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Modeling Control of Supercoiling Dynamics and
Transcription Using DNA-Binding Proteins

Harris Clark , Aleczander Taylor, and Enoch Yeung

Abstract—Nearly all natural and synthetic gene networks
rely on the fundamental process of transcription to enact
biological feedback, genetic programs, and living circuitry.
In this letter, we investigate the efficacy of controlling
transcription using a new biophysical mechanism, con-
trol of localized supercoiling near a gene of interest. We
postulate a basic reaction network model for describing
the general phenomenon of transcription and introduce
a separate set of equations to describe the dynamics of
supercoiling. We show that supercoiling and transcrip-
tion introduce a shared reaction flux term in the model
dynamics and illustrate how the modulation of supercoil-
ing can be used to control transcription rates. We show
the supercoiling-transcription model can be written as a
nonlinear state-space model, with a radial basis function
nonlinearity to capture the empirical relationship between
supercoiling and transcription rates. We show the system
admits a single, globally exponentially stable equilibrium
point. Notably, we show that mRNA steady-state levels can
be controlled directly by increasing a length-scale param-
eter for genetic spacing. Finally, we build a mathematical
model to explore the use of a DNA binding protein, to
define programmable boundary conditions on supercoiling
propagation, which we show can be used to control tran-
scriptional bursting or pulsatile transcriptional response.
We show there exists a stabilizing control law for mRNA
tracking, using the method of control Lyapunov functions
and illustrate these results with numerical simulations.

Index Terms—Biomolecular systems, biological
systems, nonlinear control.

I. INTRODUCTION

CONTROLLING the magnitude and rate of gene transcrip-
tion from DNA into mRNA is a fundamental problem
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in systems and synthetic biology [1], [2], [3], [4], [5], [6],
[7]. At the single cell level, controlling gene transcription
is a problem of controlling discrete molecular states, which
manifests empirically as a stochastic control problem [7], [8],
[9], [10], [11]. At the population level, controlling gene tran-
scription is a problem of controlling the distribution of mRNA
counts across a population of cells, i.e., a distributional control
problem [9]. More frequently, the problem is formulated in
terms of the control of the first moment (the mean) of the
population’s gene transcription or the centered second moment
(the variance) [9].

There are many methods for controlling gene transcription.
For example, transcription factors can be programmed to
activate or repress the promoter of a gene, which has the
effect of turning gene transcription on or off [12], [13],
[14], [15], [16]. Further, CRISPRi control uses sequence-
programmable targeting RNA molecules to direct the binding
of CRISPR proteins to promoter, ribosome binding sites, or
within a transcriptional reading frame, to sterically occlude the
procession of polymerase enzymes [17], [18], [19], [20]. Both
transcription factor and CRISPR-based control are limited by
the slow rate at which proteins are translated and folded. More
recently, researchers [4] have shown that optogenetic proteins
with light-responsive domains can transduce ex vivo sourced
light into intracellular control signals, thereby enabling design
and execution of transcriptional control through an in silico
controller. Genomic DNA is typically double-stranded and
modeled as a double-helical structure, averaging about 10.5
basepairs per rotation or turns in the genetic sequence [15].
The number of rotations r in a double stranded DNA fragment
of length n is referred to as the linking number of DNA. The
linking number normalized by the length of the DNA fragment
(r/n) is called the supercoiling density (σ ) of the DNA [21].
In [21], it was shown that transcribed DNA generates two,
distinct domains of supercoiling. Upstream of the promoter
of a gene is a relaxed domain of negatively supercoiled DNA
(DNA rotating in the left-handed direction). Downstream of
the gene is a hypercoiled region of positively coiled DNA,
rotating in the right-handed direction. Extensive accumulation
of twist of either type can result in writhing of the DNA,
where the backbone of the hypercoiled DNA accommodates
further torsional stress by rotating in 3D intracellular space.
Higher order twisting in 3D space is referred as writhing and
excessive writhing can form higher-order knots in DNA known
as plectonemes.
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Fig. 1. A schematic illustrating the scenario of interest: we explore the
effect of trapping supercoiling with DNA binding proteins immediately
downstream of a single gene of interest (see reactions (1-5)).

In the presence of extensive torsional stress, the degree of
supercoiling near a gene can directly control transcription.
In [22], [23], researchers showed that high levels of positive
supercoiling can quench gene transcription. Each time a gene
transcribes with a higher degree of activity, it accumulates
enough positive supercoiling to self-repress to an off-state [22].
The overall effect is that RNA transcription will occur in
pulsatile bursts, or bursty transcription [24]. Thus, DNA
supercoiling is a fundamental component of transcriptional
bursting [22]. Control strategies utilizing supercoiling to alter
the frequency or magnitude of transcriptional bursting could
be used to alter cell fate [25], genomic programs [15], and
pathogenesis in various species of bacteria [26].

Here we develop novel, mathematical models for a bio-
physical approach to transcriptional control. We investigate
the feasibility of controlling a single gene’s transcription by
controlling the supercoiling around the gene using interference
from a DNA binding protein [17]. Specifically, we model
utilization of a DNA-binding protein with sequence-directed
specificity. There are DNA binding proteins with defined
recognition sites, e.g., CRISPR or Par protein systems that
utilize targeted binding to a gene sequence. Utilizing a
mathematical approach, we explore in this letter whether a
DNA binding protein, could be used to control the local
supercoiling state surrounding a gene [14], to both upregulate
or downregulate gene transcription.

II. TRANSCRIPTIONAL DYNAMICS WITH SUPERCOILING

To begin we consider transcription of the mRNA mX of a
single gene X of length nX basepairs, with transcription rate
dependent on the local supercoiling density σX . We assume
the mRNA is subject to degradation and the supercoiling of
DNA is subject to topoisomerase regulation (gyrase regulating
positive supercoiling and toposiomerase regulating negative
supercoiling). We suppose that the coordinates of the super-
coiling are centered around the homeostatic setpoint σ ∗ =
0.095, coinciding with roughly 10.5 basepairs per turn in stan-
dard B-form DNA. Thus, when we write the translated state
variable σ = 0 in this letter, it will correspond to the absolute,
supercoiling density of gene X having average density σX =
σ ∗ over nX + Lt basepairs, where Lt is the basepair distance
that displaced supercoils have to dissipate before confronting
a topological barrier (a DNA binding protein, another gene,
etc.). Throughout this letter, we will model exclusively σX
to represent local supercoiling density—to avoid cluttered

notation with multiple subscripts when talking about equilibria
σe and reference points σr, we will simply denote σX = σ .

The purpose of tracking the supercoiling density is to postu-
late a new class of simple, transcription-supercoiling coupled
models that mirror the experimentally observed, nonlinear
relationships between supercoiling and transcription [15], [21],
[27], [28]. For now, we focus on a single gene surrounded
by a topological barrier that limits supercoiling. In particular,
we consider a rate-varying chemical reaction network model,
one where catalytic rates of production are dependent on the
current supercoiling state σ :

∅ P0cXkcat(σ )−−−−−−→ mx (1)

mX
δm−→ ∅ (2)

σ
δTT0cX−−−−→ σ + 1 (3)

σ
γ G0cX−−−−→ σ − 1 (4)

∅ α2kcat(σ )−−−−−→ σ, (5)

where P0 is the concentration of RNA polymerase, cX is
the intracellular concentration of gene X, δm is the rate of
degradation, δT is the rate of Topoisomerase I cleavage, T0
and G0 are the intracellular concentrations of Topoisomerase
I and gyrase, mX is the concentration of mRNA for gene X, σ

is the supercoiling density of the DNA spanning gene X and
downstream until the next topological barrier, α2 is an effective
rate constant of positive supercoiling accumulation in σ from
transcription, and kcat(σ ) models the supercoiling-dependent
rate of transcription.

The rate of transcription kcat(σ ) is dependent on super-
coiling [15], [21], [27], [28], [29]. In particular, we assume
it follows the functional form of a radial basis function
(matching empirical observations in [30], [31]:

kcat,X(σ) = βe
−σ2

s . (6)

A derivation for the expression for α2 is beyond the scope of
this letter [15]. For now, it suffices to assume that

α2 = δTT0
nX

2h0Lt
βP0cX,

which broadly speaking contains the conversion factor nX
2h0Lt

converting twist displaced by the transcriptional flux repre-
sented by βkcat(σ )P0cX , and subsequently catalyzed locally
into positive supercoiling at rate δTT0. The parameter h0
estimates the number of basepairs melted during an average
transcription bubble and while Lt is the basepair distance
that displaced supercoils have to dissipate before confronting
a topological barrier (a DNA binding protein, another gene,
etc.). Effectively, this term is an approximation of the positive
supercoils that result from transcriptional displacement of
natural twist in the genetic region modeled by σ . A more
detailed, spatial, biophysical model will follow in later work.

In total, there are five reactions that model mRNA and
supercoiling dynamics jointly, two of which depend on the
constants kcat and α to be described below. There are two
reactions to model the birth and death dynamics of mRNA.
The first reaction models the transcription of mRNA mX .
It assumes polymerase concentration is vastly abundant and
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that gene copy number in the cell is low enough to never
approach the saturation regime of a Michaelis-Menten approx-
imation (see Assumption 1). The second reaction models the
degradation of mRNA as a first order reaction, which equates
to an assumption that ribonucleases are unsaturated by their
degradation substrates.

There are three reactions to model the regulation and fluc-
tuation of supercoiling dynamics. The first reaction documents
the action of a topoisomerase (TopoI) that corrects excessive
negative supercoiling by introducing one positive supercoil
(a right-handed turn). The second reaction describes the
countering effect of a distinct topoisomerase species (gyrase)
that introduces a negative supercoil to correct excessive pos-
itive supercoiling. In both of these reactions, we assume the
topoisomerase and gyrases proceed in their reactions with
a low, basal rate as estimated empirically from enzymatic
experiments. The third reaction models increase in positive
supercoiling when the transcription process displaces natural
twist in gene X to downstream areas of DNA as positive
supercoiling [15], [21].

Under the above assumptions, combining these five chemi-
cal reactions, with the law of mass action yields the following,
simplified single-gene transcription-supercoiling model:

ṁX = kcat(σ )P0cX − δmmX

σ̇ = δTT0
nX

2h0Lt
kcat(σ )P0cX − (γ G0 − δTT0)cXσ. (7)

Now suppressing all subscript notation for gene X, then the
abstraction for this system is of the form

ṁ = α1e−σ 2/s − δmm

σ̇ = α2e−σ 2/s − (α4 − α3)σ. (8)

where

α1 = P0cXβ,α2 = δTT0
nX

2h0Lt
βP0cX,

α3 = δTT0cX,α4 = γ G0cX .

Proposition 1: When α4 − α3 > 0, the system (8) has a
single, positive equilibrium point (me, σe) with

σe > 0, me = α1

δm
e−σ 2

e /s > 0.

Proof: The result follows from setting the derivative of σ

above equal to 0 and noting that an origin-centered radial basis
function and a positively sloped line intersecting the x (or σ )

axis at the origin only cross once on the right hand side of
the y-axis with σe < 0. Solving the first equation yields the
expression for me.

With this simplified model, we can derive the following
two results about the stability of σ about the origin. These
mathematical results are corroborated by prior experimental
studies of the phenomenon of transcriptional bursting, which
consistently shows the stability and pulsatile properties of
mRNA expression [15], [22].

Theorem 1 (Lyapunov Stability): Suppose that the coupled
transcription-supercoiling model (8) is written as

ṁ = α1e−(σ )2/s − δmm

σ̇ = α2e−(σ )2/s − (α4 − α3)(σ ).

with simplified constants α1,α2,α3,α4, s > 0, where s is an
empirically fitted shape coefficient of the radial basis function
defined in (6). Then (me, σe)

T is a globally, exponentially
stable equilibrium point when α4 − α3 > 0.

Proof: The following inequalities hold due to the bounded-
ness of radial basis functions:

α1e−σ 2/s ≤ α1, α2e−σ 2/s ≤ α2

so we can bound the vector field by a decoupled system of
the form Ax + b where

A =
[−δm 0

0 −(α4 − α3)

]
, b =

[
α1
α2

]

and by the monotonicity property of integrals, since A is
Hurwitz and b is time-invariant and bounded, we know that the
bounding system dynamics are exponentially stable. Therefore,
the original system is exponentially stable, in particular the
single equilibrium point derived in Proposition 1 must be
exponentially stable.

Theorem 2: Given the coupled transcription-supercoiling
model (8) with

α2 = δTT0
nx

2h0Lt
βP0cX,

and α4 − α3 > 0 the mRNA equilibrium me is strictly
increasing while the supercoiling equilibrium σe is strictly
decreasing, with increasing spacing Lt between the gene and
its downstream barrier.

Proof: To show strict monotonicity of the system’s equi-
librium point to increasing Lt we use implicit differentiation.
We know that me and σe are dependent of Lt implicitly.
Specifically, we know that to solve for σe we must solve the
equation

0 = δTT0
nX

2h0Lt
βP0cXe−σ 2

e /s − (α4 − α3)σe (9)

Multiplying by Lt gives us

0 = δT
T0nx

2h0
βPcXe−σ 2

e /s − Lt(α4 − α3)σe (10)

and implicitly differentiating with respect Lt yields

[
δTT0nxβP0cX

h0s
σee−σ 2

e /s + Lt(α4 − α3)

]
∂σe

∂Lt
= −(α4 − α3)σe

which solving for ∂σe
∂Lt

∂σe

∂Lt
= −(α4 − α3)σe

δT T0nXβP0cXσe
h0s e−σ 2/s + Lt(α4 − α3)

,

we see that the numerator is negative since σe > 0
(Proposition 1) and −(α4 − α3) < 0, so their product is
negative. Since the denominator is always positive,

∂σe

∂Lt
< 0.

Differentiating the expression for me(Lt) we see that

∂me(Lt)

∂Lt
= α1

δm
e−σ 2

e /s
(−2σe

s
∂σe

∂Lt

)

which is positive since σe > 0 and monotonically decreasing
in Lt as shown above.
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III. SUPERCOILING-TRANSCRIPTION MODEL WITH DNA
BINDING PROTEIN INTERFERENCE

Now, let us consider an identical scenario as in the previous
section, except now we consider the influence of a DNA
binding protein that can bind to regions of DNA near the
gene using a targeted binding site. For example, this may
be a standard nucleoid binding protein with a specific DNA
sequence binding motif or a CRISPRi based DNA binding
protein that uses guide RNA targeting. Separately, one could
engineer a promiscuous DNA-binding protein whose position
is actuated by a magnetic control signal that is computed
in silico. Here we investigate the theoretical ramifications of
controlling u(t) = Lt as a unconstrained, time-varying control
signal.

The parameter Lt appears in α2 of the simplified model (8).
Here we write u(t) = Lt to consider the scenario of a
potentially time-varying spacer distance of a “sliding” DNA-
binding protein. The experimental details of such a realization
are beyond the scope of this letter, but we conceive of a
scenario where a DNA-binding protein with a magnetically
responsive domain is actuated by an in silico generated control
signal from a dynamically moving magnetic field (an actuated
magnetic tweezer).

Mathematically, we suppose that u(t) may range from
positive to negative values. A negative distance u(t) would
indicate that the binding protein potentially binds internally or
upstream of the gene, to accumulate negative supercoiling. In
this letter, we have focused primarily on positive supercoiling
but a more in-depth study with both negative and positive
supercoiling will be the subject of future work, pursuant to
informative experimental measurements.

The revised coupled supercoiling-transcription model with
input u(t) takes the form

ṁ = α1e−(σ )2/s − δmm

σ̇ = α2

u
e−(σ )2/s − (α4 − α3)σ. (11)

where all other αi parameters are the same as before, but the
new α2 (excluding Lt) is given as

α1 = P0cXβ, α2 = δTT0
nX

2h0
βP0cX,

α3 = δTT0cX, α4 = γ G0cX .

Theorem 3: Given the bounded reference signals σr and
mr, the system (11) is asymptotically stable with the dynamic
control law

u(t) = α2

α1

k2(mr − m + δmm − ṁr)

k1(σr − σ + (α4 − α3)σ )
, (12)

asymptotically tracks the dynamic reference m(t) and sta-
bilizes σ (t) about the reference σr, and where k1, and k2,
define tuneable parameters to tune the convergance rates of
the system.

Proof: Define the tracking error terms

eσ = σr − σ, em = mr − m. (13)

We will take a tiered approach in a way that utilizes the
scaled, nonlinear coupling of transcription and supercoiling.

Specifically, both share a radial basis function term, directly
as a consequence of the physics of the phenomenon we are
studying. In our model, increase in supercoiling derived from
transcription is directly proportional to the rate of transcription
(which is a supercoiling-dependent function). First, we will
solve for the control law to stabilize σ (t) to track the reference
σr. Using the method of Sontag’s formula [32], define the
control Lyapunov function Vσ (eσ ) = 1

2 eσ
2, then V̇σ (eσ ) =

eσ ėσ = eσ (σ̇r − σ̇ ), and set ėσ = −k1eσ to enforce negative
definiteness of V̇σ (eσ ) and tunability of convergence with the
design parameter k1. This guarantees that the dynamics of
eσ (t) are asymptotically stable, which guarantees convergence
of the supercoiling to a desired state. Let us now set

ėσ = −k1eσ =
(
σ̇r − α2

u
e
(
−σ 2/s

)
+ (α4 − α3)σ

)
(14)

and solving for u, we get

u(t) = α2e−σ 2/s

k1eσ + σ̇r + (α4 − α3)σ
. (15)

Now we use the functional coupling relationship between
supercoiling and transcription to define a control Lyapunov
function

Vm(em) = 1
2

e2
m.

Again, taking the derivative of

V̇m(em) = emėm = em(ṁr − ṁ)

= em

(
ṁr − α1e−σ 2/s + δmm

)
, (16)

and again, introducing a convergence tuning parameter for
design, k2, we obtain

ėm = −k2em = ṁr − α1e−σ 2/s + δmm, (17)

which allows us to solve for σ in terms of mr(t) and
m(t). Noting the functional equivalence of elements of u(t)
and our current expression of ėm (a natural consequence of
mRNA and supercoiling production being linked to the same
transcriptional event) allowing us to write

e−σ 2/s = k2em + δmm − ṁr

α1
(18)

and so u(t), the control law can be expressed as

u(t) =
α2
α1

(k2em + δmm − ṁr)

k1eσ + σ̇r + (α4 − α3)σ

= α2

α1

(
k2(mr − m) + δmm − ṁr

k1(σr − σ ) + σ̇r + (α4 − α3)σ

)
(19)

Thus, we have shown, by construction, that Vσ (eσ ) and
Vm(em) are control Lyapunov functions and therefore eσ (t)
and em(t) will converge to 0 asymptotically.

The mathematical form of this control law is complex, so
the most feasible strategy is to compute the control law in
silico. In in vitro experiments, we anticipate having direct
seconds-scale measurements of m(t) and high-resolution proxy
measurements for σ (t) via DNA visualization. We thus can
numerically estimate the derivatives of σ and m, subject to
filtering or smoothing.
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TABLE I
SIMULATION PARAMETERS FOR FIG. 2, FIG. 3, AND FIG. 4

IV. SIMULATION RESULTS

In this section we summarize three numerical findings with
our supercoiling-transcription models from Section II and
Section III: 1) we show open-loop, pulsatile response for
varying spacing lengths Lt, 2) we test the dynamic control
law from Theorem 3 on a sinusoidal tracking problem, and
given the difficulties of dynamic control of u(t), 3) we explore
a switching, static control method to inform experimental
design. Our simulations were conducted in Python 3.7 using
the scipy.odeint solver, with an i7 Intel QuadCore. The
code for these simulations is available upon request.

A. Pulsatile Response of the Open-Loop
Supercoiling-Transcription Model

We simulated the open-loop supercoiling-transcription
dynamics modeled in equation (8), the parameters are defined
in Table I. In Figure 2 we simulate three different spac-
ing lengths of Lt = 100, 500, 1000 basepairs. We see
that m(t) generates a pulsatile response, while me and σe
increases monotonically with Lt, illustrating the conclusions
of Theorem 2.

B. Dynamic Supercoiling Control: Control of
Transcriptional Bursting

Now consider the controlled system (11), with parameters
as in Table I, we simulated a dynamic supercoiling control
law using the input function defined as in Theorem 3. As
a theoretical challenge, we define a harmonically oscillatory
reference signal: mr(t) = 2 sin ( t

200 ) + 2.1, with ṁr(t) =
cos (t/200)

100 is the analytical derivative of the reference signal,
and σr = 0.5 as a static reference. The dynamics of the
simulation is plotted in Figure 3. Consistent with Theorem 3,
we are able to track our oscillatory reference signal over a
5000 second horizon. We see small oscillations of σ (t) as
the controller attempts to regulate σ (t) to a constant σr. Here
tracking is limited by the coupling of oscillatory transcriptional
dynamics and supercoiling.

C. Supercoiling Control With Switching Spacer Lengths
In many cases, realizing an in vivo biomolecular realization

of the control law in Theorem 3 may not be possible. Here

Fig. 2. The simulated response of the open loop system (8) for 3
different lengths of Lt . The solid lines represent the supercoiling density
σ while the dotted lines represent the concentration of mRNA molecules
mX . With increasing coding sequence length, the amplitude of the
transcriptional pulse in mRNA concentration increases.

Fig. 3. Dynamic supercoiling control exhibiting transcriptional bursting.
The red line depicts the supercoiling density σ while the blue line depicts
the concentration of mRNA molecules mX . The black dashed line is the
reference trajectory.

we simulate the effect of a crude switching control law or
bang-bang control option.

Such a control law could be approximated experimentally
in a variety of ways. For example, an optically sensitive
protein could conditionally bind to a DNA locus, when
activated by light, to achieve spacer length Lt downstream
the gene of interest. In the presence of light from a different
wavelength, we could cause a different protein to exclusively
bind immediately behind the terminator, rendering Lt = 0. By
alternating these signals, we can create two distinct lengths
for supercoils: nx + Lt and nx. Then u(t) becomes a switching
function alternating between two lengths:

u(t) =
{

nx for t ∈ I1, I3, ..In
Lt + nx for t ∈ I2, I4, . . . , In−1

(20)

In simulation we see that the mRNA response matches
a lagged version of a periodically alternating step function.
The mRNA alternates between two non-zero steady-state
values. The supercoiling, as expected, alternates between a
positive setpoint (lower spacing) and a near-zero setpoint
(ample spacing for supercoiling dissipation). The decay rate
of supercoiling and mRNA states is dependent on the balance
of T0 and G0 activity and δm, respectively. For illustrative
purposes, the period in our simulations is set to about p = 100
seconds. In practice, the period would be set to allow ample
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Fig. 4. Dynamic supercoiling control exhibiting transcriptional bursting.
The red line depicts the supercoiling density σ while the blue line depicts
the concentration of mRNA molecules mX .

time for the rise and fall rates observed in measurements.
We see that this strategy provides a coarse way to shape the
frequency and duration of transcriptional bursts.
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