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Abstract
Motivation: Molecular interaction networks are powerful tools for studying cellular functions. Integrating diverse types of networks enhances 
performance in downstream tasks such as gene module detection and protein function prediction. The challenge lies in extracting meaningful 
protein feature representations due to varying levels of sparsity and noise across these heterogeneous networks.
Results: We propose ICoN, a novel unsupervised graph neural network model that takes multiple protein–protein association networks as 
inputs and generates a feature representation for each protein that integrates the topological information from all the networks. A key contribu
tion of ICoN is exploiting a mechanism called “co-attention” that enables cross-network communication during training. The model also incorpo
rates a denoising training technique, introducing perturbations to each input network and training the model to reconstruct the original network 
from its corrupted version. Our experimental results demonstrate that ICoN surpasses individual networks across three downstream tasks: 
gene module detection, gene coannotation prediction, and protein function prediction. Compared to existing unsupervised network integration 
models, ICoN exhibits superior performance across the majority of downstream tasks and shows enhanced robustness against noise. This 
work introduces a promising approach for effectively integrating diverse protein–protein association networks, aiming to achieve a biologically 
meaningful representation of proteins.
Availability and implementation: The ICoN software is available under the GNU Public License v3 at https://github.com/Murali-group/ICoN.

1 Introduction
The emergence of high-throughput experimental techniques has 
led to the development of extensive protein–protein association 
networks. In such a network, each node is a protein and an 
edge between two nodes represents a certain type of association, 
e.g., physical binding, shared cellular function, or correlated ex
pression. In principle, each type of interaction yields a separate 
network (Costanzo et al. 2016, Oughtred et al. 2021). Since dif
ferent types of networks provide heterogeneous and comple
mentary biological information, integrating them into a 
common representation allows for improved performance over 
using a single data source in tackling questions such as protein 
function prediction and gene module detection (Wass et al. 
2012, Forster et al. 2022). However, this integration is not triv
ial due to the diversity of experimental methods (Forster et al. 
2022). Moreover, networks may include false positive interac
tions, e.g., by retaining interactions that occur due to nonspe
cific binding in tandem affinity purification coupled with mass- 
spectrometry analysis (Sun et al. 2013). Interactions may also 
be missing due to a lack of resources. Early techniques for net
work integration relied on supervision using protein function 
annotations as labels (Huttenhower et al. 2006, Mostafavi et al. 
2008). However, the performance of these models is contingent 
on the availability and quality of the provided labels. Moreover, 
these models may not generalize well to other downstream tasks 
that they were not trained on.

A recent line of research in network integration is to ob
tain a feature representation (or embedding) for each pro
tein that captures topological information from all input 
networks. Four methods, Mashup (Cho et al. 2016), 
deepNF (Gligorijevi�c et al. 2018), BIONIC (Forster et al. 
2022), and BERTWalk (Nasser and Sharan 2023) have pre
sented unsupervised approaches to generate protein embed
dings. They used these embeddings to obtain promising 
performance in downstream tasks, e.g., protein function 
prediction and module detection. Mashup (Cho et al. 2016) 
performed random walks with restart (RWR) on each input 
network, yielding network-specific “diffusion states” for 
each node. These states reflect the probability of reaching 
every node at the steady state. Mashup then solved an opti
mization problem that computes low-dimensional vector 
representation (or embeddings) of nodes that best approxi
mate the diffusion states according to a multinomial logistic 
model. deepNF (Gligorijevi�c et al. 2018) proposed a multi
modal deep autoencoder to learn embedding for a protein. 
It first created a low-dimensional representation of each 
protein for each network by executing RWR for a specified 
number of steps, followed by constructing a Positive 
Pointwise Mutual Information matrix. Subsequently, 
deepNF concatenated these representations for each protein 
from multiple networks and passed the combined vectors 
through an autoencoder to construct the final embeddings.
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BIONIC (Forster et al. 2022) processed the input networks in
dependently through multiple layers of graph attention networks 
(GAT) (Veli�ckovi�c et al. 2018) to obtain network-specific protein 
embeddings. Consequently, BIONIC averaged the network- 
specific embeddings of each protein. Both deepNF and BIONIC 
trained their neural networks by minimizing the reconstruction 
loss. BERTWalk (Nasser and Sharan 2023) transformed each in
put network into a collection of node sequences where each se
quence represents a path obtained from a random walk of length 
10. Treating these node sequences as sentences, BERTWalk con
structed a corpus by amalgamating sentences from all input net
works. Subsequently, the authors employed a masked language 
modeling technique as used by BERT (Devlin et al. 2019), train
ing it to identify masked tokens (nodes) within sentences. Finally, 
they extracted a representation of the proteins from the embed
ding layer of their model.

Each of these methods computes initial embeddings indepen
dently for each network. These embeddings encode the topolog
ical information for each network. They do not allow this 
information to be shared across the input networks during 
training. We hypothesized that a model that facilitates inter- 
network communication during training may learn a represen
tation of proteins that yields superior performance in down
stream tasks. In this context, we embraced the notion of multi- 
modal alignment that is utilized in vision-language models (Lu 
et al. 2019, Tan and Bansal 2019) and has demonstrated poten
tial in the biological applications such as drug-target annotation 
(Huang et al. 2022) and cancer driver gene prediction (Zhao 
et al. 2022). This approach facilitates integration across diverse 
data types such as image, text, and video by leveraging shared 
attention mechanisms, i.e., co-attention across modality-specific 
transformer encoders (Lu et al. 2019). We introduce this idea in 
the context of unsupervised network integration by developing 
a new co-attention mechanism that aligns multiple topological 
contexts of a single protein originating from heterogeneous net
works to obtain an embedding for each protein.

In an attempt to make the integration model robust to noise, 
we adopt a training technique inspired by denoising autoencoders 
(DA) (Vincent et al. 2008, Cao et al. 2016; Gidaris and 
Komodakis 2019). In principle, a DA trains a model to learn the 
original inputs from corrupted or noisy data by deliberately intro
ducing noise into the input during the training process.

Our contributions
We propose ICoN (“Integration using Co-attention across 
Biological Networks”), a novel co-attention-based, denois
ing, unsupervised graph neural network model that takes 
multiple protein association networks as inputs and gener
ates a feature representation for each protein. A traditional 
GAT model generates a node’s embeddings by aggregating 
features from its neighbors in only one network, learning 
varying degrees of priority or attention for each neighbor. 
In contrast, ICoN learns the attention given to other 
nodes by considering the topological context of that 
node across all input networks. This concept of co-attention 
permits cross-network communication during training. 
Furthermore, we adopt a denoising training technique 
where we introduce perturbation to each input network and 
train the model to reconstruct the original one from the cor
rupted version. To the best of our knowledge, this method 
has not been previously employed in the context of network 
integration.

Our results
We evaluate ICoN using the evaluation framework developed 
by BIONIC that includes three downstream tasks (gene mod
ule detection, gene coannotation prediction, and gene func
tion prediction) and three benchmark datasets. We 
demonstrate that the embeddings produced by ICoN outper
form those of individual networks across all downstream 
tasks. In the majority of downstream tasks, ICoN outranked 
existing unsupervised network integration models. We also 
demonstrate that the co-attention coefficients learned by 
ICoN can be interpreted meaningfully in the context of the 
noise we artificially add during training. Furthermore, we il
lustrate ICoN’s superior robustness toward noise compared 
to BIONIC.

2 Methods
For each network, we consider the union of the nodes across 
all the input networks, i.e. a node not originally in a network 
will now appear as disconnected in this network. The initial 
feature for every node is a one-hot encoding, i.e. a vector 
whose length is equal to the total number of nodes, and the 
index denoting the corresponding node contains 1 while the 
rest of the indices have the value 0.

2.1 Model architecture
There are three principal blocks in ICoN (Fig. 1): (i) the noise 
induction module that introduces a specific amount of noise 
to each of the input networks before inputting them to the 
subsequent encoder module. (ii) the encoder module com
putes the embedding of each protein allowing cross-network 
communication among input networks. (iii) the “network re
construction module constructs an integrated network after 
learning embedding for each protein.

2.1.1 Noise induction module
We introduce noise to each of the input networks by ran
domly removing a fraction (dictated by hyperparameter) of 
existing edges and incorporating the same number of new 
edges, selected uniformly at random from the set of all node 
pairs not connected by an edge in the network.

2.1.2 Encoder module
To reduce memory usage and speed up training, we map the 
initial one-hot encoding feature to a lower-dimensional space 
using a learnable linear transformation layer.

We then pass this low-dimensional feature to multiple (N) 
stacked blocks of similar architecture. Each block has two 
main components: (i) a traditional GAT layer that computes 
the attention of each node toward its neighboring nodes and 
(ii) a novel co-attention-based GAT that incorporates the at
tention computed by the first GAT layer for individual input 
networks and utilizes that to learn a cross-network aware 
representation of each protein.

GAT
Given the adjacency matrix Am of a network m, a traditional 
GAT computes an embedding for a node by aggregating the 
features of its neighboring nodes but after giving different pri
orities or “attention” values to each neighbor. We compute 
the attention αm

ij that node i gives to node j in network m 
as follows: 
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αm
ij / Am

ij expðσðamTðWmhm
i jjW

mhm
j ÞÞÞ

Here, Am
ij >0 iff i and j are connected by an edge in net

work m, Wm 2 Rd0×d is a network-specific learnable weight 
matrix where d and d0 are input and output feature dimen
sions respectively for the GAT layer, a 2 R2d0 is a vector of 
learnable attention coefficients. σ is a nonlinear activation 
function, e.g. LeakyRelu, hi is the feature vector of node i 
that is input to the GAT layer, and jj denotes concatenation 
operation. The constant of proportionality in the equation 
ensures that the sum of αm

ij over all the neighbors of node i 
equals 1. It is noteworthy that we employ neighbor sampling 
(Hamilton et al. 2017) by selecting a subset of neighbors 
while feature aggregation to reduce computational expense 
(Supplementary Section S1.1).

Co-attention GAT
For network m, we compute an n×n co-attention matrix χm, 
which is a weighted average of the already computed atten
tion from all the input networks in the previous GAT layers. 
Specifically, we compute χm

ij , the co-attention that node i gives 
to node j as follows: 

χm
ij ¼

XM

k¼1

cm
k αk

ij where;
XM

k¼1

cm
k ¼ 1 

Here, M is the total number of input networks and the 
learnable co-attention coefficient, cm

k denotes the priority 
given by network m to (the attention computed by the GAT 
layer on) network k. Finally, we compute the embedding for 
node i in network m as follows: 

h0mi ¼ σ
X

j2Ni

χm
ij Wmhm

j

� �

This new vector will be the input for the next GAT layer.

2.1.3 Network reconstruction module
The encoder module generates separate embeddings of a pro
tein for each of the input networks. The first step of the re
construction module is to average these embeddings across 
all the networks to get the final embedding of a protein. To 
construct the integrated network, we utilize a simple dot 
product operation on the computed embeddings of pairs of 
nodes. Suppose, matrix F contains the embeddings of each 
node in the network. We compute the adjacency matrix Â of 
the reconstructed network as follows: Â ¼ F:FT

Loss computation
We train ICoN to minimize the discrepancy between the 
reconstructed network and the original input networks (with
out noise). This strategy empowers our model to navigate 
through noisy networks to reach a denoised integrated 
network. We formulate the network reconstruction loss L as 
follows, where n is the total number of nodes and jj:jjF is the 
Frobenius norm: L¼ 1

n2

PM
k¼1 jjðÂ −AkÞjj

2
F

2.2 Datasets
We used the input networks used by BIONIC (Forster et al. 
2022) and subsequently utilized by BERTWalk (Nasser and 
Sharan 2023). We briefly describe these networks in this section.

We ran ICoN on heterogeneous networks originating from 
diverse experiments for Saccharomyces cerevisiae and hu
man. We integrated three baker’s yeast (i.e. Saccharomyces 
cerevisiae) networks: (i) a protein–protein interaction (PPI) 
network (2674 genes and 7075 interactions) obtained by tan
dem affinity purification followed by mass spectrometry 
(Krogan et al. 2006), (ii) a genetic interaction (GI) network 
(4529 genes and 33 056 interactions) constructed by calculat
ing the pairwise Pearson correlation between genetic interac
tion profiles of genes (Costanzo et al. 2016), and (iii) a 
coexpression (COEX) network (1101 genes and 14 826 inter
actions) based on the Pearson correlation between transcrip
tional response profiles of deletion yeast strains (Hu et al. 
2007) (Supplementary Section S1.2, Supplementary Table 
S5). We also integrated four human PPI networks emerging 
from diverse experimental approaches: (i) Rolland-14 (4301 
genes and 13 940 interactions) (Rolland et al. 2014), 
(ii) Hein-15 (5380 genes and 27 349 interactions) (Hein et al. 
2015), (iii) Huttlin-15 (7658 genes and 23 712 interactions) 
(Huttlin et al. 2015), and (iv) Huttlin-17 (10 945 genes and 
56 471 interactions) (Huttlin et al. 2017) (Supplementary 
Section S1.2, Supplementary Table S5). This analysis permit
ted us to study ICoN’s generalizability across species and de
termine if there was any utility in integrating networks 
containing the same type of interactions (PPIs) but generated 
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Figure 1. Architecture of ICoN. Attn1 and Attn2 are the learned attention 
matrices from the corresponding GAT layers, whereas H1 and H2 are the 
feature representations of nodes from the corresponding networks.
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by different groups using complementary experimen
tal techniques.

2.3 Evaluation
We have followed the evaluation pipeline for network inte
gration introduced by BIONIC (Forster et al. 2022) and used 
by BERTWalk (Nasser and Sharan 2023). This framework 
consisted of three downstream tasks and three ground truth 
benchmark datasets.

2.3.1 Downstream tasks

i) gene module detection: Here, we have assessed the mod
el’s ability to reproduce biological modules such as pro
tein complexes and pathways by performing hierarchical 
clustering of nodes (based on embeddings) using a vari
ety of distance metrics (Euclidean, cosine) and linkage 
methods (single, average, and complete). We calculated 
the adjusted mutual information (AMI) score between 
the derived clusters and the ground truth biological mod
ules (from a specific benchmark) to measure their simi
larity while adjusting for the effect of agreement solely 
due to random chance. We optimized the clustering 
parameters (i.e., distance metric and linkage method) for 
each network integration method (and network) and 
reported the best AMI. 

ii) gene coannotation prediction: The goal of this task was 
to evaluate how well a model preserves gene–gene rela
tionships in its node embeddings. We predicted whether 
a pair of genes are annotated to the same term in a par
ticular functional benchmark. Given the embeddings for 
a pair of genes, we computed the cosine similarity. We 
categorized gene pairs as positive (i.e., coannotated) or 
negative based on a predefined threshold. By varying this 
threshold, we computed the average precision. 

iii) gene function prediction: This task sought to evaluate a 
model’s capability to generate embeddings that are effec
tive in predicting known functional classes (such as mem
bership to a particular protein complex or pathway) of a 
gene. Using gene embeddings as input features, we 
trained a support vector machine classifier (with a radial 
basis function kernel) to predict gene functions in a one- 
versus-all manner. We exploited 5-fold cross-validation 
to tune the classifier’s regularization and gamma parame
ters on the validation dataset. We evaluated the classifier 
on a randomized held-out set, consisting of 10% of the 
gene features not seen during training or validation, and 
reported the resulting classification accuracy. We re
peated this process 5 times. 

2.3.2 Benchmark datasets
We used three datasets (the first two for yeast and the final 
one for Homo sapiens), each containing genes annotated to 
functional terms indicating their membership in certain pro
tein complexes or pathways. (i) IntAct protein complexes 
(Orchard et al. 2014), (ii) Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways (Kanehisa and Goto 2000), and 
(iii) CORUM complexes (Tsitsiridis et al. 2023). To create a 
coannotation benchmark from each of these three datasets, 
all gene pairs that share at least one functional annotation 
were considered to be positive pairs, while those lacking 
shared annotations were classified as negative pairs. The 
coannotation datasets for IntAct and KEGG contained 1,786 

and 2,029 genes; 9,288 and 32,563 positive pairs; 1,584,717 
and 2,024,843 negative pairs, respectively. The CORUM 
dataset for human contained 10,105 genes, 539,272 positive, 
and 50,901,158 negative pairs. We constructed the bench
marks for module detection by defining a module as a collec
tion of genes annotated to the same functional term. Modules 
with single genes in them were removed as they were uninfor
mative. The module detection benchmarks included 574, 
107, and 3,575 modules for IntAct, KEGG, and CORUM re
spectively. Finally, we formed the benchmark for function 
prediction by considering the functional annotation of a gene 
as its class label. IntAct, KEGG, and CORUM consisted of 
48, 53, and 296 functional classes, respectively. We also used 
a fourth ground truth dataset based on Gene Ontology 
(Ashburner et al. 2000) annotations for baker’s yeast. Due to 
the poor performance shown by every model on this dataset, 
we describe this dataset and the corresponding results in 
Supplementary Section S1.3.

3 Results and discussion
First, we assessed the performance of the integrated features 
obtained through ICoN against features from individual in
put networks, based on different downstream tasks across 
varied functional benchmarks (Section 3.1). Next, we per
formed a comparative analysis of ICoN with four unsuper
vised network integration methods: Mashup, deepNF, 
BIONIC, and BERTWalk (Section 3.2). We ran all algo
rithms (with the optimized hyperparameters (Supplementary 
Section S1.4)) five times, except for BERTWalk. Third, 
through an ablation study, we showcased the utility of two 
pivotal components of ICoN: co-attention GAT and noise in
duction (Section 3.3). Subsequently, we investigated the 
learned co-attention coefficients (Section 3.4). Finally, we an
alyzed the robustness of ICoN to noise present in the input 
networks (Section 3.5).

3.1 Improvement over individual input networks
In our first analysis, we compared the performance of ICoN 
with features derived from individual input networks. For 
each input network, we explored two methods of feature gen
eration: (i) embeddings generated using ICoN with only the 
corresponding network as input, and (ii) interaction profiles 
of proteins (i.e., rows in the adjacency matrix of the network) 
as features. We found that the embeddings generated by 
ICoN upon integrating all three networks outperformed the 
ICoN-generated embeddings from each individual yeast net
work across all three tasks and functional benchmarks 
(Fig. 2a, Supplementary Table S2), except for coannotation 
prediction in the KEGG dataset. Furthermore, ICoN consis
tently outperformed features based on interaction profiles of 
individual yeast networks. The same result held for the four 
human PPI networks in the CORUM complexes benchmark 
(Fig. 2b, Supplementary Table S2). By using the embeddings 
generated by integrating all three networks with ICoN, 
we could identify modules that were not detected when 
using adjacency-based features of individual networks 
(Supplementary Section S1.5).

Note that the absolute performance of ICoN-based fea
tures changed from task to task and from one benchmark to 
another, as indicated by the different ranges of the y-axes in 
the plots (Fig. 2). Nevertheless, these results confirmed the 
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efficacy of employing integrated features as opposed to rely
ing on individual networks.

3.2 Improvement over existing 
unsupervised methods
We compared ICoN to BERTWalk, BIONIC, deepNF, and 
Mashup and to Union, a naive approach where we computed 
the integrated network as the union of the node sets and edge 
sets across all the input networks. For the three yeast net
works, ICoN outperformed all the methods in module detec
tion across all the functional benchmarks (Fig. 3a, 
Supplementary Table S3). In each of these benchmarks, either 
BIONIC or BERTWalk emerged as the second-best model. 
ICoN obtained a significantly higher AMI compared to the 
second-best model (Mann-Whitney U test p-values of 
3:98×10− 18 in IntAct and 0.02 in KEGG). We also observed 
that ICoN surpassed each of the models in coannotation pre
diction in IntAct benchmark (Mann–Whitney U test P-values 
of 0.006). Finally, in function prediction, ICoN exhibited 
comparable performance, with no statistically significant dif
ference, to the best-performing model, BIONIC in IntAct. 

However, in the KEGG benchmark, ICoN demonstrated infe
rior performance compared to BIONIC. For the human data
sets, ICoN demonstrated a persistent pattern of excellence by 
outranking all five methods in module detection (Mann– 
Whitney U test P-value of 1:06×10− 16) and coannotation 
prediction (Mann–Whitney U test P-value of 0.006) (Fig. 3b, 
Supplementary Table S3).

In summary, ICoN outperformed all the methods in five 
out of nine task-benchmark pairs while showing comparable 
performance to the best-performing model in two tasks. 
Additionally, it is noteworthy that in the two tasks where 
ICoN had the inferior performance, no single model emerged 
as the indisputable best performer.

3.3 Ablation study
We introduced co-attention in ICoN to facilitate the ex
change of topological information across networks during 
training. To study the importance of co-attention, we con
ducted an experiment where we constrained ICoN to solely 
consider self-computed attention to aggregate features from 
its neighbors, thereby eliminating co-attention. We found 
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Figure 3. Comparison of ICoN and five unsupervised network integration methods on (a) three yeast networks and (b) four human networks. Here, the 
height of each bar indicates the average of the corresponding score, and the error bar shows the standard deviation. Single, double, and triple stars stand 
for significant P-values (<0.05, 0.01, and <0.001, respectively) of the improvement of ICoN over the second best model.

ICoN                                                                                                                                                                                                                                                  5 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/5/1/vbae182/7907201 by guest on 30 April 2025

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae182#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae182#supplementary-data


that ICoN outperformed the restricted model on three out of 
six benchmark-tasks pairs (Mann–Whitney U test P-value <
0.05) (Fig. 4a, Supplementary Table S4).

In the second ablation study, we avoided the induction of 
noise into the input networks. Our findings indicate that the 
absence of noise adversely affects performance in three out of 
six benchmark-tasks pairs (Mann–Whitney U test P-value <
0.01) (Fig. 4b, Supplementary Table S4).

It is noteworthy that either co-attention or noise induction 
improved performance in five out of six benchmark-task 
pairs. Their complementarity enables ICoN to surpass exist
ing network integration models.

3.4 Interpretation of the learned co-attention 
coefficients
Here, we aimed to assess to what extent ICoN exploited its 
ability to share attention (i.e., co-attention) across networks. 
Additionally, we sought to investigate whether one network 
can assist another in mitigating the impact of noise through 
this shared attention mechanism. We first observed that for 
every value of induced noise (that we tested), each of the 
three yeast networks learned nonzero co-attention coeffi
cients not for just itself but for other input networks as well 
(Fig. 5). As we increased noise, the priority given by the GI 
network to itself decreased substantially: from 0.59 at 0% 
noise to 0.36 at 50% noise (Fig. 5a). In contrast, the learned 
self-priority by the COEX and PPI networks increased with 
noise: from 0.37 at 0% noise to 0.68 at 50% noise for COEX 
and from 0.40 at 0% noise to 0.75 at 50% noise for PPI net
work. We also observed that as we increased noise, the prior
ity GI network received from other networks decreased 
drastically: from 0.75 at 0% noise to 0.26 at 50% 
noise (Fig. 5b).

The GI network is the largest, encompassing 60% of the 
total number of edges, while the COEX and PPI networks 
contain 27% and 13% of the edges, respectively (Section 
2.2). The larger the network, the more the number of true 
edges removed or false interactions introduced by the noise 
induction module. We surmised from Fig. 5 that the largest 
network mitigated the impact of this noise by assigning itself 
reduced self-priority. In contrast, the COEX and PPI net
works refrained from adopting this approach, as diminishing 
self-priority would mean giving increased attention to the 
other networks, resulting in a higher influence of noise from 
them. This explanation also accounts for the decreased 

priority allocated to the GI network by the others as 
noise escalated.

Observing the low priority assigned to the GI network 
when the noise level was high, we analyzed the impact of ex
cluding the GI network from integration (Supplementary 
Section S1.6). We observed that integrating only the COEX 
and PPI networks resulted in decreased performance across 
five out of six task-benchmark pairs. We concluded that al
though ICoN ignored the computed attention in GI network 
by assigning it a low priority, it still took advantage of the 
original, non-noisy GI network when minimizing the recon
struction loss.

3.5 Robustness to noise
A proposed network integration method should be robust to 
the presence of noise. To assess this property, we artificially 
introduced noise by dropping a certain percent of existing 
edges and then adding the same number of random edges to 
each original input network. Then we integrated the noisy 
networks employing ICoN and BIONIC. Unlike noise induc
tion, where we introduce noise into the input networks and 
minimize the reconstruction loss on the original edges, here 
we measure the reconstruction loss with respect to the 
noisy network.

In this analysis, we induced different levels of noise in three 
yeast networks. For the IntAct benchmark, we observed that 
ICoN maintained its superiority in module detection over 
BIONIC as the networks became noisier. For the KEGG 
benchmark, ICoN improved over BIONIC at the 0% and 
30% noise levels but slightly underperformed compared to 
BIONIC at the 50% level. These results demonstrate ICoN’s 
robustness in handling noisy input networks (Fig. 6).

3.6 Scalability of ICoN
We determined ICoN’s scalability in terms of the requirement 
for graphics processing unit (GPU) memory and training time 
for each epoch (Supplementary Fig. S7). To assess the depen
dence of these values on the size of the input networks, we 
generated random, Erd€os-Renyi networks with different 
numbers of nodes while keeping the average node degree as 
30. We compared ICoN with BIONIC, the model that 
achieved the second-best performance. For networks with 
20,000 nodes, ICoN could integrate up to five networks with 
GPU usage of 7.57 GB and average epoch time of 36.32 s, 
whereas BIONIC could integrate up to 10 such networks 
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Figure 4. Results of ablation study on co-attention and noise induction. Single, double, and triple stars stand for significant P-values (<0.05, 0.01, and 
<0.001, respectively) of the improvement of ICoN having co-attention and noise.
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requiring substantially less time and memory. The higher 
memory consumption of ICoN is due to the need to store the 
learned feature matrices for all networks simultaneously at 
each intermediate GAT layer. The increased runtime of ICoN 
is due to the local indexing of nodes in GAT layers within in
dividual networks. When sharing neighborhood information 
across networks, it was necessary to map node indices be
tween networks, leading to this inefficiency.

4 Conclusions
In ICoN, we introduce a novel graph neural network archi
tecture that facilitates attention sharing across networks to 
generate integrated protein embeddings. This unsupervised 
model, trained solely on network topology, exhibits superior 
generalization across the majority of downstream tasks com
pared to existing biological network integration models. 
Furthermore, ICoN demonstrates robustness against 
noisy networks.

Despite these advancements, there are several promising 
avenues for improvement. First, enhancing the model’s scal
ability is an important direction, particularly for handling 

larger, more complex biological networks. Additionally, de
veloping techniques to biologically interpret the co-attention 
coefficients could provide valuable insights. Finally, while 
ICoN currently relies only on network topology, incorporat
ing gene or protein features such as sequence, structure, and 
embeddings from large pre-trained models could potentially 
improve its performance.
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