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ABSTRACT: Natural biopolymers have a rich history, with many uses across the fields
of healthcare and medicine, including formulations for wound dressings, surgical
implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based
materials have been more successful in translation due to precise control and regulation gt
achievable during manufacturing. However, there is a renewed interest in natural R
biopolymers, which offer a diverse landscape of architecture, sustainable sourcing,
functional groups, and properties that synthetic counterparts cannot fully replicate as
processing and sourcing of these materials has improved. Proteins and polysaccharides
derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this
review. We discuss the common types of polysaccharide and protein biopolymers used in
healthcare and medicine, highlighting methods and strategies to alter structures and intra-
and interchain interactions to engineer specific functions, products, or materials. We
focus on biopolymers obtained from natural, nonmammalian sources, including silk
fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing
strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis
will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers.
We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their
secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical
engineering, advanced manufacturing, and tissue engineering.

Strategies to modify biopolymer structure
and function

Chemical Modification Environmental influence

KEYWORDS: biopolymers, natural products, genetic engineering, chemical modification

1. INTRODUCTION necessary to enable process standardization, purification, and/
or materials fabrication.

The clinical translation of naturally derived materials
encounters several hurdles (Figure 1B), including issues in
reliable and scalable sourcing of biopolymers that show
favorable properties, as well as demanding purification and
processing parameters such as solubility constraints'® and the
inability to remove contaminants such as endotoxins. To
address these issues, synthetic polymers have been engineered
to mimic natural biopolymers while reducing batch-to-batch
variability and providing methods to precisely control the
monomeric sequence. However, synthetic materials often fail
to replicate the full diversity of functional groups, interaction
kinetics, and secondary or tertiary structures found in native

The utilization of natural biopolymers in biomedical
applications has a broad and rich history. Evolution has
generated expansive natural biodiversity, resulting in a variety
of distinct secondary and tertiary structures, diverse functional
groups, a wide range properties, and highly variable
thermodynamics that can be leveraged to address current
and future healthcare challenges. However, despite the
potential of utilizing the rich biodiversity of natural
biopolymers, translation to the clinic has proven challenging."
Ideally, the biomedical field should strive to create solutions
that combine the structural complexity of natural biopolymers
with the benefits of traditional polymer synthesis, achieving
high levels of process standardization that minimize variability
over time. Natural biopolymers, such as proteins and
polysaccharides, are produced from amino acids and sugars, Received:  April 11, 2024
originating from diverse sources, ranging from human or Revised:  July 16, 2024
animal tissues, plant tissues, invertebrates, and insects (Figure Accepted: July 17, 2024
1A). In this review, we aim to highlight the potential of natural Published: September 11, 2024
biopolymers, while discussing the challenges and limitations
for use, highlighting methods for modifications that might be
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Figure 1. Clinical translation challenges in utilizing the diverse sourcing of common natural biopolymers for biomedical applications for clinical
translation. A) Biopolymers originate from a range of sources with the potential to offer unique biopolymer properties to diversify the array of
natural materials available for healthcare applications. B) Investigators have harnessed the diverse array of biopolymers to tackle various biomedical
needs. However, each biopolymer, and even species-to-species variations, presents unique challenges that impede its broad implementation in
clinical settings. Known uses and current challenges for clinical translation for alginate, chitin/chitosan, keratin, resilin, silk, and mucins are
provided. Schematics were created with a license from BioRender.com.

biopolymers. To bridge this gap between synthetic systems and
naturally sourced materials, short peptides or biopolymer
fragments can be produced in nonmammalian systems like
Escherichia coli (E. coli)'' or Bacillus megaterium (B.
megaterium),'” providing alternative sources for the bioactive
components of natural biopolymers. For some systems, such as
spider silk"® or resilin-like polypeptides,'"* investigators have
overcome some production and purification hurdles to create
functional materials. However, for other systems, scaling up
production within microbial systems can be challenging due to
metabolic burden and limitations in collection and purifica-
tion."®™"® Moreover, the organism used for recombinant
production significantly influences biopolymer structure and
functional properties, with variations in glycosylation and post-
translational modifications among plants, insects, mammals,
and bacteria.'” ™’

As methods continue to advance to improve native
structures and production techniques, investigators can expand
the range of natural materials and properties available for
biomedical applications. These applications include clinical
products, model systems, and culture platforms. This review
highlights commonly used nonmammalian natural biopolymers
in biomedical applications, emphasizing both their successes
and challenges in laboratory settings and translation to clinical
use. Additionally, it provides insights into the strategies
employed by investigators including chemical modification,
recombinant expression technologies, and environmental
regulation to accentuate the native biopolymers and overcome
existing limitations, offering a comprehensive perspective on
the evolving landscape of biopolymer utilization in biomedi-
cine.

2. NATURALLY DERIVED BIOPOLYMERS IN
HEALTHCARE: ADVANTAGES AND CHALLENGES

Naturally derived materials are defined within this review as
materials produced by a living organism and then used as
functional material, especially focused on biomedical applica-
tions. We define naturally derived biopolymers as large
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proteins or polysaccharides purified from the original natural
sources (plant, insect, amphibian, etc.), that can then be used
to reform higher order structures and materials. We focus on
biopolymers that can be altered through processing or
chemical modification once obtained from their natural state.
Furthermore, many biopolymers can be produced by
recombinant technologies (e.g, in a microorganism) as an
alternative source for the biopolymer of interest; we distinguish
between these recombinantly produced biopolymers and the
naturally derived biopolymers for the purposes of this review,
as characteristics such as glycosylation patterns, post-transla-
tional modifications, and secondary structures may differ as a
function of biopolymer source and purification strategy.

Proteins are diverse biopolymers composed of amino acids
that can take on highly specific structures and functions such as
specific integrin binding motifs such as Arg-Gly-Asp (RGD).*”
This specificity can be leveraged to tackle numerous healthcare
applications where specific interactions with cells and tissues is
important. Additionally, various proteins, while not necessarily
providing significant biological activity, can offer a diverse
range of mechanical properties, which will be highlighted
throughout this review. However, the advantages due to the
high specificity of structure can often be compromised due to
proteins’ limited stability under a range of environmental
conditions, which can alter the structure that provides the
desired functionality. Conversely, polysaccharides, composed
of monosaccharides linked by glycosidic bonds, typically have
simpler structures compared to proteins, but offer greater
stability of structure and properties over a wider range of
environmental conditions. Additionally, this simple carbohy-
drate-based structure often elicits a lower immunogenic
response compared to proteins, making polysaccharides
excellent candidates for bioadhesives and drug delivery systems
(Figure 1B).

A synthetic version of a naturally derived biopolymer would
be one produced or modified through synthetic chemistry or
traditional polymer chemistry. Engineered naturally derived
biopolymers refer to biomaterials produced within a model
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organism that differs from its natural host. In this process,
genetic engineering strategies are employed to transform or
transfect an organism, enabling the production of biomimetic
biopolymers. Similarly, an engineered peptide represents the
production of a shorter chain of a protein-based biopolymer in
its non-native host. Briefly, we outline the advantages and
challenges for using alginates, chitosans, keratins, mucins,
resilins, and silk fibroins (Figure 1B).

2.1. Sourcing Natural Biopolymers. Some classes of
biopolymers are made by many organisms, but currently, the
biomaterials community has routinely focused on only one or
two species for most biomaterials’ development. For example,
for silk fibroin-based biomaterials, it has been reported that
roughly 90% of silk-based manuscripts in tissue engineering up
to 2019 were from the domesticated silkworm, Bombyx mori
(B. mori).”® Alternatively, in some cases the community has
done a great job in leveraging biodiversity. Alginate is a gold-
standard example for how naturally derived biopolymer
sourcing can yield a range of products. For example, alginate
polysaccharides can be harvested from a few species of sea
kelps (also known as brown algae (Phaeophyceae)), including
Ascophyllum, Durvillaea, Ecklonia, Laminaria, Lessonia, Macro-
cystis and Sargassum. Commercially available alginates are
primarily extracted from Laminaria hyperborea, Laminaria
digitata, Laminaria japonica, Ascophyllum nodosum, and Macro-
cystis pyrifera.’®’’ These species, native to different hemi-
spheres and climates, have the same basic structure, but are not
structurally or compositionally idenitical.”> Moreover, overall
yield of alginate biopolymer from a given mass of sea kelp
often varies between species, complicating production path-
ways.

NovaMatrix purifies alginates of different compositions for
their product line PRONOVA UltraPure or Sterile Sodium
Alginates, which are available at 3 viscosity and molecular
weight combinations and at two different monomer unit ratios.
The wide range of alginate products available represents the
variability in the alginates produced by brown seaweeds and
years of efforts, before commercialization, to develop
consistent and reliable separation and purification protocols
and understand their impact on cell-material interactions.”> >’
Similarly, hyaluronic acid, a mammalian polysaccharide known
as a glycosaminoglycan, was initially sourced from rooster
combs or the bovine vitreous humor prior to the development
of current production strategies that leverage bacterial
fermentation of mammalian polysaccharide sequences, usually
strains of Streptococcus or Bacillus."*~* Like alginates, one can
purchase hyaluronic acids with differing intrinsic viscosities,
which suggests differences in biopolymer molecular weight, but
one can also choose different biological sources for the
hyaluronic acid biopolymer. While hyaluronic acid—based
biomaterials are outside the scope of this review as they are a
mammalian protein, they have been investigated extensively in
both their unmodified and modified forms.**~*

These recognitions by the biomaterial industry highlight the
known value in using different sources of a given biopolymer
for different clinical and preclinical goals. To us as authors of
this review, we find that this highlights the benefits of
leveraging biodiversity in biomaterials sourcing to identify and
generate new biopolymers from similar classes that may have
additional benefits to those currently in use, providing new
insights for polymer scientists into useful chemistries and
fundamental information on what gives each class of
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biopolymers their highly sought after and leverageable
properties (Figure 1A).

Additionally, when sourcing biopolymers from nonmamma-
lian sources such as insects and crustaceans, ethical
considerations are paramount. These organisms must be
sourced following sustainable and ecologically friendly
methods to ensure humane treatment and the recovery of
high-quality and consistent biopolymers. Furthermore, it is
crucial to maintain conditions that minimize waste and
contaminants through development of environmentally
friendly farming and rearing practices. For example, insects
are a potential low-cost and renewable food source and several
publications have reviewed the ethics of large-scale insect
rearing,”~*” providing valuable insights for the biomaterials’
community. Furthermore, genetic modifications to native
insects, plants, or other organisms may pose risks to the
natural habitats and ecosystems. Production of genetically
modified biopolymers should be a tightly regulated industry,
ensuring these organisms are not released into the environ-
ment, following strict guidelines and recommendations*°%%"!
made from other fields.

2.2. Silk Fibers and Silk Fibroins. Silk fibers are a diverse
set of proteins spun various arthropod species, including
insects and spiders, and are utilized by these organisms as a
high-performance material, with a wide range of amino acid
sequences and limited sequence homology. In a biomedical
context, the predominant naturally derived biopolymers
extracted for use are silk fibroins, which are purified from
silk fibers produced by insects in the Lepidopteran order (e.g,
B. mori). Additionally, spidroin proteins, spun by various
spiders, have been investigated for a wide range of applications.
Sourcing silk fibers directly from spiders poses challenges,
necessitating recombinant production of spidroin-like peptides
followed by artificial fiber spinning.'*****> Conversely, silk-
worms are much easier to cultivate, as demonstrated by the
textile industry,”” but are much more challenging to produce
recombinantly.'®'”

Silk fibers derived from silkworms are formed from the self-
assembly of many proteins within the silkworm silk gland.
These fibers consist of a core of silk fibroin proteins and an
outer coating made from a variety of proteins, including
sericins, mucins, and seroins. In scientific research, the
prevailing silk fibroin source is derived from B. mori, the
domesticated silkworm, in addition to other high-producing
sources including Antheraea pernyi, Samia cynthia ricini,
Araneus diadematus and Trinephila clavipes.”* Different insects
naturally produce distinct silk fiber structures, which are
diverse in part, due to the differences in the native sequences of
the silk fibroin proteins, which make up the majority of the
structural components of the fibers, presumed to be driven by
evolutionary and environmental pressures.”> The fibroin
protein itself from B. mori is comprised of two main chains,
the heavy fibroin chain (molecular weight ~390 kDa) and the
light fibroin chain (molecular weight ~26 kDa), and, in silk
fiber producing lepidopterans, is accompanied by sericins, a
class of molecules acting as a gumming agent around the inner
fibroin core of the fiber, when natively produced.***” In B.
mori, the heavy chain of silk fibroin contains hydrophobic
domains that form a crystalline network when driven to form
beta sheets by hydrogen bonding, that subsequently aggregate
by removing water from the backbone,**~®* rendering B. mori
silk fibroin proteins water insoluble and facilitating their use as
a robust biopolymer that can form a variety of tunable
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structures.””*>%* Specifically, B. mori silk fibroin proteins can
be isolated and regenerated by processing in aqueous media,**
an advantage over other biopolymers that require processing in
acidic conditions or with organic solvents, which raises
questions of safety in biomaterial applications.””*>% Silk
fibroins have been used for a variety of biomedical
applications,”**”*’~%’ including implantable materials for
tissue engineering,ég’m_72 to sensors and soft robotics.>®
Investigators continue to work toward improvements to
overcome challenges in using B. mori silk fibroin-based
biomaterials, including the lack of protein sequences for
interaction with mammalian cells (e.g., integrin binding sites),
limited stability of silk fibroin in aqueous solution, and the
scale-up of manufacturing and purification processes (Figure
1B).>**® These challenges have provoked interest in the
formation of silk fibroin composite materials, chemical
modification of regenerated B. mori silk fibroin proteins, the
production of recombinant silk peptides in microorgan-
isms,'®'77%7* the use of genetic engineering to alter the native
protein.75’76

Spider silk fibers, like those derived from silkworms, are also
made up of many proteins during the fiber self-assembly
process within the spider silk glands. Compared to insects
which are only known to produce one heavy fibroin protein,
spiders actually produce many spidroin proteins (>15), which
can also vary in sequence as a function of habitat.”’~"” Since
the mid-1990s,%°~% investigators have been working to
improve the expression, purification, and reconstitution of
the two main proteins investigated for recombinant exgression,
major ampullate silk protein-1 (MaSp1) and MaSp2,** which
are responsible for the robust mechanical properties of spider
silk fibers. Unlike silk fibers collected from the cocoons of B.
mori, spider silk fibers must be collected by “milking” a spider
to forcibly spin and collect silk fibers.** While this method
works for the further assessment of mechanical properties and
determination of other chemical, mechanical, and structural
characteristics,® it is not a feasible method for the production
and scale-up of commercial silk materials. Thus, the majority of
efforts toward the development of spider silks for biomedical
or commercial applications is in the form of engineered spider
silk peptides and methods for expression, purification, and self-
assembly of these recombinantly expressed spider silk
peptides.'**~%% Alternative production routes, such as the
use of plants,” has also been investigated. To get the best of
both organisms, investigators have used genetic engineering
strategies to produce spider silk proteins in silkworms,”*™"* a
promising new strategy for rational design and production of
large silk-like biopolymers.

2.3. Chitosan and Chitin. Chitin and chitosan are
aminopolysaccharide biopolymers found in a variety of
organisms includin% insects, crustaceans, mollusks, corals,
sponges, and fungi.”” The degree of acetylation is used to
distinguish between chitin and chitosan, where chitin is usually
described as around a 90% acetylated biopolymer, while
chitosan is typically 65% or more deacetylated biopolymer.”*”*
Chitin is the second most prevalent biopolymer found in
nature, leading to approximately one million tons of raw
material available for processing per year.’® The linear
constituent of chitin entails f-(1,4)-N-acetyl-p-glucosamines
linked through glycosidic bonds and is naturally found in three
isoforms with @- and f- being predominantly used in the
formulation of biomaterials.””"~'*® Chitin is often leveraged
in biomedical applications”****~'°" due to its thermostability,
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chemical tolerance, and natural abundance. However, health-
care applications of chitin face certain limitations, primarily
concerning potential toxicity, particularly within the respiratory
system (Figure 1B). Previous research has indicated a positive
correlation between chitin exposure in the respiratory tracts of
mice and asthma.'”® Furthermore, challenges persist in
effectively solubilizing and reconstituting chitin and chitosan
in aqueous solutions, particularly at pH values relevant to
clinical settings.”?%'%10!

Chitosan, which is typically obtained through chemical or
enzymatic deacetylation of chitin, has been investigated for a
wide range of applications including wound healing and wound
dressing, drug delivery and pharmaceutical formulations, and
in many micro- and nanoparticle applications.”®"'%%'"!
Chitosan can also be used to form porous scaffolds via a
variety of techniques including electrospinning and gas
foaming, and the formation of composite scaffolds with
bioactive biopolymers has been studied extensively.”® Addi-
tionally, chitosan oligosaccharides display minimal toxicity,
making them approved as food additives by the American
Food and Drug Administration (FDA).'*

2.4. Keratin. Keratins are a class of biopolymers found in
soft tissues such as epithelial tissues (“soft” keratins) or found
in external, hard tissues such as hooves, hair, and nails (“hard”
keratins). Traditionally, hard keratins have been explored for
their utility in biomaterials in either a reduced (keratose'%'7)
or oxidized state (kerateine'*), generated by manipulation of
the disulfide bonds present within the biopolymer. Similar to
other biopolymers discussed within this review, the extraction
and purification of these materials can be challenging or lead to
batch-to-batch variability (Figure 1B),'”” but the resulting
solubilized biopolymers'**~"'* can be used to form hydrogels,
films, coatings, fibers, injectable materials, and porous
scaffolds.*™'*° To overcome some of these sourcing and
solubility challenges, methods for optimizing extraction and
modification are under investigation. >

2.5. Alginate. Alginate is a natural polysaccharide-based
biopolymer that forms a linear chain of two units: (1—4)-
linked f-D-mannuronate (denoted as “M”) residues and a-L-
guluronate (denoted as “G’’) residues. The ratio of M and G
residues dictates the polymer structure and influences
maximum ionic cross-linking densities and overall gel state
properties. Alginates are water-soluble, forming hydrogels via
ionic cross-linking of the G units in the presence of divalent
cations, commonly calcium, though barium ions are also
suitable. Alginates are commonly harvested from sea kelp or
brown algae, and several bacteria also produce alginates.
Similar to other naturally occurring biopolymers, the
composition and ratio of the two blocks varies between
species and the life stage of the species,””'** enabling wide
variability in the structure and mechanical properties of the
resulting alginate-based biomaterials formed from different
alginate sources.””'**'** The biodiversity of the alginates
produced affords great flexibility in commercial processing and
use, and thus, alginates have been used as a food additive, in
wound dressings and pharmaceutical formulations, cell
encapsulation, and bioactive molecule encapsulation (Figure
1B). 103037125132

Encapsulation of cells in alginate hydrogels offers protection
from the immune system, affording great clinical promise for
cell delivery to patients with autoimmune diseases such as type
1 diabetes.'>”"*° Several limitations surrounding the
utilization of alginate biopolymers for healthcare applications
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Figure 2. Successful chemical modification strategies for overcoming limitations with natural biopolymers. A) Synthesis of methacrylated alginate
through EDC coupling to form photo-cross-linked alginate hydrogels." B) Diels—Alder click reaction for the formation of self-healing chitosan
hydrogels.” C) Increasing efficiency of carboxylation of silk fibroin through disruption of noncovalent interactions under mild conditions.”® D)
Functionalization of tyrosine residues in silk fibroin through an azo-reduction reaction to increase the amount of residues for chemical
modification.® (A) was reproduced with permission from reference #1, ©2009 Elsevier Ltd. (B) was reproduced with permission from reference #2,
©2017 Elsevier B.V. (C) was reproduced with permission from reference #S5, ©2020 American Chemical Society. (D) was reproduced with

permission from reference #6, ©2022 Wiley-VCH GmbH.

include brittle mechanical properties, lack of mammalian cell-
binding domains that necessitate the addition of specific
integrin binding sites, limited control over the binding forces
between the biopolymer subunits during ionic cross-linking,
and uncontrollable charge density (Figure 1B).%%3%12%136135
Similar to many other natural biopolymers, investigators aim to
overcome these challenges where improvements have been
made through modification strategies, such as cross-linking
cell-binding epitopes to the material to improve its biological
activity.>'** Additionally, improvements have been made in
alginate sourcing and batch-to-batch variabilities through the
generation of composite materials and interpenetrating net-
works, modification of the alginate biopolgmer backbone to
engender a specific biological function,””"*”"**7*! and strict
sourcing, purification processes, and batch-to-batch character-
ization for commercially available products (e.g,, NovaMatrix).

2.6. Resilin. Resilin was first reported and described by
Weis-Fogh in the early 1960s and has since been widely found
in multiple arthropod species including insects, crustaceans,
scorpions, and centipedes.*>'** Resilin has captured signifi-
cant interest in the biomaterials community owing to its
remarkable properties, encompassing exceptional elasticity,
high extensibility, reversible deformation without loss of
energy, and outstanding resilience when subjected to
stretching.'**'*> Furthermore, it is also extremely heat stable,
remaining unaltered in neutral water that has been heated to
125 °C and does not degrade until 140—150 °C."**'** Studies
with engineered resilin peptides indicate biocompatibility and a
lack of unwanted immune responses.'*”'** Engineered resilin
peptides are the predominant material used for regenerative
medicine applications as the practical utilization of the resilin
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sourced from its natural state remains unfeasible due to
scarcity and limited scalability. Over the past decade, the
development of resilin biomimetic peptides called resilin-like
polypeptides (RLPs),"** has dominated the discussion for
resilin-based biomaterial systems.'>'**'*’7'° Through genetic
engineering and recombinant expression, this versatile protein
can be manipulated in a variety of ways, allowing RLPs and
resulting bioelastomers to have great potential for an
assortment of biomedical applications including biosensors,
tissue engineering, microfluidic devices, and controlled drug
delivery systems (Figure 1B)."*#'3'~'5%

2.7. Mucins. Mucins are large glycoprotein biopolymers
secreted by goblet cells in the epithelium and form many
lubricating, hydrogel-like materials within the body, including
in the lungs, intestines, and nasal passages, making them a
useful and instructive biopolymer for biomaterials develop-
ment."*>"*® Mucins contain terminal acidic sugars that impart
an overall negative charge in addition to an extended central
protein and regions of O-glycosylation, which can be acidic or
neutral depending on their origin. Mucins are exploited for
their barrier, lubrication, hydration, and bioactivity capabilities,
and are found in multiple locations in almost all animals to
help protect the epithelium from dehydration, mechanical
stress, bacteria, and viruses.'>”"*® Mucins are investigated for
their use in skin care products and cosmetics,">” as artificial
tears or saliva,">> as drug delivery vehicles,"**71? and have
been shown to have unique antibacterial and immune
responses (Figure 1B).'>'%*

Natural mucins are frequently harvested from porcine and
bovine gastric or submaxillary systems,'®® but the use of less
common sources of mucins, such as mollusks, could have

https://doi.org/10.1021/acsbiomaterials.4c00689
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potential for large scale production and aid in healthcare
materials development.'®*~'%® Other novel sources of mucins
include jellyfish, which have been used to inhibit degeneration
of cartilage in a rabbit model,'® and snail and slug mucus,
utilized for antimicrobial properties'’*~"”* and more recently
to study wound healing and skin rejuvenation'”'”* for both
cosmetic and medical applications. As with most naturally
sourced biomaterials with numerous potential sources, batch-
to-batch variability, lack of standardization of purification
protocols, and limited quality control practices to maintain
purity have limited the commercialization of a naturally
derived mucin-based material (Figure 1B)."° Similar to
approaches taken to create resilin-like polypeptides, inves-
tigators have leveraged the unique chemical structure and
function of mucins toward the development of engineered
artificial mucin-like polymers as a way of avoiding issues arising
from the lack of standardization in the use of animal-derived
mucins.*® Recombinant expression systems have led to
improved batch-to-batch reproducibility and a reduction in
contamination risks while continuing to exploit the use of the
glycocalyx and complexity of the mucin biopolymer and offer
advanced manufacturing potential from a nonmammalian

156,160,175—177
source.

3. STRATEGIES TO IMPROVE THE UTILITY OF
NATURALLY DERIVED BIOPOLYMERS

Nature has evolved a rich landscape of biopolymers that can be
leveraged in the medical community to address numerous
healthcare challenges prevalent currently and in the future.
However, substantial challenges reside in utilizing a vast
majority of naturally derived biomaterials including sourcing,
batch-to-batch variability due to biological diversity or
environmental factors, and constrained capacity to adjust or
modify the material properties. Hence, as engineers, we possess
the capability to utilize our existing toolsets in order to surpass
certain constraints inherent in natural biopolymers that inspire
us, paving the way for a fresh wave of innovative biomaterials.
Relevant to this review, chemical modification strategies,
genetic engineering, and environmental influence will be
discussed.

3.1. Chemical Modification. The most common way to
enhance the functionality of a naturally sourced biopolymer is
to perform a chemical modification at specific amino acid
residues or specific side chains to alter the native structure,
such as the schematics shown in Figure 2. These chemical
modification strategies aim to alter the biopolymer without
hurting or diminishing the native features and the ability of
these biopolymers to self-assemble. A wide range of chemical
modification strategies exists for synthetic polymers and
investigators have worked to apply these modification
strategies to naturally sourced materials, including silk
fibroins,"”%'7? ;1lginates,180’181 and keratins.'®® Often, the
goal is to introduce reactive side chains to improve the
tethering of additional bioactive molecules or alter the ability
of the biopolymers to cross-link and form reliable and
reproducible networks. Two of the main challenges inves-
tigators work to overcome in the chemical modification of
naturally sourced biopolymers are 1) limiting the degradation
of the protein when using harsh conditions during modification
and 2) the extent of modification and recovery of modified
biopolymers.

3.1.1. Methods to Methacrylate Natural Biopolymers.
Modifying a biopolymer with methacrylate groups enables free
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radical cross-linking and is desirable for coupling or gelation
reactions using UV light. Many sources use methacrylic
anhydride to modify primary amine groups for this purpose,
and this approach has been demonstrated on silk fibroin'** and
chitosan."**'®  Another approach is to react methacrylic
anhydride with hydroxyl groups on alginate.186 Other methods
to obtain methacrylate functionality have been demonstrated
on silk fibroin, which used glycidyl methacrylate,"®”"** and
alginate, which attached 2-aminoethyl methacrylate using EDC
coupling (Figure 2A)." Covalent cross-linking through the
methacrylate groups is particularly useful for additive
manufacturing applications, however, a potential downside
for the methacrylate reactions is that the method used to cross-
link the modified biopolymers may render the material unable
to undergo biodegradation.

3.1.2. Carbodiimide Coupling to Natural Biopolymers. 1-
Ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) is
often selected for biopolymer modification because it can be
used in aqueous conditions. EDC activates carboxylic acid
groups to form an O-acylisourea intermediate under mild to
slightly acidic conditions, and then primary amine-containing
molecules may react with the activated site to result in an
amide bond that covalently links the two molecules. The O-
acylisourea intermediate is susceptible to hydrolysis, resulting
in the recovery of the carboxylic acid functional group, so N-
hydroxysuccinimide (NHS) or N-hydroxysulfosuccinimide
(sulfo-NHS) is often used in conjunction with EDC to
produce an NHS ester intermediate which is more stable, less
susceptible toward hydrolysis, and favors the reaction between
the carboxyl and primary amine groups. EDC coupling
involving alginate and silk fibroin is highlighted below, but it
has also been used to modify other natural proteins such as
keratin'* """ and chitosan.'*>'"*

3.1.2.1. Carbodiimide Coupling with Alginate. Alginate
has attracted attention for its rapid and reversible solution-to-
gel transitions. Alginate contains no cell-binding sites;
however, many pendant hydroxyl and carboxylic acid groups
exist and provide opportunities for synthetic modification
(Figure 2A). The carboxylic acid groups can be modified with
arginine-glycine-aspartate (RGD)-containing ligands using
EDC coupling to facilitate cell attachment and enhance
interaction between the alginate construct and attached cells,
as demonstrated for skeletal myoblasts.”® Additionally,
functionalizing al§inate with vinyl ether'™* or tyramine
functional groups'”> by EDC coupling produces a dual cross-
linked hydrogel, where one set of cross-links forms a physical
network (e.g., by hydrogen bonding or ionic cross-linking) and
the other forms a covalent network upon exposure to UV light.
Since many applications of alginate-based materials exploit the
reversibility of the alginate network, care must be taken to
ensure that the modifications do not disturb the ability of
alginate to be ionically cross-linked.

3.1.2.2. Carbodiimide Coupling with Silk Fibroin. Silk
fibroin has been coupled with polysaccharides,'”®™"'%°
proteins,”’®°7>%® and peptides®®**®® by activation of native
carboxylic acid residues using EDC. A significant challenge is
attaining high levels of functionalization, which exists due to
low numbers of carboxylic acid reactive sites as well as
difficulty reacting to those sites. Methods’®® to increase
carboxylic acid content have been reported, however some
approaches result in low functionalization yields and significant
degradation of the protein.”*”*°® A milder carboxylation route
using succinic anhydride in an ionic liquid/dimethylformamide
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enabled up to a 90% degree of substitution and showed less
protein degradation (Figure 2C).> Carboxylated silk can then
be modified using EDC coupling with and without the
presence of surfactant. In the presence of surfactants, the more
highly carboxylated silk fibroin was more amenable to the EDC
coupling reaction, resulting in higher degrees of substitution
with greater preservation of the initial silk fibroin biopolymer
structure.” Additionally, the generation of amino-tyrosine silks
via the formation of azo-silk can lead to the enhancement of
tyrosine residues on the silk backbone, providing additional
sites for the use of EDC coupling (Figure 2D).° Further work
will continue to evaluate how the chemical composition of
substitutions affects the self-assembly of the protein and its
properties as a biomaterial in addition to considering if these
chemistries are effective in modification of nonmulberry silk
fibroin sources.

3.1.3. Modification of Biopolymers by Oxidation Reac-
tions. 3.1.3.1. Generation of Carboxylic Acids. Biopolymers
featuring carboxylic acid functional groups are a desirable
precursor for modification due to the availability of aqueous
phase reactions that target this functional group, including the
EDC coupling reactions discussed above. To enrich carboxylic
acid groups of silk fibroin, sodium hypochlorite has been used
to oxidize the hydroxyl groups on serine residues.””” Modified
silk had an observed 47% degree of carboxylation and a high
reaction yield, though it was noted that too much sodium
hypochlorite resulted in significant protein degradation. This
carboxylated silk has been blended with chitosan to form
composite materials with high moduli via layer-by-layer
assembly.”'" Alternatives to oxidation to generate carboxylic
acids include the modification of alcohol groups with an
organohalide (e.g., chloroacetic acid®®® or iodoacetic acid*!)
under basic conditions, which has been shown to modify silk
fibroin.”'? Under some conditions, these methods can prove
challenging as the pH adjustments required can result in an
impactful decrease in biopolymer molecular weight. Another
alternative to oxidation in silk fibroin used an anhydride (e.g,,
succinic anhydride®’) in organic and ionic liquid solvents to
modify alcohol and amine groups, which was found to result in
high degrees of functionalization and less protein hydrolysis, as
indicated by protein molecular weights in excess of 100 kDa.”"’
More recently, this approach has been confirmed with a
different solvent system (1.0 M lithium chloride in dimethyl
sulfoxide) that also demonstrated the preservation of
carboxylated silk protein with high molecular weight.”"* With
different options available for carboxylation that require more
or less stringent conditions, the user may select the reaction
route based on the desired functionalization and molecular
weight of the modified biopolymer and subsequent down-
stream applications.

3.1.3.2. Generation of Aldehydes. Aldehyde functional
groups generated on polysaccharides and proteins are not
naturally occurring and can be leveraged to permit
functionalization at specific sites. Aldehydes may react with
primary amine, hydrazide, or aminooxy groups to generate
stable linkages for cross-linking or other coupling reactions.
For proteins, approaches to introduce aldehydes include
enzymatic treatments and N-terminal serine oxidation. Vicinal
diols of polysaccharides, includin chitosan,”'® N,N,N-
trimethylchitosan,”'* and alginate,””> can be oxidized by
periodate (I0,”) to generate dialdehydes. Alternatively,
primary alcohols can be oxidized to aldehydes using 2,2,6,6-
tetramethylpiperidine-1-oxy radical (TEMPO),*'® which has
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been explored in combination with sodium hypochlorite and
sodium bromide to oxidize chitosan,”’® with more than 95% of
primary alcohols successfully oxidized.

3.1.4. Less Common Chemical Modification Strategies.
3.1.4.1. Noncovalent Interactions. Host—Guest. Host—guest
interactions have been used with chitosan®'”*'% to generate
supramolecular gels. One example is materials based on the
interaction of f-cyclodextrin (CD), a cyclic oligosaccharide
that contains a hydrophobic cavity, with adamantine, which has
a high affinity for CD. Chitosan modified with f-cyclodextrin
(CD)*" was studied for its gelation behavior using
adamantane-modified chitosan and adamantane-modified poly-
(ethylene) glycol (PEG).>"”* When CD-modified chitosan was
mixed with the PEG-diadamantane guests, the viscosity
increased, but a stable gel was not formed. In contrast, when
the CD-chitosan was mixed with the adamantane-modified
chitosan, a gel-like behavior was observed but the storage and
loss moduli were not independent of the frequency, which was
attributed to the network reversibly breaking under stress and
then reforming. The ability for biopolymers to undergo
reversible sol—gel transitions may be adapted for additive
manufacturing or may find application as injectable materials.

Boronic Acids. Boronic acids reversibly interact with diols to
form boronate esters, makin§ this moiety a promising feature
for responsive hydrogels.”*” Boronic acid groups can be
attached to alginates using EDC coupling to generate a pH-
dependent material. In basic conditions, gels are formed due to
boronic acid groups interacting with the neighboring hydroxyl
groups, and the resulting gels are self-healing, injectable
through a 21G needle, and support the 3D encapsulation of
HeLa cells.”*' In acidic conditions or when exposed to
fructose, the boronic acid-diol network dissociates. In another
study of boronic acid-modified alginate, the materials formed
hydrogels in phosphate buffered saline (PBS), and the gels
demonstrated self-healing and shear thinning ability, as well as
strong adhesive properties and low toxicity in vivo.

Metal Coordination. Biopolymers, including silk fibroin,”
that contain pendent sulthydryl (thiol) groups can associate
with metal species. Silk fibroin modified with thiol groups
rapidly gels upon adding gold (Au*), with the solidification
occurring immediately after adding $ mM Au**.**> Though
transition metals can be cytotoxic, good cytocompatibility with
the Au-SF hydrogels was observed, even with the highest Au®*
concentration.

3.1.4.2. Dynamic Covalent Interactions. Reversible co-
valent bonds are becoming more commonly employed for
biopolymer modification due to their ability to form stable
bonds that may later be reversed to liberate molecules by
exposure to specific stimuli or to create self-healing
materials.”** One example is the Diels—Alder reaction, where
a typical form involves the reaction of a furan group with a
maleimide group at a relatively low temperature (e.g,, 50 °C)
and the reversing of the reaction at a higher temperature (e.g.,
150 °C).**> The use of the Diels—Alder reaction is increasing
in popularity due to its mild reaction conditions and thermo-
reversibility”>® and has been demonstrated on chitosan (Figure
2B)>**7*** and alginate.”* Another example is the Schiff base
bond formed between amino and carbonyl groups (ie,
aldehyde or ketone) and has been used for a variety of
dynamic hydrogel materials, including chitosan.”**">** A
recent review discusses these materials in more detail.”**

Grafting From (GF) Strategies. The use of naturally derived
dithiolanes, such as a-lipoic acid, can be used to create
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Figure 3. Biopolymers produced through recombinant methods have limitations and fail to mimic proteins produced by the native organism. A)
Limits of bacterial production exist for larger proteins (<300 kDa), resulting in impaired protein folding and the formation of inclusion bodies. Low
expression levels or truncation of the desired protein (spider dragline silk) are observed in the SDS-PAGE analysis as molecular weight increases in
E. coli>* B) Native biopolymers, such as silk fibroin, undergo natural processing, such as fiber spinning, where specialized organs (e.g, silk glands)
process the fibers through physiological changes to assemble protein molecular structures that produce favorable mechanical properties.” Fibers can
be artificially spun through wet and dry spinning techniques, though the as-spun fibers often show weak mechanical properties and require post
spinning treatments.”” C) Post- translational modifications such as glycosylation can be vastly different among commonly used expression hosts
and native sources. These modifications can lead to a variety of issues with biocompatibility and protein folding, potentially producing an inferior

. . 8
product in an alternative source.

with permission from reference 3, ©2010 National Academy of Sciences.

¥ Schematics were created with a license from BioRender.com and the Western blot shown in (A) was reproduced

reversible thiol/disulfide bonds. The 1,2-dithiolanes react with
sulthydryl groups to create protein—polymer conjugates or
modified biopolymers with a wide range of potential
applications. In synthetic systems, 1,2-dithiolanes can be
used to create dynamic covalently cross-linked materials with
self-healing properties.”**™**® The thiol/disulfide exchange
within these systems enables the development of materials with
reversible disulfide bond formation. Composite keratin-based
materials have been formed by these reversible reactions
between sulthydryl groups on the keratin with the dithiolane
structure of a-lipoic acid.'®”

3.2. Recombinant Protein Expression and Genetic
Engineering. Over the last 45 years, technologies for the
recombinant production of proteins have enabled the
production of a wide variety of proteins, including engineered
biopolymers and peptides, in non-native organisms such as
bacteria and yeast, including protein therapeutics, antibodies,
and biopolymers or partial biopolymer peptide sequences. The
development of recombinant protein expression systems
enabled the production of naturally derived biopolymers in
non-native systems. Using the ever-improving array of gene
editing technologies, investigators can not only produce the
original protein but can engineer altered versions®> of the
native sequence. The growing significance of these expression
vehicles in present and future protein-based biopolymer
manufacturing lies in their ability to provide a certain degree
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of precision in controlling the molecular weight and sequence
of the expressed protein and the resulting separation,
purification, and reconstitution.' > #¥>'3237245 Recombinant
expression techniques have facilitated the rational design and
assembly of essential functional motifs derived from natural
biopolymer protein sequences across a spectrum of host
systems, including bacteria, yeast, insects, mammalian cells,
transgenic plants, and transgenic animals.>*~>**

One of the main challenges that plague the production of
modified biopolymers via recombinant expression is the
successful production of sufficient quantities of large molecular
weight proteins. Large biopolymer-based proteins that can be
used to form biomaterials or drug delivery vehicles are high
molecular weight (MW, > 200 kDa) with complex secondary
structures, making them challenging to manufacture (express,
purify, concentrate) at an industrial scale in common microbial
systems.”*” Additionally, although the rational design of
numerous coding sequences is achievable, the translation to
predicting the final protein architecture remains less
straightforward but is a growing area of research with
advancements in artificial intelligence and predictive machine
learning algorithms.”****' Moreover, confirmation of appro-
priate secondary and tertiary structures often necessitates
extensive modification of the glycosylation pathways within the
expression host or the utilization of complex processing
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parameters to better mimic the native tertiary structure of the
desired protein.”>>

3.2.1. Bacterial Expression Systems. Bacterial vectors are
exceptional candidates for the expression of various proteins as
they offer fast growth rates, comparably low costs, genetic
stability, established protocols for molecular modification, and
comprehensive knowledge of their biology.****** Notably, the
bacterium Escherichia coli (E. coli) stands out as the most
employed production system where its prevalence stems from
several advantages, including its simplicity in purification
stemming from the limited secretion of native proteins.”*’
Relevant to this review, sections of spider silk spi-
droin,>'¥*3*7257 Teratin,>*®**? resilin-like polypeptides
(RLPs),">"15¥292¢1 and mucin-like polypeptides'”**** have
been produced in E. coli-based hosts. As an example, RLPs,
have been generated with tunable mechanical properties
leading to a wide applicability across multiple tissue types
within the musculoskeletal and cardiovascular systems.”*” In
2007, Kim and colleagues showed that use of a lactose-induced
E. coli fermentation method led to over 300 mg RLP/L of
culture,"* leading to a stable, reproducible source of RLPs for
use in materials fabrication.'®

However, for many large and highly repetitive biopolymers
such as B. mori silk fibroin, limiting factors, such as the inability
to create proper glycosylation and post-translational mod-
ifications, metabolic constraints on the host cell, lack of
physical property similarity between the generated proteins
and their native counterparts, and insolubility of resulting
materials due to formation of inclusion bodies, hamper
translation (Figure 3).17253,256,263 Investigators are still
working to optimize expression rates, enhance protein
secretion and purification, generate appropriate post-transla-
tional modifications, trigger desired secondary and tertiary
protein structures, and/or achieve desired mechanical proper-
ties.'>'571729472%% Outside of E. coli, other bacterial expression
systems have been used, to overcome challenges, improve
protein secretion, or improve the economics of the
recombinant silk production pathway. Recently, the Koffas
group produced spider silk peptides in B. megaterium,'” a
species known for producing large flocculation proteins.
Through a coculture system, they showed the degradation of
biomass and the production of spider silk."> Similarly, in a
collaboration led by the Zha group, the Koffas and Zha teams
showed that a modified Pseudomonas aeruginosa (P. aeruginosa)
strain could both use depolymerized polyethylene as a carbon
source and then produce spider silk-like peptides.””’

3.2.2. Yeast Expression Systems. Yeast expression systems
have become valuable hosts to produce recombinant proteins
with Komagataella pastoris (formerly known as Pichia pastoris)
being the second most used system for protein biopolymer
production, only behind E. coli.””" These systems allow for
eukaryotic post-translational modifications including disulfide
bond formation and N-glycosylation which are crucial for
proper protein folding and functionality. Additionally, they
offer endotoxin-free production,”’” fast growth rates, and
relatively simple genetic manipulation.””> These systems have
been used to produce recombinant spider silk,””* mucin-like
glycoproteins,”’® and elastin-like polypeptides (ELPs).””® Yet,
the native high-mannose-type sugar chains and glycosylation
patterns in yeast can represent a biocompatibility constraint
when introducing the products for biomedical applications and
can limit the potential uses.””” Therefore, much effort has been
put forth into K. pastoris and Saccharomyces cerevisiae yeast
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expression vectors to produce therapeutic §lycoproteins that
display human-like glycosylation patterns,””’~>*" with suc-
cesses in the biopolymer space with humanized mucin-like
glycans.””® However, these alterations often come at a cost to
the host system. For instance, the K. pastoris humanized
mutant strain, Glyco4, exhibits impaired growth rates and cell
wall defects. Zhu et al.”** successfully identified a substantial
cause of the observed phenotype, attributing them to a
decreased expression of the glycosylphosphatidylinositol
(GPI)-anchored cell wall glycoprotein, PpSpil. Through
upregulation of PpSpil in the new mutant strain, GlycoS,
investigators were able to partially rescue the normal growth
rate and cell wall integrity.”** Although significant progress has
been achieved in the humanization of yeast glycosylation
patterns, further optimization remains a necessity for future
applications in the production of biopolymers for medical
applications.

3.2.3. Plant Expression Systems. Transgenic plants
represent an underrepresented expression system where
large-scale agriculture can be leveraged for the potential cost-
effective creation of various recombinant biopolymers.”®’
However, currently the downstream processing to extract the
protein of interest is greater than traditional systems hindering
the realization of cost-effective production.”®* To address this
concern researchers have used directed expression, driving
recombinant protein accumulation within specific tissue types,
to streamline and mitigate this challenge.”*>™**" Currently,
transgenic plants and plant cell systems have been utilized to
produce an array of biopolymers including spider silk-like
proteins,*”*** resilin-like polypeptides,”™* elastin-like polypep-
tides,”®” and mucins.”®” As a growing expression system, plant
and plant cell culture-based systems hold promise, but their
commercial translation will be a key focus of both academic
and industrial efforts in the coming years.

3.2.4. Insect Cells. Insect cell line expression systems are a
promising candidate for the production of recombinant
biopolymers, largely owing to the success of the baculovirus
expression vector systems.”~ Among the most widely utilized
insect cell lines are S2, derived from Drosophila melanogaster,
SF9 from Spodoptera frugiperda, and High Five from
Trichoplusia ni with the majority of commercial applications
focused on vaccine production with FDA approval for
FluBlock™" and Cervarix.””” An advantage of insect cell line
expression systems stems from their cost effectiveness in
culturing conditions, characterized by the absence of CO,
requirements and lower culture temperature, which is often
near or at room temperature. These systems also facilitate the
production of more complex glycan structures and post-
translation modifications (Figure 3C). However, the non-
mammalian glycosylation pattern inherent in insect cells may
trigger an immunogenetic response in medical applications. To
address this limitation, glycoengineering can facilitate
production of mammalian-like terminal sialylated N-glycans
in insect cells.””>*** These advancements in the humanization
of glycosylation patterns position insect cells to generate
recombinant proteins that closely mimic those produced in
mammalian cell lines, but at a reduced cost and with reduced
biosafety requirements. Predominantly, insect cells have been
employed for vaccine production in the medical domain,
however, noteworthy successes in biopolymer production have
been made with partial sequences of Araneus diadematus
dragline silk proteins ADF3 and ADF4 in Sf9 cells,”” a 70 kDa
eGFP-spider silk fusion protein in BmN cells from B. mori
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biomaterials with enhanced properties. Schematics in this figure were created with a license from BioRender.com.

silkworms™® and various collagen formats.”” Despite these
advancements, the potential of this expression system to create
mammalian-like biopolymers is still in its infancy, and its
capabilities are yet to be realized.

3.2.5. Silk Gland Expression Systems. Genetically modify-
ing organisms to utilize them as bioreactors or biofactories to
produce recombinant proteins is a novel strategy to produce or
enhance native biopolymers compared with traditional
recombinant protein synthesis methods. One beneficial aspect
of altering the native host species for utilization as a
recombinant protein bioreactor is the decrease in engineering
demand required to formulate the protein into its naturally
found architecture. As an example, synthetic silk fibers must be
artificially spun through a variety of methods (Figure 3B),
including electrospinning, wet spinning, dry spinning, self-
assembly, and microfluidics,””* ™" with large scale production
only recently realized through optimization by the Rising
Research Group,"***' 73 located at the Karolinska Institutet
(KI). These methods, recently reviewed from a variety of
perspectives,”?*7303953% ytilize an array of solvents, coagu-
lants, draw ratios, and physical parameters (such as varying pH,
temperature, viscosity, voltage, polypeptide molecular weight,
and blending with other organic molecules or metal ions) to
produce the desired mechanical properties. However, while
being useful for the tunability of the desired recombinant
protein and its structures, these approaches require specific
expertise and often results in fibers with altered mechanical
properties compared to the naturally spun fibers from the
silkworm or spider.
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Thus, harnessing the silk gland for the production and self-
assembly of various biopolymers offers an intriguing alternative
to traditional recombinant expression systems. This organ,
responsible for silk production, storage, and secretion,
demonstrates notable efficiency in the production and self-
assembly of biopolymers across a wide variety of silk fiber
producing insects and spiders.*>**”*%" Silk glands exhibit an
extraordinary capacity to store very unstable proteins at high
concentrations, preventing ag§regation or denaturation, before
secretion into the silk fibers.">*% Therefore, the silk gland has
great promise to produce full-length, highly repetitive protein
biopolymers that currently challenge microbial-based expres-
sion hosts. Subsequently, current research has shown trans-
genic silkworms to be quite capable bioreactors for their high
levels of expression and efficient secretion of numerous
recombinant proteins. The B. mori expression system has
demonstrated its capability to synthesize a wide range of
proteins relevant to biomedical uses, such as human type III
p1rocollagen,3'10 human lactoferrin,®"’ human serum albu-
min,”’* human neurotrophin-4,”> human epidermal growth
factor,’’* and antibodies.*’> However, more relevant to the
focus of this review, this system has also been employed to
produce spider silk mimetics®””>*'® and silk fibroin-like fusion
proteins.”'7?'® These silk fibroin-like biopolymers have
modulated the mechanics or biological activity of the native
biopolymer, highlighting the capacity investigators have in the
rational design of future biopolymers using this platform.

The challenges encountered by silk gland expression systems
include impurities stemming from the abundant production of
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native silk fibroin support proteins (sericins) within the gland
and incorrect folding of the desired protein primarily due to
simpler glycosylation patterns found in insects compared to
mammalian systems (Figure 3B).>'° Additionally, insect
glycosylation patterns can induce a nonfavorable immune
response in mammals. If left unaltered, this could limit the
utilization of silk gland-produced biopolymers, as most
therapeutic glycoproteins necessitate the more intricate
mammalian type N-glycans for clinical effectiveness (Figure
3C).**° These challenges have been addressed through several
bioengineering approaches. Knockouts of native silk genes
have resulted in B. mori strains with empty silk glands®®
resulting in a purer, naturally produced form of the desired
protein.

Additionally, genome editing techniques also provide the
means to improve the immune response when the biopolymer
is introduced into humans. Utilizing a piggyBac vector and
more recently CRISPR-Cas9 genome editing has shown the
ability to alter the insect primitive N-glycosylation pathway to
the more complex mammalian pathway.’'® This has been
accomplished by conducting knockouts of critical biosynthetic
genes in the host insect and then supplanting the glycosylation
pathway with mammalian-appropriate genes transformed into
the host genome.

3.3. Role of the External Environment in Biopolymer
Structures. The easiest way to obtain a similar biopolymer
with slightly different properties is to collect, purify, and
evaluate that same biopolymer from a different host or native
source. For example, the alginate community recognizes that
alginates collected from similar species of sea kelp can yield
polysaccharides with varying ratios of M and G units. Similarly,
silk fibers from other moths or spiders produce silk fibers with
mechanical and structural characteristics that are different from
those of B. mori.***”® However, not all naturally sourced
biopolymers have readily available production alternatives.
Thus, another way to alter protein structure is through
modifying the environment where the host species produces
the protein. One can think about this as the way they think
about their hair. Keratin, the main protein in human hair and
nails, responds to many things including the human’s diet, the
temperature and humidity in the environment, and the
human’s level of hydration.””" Even things like hormone levels
(e.g, pregnancy) can impact keratin production in humans.***
Similarly, environmental factors can influence protein
structures and production levels in other native host systems
(Figure 4).

3.3.1. Known Impact of Climate and Climate Change on
Natural Biopolymers. Naturally sourced materials are
susceptible to environmental and climate changes, which can
profoundly impact the physiology of organisms and con-
sequently affect the downstream sourced product (Figure 4). A
notable example of this influence is evident in the gradual
warming and acidification of ocean waters due to increased
carbon dioxide levels.”** The adsorption of CO, decreases the
pH of ocean waters, diminishing the availability of calcium
carbonate crucial for the formation of exoskeletons in
crustaceans®>* and increasing seaweed vulnerability to physical
forces.”* Moreover, variations in light quality can significantly
influence growth rates and metabolic pathways, thereby
affecting the characteristics of the resulting product. For
instance, temperature, photoperiod, and light quality greatly
affect the growth, reproduction, and biomass content of
algae.”* Similarly, cold-blooded animals, which are reliant on
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external temperatures to regulate their body heat show large
variation to varied conditions. Silk-producing organisms like
spiders and silkworms are sensitive to temperature and rainfall
fluctuations, which not only impact their growth rates but also
influence the availability of essential food sources such as
mulberry leaves for B. mori.*****” These fluctuations can lead
to a reduction in the quantity of biopolymers produced and
alter the properties of the resulting fibers. Additionally,
crustaceans also face varied growth rate.’”® While this
variability can pose challenges, it can also be strategically
leveraged to regulate or modulate production or induce desired
changes in biopolymer characteristics.

Few investigators have closely examined how the inherent
biological regulation mechanisms found in the native
producers can be harnessed for improved performance of
biopolymers for biomedical uses. A significant constraint in
leveraging these fluctuations is the logistical challenge of
rearing a sufficient quantity of the native producer under
controlled environmental conditions in an economically viable
manner to obtain the necessary amount of biopolymer. We
anticipate engineers and scientists can leverage environmental
parameters such as the pH of the growth environment or water
supplied, the temperature of the organism’s growth environ-
ment, and the nutrients provided to influence biopolymer
production. In a few areas, work has started to explore the role
of external environmental cues on biopolymer structure and
function.

3.3.2. Impact of Environmental pH Shifts in Biopolymer
Production and Properties in Its Native Host. Biopolymers
containing carboxylic acid groups, such as alginate and keratin,
can be modified by changing the pH of the external
environment to alter binding affinities and protein structure.
For example, in the laboratory, the pH of water in shrimp
rearing vessels can influence total chitin production and the
thickness of shrimp shells.”*” However, investigators did not
monitor or investigate if there were shifts in chitin sequence or
levels of acetylation. Moving forward, simple environmental
changes could be used to modulate chitin or chitosan
biopolymer sequences, potentially influencing key features
such as degradation rates, rates of hydrolysis, solubility, and
overall biopolymer production rates (Figure 4). Other proteins
produced in hydrated or water-based environments such as
alginates and aquatic silks, would also be hypothesized to be
influenced by the pH and general ionic strength of the water.

3.3.3. Impact of Rearing and Production Temperatures
and Humidity on Biopolymer Production and Properties in
Its Native Host. Temperature and humidity play a crucial role
in the metabolic pathways of many organisms and can cause
changes to the biopolymer of interest. Ectothermic animals,
such as crustaceans, insects, and arachnids rely on the outside
temperature to regulate many processes within their bodies,
leaving them predisposed to high variance in production which
can be leveraged to modulate desired biopolymers. To
understand these effects on the silking process for B. mori,
Offord et al.>** systematically analyzed the influence of
temperature and humidity on this process. These findings
highlighted a reduced fiber diameter of 25% from larvae reared
at 15 °C compared to 35 °C, morphological changes to cocoon
structure, and modified tensile behavior. Interestingly, similar
effects were observed in the phylogenetically distant silkworm
species Plodia interpunctella. Shirk et al.**" demonstrated that
not only temperature had an influence on silk production, but
also highlighted how population dynamics within the species
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can regulate silk production. Furthermore, properties from orb
webs were studied that inhabited a wide range of climate
conditions in Colombia.”*” Their findings showed spiders in
regions with heavy rainfall had silk fibers with higher tensile
strength and toughness compared to other groups, hypothe-
sized to be a controllable mechanism by the spiders to receive
less damage to their webs. Additionally, temperature can
influence not only the expression of the primary silk protein
components but also the glycoprotein components that affect
the viscoelastic properties of the fibers.**”

3.3.4. Impact of Nutrients and Additives on Natural
Biopolymer Production in Its Native Host. Modification of
natural protein structure, mechanical properties, and expres-
sion can be achieved through food additives in the diet of an
organism. The formation of keratins in bovine claws is highly
dependent on nutrient availability to epidermal cells involved
in keratinization. Specific amino acids (Cys, His, and Met),
vitamins (A, D, E, biotin), and minerals (Ca, Zn, Cu, Se, Mn)
are essential for the activation of enzyme systems in
keratinization, regulation of protein groduction, and structural
and functional integrity of keratins.”* In B. mori silkworms, the
addition of nanoparticles, metallic ions, and amino acid
solutions to their diet alters the thermal and mechanical
properties of silk fibers and impacts the secondary structure of
the silk fibroin protein (Figure 4).>** Higher potassium
content in silk fibers modified by the addition of tyrosine
and fibroin amino acids (a mixture of hydrolyzed B. mori silk
fibroin amino acids) increased the beta-sheet content of fibers,
producing higher crystallinities, tensile strength, and strain
energy density.’>* Carbon nanotubes have also been
investigated as a diet additive for their ability to improve the
mechanical properties of the silk produced by spiders and
silkworms. Mechanical properties of spider silk were
significantly impacted after direct feeding of carbon nanotubes
to spiders, including an increase in fracture strength from 1.5
to 5.4 GPa and toughness modulus to 1570 J g~ from 150 J
g~'>* Similar results of improved mechanical, thermal, and
electrical properties were observed when silkworms were fed a
diet with carbon nanotube additives.***~***

4. PERSPECTIVES ON FUTURE ADVANCEMENTS

Given its historical significance and renewed attention,
naturally derived biopolymer therapeutics show immense
potential. However, despite this rich tradition, only a limited
number of biopolymers have been effectively utilized. In this
review, our focus was on silk, chitosan, chitin, keratin, resilin,
and mucins. It is crucial to recognize that even within these
subsets of biopolymers, the field has yet to fully exploit the
extensive biodiversity available for potential use. The primary
hurdles in harnessing the diversity of biopolymers present in
nature for new commercial product development in our
opinion are 2-fold. First, sourcing the natural biopolymer in a
scalable and economically feasible manner is only available for
certain proteins and within certain species. An example
relevant to this review is native resilin. While discovered in
the 1960s,"** and characterized as one of the most efficient
elastomeric proteins, its limited quantity found in various
arthropod sources does not present itself to allow for enough
material to be collected to make for a viable option for material
formulation. It was not until the development of the
recombinantly expressed RLP, rec1,” in 2005 that allowed
for the sourcing of naturally inspired resilin, paving the way for
the biomaterials community to fabricate the diverse materials
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highlighted in this review. Furthermore, optimizing purification
strategies for the wide range of biopolymers presents a
significant hurdle. A universal approach that accelerates the
rapid processing of new biopolymers does not exist. Instead,
each novel biopolymer necessitates meticulous processing
evaluation to ensure that the protein of interest remains
unaltered and that contaminants are absent in the isolated
materials. Second, a multitude of factors, including biological
diversity and environmental fluctuations, contribute to batch-
to-batch variability in naturally derived biopolymers. This
variability poses a significant challenge in applications where
reproducibility is imperative. As we contemplate the future of
sourcing reliable biomaterials, it becomes essential to consider
and evaluate the potential impact of global warming and
natural seasonal fluctuations on the biopolymer of interest.
This aspect warrants critical attention, as it is an area that the
biomaterials community has thus far dedicated relatively little
focus to.

While challenges persist in sourcing naturally derived
biomaterials, researchers have devised and investigated
strategies to address these limitations. The predominant
approaches for enhancing naturally occurring biopolymers
involve chemical modification and recombinant expression of
the target protein. Chemical modification offers a pathway to
enhance the functionality of naturally derived biopolymers
with established sourcing methods. However, the inherent
chemical structure of the native material imposes limitations
on the extent and location of chemical reactions. Furthermore,
the harsh conditions required for chemical modifications,
including temperature, pH, and solvents, can compromise the
integrity of the native structure. As a result, while chemical
modification may introduce additional functionality, it often
comes at the expense of maintaining the original structural
properties. Further advancement of strategies capable of
functionalizing less reactive residues under milder conditions,
such as the azo-reduction reaction targeting tyrosine residues,®
can help mitigate these limitations and need to be investigated
further to expand the chemical modification potential of
biopolymers.

Recombinant expression offers precise control over the
genetic sequence of the biopolymer being produced and can
help facilitate reliable sourcing of the desired biopolymer.
However, the choice of expression organism significantly
influences the downstream material properties, governing
factors such as protein folding, molecular weight, and
production yield. While impressive individual strides have
been made in creating chemical modification strategies to
modify native biopolymers and the creation of biomimetic
recombinantly expressed proteins, future exploration in
utilizing higher-order organisms, such as insects and plants,
poses an exciting alternative expression platform to traditional
microbial-based systems. Additionally, the integration of deep-
learning models to advance the rational design of biomimetic
materials**”**" shows promise in expanding novel recombi-
nant biopolymers. These tools may eventually be able to
accurately predict how various protein and polysaccharide
structures react to certain stimuli. Enhancing the stability of a
proteins or accurately predicting the biodegradation of a
biopolymer. Reducing the number of iterative experiments,
money, and time that is currently required to create novel
biopolymers. Furthermore, as the field progresses it will be
intriguing to observe how well the models predict self-assembly
in alternative host expression systems.
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The final tool highlighted in this review is precise control
over the environmental factors that dictate the biopolymer of
interest production. This is an underreported variable in the
biomaterial community, but one that needs to be considered as
we aim to improve standardization. While maintaining
consistent environmental conditions is logistically challenging
for most organisms to scale, understanding how different
conditions can influence the downstream material will allow
for better predictions of how the materials will behave. As we
strive to expand the structural architecture of naturally derived
biopolymers to create novel therapeutics, it is important to
recognize that the methods for improving these materials
discussed in the review are not mutually exclusive. While they
each have practical limitations, they can be synergistically
leveraged to enhance their efficacy. For example, one could
envision strategically placing reactive residues within a
recombinantly expressed protein to enhance its cross-linking
capacity. To usher in the new wave of novel naturally derived
and inspired biopolymers, a multidisciplinary approach needs
to be adopted, providing the biomaterials community with
consistent and effective natural materials.
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