graph generative models,

focusing on their modeling variables and likelihood defini-

tions. We emphasize diffusion and auto-regressive models,

given their demonstrated superior performance. For sim-

plicity, and without loss of generality, we assume graphs

are undirected and featureless throughout this discussion. A

comparison of different frameworks is detailed in Table 1.

Denote a graph as G = (V,E), where V = {v1, . . . , vn}
is the node set and E = {e1, . . . , em} represents the edge

set. Apart from E, adjacency matrix A ∈ {0, 1}n×n is also

commonly used to represent edge connections. Although

the adjacency matrix A is denser compared to the edge

set E, most existing methods prefer modeling A due to

its structural advantages. In the following, we discuss the

likelihood definitions over these two representations, their

associated model decompositions, and their strength and

limitations. We assume graph size n is given.

2.1. Generative Modeling of Adjacency Matrix

The likelihood of p(A) defines a joint distribution over all

entries in the adjacency matrix. For auto-regressive graph

models (You et al., 2018b; Liao et al., 2019), the likelihood

is decomposed as follows:

p(A) =

n∏

i=2

i−1∏

j=1

p(Ai,j |A<i,<i−1,Ai,<j),

where the model focuses on the strictly lower-triangular

portion of the matrix. Such full-condition decomposition

is universal and expressive. However, as the number of

variables increases quadratically with the number of nodes

n, the modeling complexity escalates. Accurately approxi-

mating this distribution requires a highly expressive neural

network. Moreover, generating samples demands O(n2)
forward passes, which can be computationally intensive.

(Discrete) diffusion models (Vignac et al., 2022; Chen et al.,

2023; Qin et al., 2024), on the other hand, defines a sequence
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of latent variables A0:T , where A
0 = A. The likelihood is

obtained by marginalizing the intermediate A
1:T from the

joint distribution

p(A0:T ) = p(AT )

T∏

t=1

p(At−1|At), where

p(At−1|At) =

n∏

i=1

i−1∏

j=1

p(At−1
i,j |At),

assuming entries in A
t−1 are independent when A

t is given.

This conditional independence assumption, while lowering

the computation complexity, introduces the “multi-modality

problem” that limits a model’s ability to approximate the

true distribution accurately (Gu et al., 2017). The accu-

racy of the approximation using discrete diffusion models

is further discussed by Campbell et al. (2022) under the

continuous time Markov chain framework. In a word, the

approximation is exact only if one uses a large denoising

steps during sampling, which is similar to an auto-regressive

model that changes only one entry at a time 1. Empirically,

the number of denoising steps T in diffusion models of-

ten exceeds the expected number of edges in the generated

graphs, as operating on the adjacency matrix needs to model

both edges and non-edges.

2.2. Generative Modeling of Edge Set

While the likelihood p(A) considers all node pairs in a

graph as variables, the likelihood of p(E) only considers

entries that are actual edges. Specifically,

p(E) = p(e1)

m∏

i=2

p(ei|e<i),

where each edge ei is modeled by first choosing a source

node and then selecting a destination node:

p(ei|e<i) = p(vsrc|e<i)p(vdest|vsrc, e<i).

This decomposition is well-suited for an auto-regressive

model since it doesn’t have a fix dimension even for graphs

of same size. When the training graphs are sparse (i.e.,mj
n2), formulating such decomposition via auto-regressive

model is computationally feasible as the number of variables

is linear to m.

Despite these advantages, modeling the edge set has re-

ceived limited attention compared to adjacency matrix-

based methods. This is largely because previous efforts (Li

et al., 2018) have shown less promising results.

Remark 2.1. The architecture for modeling adjacency

matrix A can leverage modern sequence models such

as LSTM (Sherstinsky, 2020) or Transformers (Vaswani,

2017), as the homogeneous input and output space simpli-

fies the learning process. This design enables the model to

1This statement is originally claimed by Campbell et al. (2022).

focus on capturing sequential relationships without need-

ing to address varying supports or perform variable-specific

transformations. In contrast, action-based frameworks used

in models that operate on the edge set E require more com-

plex state transition modeling (e.g., add-node, add-edge,

stop). Additionally, since nodes are incrementally added

to the graph, the logits’ length for edge prediction changes

dynamically. To address this, previous methods rely on

a edge prediction model that uses node representations as

input. However, these models are often shallow networks,

limiting their expressiveness.

In this work, we show that with proper sequence design and

model architecture choice, modeling edge set E can achieve

superior performance while being efficient.

3. Graph Generative Pre-trained Transformer

3.1. Representing Graph as Sequence

We consider modeling a graph as a sequence of actions that

first generates all nodes of a graph, then the edges among

them. Denote a feature graph G = (V,E) Here v ∈ V
is represented as a tuple v := (vc, vid), where vid ∈ Z

+

is the node index and vc ∈ {1, . . . ,Kv} is the node type.

And e ∈ E is represented as a triple e := (vid
src, v

id
dest, e

c),
where the first two elements define the edge connection and

ec ∈ {1, . . . ,Ke} is the edge type. For a featureless graph,

the above representation can be simplified by removing the

node and edge type definitions. A graph G with n nodes

and m edges can be represented as

[vc
1, v

id
1 , . . . , v

c
n, v

id
n

︸ ︷︷ ︸
n×2

, a∆, v
id
src, v

id
dest, e

c
1, . . . , v

id
src, v

id
dest, e

c
m

︸ ︷︷ ︸
m×3

].

Here a∆ is used to denote a transition from node generation

to edge generation. We illustrate it in Figure 1.

Since a graph can be encoded into different sequences by

varying the node permutation and the edge generation order-

ing. For node orderings, we index the node using a random

permutation. Based on the node indices, we obtain the edge

generation orderings via the reverse of a degree-based edge-

removal process shown in Alg. 1. Intuitively, the reverse of

such a process first constructs an “initial seed graph” and

grows it by iteratively attaching nodes to it. We also explore

the effectiveness of using other canonical edge orderings

such as breadth-first search (BFS) and depth-first search

(DFS) (details are presented in Appendix D.1).

3.2. Learning Graph Sequences via Transformer

We utilize a transformer decoder (Vaswani, 2017) for mod-

eling the graph sequences. Unlike language models, our

defined graph sequence contains tokens from different ac-

tion spaces. Here we consider using a tokenizer that unifies

all types of actions into one vocabulary.

3
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ca b

a
� b a c

Figure 1. Illustration of our proposed graph sequence representation. This representation can be viewed as a sequence of actions: first

generating all nodes (node type, node index), then explicitly adding edges (source node index, destination node index, edge type) step by

step until completion. A unified vocabulary is used to map different types of actions into a shared token space.

Algorithm 1 Degree-Based Edge Removal Process

Input: Graph G = (V,E), neighborhood function Nei(·)
Output: Sequence of removed edges σE

Initialize σE ← [ ]
while E ̸= ∅ do

Select vsrc ∈ V with the minimum degree.
Select vdest ∈ Nei(vsrc) with the minimum degree.
Remove edge e = (vsrc, vdest) from E; append e to σE .
Update the degrees of vsrc and vdest.

end while

Tokenization. Let nmax be the maximum number of nodes

of a graph dataset. The unified vocabulary lookup is then

defined as

tokenize(vid) = vid, vid ∈ {1, . . . , nmax};
tokenize(vc) = vc + nmax, vc ∈ {1, . . . ,Kv};
tokenize(ec) = ec + nmax +Kv, ec ∈ {1, . . . ,Ke};
tokenize(a∆) = nmax +Kv +Ke + 1.

We additionally introduce special tokens [SOG] and [EOG],

representing the start and the end of the sequence generation.

We denote the tokenized sequence s = [s1, . . . , sL], which

is used in the following sections.

Training loss. We use the standard language modeling

loss to minimize the negative log-likelihood

Lpt(¹) := − log pθ(s) =

L∑

l=1

log pθ(sl|s<l),

where ¹ is the parameters of the model. Since the tokens

in sequence are arranged based on the defined rule, the

action space for each decoding step is limited to a subset.

For example, when the current input token is one of the

node type, its output token can only be one of the node

indices. One can impose such constraint on the output logits

vector at each step to improve the modeling accuracy. In our

experiment, we find that an unconstrained logits space can

also yield a superior performance due to the expressiveness

of transformers.

4. Fine-tuning

After pre-training a model, we further fine-tune it for down-

stream tasks. We consider generative (§4.1) and predic-

tive (§4.2) downstream tasks, where the former aims to

generate graphs with desired properties, and the latter uti-

lizes the graph embeddings learned from the transformer to

predict properties.

4.1. Goal-oriented Generation

Let z(·) be the function that estimates property z of a graph

G. In goal-oriented generation, we are interested in obtain-

ing a new model that generates graphs whose properties are

close to z∗ more often then the pre-trained model. Such a

setup has a broad application in the graph generation com-

munity such as drug discovery. In this work, we explore

obtaining such distribution by fine-tuning the pre-trained

model. We consider rejection sampling fine-tuning (RFT)

and reinforcement learning (RL) approaches.

Rejection sampling fine-tuning. This approach fine-tunes

the model using its own generated samples that satisfy the

desired property z∗. We consider the case where the prop-

erty is a scalar, and an acceptance function mz∗

ω (G) =
1|z∗−z(G)|<ω is controlled by an distance threshold É.

The algorithm for generating the fine-tuning dataset Dy∗ω =
{Gb}Bb=1 via rejection sampling is shown in Alg. 2. Note

that we expect the learned pre-trained model is able to gen-

erate graphs with desired property.

When the graph of interest has a low density in the model

distribution, RFT becomes inefficient as it rejects most of

the samples. To address this, we further propose to self-

4
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Algorithm 2 RFT Dataset Construction

Input: Model pθ , acceptance function mz
∗

ω , data size B.

Output: Fine-tuning dataset Dz
∗

ω

Initialize Dz
∗

ω ← { }

while |Dz
∗

ω | ̸= B do
Generate G ∼ pθ .

if G is valid and mz
∗

ω (G) = 1 then

Append G to Dz
∗

ω .
end if

end while

Algorithm 3 SBSτ combined with RFT

Input: Model pθ , thresholds list [ω1 . . . , ωτ ], data size B.
Output: Fine-tuned model pθτ
Set θ0 = θ.
for i = 1, . . . , τ do

Use pθi−1 as input model, obtain Dz
∗

ωi
← Alg. 2.

Fine-tune θi−1 on Dz
∗

ωi
, obtain new parameters θi.

end for

bootstrap (SBS) the RFT model to approach the target dis-

tribution. Specifically, we first define a sequence with Ä
thresholds É1 > É2 > . . . > Éτ , where Éτ = É. Then we

can obtained a sequence of fine-tuned models by iteratively

constructing fine-tuned datasets using model trained from

previous threshold. The SBS algorithm combined with RFT

is shown in Alg. 3.

Reinforcement learning. Denote a target-relevant reward

function rz∗(G), we consider a KL-regularized reinforce-

ment learning problem:

ϕ∗ = argmax
φ

Epφ(s)

[
rz∗(s)− Ä1KL

(
pφ(·|s)∥pθ(·|s)

)]
.

We use the notation s andG interchangeable as the mapping

from s to G is deterministic. The KL divergence KL(·∥·)
prevents the target model from deviating too much from the

pre-trained model.

We choose Proximal Policy Optimization (PPO) (Schul-

man et al., 2017) to effectively train the target policy (actor

model) without sacrificing stability. We first define the

token-level reward:

R([s<l, sl]) =

{

0 sl ̸= [EOG]

r([s<l, sl]) sl = [EOG]
.

Here s<l is the state of the l-th step in a finite trajectory

(sequence). We only assign a reward when the generation is

completed. The value function of state s<l under a model p
is the expectation of the undiscounted future return:

V p(s<l) = Ep(s≥l|s<l)

[
r(s)

]
.

A critic model Vψ(s<l) is then learned to approximate the

true value function V p(s<l) via minimizing the mean abso-

lute error Lcritic(È). We parameterize the critic model with

a transformer that is the same architecture as the pre-trained

model, except the logits head is replaced by a value head.

The parameters of the critic model are also initialized from

the pre-trained model.

We use the clipped surrogate objective Lpg-clip(ϕ) in PPO to

optimize the actor model. Moreover, to mitigate possible

model degradation, we incorporate the pre-training loss

Lpt(ϕ) following Zheng et al. (2023); Liu et al. (2024).

All terms combined, we minimize the objective:

Lppo(ϕ, È; ¹) =Lpg-clip(ϕ) + Ä2Lcritic(È) + Ä3Lpt(ϕ).

Here Ä1, Ä2, Ä3 are loss coefficients. We provide preliminar-

ies of PPO and details of each loss term in Appendix A.

4.2. Property Prediction

Assume a labeled graph dataset C, where each instance

consists a graph G along with a label y. We fine-tune the

pre-trained model on it to learn to predict y given G. After

the sequence s is generated fromG, we extract the activation

h of the final token sL output by the last transformer block

as the graph representation. To predict y, we then feed h

into a dropout layer followed by a linear layer:

p(y|s) = softmax(Dropout(Linear(h))).

We then maximize the log-likelihood E(G,y)∼C log p(y|G).
Compared to freezing the whole transformer during training

and only update parameters of the linear layer, we found

that unlocking the latter half of the transformer blocks sig-

nificantly enhances performance.

5. Experiments

5.1. Setup

Datasets. We consider both generative tasks and predic-

tive tasks in our experiments. In generative tasks, we con-

sider training transformer decoders on molecular datasets

and generic graph datasets. For molecular datasets, we

use QM9 (Wu et al., 2018b), MOSES (Polykovskiy et al.,

2020), and GuacaMol (Brown et al., 2019). For generic

graph datasets, we adapted the widely used datasets: Planar,

Tree, Lobster, and stochastic block model (SBM). In predic-

tive tasks, we fine-tune models pre-trained from GuacaMol

datasets on various molecular property tasks using Molecu-

leNet (Wu et al., 2018a), detailed in Appendix B.4, to verify

the usefulness of the learned graph representations.

Model specifications. We train transformers with three

different sizes: (1) the small transformer has 6 transformer

layers and 6 attention head, with dmodel = 384, leading to

approximately 10M parameters; (2) the base transformer

has 12 transformer layers and 12 attention head, with

dmodel = 768, leading to approximately 85M parameters;

(2) the large transformer has 24 transformer layers and 16 at-

tention head, with dmodel = 1024, leading to approximately

5
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Model
Planar Tree

Deg.↓ Clus.↓ Orbit↓ Spec.↓ Wavelet↓ V.U.N.↑ Deg.↓ Clus.↓ Orbit↓ Spec.↓ Wavelet↓ V.U.N.↑

GRAN (Liao et al., 2019) 7e-4 4.3e-2 9e-4 7.5e-3 1.9e-3 0 1.9e-1 8e-3 2e-2 2.8e-1 3.3e-1 0

BiGG (Dai et al., 2020) 7e-4 5.7e-2 3.7e-2 1.1e-2 5.2e-3 5 1.4e-3 0.00 0.00 1.2e-2 5.8e-3 75

DiGress (Vignac et al., 2022) 7e-4 7.8e-2 7.9e-3 9.8e-3 3.1e-3 77.5 2e-4 0.00 0.00 1.1e-2 4.3e-3 90

BwR (Diamant et al., 2023) 2.3e-2 2.6e-1 5.5e-1 4.4e-2 1.3e-1 0 1.6e-3 1.2e-1 3e-4 4.8e-2 3.9e-2 0

HSpectre (Bergmeister et al., 2023) 5e-4 6.3e-2 1.7e-3 7.5e-3 1.3e-3 95 1e-4 0.00 0.00 1.2e-2 4.7e-3 100

DeFoG (Qin et al., 2024) 5e-4 5e-2 6e-4 7.2e-3 1.4e-3 99.5 2e-4 0.00 0.00 1.1e-2 4.6e-3 96.5

G2PTsmall 4.7e-3 2.4e-3 0.00 1.6e-2 1.4e-2 95 2e-3 0.00 0.00 7.4e-3 3.9e-3 99

G2PTbase 1.8e-3 4.7e-3 0.00 8.1e-3 5.1e-3 100 4.3e-3 0.00 1e-4 7.3e-3 5.7e-3 99

Model
Lobster SBM

Deg.↓ Clus.↓ Orbit↓ Spec.↓ Wavelet↓ V.U.N.↑ Deg.↓ Clus.↓ Orbit↓ Spec.↓ Wavelet↓ V.U.N.↑

GRAN (Liao et al., 2019) 3.8e-2 0.00 1e-3 2.7e-2 - - 1.1e-2 5.5e-2 5.4e-2 5.4e-3 2.1e-2 25

BiGG (Dai et al., 2020) 0.00 0.00 0.00 9e-3 - - 1.2e-3 6.0e-2 6.7e-2 5.9e-3 3.7e-2 10

DiGress (Vignac et al., 2022) 2.1e-2 0.00 4e-3 - - - 1.8e-3 4.9e-2 4.2e-2 4.5e-3 1.4e-3 60

BwR (Diamant et al., 2023) 3.2e-1 0.00 2.5e-1 - - - 4.8e-2 6.4e-2 1.1e-1 1.7e-2 8.9e-2 7.5

HSpectre (Bergmeister et al., 2023) - - - - - - 1.2e-2 5.2e-2 6.7e-2 6.7e-3 2.2e-2 45

DeFoG (Qin et al., 2024) - - - - - - 6e-4 5.2e-2 5.6e-2 5.4e-3 8e-3 90

G2PTsmall 2e-3 0.00 0.00 5e-3 8.5e-3 100 3.5e-3 1.2e-2 7e-4 7.6e-3 9.8e-3 100

G2PTbase 1e-3 0.00 0.00 4e-3 1e-2 100 4.2e-3 5.3e-3 3e-4 6.1e-3 6.9e-3 100

Table 2. Generative performance on generic graph datasets.

300M parameters. We use different specifications for differ-

ent experiments according to the task complexity.

5.2. A Demonstrative Experiment using Planar Graphs

We first validate the effectiveness of our proposed graph se-

quence representation compared to the adjacency matrix. To

achieve this, we train transformer decoders on planar graphs

using both representations and evaluate their generative per-

formance. For the adjacency representation, planar graphs

are encoded as sequences of 0s and 1s derived from the

strictly lower triangular matrix, with rows and columns per-

muted using BFS orderings to augment the training dataset.

Table 3 presents the quantitative and qualitative results of

the generated samples. Our proposed representation demon-

strates superior generative performance with a much smaller

set of tokens, while model learning adjacency matrices strug-

gles to capture the topological rules of the training graphs.

5.3. Generic Graph Generation

We evaluate G2PT on four generic datasets using Maximum

Mean Discrepancy (MMD) to compare the graph statistics

distributions of generated and test graphs. The evaluation

considers degree (Deg.), clustering coefficient (Clus.), orbit

counts (Orbit), spectral properties (Spec.), and wavelet statis-

tics. Moreover, we report the percentage of valid, unique,

and novel samples (V.U.N.) (Vignac et al., 2022). For this

task, we trained the G2PTsmall and G2PTbase models.

As shown in Table 2, G2PT demonstrates superior perfor-

mance compared to the baselines. The details about baseline

and metric are introduced in appendix B.5 The base model

achieves 11 out of 24 best scores and ranks in the top two

for 17 out of 24 metrics. The small model also demonstrates

competitive results, indicating that a lightweight model can

effectively capture the graph patterns in the datasets.

Rep. #Tokens↓ Deg.↓ Clus.↓ Orbit↓ Spec.↓ Wavelet↓ V.U.N.↑

A 2018 8.6e-3 1e-1 8e-3 3.2e-2 6.1e-2 94

Ours 737 4.7e-3 2.4e-3 0.00 1.6e-2 1.4e-2 95

A Ours

Table 3. Generative performance comparison between the pro-

posed edge sequence and adjacency matrix representations.

5.4. Molecule Generation

De novo molecular design is a key real-world applica-

tion of graph generation. We assess G2PT’s performance

on the QM9, MOSES, and GuacaMol datasets. For the

QM9 dataset, we adopt the evaluation protocol in Vignac

et al. (2022). For MOSES and GuacaMol, we utilize the

evaluation pipelines provided by their respective toolk-

its (Polykovskiy et al., 2020; Brown et al., 2019).

The quantitative results are presented in Table 4. On

MOSES, G2PT surpasses other state-of-the-art models in va-

lidity, uniqueness, FCD, and SNN metrics. We introduce the

details for metrics in appendix B.6. Notably, the FCD, SNN,

and scaffold similarity (Scaf) evaluations compare gener-

ated samples to a held-out test set, where the test molecules

have scaffolds distinct from the training data. Although the

scaffold similarity score is relatively low, the overall perfor-

mance indicates that G2PT achieves a better goodness of fit

on the training set. G2PT also delivers strong performance

on the GuacaMol and QM9 datasets. We additionally pro-

vide qualitative examples from the MOSES and GuacaMol

datasets in the table.
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Model
MOSES GuacaMol

Validity↑ Unique.↑ Novelty↑ Filters↑ FCD↓ SNN↑ Scaf↑ Validity↑ Unique.↑ Novelty↑ KL Div.↑ FCD↑

DiGress (Vignac et al., 2022) 85.7 100 95.0 97.1 1.19 0.52 14.8 85.2 100 99.9 92.9 68

DisCo (Xu et al., 2024) 88.3 100 97.7 95.6 1.44 0.5 15.1 86.6 86.6 86.5 92.6 59.7

Cometh (Siraudin et al., 2024) 90.5 99.9 92.6 99.1 1.27 0.54 16.0 98.9 98.9 97.6 96.7 72.7

DeFoG (Qin et al., 2024) 92.8 99.9 92.1 99.9 1.95 0.55 14.4 99.0 99.0 97.9 97.9 73.8

G2PTsmall 95.1 100 91.7 97.4 1.10 0.52 5.0 90.4 100 99.8 92.8 86.6

G2PTbase 96.4 100 86.0 98.3 0.97 0.55 3.3 94.6 100 99.5 96.0 93.4

G2PTlarge 97.2 100 79.4 98.9 1.02 0.55 2.9 95.3 100 99.5 95.6 92.7

Model
QM9

Validity↑ Unique.↑ FCD↓

DiGress (Vignac et al., 2022) 99.0 96.2 -

DisCo (Xu et al., 2024) 99.6 96.2 0.25

Cometh (Siraudin et al., 2024) 99.2 96.7 0.11

DeFoG (Qin et al., 2024) 99.3 96.3 0.12

G2PTsmall 99.0 96.7 0.06

G2PTbase 99.0 96.8 0.06

G2PTlarge 98.9 96.7 0.06

MOSES GuacaMol

Train G2PTsmall G2PTbase Train G2PTsmall G2PTbase

Table 4. Generative performance on molecular graph datasets
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Figure 2. Goal-oriented molecule generation using QED, SA and GSK3β scores. Top row (a) shows the results using RFT, and bottom

row (b) shows the results using RL.

5.5. Goal-oriented Generation

In addition to distribution learning which aims to draw inde-

pendent samples from the learned graph distribution, goal-

oriented generation is a major task in graph generation that

aims to draw samples with additional constraints or pref-

erences and is key to many applications such as molecule

optimization (Du et al., 2024).

We validate the capability of G2PT on goal-oriented gen-

eration by fine-tuning the pre-trained model. Practically,

we employ the model pre-trained on GuacaMol dataset and

select three commonly used physiochemical and binding-

related properties: quantitative evaluation of druglikeness

(QED), synthesis accessibility (SA), and the activity against

target protein Glycogen synthase kinase 3 beta (GSK3´),

detailed in Appendix B.3. The property oracle functions

are provided by the Therapeutics Data Commons (TDC)

package (Huang et al., 2022).

As discussed in §4.1, we employ two approaches for fine-

tuning: (1) rejection sampling fine-tuning and (2) reinforce-

ment learning with PPO. Figure 2 shows that both methods

can effectively push the learned distribution to the distri-

bution of interest. Notably, RFT, with up to three rounds

of SBS, significantly shifts the distribution towards a de-

sired one. In contrast, PPO, despite biasing the distribution,

suffers from the over-regularization from the base policy,

which aims for training stability. In the most challenging
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BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg.

AttrMask (Hu et al., 2020) 70.2±0.5 74.2±0.8 62.5±0.4 60.4±0.6 68.6±9.6 73.9±1.3 74.3±1.3 77.2±1.4 70.2

InfoGraph (Sun et al., 2020) 69.2±0.8 73.0±0.7 62.0±0.3 59.2±0.2 75.1±5.0 74.0±1.5 74.5±1.8 73.9±2.5 70.1

ContextPred (Hu et al., 2020) 71.2±0.9 73.3±0.5 62.8±0.3 59.3±1.4 73.7±4.0 72.5±2.2 75.8±1.1 78.6±1.4 70.9

GraphCL (You et al., 2021) 67.5±2.5 75.0±0.5 62.8±0.2 60.1±1.3 78.9±4.2 77.1±1.0 75.0±0.4 68.7±7.8 70.6

GraphMVP (Liu et al., 2022a) 68.5±0.2 74.5±0.0 62.7±0.1 62.3±1.6 79.0±2.5 75.0±1.4 74.8±1.4 76.8±1.1 71.7

GraphMAE (Hou et al., 2022b) 70.9±0.9 75.0±0.4 64.1±0.1 59.9±0.5 81.5±2.8 76.9±2.6 76.7±0.9 81.4±1.4 73.3

G2PTsmall (No pre-training) 60.7±0.3 66.4±0.5 57.0±0.3 61.6±0.2 67.8±1.1 45.8±8.5 70.1±7.5 68.8±1.3 62.3

G2PTbase (No pre-training) 56.5±0.2 67.4±0.4 57.9±0.1 60.2±2.8 71.0±5.6 60.1±1.3 72.7±1.1 73.4±0.3 64.9

G2PTsmall 68.5±0.5 74.7±0.2 61.2±0.1 61.7±1.0 82.3±2.2 74.9±0.1 75.7±0.4 81.3±0.5 72.5

G2PTbase 71.0±0.4 75.0±0.3 63.0±0.5 61.9±0.2 82.1±1.1 74.5±0.3 76.3±0.4 82.3±1.6 73.3

Table 5. Results for molecule property prediction in terms of ROC-AUC. We report mean and standard deviation over three runs.

case (GSK3´), PPO fails to sampling data with high rewards.

Conversely, RFT overcomes the barrier in the second round

(RFTSBS1), where its distribution becomes flat across the

range and quickly transitions to a high-reward distribution.

5.6. Predictive Performance on Downstream Tasks

We conduct experiments on eight graph classification bench-

mark datasets from MoleculeNet (Wu et al., 2018a), strictly

following the data splitting protocol used in GraphMAE

(Hou et al., 2022a) for fair comparison. A detailed descrip-

tion of these datasets is provided in Appendix B.4.

For downstream fine-tuning, we initialize G2PT with param-

eters pre-trained on the GuacaMol dataset, which contains

molecules with up to 89 heavy atoms. We also provide

results where models are not pre-trained.

As summarized in Table 5, G2PT’s graph embeddings

demonstrate consistently strong (best or second-best) per-

formance on seven out of eight downstream tasks, achieving

an overall performance comparable to GraphMAE, a lead-

ing self-supervised learning (SSL) method. Notably, while

previous SSL approaches leverage additional features such

as 3D information or chirality, G2PT is trained exclusively

on 2D graph structural information. Overall, these results

indicate that G2PT not only excels in generation but also

learns effective graph representations.

5.7. Scaling Effects

We analyze how scaling the model size and data size will

affect the model performance using the three molecular

datasets. We use the validity score to quantify the model

performance. Results are provided in Figure 3.

For model scaling, we additionally train G2PTs with 1M,

705M, and 1.5B parameters. We notice that as model size

increases, validity score generally increases and saturates

at some point, depending on the task complexity. For in-

stance, QM9 saturates at the beginning (1M parameters)

while MOSES and GuacaMol require more than 85M (base)

parameters to achieve satisfying performance.

1M 10
M

85
M

30
0M

70
7M1.5

B

Model size

60

70

80

90

100

Va
lid

ity
 (%

)
MOSES
GuacaMol
QM9

1 10 100

#Sequences per graph

90

100

MOSES
GuacaMol
QM9

Figure 3. Model and data scaling effects.

For data scaling, we generating multiple sequences from

the same graph to improve the diversity of the training

data. The number of augmentation per graph is chosen

from {1, 10, 100}. As shown, one sequence per graph is

insufficient to train transformers effectively, and improving

data diversity helps improve model performance. Similar to

model scaling, performance saturated at some point when

enough data are used.

6. Conclusion

This work revisits the graph generative models and proposes

a novel sequence-based representation that efficiently en-

codes graph structures via node and edge definitions. This

representation serves as the foundation for the proposed

Graph Generative Pre-trained Transformer (G2PT), an auto-

regressive model that effectively models graph sequences

using next-token prediction. Extensive evaluations demon-

strated that G2PT achieves remarkable performance across

multiple datasets and tasks, including generic graph and

molecule generation, as well as downstream tasks like goal-

oriented graph generation and graph property prediction.

The results highlight G2PT’s adaptability and scalability,

making it a versatile framework for various applications.

One limitation of our method is that G2PT is order-sensitive,

where different graph domains may prefer different edge

orderings. Future research could be done by exploring edge

orderings that are more universal and expressive.
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A. Reinforcement Learning Details

A.1. Preliminaries on Proximal Policy Optimization (PPO)

Generalized Advantage Estimation. In reinforcement learning, the Q function Q(s<l, sl) captures the expected returns

when taking an action sl at current state s<l, and the value function V (s<l) captures the expected return following the

policy from a given state s<l.

The advantage function A(sl, s<l), defined as the difference between the Q function and the value function, measures

whether taking action sl is better or worse than the policy’s default behavior. In practice, the Q function is estimated using

the actual rewards rl and the estimated future returns (the value function). There are two commonly used estimators, one is

the one-step Temporal Difference (TD):

Q̂(s<l, sl) = rl + µV (s<l+1),

Â(s<l, sl) = rl + µV (s<l+1)− V (s<l),

and the full Monte Carlo (MC):

Q̂(s<l, sl) =

L
∑

l′=l

µl
′−lrl′ ,

Â(s<l, sl) =

L
∑

l′=l

µl
′−lrl′ − V (s<l),

assuming finite trajectory with L steps in total. However, the TD estimator exhibits high bias and the MC estimator exhibits

high variance. The Generalized Advantage Estimation (GAE) (Schulman et al., 2015) effectively balances the high bias and

high variance smoothly using a trade-off parameter µ. Let ¶l = rt + µV (s<l+1)− V (s<l), the definition of GAE is:

Âγ(s<l, sl) =

L
∑

l′=l

(µ¼)l
′−l¶l′ = ¶l + Âγ(s<l+1, sl+1).

GAE plays an important role in estimating the policy gradient, and will be used in the PPO algorithm.

Proximal Policy Optimization. PPO (Schulman et al., 2017) is a fundamental technique in reinforcement learning,

designed to train policies efficiently while preserving stability. It is built on the principle that gradually guides the policy

towards an optimal solution, rather than applying aggressive updates that could compromise the stability of the learning

process.

In traditional policy gradient methods, the new policy should remain close to the old policy in the parameters space. However,

proximity in parameter space does not indicate similar performance. A large update step in policy may lead to falling “off

the cliff”, thus getting a bad policy. Once it is stuck in a bad policy, it will take a very long time to recover.

PPO introduces two kinds of constraints on policy updates. The first kind is to add an KL-regularization term to the policy

gradient “surrogate” objective

Lpg-penalty(ϕ) = Êl

[

pφ(sl|s<l)
pφold

(sl|s<l)
Âl

]

− ´KL(pφold
(·|s<l)∥pφ(·|s<l)).

Here Êl[·] is the empirical average over a finite batch of samples where sampling and optimization alternates. ´ is the

penalty factor. Âl := Âγ(s<l, sl) is GAE, which is detailed in last section.

The second type is the clipped surrogate objective, expressed as

Lpg-clip(ϕ) = Êl

[

min

(

pφ(sl|s<l)
pφold

(sl|s<l)
Âl, clip

(

pφ(sl|s<l)
pφold

(sl|s<l)
, 1− ϵ, 1 + ϵ

)

Âl

)]

,

where
pφ(sl|s<l)
pφold

(sl|s<l)
is the probability ratio between the new and the old policy. And ϵ decides how much the new policy can

deviate from the one policy. The clipping operations prevent the policy from changing too much from the older one within

one iteration. In the following, we elaborate on how the critic model is optimized.
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QM9 MOSES GuacaMol Planar Tree Lobster SBM

#Node Types 4 8 12 1 1 1 1

#Edge Types 4 4 4 1 1 1 1

Avg. #Nodes 8.79 21.67 27.83 64 64 55 104.01

Min. #Nodes 1 8 2 64 64 10 44

Max. #Nodes 9 27 88 64 64 100 187

#Training Sequences 9,773,200 141,951,200 111,863,300 12,800,000 10,000,000 12,800,000 12,800,000

Vocabulary Size 27 60 120 73 73 110 195

Max Sequence Length 85 207 614 737 383 599 3950

Table 6. Dataset statistics.

Value Function Approximation. The critic model Vψ(s<l) in PPO algorithm is used to approximate the actual value

function V p(s<l). We use the mean absolute value loss to minimize the difference between the predicted values and the

actual return values. Specifically, the objective is

Lcritic = Êl

[

|Vψ(s<l)− V̂ (s<l)|
]

.

Here the actual return value is estimated using GAE to balance the bias and variance:

V̂ (s<l) = Â(s<l, sl) + Vψold
(s<l),

where Vψold
(s<l) is collected during the sampling step in PPO. The critic loss is weight by a factor Ä2.

A.2. KL-regularization

As mentioned in §4.1, we adopt a KL-regularized reinforcement learning approach. Unlike the KL penalty in Lpg-penalty(ϕ),
this regularizer ensures that the policy model pφ does not diverge significantly from the reference model pθ. Instead of

optimizing this term directly, we incorporate it into the rewards rl. Specifically, we define:

rρ1l = rl − Ä1KL(pφ(·|[s<l, sl])∥pθ(·|[s<l, sl])),

where Ä1 is the penalty factor. In practice, Ä1 is set to a small value, such as 0.03, to promote exploration.

A.3. Pre-training loss

Following Zheng et al. (2023) and Liu et al. (2024), we incorporate the pre-training loss Lpt(ϕ) o mitigate potential

degeneration in the model’s ability to produce valid sequences. This is particularly beneficial for helping the actor model

recover when it “falls off the grid” during PPO. The pre-training data is sourced from the dataset used to train the reference

model, and the loss Lpt(ϕ) is weighted by the coefficient Ä3.

B. Additional Experimental Details

B.1. Graph Generative Pre-training

Generative pre-training leverages graph-structured data to learn foundational representations that can be fine-tuned for

downstream tasks.

Sequence conversion. We convert graphs into sequences of tokens that represent nodes and edges. This transformation

involves encoding the molecular structure in a sequential format that captures both the composition and the order of assembly.

For instance, we iteratively process the nodes and edges, and insert special tokens to mark key points in the sequence, such

as the start and end of generation. Additionally, we apply preprocessing steps like filtering molecules by size, removing

hydrogens, or addressing dataset-specific constraints to ensure consistency and suitability for the target tasks.

Data splitting. We divide generic datasets into training, validation, and test sets based on splitting ratios 6:2:2. For the

molecular datasets, we follow the default settings of the datasets.
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10M 85M 300M

Architecture

#layers 6 12 24

#heads 6 12 16

dmodel 384 768 1024

dropout rate 0.0

Training

Lr 1e-4

Optimizer AdamW (Loshchilov & Hutter, 2019)

Lr scheduler Cosine

Weight decay 1e-1

#iterations 300000

Batch size 60 60 30

#Gradient Accumulation 8 8 16

Grad Clipping Value 1

#Warmup Iterations 2000

Table 7. Hyperparameters for graph generative pre-training.

Dataset statistics. The vocabulary size, maximum sequence length, and other parameters vary across datasets due to their

distinct molecular characteristics. We summarize the specifications in Table 6, which includes details on the number of node

types, edge types, and graphs for each dataset.

Hyperparameters. Table 7 provides hyperparameters used for training three distinct model sizes, corresponding to

approximately 10M, 85M, and 300M parameters, respectively.

B.2. Demonstration Experiment

We elaborate on how to represent adjacency matrix as sequence and train a transformer decoder on it. We choose planar

graphs as the investigation object as it requires a model to be able to capture the rule embedded in the graph. We use

G2PTsmall for this experiment.

Sequence conversion. We convert a 2-D adjacency matrix into a 1-D sequence before training the models. Similar to

GraphRNN (You et al., 2018b), we consider modeling the strictly lower triangle of the adjacency matrix. To obtain sequence,

we flatten the triangle by concatenating the rows together. The i-th row has i− 1 entries, where each entry is either 0 or 1.

We employ BFS to determine the node orderings, which is used to permute the rows and columns of the adjacency matrix to

reduce the learning complexity (as uniform orderings are generally harder to fit (Chen et al., 2021)).

Training transformers on adjacency matrices. After obtaining the sequence representation, we prepend and append

two special tokens, [SOG] and [EOG], to mark the start and end of the generation of each sequence. The sequence is then

tokenized using a vocabulary of size 4, and the transformer is trained on these sequences. Note that no additional token is

needed to indicate transitions between rows, as the flattened sequence maintains a fixed correspondence between positions

and the referenced node pairs. Specifically, the original row and column indices in the adjacency matrix for the i-th entry in

the sequence can be determined as:

row =

⌈

1 +
√
1 + 8i

2

⌉

, col = i− (row− 1)(row− 2)

2
.

Here +·, is the ceiling operation. Such correspondence is agnostic to graph size and can be inferred by transformers by using

positional embeddings.
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QED SA GSK3´

µ 1.0

¼ 1.0

Ä1 0.5

Ä2 0.03 0.03 0.05

Ä3 0.03

Advantage Normalization and Clipping Yes No No

Reward Normalization and Clipping No Yes Yes

Ratio Clipping (ϵ) [0.2]

Critic Value Clipping [0.2]

Entropy Regularization No

Gradient Clipping Value 1.0

Actor Lr 1.0

Critic Lr 0.5 0.5 1.0

#Iterations 6000

Batch size 60

Table 8. Hyperparameters used for PPO training.

B.3. Fine-tuning G2PT for Goal-oriented Generation

For the goal-oriented generation, we fine-tune G2PT to generate molecules with desired characteristics. Specifically, we

consider three properties that are commonly used for molecule optimization whose functions are easily accessed through the

Therapeutics Data Commons (TDC) package (Huang et al., 2022).

• Quantitative evaluation of druglikeness (QED): range 0-1, the higher the more druglike.

• Synthesis accessibility (SA) score: range 1-10, the lower the more synthesizable.

• GSK3´: activity against target protein Glycogen synthase kinase 3 beta, range 0-1, the higher the better activity.

We use the 85M model pre-trained on GucaMol dataset for all experiments. Below we elaborate on how the RFT and RL

algorithms implement each optimization task (property).

Rejection-sampling fine-tuning. For RFT algorithm without SBS, we begin by generating samples using the pre-trained

model and retain only those that meet the criteria defined by the acceptance function mz∗

ω (·). We collect 200,000 qualified

samples from the generations. Then, we fine-tune the model by initializing it with pre-trained parameters. When combining

RFT with SBS, we repeat this process iteratively, using the fine-tuned model from the previous iteration for both sampling

and parameter initialization.

For QED score, we retain samples with scores exceeding thresholds of 0.4, 0.6, 0.8, or 0.9. We do not use the SBS algorithm

here, as the pre-trained model generates samples efficiently across all QED score ranges.

For SA score, we consider thresholds of {< 3.0, < 2.0, < 1.5}. We find that the pre-trained model efficiently generates

molecules with SA scores below 2.0 and 3.0 but struggles with scores below 1.5. To address this, we bootstrap the fine-tuned

model from the 2.0 threshold to the 1.5 threshold.

For GSK3´, we consider thresholds in {> 0.2, > 0.4, > 0.6, > 0.8}. We observe that the pre-trained model’s score

distribution is skewed towards 0, making it challenging to generate satisfactory samples. To resolve this, we fine-tune the

model at the 0.2 threshold and progressively bootstrap it through intermediate thresholds (0.4, 0.6) up to 0.8, performing

three bootstrapping steps in total.

All models are trained for 6000 iterations, with batch size of 120 and learning rate of 1e-5. The learning rate gradually decay

to 0 using Cosine scheduler.
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Reinforcement learning. We use the PPO algorithm to further optimize the pre-trained model. In practice, the token-level

reward R([s<l, sl]) is set to 0 except when sl = [EOG]. The final reward r(s) for the three properties are designed as

follow:

rQED(s) = 1s→Gmax(0.2, 2× (QED(G)− 0.5)), (1)

rSA(s) = 1s→Gmax(0.2, 0.2× (5− SA(G)), (2)

rGSK3β(s) = 1s→G(5× (GSK3´(G)). (3)

The indicator function 1s→G assigns 0 to the final reward when the generated sequence s is invalid. We show the PPO

hyperparameters for each targeted task in Table 8.

B.4. Fine-tuning G2PT for Graph Property Prediction

Datasets. We use eight classification tasks in MoleculeNet (Wu et al., 2018a) following Zhu et al. (2024) to validate the

predictive capability of our learned representations.

The datasets cover two types of molecular properties: biophysical and physiological properties.

• Biophysical properties include (1) the HIV dataset for HIV replication inhibition, (2) the Maximum Unbiased Validation

(MUV) dataset for virtual screening with nearst neighbor search, (3) the BACE dataset for inhibition of human ´-

secretase 1 (BACE-1), and (4) the Side Effect Resource (SIDER) dataset for grouping the side effects of marketed

drugs into 27 system organ classes.

• Physiological properties include (1) the Blood-brain barrier penetration (BBBP) dataset for predicting barrier perme-

ability of molecules targeting central nervous system, (2) the Tox21, (3) the ClinTox, and (4) the ToxCast datasets that

are all associated with certain type of toxicity of the chemical compounds.

We adopt the scaffold split that divides train, validation and test set by different scaffolds, introduced by Wu et al. (2018b).

Fine-tuning details. We fine-tune G2PTsmall and G2PTbase pre-trained on GuacaMol dataset for the downstream tasks. We

setup the dropout rate to 0.5 and use a learning rate of 1e-4 for training the linear layer. For the half transformer blocks, we

use a learning rate of 1e-6. We use a batch size of 256 and train the models for 100 epochs. Test result with best validation

performance is reported.

B.5. Baselines

We evaluate our proposed method against a variety of baselines across different datasets. The baselines include models that

span diverse methodologies, ranging from graph neural networks to transformer-based architectures.

Generic graph datasets. The performance of baseline models on Planar, Tree, Lobster, and SBM datasets is shown

in Table 2. We consider baselines mainly from two categories: auto-regressive and diffusion graph models. Among

them, GRAN (Liao et al., 2019), BiGG (Dai et al., 2020), and BwR (Diamant et al., 2023) are auto-regressive models

that sequentially generate graphs. GRAN uses attention-based GNNs to perform block-wise generation, focusing on

dependencies between components within the graph. In contrast, BiGG addresses the challenges of efficiency by leveraging

the sparsity of real-world graphs to avoid constructing dense representations. Unlike GRAN and BiGG, BwR simplifies

the generation process further by restricting graph bandwidth. On the other hand, DiGress (Vignac et al., 2022) and

HSpectra (Bergmeister et al., 2023) are built based on diffusion frameworks. DiGress is the first approach that uses a discrete

diffusion model to iteratively modify graphs, while HSpectra focuses on multi-scale graph construction by progressively

generating graphs through localized denoising diffusion.

Molecule generation datasets. We compare G2PT against four baselines: DiGress (Vignac et al., 2022), DisCo (Xu et al.,

2024), Cometh (Siraudin et al., 2024), and DeFoG (Qin et al., 2024). Among them, DisCo and Cometh are both based on a

continuous-time discrete diffusion framework, with Cometh additionally incorporating positional encoding for nodes and

separate noising processes for nodes and edges. DeFoG adopts a discrete flow matching approach with a linear interpolation

noising process.
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Graph pre-training methods. We compare against several pre-training approaches for molecular property prediction, as

summarized in Table 5. The goal ofGraph pre-training methods is to learn robust graph representations via exploiting the

structural information. AttrMask (Hu et al., 2020) uses attribute masking at both node and graph levels to capture local and

global features simultaneously. ContextPred (Hu et al., 2020) builds on this idea by predicting subgraph contexts, enabling

the model to understand patterns beyond individual attributes. Similarly, InfoGraph (Sun et al., 2020) focuses on multi-scale

graph representations by maximizing mutual information between graph-level embeddings and substructures. Moving to

contrastive learning approaches, GraphCL (You et al., 2021) applies graph augmentations to generate positive and negative

samples for representation learning. Building on this idea, GraphMVP (Liu et al., 2022a) incorporates both 2D molecular

topology and 3D geometric views, aligning them within a contrastive framework to enhance feature representation. In

contrast to these methods, GraphMAE (Hou et al., 2022b) adopts a generative approach, using a masked graph auto-encoder

to reconstruct node features and capture structural information.

B.6. Evaluation

Metrics for molecule datasets. As MOSES and GuacaMol are established benchmarking tools, they provide predefined

metrics for evaluating and reporting results. These metrics are briefly outlined as follows: Validity assesses the percentage

of molecules that satisfy basic valency constraints. Uniqueness evaluates the fraction of molecules represented by distinct

SMILES strings, indicating non-isomorphism. Novelty quantifies the proportion of generated molecules absent from the

training dataset. The filter score represents the percentage of molecules that satisfy the same filtering criteria applied during

test set construction. The Frechet ChemNet Distance (FCD) (Preuer et al., 2018) quantifies the similarity between molecules

in the training and test sets based on neural network-derived embeddings. SNN computes the similarity to the nearest

neighbor using the Tanimoto distance. Scaffold similarity compares the distributions of Bemis-Murcko scaffolds, and KL

divergence measures discrepancies in the distribution of various physicochemical descriptors.

For QM9 dataset, the validity metric reported in this study is calculated by constructing a molecule using RDKit and

attempting to generate a valid SMILES string from it, as this approach is commonly employed in the literature. However, as

explained by Jo et al. (2022b), this method has limitations, as it may classify certain charged molecules present in QM9 as

invalid. To address this, they propose a more lenient definition of validity that accommodates partial charges, offering a

slight advantage in their computations.

Metrics for generic graph datasets. We adopt the evaluation framework outlined by (Martinkus et al., 2022) and

(Bergmeister et al., 2024), incorporating both dataset-agnostic and dataset-specific metrics. The dataset-agnostic metrics

evaluate the alignment between the distributions of the generated graphs and the training data by analyzing general graph

properties. Specifically, we characterize graphs based on their node degrees (Deg.), clustering coefficients (Clus.), orbit

counts (Orbit), eigenvalues of the normalized graph Laplacian (Spec.), and statistics derived from a wavelet graph transform

(Wavelet). To quantify the alignment, we compute the distances between the empirical distributions of these statistics for the

generated and test graphs using Maximum Mean Discrepancy (MMD).

Subsequently, we evaluate the generated graphs using dataset-specific metrics under the V.U.N. framework, which measures

the proportions of valid (V), unique (U), and novel (N) graphs. Validity is determined by dataset-specific criteria: graphs

must be planar, tree-structured, or statistically consistent with a Stochastic Block Model (SBM) for the planar, tree, and

SBM datasets, respectively. Uniqueness evaluates the proportion of non-isomorphic graphs among the generated samples,

while novelty quantifies the proportion of generated graphs that are non-isomorphic to any graph in the training set.

B.7. Computation Resources.

We ran all pre-training tasks and all goal-oriented generation fine-tuning tasks run on 8 NVIDIA A100-SXM4-80GB GPU

with distributed training. For PPO training and graph property prediction tasks, we ran experiments using a A100 GPU.

C. Related works

C.1. Auto-regressive Graph Generative Models

Even though graph is naturally an unordered set, auto-regressive models generate graphs sequentially, one node, edge, or

substructure at a time. GraphRNN and DeepGMG (You et al., 2018b; Li et al., 2018) prefix a canonical ordering (e.g.,

breath-first search) for the nodes and edges and generates nodes and edges associated with them step by step. On the contrary,
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Algorithm 4 Depth-First search edge order generation

Input: Graph G = (V,E), neighborhood function Nei.(·).
Output: Sequence of traversed edges ÃE .

Initialize ÃE ← [ ], sample v0 from V .

DFS helper (v):

for v′ ∈ Nei(v) do

e = (v, v′).
if v′ is not visited then

Append e to ÃE .

Call DFS helper(v′).
else

if e /∈ ÃE then

Append e to ÃE .

end if

end if

end for

Run DFS helper(v0).

Algorithm 5 Breadth-First Search edge order generation

Input: Graph G = (V,E), neighborhood function Nei(·).
Output: Sequence of traversed edges ÃE .

Initialize ÃE ← [ ], sample v0 from V , initialize queue← [v0].
while queue is not empty do

v ← queue.popfirst()

for v′ ∈ Nei(v) do

e = (v, v′).
if v is not visited then

append e to ÃE , append v′ to queue.

else

if e /∈ ÃE then

append e to ÃE .

end if

end if

end for

end while

Bacciu et al. (2020) propose to generate edges first then the connected nodes subsequently. These auto-regressive models are

also broadly adapted into applications such as molecule generation. GCPN (You et al., 2018a), and REINVENT (Olivecrona

et al., 2017) both leverage pre-trained auto-regressive models to fine-tune with a reward model to generate molecules with

desired properties.

C.2. Non-auto-regressive Graph Generative Models

In addition to auto-regressive models, non-auto-regressive graph generative models can be categorized into two branches:

(1) one-shot generation and (2) iterative refinement. One-shot generation aims to generate a graph in a single step including

methods such as generative adversarial networks (De Cao & Kipf, 2018), variational auto-encoders (Simonovsky &

Komodakis, 2018; Liu et al., 2018) and normalizing flows (Madhawa et al., 2019; Zang & Wang, 2020). Nevertheless,

one-shot graph generative models often suffer from the decoding strategies such that it requires an expressive decoder to

map from latent vectors to graphs. On the other side, iterative refinement methods generate the entire graph in the first step

and then iteratively refine the generated graph to be close to a realistic graph, including diffusion (Niu et al., 2020; Jo et al.,

2022a; Vignac et al., 2022; Chen et al., 2022; 2023; Jo et al., 2023; Haefeli et al., 2022; Wu et al., 2023; Siraudin et al.,
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Algorithm 6 Uniform edge order genration

Input: Graph G = (V,E)
Output: Sequence of edge ordering ÃE
Initialize ÃE ← [ ]
while E is not empty do

sample e from E, append e to ÃE
Remove e from E

end while

Model Edge Orderings Validity↑ Unique.↑ Novelty↑ Filters↑ FCD↓ SNN↑ Scaf↑

G2PTsmall

Degree-based 95.1 100 91.7 97.4 1.1 0.52 5.0
DFS 91.6 100 87.1 98.0 1.2 0.55 8.9
BFS 96.2 100 86.8 98.3 1.0 0.55 10.6
Uniform 62.9 100 99.4 52.0 7.0 0.38 9.5

G2PTbase

Degree-based 96.4 100 86.0 98.3 0.97 0.55 3.3
DFS 91.9 100 83.7 98.1 1.13 0.55 7.5
BFS 96.9 100 84.6 98.7 0.98 0.55 11.1
Uniform 80.9 100 97.0 83.9 2.14 0.46 10.3

Table 9. Sensitivity analysis on edge orderings.

2024; Xu et al., 2024) and flow matching models (Qin et al., 2024; Eijkelboom et al., 2024; Lipman et al., 2022; Liu et al.,

2022b; Esser et al., 2024; Ma et al., 2024; Campbell et al., 2024; Gat et al., 2024). As discussed in Section 2, they often

require a prefixed number of refinement steps and they need to maintain an adjacency matrix over the trajectory which is

computationally intensive.

D. Additional Results

D.1. Sensitivity Analysis of Edge Orderings

We investigate how the employed edge orderings will affect the generative performance of G2PT. Specifically, we consider

four orderings: the reverse of edge-removal process (Alg. 1), DFS ordering (Alg. 4), BFS ordering (Alg. 5), and uniform

ordering (Alg. 6). We train G2PTsmall and G2PTbase on MOSES dataset and evaluate the performance.

Result. Table 9 reports the performance of different edge orderings. BFS and degree-based edge-removal orderings both

exhibit superior results, while DFS orderings show moderate performance. Particularly, uniform ordering shows poor

performance in capturing the sequence distribution. This result highlights the importance of choosing the right ordering

families for generating sequences.

D.2. Additional Visualizations

We further visualize the generic graph in Figure 4, and molecular graph in Figure 5. The results show that both G2PTsmall

and G2PTbase have the ability to capture the topological rules of the training graphs.
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Figure 4. The visualization of generic graph datasets
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Figure 5. The visualization of molecular datasets
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