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A B S T R A C T

Land surface temperature (LST) derived from satellite observations and weather modeling has been widely used 
for investigating Earth surface-atmosphere energy exchange and radiation budget. However, satellite-derived 
LST has a trade-off between spatial and temporal resolutions and missing observations caused by clouds, 
while there are limitations such as potential bias and expensive computation in model calibration and simulation 
for weather modeling. To mitigate those limitations, we proposed a WRFM framework to estimate LST at a 
spatial resolution of 1 km and temporal resolution of an hour by integrating the Weather Research and Fore
casting (WRF) model and MODIS satellite data using the morphing technique. We tested the framework in eight 
counties, Iowa, USA, including urban and rural areas, to generate hourly LSTs from June 1st to August 31st, 
2019, at a 1 km resolution. Upon evaluation with in-situ LST measurements, our WRFM framework has 
demonstrated its ability to capture hourly LSTs under both clear and cloudy conditions, with a root mean square 
error (RMSE) of 2.63 K and 3.75 K, respectively. Additionally, the assessment with satellite LST observations has 
shown that the WRFM framework can effectively reduce the bias magnitude in LST from the WRF simulation, 
resulting in a reduction of the average RMSE over the study area from 4.34 K (daytime) and 4.12 K (nighttime) to 
2.89 K (daytime) and 2.75 K (nighttime), respectively, while still capturing the hourly patterns of LST. Overall, 
the WRFM is effective in integrating the complementary advantages of satellite observations and weather 
modeling and can generate LSTs with high spatiotemporal resolutions in areas with complex landscapes (e.g., 
urban).

1. Introduction

Land surface temperature (LST), the radiative skin temperature of 
the land surface (Jaber and Abu-Allaban, 2020), provides direct insights 
for better understanding of Earth surface-atmosphere energy exchange 
and radiation budget (Li et al., 2013). The ongoing urbanization process 
increases LST in urban environment and significantly intensifies urban 
heat island (UHI) effect (i.e., elevated temperature patterns in the urban 

areas) (Li et al., 2022; Li et al., 2021; Li et al., 2017; Zhou et al., 2018). 
The diurnal LST constitutes an important element of the climate system 
and is vital for providing an additional constraint on latent and sensible 
heat flux calculations (Aires et al., 2004), detecting soil freeze/thaw 
status (Jiménez et al., 2015), and monitoring surface UHI (Weng and Fu, 
2014).

Currently, satellite observations (Hu et al., 2022; Li et al., 2018d; Li 
et al., 2013; Liu et al., 2020) and physically-based weather modeling (Fu 
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et al., 2019; Li et al., 2019) offer means to understand temporal dy
namics of LST and UHI effects. However, both approaches have their 
own limitations. Satellite observations offer an effective way to measure 
the spatiotemporal dynamics of LST over large areas with an acceptable 
accuracy, but it is limited because of the trade-off between spatial and 
temporal resolutions (Hu et al., 2020) and missing observations due to 
clouds. For example, thermal sensors on geostationary satellites, such as 
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and those on 
the NOAA Geostationary Operational Environmental Satellite (GOES), 
can provide LST observations in the sub-hourly frequency but with a 
coarse spatial resolution (i.e., several kilometers). The thermal sensors 
on polar-orbiting satellites, such as Moderate Resolution Imaging 
Spectroradiometer (MODIS), can provide global LST observations with a 
medium spatial resolution (i.e., 1 km) but only four observations by two 
different satellites (i.e., Terr and Aqua) each day. Physically-based 
weather modeling can provide contiguously estimates of the spatio
temporal dynamics of LST in a sub-hourly frequency and from tens of 
meters to thousands of kilometers in both clear-sky and cloudy condi
tions (Chen et al., 2011) but some potential bias still exist in the simu
lated LSTs due to inherent model formulations and assumptions (Liu 
et al., 2017; Xia et al., 2017), especially in specific seasons such as 
summer (Ma et al., 2015).

There have been major efforts to overcome limitations of satellite 
observations. These efforts fall into three categories: spatial downscaling 
using auxiliary data, temporal interpolation using diurnal temperature 
cycle (DTC) models, and fusing data from geostationary and polar- 
orbiting sensors. For example, auxiliary data with physical or ecolog
ical characteristics that are closely related to LST (e.g., elevation and 
emissivity) have been widely used to increase the spatial resolution of 
LST from SEVIRI and GOES to 1 km (Weng and Fu, 2014; Zakšek and 
Oštir, 2012). The DTC model, using quasi-physical methods with pa
rameters ranging from two to twelve parameters (Huang et al., 2014) 
and semi-empirical models with more than four parameters (Göttsche 
and Olesen, 2001), have been widely used to describe diurnal dynamics 
of satellite-based LST observations and to increase their temporal reso
lutions (e.g., daily to hourly) (Duan et al., 2014). Both methods using 
auxiliary data and DTC models are helpful for the estimation of LST, but 
their performance was significantly influenced by the number of pa
rameters used in these studies (Hong et al., 2018; Huang et al., 2014; Lu 
and Zhou, 2021). Spatiotemporal integrated temperature fusion model 
(STITFM) has been used to fuse multi-scale polar-orbiting and geosta
tionary satellite observations to estimate LSTs at higher temporal and 
spatial resolutions, but it required similar sensor characteristics and 
observing conditions among multi-sensors on different satellites, such as 
the quality of input data, overpass times, and viewing geometry (Wu 
et al., 2015).

The physically-based weather modeling has also been used to esti
mate high spatiotemporal LSTs. The widely used Weather Research and 
Forecasting (WRF) model, an atmospheric modeling system designed for 
numerical weather prediction (Skamarock et al., 2019), couples physical 
parameterization schemes and satellite-observed land surface properties 
to simulate LST (Kirthiga and Patel, 2018). Inspired by the WRF model’s 
sufficient physical mechanism (Chen et al., 2011), several studies have 
been conducted to generate MODIS-like gap-free LSTs by integrating 
simulated LSTs obtained from the WRF model (Fu et al., 2019; Zhang 
et al., 2022b; Zhang et al., 2022a; Zhang et al., 2024). In these studies, 
machine learning algorithms and time-adjacent strategies have been 
utilized to establish the relationship between MODIS-observed and 
WRF-simulated LSTs for reconstructing missing LST observations due to 
cloud contamination. However, the resulting LSTs are typically only 
available for the same four time points as the MODIS products. More
over, the uncertainties present in WRF simulations may be transferred to 
the resulting MODIS-like LSTs. For example, one of the major sources of 
WRF model bias is the improper representation of land surface proper
ties (Kirthiga and Patel, 2018). The coarse resolution and outdated 
satellite observations in the WRF model might fail to capture fine-scale 

and recent heterogeneities of land surface properties, especially in the 
urban domain. There is a growing body of literature on using fine res
olution and updated satellite observations on land use land cover 
(LULC), land surface elevation, leaf area index (LAI), green vegetation 
fraction (GVF), and albedo to improve the accuracy of the WRF simu
lation (He et al., 2017; Vahmani and Ban-Weiss, 2016). Approaches such 
as model calibration, a procedure in which model parameters are 
adjusted to improve model simulations and to decrease bias in simulated 
LSTs compared to respective observations, can be performed using cloud 
computing resources (Di et al., 2018; Ji et al., 2018). However, such 
procedure requires tremendous computational power and professional 
knowledge because the WRF model involves tens to hundreds of pa
rameters used in the model equations and they require very significant 
computation time to evaluate their impact on simulated LSTs.

Therefore, it is highly desirable to develop an effective method to 
generate accurate LSTs with high temporal and spatial resolutions 
devoid of the limitation’s biases in observed and simulated ones. For 
example, MODIS observations can provide an accurate spatial pattern of 
LST, but the frequency of these observations are limited for a given day 
(i.e., four observations per day by two satellites) as well as missing ob
servations due to cloud contamination. The WRF model has the ability to 
estimate diurnal LSTs, but the spatial pattern and magnitude of esti
mated LSTs might be biased. In this study, we propose a framework 
named WRFM to combine MODIS-observed and the WRF simulated LSTs 
to generate LSTs with high temporal and spatial resolutions. The 
framework benefits from integrating the diurnal pattern of LST from the 
WRF simulation with 1 km gap-filled MODIS LSTs (2 AM and 2 PM) (Li 
et al., 2018b; Pham et al., 2019; Shiff et al., 2021) to estimate the hourly 
LSTs at a 1 km spatial resolution. We (1) performed the WRF simulation 
with updated land surface properties and assessed its performance; (2) 
developed WRFM to integrate gap-filled MODIS LSTs and WRF simu
lated LSTs using morphing technique; and (3) analyzed the spatiotem
poral pattern of WRFM-generated LSTs. The following sections describe 
the study area and data (Section 2), the proposed framework (Section 3), 
the results (Section 4), discussion (Section 5), and conclusions (Section 
6).

2. Study area and data

2.1. Study area

The study area covers eight counties located in the central part of 
Iowa, USA, including Guthrie, Dallas, Polk, Jasper, Adair, Madison, 
Warren, and Marion counties. Polk County is not only the most populous 
county in Iowa (United States Census Bureau, 2020) with approximately 
490 thousand inhabitants in 2019 (Li et al., 2018c), but also the home to 
the state capital, Des Moines. Warren, Jasper, and Dallas Counties have a 
mix of urban and rural areas and Dallas County is a rapidly growing 
county. Guthrie, Adair, Madison, and Marion Counties are mostly 
covered by rural areas and the Marion County is the home to Lake Red 
Rock, Iowa’s largest lake. Three nested domains (Fig. 1A) of the WRF 
model were designed to cover the entire study area. The horizontal grid 
spacing of these three domains is 9 km (d01), 3 km (d02), and 1 km 
(d03), with 70 × 61, 126 × 99, and 177 × 102 grid cells, respectively. To 
further validate the performance of WRF and WRFM with in-situ 
measured LSTs, another two nested domains (Fig. 1B) of the WRF 
model were designed within d01 to cover the nearest Surface Radiation 
Budget Network (SURFRAD) station, Sioux Falls, South Dakota, USA 
(SXF). The horizontal grid spacing of these two domains is 3 km (d01s), 
and 1 km (d02s), with 30 × 30 and 30 × 30 grid points, respectively.

2.2. LST data

We obtained in situ near-surface air-temperature data from the 
NOAA-ASOS network (Automated Surface Observing System) and in situ 
LST measurements from the SURFRAD. NOAA-ASOS measurements are 
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taken primarily with heated tipping bucket gages located at airports, 
consisting of hourly weather observations for several weather variables, 
including 2 m air temperature (Fullhart et al., 2020). We extracted air 
temperature records from June 1 to August 31, 2019 from nine ASOS 
stations located in the study area to assess the performance of WRF 
model. Furthermore, SURFRAD surface radiation budget network, con
sisting of seven sites across the US, was established to support satellite 
retrieval validation, modeling, and climate, hydrology, and weather 
research (Augustine et al., 2000). Using the process described in (Zhu 
et al., 2022) and (Duan et al., 2012), we calculated hourly in situ LSTs 

based on observed downwelling and upwelling longwave radiations. 
The accuracy of in situ LST measurements is approximately 0.5–0.8 K 
(Wang and Liang, 2009).

Original MODIS LSTs from June 1st to August 31st, 2019, were used 
to assess the spatial pattern captured by WRF-simulated and WRFM- 
generated LSTs. The MODIS product (MOD/MYD11A1) provides daily 
1 km LSTs with four observations at ~1:30 AM and PM local time (Aqua 
satellite) and at ~10:30 AM and PM local time (Terra satellite). The LSTs 
product were derived using the refined generalize split-window LST 
algorithm (Wan and Dozier, 1996) with an error of about 2 K for all test 

Fig. 1. The nested domains used in the WRF model for simulating LSTs in the study area (A) and SXF SURFRAD station (B). The simulation results for the innermost 
domain (C) were used to generate WRFM-LSTs for the study area. The background shows land cover types.

Fig. 2. The scatter plots between SURFRAD-observed and MODIS-observed (A, clear-sky), Gap-filled (B, cloudy sky), and Copernicus-observed (C, clear-sky) LSTs. 
The averaged diurnal variations for LSTs from SURFRAD (Stn-LST) and Copernicus (Copernicus-LST) observations in June, July, and August, respectively (D).
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sites (Wan, 2014). Cloud-contaminated pixels were replaced with 
missing values based on the MODIS product’s quality assurance (QA) 
information.

Gap-filled clear-sky 1 km daily LSTs from June 1st to August 31st, 
2019, created by (Zhang et al., 2022c), were used to integrate with WRF- 
simulated LSTs. To achieve seamless daily LST coverage at mid-daytime 
(1:30 PM) and mid-nighttime (1:30 AM), a spatiotemporal fitting 
approach was employed to estimate LST values for the missing MODIS 
Aqua observations at 1:30 PM and 1:30 AM. This estimation was based 
on two other LST observations from the Terra satellite, specially at 
10:30 AM and 10:30 PM. The performance of proposed framework was 
evaluated by calculating root mean square error (RMSE) for 15 MODIS 
tiles in 2005, 2010, and 2015 with introduced gaps under three sce
narios (i.e., excluding 25 %, 50 %, and 75 % of valid pixels). For 
different ratios of exclusions, the RMSE varied from 2.05 to 2.31 ◦C for 
daytime and from 1.35 to 1.62 ◦C for nighttime, respectively. This LST 
dataset has a notable advantage in its ability to accurately capture 
intricate details of spatial heterogeneity within urban regions (Zhang 
et al., 2022c). As illustrated in Fig. 2 A&B, the estimated LSTs for the SXF 
SURFRAD station, derived from the gap-filled LSTs product, exhibit a 
competitive performance when compared with MODIS LST observa
tions. Remarkably, the gap-filled LSTs product only shows a slight in
crease in RMSE of 1.35 K, highlighting its potential as a reliable data 
source for supplying LSTs in cases when original MODIS LSTs have 
missing values due to cloud contamination.

The LST data from European Copernicus satellite for June 1st to 
August 31st, 2019, were obtained and used to assess the diurnal varia
tion of LST from the WRF simulation and the WRFM framework. The 
Copernicus Global Land Service (Freitas et al., 2013) provides hourly 
LSTs with a spatial resolution of 5 km for the globe’s land surface within 
the −60◦/70◦ latitude range. The LSTs in this product were estimated 
from Top-of-Atmosphere brightness temperatures from the infrared 
spectral channels of a constellation of geostationary satellites including 
Meteosat Second Generation (MSG), GOES, and Multifunction Transport 
Satellite (MTSAT). As a Level 4 LST product, the Copernicus LST product 
is considered reliable, with an uncertainty range of 2 ◦C (for Generalized 
Split-Window and the two-channel algorithm) to 4 ◦C (for the one- 
channel algorithm) (Jia et al., 2023). For our study area, the RMSE of 
Copernicus LSTs was 2.54 K and the Pearson’s correlation coefficient (ρ) 
was 0.95 when compared to in situ LST measurements (Fig. 2C). While 
Copernicus observations can effectively capture the diurnal variation of 
LSTs, but they exhibit a noticeable bias in their magnitude (Fig. 2D). 
Therefore, Copernicus observed LST with a resolution of 5 km is suitable 
for validating temporal patterns.

2.3. Land surface properties for WRF modeling

We collected satellite-based land surface properties (i.e., LULC, 
impervious surface area (ISA), albedo, GVF, and LAI) for the study 
period. Usually, the WRF model uses default satellite-based land surface 
properties, with a coarse spatial resolution, which might be outdated 
and do not capture the changes and seasonal dynamic of these proper
ties. An accurate representation of the land surface is important to 
precisely capture their LST effects using the WRF model (Sertel et al., 
2010).

A growing body of literature shows that default land surface prop
erties, such as LULC, ISA, albedo, GVF, and LAI, could induce significant 
model bias (Meng et al., 2018). First, an up-to-date LULC dataset of high 
spatial resolution is desirable in the WRF simulations because the WRF 
model uses LULC classes to assign certain static parameters and initial 
values at each grid cell, such as surface roughness and emissivity 
(Schicker et al., 2016). Second, vegetation conditions should be updated 
as a function of time in the WRF model using monthly gridded remote 
sensed GVF and LAI datasets. GVF, acting as the weighing factor be
tween bare soil and canopy transpiration, affects LST simulation by 
altering surface fluxes (Chen et al., 1996). LAI plays a major role in 

determining the amount of transpiration from the vegetation canopy, 
affecting LST simulation through the alteration of evaporative cooling 
(Kurkowski et al., 2003). Third, physical characteristics of land surface 
altered by urbanization (Vahmani and Ban-Weiss, 2016; Vahmani and 
Hogue, 2014) should be updated in an accurate and timely manner in 
the WRF model using gridded monthly remotely sensed albedo and 
annual ISA.

All data collection and analysis for updating the land surface prop
erties were performed on the Google Earth Engine (GEE) platform using 
its archived satellite observations. In accordance with previous studies 
(Fu and Weng, 2018; Jiang et al., 2008), LULC satellite observations 
were extracted from MODIS land cover (MCD12Q1.006) for the year 
2019, coupled with detailed urban land use data derived from the Na
tional Land Cover Database (NLCD) for the same period (Chen et al., 
2004). Given the global availability of MODIS land cover data spanning 
from 2001 to 2021 and the possibility of obtaining detailed urban land 
use data from alternative sources (Chen et al., 2014; He et al., 2019), the 
utilized land cover scheme in this study is adaptable for use in other 
study areas. The GVF values were calculated using the equation in 
(Gutman and Ignatov, 1998) with the MODIS (MOD13A1.006) 
Normalized Difference Vegetation Index (NDVI) dataset for summer of 
2019 and the MODIS land cover (MCD12Q1.006) dataset for 2019. The 
surface albedo was calculated using the equation in (Li et al., 2018a) 
with the MODIS albedo (MCD43A3.006) dataset for summer of 2019. 
The LAI was derived from MOD15A2H.006 product in summer of 2019.

3. Methodology

In this study, a WRFM framework was developed to improve the 
estimation of hourly LSTs at a 1 km spatial resolution (Fig. 3). First, the 
WRF simulation was performed with the updated satellite-observed land 
surface properties. Second, the temporal pattern of WRF-simulated LSTs 
and spatial pattern of gap-filled 1 km daily 2 AM and 2 PM MODIS LST 
were integrated using the morphing technique (Belcher et al., 2005). 
Third, the performance of the WRF model and the capability of the WRF 
model and WRFM framework to capture the spatiotemporal variations 
of LSTs were evaluated using satellite and in situ LST observations. 
Finally, we investigated the spatiotemporal pattern of UHI effect using 
WRFM-generated LSTs. More details about each step are presented in 
the following sections.

3.1. WRF modeling and its configuration

WRF version 4.1 was used to simulate hourly LSTs for the study area 
and the SURFRAD site with identical model configuration. Specifically, 
we chose the Noah land surface model (Noah LSM) (Tewari et al., 2004) 
coupled with the single-layer urban canopy model (SLUCM) for the land 
surface; the Lin scheme (Chen and Sun, 2002) for microphysics; the 
Dudhia and RRTM schemes (Dudhia, 1989; Mlawer et al., 1997) for 
shortwave and longwave radiations, respectively; the Eta similarity 
scheme (Janjić, 1994) for surface layer; and the Mellor–Yamada–Janjic 
(MYJ) Scheme (Janjić, 1994) for the planetary boundary layer. Rean
alysis data from the Global Forecast System (GFS) at the spatial reso
lution of 0.5 degrees and temporal resolution of 6 h (“Global Forecast 
System Analysis (GFS-ANL)”) under both clear-sky and cloudy condi
tions were used as inputs for the initial and lateral boundary conditions. 
The simulations were performed from June 1st to August 31st, 2019, 
summer season in Iowa. The first 48 h of the simulation were used for 
spinning-up. The simulation results for the innermost domain (d03) 
were used to generate WRFM-LSTs and to investigate the spatiotemporal 
patterns of study area’s thermal environment.

3.2. Morphing integration

The morphing technique described by Eqs. (1–3), developed by 
(Belcher et al., 2005) was adopted to integrate the temporal pattern of 
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WRF-simulated LSTs and spatial pattern of gap-filled MODIS LSTs. This 
method was used to adjust time series with two practical advantages. 
Firstly, the ‘baseline climate’ is reliable, which is from the WRF- 
simulated diurnal dynamic of LST during the study period that was 
driven by the background reanalysis climate data and physical param
eterization schemes. By incorporating comprehensive atmospheric 
physics processes, WRF was able to generate reliable diurnal patterns of 
various meteorological variables (Fu et al., 2019). Second, the accuracy 
of spatial pattern of WRF-simulated LST was improved by integrating 
gap-filled LST from MODIS observation.

We utilized a morphing procedure (Fig. 4) consisting of the combi
nation of shift and a stretch (Eq. (1)), performed on a daily basis. A shift 
by ΔXd (Eq. (2)) was applied to the hourly WRF-LSTs (Xs), and a stretch 
by αd was applied to the difference between hourly WRF-LSTs and the 
mean value calculated from WRF-LSTs at 2 AM and 2 PM. αd (Eq. (3)) is 
the fractional change in the mean value calculated by WRF model and 
gap-filled MODIS-LST at 2 AM and 2 PM. After the combination of shift 
and stretch, the newly generated LST time series can preserve both the 
magnitude of satellite observed LSTs and the diurnal dynamic of WRF- 
simulated LSTs. 

X = Xs + ΔXd + αd ×
[
Xs − (Xs)d

]
(1) 

ΔXd = Xmean − (Xs)d (2) 

αd =

(
XMODIS,2 PM − XWRF,2 PM

)
−

(
XMODIS,2 AM − XWRF,2 AM

)

(
XWRF,2 PM − XWRF,2AM

) (3) 

where Xs is the hourly WRF-simulated LST, (Xs)d is the daily mean of 
hourly WRF-simulated LST, calculated as XWRF,2 PM+XWRF,2 AM

2 , Xmean is the 
mean of gap-filled MODIS daily LST, calculated as XMODIS,2 PM+XMODIS,2 AM

2 .

3.3. Accuracy assessment

We evaluated the performance of the WRF model and spatiotemporal 
patterns of the WRFM-generated LSTs by using satellite and station 
observations. Furthermore, we compared LST datasets obtained from 
conventional techniques, such as DTC and spatial downscaling, to 
evaluate the benefits of utilizing the WRFM framework. Statistical in
dicators (Eqs. (4–7)), including index of agreement (IoA), mean absolute 
error (MAE), RMSE, and Spearman’s rank correlation coefficient (r), 
were calculated from observed and simulated temperature time series at 
the pixel level. RMSE and MAE were used to quantify the deviation 
between simulated and observed temperatures, and IoA and correlation 
coefficient r were used to determine the degree to which magnitude and 
signs of the observed temperatures are consistent with the simulated 
temperatures. Using the correlation coefficient r instead of Pearson’s 
correlation coefficient (ρ), as a non-parametric rank statistical param
eter, can reduce the influence of possible non-linearities between vari
ables. Many previous studies (Crippa et al., 2019; Fu et al., 2019; Liu 
et al., 2021) have also used it to measure the consistency between WRF- 
simulated and satellite-observed variables. It should be noted that dur
ing the evaluation process, any pixels with missing values in either 
satellite or station observations were excluded. 

IoA = 1 −

∑n
i=0

(
Tm,i − To,i

)2

∑n
i=0

( ⃒
⃒Tm,i − μTo

⃒
⃒ +

⃒
⃒To,i − μTo

⃒
⃒

)2 (4) 

MAE =
1
n

∑n

i=1
∣ Tm,i − To,i ∣ (5) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
Tm,i − To,i

)2

n

√

(6) 

r =

∑n

i=0

(
Tm,i − μTm

)(
To,i − μTo

)

(
∑n

i=0

(
Tm,i − μTm

)2 ∑n

i=0

(
To,i − μTo

)2
)1/2 (7) 

Fig. 3. The proposed framework with a combination of WRFM and satellite observations for estimating hourly LSTs at a 1 km resolution (A) and evaluating WRFM- 
generated LSTs based on satellite and in-situ LST observations (B).

Fig. 4. An example of the morphing procedure.
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where Tm,i and To,i are the modeling and observation temperature at 
time i; μ and σ are the mean and standard deviation of temperature.

First, we assessed the performance of the WRF model with updated 
land surface properties by comparing the simulated air temperature 
against observations at nine meteorological stations (Fig. 1C). IoA and 
MAE (Srivastava et al., 2015) for nine stations were calculated for WRF 
grids. Benchmarking of the performance of our evaluation against 
published studies to achieve the WRF simulation of air temperature 
based on IoA should be greater than 0.8 and MAE should be smaller than 
2 ◦C (Bhati and Mohan, 2016).

Second, we assessed the performance of the WRFM framework using 
SURFRAD-observed and satellite-observed LSTs. In situ LST measure
ments at the SXF site were used to evaluate the performance of WRF 
simulation and WRFM framework under varying atmospheric conditions 
(i.e.,

clear-sky and cloud conditions). The determination of these condi
tions was accomplished through the utilization of a cloud mask derived 
from satellite products (i.e., Copernicus and MODIS). Hourly SURFRAD- 
observed LSTs over study period were compared to the corresponding 
WRF-simulated and WRFM-generated LSTs at the grid cell located in the 
SXF site. We further evaluated the capability of the WRFM framework 
into capturing the spatial and temporal variations of LSTs over the study 
region by comparing the WRFM generated LSTs with satellite-observed 
LSTs. In terms of spatial pattern, the RMSE in each WRF grid cell was 
calculated by comparing LST values from the WRFM generated LSTs 
with original MODIS Terra observations (10:30 AM and 10:30 PM). The 
aforementioned comparison was performed exclusively on days when 
four MODIS observations were available, thereby facilitating an inde
pendent evaluation by excluding LSTs that were generated in the process 
of the gap-filled LST product. This strategy ensures that the evaluation 
was conducted using a set of observations that were not influenced by 
the estimation techniques used in generating the gap-filled LST data. In 
terms of temporal pattern, the correlation coefficient r for each WRF grid 
was calculated by comparing averaged diurnal variations of LST from 
Copernicus observations and WRFM generated LSTs during the study 
period. Grids of the WRF simulation (1 km) were aggregated to 5 km to 
match the pixel size of the Copernicus LSTs.

Third, we assessed the effectiveness of the WRFM framework in 
capturing the diurnal and spatial patterns of LSTs by comparing the LSTs 
generated by WRFM with those generated by DTC model and spatial 
downscaling, respectively. The four-parameter DTC model used in this 
study was based on GOT01_0 model proposed by (Schädlich et al., 2001) 
and the input data was MODIS observations. This model was applied for 
nine days during the study period when more than 50 % MODIS pixels in 
the study areas have four clear-sky observations per day. Grids of the 
DTC modeled LST (1 km) were aggregated to 5 km and the correlation 
coefficient r and mean bias for each grid were calculated by comparing 
averaged diurnal variations of LST from Copernicus observations and 
DTC model for the study period. Next, we evaluated the effectiveness of 
the WRFM framework in capturing the diurnal pattern by comparing 
correlation coefficient r values between DTC-LSTs and Copernicus-LSTs, 
as well as between WRFM-LSTs and Copernicus-LSTs. The spatial 
downscaling approach used in this study was based on regression of 
principal components proposed by (Zakšek and Oštir, 2012). MODIS 
auxiliary data (i.e., land surface albedo, NDVI, EVI, emissivity), NLCD 
land cover data, and terrain data (i.e., slope, aspect) were used to 
downscale Copernicus LSTs for seven days when more than 90 % 
Copernicus pixels in the study areas have clear-sky observations. The 
RMSE was calculated by comparing LST values from the spatial down
scaled LSTs and original MODIS observations for 10:30 AM and 10:30 
PM (Terra) without missing values. Next, we evaluated the effectiveness 
of the WRFM framework in capturing the spatial pattern by comparing 
RMSE values between WRFM-LSTs and MODIS-LSTs, as well as between 
spatial downscaling-LSTs and MODIS-LSTs.

4. Results

4.1. Evaluation of the WRF modeling

The WRF model with updated land surface properties can well cap
ture the hourly dynamics and magnitude of air temperatures compared 
to the station observations (Fig. 5). Specifically, the simulated air tem
peratures showed a strong agreement with the temporal dynamics of 
temperature records obtained from weather stations, as indicated by an 
IoA exceeding 0.92 for all weather stations. Meanwhile, the WRF 
simulation in this study demonstrated a competitive performance in 
estimating air temperature magnitude with a MAE (or RMSE) value 
smaller than 2 K (2.5 K) (Table 1). In general, the WRF simulation 
exhibited a high degree of agreement with station observations during 
nighttime, suggesting a better model performance at night. Cold biases 
on the order of 1–2 K were observed in daytime peak for all weather 
stations studied, which might be caused by model errors from the 
selected planetary boundary layer schemes (Hu et al., 2013; Hu et al., 
2010).

The WRF simulation demonstrated certain limitations in accurately 
capturing spatial variations of LST across the study region and tended to 
exhibit a bias in magnitude. This was further evidenced by Fig. 6, which 
depicts the LSTs at approximately 2:00 AM local time on June 9 and 
August 19, 2019, as observed by the MODIS satellite and simulated by 
the WRF model. Although the spatial patterns of the WRF-simulated and 
MODIS-observed LSTs exhibited similarities, there were notable differ
ences in their magnitudes, particularly in urban areas where the biases 
were more pronounced. Similar performance of WRF simulated LSTs 
was also reported in previous studies (Fu et al., 2019; Fu and Weng, 
2018; Xia et al., 2017). The underestimation of LST was observed in 
urban areas on June 9, 2019, which might be caused by the setting of 
constant values of surface parameters in the coupled SLUCM model. 
Additionally, on August 19, there is a clear warm bias in the WRF- 
simulated LSTs compared with the observations. This bias may be 
potentially attributable to the model’s inability to adequately capture 
local-scale factors and site-specific characteristics. These findings high
light the need for further refinement of the WRF-simulated LSTs to more 
accurately capture the spatial variations and magnitude of LST across 
the study area.

The performance of the WRF simulation in capturing the temporal 
pattern of LSTs was observed to be consistently good under varying 
weather conditions. However, the simulation demonstrated superior 
LST estimation in magnitude under clear-sky conditions compared to 
cloudy conditions. As demonstrated in Fig. 7A, the WRF simulation 
exhibited a good performance in capturing the temporal pattern of LST 
and estimating the magnitude of LST under clear sky, with a correlation 
coefficient r of 0.97 and RMSE of 2.73 K at the SURFRAD site. Under 
cloudy conditions, the WRF simulation was observed to perform well in 
capturing the temporal pattern of LST with a correlation coefficient r of 
0.93 at the SURFRAD site (Fig. 7B). However, it is worth noting that the 
RMSE under cloudy conditions increased to 4.15 K, indicating a rela
tively poor performance in estimating the magnitude of LSTs compared 
to clear-sky conditions. According to Fig. 7C, the WRF simulation shows 
an overestimation of daytime LSTs, particularly at noon, under both 
clear and cloudy sky conditions. Furthermore, the extent of over
estimation is more pronounced during cloudy sky conditions, resulting a 
higher RMSE.

4.2. Accuracy of the WRFM-generated LST

The implementation of the WRFM framework not only preserved the 
capability of the WRF simulation to capture temporal pattern of LST 
under varying weather conditions but also improved the estimation of 
LST magnitude, particularly under cloudy conditions (Fig. 7&8). Spe
cifically, the WRFM can capture hourly LST under both clear and cloudy 
sky conditions, with RMSE of 2.63 and 3.75 K, respectively (Fig. 8 A&B). 
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Moreover, the LSTs estimated by the WRFM framework still show a 
strong correlation with those obtained at the SURFRAD sites on an 
hourly basis and the estimated and measured LSTs align closely along 
the 1:1 line. The diurnal pattern of LST estimations was observed to 
align well with measurements after employing the WRFM framework 
under clear sky conditions (Fig. 8C). Additionally, the use of the WRFM 
framework resulted in an improvement in LST estimation accuracy 
under cloudy conditions, as evidenced by a decrease in the RMSE from 
4.15 to 3.75 K. It is worth noting that the relatively large RMSE observed 
under cloudy conditions was a result of the underestimation of LST at 
nighttime, particularly during the early morning hours.

The WRFM can capture spatial variations and reduce bias in the 

magnitude of WRF-simulated LSTs. The LST observations obtained from 
the MODIS Terra satellite at around 10:30 AM and 10:30 PM were uti
lized to compare and evaluate the WRF-simulated and the WRFM- 
generated LSTs. The RMSE was calculated for both the WRF-MODIS 
and the WRFM-MODIS comparisons to evaluate the discrepancy of 
magnitude between the model-generated LSTs and the MODIS obser
vations. In comparison to the RMSE value obtained from the WRF- 
MODIS comparison, the application of the morphing technique in the 
WRFM framework led to a substantial reduction in RMSE. Specifically, 
the maximum reduction in RMSE of approximately 5 K was observed in 
the northwestern areas of the study area during daytime (Fig. 9A&B). 
During nighttime, a similar reduction of approximately 3 K was 
observed in the northeastern areas of the study area (Fig. 9C&D). The 
analysis of the study area revealed a reduction in the average RMSE from 
4.34 K to 2.89 K during daytime and from 4.12 K to 2.75 K during 
nighttime. In the southeastern region of the study area, although WRF- 
MODIS comparison exhibited relatively low RMSEs of about 3.5 K, the 
application of the morphing technique in WRFM framework resulted in a 
further reduction of RMSEs to less than 2.5 K. Overall, more than 80 % of 
the study areas exhibited RMSE of less than 3.3 K during the daytime and 
less than 3.1 K at night, when comparing the magnitude of WRFM-LST to 
those observed by MODIS. These findings suggest that the incorporation 
of the morphing technique enhances the accuracy of the WRF-simulated 
LSTs and improves the WRF model’s ability to capture the spatial vari
ations in LSTs over the study area.

The reliability of the WRF model in capturing the diurnal dynamics 
of LSTs was evident when compared to observations from the Coperni
cus satellite. Furthermore, the proposed WRFM framework has suc
cessfully maintained this reliability. The WRF simulation captured the 
diurnal variations in LSTs within the study region, as evidenced by a 
high correlation coefficient r exceeded 0.95 between the Copernicus- 
observed and WRF-simulated LSTs for the majority of grids within the 
study area (Fig. 10 A). The morphing technique within the WRFM 
framework demonstrated excellent performance in preserving temporal 

Fig. 5. The averaged diurnal variations (June 01–August 31, 2019) for air temperatures simulated from the WRF model and for temperature records from nine 
weather stations.

Table 1 
Comparison of simulated air temperatures with those from the weather stations 
(2208 observations from June 1 to August 31, 2019).

Station 
ID

Latitude Longitude IoA MAE 
(K)

RMSE 
(K)

Land Cover 
Type

IKV 41.69 −93.57 0.94 1.84 2.49 Developed, low 
intensity

CNC 41.02 −93.36 0.94 1.58 2.25 Developed, low 
intensity

DSM 41.53 −93.65 0.94 1.65 2.33
Developed, 
high intensity

GGI 41.71 −92.73 0.94 1.74 2.35
Developed, low 
intensity

OXV 41.30 −93.11 0.93 1.77 2.43
Developed, 
medium 
intensity

TNU 41.67 −93.02 0.94 1.80 2.41 Pasture

I75 41.05 −93.69 0.95 1.50 2.15
Cultivated 
crops

PEA 41.40 −92.94 0.94 1.70 2.41
Cultivated 
crops

PRO 41.83 −94.16 0.93 1.94 2.43 Cultivated 
crops

W. Chen et al.                                                                                                                                                                                                                                   Remote Sensing of Environment 315 (2024) 114393 

7 



variation of LSTs predicted by the WRF model. The majority of grid cells 
showed correlation coefficient r values exceeding 0.97 (Fig. 10 B), with 
negligible differences in correlation coefficient r values between the 
WRFM-generated and the WRF-simulated LSTs when compared with 
Copernicus observations, ranging from −0.016 to 0.06 (Fig. 10C). This 
outcome is theoretically expected, since one of the advantages offered 
by morphing integration process is to incorporate the reliable diurnal 
pattern derived from WRF model.

4.3. Comparison with previous methods

The spatial accuracy of the resulting WRFM LSTs from this study is 
better when compared with spatial downscaling LSTs reported in pre
vious studies. The WRFM-generated LSTs show higher accuracies when 
compared with hourly LST at 1 km resolution obtained from spatial 
downscaling approach (Zakšek and Oštir, 2012). In certain rural areas 
(as shown in Fig. 11 A-E), the LSTs generated by WRFM and those 
derived from spatial downscaling exhibit similar RMSE when compared 
to MODIS observations, averaging around 3 K at 11 AM and 4 K at 11 
PM. However, LSTs derived from spatial downscaling approach included 
outliers, resulting in a RMSE greater than 8 K for some parts of the study 
area. Particularly, RMSEs of the spatial-downscaled LSTs during day
time were large in urban areas despite the resulting coefficient of mul
tiple determination from linear regression with auxiliary parameters 
mostly being larger than 0.8 (Fig. 11 C&F). A main reason for this poor 
performance by the spatial-downscaling method might be due to the 
limited ability of 5 km Copernicus observations to capture the magni
tude of the LSTs difference between rural and urban area.

The diurnal pattern obtained from WRFM-generated LSTs in this 
study exhibits greater accuracy in comparison to that derived from the 
DTC model. The WRFM framework demonstrated better performance 
than DTC model with larger consistency with Copernicus observations 
and lower bias. Fig. 12 A&C show that the diurnal variation of LSTs 
captured by WRFM (with a correlation coefficient r larger than 0.97 for 
most of the grids) had higher correlations with Copernicus observations 
compared to those from the DTC model (with a correlation coefficient r 
larger than 0.93 for most of the grids). It should be noted that the LST 
values beyond the maximum and minimum observations in MODIS have 

been omitted from the evaluation to minimize the influence of outliers 
generated by the DTC model. Even after minimizing the influence of 
outliers, the spatial variation estimated by the DTC model was not as 
consistent with satellite observations as the proposed WRFM frame
work. In northern and eastern areas of the study area, correlation co
efficient r values of the DTC model were found to be smaller than 0.94 
and the application of the WRFM framework resulted in an increase in 
correlation coefficient r values ranging from 0.02 to 0.13 (Fig. 12 E). 
Overall, Copernicus grids with mean bias larger than 1.5 K were mostly 
observed in DTC-LSTs. The comparison between WRFM generated and 
Copernicus observed LSTs demonstrates that Copernicus grids situated 
in urban areas exhibited a relatively higher mean bias than those in rural 
areas (Fig. 12 B & D). This may be attributed to the complex urban 
environments within 5 km Copernicus, highlighting the importance of 
spatial resolution for improving the estimation of LST dynamics for 
complex landscapes.

4.4. Spatial and temporal patterns of LST

The WRFM-generated LSTs exhibit the capability to capture the UHI 
effect and reveal more detailed diurnal patterns of UHI in the study area 
compared to MODIS observations. For example, on August 4, 2019, the 
rural-urban gradient of LST was smallest at 9 AM, ranging from 1 to 2 K 
(Fig. 13A). After 9 AM, urban LSTs increased more quickly than rural 
LSTs and reached a maximum of ~40 ◦C at 2 PM, implying a strong 
warming effect of impervious surfaces after the absorption of solar ra
diation and anthropogenic heat released from human activities (e.g., 
transportation and building energy consumption). After 5 PM, the LSTs 
in rural areas decreased more rapidly than urban areas and reached a 
minimum of around 12 ◦C at 6 AM of the following day. The ability of 
MODIS observations to provide a detailed evolution of the UHI effect is 
limited due to missing values caused by clouds and the limited number 
of observations per day (Fig. 13B). It is worth noting that the WRFM- 
generated LSTs mainly reflect clear-sky conditions due to the integra
tion of gap-filled clear-sky 1 km daily LST. By combining the WRFM 
framework with an all-weather gap-filled LST dataset, analyzing UHI 
variations becomes feasible.

Fig. 6. LSTs simulated by the WRF/UCM model (B, D) and observed by MODIS (A, C) at 2:00 AM on June 9 and August 19, 2019. Note: White areas in Panel A and C 
were masked due to the low quality of the MODIS data product. The boundary of urban areas was marked in black.
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5. Discussion

The complementary gap-filled MODIS observed and WRF-simulated 
LSTs can be integrated to improve hourly LSTs estimations at 1 km 
resolution. In the 1 km daily gap-filled MODIS LST dataset, missing 
values induced by clouds in the original MODIS data were effectively 
and efficiently filled using a spatiotemporal fitting algorithm. Although 
the gap-filled MODIS LST dataset only provided daily mid-daytime and 
mid-nighttime LSTs, it had the advantage of spatial details and accuracy. 
The WRF model has been used to estimate LSTs at high spatial and 
temporal resolutions. Comparing with satellite observations, we found 
that the WRF simulation exhibited superior capability in capturing 
diurnal variations of LSTs with correlation coefficient r greater than 
0.92. However, the simulated LSTs tended to have a bias in the magni
tude with a wide range of RMSE from 2 K to 7 K. By integrating com
plementary gap-filled MODIS and WRF-simulated LSTs, the morphing 
technique serves as a useful tool to generate LSTs with an improved 
accuracy of magnitude based on MODIS-observations and preserve 
temporal dynamics predicted by the WRF model. Therefore, the pro
posed WRFM framework in this study benefits from both attributes.

The WRFM framework, with its physically based weather modeling 
heritage, has demonstrated its ability to generate more reliable and 
refined diurnal dynamics of LST compared to the DTC model or the 
spatial downscaling approach. Firstly, the diurnal dynamics of LST 
derived from the DTC model are typically modeled with piecewise 
functions (e.g., a simple sine or cosine function or harmonic series) and 

its performance highly depends on the number of parameters considered 
in the DTC model. The inclusion of a higher number of parameters in the 
DTC model necessitates a greater number of LST observations within a 
day for accurate prediction. For example, in this study, the GOT01_0 
model, a DTC model with four free parameters, was investigated. 
However, it was found that this model exhibits limited capability in 
capturing the variations of LSTs, leading to occurrence of outlier data 
points that fell outside the range of observed LSTs on certain days. 
Secondly, in terms of spatial downscaling approach, the diurnal dy
namics of LST were derived from satellites with a high temporal reso
lution (i.e., hourly) but low spatial resolution (i.e., 5 km). This limitation 
hinders the ability to generate refined temporal patterns at a 1 km scale 
and also fails to mitigate the influence of cloud. Specifically, each 
Copernicus pixel encompasses a minimum of 25 WRF grid cells that may 
represent distinct urban land use types (e.g., low/high density residen
tial, commercial, etc.). Moreover, the integrity of diurnal patterns 
derived from Copernicus observations was impacted by cloud and it is 
not ideal to obtain whole diurnal pattern for each day. Although using 
an all-sky hourly LST product at 5 km resolution (Jia et al., 2023) may 
mitigate the impact of cloud, the ability to generate more precise tem
poral patterns at a 1 km scale is still limited by its spatial resolution. In 
contrast to the aforementioned approaches, the proposed WRFM 
framework exhibits the capability to effectively capture the diurnal 
dynamics of LST at a fine spatial resolution by integrating WRF model. 
This integration leverages the advantages of the WRF model, which is 
coupled with readily available physical parameterization and diverse 

Fig. 7. The scatter density plots between SURFRAD-observed and WRF-simulated LSTs during the study period under clear (A) and cloudy sky conditions (B). Red 
color indicates higher density of points, blue color lower density. The averaged diurnal variations for LSTs from SURFRAD (Stn-LST) measurements and WRF (WRF- 
LST) simulations over the study period (C). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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land cover types, enabling the characterization of LST’s diurnal pattern 
at a resolution of 1 km in an effectively way. Additionally, WRF model 
can simulate diurnal pattern of LST under both clear-sky and cloudy 
conditions with its advanced ability to parameterize microphysical 
process and planetary boundary layer conditions (Fu et al., 2019).

The proposed WRFM framework uses more and up-to-date land 
surface parameters from in situ and satellite observations, thus can 
generate more reliable spatial pattern of LSTs compared to those from 
the spatial downscaling approach or original WRF model. Firstly, when 
using a spatial downscaling approach, a large number of land surface 
parameters relevant to LSTs must be manually collected and incorpo
rated to accurately characterize spatial variations in LSTs. In contrast, 
the WRFM framework incorporates a wide range of land surface pa
rameters in a highly efficient manner. This is made possible by 
leveraging the extensive collection of static datasets provided by the 
WRF model community, which includes essential land features such as 
soil temperatures, topology, and soil types. Secondly, with the updated 
satellite-observed land surface properties, the performance of the WRF 
model can meet the evaluation benchmark for 2-m air temperature, but 
the simulated LST still showed bias in the magnitude when compared 
with the original MODIS LSTs. Further tuning LST-related parameters (e. 
g., turbulent transfer coefficient (Vahmani and Hogue, 2014) and the 
emissivity of LULC) in the WRF model might be able to further improve 
the accuracy of LST. However, such process is computationally expen
sive because a complete analysis of the model sensitivity to the changes 
of LST-related parameters in the WRF model needs an extensive number 

of model runs. The gap-filled MODIS LSTs provided a reliable spatial 
pattern of daily LSTs for the proposed WRFM framework.

The proposed WRFM framework, supported by a large community of 
users of the WRF model and a simple morphing integration algorithm, 
offers a straightforward approach to generate LSTs and its dynamics for 
various regions. This represents an improvement over existing sophis
ticated fusion methods. Various fusion methods have been proposed to 
estimate LSTs at high spatiotemporal resolutions using multi-scale polar- 
orbiting and geostationary satellite observations (Adeniran et al., 2024; 
Long et al., 2020; Ma et al., 2022; Quan et al., 2018; Wu et al., 2015; Wu 
et al., 2013; Zhao et al., 2020). However, these methods are not satis
factory due to the following reasons: 1) the application of these methods 
over large areas can be quite challenging due to their structures and 
procedures, low computing efficiencies, and the need for specific hy
pothesis; 2) potential high uncertainties due to accumulated un
certainties and spatiotemporal mismatching issues among multi-source 
datasets; and 3) the availability of data sources and source codes for 
models may not always be publicly available. Moreover, deep learning 
algorithms, such as convolutional neural network (CNN) (Wang and 
Huang, 2024; Yu et al., 2023) and dynamic multilayer perceptron 
(DyNet) (Guo et al., 2024), have also been used for fusing LST data, 
mainly on daily frequency and with a spatial resolution of finer than 1 
km. Despite their advantages, deep learning algorithms may not be 
suitable for large-scale applications as their performance is highly 
dependent on the characteristics of the study areas, leading to a poor 
universality. On the contrary, the proposed WRFM framework in this 

Fig. 8. The scatter density plots between SURFRAD-observed and WRFM-generated LSTs during the study period under clear (A) and cloudy sky conditions (B). Red 
color indicates higher density of points, blue color lower density. The averaged diurnal variations for LSTs from SURFRAD (Stn-LST) measurements and WRFM 
(WRFM-LST) framework over the study period (C). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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study offers several advantages. Firstly, the proposed framework is 
suitable for large-scale applications due to its ease of implementation, 
high efficiency, and robustness. Secondly, the spatial resolution of the 
LSTs obtained from both WRF outputs and MODIS observations is same, 
which eliminates any potential issues related to scale effects. Thirdly, 
the WRF model and the inputs required for the proposed framework are 
public available. As a state-of-the-art mesoscale numerical weather 
prediction system, the WRF model has a large worldwide community of 
registered users and support forum, thereby facilitating swift resolution 
of issues that users may encounter. The proposed framework can 
incorporate publicly available seamless LST products, such as the gap- 
filled clear-sky 1 km daily LST (Zhang et al., 2022d) used in this 

study, to improve LSTs produced by the WRF model. Thus, the proposed 
WRFM framework, in combination with the use of gap-filled LSTs, holds 
great potential for studying the effects of UHIs and for conducting other 
research related to urban systems.

The resulting hourly LSTs at a high spatial resolution were able to 
provide more accurate spatial and temporal details of thermal envi
ronment of the diverse study area in this study when compared to other 
available datasets. Specifically, more accurate spatial pattern of rural- 
urban thermal gradient can be obtained from the WRFM-generated 
LSTs. In addition, compared to MODIS LSTs, hourly patterns of UHI 
effect can be examined at a 1 km resolution. Overall, the WRFM- 
generated LSTs with good accuracies and high spatiotemporal 

Fig. 9. The RMSE between the WRF simulated (A&C) and WRFM generated (B&D) LSTs according to MODIS observed LSTs at 11 am and 11 pm, respectively. The 
boundary of urban areas was marked in black.

Fig. 10. The correlation coefficient r between the WRF simulated (A) and WRFM generated (B) LSTs, and their difference (WRFM-WRF) (C) as compared with 
Copernicus observed LSTs. The boundary of urban areas was marked in black.
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Fig. 11. RMSEs of the WRFM generated (A: 11 am, D: 11 pm) and spatially downscaled (B: 11 am, E: 11 pm) LSTs evaluated based on MODIS observed-LSTs and the 
corresponding coefficients of multiple determination of the spatial downscaling method (C: 11 am, F: 11 pm). Note: Copernicus observations for 8 days (6/7, 6/8, 6/ 
10, 6/13, 7/19, 7/23, 8/27, 8/28) with greater than 90 % clear sky were selected for this evaluation. Pixels with less than three clear-sky observations were excluded 
in RMSE calculation. The boundaries of urban areas were marked in black.

Fig. 12. The correlation coefficient r and mean bias between the DTC fitted (A&B) and WRFM generated (C&D) LSTs with Copernicus observed LSTs and the 
difference of between correlation coefficient r (E). Note: MODIS observations for 9 days (6/7, 6/8, 7/10, 7/12, 7/19, 7/23, 8/8, 8/27, 8/28) with larger than 50 % 
clear-sky were selected to conduct this evaluation. The boundary of urban areas was marked in black.
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resolutions can offer better information about LSTs to researchers and 
policymakers, for understanding diurnal evolution of thermal environ
ment and further locating regions that require urban heat mitigation 
strategies.

6. Conclusions

An improved understanding of the diurnal dynamics in LSTs, espe
cially over urban domain, has been hindered due to the limitation in 
spatial and temporal resolutions and missing observations in satellite 
observations and potential bias from weather modeling. In this study, we 
developed a practical framework (named WRFM) that benefits from the 
combined features of weather modeling and satellite observations to 
estimate hourly 1 km LSTs. The proposed framework integrates tem
poral features of the WRF model with the spatial pattern of gap-filled 1 
km daily MODIS LST observations to generate an improved LST product. 
The framework consists of two steps. First, the updated land surface 
datasets were used in WRF simulation to generate gridded LST data. 
Second, the temporal pattern of WRF-simulated and spatial pattern of 
observed and gap-filled LSTs were integrated using the morphing tech
nique. The improved LSTs with spatial and temporal details can be used 
to reveal the thermal environment that consists of a diverse and complex 
LULC and urbanization levels. Compared with previous studies, the 
proposed framework can generate high-accuracy and resolution hourly 
LSTs by combining the complementary attributes of LSTs from satellite 
observations (i.e., spatial information) and the physically based WRF (i. 
e., diurnal dynamics) simulations.

Using eight counties in Iowa as the study area, the results suggest 
that the temporal pattern of LSTs can be well captured by the WRF 
model with the updated land surface properties. Further utilization of 
the morphing technique can reduce the bias in the magnitude between 
WRF-simulated and MODIS observed LSTs while still maintaining tem
poral pattern of WRF-simulated LSTs. The resultant data can be used to 
study the spatial pattern of LSTs and their hotspots at an hourly scale. 

The improved spatiotemporal LSTs can also improve our understanding 
of the diurnal evolution of thermal environment in urban, sub-urban, 
and rural areas, that are useful to researcher, policymakers, and city 
planners for understanding and mitigating the effects of UHI on human 
health (i.e., heat stress) and other socioeconomic activities (e.g., energy 
demand, transportation).
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Fig. 13. The spatial pattern of hourly LSTs on August 4, 2019 from WRFM framework (A) and MODIS observation (B). Note: White areas in Panel A were masked by 
water body. White areas in Panel B were masked per the quality flag provided in the MODIS data product.
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