
HiRISE: High-Resolution Image Scaling for Edge ML via In-Sensor
Compression and Selective ROI

Brendan Reidy , Sepehr Tabrizchi!, Mohamadreza Mohammadi , Shaahin Angizi§, Arman Roohi!,
and Ramtin Zand 

 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
! School of Computing, University of Nebraska–Lincoln, Lincoln, NE, USA

§ Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA

bcreidy@email.sc.edu,stabrizchi2@huskers.unl.edu,mohammm@email.sc.edu,shaahin.angizi@njit.edu,aroohi@unl.edu,ramtin@cse.sc.edu

ABSTRACT

With the rise of tiny IoT devices powered by machine learning (ML),

many researchers have directed their focus toward compressing

models to �t on tiny edge devices. Recent works have achieved

remarkable success in compressing ML models for object detection

and image classi�cation on microcontrollers with small memory,

e.g., 512kB SRAM. However, there remain many challenges pro-

hibiting the deployment of ML systems that require high-resolution

images. Due to fundamental limits in memory capacity for tiny IoT

devices, it may be physically impossible to store large images with-

out external hardware. To this end, we propose a high-resolution

image scaling system for edge ML, called HiRISE, which is equipped

with selective region-of-interest (ROI) capability leveraging analog

in-sensor image scaling. Our methodology not only signi�cantly

reduces the peak memory requirements, but also achieves up to

17.7× reduction in data transfer and energy consumption.

CCS CONCEPTS

• Computer systems organization → Embedded systems; •

Computing methodologies→Machine learning .

ACM Reference Format:

Brendan Reidy , Sepehr Tabrizchi!, Mohamadreza Mohammadi , Shaahin

Angizi§, Arman Roohi!, and Ramtin Zand . 2024. HiRISE: High-Resolution

Image Scaling for Edge ML via In-Sensor Compression and Selective ROI.

In 61st ACM/IEEE Design Automation Conference (DAC ’24), June 23–27,

2024, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages. https:

//doi.org/10.1145/3649329.3656539

1 INTRODUCTION
In recent years, machine learning (ML) has witnessed two opposing

trends. On one hand, as models have become more capable, they

have also grown larger, requiring more resources like memory and

energy. On the other hand, we have seen the rise of tiny IoT de-

vices operating with constrained resources, forcing ML models to

be smaller. For this reason, many researchers have focused on the

daunting task of model compression. Techniques like quantization,

pruning, and neural architecture search along with advancements

like MobileNets [12] have made it possible to deploy ML models for

various applications at the mobile scale without signi�cant degrada-

tion in performance. Later works like MCUNet [8] have taken this

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DAC ’24, June 23–27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3656539

Figure 1: Example objects of interest with (a) ROI of a 320×240

image compressed in processor, (b) ROI of a 2560×1920 image

compressed in sensor to 320×240 using HiRISE system.

a step further, making it possible to deploy models at the micropro-

cessor scale (512kB SRAM) without signi�cant performance loss.

These advancements have enabled a multitude of new applications

and expanded the scope of what is possible at the edge.

Even with these advancements, however, there are still many

applications that remain out of reach. Many ML models expect

pre-cropped images as input, such as facial recognition models

which expect just faces as input. In a live camera feed, however, it is

impractical to expect only objects of interest to be in view. For this

reason, two-stage approaches are advantageous to be used in which

an object detection model �rst extracts objects of interest, and then

the second model performs its task. This allows systems to perform

their respective tasks in dynamic, uncontrolled environments. In

tiny IoT devices, however, the input image is very small, making

the cropped object of interest even smaller. As shown in Fig. 1(a),

for a 320×240 image, we are left with very little information for the

second stage model to perform its task. While this resolution might

be enough for certain tasks, applications like face recognition rely

on rich features such as hair texture, eyes, nose, ears, and more to

identify targets [5]. One solution is to simply increase the resolution

of the original image, however, for tiny devices where memory is

the most scarce resource, the memory required to store the image

quickly overtakes that of the model as the new memory bottleneck.

As shown in Fig. 2, the proposed project aims to address three

challenges of using very high-resolution cameras at the edge de-

vices; (1) converting 10s of millions of analog pixels to digital sig-

nals using energy-hungry analog-to-digital converters (ADCs) de-

mands an energy that might not available in most of the energy-

constrained edge devices; (2) transferring 10s of Megabytes of in-

formation from the sensing unit to processing unit imposes high

bandwidth requirements and signi�cant energy and latency over-

heads; (3) Storing 10s of Megabytes of information requires a large



(a) Conventional Object Detection System.

(b) Proposed Object Detection System.

Figure 2: Our system aims to address three main challenges

that make the use of very high-resolution cameras at conven-

tional edge computing systems unfeasible including energy-

hungry analog-to-digital conversion, substantial data trans-

fer overheads, and intensive memory demands. Our solution

includes the implementation of a two-stage object detection

model along with an analog in-sensor compression unit.

memory capacity which is not available in most of the resource-

constrained edge devices. In this paper, we propose high-resolution

image scaling system for edge ML, called HiRISE, to address the

aforementioned challenges. To enable the two-stage processing

of high-resolution images in HiRISE, we introduce two in-sensor

circuits that reduce the peak memory required by the system. The

�rst circuit performs in-sensor average pooling to reduce the size

of the image before sending it to the digital hardware. The second

circuit extracts high-resolution versions of the ROIs generated from

our stage-1 model. We showcase an example of HiRISE in Fig. 1 (b).

Several related works have proposed moving some of the compu-

tation to the sensor to reduce memory transfer and computation of

ML models [15, 16]. MACSEN [15] processes the �rst convolutional

layer of a Binary convolutional neural network (CNN) in a vision

sensor with the correlated double sampling procedure achieving

1000 FPS speed in computation mode. In [14], a processing-in-pixel

architecture is designed to support 8-bit activation and weight

intended for the �rst-layer CNN acceleration through pulse modu-

lation. PISA [1] enables convolutional operations in the �rst layer

of Binary CNN by leveraging non-volatile memory to store network

weights. In [6], a processing-in-sensor architecture is designed that

leverages pixel current and charge-sharing events to enable feature

extraction through current-domain MAC operations. In [2], a CNN-

based face recognition system is proposed where part of the facial

recognition system is moved to the sensor. However, our work is

di�erent from these in several ways. First, HiRISE is designed for

very high-resolution images. Second, our system only moves the

scaling and ROI in the sensor, which makes it easier to generalize

HiRISE for other applications.

2 END-TO-END SYSTEM ARCHITECTURE

Figure 3 shows the overall architecture of the proposed HiRISE sys-

tem that enables processing very high-resolution images for edge

devices at a scale not attainable previously. The �gure highlights

Figure 3: The overall architecture of the HiRISE end-to-end

system including various building blocks and the data trans-

fers between di�erent blocks.

the two stages involved in our proposed methodology to reduce

the overall signal conversion and data transfer between the sensing

and processing units.

The objective of the �rst stage is to identify the region of interest

(ROI) in the original high-resolution image to avoid unnecessary

conversion and transfer of pixels that do not contain valuable infor-

mation from the sensor to the processor. While having high-quality

images is crucial for the �nal task, e.g. facial recognition from far

away, identifying the ROI, e.g. �nding a human in the image, does

not require very high resolution. This has allowed us to leverage two

mechanisms to compress the original images to lower-resolution

images and transfer them to the processing unit to identify the

ROI. These methods include converting RGB images to grayscale

that can realize a 3× compression, followed by a : × : pooling that

reduces the data by a factor of :2, as depicted in Fig. 3.

Given that one of the primary aims of this paper is to minimize

analog-to-digital signal conversion operations, both compression

methods mentioned earlier must occur in the analog domain with-

out undergoing any conversion. This constraint, which is at times

overlooked in prior works utilizing in-sensor compression [17], is

addressed in this paper through the development of specialized

circuitry designed for handling these compression operations in

the analog domain, as detailed in the following section. Following

the compression process, once the compressed image is transferred

to the processing unit, a stage-1 object detection model, trained to

identify the ROI in the image, returns the ROI’s location (G,~) and

dimensions (,,� ) to the sensor. In the second stage, an encoder is

employed to select the ROI from the original pixel array based on

the bounding box information obtained in the �rst stage. It then

converts the analog pixels into digital signals before transferring

them to the processing unit to accomplish the end-goal task, such

as object detection and classi�cation.

Table 1 presents the analytical relationships governing overall

data transfer, signal conversion, and memory demands for both

conventional object detection systems and the proposed HiRISE

system. In the table, = ×< denotes the dimensions of the original

image, %ýĀÿ represents the precision of the ADC, :×: corresponds

to the subsampling/pooling size,, × � is the dimensions of the

bounding box, and 9 represents the number of bounding boxes. The

goal of the HiRISE system is to ful�ll the following three conditions:

�Ĥěĭ = �1ď→Č + �1Č→ď + �2ď→Č j �ĥĢĚ (1)

"4<Ĥěĭ =<0G ("1ď→Č , "2ď→Č ) j "4<ĥĢĚ (2)

2



Table 1: Analytical relations for data transfer, memory capacity, and signal conversion for HiRISE vs conventional method.

Data Transfer Memory Capacity ADC

Conventional �ĥĢĚ = (= ×< × 3) .%ýĀÿ "4<ĥĢĚ = (= ×< × 3) .%ýĀÿ �ĥĢĚ = (= ×< × 3)

HiRISE
Stage-1

�1ď→Č = (= ×<)/:2 .%ýĀÿ "1ď→Č = (= ×<)/:2 .%ýĀÿ �1ď→Č = (= ×<)/:2

�1Č→ď = 9 .(4 ×,>A3B) "1Č→ď = 9 .(4 ×,>A3B) 0

Stage-2 �2ď→Č = 3%ýĀÿ .(
∑Ġ
ğ=1

(,ğ × �ğ )) "2ď→Č = 3%ýĀÿ .(
∑Ġ
ğ=1

(,ğ × �ğ )) �2ď→Č = 3
∑Ġ
ğ=1

(,ğ × �ğ )

�Ĥěĭ = �1ď→Č +�2ď→Č j �ĥĢĚ (3)

In equation (1), the �1Č→ď is the total data transfer required

for transferring the dimension and coordinates of ROI boxes from

processor to sensor that is typically signi�cantly smaller than the

�1ď→Č , which represents the data transfer required for sending the

compressed images from sensor to processor. In addition, �2ď→Č is

the intersection over the union of all the ROI boxes transferred from

the sensor to the processor for the end-goal task. In equation (2),

"1ď→Č is the total memory required for storing the compressed im-

age in stage 1, and"2ď→Č is the total memory required for storing

the ROI boxes in stage 2. The memory capacity required in the pro-

cessing unit should be large enough to �t the maximum of"1ď→Č

and "2ď→Č , as the compressed image data used for the stage 1

object detection does not need to remain in the memory for stage

2. Finally in equation (3), �1ď→Č and �2ď→Č are the total amount

of ADC conversions required for converting the compressed image

in the �rst stage and the ROIs in the second stage, respectively.

In section 4, we comprehensively investigate the capability of the

proposed HiRISE system to achieve the aforementioned conditions.

3 IN-SENSOR COMPRESSION CIRCUIT

Our approach to image compression encompasses two primary

steps: grayscale conversion and pooling. These steps are uniquely

implemented in the analog domain and occur simultaneouslywithin

our proposed compression circuit. The architecture of an individual

pixel is depicted in Fig. 4(a). Within this structure, )3 serves as

a source follower (SF), and )4 operates as the row selector (RS)

to connect the pixel to the readout circuit. The main idea of our

compression approach involves the simultaneous connection of

multiple pixels, as illustrated in Fig. 4(a). For instance, a pooling

size of 2 × 2 requires the integration of 2 × 2 × 3 pixels, where 3

represents the RGB channels. Connecting pixels increases the drain

voltage of both SF and RS transistors. According to Eq. 4, activating a

transistor requires the drain-source voltage (+Āď ) to be less than the

di�erence between the gate-source voltage (+ăď ) and the threshold

voltage (+ĐĄ ). To solve the issue, we disregard the resistance of

SF and RS transistors and assume maximum pixel output (+ĀĀ ).

Under this assumption, all pixel resistors (R) e�ectively operate in

parallel. To ensure the voltage of G (in Fig. 4(a)) remains below zero,

we connect them to −+ĀĀ through a resistor smaller than R by a

factor of G , where G =
Ď

#pixels
. For example, when connecting 12

pixels, each pixel’s resistor is set to 12', and they are collectively

connected to −+ĀĀ via an ' resistor. The simpli�ed equivalent

circuit representation is provided in Fig. 4(b).

ĒĀď < (Ēăď − ĒĐĄ ) (4)

To validate the functionality of our proposed circuit, we devised

two simpli�ed test benches, as depicted in Fig. 5. The �rst test

Figure 4: Analog in-sensor pooling circuit diagram.

(a) Transient vector for two analog signals

(b) Transient vector for getting average of 4 digital inputs

Figure 5: SPICE simulation of analog compression circuits.

bench applies our method to two analog inputs. As illustrated in

Fig. 5(a), two transistors are connected via resistors, with their

intersection point connected to−+ĀĀ . The gates of these transistors

are connected to two distinct analog voltages, denoted as �=?1 and

�=?2. The �E6 signal con�rms the correct functioning of the circuit.

For instance, in 1 , the �E6 signal follows the variations of �=?2
with a more gradual slope, owing to the other input being constant.

Another scenario is presented in 2 , where the input signals have

opposing slopes, resulting in an approximately zero slope for the

�E6 signal. Finally, in 3 , the in�uence of �=?1 on the �E6 signal

can be clearly observed. The second test is depicted in Fig. 5(b). In

this con�guration, the number of transistors is increased to four,

and their gate inputs are connected to digital voltages for enhanced

clarity. The �E6 signal is observed to follow the average of the

inputs precisely. For instance, in 1 , the �E6 signal attains its peak

since all inputs are at+ĀĀ . Conversely, in 2 , the�E6 signal reaches

its lowest value, corresponding to the scenario where all inputs are

3



Table 2: Comparison of in-processor (In-Proc) vs in-sensor (In-Sen) scaling. For in-sensor, we use a 2560×1920 pixel array with

8×8, 4×4, and 2×2 pooling yielding the resolutions shown below. For all results, we report the mean average precision (mAP).

Resolution 320×240 640×480 1280×960

Color Mode RGB Gray RGB Gray RGB Gray

Scaling Mode In-Proc In-Sen In-Proc In-Sen In-Proc In-Sen In-Proc In-Sen In-Proc In-Sen In-Proc In-Sen

Crowdhuman 55.2% 55.2% 52.0% 52.0% 71.0% 71.0% 68.1% 68.2% 79.2% 79.5% 76.7% 76.8%

DHDCampus 49.6% 49.6% 49.2% 49.2% 67.7% 67.7% 66.8% 66.6% 80.9% 80.9% 79.8% 79.8%

VisDrone 19.4% 19.3% 18.5% 18.5% 36.8% 36.8% 34.9% 34.7% 50.9% 50.5% 49.7% 49.3%

equal to zero. This test bench was extended to accommodate 192

inputs and demonstrated �awless performance.

4 RESULTS AND DISCUSSIONS
4.1 Accuracy

To verify that our in-sensor pooling technique does not harm the

performance of the stage-1 model, we simulate the in-sensor pool-

ing on three object detection datasets and compare the results

to images that are scaled digitally. We also investigate the accu-

racy/resolution tradeo�, by analyzing three di�erent pooling levels

(8×8, 4×4, 2×2) yielding three di�erent image resolutions. Finally,

we investigate the e�ect of our optional grayscale circuit, which

can further reduce the memory footprint of images by a factor of 3.

For our evaluation we use three datasets: Crowdhuman [13],

DHDCampus [11], and VisDrone [18]. The Crowdhuman dataset

contains pictures of people in large groups (mostly high-resolution)

along with bounding boxes for their bodies and heads. DHDCampus

contains high-resolution images of people and provides bounding

boxes for two classes: person, and cyclist. VisDrone contains high-

resolution drone images from above in an urban environment and

provides bounding boxes for 10 classes. For all models, we use the

YOLOv8 Nano [4] model pre-trained on the MSCOCO [9] object

detection dataset. We train our models for 200 epochs and report

the �nal validation mean average precision (mAP) in Table 2.

From the table, it can be observed that the in-sensor scaling

does not cause a signi�cant accuracy drop. In the majority of cases,

we see no drop in accuracy when comparing in-sensor scaling

to in-processor scaling. There are a few cases where accuracy is

worse and a few cases where accuracy is better. In all cases, higher

resolution leads to better accuracy. This is especially true in the

case of VisDrone where the accuracy more than doubles between

the smallest and highest resolution. This dataset is likely the most

sensitive to image size because the images are taken from far away,

thus making it di�cult to �nd objects in lower resolution. In our

experiments for grayscale, the images that were trained in RGB and

evaluated in grayscale (not shown in the table) su�ered a noticeable

accuracy drop of 3.4%-6.7%. To mitigate this drop in accuracy, we

retrain the models using grayscale images (shown in the table)

which reduces the accuracy drop to around 0.4%-3.2%. For grayscale,

Crowdhuman is the most sensitive, while the other datasets are

only slightly a�ected.

4.2 Memory Utilization

As discussed earlier, many edge devices have strict limits on the

amount of memory available. While speci�c memory requirements

depend on the exact hardware and application, as a case study we

examine an extreme scenario of running a two-stage systemwith an

object detection model and recognition model on a microcontroller.

(a) In-Processor Scaling (b) In-Sensor Scaling

Figure 6: Comparison of memory requirements for the two-

stage model with varying resolutions along with peak mem-

ory of stage-1 and stage-2 models. We scale images down to

320×240 pixels for the stage-1 model in both cases.

Weuse the popular STM32H743 as our hardware of choice, which

uses the Arm Cortex M7 and has 512kB SRAM/2MB �ash memory.

To run a two-stage system on this hardware we need the peak

activation memory of each model to be below 512kB and the total

weights of both models to be below 2MB. We pick two o�-the-

shelf tiny ML models and analyze peak SRAM and �ash memory

utilization. We use the MCUNetV2 person detection model [7] as

our stage 1 object detection model along with the MCUNetV2 image

classi�cation model [7] as our stage 2 model.

We calculate the total memory usage for both models in terms

of peak SRAM and �ash memory. We use TFLite-Micro as our

interpreter and analyze peak SRAM by looking at the execution

order of operations for both models and �nding the point where the

most memory is required. To calculate the �ash memory utilization,

we add up the weight memory for each model. For the stage 1

model, we �nd 337kB/296kB peak SRAM/�ash usage and for the

stage 2 model, we �nd 398kB/1MB peak SRAM/�ash usage for a

total of 398kB peak SRAM and 1.3MB �ash. This leaves only 114kB

of SRAM free during the inference of either model.

If we use in-processor scaling, 114kB can be enough for the stage-

1 model to �nd ROI. However, as discussed earlier and shown in

Fig. 1, the resulting ROIs will be too small for the stage-2 model to

extract the rich features it relies on. As shown in Figure 6 (a), the

system quickly runs out of memory using in-processor scaling if

the pixel array size increases. On the other hand, the HiRISE can

support large pixel arrays since the high-resolution pixels are kept

o� the digital hardware. Using scaling, the stage-1 image can be kept

under 114kB. Finally, when the high-resolution ROI is needed for

the stage-2 model, only the pixels related to that ROI are extracted.

Since the full-resolution image never leaves the analog domain,

the size of the image no longer exceeds our memory requirements

using pooling and selective ROI, as shown in Fig. 6 (b).

4



Figure 7: Data transfer requirements for di�erent pixel array

sizes with di�erent pooling levels.

4.3 Data Transfer
Although the peak memory using in-sensor scaling and in-sensor

ROI is much lower, the data must go back and forth between the

sensor and the processor multiple times. To investigate the data

transfer requirements of our system, we evaluate the median data

transfer. In addition, we evaluate the median packet size, i.e., width

and height of ROI, at various resolutions for each dataset. We �nd

that the Crowdhuman dataset has the largest total data transfer

size. As shown in Fig. 7, even though there is more back and forth

between the sensor and processor using the HiRISE system, the

total data transfer size is smaller in all cases.

For 2×2 pooling, there is a 1.9× reduction in data transfer over

the baseline. Sending the initial pooled image from the camera to

the digital hardware (�1ď→Č ) accounts for 48% of the data transfer,

while sending the cropped images for each bounding box from the

camera to the digital hardware (�2ď→Č ) accounts for 52% of the

data transfer. As mentioned in Section 2, the data transfer required

for sending the dimensions and coordinates of ROI from processor

to sensor (�1Č→ď ) is negligible compared to �1ď→Č and �2ď→Č .

For 4×4 pooling we have a 3× reduction in data transfer over the

baseline.�1ď→Č accounts for 19% of the data transfer while�2ď→Č

accounts for 81% of the data transfer. Finally, for 8×8 pooling, we

have a 3.5× reduction in data transfer over the baseline. �1ď→Č

accounts for just 5% of the data transfer, while �2ď→Č accounts

for 95% of the data transfer. These ratios hold for all resolutions,

and the total data transfer for di�erent resolutions broken down

by each stage can be seen in Fig. 7. Thus, although HiRISE requires

moving the data from the sensor to the processor twice, using in-

sensor pooling along with in-sensor ROI selection, it can achieve a

signi�cant reduction in the overall data transfer in all cases.

4.4 Energy Consumption

Although all the reduction in memory and data transfer corre-

sponds directly to savings in energy, these are not the only sources

of energy saving in the HiRISE system. Since the HiRISE system

enables converting fewer pixels from analog to digital, it requires

fewer ADCs which are a major source of energy consumption in

sensors. To evaluate the energy savings of HiRISE, we use HSPICE

and Synopsys Design Compiler to implement the analog compres-

sion/conversion units and digital control circuitry, respectively,

using 45nm transistor technology and 45nm 8-bit ADC [3].

Figure 8 shows the energy consumption of HiRISE for di�er-

ent pooling sizes for both RGB and grayscale images across three

Figure 8: Energy consumption under di�erent pooling levels

with RGB (left) and grayscale (right).

datasets. For our experiments, we use a pixel array size of 2560×1920

for all datasets. In the �gure, the baseline system is a 1-stage system

that converts the entire image and transfers it to the processor for

the end-goal task. The ADC energy consumption of stage 2 in the

HiRISE system varies for di�erent images depending on the size

and number of ROIs detected in stage 1. Therefore, for each bar

shown in Fig. 8, we measure the median energy consumption for

the entire dataset except for the baseline which has a �xed energy

consumption of 1.85mJ per image. As shown, the Crowdhuman

dataset exhibits higher overall energy consumption compared to the

other two datasets. This is attributed to the substantial quantity of

objects present in each image, resulting in an increased intersection

over the union of ROI boxes.

For the Crowdhuman dataset, a HiRISE system with 2×2 pooling

can achieve roughly 3× energy reduction compared to the baseline

with 0.63mJ energy consumption. Of the 0.63mJ, 73% of the energy

(0.46mJ) comes from converting the initial pooled image (Stage 1),

while 27% of the energy is from converting pixels from the ROI

(Stage 2). For 4×4 pooling using the same dataset, a 6.5× reduction

is observed with 0.28mJ total energy consumption. Of the 0.28mJ,

41% of the energy (0.12mJ) consumption comes from stage 1, while

59% of the energy is consumed for converting ROI pixels. Finally,

for 8×8 pooling, a 9.4× reduction is realized over the baseline model

with 0.2mJ energy consumption. Of the 0.2mJ, 15% of the energy

(0.03mJ) is consumed for converting the pooled image, while 85% is

consumed in stage 2. Across all experiments, the energy consump-

tion of analog pooling circuitry varies between 1.71 nJ and 91.4 nJ

which is several orders of magnitude smaller than ADC conversion,

thus having a negligible impact on the overall energy.

4.5 End-to-End System
Here, we provide a comprehensive analysis of the end-to-end sys-

tem using the Real-world A�ective Faces Database (RAF-DB) dataset.

We compare results across two models, i.e., MobileNetV2 [12] and

MCUNetV2 [7], across di�erent pixel array sizes. For each pixel ar-

ray size, we �nd the average ROI by analyzing over 100,000 ROIs for

head detection from the Crowdhuman dataset. Using these ROIs, we

train a facial expression recognition model on the RAF-DB dataset.

We train for 200 epochs using the same approach as POSTERV2

[10]. For each of the models, we report accuracy, peak memory of

the entire system, and data transfer and show the e�ect of using

HiRISE. We also show the energy consumption of the sensor both

with and without HiRISE. In all cases for HiRISE, we use pooling

such that the output resolution for the stage-1 model is 320×240.

From Table 3 it can be observed that for a pixel array size of

320×240, the detected ROI size becomes very small (14×14). Since

5



Table 3: End-to-end system analysis for di�erent pixel array sizes using 320×240 pooling resolution.

Model Pixel Array ROI Acc%

SRAM (kB)
Data Transfer (kB) Energy (mJ)

Peak Act
Image Memory Total

Baseline HiRISE Baseline HiRISE Baseline HiRISE Baseline HiRISE

M
C
U
N
et
V
2

320×240 14×14 58.6 6.4 230

230

237 237 230 240 0.029 0.030

640×480 28×28 71.5 14.3 922 936 245 922 268 0.115 0.034

960×720 42×42 76.8 28.1 2,074 2,102 258 2,074 315 0.259 0.039

1280×960 56×56 78.0 46.6 3,686 3,733 277 3,686 381 0.461 0.048

1600×1200 70×70 80.8 69.7 5,760 5,830 300 5,760 466 0.720 0.058

1920×1440 84×84 80.3 97.6 8,294 8,392 328 8,294 569 1.037 0.071

2240×1680 98×98 81.1 130 11,290 11,420 361 11,290 691 1.411 0.086

2560×1920 112×112 81.2 168 14,746 14,913 398 14,746 833 1.843 0.104

M
o
b
il
eN

et
V
2

320×240 14×14 65.5 12.5 230

230

242 243 230 240 0.029 0.030

640×480 28×28 72.9 43.4 921 964 274 922 268 0.115 0.034

960×720 42×42 78.4 93.1 2,074 2,167 324 2,074 315 0.259 0.039

1280×960 56×56 81.0 161 3,686 3,848 392 3,686 381 0.461 0.048

1600×1200 70×70 82.4 249 5,760 6,009 479 5,760 466 0.720 0.058

1920×1440 84×84 83.6 355 8,294 8,650 586 8,294 569 1.037 0.071

2240×1680 98×98 84.4 480 11,290 11,770 711 11,290 691 1.411 0.086

2560×1920 112×112 84.7 624 14,746 15,367 854 14,746 833 1.843 0.104

there is not much information remaining for the stage-2 model, the

models struggle to recognize facial expressions, with accuracies

of 58.6% and 65.5% for MCUNetV2 and MobileNetV2, respectively.

The peak SRAM, data transfer, and energy at this pixel array size

are similar for both systems. For the pixel array size of 640×480,

the accuracy improves signi�cantly for both models with 71.5%

and 72.9% accuracy for MCUNetV2 and MobileNetV2, respectively.

This indicates that they can extract more high-level features with a

larger ROI. Simultaneously, HiRISE utilizes 3.8× less SRAM than the

baseline and 3.4× less energy in-sensor. When the pixel array size is

doubled to 1280×960, an accuracy of 78% and 81% could be realized

for MCUNetV2 and MobileNetV2, respectively. For this array size

using MCUNetV2, we see that HiRISE achieves a 13.5× and 9.7× re-

duction in SRAM utilization and energy consumption compared to

the baseline, respectively. Finally, for the maximum pixel array size

investigated, i.e., 2560×1920, an 81% and 84.7% accuracy is obtained

for MCUNetV2 and MobileNetV2, respectively. At this array size,

HiRISE uses 37.5× less SRAM than the baseline for MCUNetV2,

while achieving a 17.7× reduction in energy consumption.

5 CONCLUSION
In this paper, we proposed HiRISE, a system that enables the de-

ployment of two-stage models that process high-resolution images

at resource- and energy-constrained edge devices. HiRISE achieves

this by ensuring that only the necessary information leaves the

sensor. This is made possible by designing a novel in-sensor pooling

circuit along with a selective ROI mechanism. Through comprehen-

sive end-to-end experiments, we have demonstrated that HiRISE

not only signi�cantly reduces the memory demands of edge ML

applications, but also realizes considerable energy savings and re-

duction in the total data transfer compared to conventional systems.

ACKNOWLEDGMENT
This work is supported in part by the National Science Foundation (NSF)

under grant numbers 2340249, 2216773, 2228028, and 2216772.

REFERENCES
[1] Shaahin Angizi et al. 2023. PISA: ANon-Volatile Processing-In-Sensor Accelerator

for Imaging Systems. IEEE TETC (2023).
[2] Kyeongryeol Bong, Sungpill Choi, Changhyeon Kim, Donghyeon Han, and Hoi-

Jun Yoo. 2017. A low-power convolutional neural network face recognition

processor and a CIS integrated with always-on face detector. IEEE Journal of
Solid-State Circuits 53, 1 (2017), 115–123.

[3] Yanghyuck Choi, Seonghyun Park, Mun-Kyo Lee, Sun-Phil Nah, and Minkyu
Song. 2015. Design of a 45nm 8-bit 2GS/s 250mW CMOS folding A/D converter
with an adaptive digital error correction technique. In 2015 International SoC
Design Conference (ISOCC). IEEE, 75–76.

[4] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. 2023. YOLO by Ultralytics. https:
//github.com/ultralytics/ultralytics

[5] Minchul Kim, Anil K Jain, and Xiaoming Liu. 2022. Adaface: Quality adaptive
margin for face recognition. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 18750–18759.

[6] Martin Lefebvre et al. 2021. 7.7 A 0.2-to-3.6 TOPS/W programmable convolutional
imager soc with in-sensor current-domain ternary-weighted MAC operations for
feature extraction and region-of-interest detection. In ISSCC, Vol. 64. 118–120.

[7] Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. 2021. Mcunetv2:
Memory-e�cient patch-based inference for tiny deep learning. arXiv preprint
arXiv:2110.15352 (2021).

[8] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020. Mcunet:
Tiny deep learning on iot devices. Advances in Neural Information Processing
Systems 33 (2020), 11711–11722.

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, Proceedings, Part V 13. Springer, 740–755.

[10] Jiawei Mao, Rui Xu, Xuesong Yin, Yuanqi Chang, Binling Nie, and Aibin Huang.
2023. POSTER V2: A simpler and stronger facial expression recognition network.
arXiv preprint arXiv:2301.12149 (2023).

[11] Yanwei Pang, Jiale Cao, Yazhao Li, Jin Xie, Hanqing Sun, and Jinfeng Gong.
2021. TJU-DHD: A Diverse High-Resolution Dataset for Object Detection. IEEE
Transactions on Image Processing (2021).

[12] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. (2018),
4510–4520.

[13] Shuai Shao, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu, Xiangyu Zhang, and Jian
Sun. 2018. CrowdHuman: A Benchmark for Detecting Human in a Crowd. arXiv
preprint arXiv:1805.00123 (2018).

[14] Ruibing Song et al. 2022. A recon�gurable convolution-in-pixel cmos image
sensor architecture. IEEE TCSVT (2022).

[15] Han Xu et al. 2020. Macsen: A processing-in-sensor architecture integrating mac
operations into image sensor for ultra-low-power bnn-based intelligent visual
perception. IEEE TCAS II 68 (2020), 627–631.

[16] Han Xu, Ningchao Lin, Li Luo, Qi Wei, Runsheng Wang, Cheng Zhuo, Xunzhao
Yin, Fei Qiao, and Huazhong Yang. 2021. Senputing: An ultra-low-power always-
on vision perception chip featuring the deep fusion of sensing and computing.
IEEE Transactions on Circuits and Systems I: Regular Papers 69, 1 (2021), 232–243.

[17] Tianyi Zhang, Kishore Kasichainula, Dong-Woo Jee, Injune Yeo, Yaoxin Zhuo,
Baoxin Li, Jae-sun Seo, and Yu Cao. 2023. Improving the E�ciency of CMOS
Image Sensors through In-Sensor Selective Attention. In 2023 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 1–4.

[18] Pengfei Zhu, LongyinWen, Xiao Bian, Haibin Ling, and Qinghua Hu. 2018. Vision
meets drones: A challenge. arXiv preprint arXiv:1804.07437 (2018).

6


	Abstract
	1 Introduction
	2 End-to-End System Architecture
	3 In-Sensor Compression Circuit
	4 Results and Discussions
	4.1 Accuracy
	4.2 Memory Utilization
	4.3 Data Transfer
	4.4 Energy Consumption
	4.5 End-to-End System

	5 Conclusion
	References

