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ABSTRACT: In this work, a machine learning mapping approach for predicting
the properties of atomistic systems is reported. Within this approach, the atomic
orbital overlap, density, or Kohn-Sham (KS) Fock matrix elements obtained at a
low level of theory such as extended tight-binding have been used as input
features to predict the electric field gradient (EFG) tensors at a higher level of
theory such as those obtained with hybrid functionals. It is shown that the
machine-learning-predicted EFG tensors can be used to compute spin relaxation
rates of several ions in aqueous solutions. From only a fraction of data used in
direct calculation, one can predict the quadrupolar isotropic spin relaxation rates
with good accuracy, achieving relative errors between about 2−8% for di)erent ions.

N uclear spin relaxation dynamics plays a crucial role in
defining nuclear magnetic resonance (NMR) spectra,

which provide crucial insight into chemical dynamics at the
atomistic scale, with applications, for instance, in biological
imaging1,2 and electrochemical devices.3,4 Nuclear spin
relaxation in diamagnetic species occurs primarily via magnetic
dipole−dipole, spin-rotation, and quadrupolar interactions.
Quadrupolar nuclides are prevalent in the periodic table, and
the quadrupolar relaxation mechanism is known to dominate
over the others listed when present.5

For a detailed understanding and prediction of quadrupolar
nuclear spin relaxation rates, theoretical studies employing
molecular dynamics (MD) have become vital. Pioneering
studies have relied on force-field (FF) driven MD.6−13 More
recently, it has become possible to conduct NMR relaxation
studies based on ab initio molecular dynamics (AIMD)
simulations, in which the interatomic forces are calculated
via a first-principles electronic structure method usually by
using density functional theory (DFT) combined with a
classical treatment of the nuclear motion.14−23 This approach
allows for an accurate treatment of subpicosecond interactions
of atoms and molecules which is the driving force of NMR
relaxation in the fast motion regime applicable, e.g., for small
molecules in solution at not too low temperatures.

For the purpose of calculating nuclear spin relaxation,
irrespective of whether they are of the ab initio or FF type, MD
simulations need to be paired with calculations of the relevant
interaction tensors that drive a given relaxation mechanism.
For instance, quadrupolar relaxation is mediated by the
fluctuations of the electric field gradient (EFG) tensor at the
nucleus of interest as a function of time. The EFG depends on
the distribution of electric charges surrounding the nucleus and
therefore has a nuclear and electronic contribution. The
nuclear contribution is usually calculated classically from the

distribution of nuclear (point) charges, which is obtained
straightforwardly from each point along an MD trajectory. The
electronic contribution to the EFG requires the electron
density and therefore−in principle−it needs to be calculated
via quantum mechanics (QM) using electronic structure
methods. For the latter, there are numerous choices of varying
accuracy available, without or with periodic boundary
conditions. For example, some of us previously benchmarked
DFT-based EFG calculations with periodic boundary con-
ditions vs “molecular” calculations using cluster models
extracted from MD trajectories and showed that both are
capable of delivering comparable quadrupolar relaxation rates
when the same functionals are employed.15 In "molecular"
(cluster-model) calculations, a much larger variety of electronic
structure models can be employed.

However, the computational cost of evaluating EFG tensors
for hundreds or thousands of MD configurations can quickly
become prohibitive. For example, 23Na relaxation, a nuclide
that is ubiquitous in humans, has been shown to be useful to
investigate cartilage damage in vivo.24,25 T2 measurements of
23Na+ have also been used in a pioneering study of spinal disk
degeneration.26 MD simulations of such processes likely
require large-scale FFMD simulations, which means they
need to be accompanied by highly e>cient computational
methods for EFG tensors. One class of approaches uses
structural data from the MD trajectories, atomic partial
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charges, and models to describe the polarization of the electron
density surrounding the nuclide of interest to determine the
EFG at essentially the same computational cost of an MD
step.8,27,28 For example, based on partial atomic charges
surrounding an ion in solution and the resulting “external”
EFG, Sternheimer antishielding factors29−33

γ∞ have been
employed to obtain the total EFG at these ions including the
ion polarization from the external EFG by multiplying by a
factor (1 + γ∞).6,8,13,27 The square of this factor enters the
relaxation rate. Note that this Sternheimer antishielding is far
from being a small correction. For instance, a value of γ∞ =
−5.45 was reported for Na+.34 The Sternheimer model neither
accounts for solute polarization due to steric e)ects, nor for
EFGs due to partially covalent solvent−solute interactions
such as hydrogen bonds. Therefore, the general utility of the
Sternheimer approach has been questioned as being overly
reductive.17,21 Force-fields with ion polarization terms may
perform more reliably if properly parametrized,8 but there is
the perennial question of transferability and whether such an
approach also works for highly polarizable ions (for example,
γ∞ = −162 for I−)34 or covalently bonded atoms.

As an alternative to the currently available approaches, the
present work introduces the use of machine-learning (ML)
aided calculations of EFG tensors for the purpose of MD-based
quadrupolar nuclear spin relaxation. The immediate advantage
of such a method is that it has the potential to provide access
to large systems and the dynamics with long correlation times
a)ecting the spin relaxation at a modest computational cost.
ML techniques have recently become widely adopted in
various scientific domains. For instance, they have been used to
accelerate calculations of di)erent properties of mole-
cules,35−38 solid-state materials,39,40 and proteins41,42 where
the cost of standard calculations grows rapidly with the size of
the system. The acceleration of MD simulations with the help
of ML-based interatomic potentials43−48 enabled modeling
systems with millions of atoms. Advanced ML models such as
AlphaFold42 exceled at identifying the binding sites in proteins
and predicting their structures. ML techniques have been
successfully utilized to perform excited state dynamics
simulations in model spin-boson systems,49,50 small mole-
cules,51,52 large graphene nanoribbons with thousands of
atoms,53 light-harvesting complexes,54 metal nanoclusters,55 to
name a few. ML-based techniques have also been used to
extend the length of the dynamical simulation, either by
forecasting the longer-time behavior of the observed properties
directly using the short-time data56−61 or by predicting the
properties such as state energies and couplings needed for such
calculations.62−64

Furthermore, ML techniques can be used to elevate the
quality of properties extracted from MD studies performed at
lower levels of theory. For instance, Shakiba and Akimov65

recently demonstrated that a simple kernel ridge regression
(KRR) method can be used to map a guess Kohn-Sham (KS)
Fock operator (based on a superposition of atomic densities)
with nonhybrid exchange-correlation functionals, such as
Perdew−Burke−Ernzerhof (PBE),66 to a nearly converged
KS Fock operator computed using more computationally
demanding hybrid functionals such as Heyd-Scuseria-Ernzer-
hof (HSE06)67,68 or Becke-Lee-Yang-Parr (B3LYP).69−72

Instead of directly mapping molecular geometries to molecular
properties using complex deep neural networks (NNs), in the
aforementioned approach the geometries are first mapped to
preprocessed data computed at lower levels of theory. The

preprocessed data are then used as input to the ML model and
mapped to the properties of interest corresponding to a higher
level of theory. Only a few configurations along the
precomputed trajectory are needed to generate the reference
data at the desired level of theory. Depending on the system
size and the length scale of the process to study, the resulting
speed-up from the ML assistance can reach several orders of
magnitude.65

In this work, we extend the ML-based KS Fock operator
mapping approach to the calculation of EFG tensors in the
context of quadrupolar spin relaxation calculations (Figure 1).

Similar to the ML workflow outlined above, we aim to utilize
the geometry-sensitive guess atomic orbital overlap, density, or
KS Fock matrix elements computed with low-cost electronic
structure methods as feature vectors to predict the EFG tensor
for nuclear spin-relaxation calculations.

NMR relaxation is characterized by the longitudinal (T1)
and transverse (T2) relaxation times and their inverses, the
relaxation rates, respectively. The formalism is based on NMR
relaxation theory73,74 as summarized by Spiess,75 and as
implemented by us in the “dynpy” software.76 In the limit of
fast motion and isotropic samples (solutions, gas phase), the
rates R1 and R2 are equal and we can define an isotropic
relaxation time (Tiso) and corresponding rate Riso.

15,17,18 The
corresponding spin relaxation rates can be computed as

=
+

T

e Q I

I I
G

1 (2 3)

40 (2 1)

Q

iso

2 2

2 2 iso
(1)

Here, Q is the spectroscopic nuclear quadrupole moment cross
section, e is the unit charge, ℏ is the reduced Planck constant,
and I is the nuclear spin quantum number. The function Giso

Q is
given by

=G g2 ( )Q

m
miso 2, 0

(2)

where the ω is the Larmor frequency. The spectral densities
g2,m(ω) = ∫ 0

∞f 2,m(t) exp (iωt)dt are the half-Fourier transforms
of the EFG tensor autocorrelation functions (ACFs) f 2,m(t) =
⟨R2,m(t0)R2,m* (t0 + t)⟩ written here in terms of EFG spherical
tensor elements R

m,
, where = 2 indicates the rank of the

tensor and =m ... in integer steps. The angle brackets
indicate an ensemble average over time origins, t0. The R2,m are

Figure 1. Workflow of the ML mapping approach: (1) the geometry
is initially preprocessed by a quantum chemistry software at a low
level of theory, such as a tight binding model or an atomic guess with
a nonhybrid density functional, and the corresponding atomic overlap,
density, and KS Fock matrices are generated; (2) the elements of the
matrix corresponding to the interaction of an atom with all other
atoms (or its nearest neighbor atoms) are selected as elements of the
feature vector; (3) the feature vector is used to predict a set of
properties using ML techniques.
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related to the Cartesian EFG tensor components Vαβ (α, β ∈
{x, y, z}) as

= = = ±
± ±

R V R V iV R V V iV3
1

6
, ,

1

2
( )zz xz yz xx yy xy2,0 2, 1 2, 2

(3)

In the fast motion limit, the above Fourier transforms reduce
to simple integrations to obtain the spectral densities, g2,m,
without the frequency dependence. The normalization of the
total spectral density gives the correlation time, τc as

=

V

1

(0)
c 2

(4)

where ⟨V(0)2⟩ = *R t R t( ) ( )
m m m2, 0 2, 0 . Combining eqs 1, 2,

and 4 gives the relaxation rate as

=

T
C V

1
2 (0)Q

c

iso

2

(5)

where CQ is the prefactor on the right-hand side of eq 1.
In this work, we consider aqueous sodium, iodine, and

cesium ions (Figure 2), for which quadrupolar relaxation rates
were previously calculated by some of us.15,17 Car−Parrinello
molecular dynamics (CPMD)77 trajectories were performed
previously and simulated one analyte ion, 64 water molecules,
and a counterion (either a proton or hydroxide) in cubic
simulation cells with periodic boundary conditions. The
simulations used ultrasoft pseudopotentials78 from pslibrary
1.0.0,79 a fictitious electron mass of μ = 450 au, and an
integration time step of 0.145 fs. As they were originally
performed for independent investigations, the sodium
trajectory utilized the PBE exchange-correlation functional66

and an elevated temperature of 350 K to prevent the known
“glass-like” behavior of water in room-temperature simulations
of water.80 The iodide and cesium simulations were
equilibrated at 300 K and employed the revised revPBE
functional.81,82 Each simulation also included Grimme’s D-2
dispersion corrections.83,84 The production phases of the
CPMD simulations were all conducted in the NVE ensemble
to a simulation length of 40 ps. Out of 4,000 configurations
sampled, 500 snapshots at equal time intervals (ions clustered
with 30 nearest neighbor solvent molecules) are used herein to
sample the EFG tensor components computed at the DFT
level with PBE0 functional85 with the ADF software package.86

These snapshot DFT calculations are the computational
bottleneck of the approach. Full computational details for
DFT-level computation of the EFGs can likewise be found in
references15, 17. The ACFs of the EFG tensor components are
then used to compute the spin-relaxation times according to
eqs 1 to 5 using the dynpy software.76

The ML model used is a KRR model with either linear and
quadratic kernels. The KRR approach has recently been used
by Charpentier87 in a similar context to construct a ML
framework with smooth overlap of atomic positions (SOAP)88

descriptors. Such an approach enabled accurate prediction of
NMR tensors, which was leveraged in simulation of NMR
spectra and incorporating finite-temperature e)ects for large-
scale sodium silicate glass models at the computational cost of
classical MD simulations.

In the KRR approach, the input and output data are scaled
to a mean value of zero and a standard deviation of 1.0. The
KRR model is obtained through solving the following
equations and then is used to predict the EFG matrix elements:

[ ] = [ ] [ ]

=

v t v t v tV R K X R X R c( ( )) ( ( ( )) , ( ( )) )
i

N

i

1

train

(6)

where K(X, Y) = XYT and K(X, Y) = (XYT)2 are for linear and
quadratic kernels, respectively. Here, bold notation is used to
indicate vectors and matrices, v[X] notation represents the
vectorized form of the corresponding matrix X, and
v[X(R(tα))] represents the input feature vector extracted
from either atomic orbital overlap, density, or KS Fock matrix.
Mathematically, the KRR with linear kernel is essentially the
same as the standard linear regression with regularization
(ridge regression). However, the use of the KRR framework
allows exploring other choices of the kernel function, such as a
quadratic kernel which is also used in this work. Finally, the
vectors of KRR coe>cients are computed for each
configuration R(tα) as

= + [ ]v tc K I V R( ) ( ( ))1
(7)

in which λ is a hyperparameter, selected as 0.1 here, to
prevent overfitting. The hyperparameter is tuned by trial and
error. As alluded to above, the guess KS Fock matrices in the
atomic orbital basis computed with the nonhybrid PBE
functional can be used as feature vectors that constitute inputs
of the ML model, while the components of the EFG tensors

Figure 2. Truncated MD snapshots of solvated (a) sodium, (b) iodine, and (c) cesium ions.
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computed at the PBE0/basis level85 act as the target outputs.
In addition to the choice of guess (nonself-consistent, non-
SCF) KS Fock matrix, we consider other possibilities for the
feature vector choices: (a) guess (non-SCF) density matrices
in the AO basis, and (b) atomic orbital overlap matrices.
Although none of these choices capture true intrinsic
electrostatics of the system, they all are sensitive to the
system’s geometry. As was shown previously, the structure of
an unconverged KS Fock may closely resemble that of a
converged (the self-consistent, SCF) one.65 Since the EFG

tensor matrix elements directly depend on the latter, one may
expect that the EFG tensor elements can be well-parametrized
by the mapping of the non-SCF KS Fock or density matrices.
In addition to using non-SCF matrices computed with the PBE
functional, we also consider SCF matrices but computed using
even more computationally e>cient extended tight-binding
(xTB) method.89 All the feature vector calculations are
conducted using the CP2K software.90,91 To facilitate and
accelerate training of the ML models, the matrices are
computed using only a limited shell of atoms surrounding

Figure 3. (a, b, c) Mean absolute error of the ML-predicted EFG tensor elements; relative errors of (d, e, f) variance of EFG tensor elements, (g, h,
i) correlation times, and (j, k, l) isotropic relaxation rates. Columns correspond to di)erent ions: (d, g, j) sodium, (e, h, k) iodine, and (f, I, l)
cesium. In all panels, the computed properties are computed using atomic orbital overlap (blue), density (red), and KS Fock (green) matrices as
the input to ML model. The input are obtained using PBE guess (solid lines) or converged xTB (dashed lines) calculations. All results correspond
to ML models trained using a linear kernel.
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the analyte ions. Due to symmetry, only the upper triangular
part of these matrices is chosen, vectorized, and used as feature
vector to map to the EFG tensors using ML (see section S1 of
the Supporting Information).

A few points regarding the present methodology are worth
mentioning. First, while alternative geometry-sensitive input
features, such as SOAP-based descriptors that are widely used
in ML-based force fields,92 may be used, the present work aims
to demonstrate the possibility of the mapping of the geometry-
sensitive electronic structure-informed descriptors to the EFG

tensor elements. The present method for ML model
construction is simple to implement, DFT-informed, and
rather e>cient. While it is true that SOAP approach does not
require even the low-cost DFT or xTB calculations and thus
may be computationally even less expensive, the current
method represents a conceptually distinct way to generate
feature vectors for the EFG tensor elements prediction.
Second, the present ML mapping approach is not meant to
be globally transferable as ML-based force fields, but rather
provides a way to accelerate the calculations of the EFG tensor

Figure 4. (a, b, c) Mean absolute error of the ML-predicted EFG tensor elements; relative errors of (d, e, f) variance of EFG tensor elements, (g, h,
i) correlation times, and (j, k, l) isotropic relaxation rates. Columns correspond to di)erent ions: (d, g, j) sodium, (e, h, k) iodine, and (f, I, l)
cesium. In all panels, the computed properties are computed using atomic orbital overlap (blue), density (red), and KS Fock (green) matrices as
the input to ML model. The input are obtained using PBE guess (solid lines) or converged xTB (dashed lines) calculations. All results correspond
to ML models trained using a quadratic kernel.
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elements for a given system and under specific conditions
(such as temperature and concentration) used for ML training.
Hence, the method is most useful for calculations involving
multiple and/or long MD trajectories for which the target
system/conditions remain unchanged. The approach is
expected to be transferable within small variations of
temperatures and ion concentrations, as long as no phase
transitions occur. Third, for the time being, we utilize the
simplest approach which does not impose any additional
restrictions in regard to rotational covariance of input features
such as those used with SOAP-based descriptors. Unlike
pretrained ML models,87 this model is designed to work for a
fixed (Cartesian) coordinate system, so the lack of rotational
covariance is not critical in this context. It is expected,
however, that enforcing the rotational covariance properties in
future versions of the method may help reduce the amount of
data needed to reach the desired threshold of accuracy in the
target properties and alleviate the overfitting problem.

We explore the quality of the ML mapping approach when
the ML is trained using di)erent amounts of the training data:
1%, 2.5%, 5%, 10%, 25%, and 50% of the available data used in
producing the reference quantities. The training samples are
constructed by randomly selecting the indicated fraction of the
data points (configurations and associated quantum-mechan-
ical data) from the initial data set without repetitions. Better
approaches are likely possible, where the training points would
be selected as the most dissimilar points in the available data
set. The data extraction and preparation are done using the
Libra code,93,94 and ML procedures are carried out using the
scikit-learn package.95 The mean absolute error between the
predicted EFG tensor elements and all reference elements,
including both training and test data points, is computed as
follows:

= | |

= =

V V
1

9
V

x y z x y z

ref ML

, , , ,
, ,

(8)

where Vref and VML represent the reference and ML predicted
EFG tensor matrices, respectively. We also compute the
relative errors in the predicted spin-relaxation times, τiso, rates,

T

1

iso

, the EFG tensor variances (⟨V(0)2⟩), and correlation times

(τc), with respect to their reference values:

=
| |

×
P P

P
100

ref ML

ref (9)

where Pref and PML correspond to the reference and ML-
predicted properties P, respectively. All additional details of the
calculations are available via a Zenodo repository.96

The MAEs of the EFG tensor elements computed according
to eq 6 are shown in panels a-c of Figures 3 and 4. The MAE
consistently decreases as the training set size increases
regardless of the atomic type (Na, I, or Cs), input feature
type (atomic orbital overlap, density, or KS Fock matrices),
kind of calculations (atomic guess or converged xTB), or the
choice of kernel (linear or quadratic polynomials). Using the
inputs based on the PBE atomic guess leads to better
performance with relatively small errors when a linear kernel
is employed (Figure 3a-3c). Specifically, using the linear kernel,
the use of the density matrix as the ML input leads to smaller
errors compared to the use of the KS Fock and overlap
matrices. In turn, the choice of the KS Fock matrices is
preferred over the atomic orbital overlap matrix since it leads
to smaller MAE values, especially as the training set size
increases. While the use of the quadratic kernel does not lead
to a significant reduction of error (Figure 4, panels a-c), it
makes the ML-based predictions relatively insensitive to the
kind of the input feature used.

Reproducing the EFG tensor matrix elements is necessary
but not su>cient for computing spin relaxation rates
accurately. Thus, we also analyze the quality of ML-predicted
properties that enter eqs 1 to 5. Specifically, we focus on the
relative errors in EFG tensor variance, ⟨V(0)2⟩, and correlation
time, τc, which are the main components in computing spin
relaxation rates. The smallest relative errors in ⟨V(0)2⟩ and τc
are obtained when using the largest training set (50% of data),
using the converged xTB KS Fock matrix as the feature input,
and using a linear kernel in the KRR procedure. For the
investigated systems, the relative errors are 2.4% and 0.5% for
sodium (Na) ion, 11.4% and 13.3% for iodine (I) ion, and
1.3% and 3.0% for cesium (Cs) ion for ⟨V(0)2⟩ and τc
respectively (Figure 3, panels d-i). Despite the fact that the
MAE values obtained for ML calculations based on the xTB
feature vectors are larger than those calculated using PBE
atomic guess matrices (Figure 3, panels a-c), the relative errors
are smaller in the former case, for both ⟨V(0)2⟩ (Figure 3,
panels d-f) and τc (Figure 3, panels g-i). As a result of such an
“error cancellation”, the xTB-based spin relaxation rates are
comparable in accuracy to those derived from the ML
approach based on the PBE-guess feature vectors, sometimes
even exceeding them in accuracy. For instance, using the
largest training set considered, the relative error of Na spin
relaxation rates is 0.8% for the PBE-guess KS Fock, whereas
the xTB-based KS Fock input feature yields comparable 1.9%

Table 1. Spin Relaxation Rates (in Hz) and the Corresponding Relative Errors (in Parentheses) Obtained Using ML Models
Trained with 50% of Data Taken as the Training Seta

Input property, Hz (% relative error)

Relaxation rate Guess Atomic orbital overlap Density KS Fock Reference,15,17 Hz

Isotropic PBE guess 12.41 (3.8)/13.42 (4.1) 12.68 (1.7)/13.28 (3.0) 12.79 (0.8)/13.45 (4.3) 12.89

xTB 13.50 (1.9)/13.47 (4.4) 12.15 (5.8)/13.29 (3.0) 12.65 (1.9)/13.61 (5.5)

Isotropic PBE guess 107.00 (6.9)/117.34 (2.1) 107.45 (6.5)/122.66 (6.8) 97.08 (15.5)/115.33 (0.4) 114.88

xTB 89.26 (22.3)/113.15 (1.5) 123.65 (7.6)/118.72 (3.3) 88.29 (23.2)/108.47 (5.6)

Isotropic PBE guess 67.79 (8.4)/75.24 (20.3) 72.44 (15.8)/76.68 (22.6) 66.91 (7.0)/75.31 (20.4) 62.56

xTB 63.72 (1.9)/72.77 (16.3) 71.84 (14.8)/74.04 (18.6) 61.48 (1.7)/72.91 (16.5)
aThe values are reported for atomic orbital overlap, density, and KS Fock matrices taken as the input feature vectors. The results are reported for
ML models constructed with linear and quadratic kernels (separated by the backslash) and using either converged xTB or PBE guess properties.
The reference relaxation rates computed directly are shown in the last column.
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of relative error in rates compared to the reference values
obtained from standard calculations. More comprehensively,
the relative errors in predicted spin relaxation rates computed
using 50% of the data taken at the ML training stage are
summarized in Table 1. Furthermore, the reference and
predicted individual components of the EFG tensors for each
ion trained with di)erent input features using 50% of training
data with linear and quadratic kernels are brought in section S2
of the Supporting Information.

We observe that the present ML mapping approach
generally yields lower errors for spin relaxation rates and its
components (the variance and correlation time) for the Na+

ion, while for both I- and Cs+ ions larger errors are observed.
We rationalize this e)ect based on the concept of ionic
hardness/softness, which is related to the extent of the ion’s
polarizability. The Na+ ion is less easily polarized, implying that
its electronic configuration in solvent is more similar to the
isolated ion electronic structure than it is the case for more
polarizable ions. Cs+, and in particular I− are have more easily
polarizable electronic shells. Thus, the nonlocal e)ects (e.g.,
due to the presence of solvent molecules) may be more
important to account for when computing EFG tensors. Since
in the current ML approach, the input matrices are partitioned
into smaller blocks of matrix elements, based on the belonging
of atomic orbitals to certain atomic species, information on
nonlocal e)ects may be partially lost. Since in harder ions, such
as Na+, the nonlocal e)ects are less important for determining
their properties, the matrix partitioning introduces smaller
error in the ML mapping approach, leading to smaller errors in
spin relaxation rates compared to Cs+ and I-, where nonlocal
e)ects are more critical to capture.

The current results indicate that the success of the ML
models in predicting spin relaxation rates is highly dependent
on the complexity of both input features and the selected ML
model. Here by “complexity”, we mean both the size of the
input vector and the number of nonzero elements which are
the interactions between angular momentum components of
the atoms in the system. For simpler input features derived
from xTB, KRR with a linear kernel performs well, providing
accurate predictions for both variance and correlation time.
This suggests that the linear kernel is well-suited to capturing
the essential relationships in these simpler features. However,
when the complexity of the input features increases, such as
with the PBE input feature, KRR with neither linear nor
quadratic kernel perform as e)ectively, indicating that more
sophisticated ML models, potentially NNs, may be needed to
fully exploit the detailed information present in the PBE-guess-
based inputs. Conversely, when moving to a quadratic kernel in
KRR, we observe a decline in performance especially for xTB
features. This outcome implies that while the quadratic kernel
is designed to capture more complex relations than the linear
kernel, it may lead to overfitting, particularly in the context of
the relatively sparse xTB data, which contain larger fractions of
zero or near-zero matrix elements compared to the DFT one.
This suggests that adding complexity to the kernel does not
necessarily provide a better representation of the underlying
physics, indicating that simpler input features like the ones
generated from xTB are best modeled using simpler kernels. In
our initial attempts, not presented in this work, we also
explored other kernels. Using kernels of degree higher than
quadratic and using radial basis function (RBF) kernels yielded
results similar to those of the quadratic kernel, without notable
improvement. Additional processing of the input features, such

as dimensionality reduction by removing features with low
variance, may help alleviate the overfitting issue and reduce the
error values of the model, although such approaches are
outside of the scope of the current proof-of-principle work.

The PBE-guess input features fall into an intermediate
category. While they contain more complex information, the
KRR models do not fully exploit this potential. The linear
kernel cannot properly map these features to the EFG tensors
while the quadratic kernel does not o)er significant improve-
ments and, in some cases, worsen the results. This observation
highlights an important point: the choice of the input features
and the ML model must be aligned. In the current study, the
xTB features align well with the capabilities of the KRR with a
linear kernel. However, this should not diminish the value of
using more complex inputs such as the ones generated from
PBE-guess. Instead, one should probably explore more
advanced ML models, such as NNs, which may be better
equipped to handle these inputs and capture the EFG more
e)ectively. Overall, while our current ML approach works well
for certain cases, particularly with simpler xTB inputs, it may
not be as e)ective for other cases. The success of this approach
depends on the alignment between the complexity of the input
features and the capacity of the ML model to utilize them
e)ectively highlighting the need for careful selection of the
model and inputs.

The presented procedure leads to notable speed-ups in EFG
tensor elements prediction compared to the reference PBE0
calculations. Once the ML models are constructed, the speed-
up is determined by the ratio of the high-level (e.g., PBE0,
always self-consistent) and the low-level (self-consistent for
xTB or nonself-consistent for PBE). For the systems
considered in this work, such ratio is approximately 24−41
and 43−66 times for xTB and PBE atomic guess calculations,
respectively (see section S3 of the Supporting Information).
Such ratios will be larger for larger systems, due to distinct
scaling of computational complexity of the pure and hybrid
functionals. Factoring in the costs of the ML model
construction, the speed-up is determined by the ratio of the
number of MD configurations included in the correlation
function calculations to the number of configurations used in
the ML model training. In this regard, the main goal/advantage
of the method is to accelerate the calculations of the EFG
tensors for many geometries (long MD trajectories or multiple
distinct MD trajectories) after creating the ML model using a
smaller fraction of the MD data.

In conclusion, we developed an ML mapping approach for
the prediction of the EFG tensor elements and demonstrated
their use for computing quadrupolar nuclear spin relaxation
rate. One can use either the atomic orbital overlap, density, or
KS Fock matrices obtained with low levels of electronic
structure theory such as converged xTB and or guess PBE as
input features. Using either linear or quadratic kernel ridge
regression and su>cient amount of training data, such input
vectors can be mapped directly to EFG tensor elements to
bypass computationally demanding calculations. Our analysis
suggests that all of these feature input options generally yield
consistent results. Using the quadratic kernel reduces the
variability of the predicted quantities with respect to the choice
of the input feature vector types. The developed ML mapping
approach yields the results within a few percents of the target
values (from the standard calculations) even when a fraction of
the input data is used for training the ML model. Better
accuracy is obtained for harder, less polarizable ions such as
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sodium as opposed to more polarizable ones such as cesium or
iodide. Overall, our findings validate the e>ciency and
robustness of the ML mapping approach for predicting the
EFG matrices which can significantly reduce the computational
costs while yielding good accuracy. The computational
acceleration in predicting the time-series of EFG tensor
elements o)ered by the present approach opens new
possibilities for conducting more accurate spin-relaxation
calculations where many long trajectories or large simulation
cells need to be involved.
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D.; Tunyasuvunakool, K.; Wu, Z.; Žemgulyte,̇ A.; Arvaniti, E.; Beattie,
C.; Bertolli, O.; Bridgland, A.; Cherepanov, A.; Congreve, M.; Cowen-
Rivers, A. I.; Cowie, A.; Figurnov, M.; Fuchs, F. B.; Gladman, H.; Jain,
R.; Khan, Y. A.; Low, C. M. R.; Perlin, K.; Potapenko, A.; Savy, P.;
Singh, S.; Stecula, A.; Thillaisundaram, A.; Tong, C.; Yakneen, S.;
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