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ABSTRACT: In this work, we present a generalization of the quantum trajectory surface
hopping (QTSH) to multiple states and its implementation in the Libra package for
nonadiabatic dynamics. In lieu of the ad hoc velocity rescaling used in many trajectory-based
surface hopping approaches, QTSH utilizes quantum forces to evolve nuclear degrees of
freedom continuously. It also lifts the unphysical constraint of enforcing the total energy
conservation at the individual trajectory level and rather conserves the total energy at the
trajectory ensemble level. Leveraging our new implementation of the multistate QTSH, we
perform a comparative analysis of this method with the conventional fewest switches surface
hopping approach. We combine the QTSH and decoherence corrections based on the simplified decay of mixing (SDM) and exact
factorization (XF), leading to the QTSH-SDM and QTSH-XF schemes. Using the Holstein, superexchange, and phenol model
Hamiltonians, we assess the relative accuracy of the resulting combined schemes in reproducing branching ratios, population, and
coherence dynamics for a broad range of initial conditions. We observe that the decoherence correction in QTSH is crucial to
improve energy conservation as well as the internal consistency between the population from the quantum probability and active
state.

1. INTRODUCTION

Quantum dynamics of excited states involving processes such
as charge or exciton transfer,1−3 nonradiative recombination,4,5

charge carrier transport6−8 and trapping9 as well as photo-
induced chemical reactions is ubiquitous in nature and
materials research. Such processes play a determining role in
realizing molecular grounds of vision,10 DNA photodamage
protection,11,12 photosynthesis13 and artificial photocataly-
sis,14,15 photovoltaics16,17 and so forth. The nonadiabatic
molecular dynamics (NA-MD) method18−21 has been
instrumental for simulating such quantum dynamical pro-
cesses. While fully quantum NA-MD calculations are out of
our reach due to their exponential complexity, except for low-
dimensional problems or a select set of special problems, the
approximate NA-MD schemes, particularly the family of the
trajectory surface hopping (TSH) methods22−26 have become
a popular choice for modeling complex abstract and atomistic
systems. Out of the family of the TSH schemes, the seminal
Tully’s fewest-switches surface hopping method (FSSH),27 has
become one of the most recognized and widely adopted
approach due to the simplicity of its implementation as well as
due to its improved ability to describe branching events and
quantum-classical thermal equilibrium compared to traditional
Ehrenfest dynamics.28

Despite the general success of the traditional FSSH and alike
TSH schemes, they still contain ad hoc features, defining some
of their limitations,23,29 such as the momentum jump
approximation and subsequent momentum rescaling in the
TSH. While the momentum rescaling in the direction of the
nonadiabatic coupling vectors (NACVs) originating from the

interpretation of Pechukas force30 can be justified,31−33

practical di?culties of obtaining NACVs in many situations
stimulated the development of approximate, but truly ad hoc
rescaling algorithms along the directions of nuclear momenta
or state gradient di@erences.34,35 Moreover, the variety of
possible recipes for handling nuclear momenta in NA-MD
simulations becomes even greater when frustrated hops are
factored in. Frustrated surface hops arise when nuclear kinetic
energy is insu?cient to satisfy the total energy conservation
when potential energy change upon the proposed state
transition is too large. In this situation, nuclear momenta can
be reversed,36 kept unchanged,37 or conditionally reversed.38,39

Furthermore, although the TSH schemes are stochastic by
definition, the discontinuity of the “classical” nuclear variables
due to momentum rescaling appears an awkward concept,
given that the starting equations are continuous. This
philosophical di?culty stimulated a number of approaches
where the need for discontinuous renormalization of
dynamical variables is minimized to certain extent.40−45

Another conceptual limitation of the FSSH-like schemes is
the expectation that total energy conservation is satisfied at the
level of individual trajectories. Considering that individual
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trajectories in quantum-classical methods may not always have
physical meaning but should rather be treated as auxiliary
objects, imposing energy conservation at the individual
trajectory is an overly strict and not justified condition: what
needs to be conserved is the ensemble average of the total
energies among trajectories, not a single-trajectory energy. In
this regard, an analogy to density functional theory (DFT) may
be drawn. While the Kohn−Sham orbitals are often used in
such calculations, they are not considered 1-electron states, but
rather as the auxiliary objects needed to represent the overall
charge density. Breaking the energy conservation at the
individual trajectory level and allowing energy exchange
between quantum-classical trajectories becomes especially
fruitful for modeling scattering in superexchange process,
where the nonadiabatic transition between two states A and B
is mediated by another higher-energy state C.46 If the states A
and B are not directly coupled to each other but are coupled to
the state C, the transition between them is prohibited when
nuclear kinetic energy is low and all proposed hops are
frustrated. By allowing energy exchange between trajectories,
one can overcome the energy barrier and lead to successful
transitions. To addressing this strict energy conservation
problem, several NA-MD methods of utilizing multiple
trajectories have been proposed, including second-quantized
surface hopping (SQUASH)47 and coupled trajectories mixed
quantum-classical approach with energy-based decoherence
(CTMQC-E) derived from the exact factorization (XF)
framework.48

To address the above conceptual flaws of the FSSH and
FSSH-alike methods, quantum-trajectory surface hopping
(QTSH) approach was developed by Martens and co-workers
a while ago.49,50 QTSH is derived from the QCLE51,52 by
applying the Wigner-Moyal transformation that maps oper-
ators to the corresponding phase-space functions leading to a
systematic set of quantum-classical equations of motion.
Unlike the TSH schemes, QTSH introduces an additional
coherence energy beyond the diagonal energy from the active
state, which naturally results in a quantum force that
continuously adjusts the nuclear momenta before and after
successful hops. Such forces act to conserve the total energy at
the trajectory ensemble level yet allow the total energies of
individual trajectories to vary. By construction, the momentum
rescaling procedure is no longer needed. Despite the collective
nature of the total energy conservation in QTSH, it is
formulated as an independent-trajectory method, leading to its
computational cost being comparable with that of the FSSH. It
should be emphasized that while the QTSH solves the ad hoc
momenta rescaling and trajectory-resolved total energy
conservation problems, it still inherits the overcoherence
problem known for FSSH.33,53 This shortcoming was
addressed in the early formulations of the QTSH of Martens
by employing a simplified collapse-based decoherence
correction.
To date, QTSH has been successfully applied to reproduce

scattering probabilities in the Tully’s single avoided crossing
problem27 as well as in the superexchange model.46 Despite the
conceptual attractiveness of the QTSH method, the prior
works adhere to a two-state description. Furthermore, no
practical implementation of the QTSH method in general-
purpose NA-MD software has been reported so far. Recently,
Dupuy et al. presented an extension of the QTSH to multiple
states and combining it with the XF surface hopping method
(QTSH-XF).54 However, the work utilized an ad hoc

generalization of the QTSH theory, without a formal
derivation of the corresponding equations or any general-
purpose software implementation.
To fill in the current gaps, we present a formal generalization

of the QTSH method to multiple electronic states. Starting
from the QCLE formalism, we derive the equations of motion
for e@ective electronic and nuclear degrees of freedom (DOFs)
which constitute the heart of the QTSH method. Our
derivations lead to compact matrix-vector equations as well
as the detailed analysis of several key terms in the equations
(e.g., di@erent contributions to forces), which enable assigning
physical interpretation for such terms. In addition, our
derivation suggests dissipative (“electronic damping”) terms
which have not been discussed before. We interpret them as
the decoherence-causing terms and propose the combinations
of the QTSH with decoherence correction algorithms based on
simplified decay of mixing (SDM)55 and XF,56−58 denoted by
QTSH-SDM and QTSH-XF. We implement the multistate
QTSH approach in the open-source Libra package,59−61

making it more accessible to the broader users’ community.
Employing the new implementation, we demonstrate that
QTSH produces consistent results with those of FSSH,
without relying on ad hoc momentum rescaling algorithms.
We illustrate a linear correlation between energy conservation
accuracy and internal consistency metric in QTSH. We find
that applying decoherence corrections is not only needed to
improve the internal consistency of simulations but is also
essential for improving ensemble-level energy conservation
within the QTSH algorithm.

2. METHODOLOGY

2.1. Overview of the TSH Methods. In this section, we
first review the core TSH algorithms and introduce the key
notation. In most mixed quantum-classical approaches, nuclear
density is represented by ensembles of classical trajectories.
The corresponding nuclear degrees of freedom (DOFs) are
characterized by nuclear coordinate q and momenta p which
are propagated classically:

q M p
1

= (1a)

p F
a

= (1b)

Here, the bold notation is for vector matrices containing the
corresponding dynamical variables up to Ndof, the number of
DOFs: q = (q0, q1, ···, qN ddof−1)

T, p = (p0, p1, ···, pN ddof−1)
T and so

on. These vector-matrix notations are used throughout this
paper. The dot over the symbols indicates the time derivatives.
Here, M is the diagonal matrix containing each mass of the
DOF as its elements, i.e., M = diag (M0, M1, ···, MNddof−1), the

index a appearing in eq 1b stands for the active state index of
the trajectory considered. For brevity, we omit the trajectory
index in this work with the understanding that all dynamical
variables appearing in equations refer to a given trajectory,
unless otherwise noted.
The electrons are treated quantum mechanically−the

electronic state is described by the electronic wave function
Ψ(r, t; q), parametrically dependent on q, and evolving
according to the time-dependent Schrödinger equation (TD-
SE):

i
t

V=

(2)
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Here, ℏ is the reduced Planck constant and V̂ is the electronic
Hamiltonian. In the practical implementation of the methods,
we utilize the atomic unit system in which ℏ = 1. In most
schemes, the time-evolving electronic wavefuction is expressed
into a basis of adiabatic and stationary wave functions, {ψi, i =
0,1, ···, N − 1}, where N is the size of the adiabatic basis:

r q r qt c t( , ; ) ( ) ( ; )
i

N

i i

0

1

=

=
(3)

In the quantum-classical formulations, nuclei are treated
classically, so the nuclear part of the electron−nuclear wave
function is reduced to a time-dependent coe?cients ci(t) for
the corresponding electronic state ψi. While the basis of
stationary electronic states for TSH can be chosen rather
flexibly,62 the adiabatic representation has been argued as one
of the most reliable.63,64 In this work, we choose the adiabatic
representation, {ψi:V̂ψi = Viiψi}, although the reformulation to
the diabatic representation is straightforward.
Substituting eq 3 into eq 2, one obtains the corresponding

equations driving evolution of electronic variables (amplitudes
of the adiabatic basis functions in the time-dependent
superposition):

c
i
V c d ci ii i

j

N

ij j

0

1

=

= (4)

where dij = ⟨ψi|∂tψj⟩ = pTM−1hij is the time-derivative
nonadiabatic coupling (tNAC) matrix element, and hij =
⟨ψi|∇qψj⟩ is the corresponding NAC vector (NACV). The
electronic propagation, eq 4, can be written in terms of the
density matrix, ρij = cicj* or its real (αij) and imaginary (βij)
components, ρij = αij + iβij ( ,ij ij

):

i
V V d d( ) ( )

ij ii jj ij
k

N

ik kj ik kj
0

1

= +

= (5a)

V V d d
1
( ) ( )ij ii jj ij

k

N

ik kj ik kj

0

1

= +

= (5b)

V V d d
1
( ) ( )

ij ii jj ij

k

N

ik kj ik kj
0

1

= +

= (5c)

These equations describe the coherent evolution of the
corresponding electronic subsystem. This evolution corre-
sponds to a mean-field description of the process but can not
account for quantum-mechanical branching e@ects, as well as it
does not respect the detailed balance between electronic and
nuclear subsystem, hence failing to correctly reproduce thermal
equilibrium of quantum system.

2.2. Multistate QTSH Approach. While the typical TSH
formulations start with the ad hoc separation of electronic and
nuclear equations of motion, such equations can be derived
more systematically starting from the quantum Liouville
equation:

i
t

H
d

d
,= [ ]

(6)

Here, the full system’s Hamiltonian Ĥ = T̂ + V̂ acts on both
electronic and nuclear coordinates, which are described by the
density operator ρ̂. Here, T̂ is the nuclear kinetic energy
operator, and V̂ is the electronic Hamiltonian operator also

present in eq 2. We consider a complete basis orthonormal
electronic states {|ψi⟩: I ̂ = ∑i|ψi⟩⟨ψi|} (i = 0,1, ···, N − 1).
Substituting the resolution of identity condition to eq 6, one
obtains a matrix form of this equation:

i
t

H H
d

d
( )

ij

k

N

ik kj ik kj

0

1

=

=
(7)

Here, Ĥij = ⟨ψi|Ĥ|ψj⟩ and ρ̂ij = ⟨ψi|ρ̂|ψj⟩ are the matrix elements
of Ĥ and ρ̂ in the electronic basis and are themselves operators
belonging to the Hilber space of nuclear position states, |q⟩. In
the Wigner-Moyal representation,52,65 the nuclear operators
becomes functions of the nuclear phase space coordinates, z =
(q, p). Products of operators are represented by the star (or
Moyal) product:

q p q p q p q pAB A B A e B( , ) ( , ) ( , ) ( , )
ih

2= (8)

where
q p p q

= and the arrows indicate the

direction in which the corresponding di@erential operators
act. The quantum-classical Liouville equation (QCLE) is then
obtained if one keeps only the lowest order nonclassical term
in the expansion of the Moyal product:

AB AB
i

A B
2

,+ { }
(9)

where {A, B} = ∇qA∇pB−∇pA∇qB is the Poisson bracket of
the phase-space functions A(z) and B(z). Applying the
Wigner-Moyal transformation to eq 7, one obtains:

z

z z z z

z z

z z

i
t

t
H t t H

i
H t

t H

( , )
( ( ) ( , ) ( , ) ( ))

2
( ( ), ( , )

( , ), ( ) )

ij

k

N

ik kj ik kj

k

N

ik kj

ik kj

0

1

0

1

=

+ { }

{ }

=

=

(10)

Here, all the quantities are now the phase-space functions: ρij =
ρij(z), Hij = Hij(z). Representing these functions as ρij(z, t) =

( ) ( )zt g
ij

(or as a superposition of auxiliary Gaussians), as

shown in Sections S1 and S2 of Supporting Information, one
arrives at the following equations for electronic and nuclear
variables:

z z

z

z

i
t

t
i

t

t

H t t H

i
g

g
t

( ) d ( )

d

( ( ) ( ) ( ) ( ))

( )
( )z

ij ij

k

N

ik kj ik kj

ij

0

1

=

=

=

(11)

q M p M h2

i j i j

ij ij

1

, :

1
=

< (12)

p F p M h2 ( )q

i

i ii

i j i j

T
ij ij

, :

1
= +

< (13)

Here, Fi = −∇qVii.
In the QTSH, the diagonal component of the force, eq 13 is

reduced to an adiabatic (or diabatic) force of the active state
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for a given trajectory, ∑iFi ii
→−∇qVaa, assuming that the

given trajectory k can at any time be only in one active state.
The derived equations contain numerically inconvenient

gradients of the components of the NACV. The equations can
be simplified by introducing the kinematic momentum P,
proposed by Miller and co-workers,50,66 which is defined as

P Mq p h2

i j i j

ij ij

, :

= =

< (14)

Using eq 12, eq 14 becomes

q M P
1

= (15)

Then the canonical and kinematic momenta have the
following relationship.

p P h h

M p hV

2 2

2 ( , )q q

i j i j
ij ij

i j i j
ij ij

aa

i j i j
ij ij

, : , :

, :

1

= + +

= +

< <

< (16)

Since ḣij = (M−1P, ∇qhij) ≈ (M−1p, ∇qhij), we obtain

P hV 2q aa

i j i j

ij ij

, :

=

< (17)

The time derivative of the kinematic momentum is extended
further by inserting electronic equations of motion.
The equations of motion for the electronic variables are (see

Section S4 of Supporting Information):

z

z

d d
g

g
( )

( )

z

ij ij ij
k

N

ik kj ik kj ij

0

1

= +

= (18a)

z

z

d d
g

g
( )

( )

z

ij ij ij

k

N

ik kj ik kj ij
0

1

= +

= (18b)

Here, ωij = (Vii − Vjj)/ℏ, g is an assumed spatial component of
the density matrix function, ρij(z). Note that eqs 18a and 18b
are nothing but eqs 5a−5c, just with added terms that can be
regarded as “electronic damping” and cause decay of
coherences. In other words, the extra terms on the RHS of
eqs 18a and 18b can be interpreted as the terms causing
electronic decoherence. The electronic damping term can be
considered proportional to the rate of branching of nuclear
basis functions (Section S9 of the Supporting Information).
Assuming a Gaussian form of such functions, it may be related
to the approach of Schwartz, Bitten, Prezhdo, and Rossky67

which uses Gaussian overlap decay as a quantification of
decoherence. In practice, we replace these terms with the ad
hoc decoherence corrections of the two kinds, as discussed in
Section 2.5.
Inserting eq 18b into eq 17, we have the force to evolve the

kinematic momentum. Note that we have a new nonclassical
force F(nc) as well as the usual active-state force Fa in TSH.

P F F
a

(nc)
= + (19)

F F F F
(nc) (1) (2) D

= + + (20)

F hV V2 ( )
i j i j

ii jj ij ij
(1)

, :

=

< (21)

F hd d2 ( )
i j i j k

N

ik kj ik kj ij
(2)

, : 0

1

=

< = (22)

F
z

z
h

g

g
2

( )

z

i j i j

ij ij
D

, :

=

< (23)

Notably, the first-order force, F(1), can be recognized as the
o@-diagonal components of the Ehrenfest force, and the form
of the second-order force, F(2), is akin to a Berry force,
mediated by the density matrix.68,69 The electronic friction70,71

or decoherence force, FD, is led by the electronic damping in
the electronic part.
One thing to keep in mind about eqs 19−23 is that the

canonical momentum p is utilized in the equation relating the
scalar NAC and NACV to each other in those derivations.
However, replacing p with P in such derivations adds only a
small contribution of the second order in ℏ, O(ℏ2), and its
e@ect is seen only modestly as discussed by Dupuy et al.54

As further shown in Sections S5−S7 of Supporting
Information, the nonclassical force can be written in terms of
the vibronic Hamiltonian, so eqs 19−23 becomes

P h FV c H c2Re ( )
aa

T

vib
D

= + [ ] +
+ +

(24)

Here, we utilize the vector-matrix notation, where c = (c0, c1, ···,
cN−1)

T.
2.3. Ensemble Energy Conservation in QTSH. In

QTSH, the total energy of the electron−nuclear system, i.e.,
Tr(ρH) is represented through the phase-space densities:

i

k

jjjjjjj

y

{

zzzzzzz
E

N
H d

1
2

k

N

i

N

i a ii k

i j i j
ij k ij ktot

tr 0

1

0

1

, ,

, :

, ,k

tr

=

= = < (25a)

E
N

H
1

k

N

a adiag
tr 0

1

k k

tr

=

=
(25b)

E
N

d
2

k

N

i j
ij k ij kcoh

tr 0

1

, ,

tr

=

= < (25c)

Thus, total energy (eq 25a) contains the coherence energy
(eq 25c) as well as the diagonal energy (eq 25b) from the
stochastic hop. Consequently, the total energy can be
simplified in terms of the kinematic momentum Pk.

i

k

jjj
y

{

zzzP M PE
N

V O
1 1

2
( )

k

N

k

T

k a atot
tr 0

1
1 2

k k

tr

= + +

= (26)

When the internal consistency condition, δ̇i,adk
≈ α̇ii,k, ∀ i, k, is

satisfied, eq 26 yields Ėtot = 0 if the evolution of electronic and
nuclear DOFs is governed by the QTSH equations of motion
discussed above (See Section S8 for the derivation of energy
conservation in QTSH).

2.4. Hopping Algorithms. The coherent electronic
evolution in TSH schemes, including QTSH, is replaced by
the stochastic surface hops. The active state determined by
such a procedure defines the nuclear force that drives the
system. The hopping probabilities for FSSH and CSH
(Consensus Surface Hopping)51 are given:

i

k

jjjjjj

y

{

zzzzzz
P

d
t

2 ( )

i j

ij ji

ii

FSSH
=

(27a)
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i

k

jjjjj

y

{

zzzzz
P d t

2
i k n

ii n

ik ki n,
CSH

=

(27b)

Here, the σ function is defined as σ(x) = xH(x) = max (x,0)
for the sake of conciseness. Here, H(x) is a Heaviside function.
The CSH hopping probability scheme is similar to that of
FSSH but introduces interaction of propagated trajectories.
Here, the local densities ⟨ρii⟩n and coherence ⟨αki⟩n are given as

z z

N
g

1
( )

ii n

m

N

i a n m
tr 0

1

, m

tr

=

=
(28a)

z z

N
g

1
( )ki n

m

N

ki m n m
tr 0

1

,

tr

=

=
(28b)

As a result, the hopping probability for each trajectory
depends on the state of all other trajectories, via the
“consensus” among the entire ensemble. In QTSH, the
ensemble average elements in eq 27b are replaced with “on-
site” elements on each trajectory as QTSH is an independent-
trajectory variation of CSH. This makes the hopping scheme in
QTSH coincide with that from FSSH, eq 27a. We note that
our earlier implementation of QTSH employed canonical
momentum in the hopping probability in the adiabatic
representation, rather than the kinematic momentum adopted
here. This modification leads to more accurate agreement with
exact quantum results.50

One important point to note is that the capability of QTSH
to capture detailed balance is yet to be fully investigated. While
the FSSH hopping probability is known to achieve the detailed
balance quite well,72,73 its use within the QTSH framework
may not guarantee the detailed balance. Additional studies of
this matter would be desirable but go outside the scope of the
current work.

2.5. Decoherence Corrections. In this work, we combine
QTSH with the decoherence correction from the simplified
decay of mixing (SDM)55 and exact factorization (XF)56−58

approaches, leading to QTSH-SDM and QTSH-XF. The direct
use of the non-Hermitian electronic damping in eqs 18a and
18b, is out of scope of the current work, which could cause a
numerical stability problem. Thus, we instead consider the
decoherence e@ect with the pre-existing decoherence algo-
rithms. The decoherence correction from SDM is charac-
terized by the energy-based decoherence time τij.
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Here, |Ei − Ej| is the adiabatic energy gap for a given pair i and
j, and Ekin is the nuclear kinetic energy. The C parameter is an
empirical parameter, and its default is 0.1 Ha.75 According to
the decoherence time, eq 29, coe?cients for the nonactive
state i ≠ a are damped by an exponential factor, exp(−Δt/τia).
Afterward, the coe?cient for the active state is renormalized so
that the norm is conserved.
The decoherence correction from XF replaces the electronic

damping term in the electronic propagation in eqs 18a and
18b. Then the resulting electronic equations become:
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The decoherence terms are governed by the following XF
Hamiltonian matrix:

H

M

( )XF = ·

(31)

Here, the quantum momentum and the phase gradient
matrix ϕν are determined by the auxiliary trajectory on each
adiabatic state i, (qi, pi) as follows.
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Here, σν in eq 32a is the width parameters for auxiliary wave
packets and ti is the time when the auxiliary trajectory on state i
is spawned. To determine the value of the σν parameter, one
can adopt a characteristic fixed width or time-dependent width
such as Schwartz76,77 or Subotnik width.78,79 For the details of
the auxiliary trajectory propagation and the time-dependent
width approximation, refer to ref 57. Notably, the XF
decoherence in eq 30 has a similar form of the electronic

damping, i t( )
z g

g z ij( )

z in eq 11 if g is assumed to be the

phase-space density in the form of a Gaussian function, except
that the electronic damping yields an additional momentum
counterpart.
When SDM and XF decoherence corrections are applied to

QTSH, only electronic propagation is modified in both cases.
In QTSH-SDM, the damping and renormalization of
coe?cients are conducted after the electronic propagation. In
QTSH-XF, the half-time evolutions for the XF Hamiltonian
matrix, eq 31, are applied to electronic propagation, leading to
symmetric trotterization of the whole electronic Hamiltonian,
V + HXF. In this work, we neglect the decoherence force.
Improving internal consistency is a major factor in energy
conservation. Also, in QTSH-XF, the XF quantum force,
characterized by the inverse mass factor, is known to have a
minimal impact on the dynamics.54

2.6. QTSH Implementation in the Libra Package. The
multistate QTSH formalism discussed above is implemented in
the Libra package.59,60 While the key equations have been
discussed already, we put several pragmatic comments here.
First of all, the state tracking and phase consistency corrections
of adiabatic states and the dependent properties are of critical
importance for the formally well-defined equations to work as
expected. In practice, trivial crossings are not uncommon,
especially in large systems with many states. Here, the state
crossing may result in an abrupt sign change of NACs and
NACVs during a given integration time-interval. This problem
can be solved by either utilizing the min-cost (aka Munkres-
Kuhn or Hungarian) algorithm80 in combination with the
phase correction algorithm.81 Alternatively, the local diabatiza-
tion scheme82,83 has shown great use in many previous
applications. Both approaches find a basis reprojection matrix,
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T, which takes care of both state permutations (trivial
crossings) and sign/phase changes:

Ù

t t t t T( ) ( )| + = | + (33)

Here, tilde notation refers to the reordered and phase-
corrected basis functions, while the regular notation indicates
the “raw” (as obtained from the eigensolver procedure)
adiabatic states. Also, the notation |ψ⟩ = (|ψ0⟩, |ψ1⟩, ···, |ψN−1⟩)
is used. The computed reprojection matrix is then used to
determine the active state permutation (to reassign the active
state correctly), to transform the state coe?cients (to preserve
the continuity of the overall time-dependent wave function),
c̃(t + Δt) = T−1c(t + Δt). It should also be used to transform
the electronic structure properties that are determined by the
basis. For instance, if the following “raw” value of the matrix
representation, A(t + Δt) = ⟨ψ(t + Δt)|Â | ψ(t + Δt)⟩ of an
operator Â is known, it should be transformed to the
reprojected basis |ψ̃ (t + Δt)⟩ as
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Examples of such operators could be the derivative coupling
tensor and Hamiltonian matrix. Considering this precaution,
QTSH is implemented based on already existing general TSH
workflow, but with the following changes:

• Electronic damping in eqs 18a and 18b is either
neglected (in regular QTSH) or its e@ect is introduced
in an ad hoc way by augmenting the QTSH prescription
with the e@ective decoherence correction. As options,
we consider the SDM and XF decoherence corrections,
leading to QTSH-SDM and QTSH-XF methods,
respectively. Adding the dissipation (electronic “damp-
ing”) term in the RHS of eqs 18a and 18b directly will
be addressed in future works;

• All proposed hops are now accepted. Hence, there are
no frustrated hops, and there is no ambiguity regarding
what to do if such hops occurred (as in the original
FSSH approach).

• No momentum rescaling is utilized upon successful
hops. Energy conservation is now expected to be
satisfied only at the trajectory ensemble level, not for
individual trajectories and is maintained due to the
presence of nonclassical forces. Since our current
implementation replaces the last terms on the RHS or
eq 11, or, equivalently, eqs 18a and 18b, with the ad hoc

decoherence corrections, the total energy conservation is
satisfied only approximately, even in the ensemble sense.

• Nuclear dynamics is now a@ected by the nonclassical
forces except for the decoherence force, eqs 19−23;

• The nuclear dynamics is conducted in terms of
kinematic momenta−the canonical ones are computed
from the kinematic, if necessary.

• The hopping probability in the current QTSH
implementation is identical to the hopping probability
of FSSH, eq 27a.

2.7. Model Hamiltonians and Computational Details.
Holstein, superexchange, and phenol models (Figure 1) are
chosen to evaluate the performance of the family of QTSH
methods, i.e., QTSH, QTSH-SDM and QTSH-XF compared
to that of FSSH and to validate our implementation of these
methods in the Libra package.59,60 The 1D Holstein model84 is
a bound potential with two diabatic surface crossings. It
highlights the dynamics with multiple crossings, which can lead
to nontrivial branching, decoherence, and interference
phenomena. The diabatic Hamiltonian for 1D Holstein
model is defined as

H E k R R n
1

2
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nn n n n

2
= + =

(35a)

H V
01

= (35b)

with E0 = 0, E1 = −0.01, R0 = 0, R1 = 0.5, k0 = 0.002, k1 =
0.008, and V = 0.001. All parameters are given in the atomic
unit. The superexchange model46 is chosen as a well-
established 1D multistate example with several references
available.46,49,85 We also utilize the phenol model Hamiltonian
for the photoinduced hydrogen elimination reaction86 for
exploring a 2D potential landscape, described by the OH
length r and the CCOH dihedral angle θ. The parametrization
for the superexchange and phenol models can be found in the
corresponding references.
For benchmarking. the quantum dynamics is performed with

the DVR method.87 The initial wavepacket χ(q,0) is set to the
following Gaussian wavepacket.

i

k

jjjjjjj

y

{

zzzzzzz

q
s

q q

s

ip
q

q

( , 0)
1

exp
( )

2
(

)

f

N

q f

f f

q f

f

f

f

0

1

,
2

0,
2

,
2

0,

0,

dof

4= +

=

(36)

Here, q0,f and p0,f = ℏk0, f are the average position and
momentum for the f th DOF ( f = 0,1, ···, Ndof−1), with the

Figure 1. Adiabatic potential energy surfaces for the (a) Holstein, (b) superexchange and (c) phenol models. For the Holstein and superexchange
models, diabatic potential energy surfaces are also given in dashed lines. The potential energy surfaces of the phenol model are functions of the OH
length r and the CCOH dihegral angle θ.
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corresponding Gaussian width, sq,f. The standard deviations of
q and p, corresponding to the probability density |χ(q,0)|2 are
given as s / 2q f q f, ,= and σp,f = ℏ/2σq,f. For the 1D Holstein

model, the mass is 2000 au. The initial wavepacket is on the
ground state with q0 = −4.0 Bohr at rest (p0 = 0 au) and σq =
1.0 Bohr. The DVR simulation is conducted for 16,000 au with
the time step of Δt = 1.0 au and a uniform grid width of 0.025
Bohr in range [−25, 26.175] Bohr (2048 grid points). For the
1D superexchange model, the mass is 2000 au The initial
wavepacket is on the ground state with q0 = −10.0 Bohr and σq

= 1.0 Bohr. The initial momentum ℏk0 varies in the interval
[3.0,20.0] au for the scattering calculations. The DVR
simulation is conducted for 40,000 au with the time step of
Δt = 1.0 au and a uniform grid with the coordinate grid point
spacing of 0.025 Bohr and the grid range to be [−150,
259.575] Bohr (total of 16,384 grid points). For the 2D phenol
model, the reduced mass for r is 1728.5 au, and moment of
inertia for θ is 5132.0 au The initial wavepacket is on the first
excited state from the vertical transition at the equilibrium
position on the ground state potential energy surface (PES),
defined with q0 = (r0, θ0) = (0.96944 A°,0 rad), pr,0 = 15 au,
and ( , ) (0.092/ 2 Å, 0.55/ 2 rad)

r
= = , following

the setting of the work of Pollien et al.86 The DVR calculation
is conducted for 4,000 au with Δt = 10.0 au and the grid
widths of Δr = 0.02 Bohr and Δθ = 0.03 rad in range [0, 81.9]
Bohr and [−60, 62.85] rad, respectively (4096 grid points for
each). The grid for θ is deliberately extended instead of using
the periodic boundary conditions. In all DVR calculations, the
initial state is defined in the adiabatic representation,
consistently with the initialization of the TSH calculations.
Since the DVR calculations are conducted in the diabatic
representation, the diabatic-to-adiabatic transformation is used
to project the initial adiabatic wavepacket on the correspond-
ing wavepackets (potentially on multiple states) in the diabatic
representation. The split operator Fourier transform integra-
tion is conducted in the diabatic representation, and the
corresponding adiabatic properties are computed according to
the underlying transformation.
In all TSH calculations, the initial coordinates and momenta

are sampled from the Gaussian distribution based on the
wavepacket probability density for the DVR dynamics:
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For FSSH, the Jasper-Truhlar criterion38 is applied when the
dynamics encounter frustrated hops. 2000 trajectories are used
to obtain statistical results.
The comparison between the TSH and DVR dynamics is

made in terms of population, coherence indicator and the
branching ratio. The total wave function Ψ(r, q, t) is expressed
in the electronic basis {Φi(r; q)} as
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where the total nuclear density |χ|2 is given as the sum of
densities of each adiabatic wave packet, |χi|

2, i.e., |χ|2 =
∑i = 0

N−1|χi|
2. Then the population and coherence indicator in

DVR are computed by integrations over the grid.
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Interpreting the coe?cient ci as ci = χi/χ and approximating
the total nuclear density to the summation of delta function
centered at each trajectory,88,89 the relevant population and
coherence indicator expressions in the TSH dynamics become
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In eq 40b, we used the property |ρij,k
SE(t)|2 = |ci,k(t)cj,k*(t)|

2 =
ci,k(t)cj,k*(t)ci,k*(t)cj,k(t) = |ci,k(t)|

2|cj,k(t)|
2. The population from

eq 40a is the so-called SE population, reflecting on the fact that
the population is based on the electronic coe?cients
propagated by the Schrödinger equation, while the population
from the active state is called the SH population.
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We compute both population expressions to check the internal
consistency between them.
For the comparison of the nuclear distribution between the

TSH and DVR calculations, the transmission and reflection for
[3.0, 20.0] au are computed for the superexchange model. To
compute the reflection and transmission on each state with
respect to the initial momenta, active states are counted in the
TSH dynamics by dividing the grid space into (−∞, 0) and (0,
∞) at the end of simulation. In the DVR calculation, the
branching ratio calculation is calculated by integrating each
adiabatic wavepacket over space using the same divisions. For
the phenol model, the dissociation probability based on the
cuto@ OH length rcutoff = 2.6 Å is computed by counting the
trajectories where r > rcutoff from the TSH calculations and
integrating the nuclear density with the limits of (rcutoff, ∞)
and (−∞, ∞) from the DVR calculation.

3. RESULTS AND DISCUSSION

3.1. Multiple Crossings: 1D Holstein Hamiltonian. To
assess the methodologies in the case of multiple state crossings,
we compute the dynamics in the Holstein model that can
support multiple branching at double diabatic crossing regions
(Figure 2). We observe that regular QTSH scheme causes
systematic drift of the total energy due to accumulation of
errors at every state crossing region (large nonadiabatic
coupling regions), as shown in Figure 2a. The decoherence-
corrected QTSH-SDM and QTSH-XF schemes notably reduce
the total energy drift (Figure 2a) and lead to better energy
conservation quality. The decoherence schemes also improve
the internal consistency, making the SE and SH population
agree better with each other (Figure 2b). In this regard, the
QTSH-XF scheme yields the population dynamics in
remarkable agreement with that of the DVR reference (Figure
2b), while the QTSH-SDM, QTSH, and FSSH methods all
yield more distinct dynamics but comparable to each other.
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The system repetitively passes the strong coupling regions,
leading to large Rabi-like oscillations of the state populations,
whose amplitude decays due to quantum mechanical
branching and equilibration. As far as coherences are
concerned, both QTSH-SDM and QTSH-XF schemes show
the evolution of the coherence indicators in qualitative (and
pretty close quantitative) agreement with that of the DVR
calculations (Figure 2c). The bare QTSH scheme yields
coherence indicators comparable to those of the overcoherent
FSSH method (Figure 2c). This is expected since QTSH is not
meant to introduce any decoherence e@ects on its own. The
overcoherence of the bare QTSH scheme causes imbalance of
the diagonal, eq 25b, and coherence, eq 25c, energies, resulting
in the poor total energy conservation shown in Figure 2a.
Incorporating e@ective decoherence corrections is crucial to
achieve fair energy conservation. The correlation between
energy conservation and internal consistency becomes more
evident in the following section.

3.2. Various Initial Conditions: 1D Superexchange
Hamiltonian. 3.2.1. Scattering in the Superexchange
Model. First, we conduct the scattering calculation for the
1D superexchange model for a range of average initial nuclear
momenta using the FSSH, QTSH, and decoherence-corrected
QTSH schemes and compare them to the numerically exact
results. For QTSH-SDM, the energy decoherence parameter is
set to its default value of C = 0.1 Ha, while for QTSH-XF, the
width parameter is defined as σ = 0.1 Bohr, corresponding to
one-tenth of the width of the initial Gaussian distribution,
consistent with the previous work from Dupuy et al.54 The
initial momentum range, spanning from 5.0 to 20.0 au, has
been explored in the original QTSH work of Martens.49

The low limit of this regime, ℏk0 = 5.0 au, is particularly
important as it represents a threshold above which no
substantial reflection occurs during the scattering process
(Figure 3). This is attributed to the PES of the superexchange
model (Figure 1b), where the energetic barrier between the
ground and the first excited state, 0.005 Ha, is lower than the
kinetic energy at this threshold, (ℏk0)

2/2m = 0.00625 Ha.
Consequently, classically forbidden hops between the ground
and the first excited states are absent in this regime.
The transmission probabilities on states 0 and 1 for the high

k regime (Figure 3a) computed using either the QTSH or its
decoherence-corrected versions (QTSH-SDM or QTSH-XF)
agree with those obtained from the FSSH and numerically
exact calculations. This is a remarkable result considering that
the velocity rescaling procedure is eliminated in QTSH by
construction. This agreement serves as one of the validations of
correctness of the method’s implementation. In this domain,
where the initial nuclear momentum exceeds 5.0 au, the
majority of wavepacket prepared initially on the ground state
traverses the coupling region only once (see the Supple-
mentary movie 1). As a result, the overcoherent feature of
electronic propagation from FSSH and QTSH does not a@ect
the prediction of adiabatic populations significantly and
therefore agrees well with the fully quantum calculations.
Obviously, the regime of greater interest lies at lower
momenta, where reflection contributes to the dynamics to a
certain extent (Figure 3b,c), and where forbidden hops would
be occurred in the original FSSH scheme, while the e@ect of
natural wavepacket broadening41,90 is minimal. This regime is
explored in the following sections.

3.2.2. Energy Conservation in the Low k Regime in QTSH.
We now focus on the QTSH dynamics in the low k regime,
ranging from 3.0 to 5.0 au still using the superexchange model.

Figure 2. Evolutions of the average energy fluctuation, |Etot −
Etot(0)|/Etot(0) (a), ground state populations (b) and coherences (c)
in TSH and DVR calculations of the double-crossing Holstein model.
The SDM C parameter is set to 0.01 Ha, and the XF σ parameter is
set to 0.1 Bohr. The DVR reference is given in black solid line. For
populations, the SE and SH populations (eqs 40a and 41) are given in
dotted and solid lines respectively with colors.

Figure 3. Transmissions Tn and reflections Rn on state (n = 0,1,2) for the superexchange model as functions of average initial nuclear momenta,
ℏk0. The DVR and TSH results are shown in black solid line and markers, respectively. Only significant components are shown. (a) Transmission
for the high k regime. The increment of the initial momentum is 1.0 au The energy parameter C for QTSH-SDM is set to 0.1 Ha, and the width
parameter σ for QTSH-XF is set to 0.1 Bohr. (b, c) Transmission and reflection for the low k regime. The increment of the initial momenta is 0.2
au for more detailed search. For the discussion about QTSH-SDM and QTSH-XF on this regime, see Section 3.3.
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Under such conditions, reflection becomes apparent, and the
nuclear wavepacket gains an additional channel to propagate
(Figure 3c). The wavepacket, initially on the ground state,
branches into the ground and the first excited states at the
coupling region. The portion of the wavepacket remaining on
the ground state continues to traverse the ground-state PES.
Meanwhile, the wavepacket on the first excited state is
temporarily trapped and undergoes multiple nonadiabatic
transitions into the ground state (See the Supplementary
movie 2).
When both reflection and transmission occur during the

dynamics such as in the case of ℏk0 = 4.0 au (Figure 4), the
internal consistency of the TSH method breaks down, meaning
that SE- and SH-based state populations become distinct (e.g.,
Figure 4c). This is in striking contrast to the case of ℏk0 = 5.0
au (Figure 4d), where only transmissions occurred, and no
internal consistency was broken. Expectedly, for both initial
momenta, ℏk0 = 4.0 and ℏk0 = 5.0, the overcoherence of the
QTSH is manifested via nondecaying values of the coherence
indicators, in contrast to exact quantum simulations (Figure
4e,f). Notably, with the lower initial momentum, over-
coherence becomes more drastic because the trajectories on
the first excited state encounter the coupling regions multiple
times, developing stronger coherences between the ground and
first excited states. On the other hand, the SH populations,
which depend on the discrete active state, are more reliable in
such scenario and yield a closer agreement with the DVR
reference (Figure 4c).
Together with the worsening of the internal consistency for

lower initial momenta, we observe more notable violation of
the energy conservation (Figure 4a). Compared to the case of
ℏk0 = 5.0 au (Figure 4b), where the balance between the
diagonal energy and coherence energy is well maintained, for
the ℏk0 = 4.0 au it is broken. This imbalance appears when the
SE and SH populations start to deviate, leading to a drop in the

total energy. Eventually, the total energy is stabilized after all
trajectories move away from the coupling region, since the
coherence energy is governed by NAC, eq 25c, and hence
vanishes in the asymptotic regions. This observation
demonstrates that the energy conservation at the trajectory
ensemble level is a@ected by the quality of the internal
consistency of the SE and SH population as discussed in
Section 2.3.
To investigate the relationship between the quality of the

internal consistency of SE and SH populations and the total
energy conservation, we calculate root-mean-square errors
(RMSEs) of the SE and SH population di@erence (eqs 40a and
41) and total energy fluctuations in the lower-k regime (Figure
5). A clear linear correlation is observed between such
quantities. The total energy fluctuation increases as the initial

Figure 4. Evolutions of the average total energy of trajectory ensemble and di@erent components of such energy (a, b), quantum state populations
(c, d) and coherences (e, f) in QTSH and DVR calculations of the superexchange model. The initial wavepacket momentum of (a, c, e) ℏk0 = 4.0
au and (b, d, f) ℏk0 = 5.0 au The DVR results are given in black solid line. The SE and SH populations (eqs 40a and 41) are represented by the
colored dashed or solid lines, respectively. Figures on both sides share the same color code.

Figure 5. Linear correlation between root-mean-square errors
(RMSEs) for SE and SH population (eqs 40a and 41) di@erence
and the total energy fluctuation from QTSH with 2000 trajectories in
the lower-k regime [3.0, 5.0]. The increment of the momenta is 0.2.
The corresponding initial nuclear momentum is annotated to each
point. The unit for the momenta is the atomic unit.
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nuclear momenta decrease, aggravating the overcoherence due
to smaller tNAC. Thus, addressing the internal consistency
problem is crucial for obtaining reliable results using QTSH.
Our rationalization of the observed correlation is the

following. The rigorous derivation of the QTSH equations of
motion yields the “dissipation/electronic damping” term

i t( )
z g

g z ij( )

z on the RHS of eq 11. Consider a Gaussian

a n s a t z f o r g i n t h e p h a s e s p a c e , i . e . ,

g z G z z( ) ( )
N k

N
k

1

0

1tr

tr

=
=

with a Gaussian function, G,

centered at each trajectory center zk. Then the “electronic
damping” factor −iℏz ̇∇zg/g on trajectory k becomes

i z z
i z g

g
z z

k
T

k
2z

k

=

=

with the trajectory ensemble,

where Σ is the diagonal matrix containing the Gaussian
width for each phase-space DOF, and Δzk is the deviation of
phase space variables, zk−z ̅ (see Sections S9 of Supporting
Information). Thus, the “electronic damping” term is closely
related to branching of the nuclear dynamics. In the high k
regime, the transmission is predominant and there is no
significant di@erence between individual trajectory’s zk values
and average z ̅ values, leading to small Δzk and hence to small
dissipation terms. Thus, the e@ect of “electronic damping” in
this domain is negligible. On the other hand, in the low k
regime, reflection also contributes to the dynamics, and the
phase-space deviation Δzk increases along with the branching.
Thus, in the low k regime, correct treatment of the
decoherence e@ect becomes a more crucial factor.

3.2.3. Combination of QTSH and Decoherence Correc-
tions. As discussed in the previous section, one needs to
introduce a decoherence correction into QTSH to improve the
internal consistency and hence improve total energy
conservation. In this work, we consider a set of widely used
decoherence corrections instead of using the “dissipation/

electronic damping” terms i t( )
z g

g z ij( )

z in, eq 11, directly.

The consideration of such term in equations of motion leads to
nonunitary dynamics, which may be more di?cult to analyze
and goes outside the scope of this work. In addition, since the

nuclear envelope, g, is arbitrary, a nonunique choice of such
terms may be present. By construction, the dissipation term
can dampen coherences and hence shall be responsible for
capturing decoherence e@ects. Thus, instead of using the term
directly in eq 11, we combine the QTSH formulation with this
term in eq 11 omitted with some of the well-known
decoherence corrections, such as SDM and XF, denoted as
QTSH-SDM and QTSH-XF, respectively. It turns out that in
the lower-k regime, a careful choice of decoherence parameters
is necessary to improve energy conservation as well as the
internal consistency for each value of ℏk0, rather than using a
uniformly defined parameters as in cases with larger initial
momenta (Section 3.1).
We observe that the QTSH-SDM method improves the

quality of the total energy conservation in the superexchange
model dynamics at ℏk0 = 4.0 au, when the energy decoherence
parameter is set to C = 0.01 Ha (Figure 6a). Notably, the
internal consistency of SE and SH populations is a necessary
but not su?cient condition for ensuring total energy
conservation, as shown by QTSH-SDM calculations with C
= 0.01 Ha and C = 0.1 Ha (Figure 6a,b, respectively). As the C
parameter is increased, the decoherence time also increases,
and the dynamics becomes more coherent, leading to poorer
energy conservation. However, the decoherence corrections
such as the instantaneous decoherence approximation
(IDA),91 where the wave function is collapsed to a pure
state at every attempted state hop, are not necessarily superior.
When IDA approach is combined with QTSH, it eliminates the
coherence energy budget (eq 25c) exclusively for trajectories
undergoing hops, while keeping the overcoherence for
trajectories that have not attempted surface hops. This
imbalance eventually disrupts the whole energy compensation
in QTSH (Figure S2). Unlike the IDA, the removal of
overcoherences by the SDM and XF schemes need not be
informed by the occurrence of surface hopping events, and
hence the latter treat all trajectories on the same footing.
Selecting a reasonable SDM C parameter is also important

to capture the correct dynamics of coherence near NAC region
while also maintaining the internal consistency. Comparing the

Figure 6. Evolutions of the average total energy of trajectory ensemble and di@erent components of such energy (a−c), quantum state populations
(d−f) and coherences (g−i) in QTSH-SDM and DVR calculations of the superexchange model. The SDM C parameters are set to (a, d, g) C =
0.01 Ha, (b, e, h) C = 0.1 Ha and (c, f, i) C = 2.0 Ha, respectively. The DVR reference is given in black solid line. For populations, the SE and SH
populations (eqs 40a and 41) are given in dashed and solid line respectively with colors. All figures share the same color code.
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coherence evolutions when C = 0.01 Ha and C = 2.0 Ha
(Figure 6g,i), the one with C = 0.01 Ha follows most closely
the numerically exact DVR reference, leading to improved
energy conservation (Figure 6a,c). However, precautions need
to be taken, as the coherence computed by the TSH method
could contain intrinsic inaccuracies due to the trajectory-based
approximation. The DVR values serve only as a qualitative
guide for choosing the parameter. The “optimal” decoherence
parameter, which achieves both energy conservation and
internal consistency, should be carefully examined along with
trajectory convergence (Figure S1).
We also present the QTSH-XF results for various width

parameters when ℏk0 = 5.0 au (Figure 7). As the XF
decoherence correction involves ballistic motion of the
auxiliary trajectories spawned on all trajectories,57 for values
ℏk0 < 5 this motion easily becomes unstable/unphysical.
Hence, for QTSH-XF approach, we analyze the dynamics with
the initial conditions di@erent from those considered for
QTSH-SDM. In this case, energy conservation is less sensitive
to the width of the auxiliary wavepackets σ, which controls the
decoherence rates (Figures 7a−c and S3). As in the previous
QTSH calculations (Figure 4b,d,f), when ℏk0 ≥ 5.0 au, the
trajectories pass through the coupling region only once,
characterized by the flattened SH populations after a significant
population exchange at t = ∼100 fs (Figure 7d−f). This
indicates that subsequent inaccuracies of internal consistency
do not impact the total energy conservation, as the nuclei
would be already outside the coupling region, and the
coherence energy, eq 25c, would become zero. Only early
coherence around t = ∼100 fs has a finite contribution to the
coherence energy.

3.3. 2D System: Phenol Hamiltonian. We now
investigate the nonadiabatic dynamics of the phenol model
for the photoinduced hydrogen elimination, using QTSH,
QTSH-SDM, and QTSH-XF methods to evaluate their
performance for a 2D problem. The nuclear wavepacket
initially on the first excited state may transfer to the second
excited state and remain transiently bound there or it can
continue evolving along the first excited and ground state PES
(Figure 1c) leading to molecular dissociation.

Populations from all TSH methods follow the overall DVR

trend, despite the deviation from the reference for longer

evolution times (Figure 8c,e,g). FSSH and QTSH exhibit

Figure 7. Evolutions of the average total energy of trajectory ensemble and di@erent components of such energy (a−c), quantum state populations
(d−f) and coherences (g−i) in QTSH-XF and DVR calculations of the superexchange model. The XF σ parameters are set to (a, d, g) σ = 0.1
Bohr, (b, e, h) σ = 1.0 Ha and (c, f, i) σ = 5.0 Ha. The DVR reference is given in black solid line. For populations, the SE and SH populations (eqs
40a and 41) are given in dashed and solid line respectively with colors. All figures share the same color code.

Figure 8. Evolutions of the average total energy of trajectory
ensemble (a), hydrogen dissociation probability (b), populations (c,
e, g), and coherences (d, f, h) as a function of time. The DVR
reference is given in black solid line. For populations, the SE and SH
populations (eqs 40a and 41) are given in dotted and solid lines
respectively with colors. For QTSH-SDM, the energy parameter is set
to C = 1.0 Ha. For QTSH-XF, the Subotnik width (ref 57) is used.
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comparable behavior, both failing to account for internal
consistency. This result is similar to the one discussed for the
superexchange model but exaggerated by multiple crossings of
the strong nonadiabatic coupling regions. The SH populations
produced by FSSH and QTSH methods are in agreement with
each other. Similar to the 1D problem, the decoherence
corrections improve the internal consistency of the methods,
making SH and SE populations behave in a similar way (Figure
8c,e,g). The enhanced internal consistency from QTSH-SDM
and QTSH-XF also leads to better energy conservation than
for original QTSH, although the QTSH-XF method also leads
to the QTSH-level total energy drift for longer simulation
times (Figure 8a). Considering the similarity of the SH
populations among the TSH methods, utilizing the SH
populations is a preferred way to obtain more reliable
descriptors that partially bypass the overcoherence problem.92

In all TSH calculations, the population of the second excited
state decays to a larger asymptotic value compared to the DVR
reference, leading to the underestimation of the dissociation
probability (Figure 8b).
Notably, the coherence indicators (Figure 8d,f,h) provide

qualitative explanations for the SE populations. For all TSH
methods, as coherence deviates from the DVR results at the
early stage of the dynamics, overall populations start to deviate
considerably from the DVR results at t = ∼15 fs. FSSH and
QTSH show overcoherence, while the QTSH-SDM and
QTSH-XF yields the “undercoherence”. Notably, the coher-
ences related to the ground state, ⟨|ρ02|

2⟩ and ⟨|ρ01|
2⟩, explains

better alignment of the ground-state SE populations from
FSSH and QTSH with the DVR reference compared to those
from QTSH-SDM and QTSH-XF. The individual behavior of
the coherences related to the ground state, that is, ⟨|ρ02|

2⟩ and
⟨|ρ01|

2⟩, deviates from the exact one. However, their
summation is close to the DVR reference, leading to a
cancellation of errors on average. For QTSH-SDM and
QTSH-XF, coherences are underestimated starting from t =
∼20 fs (Figure 8g,h), and the degree of the ground-state
relaxation starts to be overestimated compared to the DVR
reference from that point.

4. CONCLUSIONS

In this work, we present the QTSH formalism generalized to
an arbitrary number of states, including its detailed derivation,
as well as its first implementation in the open-source Libra
package. The implementation is validated through modeling
nonadiabatic dynamics in 1D Holstein, superexchange, and 2D
phenol models. As anticipated, the QTSH method produces
results consistent with those of the FSSH scheme, although
without the need for the ad hoc velocity rescaling procedure
and hence without frustrated hops present in FSSH. We also
combine the QTSH algorithm with the SDM and XF
decoherence corrections, resulting in the QTSH-SDM and
QTSH-XF, respectively. We show that using decoherence
correction with the QTSH is important for ensuring its internal
consistency and significantly improving the quality of the total
energy conservation. Our calculations suggest a strong linear
correlation between the degree of internal consistency (as
measured by the SE and SH population di@erence) and the
quality of the total energy conservation (as measured by the
relative total energy fluctuation).
The QTSH scheme and especially its decoherence-corrected

QTSH-SDM and QTSH-XF schemes show a reasonable
agreement with the reference calculations for the current set

of model Hamiltonians. The bare QTSH generally fails to
conserve the total energy, even in the trajectory ensemble
sense, when the branching e@ects are notable such as in the
Holstein, phenol, and low-momentum superexchange models.
This e@ect originates due to the current neglect of electronic
“damping” terms and can be mitigated by including ad hoc
decoherence corrections. Out of the two decoherence
correction schemes combined with the QTSH, we find that
QTSH-SDM is generally more robust as far as the total energy
conservation is concerned, but QTSH-XF often yields a better
agreement of population and coherence indicator dynamics
with those from fully quantum calculations. These results
highlight the need for ongoing investigation of the general
problem of quantum coherence in mixed quantum-classical
methods. The energy conservation and population/coherence
dynamics predicted by the QTSH-SDM and QTSH-XF
methods can be further controlled by corresponding hyper-
parameters of the methods.
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