
Towards Efficient Deployment of Hybrid SNNs on

Neuromorphic and Edge AI Hardware

James Seekings, Peyton Chandarana, Mahsa Ardakani, MohammadReza Mohammadi, and Ramtin Zand

Department of Computer Science and Engineering, University of South Carolina, Columbia, USA

seekingj@email.sc.edu, psc@email.sc.edu, mahsam@email.sc.edu, mohammm@email.sc.edu, ramtin@cse.sc.edu

Abstract—This paper explores the synergistic potential of
neuromorphic and edge computing to create a versatile machine
learning (ML) system tailored for processing data captured by
dynamic vision sensors. We construct and train hybrid models,
blending spiking neural networks (SNNs) and artificial neural
networks (ANNs) using PyTorch and Lava frameworks. Our
hybrid architecture integrates an SNN for temporal feature
extraction and an ANN for classification. We delve into the
challenges of deploying such hybrid structures on hardware.
Specifically, we deploy individual components on Intel’s Neu-
romorphic Processor Loihi (for SNN) and Jetson Nano (for
ANN). We also propose an accumulator circuit to transfer data
from the spiking to the non-spiking domain. Furthermore, we
conduct comprehensive performance analyses of hybrid SNN-
ANN models on a heterogeneous system of neuromorphic and
edge AI hardware, evaluating accuracy, latency, power, and
energy consumption. Our findings demonstrate that the hybrid
spiking networks surpass the baseline ANN model across all
metrics and outperform the baseline SNN model in accuracy
and latency.

Index Terms—Spiking neural network (SNN), edge computing,
neuromorphic computing, edge AI accelerators, and heterogenous
systems.

I. INTRODUCTION

Spiking Neural Networks (SNNs) [1], [2] are an emerg-

ing technology aimed at creating biologically-inspired neural

networks for low-power and high-performance computation.

They utilize neurons modeled after the brain, enabling them

to learn over time and excel at extracting temporal infor-

mation from event-based data [3]–[5]. In contrast, artificial

neural networks (ANNs) like convolutional neural networks

(CNNs) are proficient at extracting spatial information but do

not handle temporal information well [6]. Recurrent neural

networks (RNNs) have gained popularity for their ability to

handle temporal information, but they do not offer significant

improvements in terms of power or latency [7].

SNNs are being explored as a promising alternative for

conventional ANNs due to their low-power computing capabil-

ities, yet when deployed on existing neuromorphic hardware,

they often underperform in terms of classification accuracy

[8]–[10]. One solution to benefit from the advantage of both

SNN and ANN models is to fuse them to create more robust

and versatile neural network models capable of addressing

complex tasks, including pattern recognition in time-series

data and understanding dynamic systems in real-time appli-

cations. However, integrating SNNs and ANNs in a single

system presents challenges such as developing efficient train-

ing algorithms to train across the two domains and optimizing

the use of computational resources. Despite these challenges,

exploring the viability of combining ANNs and SNNs into

one system could yield promising results to advance neural

networks capabilities.

In 2021, Kugele et al. [11] proposed a hybrid SNN-ANN

architecture with a custom simulator to compile and train

a hybrid neural network. Their proposed model consists of

an SNN backbone for extracting temporal information and

an ANN head for classification. Inspired by [11], Wu et al.

[12] investigates appending dense layers to SNN networks to

improve accuracy on CIFAR-10 [13]. In [14], a hybrid SNN-

ANN model is utilized to process the data captured by dynamic

vision sensor (DVS) [15], [16]. Instead of using the SNN for

the backbone, other works such as Muramatsu et. al. [17]

explore using the ANN as a backbone with an SNN head for

classification on the MNIST [18] and CIFAR-10 datasets. Ad-

ditionally, Muramatsu et. al. performed multiple experiments

by modifying the ratios of ANN to SNN layers concluding

that models with more ANN layers typically achieve better

accuracy. Beyond the domain of image classification, a few

papers [19], [20] have also explored the use of hybrid networks

in object detection tasks. This is done by combining an

SNN backbone with a single-shot detector head and using a

surrogate gradient to train the networks.

Herein, our work provides a deeper investigation of hybrid

SNN-ANN models by offering a unified training mechanism

that operates across the SNN and ANN domains. Additionally,

we undertake a more extensive performance analysis for differ-

ent architectures of the hybrid network. The main contributions

of our paper compared to the previous works are:

• Developing a unified backpropagation-based training

mechanism for hybrid spiking and non-spiking architec-

tures using PyTorch and SLAYER [21] as part of the

LAVA neuromorphic computing library [22].

• Investigating the hardware deployment challenges of hy-

brid architectures. This paper is one of the pioneers in

attempting the real hardware implementation of hybrid

SNN-ANN models.

• Providing comprehensive performance analyses of hybrid

SNN-ANN models deployed on a heterogenous system of

neuromorphic and edge AI hardware.

The remainder of the paper is organized as follows. Section

II introduces the proposed hybrid SNN-ANN architectures and
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Fig. 1: The architecture of the CNN models investigated herein

to process the data captured by the DVS camera.

their training mechanism. Section III demonstrates the hard-

ware deployment of our hybrid architecture on a heterogeneous

system of neuromorphic hardware and edge AI accelerators.

The experiments performed and the results obtained are dis-

cussed in Section IV . Finally, Section V concludes the paper.

II. PROPOSED HYBRID SNN-ANN ARCHITECTURE

A. Hybrid Architecture

Here, we develop a representative CNN architecture with

five convolution layers and three dense layers to test the

effectiveness of integrating spiking and non-spiking compo-

nents. Figure 1a shows the baseline ANN architecture using

non-spiking convolution and dense blocks that employ ReLU

activations and max pooling operations. Additionally, an ac-

cumulate operation is included at the front of the network,

represented by the green layer, which collapses the temporal

dimension from the input data so that the ANN can process it.

Figure 1b shows the baseline SNN architecture consisting of

Spike Convolutions (SpkConv) and Spike Dense (SpkDense)

blocks. These blocks use Current-Based Leaky Integrate and

Fire (CUBA-LIF) neurons as activations and spike pooling

operations.

A hybrid network is generated by replacing the Conv layers

from the ANN with SpkConv layers from the SNN. Layers

are replaced in order starting from the beginning of the model

and moving deeper. The accumulate operation is then placed

between the spiking and non-spiking layers to remove the

temporal dimension as the data is passed to ANN, and the

dense layers are always implemented via non-spiking blocks.

Figure 1c shows an example of a hybrid network with two

SpkConv layers and three regular Conv layers, labeled S2A3.

Table I provides further details of the model architectures

investigated in this paper.

B. Accumulator

Before event-based data can be passed to ANN, the temporal

dimension must be collapsed. To accomplish this, methods

such as those used in [11] involve implementing an accumu-

lator that sums spikes over small time intervals to generate

multiple outputs to the ANN. Each output is run through the

first layer of the ANN and then concatenated together at the

second layer. Our accumulator differs in that, after summation,

the outputs are concatenated together before being sent to

ANN. The concatenation occurs across the channel dimension,

causing it to expand with the size of the temporal dimension.

Herein, the period over which the accumulator sums spikes

is referred to as the accumulate interval. A large interval

sums up many spikes at once, reducing output size at the cost

of temporal resolution. On the other hand, smaller intervals

better retain temporal resolution but lead to increased model

size. In our experiments, we treat the accumulate interval as a

hyperparameter to investigate its effect on model performance,

which we discuss in Section IV. A model’s accumulate interval

is denoted by I = (5/10/25), as shown in Table I.
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Fig. 2: An example of accumulate operation on a 2-

dimensional data with 9 timesteps (T=9) and an accumulate

interval of 3 (I=3).

Figure 2 shows the accumulate operation performed on

2-dimensional data although it can be generalized for 4-

dimensional input. First, the input data is separated into groups

of size I along the temporal dimension, represented by dif-

ferent colors. The groups are then summed together resulting

in channel-wide vectors. After summation, these vectors are



TABLE I: Network Architectures. The spiking and non-spiking layers are indicated by “Spk” and “non-Spk”, respectively.

Accumulate interval is denoted with I = (5/10/25).

Convolutions Linear Parameters

Model Spk Non-Spk Spk Non-Spk I = 5 I = 10 I = 25 Loihi Cores

ANN 0 5 0 3 223,991 223,631 223,415 0

S1A4 1 4 0 3 225,943 224,503 223,639 16

S2A3 2 3 0 3 233,727 227,967 224,511 32

S3A2 3 2 0 3 264,839 241,799 227,975 36

S4A1 4 1 0 3 389,263 297,103 241,807 38

S5A0 5 0 0 3 3,041,431 1,566,871 683,135 42

SNN 5 0 3 0 387,229 387,229 387,229 58

concatenated together with the earlier elements appearing first,

preserving temporal order. The output of the accumulator is

then sent to ANN for further processing.

A mathematical representation of the accumulate operation

can be seen in Eq. 1, where S is a C ×T matrix representing

spiking input. C is the number of channels and T is the number

of time steps. The output is a vector A with length CT/I ,

where I is the accumulate interval.

Aj =

I−1∑

k=0

S(j mod C),(I+ j
C
,+k) (1)

Each output Aj is defined as the summation of S at channel

j mod C over I timesteps. Once j exceeds C, the summation

resets to the first channel through the modulus operation.

At this point, + j
C
, equals 1 which shifts the columns for

summation over by I . This repeats for every C indices until

the final index.

One challenge of this method is that the channel dimension

expands at a rate of T/I to accommodate the shrinking

temporal dimension. Reducing the channel count back down to

what it was before the accumulate operation can be done with

a simple convolutional layer. However, this is not possible in

models such as S5A0 which does not have a convolution layer

following the accumulate operation. As such, those models

experience a substantial increase in parameter count at smaller

accumulate intervals, as seen in Table I.

C. Training

Our hybrid model was built in PyTorch using the LAVA

framework [22] for spiking components. The LAVA library

contains a SLAYER-based training algorithm for SNNs which

saves the network’s previous states to be used during the cal-

culation of gradients via a temporal credit assignment policy

[21] and Back Propagation Through Time (BPTT) [23]. The

training algorithms for ANN and SNN build computational

graphs for calculating gradients and the graphs are combined

automatically, allowing the hybrid model to train as a single

unified network instead of being trained separately. However,

the accumulate operation is non-differentiable, requiring a

custom backward pass to be implemented.

In the backward pass of the accumulator, we are faced

with an inverse of the forward pass challenge encountered

previously. Here, 3-dimensional gradients are received from

the ANN while the SNN expects 4-dimensional gradients,

thus the temporal dimension needs to be reintroduced or

expanded from the ANN domain. This is done by repeating the

gradients in-place I times and then reshaping the data to four

dimensions. Through this process, spikes that were initially

summed together share the same gradient. A mathematical

representation following the logic of the forward pass can be

seen in Eq. 2.

Si,j = AC+ j
I
,+i (2)

III. DEPLOYMENT METHODOLOGY

Figure 3 shows the end-to-end system in software and

hardware starting from the training phase using our uni-

fied training pipeline to deploying the networks on their

respective hardware. As shown, the spiking and non-spiking

components of our proposed hybrid network have differing

hardware constraints that limit deployment options. Due to

their asynchronous event-based nature, SNNs cannot be run

on GPUs or CPUs without simulation which increases latency

and consumes more power. Neuromorphic hardware such as

Intel’s Loihi chip [24] is specially designed for running spiking

models by emulating biologically inspired neuron dynamics

in hardware. However, these chips do not support all of the

operations in the ANN models making them unfit to run

ANNs. In recent years, there has been various research on the

deployment of ANN models on edge AI accelerators [25]–

[27]. As shown in Fig. 3, we chose to deploy our hybrid

spiking model through a distributed system combining a Loihi

chip and a Jetson Nano [28]. These devices were profiled

separately to isolate their specific impact on the overall system.

1) Deployment of Non-Spiking Components on Edge AI

Accelerator: The NVIDIA Jetson Nano is a development

board tailored for ML applications. It utilizes the Tegra X1

System on Chip (SoC), which includes a quad-core ARM

Cortex A57 CPU clocked at 1.43 GHz. Additionally, the

board features four discrete processing clusters, each with 32

CUDA cores, totaling 128 CUDA cores based on the Maxwell

architecture. Equipped with 4 GB of RAM, the Jetson Nano

provides a robust computational platform for ML acceleration

at the edge.

The Jetson Nano operates in two distinct power configu-

rations: a low-power 5 W mode and a higher-performance

Max-N mode, both selectable via a software interface. In the

5 W mode, the device restricts itself to utilizing only two

ARM A57 cores at a reduced frequency of 0.9 GHz, and
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Fig. 3: The proposed unified python framework for training the

hybrid SNN-ANN models and the corresponding deployment

on a heterogenous system of neuromorphic hardware and edge

AI accelerators.

the GPU operates at a reduced clock speed of 0.64 GHz.

Conversely, the Max-N mode enables all four ARM A57 cores,

running them at an increased frequency of 1.5 GHz, while

the GPU operates at a speed of 0.92 GHz. This dual-mode

functionality allows developers to balance between power

efficiency and computational performance based on the needs

of their applications.

Although Jetson Nano is equipped with CUDA capabilities,

it primarily utilizes NVIDIA TensorRT [29] to optimize and

accelerate deep learning models through quantization and

other optimization techniques, thereby enhancing performance.

Models can be exported to TensorRT through the Open Neural

Network Exchange (ONNX) [30] library.

The proposed hybrid networks were recreated in Tensor-

Flow [31] with the spiking components removed and the input

layers adjusted. These partial models were then converted to

ONNX and exported to TensorRT for deployment on the Jetson

Nano. For inference latency, we calculate the time required

for 100 inferences and then determine the average inference

time for a single input sample. Input, CPU, and GPU power

dissipation were recorded through the Jetson Nano’s built-

in sensors while running each model for three minutes. The

tegrastats utility is used to read the sensors automatically [28].

2) Deployment of Spiking Components on Neuromorphic

Hardware: SNN simulators such as INIsim [32] or Brian 2

[33] can be used to run SNNs on the CPU through a software

abstraction of neural dynamics consuming considerable power

and increasing execution latency. Devices that instead emulate

neural dynamics, allowing for efficient execution of spiking

networks, are referred to as neuromorphic hardware platforms.

In our paper, we utilize Intel’s Loihi [24], to deploy the spiking

components of our hybrid network.

The Loihi chip departs from the typical von Neumann

architecture to more closely replicate the neural dynamics of

the brain. It contains a network of neurons and synapses that

communicate asynchronously through discrete spike events

for more efficient computation. Loihi is organized into 128

programmable cores, each containing 1024 neurons connected

by a total of 128 million synapses. While not yet commercially

available, access to the Loihi chip is provided to us by Intel

Labs through membership in the Intel Neuromorphic Research

Community (INRC).

While the LAVA framework is utilized in this paper to train

the hybrid and spiking networks, we could not measure the

power reliably using the power measurement tools available

in LAVA at the time of conducting this research. Consequently,

we opted for deploying the models on Loihi 1 and employed

the NengoLoihi toolchain [34] for deployment and power mea-

surements. NengoLoihi facilitates the conversion of CNNs into

SNN architectures through a mapping algorithm, which maps

the weights and activations of the CNN onto an equivalent

SNN in Intel’s NxSDK framework.

These initial CNNs were first developed in PyTorch and

then mapped to the spiking domain of each hybrid network.

Once converted into SNNs through NengoLoihi, each network

is partitioned layer-by-layer across Loihi’s neuro-cores. After

which, neurons and synapses are mapped together between the

chip and network. Once partitioned and mapped, the SNN is

run directly on the chip. The power dissipation was recorded

through a profiling toolkit in NengoLoihi which also reports

the number of Loihi cores allocated to the network. The last

column of Table I provides the number of Loihi cores for all

the hybrid and SNN architectures studied herein. As listed, one

Loihi chip is sufficient to support the implementation of our

hybrid SNN-ANN and SNN models. The latency is measured

via the spike propagation delay defined as the time between an

image being exposed to the network and the output of spikes

from the final layer.

IV. EXPERIMENTS AND RESULTS

A. Dataset

Throughout our experiments, we use the DvsGesture dataset

which includes 11 hand gestures recorded from 29 subjects

under 3 illumination conditions [35]. DVS events are defined

by their type (on/off), pixel location (x,y), and a timestamp.

To transform the raw DVS data into usable training data, all of

the events that occurred in a 10ms time frame were compiled

into a 128×128 image. We then took 50 consecutive images to

form a single sample of shape (2, 128, 128, 50), representing

500ms of activity. The raw data includes the times when

certain gestures are made, which is then used to automatically

label the samples. This generates 14,672 training samples and

3,793 testing samples.

B. Accuracy

Figure 4 provides a comparison of the accuracies between

baseline ANN and SNN, as well as the hybrid networks.

To determine the impact on model performance, the models

are evaluated with three distinct accumulation intervals: I=5,
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I=10, and I=25. The data prominently shows that ANNs

maintain high accuracy levels across all intervals, achieving

their highest at 88.48% with I=25. On the other hand, the SNN

baseline significantly underperforms at 74.24%. Analyzing the

hybrid network results, we see that the continued addition

of SpkConv layers leads to accuracy loss at all intervals,

mirroring the SNN performance. However, the inclusion of

a few SpkConv layers does not have a significant impact

on accuracy and in select cases, such as the S2A3 (I=10)

configuration, can even lead to slight increases in accuracy.

C. Latency

Figure 5 shows the latency of each model, separated for

spiking and non-spiking components. The ANN baseline

shows 3.28×, 5.47×, and 8.33× less latency compared to the

SNN baseline for I=5, I=10, and I=15, respectively. As shown

in the figure, the accumulate interval has a considerable effect

on latency, ranging from 6.5 ms to 2.64 ms as it increases.

Similar to the accuracy results, it can be observed that the

continued addition of SpkConv layers in hybrid networks
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Fig. 7: Energy Consumption Comparison for various ANN,

SNN, and hybrid SNN-ANN models.

increases latency to eventually match the SNN’s performance.

However, a small decrease in latency can be seen when only a

few SpkConv layers are present with intervals I=5, and I=10.

D. Power Dissipation

Figure 6 shows a comparison of power consumption among

the SNN, ANN, and various hybrid SNN-ANN architectures.

The graph illustrates that the ANN baseline, run on CPU

and GPU, exhibits significantly higher dynamic power con-

sumption compared to the SNN baseline deployed on Loihi.

Adding SpkConv layers reduces power dissipation across the

board, although even a very small ANN still consumes vastly

more power than a large SNN. A substantial increase in power

consumption is observed in configuration S5A0 across all

intervals, but this is an outlier caused due to the model’s

increased parameter count as shown in Table I. This occurred

because the accumulator expands the channel dimension of the

data, which is normally reduced back down by consecutive

Conv layers. However, the accumulator in configuration S5A0

is followed by a fully connected layer which does not reduce



TABLE II: Accumulator Performance Results. Recorded using Design Compiler.

I = 5 I = 10 I = 25

Model
Power

(mW)

Latency

(ms)

Energy

(mJ)

Power

(mW)

Latency

(ms)

Energy

(mJ)

Power

(mW)

Latency

(ms)

Energy

(mJ)

ANN 0.294 1.28e-2 4.95e-5 0.433 2.56e-2 1.46e-4 0.528 6.40e-2 4.70e-4

S1A4 0.294 6.25e-3 2.42e-5 0.433 1.25e-2 7.14e-5 0.528 3.13e-2 2.29e-2

S2A3 0.294 3.05e-3 1.18e-5 0.433 6.10e-3 3.48e-5 0.528 1.53e-2 1.12e-4

S3A2 0.294 1.45e-3 5.61e-6 0.433 2.90e-3 1.66e-5 0.528 7.25e-3 5.32e-5

S4A1 0.294 6.5e-4 2.52e-6 0.433 1.30e-3 7.42e-6 0.528 3.25e-3 2.38e-5

S5A0 0.294 2.5e-4 9.67e-7 0.433 5.0e-4 2.86e-6 0.528 1.25e-3 9.17e-6

the overall dimensionality. Overall, our results exhibit that

replacing non-spiking layers with spiking ones in a hybrid

SNN-ANN architecture can generally lead to decreased power

dissipation. Similar to latency, the accumulate operation does

not consume a substantial amount of power, being less than 1

mW in all cases, which is further discussed in Section IV-F.

E. Energy Consumption

Figure 7 provides a comparison between the ANN and

SNN baselines and the hybrid SNN-ANN models. The results

demonstrate that SNNs exhibit significantly lower energy con-

sumption for computational tasks compared to conventional

ANNs, highlighting the potential benefits of incorporating

spiking layers to reduce energy consumption. It shows that the

incremental addition of SpkConv layers significantly decreases

energy consumption compared to ANN models. However,

there is a similar increase in energy consumption for model

S5A0 due to the model’s aforementioned parameter increase.

In our experiments, we found that larger accumulate intervals

lead to decreased energy consumption across the board. As

shown in Table II, the accumulator only consumes a marginal

amount of energy compared to the entire system.

F. Accumulator Overheads

To accurately estimate the overheads of the accumulator

when used in a heterogeneous SoC comprising neuromorphic

and ANN accelerator cores, we implemented the accumulator

in the Verilog Hardware Description Language (HDL).

The accumulator circuit includes k-bit counters with three

input ports corresponding to the input clock, reset, and spike

signals. The clock signal is dependent on the hardware sys-

tem’s global clock and the reset signal is driven by the

accumulator module. The spike signal corresponds to whether

a spike was emitted by the SNN during the current clock. Thus,

if the last layer of the SNN, connected to the accumulator,

spikes, the spikes are transmitted to the accumulator’s counters

which then increments the k-bit counter.

The high-level accumulator module combines multiple

copies of the k-bit counters into a single hardware accumulator

block. The accumulator also has three inputs including the

clock signal along with a sync signal for synchronizing all of

the counters and N input wires to propagate the spike signals

to their respective counters. The accumulator also contains

an internal k-bit register for controlling when the N k-bit

counters should be reset after a predefined number of clock

cycles have passed. The output of the accumulator module

consists of N × k bits which can then be connected to an

ANN accelerator core for the ANN inference phase of the

hybrid model.

Here, we fix the number of inputs into the accumulator to

N = 128 bits which are then fed into the 128 k-bit counters

inside of the accumulator. The number of neurons connected

to the accumulator from the SNN part of the model often

exceeds the limit of the N = 128. To accommodate these

larger layer sizes, we divide the total number of output neurons

from the last layer into partitions with 128 neurons and send

each partition to the accumulator per timestep. Depending on

the value of k, the accumulator’s output bus would then be

128× k bits wide. The value of k depends on the accumulate

interval (I) value. For example, within the I = 5 interval, there

will be a maximum of 5 spikes. Thus, a 3-bit counter would

adequately store the accumulator’s output. Similarly, 4-bit and

5-bit counters can support accumulate intervals of I = 10 and

I = 25, respectively.

Using the Synopsys Design Compiler, we assessed the

performance of our accumulator operation on hardware. The

findings, detailed in Table II, indicate that the latency, power,

and energy overheads attributed to the accumulator circuit are

significantly lower, by several orders of magnitude, compared

to those of the ANN and SNN models running on the ANN

accelerator and neuromorphic cores. This implies that the

accumulator overheads are negligible.

V. CONCLUSION

In this work, we presented a methodology for the effi-

cient deployment of hybrid spiking models on a distributed

system of neuromorphic hardware and edge AI accelerators.

Our experiments involved testing numerous hybrid models

to explore the effect that introducing spiking layers would

have on performance. We trained our models on the event-

based DvsGesture dataset to perform Gesture Recognition.

The models were then profiled on separate devices to record

power, latency, and energy. Our findings show that hybrid

networks reduce energy consumption compared to homoge-

neous networks with minimal accuracy loss. We also show

that hybrid networks work best with only a few spiking layers

serving as feature extractors for following convolution blocks.

However, due to the lack of physical hardware, we could

not record the cost of communication between devices. This

cost would affect latency and energy consumption, potentially



offsetting the benefit of hybrid networks. Despite this, the

hybrid networks show promising results that can be explored

in further research.
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