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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen Land surface temperature (LST) derived from satellite observations and weather modeling has been widely used
for investigating Earth surface-atmosphere energy exchange and radiation budget. However, satellite-derived
LST has a trade-off between spatial and temporal resolutions and missing observations caused by clouds,
while there are limitations such as potential bias and expensive computation in model calibration and simulation
for weather modeling. To mitigate those limitations, we proposed a WRFM framework to estimate LST at a
spatial resolution of 1 km and temporal resolution of an hour by integrating the Weather Research and Fore-
casting (WRF) model and MODIS satellite data using the morphing technique. We tested the framework in eight
counties, Iowa, USA, including urban and rural areas, to generate hourly LSTs from June 1st to August 31st,
2019, at a 1 km resolution. Upon evaluation with in-situ LST measurements, our WRFM framework has
demonstrated its ability to capture hourly LSTs under both clear and cloudy conditions, with a root mean square
error (RMSE) of 2.63 K and 3.75 K, respectively. Additionally, the assessment with satellite LST observations has
shown that the WRFM framework can effectively reduce the bias magnitude in LST from the WRF simulation,
resulting in a reduction of the average RMSE over the study area from 4.34 K (daytime) and 4.12 K (nighttime) to
2.89 K (daytime) and 2.75 K (nighttime), respectively, while still capturing the hourly patterns of LST. Overall,
the WRFM is effective in integrating the complementary advantages of satellite observations and weather
modeling and can generate LSTs with high spatiotemporal resolutions in areas with complex landscapes (e.g.,
urban).
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1. Introduction

Land surface temperature (LST), the radiative skin temperature of
the land surface (Jaber and Abu-Allaban, 2020), provides direct insights
for better understanding of Earth surface-atmosphere energy exchange
and radiation budget (Li et al., 2013). The ongoing urbanization process
increases LST in urban environment and significantly intensifies urban
heat island (UHI) effect (i.e., elevated temperature patterns in the urban

areas) (Li et al., 2022; Li et al., 2021; Li et al., 2017; Zhou et al., 2018).
The diurnal LST constitutes an important element of the climate system
and is vital for providing an additional constraint on latent and sensible
heat flux calculations (Aires et al., 2004), detecting soil freeze/thaw
status (Jiménez et al., 2015), and monitoring surface UHI (Weng and Fu,
2014).

Currently, satellite observations (Hu et al., 2022; Li et al., 2018d; Li
etal., 2013; Liu et al., 2020) and physically-based weather modeling (Fu
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et al., 2019; Li et al., 2019) offer means to understand temporal dy-
namics of LST and UHI effects. However, both approaches have their
own limitations. Satellite observations offer an effective way to measure
the spatiotemporal dynamics of LST over large areas with an acceptable
accuracy, but it is limited because of the trade-off between spatial and
temporal resolutions (Hu et al., 2020) and missing observations due to
clouds. For example, thermal sensors on geostationary satellites, such as
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and those on
the NOAA Geostationary Operational Environmental Satellite (GOES),
can provide LST observations in the sub-hourly frequency but with a
coarse spatial resolution (i.e., several kilometers). The thermal sensors
on polar-orbiting satellites, such as Moderate Resolution Imaging
Spectroradiometer (MODIS), can provide global LST observations with a
medium spatial resolution (i.e., 1 km) but only four observations by two
different satellites (i.e., Terr and Aqua) each day. Physically-based
weather modeling can provide contiguously estimates of the spatio-
temporal dynamics of LST in a sub-hourly frequency and from tens of
meters to thousands of kilometers in both clear-sky and cloudy condi-
tions (Chen et al., 2011) but some potential bias still exist in the simu-
lated LSTs due to inherent model formulations and assumptions (Liu
et al., 2017; Xia et al., 2017), especially in specific seasons such as
summer (Ma et al., 2015).

There have been major efforts to overcome limitations of satellite
observations. These efforts fall into three categories: spatial downscaling
using auxiliary data, temporal interpolation using diurnal temperature
cycle (DTC) models, and fusing data from geostationary and polar-
orbiting sensors. For example, auxiliary data with physical or ecolog-
ical characteristics that are closely related to LST (e.g., elevation and
emissivity) have been widely used to increase the spatial resolution of
LST from SEVIRI and GOES to 1 km (Weng and Fu, 2014; Zaksek and
Ostir, 2012). The DTC model, using quasi-physical methods with pa-
rameters ranging from two to twelve parameters (Huang et al., 2014)
and semi-empirical models with more than four parameters (Gottsche
and Olesen, 2001), have been widely used to describe diurnal dynamics
of satellite-based LST observations and to increase their temporal reso-
lutions (e.g., daily to hourly) (Duan et al., 2014). Both methods using
auxiliary data and DTC models are helpful for the estimation of LST, but
their performance was significantly influenced by the number of pa-
rameters used in these studies (Hong et al., 2018; Huang et al., 2014; Lu
and Zhou, 2021). Spatiotemporal integrated temperature fusion model
(STITFM) has been used to fuse multi-scale polar-orbiting and geosta-
tionary satellite observations to estimate LSTs at higher temporal and
spatial resolutions, but it required similar sensor characteristics and
observing conditions among multi-sensors on different satellites, such as
the quality of input data, overpass times, and viewing geometry (Wu
et al., 2015).

The physically-based weather modeling has also been used to esti-
mate high spatiotemporal LSTs. The widely used Weather Research and
Forecasting (WRF) model, an atmospheric modeling system designed for
numerical weather prediction (Skamarock et al., 2019), couples physical
parameterization schemes and satellite-observed land surface properties
to simulate LST (Kirthiga and Patel, 2018). Inspired by the WRF model’s
sufficient physical mechanism (Chen et al., 2011), several studies have
been conducted to generate MODIS-like gap-free LSTs by integrating
simulated LSTs obtained from the WRF model (Fu et al., 2019; Zhang
et al., 2022b; Zhang et al., 2022a; Zhang et al., 2024). In these studies,
machine learning algorithms and time-adjacent strategies have been
utilized to establish the relationship between MODIS-observed and
WREF-simulated LSTs for reconstructing missing LST observations due to
cloud contamination. However, the resulting LSTs are typically only
available for the same four time points as the MODIS products. More-
over, the uncertainties present in WRF simulations may be transferred to
the resulting MODIS-like LSTs. For example, one of the major sources of
WRF model bias is the improper representation of land surface proper-
ties (Kirthiga and Patel, 2018). The coarse resolution and outdated
satellite observations in the WRF model might fail to capture fine-scale
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and recent heterogeneities of land surface properties, especially in the
urban domain. There is a growing body of literature on using fine res-
olution and updated satellite observations on land use land cover
(LULQ), land surface elevation, leaf area index (LAI), green vegetation
fraction (GVF), and albedo to improve the accuracy of the WRF simu-
lation (He et al., 2017; Vahmani and Ban-Weiss, 2016). Approaches such
as model calibration, a procedure in which model parameters are
adjusted to improve model simulations and to decrease bias in simulated
LSTs compared to respective observations, can be performed using cloud
computing resources (Di et al., 2018; Ji et al., 2018). However, such
procedure requires tremendous computational power and professional
knowledge because the WRF model involves tens to hundreds of pa-
rameters used in the model equations and they require very significant
computation time to evaluate their impact on simulated LSTs.

Therefore, it is highly desirable to develop an effective method to
generate accurate LSTs with high temporal and spatial resolutions
devoid of the limitation’s biases in observed and simulated ones. For
example, MODIS observations can provide an accurate spatial pattern of
LST, but the frequency of these observations are limited for a given day
(i.e., four observations per day by two satellites) as well as missing ob-
servations due to cloud contamination. The WRF model has the ability to
estimate diurnal LSTs, but the spatial pattern and magnitude of esti-
mated LSTs might be biased. In this study, we propose a framework
named WRFM to combine MODIS-observed and the WRF simulated LSTs
to generate LSTs with high temporal and spatial resolutions. The
framework benefits from integrating the diurnal pattern of LST from the
WREF simulation with 1 km gap-filled MODIS LSTs (2 AM and 2 PM) (Li
etal., 2018b; Pham et al., 2019; Shiff et al., 2021) to estimate the hourly
LSTs at a 1 km spatial resolution. We (1) performed the WRF simulation
with updated land surface properties and assessed its performance; (2)
developed WRFM to integrate gap-filled MODIS LSTs and WRF simu-
lated LSTs using morphing technique; and (3) analyzed the spatiotem-
poral pattern of WRFM-generated LSTs. The following sections describe
the study area and data (Section 2), the proposed framework (Section 3),
the results (Section 4), discussion (Section 5), and conclusions (Section
6).

2. Study area and data
2.1. Study area

The study area covers eight counties located in the central part of
Iowa, USA, including Guthrie, Dallas, Polk, Jasper, Adair, Madison,
Warren, and Marion counties. Polk County is not only the most populous
county in Iowa (United States Census Bureau, 2020) with approximately
490 thousand inhabitants in 2019 (Li et al., 2018c), but also the home to
the state capital, Des Moines. Warren, Jasper, and Dallas Counties have a
mix of urban and rural areas and Dallas County is a rapidly growing
county. Guthrie, Adair, Madison, and Marion Counties are mostly
covered by rural areas and the Marion County is the home to Lake Red
Rock, Iowa’s largest lake. Three nested domains (Fig. 1A) of the WRF
model were designed to cover the entire study area. The horizontal grid
spacing of these three domains is 9 km (d01), 3 km (d02), and 1 km
(d03), with 70 x 61, 126 x 99, and 177 x 102 grid cells, respectively. To
further validate the performance of WRF and WRFM with in-situ
measured LSTs, another two nested domains (Fig. 1B) of the WRF
model were designed within d01 to cover the nearest Surface Radiation
Budget Network (SURFRAD) station, Sioux Falls, South Dakota, USA
(SXF). The horizontal grid spacing of these two domains is 3 km (d01s),
and 1 km (d02s), with 30 x 30 and 30 x 30 grid points, respectively.

2.2. LST data
We obtained in situ near-surface air-temperature data from the

NOAA-ASOS network (Automated Surface Observing System) and in situ
LST measurements from the SURFRAD. NOAA-ASOS measurements are
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Fig. 1. The nested domains used in the WRF model for simulating LSTs in the study area (A) and SXF SURFRAD station (B). The simulation results for the innermost
domain (C) were used to generate WRFM-LSTs for the study area. The background shows land cover types.

taken primarily with heated tipping bucket gages located at airports,
consisting of hourly weather observations for several weather variables,
including 2 m air temperature (Fullhart et al., 2020). We extracted air
temperature records from June 1 to August 31, 2019 from nine ASOS
stations located in the study area to assess the performance of WRF
model. Furthermore, SURFRAD surface radiation budget network, con-
sisting of seven sites across the US, was established to support satellite
retrieval validation, modeling, and climate, hydrology, and weather
research (Augustine et al., 2000). Using the process described in (Zhu
et al., 2022) and (Duan et al., 2012), we calculated hourly in situ LSTs

based on observed downwelling and upwelling longwave radiations.
The accuracy of in situ LST measurements is approximately 0.5-0.8 K
(Wang and Liang, 2009).

Original MODIS LSTs from June 1st to August 31st, 2019, were used
to assess the spatial pattern captured by WRF-simulated and WRFM-
generated LSTs. The MODIS product (MOD/MYD11A1) provides daily
1 km LSTs with four observations at ~1:30 AM and PM local time (Aqua
satellite) and at ~10:30 AM and PM local time (Terra satellite). The LSTs
product were derived using the refined generalize split-window LST
algorithm (Wan and Dozier, 1996) with an error of about 2 K for all test
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Fig. 2. The scatter plots between SURFRAD-observed and MODIS-observed (A, clear-sky), Gap-filled (B, cloudy sky), and Copernicus-observed (C, clear-sky) LSTs.
The averaged diurnal variations for LSTs from SURFRAD (Stn-LST) and Copernicus (Copernicus-LST) observations in June, July, and August, respectively (D).
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sites (Wan, 2014). Cloud-contaminated pixels were replaced with
missing values based on the MODIS product’s quality assurance (QA)
information.

Gap-filled clear-sky 1 km daily LSTs from June 1st to August 31st,
2019, created by (Zhang et al., 2022c), were used to integrate with WRF-
simulated LSTs. To achieve seamless daily LST coverage at mid-daytime
(1:30 PM) and mid-nighttime (1:30 AM), a spatiotemporal fitting
approach was employed to estimate LST values for the missing MODIS
Aqua observations at 1:30 PM and 1:30 AM. This estimation was based
on two other LST observations from the Terra satellite, specially at
10:30 AM and 10:30 PM. The performance of proposed framework was
evaluated by calculating root mean square error (RMSE) for 15 MODIS
tiles in 2005, 2010, and 2015 with introduced gaps under three sce-
narios (i.e., excluding 25 %, 50 %, and 75 % of valid pixels). For
different ratios of exclusions, the RMSE varied from 2.05 to 2.31 °C for
daytime and from 1.35 to 1.62 °C for nighttime, respectively. This LST
dataset has a notable advantage in its ability to accurately capture
intricate details of spatial heterogeneity within urban regions (Zhang
etal., 2022¢). Asillustrated in Fig. 2 A&B, the estimated LSTs for the SXF
SURFRAD station, derived from the gap-filled LSTs product, exhibit a
competitive performance when compared with MODIS LST observa-
tions. Remarkably, the gap-filled LSTs product only shows a slight in-
crease in RMSE of 1.35 K, highlighting its potential as a reliable data
source for supplying LSTs in cases when original MODIS LSTs have
missing values due to cloud contamination.

The LST data from European Copernicus satellite for June 1st to
August 31st, 2019, were obtained and used to assess the diurnal varia-
tion of LST from the WRF simulation and the WRFM framework. The
Copernicus Global Land Service (Freitas et al., 2013) provides hourly
LSTs with a spatial resolution of 5 km for the globe’s land surface within
the —60°/70° latitude range. The LSTs in this product were estimated
from Top-of-Atmosphere brightness temperatures from the infrared
spectral channels of a constellation of geostationary satellites including
Meteosat Second Generation (MSG), GOES, and Multifunction Transport
Satellite (MTSAT). As a Level 4 LST product, the Copernicus LST product
is considered reliable, with an uncertainty range of 2 °C (for Generalized
Split-Window and the two-channel algorithm) to 4 °C (for the one-
channel algorithm) (Jia et al., 2023). For our study area, the RMSE of
Copernicus LSTs was 2.54 K and the Pearson’s correlation coefficient (p)
was 0.95 when compared to in situ LST measurements (Fig. 2C). While
Copernicus observations can effectively capture the diurnal variation of
LSTs, but they exhibit a noticeable bias in their magnitude (Fig. 2D).
Therefore, Copernicus observed LST with a resolution of 5 km is suitable
for validating temporal patterns.

2.3. Land surface properties for WRF modeling

We collected satellite-based land surface properties (i.e., LULC,
impervious surface area (ISA), albedo, GVF, and LAI) for the study
period. Usually, the WRF model uses default satellite-based land surface
properties, with a coarse spatial resolution, which might be outdated
and do not capture the changes and seasonal dynamic of these proper-
ties. An accurate representation of the land surface is important to
precisely capture their LST effects using the WRF model (Sertel et al.,
2010).

A growing body of literature shows that default land surface prop-
erties, such as LULGC, ISA, albedo, GVF, and LAI, could induce significant
model bias (Meng et al., 2018). First, an up-to-date LULC dataset of high
spatial resolution is desirable in the WRF simulations because the WRF
model uses LULC classes to assign certain static parameters and initial
values at each grid cell, such as surface roughness and emissivity
(Schicker et al., 2016). Second, vegetation conditions should be updated
as a function of time in the WRF model using monthly gridded remote
sensed GVF and LAI datasets. GVF, acting as the weighing factor be-
tween bare soil and canopy transpiration, affects LST simulation by
altering surface fluxes (Chen et al., 1996). LAI plays a major role in
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determining the amount of transpiration from the vegetation canopy,
affecting LST simulation through the alteration of evaporative cooling
(Kurkowski et al., 2003). Third, physical characteristics of land surface
altered by urbanization (Vahmani and Ban-Weiss, 2016; Vahmani and
Hogue, 2014) should be updated in an accurate and timely manner in
the WRF model using gridded monthly remotely sensed albedo and
annual ISA.

All data collection and analysis for updating the land surface prop-
erties were performed on the Google Earth Engine (GEE) platform using
its archived satellite observations. In accordance with previous studies
(Fu and Weng, 2018; Jiang et al., 2008), LULC satellite observations
were extracted from MODIS land cover (MCD12Q1.006) for the year
2019, coupled with detailed urban land use data derived from the Na-
tional Land Cover Database (NLCD) for the same period (Chen et al.,
2004). Given the global availability of MODIS land cover data spanning
from 2001 to 2021 and the possibility of obtaining detailed urban land
use data from alternative sources (Chen et al., 2014; He et al., 2019), the
utilized land cover scheme in this study is adaptable for use in other
study areas. The GVF values were calculated using the equation in
(Gutman and Ignatov, 1998) with the MODIS (MOD13A1.006)
Normalized Difference Vegetation Index (NDVI) dataset for summer of
2019 and the MODIS land cover (MCD12Q1.006) dataset for 2019. The
surface albedo was calculated using the equation in (Li et al., 2018a)
with the MODIS albedo (MCD43A3.006) dataset for summer of 2019.
The LAI was derived from MOD15A2H.006 product in summer of 2019.

3. Methodology

In this study, a WRFM framework was developed to improve the
estimation of hourly LSTs at a 1 km spatial resolution (Fig. 3). First, the
WREF simulation was performed with the updated satellite-observed land
surface properties. Second, the temporal pattern of WRF-simulated LSTs
and spatial pattern of gap-filled 1 km daily 2 AM and 2 PM MODIS LST
were integrated using the morphing technique (Belcher et al., 2005).
Third, the performance of the WRF model and the capability of the WRF
model and WRFM framework to capture the spatiotemporal variations
of LSTs were evaluated using satellite and in situ LST observations.
Finally, we investigated the spatiotemporal pattern of UHI effect using
WRFM-generated LSTs. More details about each step are presented in
the following sections.

3.1. WRF modeling and its configuration

WREF version 4.1 was used to simulate hourly LSTs for the study area
and the SURFRAD site with identical model configuration. Specifically,
we chose the Noah land surface model (Noah LSM) (Tewari et al., 2004)
coupled with the single-layer urban canopy model (SLUCM) for the land
surface; the Lin scheme (Chen and Sun, 2002) for microphysics; the
Dudhia and RRTM schemes (Dudhia, 1989; Mlawer et al., 1997) for
shortwave and longwave radiations, respectively; the Eta similarity
scheme (Janjic, 1994) for surface layer; and the Mellor-Yamada—Janjic
(MYJ) Scheme (Janji¢, 1994) for the planetary boundary layer. Rean-
alysis data from the Global Forecast System (GFS) at the spatial reso-
lution of 0.5 degrees and temporal resolution of 6 h (“Global Forecast
System Analysis (GFS-ANL)”) under both clear-sky and cloudy condi-
tions were used as inputs for the initial and lateral boundary conditions.
The simulations were performed from June 1st to August 31st, 2019,
summer season in Iowa. The first 48 h of the simulation were used for
spinning-up. The simulation results for the innermost domain (d03)
were used to generate WRFM-LSTs and to investigate the spatiotemporal
patterns of study area’s thermal environment.

3.2. Morphing integration

The morphing technique described by Egs. (1-3), developed by
(Belcher et al., 2005) was adopted to integrate the temporal pattern of
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Fig. 3. The proposed framework with a combination of WRFM and satellite observations for estimating hourly LSTs at a 1 km resolution (A) and evaluating WRFM-

generated LSTs based on satellite and in-situ LST observations (B).

WRF-simulated LSTs and spatial pattern of gap-filled MODIS LSTs. This
method was used to adjust time series with two practical advantages.
Firstly, the ‘baseline climate’ is reliable, which is from the WRF-
simulated diurnal dynamic of LST during the study period that was
driven by the background reanalysis climate data and physical param-
eterization schemes. By incorporating comprehensive atmospheric
physics processes, WRF was able to generate reliable diurnal patterns of
various meteorological variables (Fu et al., 2019). Second, the accuracy
of spatial pattern of WRF-simulated LST was improved by integrating
gap-filled LST from MODIS observation.

We utilized a morphing procedure (Fig. 4) consisting of the combi-
nation of shift and a stretch (Eq. (1)), performed on a daily basis. A shift
by AXy4 (Eq. (2)) was applied to the hourly WRF-LSTs (X;), and a stretch
by ayq was applied to the difference between hourly WRF-LSTs and the
mean value calculated from WRF-LSTs at 2 AM and 2 PM. a4 (Eq. (3)) is
the fractional change in the mean value calculated by WRF model and
gap-filled MODIS-LST at 2 AM and 2 PM. After the combination of shift
and stretch, the newly generated LST time series can preserve both the
magnitude of satellite observed LSTs and the diurnal dynamic of WRF-
simulated LSTs.

X=X, +AXg+ag x [X — (X)4] M
AX4 = Xiean — (XS)d 2
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Fig. 4. An example of the morphing procedure.

where X is the hourly WRF-simulated LST, (X;); is the daily mean of
hourly WRF-simulated LST, calculated as w, Xmean is the
mean of gap-filled MODIS daily LST, calculated as w

3.3. Accuracy assessment

We evaluated the performance of the WRF model and spatiotemporal
patterns of the WRFM-generated LSTs by using satellite and station
observations. Furthermore, we compared LST datasets obtained from
conventional techniques, such as DTC and spatial downscaling, to
evaluate the benefits of utilizing the WRFM framework. Statistical in-
dicators (Egs. (4-7)), including index of agreement (IoA), mean absolute
error (MAE), RMSE, and Spearman’s rank correlation coefficient (r),
were calculated from observed and simulated temperature time series at
the pixel level. RMSE and MAE were used to quantify the deviation
between simulated and observed temperatures, and [oA and correlation
coefficient r were used to determine the degree to which magnitude and
signs of the observed temperatures are consistent with the simulated
temperatures. Using the correlation coefficient r instead of Pearson’s
correlation coefficient (p), as a non-parametric rank statistical param-
eter, can reduce the influence of possible non-linearities between vari-
ables. Many previous studies (Crippa et al., 2019; Fu et al., 2019; Liu
et al., 2021) have also used it to measure the consistency between WRF-
simulated and satellite-observed variables. It should be noted that dur-
ing the evaluation process, any pixels with missing values in either
satellite or station observations were excluded.
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where Tp; and T,; are the modeling and observation temperature at
time i; 4 and o are the mean and standard deviation of temperature.

First, we assessed the performance of the WRF model with updated
land surface properties by comparing the simulated air temperature
against observations at nine meteorological stations (Fig. 1C). IoA and
MAE (Srivastava et al., 2015) for nine stations were calculated for WRF
grids. Benchmarking of the performance of our evaluation against
published studies to achieve the WRF simulation of air temperature
based on IoA should be greater than 0.8 and MAE should be smaller than
2 °C (Bhati and Mohan, 2016).

Second, we assessed the performance of the WRFM framework using
SURFRAD-observed and satellite-observed LSTs. In situ LST measure-
ments at the SXF site were used to evaluate the performance of WRF
simulation and WRFM framework under varying atmospheric conditions
(i.e.,

clear-sky and cloud conditions). The determination of these condi-
tions was accomplished through the utilization of a cloud mask derived
from satellite products (i.e., Copernicus and MODIS). Hourly SURFRAD-
observed LSTs over study period were compared to the corresponding
WRF-simulated and WRFM-generated LSTs at the grid cell located in the
SXF site. We further evaluated the capability of the WRFM framework
into capturing the spatial and temporal variations of LSTs over the study
region by comparing the WRFM generated LSTs with satellite-observed
LSTs. In terms of spatial pattern, the RMSE in each WRF grid cell was
calculated by comparing LST values from the WRFM generated LSTs
with original MODIS Terra observations (10:30 AM and 10:30 PM). The
aforementioned comparison was performed exclusively on days when
four MODIS observations were available, thereby facilitating an inde-
pendent evaluation by excluding LSTs that were generated in the process
of the gap-filled LST product. This strategy ensures that the evaluation
was conducted using a set of observations that were not influenced by
the estimation techniques used in generating the gap-filled LST data. In
terms of temporal pattern, the correlation coefficient r for each WRF grid
was calculated by comparing averaged diurnal variations of LST from
Copernicus observations and WRFM generated LSTs during the study
period. Grids of the WRF simulation (1 km) were aggregated to 5 km to
match the pixel size of the Copernicus LSTs.

Third, we assessed the effectiveness of the WRFM framework in
capturing the diurnal and spatial patterns of LSTs by comparing the LSTs
generated by WRFM with those generated by DTC model and spatial
downscaling, respectively. The four-parameter DTC model used in this
study was based on GOT01_0 model proposed by (Schadlich et al., 2001)
and the input data was MODIS observations. This model was applied for
nine days during the study period when more than 50 % MODIS pixels in
the study areas have four clear-sky observations per day. Grids of the
DTC modeled LST (1 km) were aggregated to 5 km and the correlation
coefficient r and mean bias for each grid were calculated by comparing
averaged diurnal variations of LST from Copernicus observations and
DTC model for the study period. Next, we evaluated the effectiveness of
the WRFM framework in capturing the diurnal pattern by comparing
correlation coefficient r values between DTC-LSTs and Copernicus-LSTs,
as well as between WRFM-LSTs and Copernicus-LSTs. The spatial
downscaling approach used in this study was based on regression of
principal components proposed by (Zaksek and Ostir, 2012). MODIS
auxiliary data (i.e., land surface albedo, NDVI, EVI, emissivity), NLCD
land cover data, and terrain data (i.e., slope, aspect) were used to
downscale Copernicus LSTs for seven days when more than 90 %
Copernicus pixels in the study areas have clear-sky observations. The
RMSE was calculated by comparing LST values from the spatial down-
scaled LSTs and original MODIS observations for 10:30 AM and 10:30
PM (Terra) without missing values. Next, we evaluated the effectiveness
of the WRFM framework in capturing the spatial pattern by comparing
RMSE values between WRFM-LSTs and MODIS-LSTs, as well as between
spatial downscaling-LSTs and MODIS-LSTs.
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4. Results
4.1. Evaluation of the WRF modeling

The WRF model with updated land surface properties can well cap-
ture the hourly dynamics and magnitude of air temperatures compared
to the station observations (Fig. 5). Specifically, the simulated air tem-
peratures showed a strong agreement with the temporal dynamics of
temperature records obtained from weather stations, as indicated by an
IoA exceeding 0.92 for all weather stations. Meanwhile, the WRF
simulation in this study demonstrated a competitive performance in
estimating air temperature magnitude with a MAE (or RMSE) value
smaller than 2 K (2.5 K) (Table 1). In general, the WRF simulation
exhibited a high degree of agreement with station observations during
nighttime, suggesting a better model performance at night. Cold biases
on the order of 1-2 K were observed in daytime peak for all weather
stations studied, which might be caused by model errors from the
selected planetary boundary layer schemes (Hu et al., 2013; Hu et al.,
2010).

The WRF simulation demonstrated certain limitations in accurately
capturing spatial variations of LST across the study region and tended to
exhibit a bias in magnitude. This was further evidenced by Fig. 6, which
depicts the LSTs at approximately 2:00 AM local time on June 9 and
August 19, 2019, as observed by the MODIS satellite and simulated by
the WRF model. Although the spatial patterns of the WRF-simulated and
MODIS-observed LSTs exhibited similarities, there were notable differ-
ences in their magnitudes, particularly in urban areas where the biases
were more pronounced. Similar performance of WRF simulated LSTs
was also reported in previous studies (Fu et al., 2019; Fu and Weng,
2018; Xia et al., 2017). The underestimation of LST was observed in
urban areas on June 9, 2019, which might be caused by the setting of
constant values of surface parameters in the coupled SLUCM model.
Additionally, on August 19, there is a clear warm bias in the WRF-
simulated LSTs compared with the observations. This bias may be
potentially attributable to the model’s inability to adequately capture
local-scale factors and site-specific characteristics. These findings high-
light the need for further refinement of the WRF-simulated LSTs to more
accurately capture the spatial variations and magnitude of LST across
the study area.

The performance of the WRF simulation in capturing the temporal
pattern of LSTs was observed to be consistently good under varying
weather conditions. However, the simulation demonstrated superior
LST estimation in magnitude under clear-sky conditions compared to
cloudy conditions. As demonstrated in Fig. 7A, the WRF simulation
exhibited a good performance in capturing the temporal pattern of LST
and estimating the magnitude of LST under clear sky, with a correlation
coefficient r of 0.97 and RMSE of 2.73 K at the SURFRAD site. Under
cloudy conditions, the WRF simulation was observed to perform well in
capturing the temporal pattern of LST with a correlation coefficient r of
0.93 at the SURFRAD site (Fig. 7B). However, it is worth noting that the
RMSE under cloudy conditions increased to 4.15 K, indicating a rela-
tively poor performance in estimating the magnitude of LSTs compared
to clear-sky conditions. According to Fig. 7C, the WRF simulation shows
an overestimation of daytime LSTs, particularly at noon, under both
clear and cloudy sky conditions. Furthermore, the extent of over-
estimation is more pronounced during cloudy sky conditions, resulting a
higher RMSE.

4.2. Accuracy of the WRFM-generated LST

The implementation of the WRFM framework not only preserved the
capability of the WRF simulation to capture temporal pattern of LST
under varying weather conditions but also improved the estimation of
LST magnitude, particularly under cloudy conditions (Fig. 7&8). Spe-
cifically, the WRFM can capture hourly LST under both clear and cloudy
sky conditions, with RMSE of 2.63 and 3.75 K, respectively (Fig. 8 A&B).
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Fig. 5. The averaged diurnal variations (June 01-August 31, 2019) for air temperatures simulated from the WRF model and for temperature records from nine

weather stations.

Table 1
Comparison of simulated air temperatures with those from the weather stations
(2208 observations from June 1 to August 31, 2019).

Station Latitude  Longitude  IoA MAE RMSE Land Cover

D (K) X) Type

KV 41.69 —93.57 094 1.84 249 Developed, low
intensity

CNe 4102 9336 094 158 225  Developedlow
intensity
Developed,

DSM 41.53 ~93.65 094 165 233 eve oped,
high intensity

GGl a7 —92.73 094 174 235 Developed, low
intensity
Developed,

oxXV 41.30 ~93.11 093 177 243 medium
intensity

TNU 41.67 ~93.02 094 180 241 Pasture

175 4105  -9369 095 150 215 Cultivated
crops

PEA 41.40 ~92.94 094 170 241 Cultivated
crops

PRO 4183 -9416 093 194 243  Cultivated
crops

Moreover, the LSTs estimated by the WRFM framework still show a
strong correlation with those obtained at the SURFRAD sites on an
hourly basis and the estimated and measured LSTs align closely along
the 1:1 line. The diurnal pattern of LST estimations was observed to
align well with measurements after employing the WRFM framework
under clear sky conditions (Fig. 8C). Additionally, the use of the WRFM
framework resulted in an improvement in LST estimation accuracy
under cloudy conditions, as evidenced by a decrease in the RMSE from
4.15 to 3.75 K. It is worth noting that the relatively large RMSE observed
under cloudy conditions was a result of the underestimation of LST at
nighttime, particularly during the early morning hours.

The WRFM can capture spatial variations and reduce bias in the

magnitude of WRF-simulated LSTs. The LST observations obtained from
the MODIS Terra satellite at around 10:30 AM and 10:30 PM were uti-
lized to compare and evaluate the WRF-simulated and the WRFM-
generated LSTs. The RMSE was calculated for both the WRF-MODIS
and the WRFM-MODIS comparisons to evaluate the discrepancy of
magnitude between the model-generated LSTs and the MODIS obser-
vations. In comparison to the RMSE value obtained from the WRF-
MODIS comparison, the application of the morphing technique in the
WRFM framework led to a substantial reduction in RMSE. Specifically,
the maximum reduction in RMSE of approximately 5 K was observed in
the northwestern areas of the study area during daytime (Fig. 9A&B).
During nighttime, a similar reduction of approximately 3 K was
observed in the northeastern areas of the study area (Fig. 9C&D). The
analysis of the study area revealed a reduction in the average RMSE from
4.34 K to 2.89 K during daytime and from 4.12 K to 2.75 K during
nighttime. In the southeastern region of the study area, although WRF-
MODIS comparison exhibited relatively low RMSEs of about 3.5 K, the
application of the morphing technique in WRFM framework resulted in a
further reduction of RMSEs to less than 2.5 K. Overall, more than 80 % of
the study areas exhibited RMSE of less than 3.3 K during the daytime and
less than 3.1 K at night, when comparing the magnitude of WRFM-LST to
those observed by MODIS. These findings suggest that the incorporation
of the morphing technique enhances the accuracy of the WRF-simulated
LSTs and improves the WRF model’s ability to capture the spatial vari-
ations in LSTs over the study area.

The reliability of the WRF model in capturing the diurnal dynamics
of LSTs was evident when compared to observations from the Coperni-
cus satellite. Furthermore, the proposed WRFM framework has suc-
cessfully maintained this reliability. The WRF simulation captured the
diurnal variations in LSTs within the study region, as evidenced by a
high correlation coefficient r exceeded 0.95 between the Copernicus-
observed and WRF-simulated LSTs for the majority of grids within the
study area (Fig. 10 A). The morphing technique within the WRFM
framework demonstrated excellent performance in preserving temporal
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Fig. 6. LSTs simulated by the WRF/UCM model (B, D) and observed by MODIS (A, C) at 2:00 AM on June 9 and August 19, 2019. Note: White areas in Panel A and C

were masked due to the low quality of the MODIS data product. The boundary of urban areas was marked in black.

variation of LSTs predicted by the WRF model. The majority of grid cells
showed correlation coefficient r values exceeding 0.97 (Fig. 10 B), with
negligible differences in correlation coefficient r values between the
WRFM-generated and the WRF-simulated LSTs when compared with
Copernicus observations, ranging from —0.016 to 0.06 (Fig. 10C). This
outcome is theoretically expected, since one of the advantages offered
by morphing integration process is to incorporate the reliable diurnal
pattern derived from WRF model.

4.3. Comparison with previous methods

The spatial accuracy of the resulting WRFM LSTs from this study is
better when compared with spatial downscaling LSTs reported in pre-
vious studies. The WRFM-generated LSTs show higher accuracies when
compared with hourly LST at 1 km resolution obtained from spatial
downscaling approach (Zaksek and Ostir, 2012). In certain rural areas
(as shown in Fig. 11 A-E), the LSTs generated by WRFM and those
derived from spatial downscaling exhibit similar RMSE when compared
to MODIS observations, averaging around 3 K at 11 AM and 4 K at 11
PM. However, LSTs derived from spatial downscaling approach included
outliers, resulting in a RMSE greater than 8 K for some parts of the study
area. Particularly, RMSEs of the spatial-downscaled LSTs during day-
time were large in urban areas despite the resulting coefficient of mul-
tiple determination from linear regression with auxiliary parameters
mostly being larger than 0.8 (Fig. 11 C&F). A main reason for this poor
performance by the spatial-downscaling method might be due to the
limited ability of 5 km Copernicus observations to capture the magni-
tude of the LSTs difference between rural and urban area.

The diurnal pattern obtained from WRFM-generated LSTs in this
study exhibits greater accuracy in comparison to that derived from the
DTC model. The WRFM framework demonstrated better performance
than DTC model with larger consistency with Copernicus observations
and lower bias. Fig. 12 A&C show that the diurnal variation of LSTs
captured by WRFM (with a correlation coefficient r larger than 0.97 for
most of the grids) had higher correlations with Copernicus observations
compared to those from the DTC model (with a correlation coefficient r
larger than 0.93 for most of the grids). It should be noted that the LST
values beyond the maximum and minimum observations in MODIS have

been omitted from the evaluation to minimize the influence of outliers
generated by the DTC model. Even after minimizing the influence of
outliers, the spatial variation estimated by the DTC model was not as
consistent with satellite observations as the proposed WRFM frame-
work. In northern and eastern areas of the study area, correlation co-
efficient r values of the DTC model were found to be smaller than 0.94
and the application of the WRFM framework resulted in an increase in
correlation coefficient r values ranging from 0.02 to 0.13 (Fig. 12 E).
Overall, Copernicus grids with mean bias larger than 1.5 K were mostly
observed in DTC-LSTs. The comparison between WRFM generated and
Copernicus observed LSTs demonstrates that Copernicus grids situated
in urban areas exhibited a relatively higher mean bias than those in rural
areas (Fig. 12 B & D). This may be attributed to the complex urban
environments within 5 km Copernicus, highlighting the importance of
spatial resolution for improving the estimation of LST dynamics for
complex landscapes.

4.4. Spatial and temporal patterns of LST

The WRFM-generated LSTs exhibit the capability to capture the UHI
effect and reveal more detailed diurnal patterns of UHI in the study area
compared to MODIS observations. For example, on August 4, 2019, the
rural-urban gradient of LST was smallest at 9 AM, ranging from 1 to 2 K
(Fig. 13A). After 9 AM, urban LSTs increased more quickly than rural
LSTs and reached a maximum of ~40 °C at 2 PM, implying a strong
warming effect of impervious surfaces after the absorption of solar ra-
diation and anthropogenic heat released from human activities (e.g.,
transportation and building energy consumption). After 5 PM, the LSTs
in rural areas decreased more rapidly than urban areas and reached a
minimum of around 12 °C at 6 AM of the following day. The ability of
MODIS observations to provide a detailed evolution of the UHI effect is
limited due to missing values caused by clouds and the limited number
of observations per day (Fig. 13B). It is worth noting that the WRFM-
generated LSTs mainly reflect clear-sky conditions due to the integra-
tion of gap-filled clear-sky 1 km daily LST. By combining the WRFM
framework with an all-weather gap-filled LST dataset, analyzing UHI
variations becomes feasible.
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5. Discussion

The complementary gap-filled MODIS observed and WRF-simulated
LSTs can be integrated to improve hourly LSTs estimations at 1 km
resolution. In the 1 km daily gap-filled MODIS LST dataset, missing
values induced by clouds in the original MODIS data were effectively
and efficiently filled using a spatiotemporal fitting algorithm. Although
the gap-filled MODIS LST dataset only provided daily mid-daytime and
mid-nighttime LSTs, it had the advantage of spatial details and accuracy.
The WRF model has been used to estimate LSTs at high spatial and
temporal resolutions. Comparing with satellite observations, we found
that the WRF simulation exhibited superior capability in capturing
diurnal variations of LSTs with correlation coefficient r greater than
0.92. However, the simulated LSTs tended to have a bias in the magni-
tude with a wide range of RMSE from 2 K to 7 K. By integrating com-
plementary gap-filled MODIS and WRF-simulated LSTs, the morphing
technique serves as a useful tool to generate LSTs with an improved
accuracy of magnitude based on MODIS-observations and preserve
temporal dynamics predicted by the WRF model. Therefore, the pro-
posed WRFM framework in this study benefits from both attributes.

The WRFM framework, with its physically based weather modeling
heritage, has demonstrated its ability to generate more reliable and
refined diurnal dynamics of LST compared to the DTC model or the
spatial downscaling approach. Firstly, the diurnal dynamics of LST
derived from the DTC model are typically modeled with piecewise
functions (e.g., a simple sine or cosine function or harmonic series) and

its performance highly depends on the number of parameters considered
in the DTC model. The inclusion of a higher number of parameters in the
DTC model necessitates a greater number of LST observations within a
day for accurate prediction. For example, in this study, the GOT01_0
model, a DTC model with four free parameters, was investigated.
However, it was found that this model exhibits limited capability in
capturing the variations of LSTs, leading to occurrence of outlier data
points that fell outside the range of observed LSTs on certain days.
Secondly, in terms of spatial downscaling approach, the diurnal dy-
namics of LST were derived from satellites with a high temporal reso-
lution (i.e., hourly) but low spatial resolution (i.e., 5 km). This limitation
hinders the ability to generate refined temporal patterns at a 1 km scale
and also fails to mitigate the influence of cloud. Specifically, each
Copernicus pixel encompasses a minimum of 25 WRF grid cells that may
represent distinct urban land use types (e.g., low/high density residen-
tial, commercial, etc.). Moreover, the integrity of diurnal patterns
derived from Copernicus observations was impacted by cloud and it is
not ideal to obtain whole diurnal pattern for each day. Although using
an all-sky hourly LST product at 5 km resolution (Jia et al., 2023) may
mitigate the impact of cloud, the ability to generate more precise tem-
poral patterns at a 1 km scale is still limited by its spatial resolution. In
contrast to the aforementioned approaches, the proposed WRFM
framework exhibits the capability to effectively capture the diurnal
dynamics of LST at a fine spatial resolution by integrating WRF model.
This integration leverages the advantages of the WRF model, which is
coupled with readily available physical parameterization and diverse
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land cover types, enabling the characterization of LST’s diurnal pattern
at a resolution of 1 km in an effectively way. Additionally, WRF model
can simulate diurnal pattern of LST under both clear-sky and cloudy
conditions with its advanced ability to parameterize microphysical
process and planetary boundary layer conditions (Fu et al., 2019).

The proposed WRFM framework uses more and up-to-date land
surface parameters from in situ and satellite observations, thus can
generate more reliable spatial pattern of LSTs compared to those from
the spatial downscaling approach or original WRF model. Firstly, when
using a spatial downscaling approach, a large number of land surface
parameters relevant to LSTs must be manually collected and incorpo-
rated to accurately characterize spatial variations in LSTs. In contrast,
the WRFM framework incorporates a wide range of land surface pa-
rameters in a highly efficient manner. This is made possible by
leveraging the extensive collection of static datasets provided by the
WRF model community, which includes essential land features such as
soil temperatures, topology, and soil types. Secondly, with the updated
satellite-observed land surface properties, the performance of the WRF
model can meet the evaluation benchmark for 2-m air temperature, but
the simulated LST still showed bias in the magnitude when compared
with the original MODIS LSTs. Further tuning LST-related parameters (e.
g., turbulent transfer coefficient (Vahmani and Hogue, 2014) and the
emissivity of LULC) in the WRF model might be able to further improve
the accuracy of LST. However, such process is computationally expen-
sive because a complete analysis of the model sensitivity to the changes
of LST-related parameters in the WRF model needs an extensive number

10

of model runs. The gap-filled MODIS LSTs provided a reliable spatial
pattern of daily LSTs for the proposed WRFM framework.

The proposed WRFM framework, supported by a large community of
users of the WRF model and a simple morphing integration algorithm,
offers a straightforward approach to generate LSTs and its dynamics for
various regions. This represents an improvement over existing sophis-
ticated fusion methods. Various fusion methods have been proposed to
estimate LSTs at high spatiotemporal resolutions using multi-scale polar-
orbiting and geostationary satellite observations (Adeniran et al., 2024;
Long et al., 2020; Ma et al., 2022; Quan et al., 2018; Wu et al., 2015; Wu
et al., 2013; Zhao et al., 2020). However, these methods are not satis-
factory due to the following reasons: 1) the application of these methods
over large areas can be quite challenging due to their structures and
procedures, low computing efficiencies, and the need for specific hy-
pothesis; 2) potential high uncertainties due to accumulated un-
certainties and spatiotemporal mismatching issues among multi-source
datasets; and 3) the availability of data sources and source codes for
models may not always be publicly available. Moreover, deep learning
algorithms, such as convolutional neural network (CNN) (Wang and
Huang, 2024; Yu et al.,, 2023) and dynamic multilayer perceptron
(DyNet) (Guo et al., 2024), have also been used for fusing LST data,
mainly on daily frequency and with a spatial resolution of finer than 1
km. Despite their advantages, deep learning algorithms may not be
suitable for large-scale applications as their performance is highly
dependent on the characteristics of the study areas, leading to a poor
universality. On the contrary, the proposed WRFM framework in this
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study offers several advantages. Firstly, the proposed framework is
suitable for large-scale applications due to its ease of implementation,
high efficiency, and robustness. Secondly, the spatial resolution of the
LSTs obtained from both WRF outputs and MODIS observations is same,
which eliminates any potential issues related to scale effects. Thirdly,
the WRF model and the inputs required for the proposed framework are
public available. As a state-of-the-art mesoscale numerical weather
prediction system, the WRF model has a large worldwide community of
registered users and support forum, thereby facilitating swift resolution
of issues that users may encounter. The proposed framework can
incorporate publicly available seamless LST products, such as the gap-
filled clear-sky 1 km daily LST (Zhang et al., 2022d) used in this
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study, to improve LSTs produced by the WRF model. Thus, the proposed
WRFM framework, in combination with the use of gap-filled LSTs, holds
great potential for studying the effects of UHIs and for conducting other
research related to urban systems.

The resulting hourly LSTs at a high spatial resolution were able to
provide more accurate spatial and temporal details of thermal envi-
ronment of the diverse study area in this study when compared to other
available datasets. Specifically, more accurate spatial pattern of rural-
urban thermal gradient can be obtained from the WRFM-generated
LSTs. In addition, compared to MODIS LSTs, hourly patterns of UHI
effect can be examined at a 1 km resolution. Overall, the WRFM-
generated LSTs with good accuracies and high spatiotemporal
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(C) Spatial downscaling at 11 am
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Fig. 11. RMSEs of the WRFM generated (A: 11 am, D: 11 pm) and spatially downscaled (B: 11 am, E: 11 pm) LSTs evaluated based on MODIS observed-LSTs and the
corresponding coefficients of multiple determination of the spatial downscaling method (C: 11 am, F: 11 pm). Note: Copernicus observations for 8 days (6/7, 6/8, 6/
10,6/13,7/19, 7/23, 8/27, 8/28) with greater than 90 % clear sky were selected for this evaluation. Pixels with less than three clear-sky observations were excluded

in RMSE calculation. The boundaries of urban areas were marked in black.
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Fig. 13. The spatial pattern of hourly LSTs on August 4, 2019 from WRFM framework (A) and MODIS observation (B). Note: White areas in Panel A were masked by
water body. White areas in Panel B were masked per the quality flag provided in the MODIS data product.

resolutions can offer better information about LSTs to researchers and
policymakers, for understanding diurnal evolution of thermal environ-
ment and further locating regions that require urban heat mitigation
strategies.

6. Conclusions

An improved understanding of the diurnal dynamics in LSTs, espe-
cially over urban domain, has been hindered due to the limitation in
spatial and temporal resolutions and missing observations in satellite
observations and potential bias from weather modeling. In this study, we
developed a practical framework (named WRFM) that benefits from the
combined features of weather modeling and satellite observations to
estimate hourly 1 km LSTs. The proposed framework integrates tem-
poral features of the WRF model with the spatial pattern of gap-filled 1
km daily MODIS LST observations to generate an improved LST product.
The framework consists of two steps. First, the updated land surface
datasets were used in WRF simulation to generate gridded LST data.
Second, the temporal pattern of WRF-simulated and spatial pattern of
observed and gap-filled LSTs were integrated using the morphing tech-
nique. The improved LSTs with spatial and temporal details can be used
to reveal the thermal environment that consists of a diverse and complex
LULC and urbanization levels. Compared with previous studies, the
proposed framework can generate high-accuracy and resolution hourly
LSTs by combining the complementary attributes of LSTs from satellite
observations (i.e., spatial information) and the physically based WRF (i.
e., diurnal dynamics) simulations.

Using eight counties in Iowa as the study area, the results suggest
that the temporal pattern of LSTs can be well captured by the WRF
model with the updated land surface properties. Further utilization of
the morphing technique can reduce the bias in the magnitude between
WREF-simulated and MODIS observed LSTs while still maintaining tem-
poral pattern of WRF-simulated LSTs. The resultant data can be used to
study the spatial pattern of LSTs and their hotspots at an hourly scale.
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The improved spatiotemporal LSTs can also improve our understanding
of the diurnal evolution of thermal environment in urban, sub-urban,
and rural areas, that are useful to researcher, policymakers, and city
planners for understanding and mitigating the effects of UHI on human
health (i.e., heat stress) and other socioeconomic activities (e.g., energy
demand, transportation).
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