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Abstract. The classical Canonical Correlation Analysis (CCA) identifies

the correlations between two sets of multivariate variables based on their

covariance, which has been widely applied in diverse fields such as computer

vision, natural language processing, and speech analysis. Despite its pop-

ularity, CCA can encounter challenges in explaining correlations between

two variable sets within high-dimensional data contexts. Thus, this paper

studies Sparse Canonical Correlation Analysis (SCCA) that enhances the in-

terpretability of CCA. We first show that SCCA generalizes three well-known

sparse optimization problems, sparse PCA, sparse SVD, and sparse regression,

which are all classified as NP-hard problems. This result motivates us to

develop strong formulations and efficient algorithms. Our main contributions

include (i) the introduction of a combinatorial formulation that captures the

essence of SCCA and allows the development of approximation algorithms;

(ii) the derivation of an equivalent mixed-integer semidefinite programming

model that facilitates a specialized branch-and-cut algorithm with analytical

cuts; and (iii) the establishment of the complexity results for two low-rank

special cases of SCCA. The effectiveness of our proposed formulations and

algorithms is validated through numerical experiments.

1 Introduction

The Canonical Correlation Analysis (CCA), proposed by H. Hotelling [18], aims to
identify the correlations between two sets of multivariate variables based on their
covariance. Since then, CCA has become a powerful statistical technique used for
multivariate data analysis, with its applications across diverse fields such as computer
vision [19], natural language processing [32], and speech analysis [16]. Despite its pop-
ularity, CCA can encounter challenges in explaining correlations between two variable
sets within high-dimensional data contexts, such as genomic datasets [30]. In contrast,
Sparse Canonical Correlation Analysis (SCCA), which seeks sparse linear combina-
tions of these variable sets, offers substantially enhanced interpretability [35, 36, 38].

Formally, this paper studies the SCCA problem:

v⇤ := max
x2Rn,y2Rm

�
x>Ay : x>Bx  1,y>Cy  1,kxk0  s1,kyk0  s2

 
,

(SCCA)

where s1  n, s2  m are positive integers and

✓
B A
A> C

◆
denotes a covariance matrix

of (n+m) random variables. Specifically, B and C are the covariance matrices of
the n and m random variables, respectively, and A 2 Rn⇥m is the cross-covariance
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matrix between n and m random variables. Hence,

✓
B A
A> C

◆
, B, C are positive

semidefinite matrices of size (n+m), n, and m, respectively. Here, matrices B, C
can be singular, i.e., some random variables may be dependent on others. In fact, the
covariance matrices B,C are often low-rank, especially within the high-dimension
low-sample size data context (see, e.g., the gene expression data in [35]).

The SCCA problem generalizes three widely-studied sparsity-constrained opti-
mization problems as special cases, which are sparse PCA [2, 10, 22], sparse SVD
[23, 35], and sparse regression [3, 17]. To be specific, when n = m, s1 = s2, B,C
are identity matrices, and A is a positive semidefinite matrix, SCCA reduces to
the classic sparse PCA problem; when B,C are identity matrices, SCCA becomes
the sparse SVD problem; and when A is rank-one, Section 4 shows that SCCA is
equivalent to two sparse linear regression subproblems.

1.1 Main contributions

SCCA is generally NP-hard, given that its special cases, sparse PCA, sparse SVD,
and sparse regression are all classified as NP-hard problems. We are motivated to
develop efficient formulations and algorithms for SCCA through a mixed-integer
optimization lens. The main contributions, along with the structure of the remainder
of this paper, are the following:

(i) In Section 2, we present an exact semidefinite programming (SDP) reformulation
and derive a closed-form optimal value of classic CCA problem. We also develop
an equivalent combinatorial formulation of SCCA;

(ii) Section 3 derives an equivalent mixed-integer SDP (MISDP) reformulation for
SCCA. When applying the Benders decomposition approach, instead of solving
the large-scale SDPs, we design a customized branch-and-cut algorithm with
closed-form cuts, which can successfully solve SCCA to optimality;

(iii) When the covariance matrix

✓
B A
A> C

◆
is low-rank, Section 4 studies the com-

plexity of two special cases of SCCA; and
(iv) Section 5 numerically test the proposed formulations and algorithms.

1.2 Relevant literature

SCCA. To the best of our knowledge, the work [30] was the first paper that introduced
the concept of SCCA to select only small subsets of variables to better explain the
relationship between many genetic loci and gene expression phenotypes. A handful
subset of features enhances interpretability, a desirable property, especially in complex
data analysis, which has been successfully demonstrated in Sparse PCA [20]. To
obtain sparse canonical loadings (x,y), [33] first applied elastic net penalty to the
classical CCA via an iterative regression procedure. In a seminal work on SCCA
[35], the authors proposed a rigorous formulation by enforcing the `1 constraints on
variables (x,y) and developed a penalized matrix decomposition method to solve
the penalized CCA problem. Then, extensive research has focused on various penalty
norm functions to obtain sparse canonical loadings (see, e.g., [7, 15, 21, 33, 36]). In
particular, [7] penalized multiple canonical loadings by `1 norm and computed the
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sparse solution by the linearized Bregman method. It should be noted that under
the assumption that the leading canonical loadings are sparse, [5, 13, 14] established
theoretical guarantees of iterative approaches for estimating sparse solutions. Another
research direction in SCCA introduced penalty functions based on group structural
information of input data and developed group SCCA methods [24, 25]. For a com-
prehensive overview of CCA and SCCA methods, we refer readers to the survey by
[38] and the references therein. These approaches, however, do not strictly enforce the
exact sparsity requirement but only approximate the sparsity requirement (i.e., the `0
norm) by a convex function. Another relevant work [34] introduced binary variables
to reformulate SCCA by a mixed-integer nonconvex program under the assumption of
positive definite matricesB,C for which they designed a branch-and-bound algorithm.
Our work does not require positive definiteness assumption of matrices B,C and we
are able to obtain mixed-integer conic and semidefinite programming reformulations,
allowing better exact and approximation algorithms.

Connections to and differences with sparse PCA and sparse SVD. Analogous to
SCCA, both sparse PCA [10, 20] and sparse SVD [23] select small subsets of variables
to improve the interpretability of dimensionality reduction methods: PCA and SVD.
Considerable investigation has been conducted on solving sparse PCA and sparse
SVD from three angles: convex relaxations [9–11], approximation algorithms [4, 6, 23],
and exact algorithms [2, 22, 23]. As mentioned before, in sparse PCA and sparse
SVD, the covariance matrices B,C are identity. Such a setting dramatically simplifies
the subset selection problems of sparse PCA and sparse SVD compared to that of
SCCA, as in these problems, it suffices to focus on the selection of a submatrix of
the matrix A. Specifically, it is shown in [8, 22, 29] that sparse PCA reduces to
selecting a principal submatrix of A to maximize the largest eigenvalue(s) and sparse
SVD reduces to selecting a possibly non-symmetric submatrix of A to maximize the
largest singular value(s) [23]. Quite differently, the combinatorial reformulation (1)
of SCCA aims to simultaneously select a sized-(s1 ⇥ s1) principal submatrix of B, a
sized-(s2⇥ s2) principal submatrix of C, and a sized-(s1⇥ s2) submatrix of A. These
fundamental differences in the underlying formulations of sparse PCA and sparse
SVD preclude the direct application of their existing algorithms to the SCCA.

Notations: The following notation is used throughout the paper. We use bold lower-
case letters (e.g., x) and bold upper-case letters (e.g., X) to denote vectors and matri-
ces, respectively, and we use corresponding non-bold letters (e.g., xi) to denote their
components. We let Sn,Sn

+,S
n
++ denote the set of all the n⇥n symmetric real matrices,

the set of all the n⇥n symmetric positive semidefinite matrices, and the set of all the
n⇥ n symmetric positive definite matrices, respectively. We let I denote the identity
matrix and let 0 denote the vector or matrix with all-zero entries. We letRn

+ denote the
set of all n-dimensional nonnegative vectors. We let [n] := {1,2, · · · , n}, [s,n] := {s, s+
1, · · · , n}. Given a matrixA 2 Rn⇥m and two subsets S ✓ [n], T ✓ [m], we letA† de-
note the pseudo inverse of matrix A, let AS,T denote a submatrix of A with rows and
columns indexed by sets S,T , respectively, and let (AS,T )† denote the pseudo inverse
of submatrixAS,T . For a set S and an integer k, we define the set S+k := {i+k|i 2 S}.
Given a vector a 2 Rn and a subset S ✓ [n], we let aS denote a subvector of a in
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the subset S. We define [�]+ := max{�,0}. We let �max(·) denote the largest singular
value function and let �max(·) denote the largest eigenvalue value function.

2 A combinatorial reformulation of SCCA

This section introduces an equivalent combinatorial optimization reformulation of
SCCA. This reformulation serves as the foundation for developing two effective
approximation algorithms to solve SCCA in Section 5.

2.1 An exact semidefinite programming representation of CCA

To begin with, let us focus on the classic CCA problem, which refers to SCCA without
zero-norm constraints, as defined below:

max
x2Rn,y2Rm

�
x>Ay : x>Bx  1,y>Cy  1

 
. (CCA)

This formulation of CCA can be regarded as a quadratically constrained quadratic

program concerning the variables

✓
x
y

◆
2 Rn⇥m. We next define three-block matrices

of size (n+m) below that aid in the presentation of our results.

Ã =

✓
0 A/2

A>/2 0

◆
, B̃ =

✓
B 0

0 0

◆
, C̃ =

✓
0 0

0 C

◆
.

By introducing a size-(n+m) matrix variable X =

✓
x
y

◆✓
x
y

◆>
and removing the

rank-one constraint on X, we can obtain an SDP relaxation of (CCA), as described
below

max
X2Sm+n

+

n
tr
⇣
ÃX

⌘
: tr
⇣
B̃X

⌘
 1, tr

⇣
C̃X

⌘
 1
o
. (SDP Relaxation)

Next, let us present a key lemma regarding properties of block matrices being
positive semidefinite, fundamental for reformulating the SCCA.

Lemma 1 ([12]). For any symmetric block matrix

✓
B A
A> C

◆
2 S

n+m, the followings

are equivalent:

(i) The block matrix is positive semidefinite;
(ii) B 2 S

n
+, (I �BB†)A = 0, C �A>B†A 2 S

m
+ ; and

(iii) C 2 S
m
+ , (I �CC†)A> = 0, B �AC†A>

2 S
n
+.

Inspired by Lemma 1, we hereby establish the equivalence between CCA and
its SDP Relaxation. Remarkably, both of these problems achieve the same optimal
value, namely �max(

p

B†A
p

C†).

Proposition 1. For the CCA, we have the following results.

(i) Both CCA and its SDP Relaxation have an optimal value �max(
p

B†A
p

C†);
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(ii) A pair of optimal solutions (x⇤,y⇤) to CCA satisfies

x⇤ =
p

B†q, y⇤ =
p

C†p,

where q 2 Rn,p 2 Rm denote a pair of leading singular vectors of matrixp

B†A
p

C†; and
(iii) An optimal solution X⇤ to the SDP Relaxation is

X⇤ =

✓
x⇤

y⇤

◆✓
x⇤

y⇤

◆>
.

Proof. See Appendix A.1. ut

The proof of Proposition 1 motivates the following observation on the optimal
values of CCA and SCCA.

Observation 1 The optimal value of CCA is upper bounded by 1, so is the optimal
value of SCCA.

Proof. Since matrix

✓
B A
A> C

◆
denotes a covariance matrix of a subset of variables

and thus is always positive semidefinite. According to Lemma 1, we have that

B ⌫ AC†A> =) I ⌫

p

B†AC†A>
p

B†,

which means that �max

⇣p
B†A

p

C†
⌘
 1 must hold. ut

It is noteworthy that the results presented in Proposition 1 are established through
a distinct methodology. This methodology leverages the positive semidefinite condition
of block matrices, as shown in Lemma 1, and incorporates duality theory. This ap-
proach differs frommost prior research [26, 31, 38], which proved Part (i) of Proposition
1 by relying on the singular value decomposition and assuming that matrices B and
C are positive definite (i.e., full rank). To the best of our knowledge, [7] showed parts
(i) and (ii) of Proposition 1 for a special low-rank CCA problem, where the authors
assumed that the covariance matrices are defined asA = UV >,B = UU>, andC =
V V >. Remarkably, Proposition 1 extends this result to a more general scenario where
B and C are not constrained to be strictly positive definite and A is not constrained
to directly depend on B,C, allowing for rank deficiencies and flexible data structure.

2.2 An equivalent formulation of SCCA

In this subsection, we transform SCCA into a combinatorial optimization problem,
according to the insights provided by Proposition 1.

Theorem 1. The SCCA is equivalent to the following combinatorial optimization:

v⇤ := max
S1✓[m],|S1|s1,
S2✓[n],|S2|s2

⇢
�max

✓q
(BS1,S1)

†AS1,S2

q
(CS2,S2)

†
◆�

. (1)
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Proof. By introducing the subsets (S1, S2) to denote the supports of variables (x,y)
in SCCA, then we can remove the zero-norm constraints on (x,y) and reformulate
SCCA as

v⇤ := max
S1✓[m],|S1|s1,
S2✓[n],|S2|s2

max
x2R|S1|,
y2R|S2|

�
x>AS1,S2y : x>BS1,S1x  1,y>CS2,S2y  1

 
. (2)

Following from the Part (i) in Proposition 1, we can show that for any subsets
S1 ✓ [n], S2 ✓ [m], the following identity holds.

max
x2R|S1|,y2R|S2|

�
x>AS1,S2y : x>BS1,S1x  1,y>CS2,S2y  1

 

= �max

✓q
(BS1,S1)

†AS1,S2

q
(CS2,S2)

†
◆
.

Plugging the result above into the inner maximization problem in (2), we complete
the proof. ut

The combinatorial formulation (1) presents significant computational difficulties
when attempting to solve SCCA. The primary obstacles are two-fold: first, simul-
taneously selecting submatrices from the matrices A,B,C requires a sophisticated
optimization across multiple dimensions. Second, the selection criterion is particularly
complex, as it involves optimizing the largest singular value of the product of the
selected submatrix of A and the square root of pseudo-inverse submatrices of B
and C. These complexities necessitate effective optimization solution procedures to
address the high-dimensional and non-convex nature of the problem.

As a side product of Observation 1, the optimal value of SCCA is trivially upper
bounded by 1.

Observation 2 The optimal value of SCCA satisfies v⇤  1.

3 Reformulating SCCA as a mixed-integer semidefinite

program (MISDP)

This section formulates an equivalent Mixed-Integer Semidefinite Programming
(MISDP) formulation for the SCCA problem. This reformulation serves as the foun-
dation for developing a branch-and-cut algorithm to solve the problem effectively.

3.1 Valid inequalities for SCCA

We prove that there exists a bounded optimal solution (x⇤,y⇤) of the SCCA. To be
specific, we show that there exists an optimal solution (x⇤,y⇤) of the SCCA satisfying
the constraints kx⇤

k
2
2  M1 and ky⇤

k
2
2  M2, where M1 and M2 are finite-valued

parameters.

Proposition 2. The SCCA admits an optimal solution (x⇤,y⇤) satisfying kx⇤
k
2
2 

M1 and ky⇤
k
2
2  M2, where M1 := 1/�r(B) + 1/(�r(B)smin(B)) and M2 :=

1/�br(C) + 1/(�br(C)smin(C)) with �r(B),�br(C) being the smallest nonzero eigen-
values of matrices B,C and smin(R) being the smallest nonzero singular value of all
the submatrices of the zero eigenvectors of matrix R.
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Proof. See Appendix A.2. ut

The proof of Proposition 2 is straightforward in the case when B and C are of
full rank as in this case the feasible region is a bounded set. In order to prove the
result in the case when B is not full-rank, one has to show that it is possible to
construct sparse solutions that are not “too far” away.

In fact, the bounds M1,M2 in Proposition 2 also hold for any given feasible
subsets (S1, S2) of SCCA (1).

Corollary 1. For any given feasible subsets (S1, S2) of SCCA 1, there exists a SCCA
feasible solution (x,y) such that the supports of x,y are S1, S2, respectively and we
have that kxk22  M1 and kyk22  M2, where M1,M2 are defined in Proposition 2.

3.2 An equivalent MISDP formulation

While the combinatorial formulation (1) is elegant in its structure, it poses signifi-
cant challenges when attempting to solve it to optimality using branch-and-bound
based methods. To fill this gap, in this subsection, we derive an equivalent MISDP
formulation for SCCA, amenable for developing exact methods.

It is convenient to define the following notation. Let Mii be defined as follows:

Mii =

(
M1, 8i 2 [n],

M2, 8i 2 [n+ 1, n+m].

Theorem 2. The SCCA is equivalent to the following MISDP:

v⇤ := max
X2Sn+m

+ ,
z2Z

{tr(ÃX) : tr(B̃X)  1, tr(C̃X)  1,Xii  Miizi,8i 2 [n+m]}. (3)

where the feasible set of variables z is defined as Z := {z 2 {0,1}n+m :
P

i2[n] zi 
s1,
P

i2[n+1,n+m] zi  s2}.

Proof. For the SCCA (2), according to Proposition 1, the inner maximization problem
admits an exact semidefinite programming formulation. Using the variables z 2 Z

to describe the set constraints in SCCA (2), we can reformulate it as

v⇤ := max
z2Z

max
X2Sn+m

+

�
tr(ÃX) : tr(B̃X)  1, tr(C̃X)  1,

Xii(1� zi) = 0,8i 2 [m+ n]
 
.

(4)

Proposition 2 shows that there is an optimal solution (x⇤,y⇤) to SCCA that
satisfies kx⇤

k
2
2  M1 and ky⇤

k
2
2  M2. Based on this, we can construct an optimal

solution (z⇤,X⇤) for SCCA (4) by letting

X⇤ =

✓
x⇤

y⇤

◆✓
x⇤

y⇤

◆>
, zi =

(
1 if x⇤i 6= 0

0 if x⇤i = 0
,8i 2 [n], zi+n =

(
1 if y⇤i 6= 0

0 if y⇤i = 0
,8i 2 [m],



8 Y. Li, S. Dey, and W. Xie

where the optimal solution X⇤ satisfies the following inequalities

X⇤
ii = (x⇤i )

2
 M1zi,8i 2 [n], X⇤

(i+n)(i+n) = (y⇤i )
2
 M2zi+n,8i 2 [m].

This allows us to recast the SCCA (4) into an MISDP formulation (3). ut

Note that the proposed MISDP formulation (3) is of size (n+m)⇥ (n+m) since

our matrix variable X replaces

✓
x
y

◆✓
x
y

◆>
in SCCA. Relaxing the binary variables

in SCCA (3) to be continuous, we obtain an upper bound of SCCA (3), i.e., v⇤  bv

bv := max
X2Sn+m

+ ,z2bZ
{tr(ÃX) : tr(B̃X)  1, tr(C̃X)  1,Xii  Miizi,8i 2 [n+m]}.

(5)
where bZ := {z 2 [0,1]n+m :

P
i2[n] zi  s1,

P
i2[n+1,n+m] zi  s2}. This SDP

relaxation (5) can be directly solved by commercial solvers such as MOSEK or SDPT3.

3.3 Developing a branch-and-cut algorithm with closed-form cuts

By dualizing the inner maximization problem over X in the MISDP (3), in this
subsection, we derive an equivalent mixed-integer linear program for SCCA, which
motivates us to develop a branch-and-cut algorithm.

By separating the binary variables z, we rewrite the MISDP (3) as

v⇤ := max
z2Z,v

{v : v  f(z)}, (6)

where the function f(z) is defined as

f(z) := max
X2Sn+m

+

n
tr(ÃX) : tr(B̃X)  1, tr(C̃X)  1,Xii  Miizi,8i 2 [n+m]

o
.

(7)
By introducing the Lagrangian multipliers (✓1, ✓2,�), the Lagrangian dual of the
maximization problem (7) can be written as

f(z) = min
✓1�0,✓2�0,
�2Rn+m

+

max
X2Sn+m

+

tr(ÃX)� ✓1 tr(B̃X)� ✓2 tr(C̃X) + ✓1 + ✓2,

�

X

i2[n+m]

�iXii +
X

i2[n+m]

�iMiizi

= min
✓1�0,✓2�0,
�2Rn+m

+

⇢
✓1 + ✓2 +

X

i2[n+m]

�iMiizi :

✓
✓1B �A/2

�A>/2 ✓2C

◆
⌫ �Diag(�)

�
,

(8)
where the strong duality holds due to the function f(z) being concave, bounded, and
thus continuous in the set bZ and Slater condition holds for any interior point z in
the set bZ.

Below, we derive the closed-form expression of the function f(z) with the given bi-
nary variable z 2 Z. This allows us to reformulate SCCA (6) as a mixed-integer linear
program with exponentially many linear constraints and an efficient separation oracle.
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Proposition 3. The SCCA (6) is equivalent to

v⇤ := max
z2Z,v

⇢
v : v  �max

✓q
(BS1,S1)

†AS1,S2

q
(CS2,S2)

†
◆
+

X

i2S1[(S2+n)

�⇤Miizi : 8S1 ✓ [n], |S1|  s1, S2 ✓ [m], |S2|  s2

�
,

(9)

where for a pair of subsets (S1, S2), the scalar �⇤ is defined as the largest positive
eigenvalue of matrix D>

2 D
�1
1 D2 �D3 with

D1 :=

✓
✓⇤1BS1,S1 �AS1,S2/2
�A>

S1,S2
/2 ✓⇤2CS2,S2

◆
, D2 :=

✓
✓⇤1BS1,[n]\S1

�AS1,[m]\S2
/2

�A>
S2,[n]\S1

/2 ✓⇤2CS2,[m]\S2

◆
,

and

D3 :=

✓
✓⇤1B[n]\S1,[n]\S1

�A[n]\S1,[m]\S2
/2

�A>
[n]\S1,[m]\S2

/2 ✓⇤2C[m]\S2,[m]\S2

◆
,

where ✓⇤1 = ✓⇤2 = �max

⇣p
(BS1,S1)

†AS1,S2

p
(CS2,S2)

†
⌘
/2.

Proof. See Appendix A.3. ut

We note that SCCA (9) can be implemented via a delayed cut-generation pro-
cedure. That is, at each feasible branch-and-bound node with a binary solution bz, let
S1 := {i : bzi = 1,8i 2 [n]} and S2 := {i� n : bzi = 1,8i 2 [n+ 1, n+m]}. Then we
can compute the corresponding scalar �⇤ and generate the following valid inequality
based on (9):

v  �max

✓q
(BS1,S1)

†AS1,S2

q
(CS2,S2)

†
◆
+

X

i2S1[(S2+n)

�⇤Miizi.

4 Low-rank SCCA

In practice, it is common that the sample covariance matrix

✓
B A
A> C

◆
exhibits

low-rank characteristics. This phenomenon is especially prominent when dealing with
high-dimensional, low-sample size data (e.g., gene expression data [35]). In this section,
we study two special cases of low-rank SCCA and their computational complexities.

4.1 Special Case I: SCCA with low-rank covariance matrices

In this section, we show that the computational complexity of SCCA is contingent
upon the ranks of the covariance matrices B and C. To be more precise, when the
sparsity level s1 (or s2) is equal to or greater than the rank of the covariance matrix
B (or C), the imposition of a zero-norm constraint over x (or y) in SCCA becomes
redundant. Consequently, lower ranks in the covariance matrices correspond to better
computational complexity in solving SCCA.
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Theorem 3. Suppose r := rank(B) and br := rank(C), then the SCCA takes a
complexity of O(nr�1mbr�1 + nr�1 +mbr�1). The following results hold:

(i) When s1 � r and s2 � br, the SCCA problem is equivalent to CCA, i.e.,

v⇤ := max
x2Rn,y2Rm

�
x>Ay : x>Bx  1,y>Cy  1

 
; (10)

(ii) When s1 � r and s2 < br, the SCCA problem can be reduced to

v⇤ := max
x2Rn,y2Rm

�
x>Ay : x>Bx  1,y>Cy  1,kyk0  s2

 
; (11)

(iii) When s1 < r and s2 � br, the SCCA problem can be reduced to

v⇤ := max
x2Rn,y2Rm

�
x>Ay : x>Bx  1,y>Cy  1,kxk0  s1

 
. (12)

Proof. See Appendix A.4. ut

The proof of Theorem 3 implies that CCA admits an optimal sparse solution
(x⇤,y⇤) satisfying kx⇤

k0  r and ky⇤
k0  br, provided that B,C are of rank-r, br,

respectively. Thus, Theorem 3 establishes a sufficient condition (i.e., s1  r, s2  br)
about when CCA can be equivalent to SCCA. Besides, Theorem 3 implies the
complexity of solving SCCA, as summarized below.

Corollary 2. Suppose r := rank(B) and br := rank(C). There exists an algorithm
that can find an optimal solution to SCCA in O(nr�1mbr�1) time complexity.

4.2 Special Case II: SCCA with a rank-one cross-covariance matrix

In this subsection, we study the other interesting low-rank special case of SCCA
where the cross-covariance matrix A is rank-one. For this special case, we prove its
NP-hardness with reduction to the sparse regression problem.

We observe that SCCA can be separable over variables x and y for the rank-one
A. In fact, suppose that A = ab>, then SCCA is equivalent to

v⇤ := max
x2Rn,y2Rm

�
x>ab>y : x>Bx  1,y>Cy  1,kxk0  s1,kyk0  s2

 
(13)

which can be equivalently the product of the optimal values of the following two
subproblems:

vx := max
x2Rn

{a>x : x>Bx  1,kxk0  s1},

vy := max
y2Rm

{b>y : y>Cy  1,kyk0  s2}.
(14)

That is, the identity v⇤ = vxvy holds. According to Proposition 2, introducing binary
variables, we can reformulate two subproblems (5) as mixed-integer convex quadratic
programs. Consequently, the rank-one SCCA problem, as formulated in (13), sim-
plifies to two mixed-integer convex quadratic programs. This simplification is much
more tractable compared to addressing the MISDP (3), which involves a large-sized
positive semidefinite variable X of dimension (n+m)⇥ (n+m). Our numerical
findings confirm the reduced complexity of the rank-one SCCA model.

Next, we show that each subproblem in (14) can be reduced to the classic sparse
regression problem [1, 27] and is thus NP-hard as shown below.
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Theorem 4. When matrix A := a>b is rank-one, each maximization problem in
(14) is NP-hard.

Proof. See Appendix A.5. ut

Theorem 4 links the maximization problem (14) and the well-known sparse re-
gression problem, implying that even solving the rank-one SCCA problem (13) is
NP-hard. This also suggests employing strong perspective formulations (see, e.g.,
[1, 37]) when solving the subproblems (14), which are shown to be stronger and easier
to solve than the SDP relaxation (5) in our numerical study.

5 Numerical results

This section tests the numerical performance of our formulations and algorithms on syn-
thetic data. All the experiments are conducted in Python 3.6 with calls to Gurobi 9.5.2
and MOSEK 10.0.29 on a PC with 10-core CPU, 16-core GPU, and 16GB of memory.

We generate random instances by fixing the dimensions n,m and the sparsity
levels s1, s2. For each instance, given parameters (n,m, s1, s2), we first generate the

covariance matrix

✓
B0 A0

(A0)> C0

◆
as follows;

(i) B0
2 S

n
++: Let bB consist of n⇥n elements generated from a normal distribution

N (0,1), and let B0 = bB bB> + I;
(ii) C0

2 S
m
++: Let bC consist of m⇥m elements generated from a normal distri-

bution N (0,1), and let C0 = bC bC> + I; and
(iii) A0

2 Rn⇥m := �B0uv>C0: We generate � uniformly from (0,1), and vectors
u,v are generated from a normal distribution N (0,1) that satisfy kuk0 = s1,
kvk0 = s2, u>B0u = 1 and v>C0v = 1.

Next, we sample N = 5,000 data points {(ui,vi)}i2[N] 2 Rn
⇥Rm from the normal

distribution with zero mean and the covariance

✓
B0 A0

(A0)> C0

◆
. Then, let us estimate

A0,B0,C0 by sample covariance matrices below

A =
X

i2[N]

uiv
>
i , B =

X

i2[N]

uiu
>
i , C =

X

i2[N]

viv
>
i .

The numerical results are presented in Table 1 that include multiple instances with
various parameters (n,m, s1, s2). Throughout, the computational time is in seconds,
the time limit is one hour, and the dashed line “-” denotes the unsolved case within
the time limit. First, based on the combinatorial formulation (1), we consider using the
greedy and local search algorithms to approximately solve SCCA, and their detailed
implementation can be found in Appendix B. Note that we let LB denote the lower
bound obtained from the approximation algorithm. In Table 1, we define gap(%):=
(bv�v⇤)/v⇤ to be the optimality gap of the upper bound in (5), and we replace v⇤ with
the best lower bound when v⇤ is not available. It is seen that the greedy and local
search algorithms are quite scalable, and the SDP relaxation (5) yields a tight upper
bound with an optimality gap at most 8.16%. We apply a branch-and-cut algorithm to
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solve SCCA (9) via the delayed cut generation procedure, which can handle the case
up to size 20 in Table 1. One reason may be because SCCA (9) has a weak relaxation
bound. Therefore, although our proposed cut in Section 3 admits closed form, the
branch-and-cut algorithm explores a considerable amount of nodes before termination.

Table 1. Solving SCCA with synthetic data

Greedy Local search SDP relaxation (5) SCCA (9)
n m s1 s2 LB time(s) LB time(s) bv gap(%) time(s) v⇤ time(s)
10 10 5 5 0.244 1 0.244 1 0.247 1.33 1 0.244 26
20 20 5 5 0.244 1 0.244 1 0.256 1.23 1 0.244 2217
20 20 10 10 0.275 1 0.275 1 0.278 1.23 1 0.275 3562
40 40 5 5 0.695 1 0.695 1 0.701 0.83 1 - -
40 40 10 10 0.705 1 0.705 1 0.708 0.45 1 - -
40 60 5 10 0.707 1 0.707 1 0.714 0.93 1 - -
40 60 10 5 0.704 1 0.704 1 0.708 0.65 1 - -
60 60 5 5 0.720 1 0.720 1 0.727 0.86 14 - -
60 60 10 10 0.714 1 0.714 1 0.721 1.00 12 - -
80 80 5 5 0.395 1 0.395 1 0.427 8.16 56 - -
80 80 10 10 0.399 1 0.399 1 0.428 7.36 62 - -
100 100 5 5 0.942 1 0.942 1 0.944 0.23 257 - -
100 100 10 10 0.940 1 0.940 1 0.942 0.23 313 - -
120 120 5 5 0.479 1 0.479 1 0.517 7.90 1360 - -
120 120 10 10 0.501 1 0.501 1 0.942 7.86 1569 - -

The complexity analysis of low-rank SCCA in Section 4 indicates that rank-one
SCCA (13) can be more tractable, as we decompose it into two subproblems in (14).
By approximating A with a rank-one matrix that consists of leading singular value
and vectors, Table 2 presents the numerical results for solving rank-one SCCA (13).
In addition to the SDP relaxation (5), we consider the strong perspective formulations
of subproblems (14) to provide an upper bound for rank-one SCCA (13) (see, e.g.,
[1, 37]), denoted by Perspective in Table 2. We also compute its optimality gap
and compare it with SDP relaxation (5). It is obvious that perspective relaxation
is computationally efficient and yields smaller optimality gaps, which solves all the
testing cases in 15 seconds with an optimality gap of up to 11.3%. As previously
mentioned in Section 4.2, we can solve two mixed-integer quadratic programs below
via Gurobi to find the optimal value of rank-one SCCA (13), i.e., v⇤ := vxvy, where
the performance can be found in the last column of Section 4.2. We see that we can
solve size-100⇥ 100 rank-one SCCA (13).
Acknowledgements: The authors would like to thank Rahul Mazumder for intro-
ducing the problem to us and for sharing data and references.
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Table 2. Solving rank-one SCCA with synthetic data

Greedy Local Search SDP relaxtion (5) Perspective SCCA (13)

n m s1 s2 LB time(s) LB time(s) gap(%) time(s) gap(%) time(s) v⇤ time(s)

50 50 10 10 0.382 1 0.382 1 3.79 6 2.44 1 0.382 30

50 50 20 20 0.409 1 0.409 1 2.81 7 1.74 1 0.409 293

100 100 10 10 0.928 1 0.928 1 0.79 492 0.47 1 0.928 81

100 100 20 20 0.943 1 0.943 2 0.49 685 0.31 1 0.943 3463

200 200 10 10 0.549 1 0.549 1 - - 7.38 1 - -

200 200 20 20 0.524 1 0.524 5 - - 9.70 1 - -

300 300 10 10 0.874 1 0.874 1 - - 2.56 6 - -

300 300 20 20 0.878 1 0.878 9 - - 2.49 8 - -

400 400 10 10 0.840 1 0.840 2 - - 4.43 9 - -

400 400 20 20 0.842 1 0.842 14 - - 4.34 10 - -

500 500 10 10 0.701 1 0.701 2 - - 11.3 14 - -

500 500 20 20 0.710 6 0.710 59 - - 10.9 15 - -
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Appendix A: Proofs

A.1 Proof of Proposition 1

Proof. The proof includes three parts.
Part (i). To prove the equivalence between CCA and its SDP Relaxation, let us
introduce the Lagrangian multiplies ✓1 � 0, ✓2 � 0 corresponding to two constraints
in SDP Relaxation, which leads to the following Lagrangian dual problem

min
✓1�0,✓2�0

n
✓1 + ✓2 : ✓1B̃ + ✓2C̃ ⌫ Ã

o
= min

✓1�0,✓2�0

(
✓1 + ✓2 :

 
✓1B

A
�2

A>

�2 ✓2C

!
⌫ 0

)

(15)

where the equation results from the definition of block matrices Ã, B̃, and C̃. Given
the nonzero matrices A 6= 0,B 6= 0,C 6= 0 and positive semidefinite matrices
B ⌫ 0,C ⌫ 0, following Lemma 1, we must have ✓2C �A>(✓1B)†A/4 ⌫ 0 and
✓1B �A(✓2C)†A>/4 ⌫ 0, implying that either ✓1 = 0 or ✓2 = 0 is infeasible to the
minimization problem above. That is, ✓1 > 0 and ✓2 > 0 must hold.

According to Lemma 1, the block matrix

✓
B A
A> C

◆
is positive semidefinite,

implying that (I �CC†)A> = 0, (I �BB†)A = 0. Then, it is easy to show

�
I � ✓2C(✓2C)†

�A>

2
= 0,8✓2 > 0.

Given ✓1, ✓2 > 0 and using Lemma 1, the result above allows us to further simplify
the right-hand side minimization problem in (15) to

min
✓1�0,✓2�0

�
✓1 + ✓2 : 4✓1✓2B ⌫ AC†A> 

= min
✓1�0,✓2�0

n
✓1 + ✓2 : 4✓1✓2 � �2

max

⇣p
B†A

p

C†
⌘o

= �max

⇣p
B†A

p

C†
⌘
,

where the first equation is because

4✓1✓2B ⌫ AC†A>
() 4✓1✓2I ⌫

p

⇤�1Q>AC†A>Q
p

⇤�1

() 4✓1✓2 � �max

⇣p
⇤�1Q>AC†A>Q

p

⇤�1
⌘

() 4✓1✓2 � �max

⇣p
C†A>B†A

p

C†
⌘
() 4✓1✓2 � �2

max

⇣p
B†A

p

C†
⌘
,

where we let B = Q⇤Q> denote the eigendecomposition of matrix B with ⇤
containing all the positive eigenvalues.

As a result, the dual problem of SDP Relaxation admits an optimal value of

�max

⇣p
B†A

p

C†
⌘
, which gives an upper bound of the CCA and its SDP Relaxation.

Next, we construct their optimal solutions, which exactly attain this upper bound.
Thus, this upper bound is achievable and equals their optimal values.
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Part (ii). For the CCA, let us consider a part of optimal solutions (x⇤,y⇤) below

x⇤ =
p

B†q, y⇤ =
p

C†p,

with q 2 Rn,p 2 Rm denoting a pair of leading singular vectors of matrix
p

B†A
p

C†.
First, (x⇤,y⇤) is feasible to the CCA as

(x⇤)>Bx⇤ = q>
p

B†B
p

B†q  q>q = 1, (y⇤)>Cy⇤ = p>
p

C†C
p

C†p  p>p = 1,

where the inequalities stem from the facts that I ⌫

p

B†B
p

B† and I ⌫

p

C†C
p

C†.
On the other hand, according to the definitions of q,p, we can show that (x⇤,y⇤)

is optimal to the CCA, i.e.,

(x⇤)>Ay⇤ = q>
p

B†A
p

C†p = �max

⇣p
B†A

p

C†
⌘
.

Part (iii). In a similar vein, we can show that X⇤ =

✓
x⇤

y⇤

◆✓
x⇤

y⇤

◆>
is optimal to

SDP Relaxation with the optimal value �max

⇣p
B†A

p

C†
⌘
. ut

A.2 Proof of Proposition 2

Proof. Let (x⇤,y⇤) denote an optimal solution to SCCA. We bound kx⇤
k2 first and

the same technique can be also straightforwardly applied to bound ky⇤
k2.

For matrix B 2 S
n
+ of rank r, we let {qi}i2[n] 2 Rn denote the eigenvectors cor-

responding to n eigenvalues � of B such that �1 � . . . � �r > �r+1 = . . . = �n = 0.
Thus, {qi}i2[n] are orthonormal and span the space of Rn. Hence, there exists ↵ 2 Rn

such that x⇤ =
P

i2[n] ↵iqi. Given that (x⇤)>Bx⇤
 1, we have

X

i2[r]

↵2
i�i  1.

Hence, the values of {↵i}i2[r] are bounded. On the other hand, let us define a subset
S ✓ [n] of size at most s1 such that x⇤i 6= 0 for each i 2 S and x⇤j = 0 for each
j 2 [n] \ S. Then for each j 2 [n] \ S, we arrive at the following linear system:

X

j2[r+1,n]

↵jbqj = �

X

i2[r]

↵ibqi, (16)

where bqi denote a subvector of qi with indices [n] \ S for each i 2 [n]. For a fixed
{↵i}i2[r], since the linear system (16) is nonempty, we let Q̄↵̄ = q̄ denote its minimal

linear subsystem such that a submatrix Q̄ is non-singular and the index set bS of ↵̄
is a subset of [n] \ S. Thus, we can construct an alternative solution b↵ such that

b↵i =

8
><

>:

↵i, if i 2 [r],

(Q̄�1q̄)i, if i 2 bS,
0, otherwise,
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and bx =
P

i2[n] b↵iqi. According to Lemma 1, we have

bx>Bbx  1, bx>Ay⇤ = (x⇤)>Ay⇤,

i.e., (bx,y⇤) is also optimal to SCCA. Hence,

kbxk2 
s
kQ̄�1q̄k22 +

X

i2[r]

↵2
i

Note that
P

i2[r] ↵
2
i  1/�r and

kQ̄�1q̄k22  kQ̄�1
k
2
2kq̄k

2
2 

1

smin(B)

1

�r

where smin(B) denotes the smallest nonzero singular values of all the submatrices
of [qr+1, . . . ,qn]. In summary, we have

kbxk2 
p
1/�r + 1/(�rsmin(B)).

This completes the proof. ut

A.3 Proof of Proposition 3

Proof. First, for any binary variable z 2 Z, suppose S1 := {i : zi = 1,8i 2 [n]},
S2 := {i� n : zi = 1,8i 2 [n+ 1, n+m]}, and T ✓ [n+m] denotes the support of
z. Then following the proof of Proposition 1, we can construct a rank-one optimal

solution X⇤ :=

✓
x⇤

y⇤

◆✓
x⇤

y⇤

◆>
to the maximization problem below that admits the

optimal value �max

⇣p
(BS1,S1)

†AS1,S2

p
(CS2,S2)

†
⌘
, i.e.,

max
X2Sn+m

+

{tr(ÃX) : tr(B̃X)  1, tr(C̃X)  1,Xii = 0,8i 2 [n+m] \ T}

= �max

✓q
(BS1,S1)

†AS1,S2

q
(CS2,S2)

†
◆
� f(z),

where the inequality is because the maximization problem above relaxes the valid
constraints Xii  Mii for all i 2 T in maximization problem (7). The result in
Corollary 1 suggests that x⇤,y⇤ can be bounded and their two norms must not exceed
M1,M2, which means that the optimal solution X⇤ satisfies the Xii  Mii for all i 2
T . Therefore,X⇤ is feasible and optimal to maximization problem (7) and we have that

f(z) := �max

✓q
(BS1,S1)

†AS1,S2

q
(CS2,S2)

†
◆
.

According to strong duality, the minimization problem (8) admits an optimal

value �max

⇣p
(BS1,S1)

†AS1,S2

p
(CS2,S2)

†
⌘
. Next, we construct its optimal solution

(✓⇤1, ✓
⇤
2,�

⇤).
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For any given ✏ > 0, we let ✓⇤1 = f(z)/2, ✓⇤2 = f(z)/2, b�i(✏) = ✏
Mii|T | for all i 2 T ,

and b�i(✏) = �⇤(✏) for all i 2 [n] \ T , where

�⇤(✏) :=


�max

✓
D>

2

⇣
D1 +Diag

⇣
b�T (✏)

⌘⌘�1
D2 �D3

◆�

+

.

It is easy to compute that ✓⇤1 + ✓⇤2 +
P

i2[n+m]
b�i(✏)Miizi = f(z) + ✏. Thus, for any

✏ > 0, if (✓⇤1, ✓
⇤
2, b�(✏)) were feasible, then it is an ✏-optimal solution to the minimiza-

tion problem (8). It remains to verify the feasibility of the solution (✓⇤1, ✓
⇤
2, b�(✏)), i.e.,

checking the constraint below

✓
✓⇤1B �A/2

�A>/2 ✓⇤2C

◆
+Diag

⇣
b�(✏)

⌘
⌫ 0.

By performing the permutation of the rows and columns of the above matrix, it is
sufficient to show that the new block matrix

 
D1 +Diag

⇣
b�T (✏)

⌘
D2

D>
2 D3 + �⇤(✏)I

!
⌫ 0, (17)

is positive semidefinite.

Since

✓
BS1,S1 �AS1,S2/2

�A>
S1,S2

/2 CS2,S2

◆
is a principal submatrix of a positive semidefinite

matrix

✓
B �A/2

�A>/2 C

◆
, it is also positive semidefinite. According to Lemma 1 and

the fact that ✓⇤1 = ✓⇤2 = �max

⇣p
(BS1,S1)

†AS1,S2

p
(CS2,S2)

†
⌘
/2, the matrix D1 is

also positive semidefinite. As ✏ > 0, the matrix D1 +Diag
⇣
b�T (✏)

⌘
must be positive

definite, which means that

✓
I �

⇣
D1 +Diag

⇣
b�T (✏)

⌘⌘⇣
D1 +Diag

⇣
b�T (✏)

⌘⌘�1
◆
D2 = 0.

Besides, according to the definition of �⇤(✏), we obtain

D3 + �⇤(✏)I �D>
2

⇣
D1 +Diag

⇣
b�T (✏)

⌘⌘�1
D2 ⌫ 0.

Taking these results together, according to Lemma 1, the constraint in (17) must

hold for a given solution (✓⇤1, ✓
⇤
2, b�(✏)). Since the objective value corresponding to

(✓⇤1, ✓
⇤
2, b�(✏)) is at most ✏ larger than the optimal value of problem (8), letting ✏ ! 0

and using the closedness of the feasible set in problem (8), we can confirm the
optimality of (✓⇤1, ✓

⇤
2,�

⇤) with �⇤i = 0 for all i 2 T and �⇤i = �⇤ for all i 2 [n] \ T .
Given the closed-form optimal solution to problem (8), the rest of the proof follows

from [23][theorem 7]. ut
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A.4 Proof of Theorem 3

Proof. The proof is split into three parts.
Part (i). It suffices to prove that CCA admits an optimal solution (x⇤,y⇤)

satisfying kx⇤
k0  r and ky⇤

k0  br. Then, (x⇤,y⇤) is also feasible and optimal to
SCCA, which implies the equivalence between SCCA and CCA.

First, according to Part (ii) in Proposition 1, we can obtain a closed-form optimal
solution (bx, by) for the CCA. By adjusting (bx, by), we will construct a new optimal
sparse solution (x⇤,y⇤) satisfying kx⇤

k0  r and ky⇤
k0  br.

For matrix B 2 S
n
+, we let {qi}i2[n�r] 2 Rn denote the eigenvectors correspond-

ing to (n� r) zero eigenvalues of B. Thus, {qi}i2[n�r] are orthonormal. There exists
a size-(n � r) subset S ✓ [n] such that the subvectors {(qi)S}i2[n�r] are linearly
independent, where (qi)S denotes the subvector of qi indexed by S for each i 2 [n�r].
As a result, there exist a vector (�1, · · · ,�n�r)> such that

bxS =
X

i2[n]

�i(qi)S. (18)

Let us now construct solution x⇤

x⇤ = bx�

X

i2[n�r]

�iqi,

where x⇤i = 0 for all i 2 S based on the equation (18) and |S| = n� r, implying
kx⇤

k0  r. In addition, we show that the new solution x⇤ is still optimal to CCA.
First, x⇤ is feasible since

(x⇤)>B(x⇤) = bx>Bbx  1,

where the equation is due to Bqi = 0 for all i 2 [n� r].

Given the positive semidefinite block matrix

✓
B A
A> C

◆
, using Part (ii) of Lemma 1,

the identity (I �BB†)A = 0 is equivalent to
P

i2[n�r] qiq
>
i A = 0. Then, for each

i 2 [n� r], multiplying q>i on both sides of this equation leads to

q>i

✓ X

j2[n�r]

qjq
>
j A

◆
A = q>i 0 =) q>i A = 0,

where the result follows from q>i qj = 0 for any i 6= j. Then, we can show the
optimality of the new solution x⇤:

(x⇤)>Aby = bx>Aby+
X

i2[n�r]

�iq
>
i Aby = bx>Aby.

Similarly, we can also construct an optimal sparse solution y⇤ by leveraging by
and eigenvectors of zero eigenvalues of C such that ky⇤

k0  s2.
Therefore, there exists an optimal solution (x⇤,y⇤) to the CCA whose zero norms

are bounded from above by r,br, respectively. Adding the constraints kxk0  r,kyk0 
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br to the CCA does not affect the optimality, which gives an equivalent formulation
(10) of CCA.

Part (ii). Suppose that (x̃, ỹ) denotes an optimal solution to problem (11). When
s1 � r, following the proof of Part (I), x̃, we can construct another optimal solution
x⇤ whose zero norm is bounded by r and (x⇤, ỹ) is feasible and optimal to SCCA.

Part (iii). Similarly, we can reduce SCCA to problem (12). We thus complete
the proof. ut

A.5 Proof of Theorem 4

Proof. Let us first consider the maximization problem over x in (14), i.e.,

vx := max
x2Rn

{a>x : x>Bx  1,kxk0  s1}. (19)

Then, we derive a combinatorial optimization reformulation of problem (19) based
on the result below.

Claim 1 For any subset S ✓ [n],maxx2R|S|{a>
Sx : x>BS,Sx  1} =

q
a>
S (BS,S)†aS.

Proof. Given A = ab>, since the matrix

✓
B ab>

b>a C

◆
is positive semidefinite, using

Lemma 1, the identity (I �BS,SB
†
S,S)aSb> = 0 must hold for any subset S. As a

result, we have aS �BS,SB
†
S,SaS = 0 as vector b is nonzero.

Next, the Lagrangian dual of the problem maxx2R|S|{a>
Sx : x>BS,Sx  1} can

be written as

max
x2R|S|

{a>
Sx : x>BS,Sx  1} = min

µ�0
max
x2R|S|

a>
Sx+ µ� µx>BS,Sx

= min
µ�0

µ+
a>
SB

†
S,SaS

4µ
=
q
a>
S (BS,S)†aS,

where the second equation builds on the identity aS �BS,SB
†
S,SaS = 0 and optimal

solution x⇤ =
B†

S,SaS
p

a>
S (BS,S)†aS

. ⇧

Suppose that an optimal solution to problem (19) admits the support S⇤. Ac-
cording to Claim 1, we have

vx := max
S✓[n],|S|s

q
a>
S (BS,S)†aS =

q
a>
S⇤(BS⇤,S⇤)†aS⇤.

On the other hand, the Lagrangian dual of problem (19) can be written as

vx  min
�2R+

max
x2Rn

{a>x+ �� �x>Bx : kxk0  s1}

= min
�2R+

max
S✓[n],|S|s

�+
a>
S (BS,S)†aS

4�
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 max
S✓[n],|S|s

�⇤ +
a>
S (BS,S)†aS

4�⇤
=
q
a>
S⇤(BS⇤,S⇤)†aS⇤  vx,

where the first equation is due to Claim 1, the second inequality is by plugging the

feasible solution �⇤ =
p

a>
S⇤(BS⇤,S⇤)†aS⇤

2 into minimization problem, and the last
equation is from the optimality of subset S⇤. Since both left-hand and right-hand
sides above equal vx, the strong duality of problem (19) holds, and all the inequalities
above must attain the equalities. That is, problem (19) is equivalent to

vx = min
�2R+

max
x2Rn

{a>x+ �� �x>Bx : kxk0  s1}.

Since the outer minimization is a one-dimensional convex program that can be solved
efficiently, as a result, for any given � > 0, the inner maximization is equivalent to
solving

max
x2Rn

{a>x� �x>Bx : kxk0  s1}. (20)

Next, let us consider the NP-hard sparse regression problem (see, e.g., [28]), which
admits

min
�2Rn

�
kv�Uxk22 : kxk0  s

 
() max

x2Rn

�
2v>Ux�x>U>U� : kxk0  s

 
, (21)

where data matrix U consists of observations of n variables and vector v denotes the
corresponding response variables.

Suppose that in the problem (20), let us define �B = U>U and a = 2U>v.
Then using the singular value decomposition of matrix U , we see that the following
equation still holds.

aS �BS,SB
†
S,SaS = 0,8S ✓ [n].

Thus, for any given � > 0, the maximization problem (20) is equivalent to the sparse
regression problem (21). This shows that problem (19) is NP-hard.

Similarly, the maximization problem over y in (14) can also be reduced to the
sparse regression problem. ut

Appendix B: Implementations of greedy and local search

algorithms

This section presents the detailed implementations of greedy and local search algo-
rithms based on the formulation (1).
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Algorithm 1 Greedy algorithm for SCCA (1)

1: Input: Matrices A 2 Rm⇥n
, B 2 Sm

+ , C 2 Sm
+ and integers s1 2 [n], s2 2 [m]

2: Compute (i⇤, j⇤) 2 argmaxi2[m],j2[n]

p
(Bii)

†Aij

p
(Cjj)

†

3: Define subsets bS1 := {i⇤} and bS2 := {j⇤}
4: for ` = 2, · · · ,max{s1, s2} do

5: if `  min{s1, s2} then

6: i⇤ 2 argmaxi2[n]\bS1
�max

⇣q
(BbS1[{i},bS1[{i})

†AbS1[{i},bS2

q
(CbS2,bS2

)†
⌘

7: Update bS1 := bS1 [ {i⇤}
8: j⇤ 2 argmaxj2[m]\bS2

�max

⇣q
(BbS1,bS1

)†AbS1,bS2[{j}

q
(CbS2[{j},bS2[{j})

†
⌘

9: else if s1  s2 then

10: j⇤ 2 argmaxj2[m]\bS2
�max

⇣q
(BbS1,bS1

)†AbS1,bS2[{j}

q
(CbS2[{j},bS2[{j})

†
⌘

11: Update bS2 := bS2 [ {j⇤}
12: else

13: i⇤ 2 argmaxi2[n]\bS1
�max

⇣q
(BbS1[{i},bS1[{i})

†AbS1[{i},bS2

q
(CbS2,bS2

)†
⌘

14: Update bS1 := bS1 [ {i⇤}
15: end if

16: end for

17: Output: bS1, bS2

Algorithm 2 Local search algorithm for SSVD (1)

1: Input: Matrices A 2 Rm⇥n
, B 2 Sm

+ , C 2 Sm
+ and integers s1 2 [n], s2 2 [m]

2: Initialize (bS1, bS2) as the output of greedy Algorithm 1

3: do

4: for each pair (i1, j1) 2 bS1 ⇥ ([n] \ bS1) do

5: if �max

⇣q
(BbS1[{j1}\{i1},bS1[{j1}\{i1})

†AbS1[{j1}\{i1},bS2

q
(CbS2,bS2

)†
⌘

>

�max

⇣q
(BbS1,bS1

)†AbS1,bS2

q
(CbS2,bS2

)†
⌘
then

6: Update bS1 := bS1 [ {j1} \ {i1}
7: end if

8: end for

9: for each pair (i2, j2) 2 bS2 ⇥ ([m] \ bS2) do

10: if �max

⇣q
(BbS1[{j1}\{i1},bS1[{j1}\{i1})

†AbS1[{j1}\{i1},bS2

q
(CbS2,bS2

)†
⌘

>

�max

⇣q
(BbS1,bS1

)†AbS1,bS2

q
(CbS2,bS2

)†
⌘
then

11: Update bS2 := bS2 [ {j2} \ {i2}
12: end if

13: end for

14: while there is still an improvement

15: Output: bS1,
bS2
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