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Abstract

Motivation: Molecular interaction networks are powerful tools for studying cellular functions. Integrating diverse types of networks enhances
performance in downstream tasks such as gene module detection and protein function prediction. The challenge lies in extracting meaningful
protein feature representations due to varying levels of sparsity and noise across these heterogeneous networks.

Nure Tasnina

Results: \We propose ICoN, a novel unsupervised graph neural network model that takes multiple protein—protein association networks as
inputs and generates a feature representation for each protein that integrates the topological information from all the networks. A key contribu-
tion of ICoN is exploiting a mechanism called “co-attention” that enables cross-network communication during training. The model also incorpo-
rates a denoising training technigue, introducing perturbations to each input network and training the model to reconstruct the original network
from its corrupted version. Our experimental results demonstrate that ICoN surpasses individual networks across three downstream tasks:
gene module detection, gene coannotation prediction, and protein function prediction. Compared to existing unsupervised network integration
models, ICoN exhibits superior performance across the majority of downstream tasks and shows enhanced robustness against noise. This
work introduces a promising approach for effectively integrating diverse protein—protein association networks, aiming to achieve a biologically
meaningful representation of proteins.

Availability and implementation: The ICoN software is available under the GNU Public License v3 at https://github.com/Murali-group/ICoN.

1 Introduction

The emergence of high-throughput experimental techniques has
led to the development of extensive protein—protein association
networks. In such a network, each node is a protein and an
edge between two nodes represents a certain type of association,
e.g., physical binding, shared cellular function, or correlated ex-
pression. In principle, each type of interaction yields a separate
network (Costanzo et al. 2016, Oughtred et al. 2021). Since dif-
ferent types of networks provide heterogeneous and comple-
mentary biological information, integrating them into a
common representation allows for improved performance over
using a single data source in tackling questions such as protein
function prediction and gene module detection (Wass et al.
2012, Forster et al. 2022). However, this integration is not triv-
ial due to the diversity of experimental methods (Forster et al.
2022). Moreover, networks may include false positive interac-
tions, e.g., by retaining interactions that occur due to nonspe-
cific binding in tandem affinity purification coupled with mass-
spectrometry analysis (Sun et al. 2013). Interactions may also
be missing due to a lack of resources. Early techniques for net-
work integration relied on supervision using protein function
annotations as labels (Huttenhower et al. 2006, Mostafavi et al.
2008). However, the performance of these models is contingent
on the availability and quality of the provided labels. Moreover,
these models may not generalize well to other downstream tasks
that they were not trained on.

A recent line of research in network integration is to ob-
tain a feature representation (or embedding) for each pro-
tein that captures topological information from all input
networks. Four methods, Mashup (Cho et al. 2016),
deepNF (Gligorijevi¢ et al. 2018), BIONIC (Forster et al.
2022), and BERTWalk (Nasser and Sharan 2023) have pre-
sented unsupervised approaches to generate protein embed-
dings. They used these embeddings to obtain promising
performance in downstream tasks, e.g., protein function
prediction and module detection. Mashup (Cho et al. 2016)
performed random walks with restart (RWR) on each input
network, yielding network-specific “diffusion states” for
each node. These states reflect the probability of reaching
every node at the steady state. Mashup then solved an opti-
mization problem that computes low-dimensional vector
representation (or embeddings) of nodes that best approxi-
mate the diffusion states according to a multinomial logistic
model. deepNF (Gligorijevi¢ et al. 2018) proposed a multi-
modal deep autoencoder to learn embedding for a protein.
It first created a low-dimensional representation of each
protein for each network by executing RWR for a specified
number of steps, followed by constructing a Positive
Pointwise Mutual Information matrix. Subsequently,
deepNF concatenated these representations for each protein
from multiple networks and passed the combined vectors
through an autoencoder to construct the final embeddings.
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BIONIC (Forster et al. 2022) processed the input networks in-
dependently through multiple layers of graph attention networks
(GAT) (Velickovic ef al. 2018) to obtain network-specific protein
embeddings. Consequently, BIONIC averaged the network-
specific embeddings of each protein. Both deepNF and BIONIC
trained their neural networks by minimizing the reconstruction
loss. BERTWalk (Nasser and Sharan 2023) transformed each in-
put network into a collection of node sequences where each se-
quence represents a path obtained from a random walk of length
10. Treating these node sequences as sentences, BERTWalk con-
structed a corpus by amalgamating sentences from all input net-
works. Subsequently, the authors employed a masked language
modeling technique as used by BERT (Devlin et al. 2019), train-
ing it to identify masked tokens (nodes) within sentences. Finally,
they extracted a representation of the proteins from the embed-
ding layer of their model.

Each of these methods computes initial embeddings indepen-
dently for each network. These embeddings encode the topolog-
ical information for each network. They do not allow this
information to be shared across the input networks during
training. We hypothesized that a model that facilitates inter-
network communication during training may learn a represen-
tation of proteins that yields superior performance in down-
stream tasks. In this context, we embraced the notion of multi-
modal alignment that is utilized in vision-language models (Lu
et al. 2019, Tan and Bansal 2019) and has demonstrated poten-
tial in the biological applications such as drug-target annotation
(Huang ez al. 2022) and cancer driver gene prediction (Zhao
et al. 2022). This approach facilitates integration across diverse
data types such as image, text, and video by leveraging shared
attention mechanisms, i.e., co-attention across modality-specific
transformer encoders (Lu et al. 2019). We introduce this idea in
the context of unsupervised network integration by developing
a new co-attention mechanism that aligns multiple topological
contexts of a single protein originating from heterogeneous net-
works to obtain an embedding for each protein.

In an attempt to make the integration model robust to noise,
we adopt a training technique inspired by denoising autoencoders
(DA) (Vincent et al. 2008, Cao et al. 2016; Gidaris and
Komodakis 2019). In principle, a DA trains a model to learn the
original inputs from corrupted or noisy data by deliberately intro-
ducing noise into the input during the training process.

Our contributions

We propose ICoN (“Integration using Co-attention across
Biological Networks”), a novel co-attention-based, denois-
ing, unsupervised graph neural network model that takes
multiple protein association networks as inputs and gener-
ates a feature representation for each protein. A traditional
GAT model generates a node’s embeddings by aggregating
features from its neighbors in only one network, learning
varying degrees of priority or attention for each neighbor.
In contrast, ICoN learns the attention given to other
nodes by considering the topological context of that
node across all input networks. This concept of co-attention
permits cross-network communication during training.
Furthermore, we adopt a denoising training technique
where we introduce perturbation to each input network and
train the model to reconstruct the original one from the cor-
rupted version. To the best of our knowledge, this method
has not been previously employed in the context of network
integration.
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Our results

We evaluate ICoN using the evaluation framework developed
by BIONIC that includes three downstream tasks (gene mod-
ule detection, gene coannotation prediction, and gene func-
tion prediction) and three benchmark datasets. We
demonstrate that the embeddings produced by ICoN outper-
form those of individual networks across all downstream
tasks. In the majority of downstream tasks, ICoN outranked
existing unsupervised network integration models. We also
demonstrate that the co-attention coefficients learned by
ICoN can be interpreted meaningfully in the context of the
noise we artificially add during training. Furthermore, we il-
lustrate ICoN’s superior robustness toward noise compared
to BIONIC.

2 Methods

For each network, we consider the union of the nodes across
all the input networks, i.e. a node not originally in a network
will now appear as disconnected in this network. The initial
feature for every node is a one-hot encoding, i.e. a vector
whose length is equal to the total number of nodes, and the
index denoting the corresponding node contains 1 while the
rest of the indices have the value 0.

2.1 Model architecture

There are three principal blocks in ICoN (Fig. 1): (i) the noise
induction module that introduces a specific amount of noise
to each of the input networks before inputting them to the
subsequent encoder module. (ii) the encoder module com-
putes the embedding of each protein allowing cross-network
communication among input networks. (iii) the “network re-
construction module constructs an integrated network after
learning embedding for each protein.

2.1.1 Noise induction module

We introduce noise to each of the input networks by ran-
domly removing a fraction (dictated by hyperparameter) of
existing edges and incorporating the same number of new
edges, selected uniformly at random from the set of all node
pairs not connected by an edge in the network.

2.1.2 Encoder module

To reduce memory usage and speed up training, we map the
initial one-hot encoding feature to a lower-dimensional space
using a learnable linear transformation layer.

We then pass this low-dimensional feature to multiple (N)
stacked blocks of similar architecture. Each block has two
main components: (i) a traditional GAT layer that computes
the attention of each node toward its neighboring nodes and
(i) a novel co-attention-based GAT that incorporates the at-
tention computed by the first GAT layer for individual input
networks and utilizes that to learn a cross-network aware
representation of each protein.

GAT

Given the adjacency matrix A™ of a network 1, a traditional
GAT computes an embedding for a node by aggregating the
features of its neighboring nodes but after giving different pri-
orities or “attention” values to each neighbor. We compute
the attention o that node i gives to node j in network m
as follows:
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Figure 1. Architecture of ICoN. Attn1 and Attn2 are the learned attention
matrices from the corresponding GAT layers, whereas H1 and H2 are the
feature representations of nodes from the corresponding networks.

) o A7 exp(a(a™T (Wb} [[W"hT")))

Here, A7’ >0 iff 7 and j are connected by an edge in net-
work m, W € R**? is a network-specific learnable weight
matrix where d and d’ are input and output feature dimen-
sions respectively for the GAT layer, a € R* is a vector of
learnable attention coefficients. ¢ is a nonlinear activation
function, e.g. LeakyRelu, b; is the feature vector of node i
that is input to the GAT layer, and || denotes concatenation
operation. The constant of proportionality in the equation
ensures that the sum of o over all the neighbors of node i
equals 1. It is noteworthy that we employ neighbor sampling
(Hamilton et al. 2017) by selecting a subset of neighbors
while feature aggregation to reduce computational expense
(Supplementary Section S1.1).

Co-attention GAT

For network 1, we compute an 7 X n co-attention matrix 3",
which is a weighted average of the already computed atten-
tion from all the input networks in the previous GAT layers.
Specifically, we compute 77, the co-attention that node 7 gives
to node j as follows:

M M
Xy = ch”af]— where, ZCZ’ =1
k=1 k=1

Here, M is the total number of input networks and the
learnable co-attention coefficient, ¢} denotes the priority
given by network m to (the attention computed by the GAT
layer on) network k. Finally, we compute the embedding for
node i in network 1 as follows:

b = U(Z)(Z’melm>

JEN;
This new vector will be the input for the next GAT layer.

2.1.3 Network reconstruction module

The encoder module generates separate embeddings of a pro-
tein for each of the input networks. The first step of the re-
construction module is to average these embeddings across
all the networks to get the final embedding of a protein. To
construct the integrated network, we utilize a simple dot
product operation on the computed embeddings of pairs of
nodes. Suppose, matrix F contains the embeddings of each
node in the network. We compute the adjacency matrix A of
the reconstructed network as follows: A = F.FT

Loss computation

We train ICoN to minimize the discrepancy between the
reconstructed network and the original input networks (with-
out noise). This strategy empowers our model to navigate
through noisy networks to reach a denoised integrated
network. We formulate the network reconstruction loss L as
follows, where # is the total number of nodes and ||.|| is the
Frobenius norm: L =L 37" [|(A - AR)|[;

2.2 Datasets

We used the input networks used by BIONIC (Forster et al.
2022) and subsequently utilized by BERTWalk (Nasser and
Sharan 2023). We briefly describe these networks in this section.

We ran ICoN on heterogeneous networks originating from
diverse experiments for Saccharomyces cerevisiae and hu-
man. We integrated three baker’s yeast (i.e. Saccharomyces
cerevisiae) networks: (i) a protein—protein interaction (PPI)
network (2674 genes and 7075 interactions) obtained by tan-
dem affinity purification followed by mass spectrometry
(Krogan et al. 2006), (ii) a genetic interaction (GI) network
(4529 genes and 33 056 interactions) constructed by calculat-
ing the pairwise Pearson correlation between genetic interac-
tion profiles of genes (Costanzo et al. 2016), and (iii) a
coexpression (COEX) network (1101 genes and 14 826 inter-
actions) based on the Pearson correlation between transcrip-
tional response profiles of deletion yeast strains (Hu et al.
2007) (Supplementary Section S1.2, Supplementary Table
S5). We also integrated four human PPI networks emerging
from diverse experimental approaches: (i) Rolland-14 (4301
genes and 13 940 interactions) (Rolland ez al. 2014),
(i) Hein-15 (5380 genes and 27 349 interactions) (Hein et al.
2015), (iii) Huttlin-15 (7658 genes and 23 712 interactions)
(Huttlin ef al. 2015), and (iv) Huttlin-17 (10 945 genes and
56 471 interactions) (Huttlin et al. 2017) (Supplementary
Section S1.2, Supplementary Table S5). This analysis permit-
ted us to study ICoN’s generalizability across species and de-
termine if there was any utility in integrating networks
containing the same type of interactions (PPIs) but generated
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by different groups using complementary experimen-
tal techniques.

2.3 Evaluation

We have followed the evaluation pipeline for network inte-
gration introduced by BIONIC (Forster et al. 2022) and used
by BERTWalk (Nasser and Sharan 2023). This framework
consisted of three downstream tasks and three ground truth
benchmark datasets.

2.3.1 Downstream tasks

i) gene module detection: Here, we have assessed the mod-
el’s ability to reproduce biological modules such as pro-
tein complexes and pathways by performing hierarchical
clustering of nodes (based on embeddings) using a vari-
ety of distance metrics (Euclidean, cosine) and linkage
methods (single, average, and complete). We calculated
the adjusted mutual information (AMI) score between
the derived clusters and the ground truth biological mod-
ules (from a specific benchmark) to measure their simi-
larity while adjusting for the effect of agreement solely
due to random chance. We optimized the clustering
parameters (i.e., distance metric and linkage method) for
each network integration method (and network) and
reported the best AMI.

ii) gene coannotation prediction: The goal of this task was
to evaluate how well a model preserves gene—gene rela-
tionships in its node embeddings. We predicted whether
a pair of genes are annotated to the same term in a par-
ticular functional benchmark. Given the embeddings for
a pair of genes, we computed the cosine similarity. We
categorized gene pairs as positive (i.e., coannotated) or
negative based on a predefined threshold. By varying this
threshold, we computed the average precision.

iii) gene function prediction: This task sought to evaluate a
model’s capability to generate embeddings that are effec-
tive in predicting known functional classes (such as mem-
bership to a particular protein complex or pathway) of a
gene. Using gene embeddings as input features, we
trained a support vector machine classifier (with a radial
basis function kernel) to predict gene functions in a one-
versus-all manner. We exploited 5-fold cross-validation
to tune the classifier’s regularization and gamma parame-
ters on the validation dataset. We evaluated the classifier
on a randomized held-out set, consisting of 10% of the
gene features not seen during training or validation, and
reported the resulting classification accuracy. We re-
peated this process 5 times.

2.3.2 Benchmark datasets

We used three datasets (the first two for yeast and the final
one for Homo sapiens), each containing genes annotated to
functional terms indicating their membership in certain pro-
tein complexes or pathways. (i) IntAct protein complexes
(Orchard et al. 2014), (ii) Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (Kanehisa and Goto 2000), and
(iii) CORUM complexes (Tsitsiridis et al. 2023). To create a
coannotation benchmark from each of these three datasets,
all gene pairs that share at least one functional annotation
were considered to be positive pairs, while those lacking
shared annotations were classified as negative pairs. The
coannotation datasets for IntAct and KEGG contained 1,786
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and 2,029 genes; 9,288 and 32,563 positive pairs; 1,584,717
and 2,024,843 negative pairs, respectively. The CORUM
dataset for human contained 10,105 genes, 539,272 positive,
and 50,901,158 negative pairs. We constructed the bench-
marks for module detection by defining a module as a collec-
tion of genes annotated to the same functional term. Modules
with single genes in them were removed as they were uninfor-
mative. The module detection benchmarks included 574,
107, and 3,575 modules for IntAct, KEGG, and CORUM re-
spectively. Finally, we formed the benchmark for function
prediction by considering the functional annotation of a gene
as its class label. IntAct, KEGG, and CORUM consisted of
48, 53, and 296 functional classes, respectively. We also used
a fourth ground truth dataset based on Gene Ontology
(Ashburner et al. 2000) annotations for baker’s yeast. Due to
the poor performance shown by every model on this dataset,
we describe this dataset and the corresponding results in
Supplementary Section S1.3.

3 Results and discussion

First, we assessed the performance of the integrated features
obtained through ICoN against features from individual in-
put networks, based on different downstream tasks across
varied functional benchmarks (Section 3.1). Next, we per-
formed a comparative analysis of ICoN with four unsuper-
vised network integration methods: Mashup, deepNF,
BIONIC, and BERTWalk (Section 3.2). We ran all algo-
rithms (with the optimized hyperparameters (Supplementary
Section S1.4)) five times, except for BERTWalk. Third,
through an ablation study, we showcased the utility of two
pivotal components of ICoN: co-attention GAT and noise in-
duction (Section 3.3). Subsequently, we investigated the
learned co-attention coefficients (Section 3.4). Finally, we an-
alyzed the robustness of ICoN to noise present in the input
networks (Section 3.5).

3.1 Improvement over individual input networks

In our first analysis, we compared the performance of ICoN
with features derived from individual input networks. For
each input network, we explored two methods of feature gen-
eration: (i) embeddings generated using ICoN with only the
corresponding network as input, and (ii) interaction profiles
of proteins (i.e., rows in the adjacency matrix of the network)
as features. We found that the embeddings generated by
ICoN upon integrating all three networks outperformed the
ICoN-generated embeddings from each individual yeast net-
work across all three tasks and functional benchmarks
(Fig. 2a, Supplementary Table S2), except for coannotation
prediction in the KEGG dataset. Furthermore, ICON consis-
tently outperformed features based on interaction profiles of
individual yeast networks. The same result held for the four
human PPI networks in the CORUM complexes benchmark
(Fig. 2b, Supplementary Table S2). By using the embeddings
generated by integrating all three networks with ICoN,
we could identify modules that were not detected when
using adjacency-based features of individual networks
(Supplementary Section S1.5).

Note that the absolute performance of ICoN-based fea-
tures changed from task to task and from one benchmark to
another, as indicated by the different ranges of the y-axes in
the plots (Fig. 2). Nevertheless, these results confirmed the
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efficacy of employing integrated features as opposed to rely-
ing on individual networks.

3.2 Improvement over existing
unsupervised methods

We compared ICoN to BERTWalk, BIONIC, deepNF, and
Mashup and to Union, a naive approach where we computed
the integrated network as the union of the node sets and edge
sets across all the input networks. For the three yeast net-
works, ICoN outperformed all the methods in module detec-
tion across all the functional benchmarks (Fig. 3a,
Supplementary Table S3). In each of these benchmarks, either
BIONIC or BERTWalk emerged as the second-best model.
ICoN obtained a significantly higher AMI compared to the
second-best model (Mann-Whitney U test p-values of
3.98x 10~ in IntAct and 0.02 in KEGG). We also observed
that ICoN surpassed each of the models in coannotation pre-
diction in IntAct benchmark (Mann—Whitney U test P-values
of 0.006). Finally, in function prediction, ICoN exhibited
comparable performance, with no statistically significant dif-
ference, to the best-performing model, BIONIC in IntAct.

However, in the KEGG benchmark, ICoN demonstrated infe-
rior performance compared to BIONIC. For the human data-
sets, [CoN demonstrated a persistent pattern of excellence by
outranking all five methods in module detection (Mann—
Whitney U test P-value of 1.06x 107 ') and coannotation
prediction (Mann—-Whitney U test P-value of 0.006) (Fig. 3b,
Supplementary Table S3).

In summary, ICoN outperformed all the methods in five
out of nine task-benchmark pairs while showing comparable
performance to the best-performing model in two tasks.
Additionally, it is noteworthy that in the two tasks where
ICoN had the inferior performance, no single model emerged
as the indisputable best performer.

3.3 Ablation study

We introduced co-attention in ICoN to facilitate the ex-
change of topological information across networks during
training. To study the importance of co-attention, we con-
ducted an experiment where we constrained ICoN to solely
consider self-computed attention to aggregate features from
its neighbors, thereby eliminating co-attention. We found
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Figure 4. Results of ablation study on co-attention and noise induction. Single, double, and triple stars stand for significant P-values (<0.05, 0.01, and
<0.001, respectively) of the improvement of ICoN having co-attention and noise.

that ICoN outperformed the restricted model on three out of
six benchmark-tasks pairs (Mann—-Whitney U test P-value <
0.05) (Fig. 4a, Supplementary Table S4).

In the second ablation study, we avoided the induction of
noise into the input networks. Our findings indicate that the
absence of noise adversely affects performance in three out of
six benchmark-tasks pairs (Mann—-Whitney U test P-value <
0.01) (Fig. 4b, Supplementary Table S4).

It is noteworthy that either co-attention or noise induction
improved performance in five out of six benchmark-task
pairs. Their complementarity enables ICoN to surpass exist-
ing network integration models.

3.4 Interpretation of the learned co-attention
coefficients

Here, we aimed to assess to what extent ICoN exploited its
ability to share attention (i.e., co-attention) across networks.
Additionally, we sought to investigate whether one network
can assist another in mitigating the impact of noise through
this shared attention mechanism. We first observed that for
every value of induced noise (that we tested), each of the
three yeast networks learned nonzero co-attention coeffi-
cients not for just itself but for other input networks as well
(Fig. 5). As we increased noise, the priority given by the GI
network to itself decreased substantially: from 0.59 at 0%
noise to 0.36 at 50% noise (Fig. 5a). In contrast, the learned
self-priority by the COEX and PPI networks increased with
noise: from 0.37 at 0% noise to 0.68 at 50% noise for COEX
and from 0.40 at 0% noise to 0.75 at 50% noise for PPI net-
work. We also observed that as we increased noise, the prior-
ity GI network received from other networks decreased
drastically: from 0.75 at 0% noise to 0.26 at 50%
noise (Fig. 5b).

The GI network is the largest, encompassing 60% of the
total number of edges, while the COEX and PPI networks
contain 27% and 13% of the edges, respectively (Section
2.2). The larger the network, the more the number of true
edges removed or false interactions introduced by the noise
induction module. We surmised from Fig. 5 that the largest
network mitigated the impact of this noise by assigning itself
reduced self-priority. In contrast, the COEX and PPI net-
works refrained from adopting this approach, as diminishing
self-priority would mean giving increased attention to the
other networks, resulting in a higher influence of noise from
them. This explanation also accounts for the decreased

priority allocated to the GI network by the others as
noise escalated.

Observing the low priority assigned to the GI network
when the noise level was high, we analyzed the impact of ex-
cluding the GI network from integration (Supplementary
Section S1.6). We observed that integrating only the COEX
and PPI networks resulted in decreased performance across
five out of six task-benchmark pairs. We concluded that al-
though ICoN ignored the computed attention in GI network
by assigning it a low priority, it still took advantage of the
original, non-noisy GI network when minimizing the recon-
struction loss.

3.5 Robustness to noise

A proposed network integration method should be robust to
the presence of noise. To assess this property, we artificially
introduced noise by dropping a certain percent of existing
edges and then adding the same number of random edges to
each original input network. Then we integrated the noisy
networks employing ICoN and BIONIC. Unlike noise induc-
tion, where we introduce noise into the input networks and
minimize the reconstruction loss on the original edges, here
we measure the reconstruction loss with respect to the
noisy network.

In this analysis, we induced different levels of noise in three
yeast networks. For the IntAct benchmark, we observed that
ICoN maintained its superiority in module detection over
BIONIC as the networks became noisier. For the KEGG
benchmark, ICoN improved over BIONIC at the 0% and
30% noise levels but slightly underperformed compared to
BIONIC at the 50% level. These results demonstrate ICoN’s
robustness in handling noisy input networks (Fig. 6).

3.6 Scalability of ICON

We determined ICoN’s scalability in terms of the requirement
for graphics processing unit (GPU) memory and training time
for each epoch (Supplementary Fig. S7). To assess the depen-
dence of these values on the size of the input networks, we
generated random, Erdos-Renyi networks with different
numbers of nodes while keeping the average node degree as
30. We compared ICoN with BIONIC, the model that
achieved the second-best performance. For networks with
20,000 nodes, ICoN could integrate up to five networks with
GPU usage of 7.57 GB and average epoch time of 36.32s,
whereas BIONIC could integrate up to 10 such networks
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requiring substantially less time and memory. The higher
memory consumption of ICoN is due to the need to store the
learned feature matrices for all networks simultaneously at
each intermediate GAT layer. The increased runtime of ICoN
is due to the local indexing of nodes in GAT layers within in-
dividual networks. When sharing neighborhood information
across networks, it was necessary to map node indices be-
tween networks, leading to this inefficiency.

4 Conclusions

In ICoN, we introduce a novel graph neural network archi-
tecture that facilitates attention sharing across networks to
generate integrated protein embeddings. This unsupervised
model, trained solely on network topology, exhibits superior
generalization across the majority of downstream tasks com-
pared to existing biological network integration models.
Furthermore, ICoN demonstrates robustness against
noisy networks.

Despite these advancements, there are several promising
avenues for improvement. First, enhancing the model’s scal-
ability is an important direction, particularly for handling

larger, more complex biological networks. Additionally, de-
veloping techniques to biologically interpret the co-attention
coefficients could provide valuable insights. Finally, while
ICoN currently relies only on network topology, incorporat-
ing gene or protein features such as sequence, structure, and
embeddings from large pre-trained models could potentially
improve its performance.

Author contributions

Nure Tasnina proposed the idea of using co-attention for bio-
logical network integration and performed the experiments.
Nure Tasnina and T.M. Murali conceived the experiment(s),
analyzed the results, and wrote and reviewed the manuscript.

Supplementary data

Supplementary data are available at Bioinformatics
Advances online.

Conflict of interest

None declared.

Funding

This work was supported by the National Science

Foundation [DBI-2233967, CCF-2200045].

Data availability

The ICoN software and data are available under the GNU
Public License v3 at https://github.com/Murali-group/ICoN.

References

Ashburner M, Ball CA, Blake JA et al. Gene ontology: tool for the unifi-
cation of biology. Nat Genet 2000;25:25-9.

Cao S, Lu W, Xu Q. Deep neural networks for learning graph represen-
tations. In: Proceedings of the AAAI Conference on Artificial
Intelligence, Phoenix, AZ, United States, Vol.30. 2016.

Cho H, Berger B, Peng J. Compact integration of multi-network topol-
ogy for functional analysis of genes. Cell Syst 2016;3:540-8.e5.

Costanzo M, VanderSluis B, Koch EN et al. A global genetic interaction
network maps a wiring diagram of cellular function. Science 2016;
353:aaf1420.

Gz0z udy 0g uo 1senb Aq L0Z/206./2819B4A/L/G/a]011MB/SSOUBAPESIIBWIOLUIOIG/W O dno ojwapeoe//:sdny wol) papeojumoq


https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae182#supplementary-data
https://github.com/Murali-group/ICoN

Devlin J, Chang M-W, Lee K et al. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: Proceedings of
NAACL-HLT, Minneapolis, MN, United States. 2019.

Forster DT, Li SC, Yashiroda Y et al. BIONIC: biological network inte-
gration using convolutions. Nat Methods 2022;19:1250-61.

Gidaris S, Komodakis N. Generating classification weights with GNN
denoising autoencoders for few-shot learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, United States. 2019.

Gligorijevi¢ V, Barot M, Bonneau R. deepNF: deep network fusion for
protein function prediction. Bioinformatics 2018;34:3873-81.

Hamilton W, Ying Z, Leskovec J. Inductive representation learning on
large graphs. Adv Neural Inf Process Syst 2017;30:1024-34.

Hein MY, Hubner NC, Poser I et al. A human interactome in three
quantitative dimensions organized by stoichiometries and abundan-
ces. Cell 2015;163:712-23.

Hu Z, Killion PJ, Iyer VR. Genetic reconstruction of a functional tran-
scriptional regulatory network. Nat Genet 2007;39:683-7.

Huang L, Lin J, Liu R et al. CoaDTI: multi-modal co-attention based
framework for drug—target interaction annotation. Brief Bioinform
2022;23:bbac446.

Huttenhower C, Hibbs M, Myers C et al. A scalable method for integra-
tion and functional analysis of multiple microarray datasets.
Bioinformatics 2006;22:2890-7.

Huttlin EL, Bruckner RJ, Paulo JA et al. Architecture of the human
interactome defines protein communities and disease networks.
Nature 2017;545:505-9.

Huttlin EL, Ting L, Bruckner R]J et al. The BioPlex network: a system-
atic exploration of the human interactome. Cell 2015;162:425-40.

Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res 2000;28:27-30.

Krogan NJ, Cagney G, Yu H et al. Global landscape of protein com-
plexes in the yeast saccharomyces cerevisiae. Nature 2006;
440:637-43.

Lu J, Batra D, Parikh D et al. VILBERT: pretraining task-agnostic visio-
linguistic representations for vision-and-language tasks. Adv Neural
Inf Process Syst 2019;32:13-23.

© The Author(s) 2024. Published by Oxford University Press.

Tasnina and Murali

Mostafavi S, Ray D, Warde-Farley D et al. GeneMANIA: a real-time
multiple association network integration algorithm for predicting
gene function. Genome Biol 2008;9 Suppl 1:54-15.

Nasser R, Sharan R. BERTwalk for integrating gene networks to predict
gene-to pathway-level properties. Bioinform Adv 2023;3:vbad086.
Orchard S, Ammari M, Aranda B et al. The MIntAct project—IntAct as
a common curation platform for 11 molecular interaction data-

bases. Nucleic Acids Res 2014;42:D358-63.

Oughtred R, Rust J, Chang C et al. The biogrid database: a comprehen-
sive biomedical resource of curated protein, genetic, and chemical
interactions. Protein Sci 2021;30:187-200.

Rolland T, Tasan M, Charloteaux B et al. A proteome-scale map of the
human interactome network. Cell 2014;159:1212-26.

Sun X, Hong P, Kulkarni M et al. PPIRank-an advanced method for
ranking protein-protein interactions in TAP/MS data. Proteome Sci
2013;11:516-10.

Tan H, Bansal M. LXMERT: Learning cross-modality encoder repre-
sentations from transformers. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing and the
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), Hong Kong, China. 2019.

Tsitsiridis G, Steinkamp R, Giurgiu M et al. CORUM: the comprehen-
sive resource of mammalian protein complexes—2022. Nucleic
Acids Res 2023;51:D539-45.

Velickovi¢ P, Cucurull G, Casanova A et al. Graph attention networks.
In: International Conference on Learning Representations,
Vancouver, Canada. 2018.

Vincent P, Larochelle H, Bengio Y et al. Extracting and composing ro-
bust features with denoising autoencoders. In: Proceedings of the
25th International Conference on Machine Learning, Helsinki,
Finland. 2008, 1096-1103.

Wass MN, Barton G, Sternberg MJ. CombFunc: predicting protein
function using heterogeneous data sources. Nucleic Acids Res 2012;
40:W466-70.

Zhao W, Gu X, Chen S et al. MODIG: integrating multi-omics and
multi-dimensional gene network for cancer driver gene identifica-
tion based on graph attention network model. Bioinformatics 2022;
38:4901-7.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics Advances, 2024, 00, 1-8
https://doi.org/10.1093/bioadv/vbae182
Original Article

GzZ0z 14dy 0g uo 1senb Aq L0Z/06//2819B0A/L/G/aI011EB/SEOUBAPESDIIEWIOUIOIG/WOD dNo dlwapede//:sdjy woli papeojumoq



	Active Content List
	1 Introduction
	2 Methods
	3 Results and discussion
	4 Conclusions
	Author contributions
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References


