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ABSTRACT

With the rise of tiny IoT devices powered by machine learning (ML),
many researchers have directed their focus toward compressing
models to fit on tiny edge devices. Recent works have achieved
remarkable success in compressing ML models for object detection
and image classification on microcontrollers with small memory,
e.g., 512kB SRAM. However, there remain many challenges pro-
hibiting the deployment of ML systems that require high-resolution
images. Due to fundamental limits in memory capacity for tiny IoT
devices, it may be physically impossible to store large images with-
out external hardware. To this end, we propose a high-resolution
image scaling system for edge ML, called HiRISE, which is equipped
with selective region-of-interest (ROI) capability leveraging analog
in-sensor image scaling. Our methodology not only significantly
reduces the peak memory requirements, but also achieves up to
17.7% reduction in data transfer and energy consumption.
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1 INTRODUCTION

In recent years, machine learning (ML) has witnessed two opposing
trends. On one hand, as models have become more capable, they
have also grown larger, requiring more resources like memory and
energy. On the other hand, we have seen the rise of tiny IoT de-
vices operating with constrained resources, forcing ML models to
be smaller. For this reason, many researchers have focused on the
daunting task of model compression. Techniques like quantization,
pruning, and neural architecture search along with advancements
like MobileNets [12] have made it possible to deploy ML models for
various applications at the mobile scale without significant degrada-
tion in performance. Later works like MCUNet [8] have taken this
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Figure 1: Example objects of interest with (a) ROI of a 320x240
image compressed in processor, (b) ROI of a 2560x1920 image
compressed in sensor to 320x240 using HiRISE system.

a step further, making it possible to deploy models at the micropro-
cessor scale (512kB SRAM) without significant performance loss.
These advancements have enabled a multitude of new applications
and expanded the scope of what is possible at the edge.

Even with these advancements, however, there are still many
applications that remain out of reach. Many ML models expect
pre-cropped images as input, such as facial recognition models
which expect just faces as input. In a live camera feed, however, it is
impractical to expect only objects of interest to be in view. For this
reason, two-stage approaches are advantageous to be used in which
an object detection model first extracts objects of interest, and then
the second model performs its task. This allows systems to perform
their respective tasks in dynamic, uncontrolled environments. In
tiny IoT devices, however, the input image is very small, making
the cropped object of interest even smaller. As shown in Fig. 1(a),
for a 320x240 image, we are left with very little information for the
second stage model to perform its task. While this resolution might
be enough for certain tasks, applications like face recognition rely
on rich features such as hair texture, eyes, nose, ears, and more to
identify targets [5]. One solution is to simply increase the resolution
of the original image, however, for tiny devices where memory is
the most scarce resource, the memory required to store the image
quickly overtakes that of the model as the new memory bottleneck.

As shown in Fig. 2, the proposed project aims to address three
challenges of using very high-resolution cameras at the edge de-
vices; (1) converting 10s of millions of analog pixels to digital sig-
nals using energy-hungry analog-to-digital converters (ADCs) de-
mands an energy that might not available in most of the energy-
constrained edge devices; (2) transferring 10s of Megabytes of in-
formation from the sensing unit to processing unit imposes high
bandwidth requirements and significant energy and latency over-
heads; (3) Storing 10s of Megabytes of information requires a large
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(b) Proposed Object Detection System.

Figure 2: Our system aims to address three main challenges
that make the use of very high-resolution cameras at conven-
tional edge computing systems unfeasible including energy-
hungry analog-to-digital conversion, substantial data trans-
fer overheads, and intensive memory demands. Our solution
includes the implementation of a two-stage object detection
model along with an analog in-sensor compression unit.

memory capacity which is not available in most of the resource-
constrained edge devices. In this paper, we propose high-resolution
image scaling system for edge ML, called HiRISE, to address the
aforementioned challenges. To enable the two-stage processing
of high-resolution images in HiRISE, we introduce two in-sensor
circuits that reduce the peak memory required by the system. The
first circuit performs in-sensor average pooling to reduce the size
of the image before sending it to the digital hardware. The second
circuit extracts high-resolution versions of the ROIs generated from
our stage-1 model. We showcase an example of HiRISE in Fig. 1 (b).

Several related works have proposed moving some of the compu-
tation to the sensor to reduce memory transfer and computation of
ML models [15, 16]. MACSEN [15] processes the first convolutional
layer of a Binary convolutional neural network (CNN) in a vision
sensor with the correlated double sampling procedure achieving
1000 FPS speed in computation mode. In [14], a processing-in-pixel
architecture is designed to support 8-bit activation and weight
intended for the first-layer CNN acceleration through pulse modu-
lation. PISA [1] enables convolutional operations in the first layer
of Binary CNN by leveraging non-volatile memory to store network
weights. In [6], a processing-in-sensor architecture is designed that
leverages pixel current and charge-sharing events to enable feature
extraction through current-domain MAC operations. In [2], a CNN-
based face recognition system is proposed where part of the facial
recognition system is moved to the sensor. However, our work is
different from these in several ways. First, HiRISE is designed for
very high-resolution images. Second, our system only moves the
scaling and ROI in the sensor, which makes it easier to generalize
HiRISE for other applications.

2 END-TO-END SYSTEM ARCHITECTURE

Figure 3 shows the overall architecture of the proposed HiRISE sys-
tem that enables processing very high-resolution images for edge
devices at a scale not attainable previously. The figure highlights
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Figure 3: The overall architecture of the HiRISE end-to-end
system including various building blocks and the data trans-
fers between different blocks.

the two stages involved in our proposed methodology to reduce
the overall signal conversion and data transfer between the sensing
and processing units.

The objective of the first stage is to identify the region of interest
(ROI) in the original high-resolution image to avoid unnecessary
conversion and transfer of pixels that do not contain valuable infor-
mation from the sensor to the processor. While having high-quality
images is crucial for the final task, e.g. facial recognition from far
away, identifying the ROL, e.g. finding a human in the image, does
not require very high resolution. This has allowed us to leverage two
mechanisms to compress the original images to lower-resolution
images and transfer them to the processing unit to identify the
ROL These methods include converting RGB images to grayscale
that can realize a 3X compression, followed by a k X k pooling that
reduces the data by a factor of k?, as depicted in Fig. 3.

Given that one of the primary aims of this paper is to minimize
analog-to-digital signal conversion operations, both compression
methods mentioned earlier must occur in the analog domain with-
out undergoing any conversion. This constraint, which is at times
overlooked in prior works utilizing in-sensor compression [17], is
addressed in this paper through the development of specialized
circuitry designed for handling these compression operations in
the analog domain, as detailed in the following section. Following
the compression process, once the compressed image is transferred
to the processing unit, a stage-1 object detection model, trained to
identify the ROI in the image, returns the ROI’s location (x, y) and
dimensions (W, H) to the sensor. In the second stage, an encoder is
employed to select the ROI from the original pixel array based on
the bounding box information obtained in the first stage. It then
converts the analog pixels into digital signals before transferring
them to the processing unit to accomplish the end-goal task, such
as object detection and classification.

Table 1 presents the analytical relationships governing overall
data transfer, signal conversion, and memory demands for both
conventional object detection systems and the proposed HiRISE
system. In the table, n X m denotes the dimensions of the original
image, Papc represents the precision of the ADC, kX k corresponds
to the subsampling/pooling size, W X H is the dimensions of the
bounding box, and j represents the number of bounding boxes. The
goal of the HiRISE system is to fulfill the following three conditions:

Dnew = Dls—p +Dlp_s+ D2s_,p < Dyjq (1

Mempew = max(M1s_p, M2s_,p) < Memqjq (2



Table 1: Analytical relations for data transfer, memory capacity, and signal conversion for HiRISE vs conventional method.

Data Transfer Memory Capacity ADC
Conventional Dyig = (n X m X 3).Papc Memgyjg = (n X m X 3).Papc Cotd = (nXxXmx3)
Stage-1 Dis_p = (nxm)/k* Papc Mis_p = (nxm)/k? Papc Cls—p = (nx m)/k?
HiRISE ~°8 Dip_s = j.(4 x Words) Milp_s = j.(4 X Words) 0

Stage-2  D2s5_p = 3Papc-(X1_, (Wi X Hi)) M2s_,p = 3Papc. (X1, (Wi X Hy))  C25p =331 (Wi x Hj)

Chew = Cls—p + C25p < Cyjq (©)

In equation (1), the D1p_,g is the total data transfer required
for transferring the dimension and coordinates of ROI boxes from
processor to sensor that is typically significantly smaller than the
D1g_,p, which represents the data transfer required for sending the
compressed images from sensor to processor. In addition, D2s_,p is
the intersection over the union of all the ROI boxes transferred from
the sensor to the processor for the end-goal task. In equation (2),
M1gs_,p is the total memory required for storing the compressed im-
age in stage 1, and M2g_,p is the total memory required for storing
the ROI boxes in stage 2. The memory capacity required in the pro-
cessing unit should be large enough to fit the maximum of M1g_,p
and M2gs_,p, as the compressed image data used for the stage 1
object detection does not need to remain in the memory for stage
2. Finally in equation (3), C1s_,p and C2g_,p are the total amount
of ADC conversions required for converting the compressed image
in the first stage and the ROIs in the second stage, respectively.

In section 4, we comprehensively investigate the capability of the
proposed HiRISE system to achieve the aforementioned conditions.

3 IN-SENSOR COMPRESSION CIRCUIT

Our approach to image compression encompasses two primary
steps: grayscale conversion and pooling. These steps are uniquely
implemented in the analog domain and occur simultaneously within
our proposed compression circuit. The architecture of an individual
pixel is depicted in Fig. 4(a). Within this structure, T3 serves as
a source follower (SF), and Ty operates as the row selector (RS)
to connect the pixel to the readout circuit. The main idea of our
compression approach involves the simultaneous connection of
multiple pixels, as illustrated in Fig. 4(a). For instance, a pooling
size of 2 X 2 requires the integration of 2 X 2 X 3 pixels, where 3
represents the RGB channels. Connecting pixels increases the drain
voltage of both SF and RS transistors. According to Eq. 4, activating a
transistor requires the drain-source voltage (Vpg) to be less than the
difference between the gate-source voltage (Vgs) and the threshold
voltage (V7p). To solve the issue, we disregard the resistance of
SF and RS transistors and assume maximum pixel output (Vpp).
Under this assumption, all pixel resistors (R) effectively operate in
parallel. To ensure the voltage of G (in Fig. 4(a)) remains below zero,
we connect them to —Vpp through a resistor smaller than R by a

factor of x, where x = . For example, when connecting 12

_R _
#pixels
pixels, each pixel’s resistor is set to 12R, and they are collectively
connected to —Vpp via an R resistor. The simplified equivalent

circuit representation is provided in Fig. 4(b).

Vps < (Vgs = Vru) O]
To validate the functionality of our proposed circuit, we devised
two simplified test benches, as depicted in Fig. 5. The first test
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Figure 5: SPICE simulation of analog compression circuits.

bench applies our method to two analog inputs. As illustrated in
Fig. 5(a), two transistors are connected via resistors, with their
intersection point connected to —Vpp. The gates of these transistors
are connected to two distinct analog voltages, denoted as Inp; and
Inp,. The Avg signal confirms the correct functioning of the circuit.
For instance, in ), the Avg signal follows the variations of Inp,
with a more gradual slope, owing to the other input being constant.
Another scenario is presented in @), where the input signals have
opposing slopes, resulting in an approximately zero slope for the
Avg signal. Finally, in @), the influence of Inp; on the Avg signal
can be clearly observed. The second test is depicted in Fig. 5(b). In
this configuration, the number of transistors is increased to four,
and their gate inputs are connected to digital voltages for enhanced
clarity. The Avg signal is observed to follow the average of the
inputs precisely. For instance, in ), the Avg signal attains its peak
since all inputs are at Vpp. Conversely, in @), the Avg signal reaches
its lowest value, corresponding to the scenario where all inputs are



Table 2: Comparison of in-processor (In-Proc) vs in-sensor (In-Sen) scaling. For in-sensor, we use a 2560x1920 pixel array with
8x8, 4x4, and 2x2 pooling yielding the resolutions shown below. For all results, we report the mean average precision (mAP).

Resolution 320%240

640x480 1280960

Color Mode RGB Gray RGB

Gray RGB Gray

Scaling Mode In-Proc In-Sen In-Proc In-Sen In-Proc

In-Sen In-Proc In-Sen In-Proc In-Sen In-Proc In-Sen

Crowdhuman 55.2% 55.2% 52.0% 52.0% 71.0%
DHDCampus 49.6% 49.6% 49.2% 49.2% 67.7%
VisDrone 19.4% 19.3% 18.5% 18.5% 36.8%

71.0% 68.1% 68.2% 79.2% 79.5% 76.7% 76.8%
67.7% 66.8% 66.6% 80.9% 80.9% 79.8% 79.8%
36.8% 34.9% 34.7% 50.9% 50.5% 49.7% 49.3%

equal to zero. This test bench was extended to accommodate 192
inputs and demonstrated flawless performance.

4 RESULTS AND DISCUSSIONS
4.1 Accuracy

To verify that our in-sensor pooling technique does not harm the
performance of the stage-1 model, we simulate the in-sensor pool-
ing on three object detection datasets and compare the results
to images that are scaled digitally. We also investigate the accu-
racy/resolution tradeoff, by analyzing three different pooling levels
(8%8, 4x4, 2x2) yielding three different image resolutions. Finally,
we investigate the effect of our optional grayscale circuit, which
can further reduce the memory footprint of images by a factor of 3.

For our evaluation we use three datasets: Crowdhuman [13],
DHDCampus [11], and VisDrone [18]. The Crowdhuman dataset
contains pictures of people in large groups (mostly high-resolution)
along with bounding boxes for their bodies and heads. DHDCampus
contains high-resolution images of people and provides bounding
boxes for two classes: person, and cyclist. VisDrone contains high-
resolution drone images from above in an urban environment and
provides bounding boxes for 10 classes. For all models, we use the
YOLOV8 Nano [4] model pre-trained on the MSCOCO [9] object
detection dataset. We train our models for 200 epochs and report
the final validation mean average precision (mAP) in Table 2.

From the table, it can be observed that the in-sensor scaling
does not cause a significant accuracy drop. In the majority of cases,
we see no drop in accuracy when comparing in-sensor scaling
to in-processor scaling. There are a few cases where accuracy is
worse and a few cases where accuracy is better. In all cases, higher
resolution leads to better accuracy. This is especially true in the
case of VisDrone where the accuracy more than doubles between
the smallest and highest resolution. This dataset is likely the most
sensitive to image size because the images are taken from far away,
thus making it difficult to find objects in lower resolution. In our
experiments for grayscale, the images that were trained in RGB and
evaluated in grayscale (not shown in the table) suffered a noticeable
accuracy drop of 3.4%-6.7%. To mitigate this drop in accuracy, we
retrain the models using grayscale images (shown in the table)
which reduces the accuracy drop to around 0.4%-3.2%. For grayscale,
Crowdhuman is the most sensitive, while the other datasets are
only slightly affected.

4.2 Memory Utilization

As discussed earlier, many edge devices have strict limits on the
amount of memory available. While specific memory requirements
depend on the exact hardware and application, as a case study we
examine an extreme scenario of running a two-stage system with an
object detection model and recognition model on a microcontroller.
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Figure 6: Comparison of memory requirements for the two-
stage model with varying resolutions along with peak mem-
ory of stage-1 and stage-2 models. We scale images down to
320%240 pixels for the stage-1 model in both cases.

We use the popular STM32H743 as our hardware of choice, which
uses the Arm Cortex M7 and has 512kB SRAM/2MB flash memory.
To run a two-stage system on this hardware we need the peak
activation memory of each model to be below 512kB and the total
weights of both models to be below 2MB. We pick two off-the-
shelf tiny ML models and analyze peak SRAM and flash memory
utilization. We use the MCUNetV2 person detection model [7] as
our stage 1 object detection model along with the MCUNetV2 image
classification model [7] as our stage 2 model.

We calculate the total memory usage for both models in terms
of peak SRAM and flash memory. We use TFLite-Micro as our
interpreter and analyze peak SRAM by looking at the execution
order of operations for both models and finding the point where the
most memory is required. To calculate the flash memory utilization,
we add up the weight memory for each model. For the stage 1
model, we find 337kB/296kB peak SRAM/flash usage and for the
stage 2 model, we find 398kB/1MB peak SRAM/flash usage for a
total of 398kB peak SRAM and 1.3MB flash. This leaves only 114kB
of SRAM free during the inference of either model.

If we use in-processor scaling, 114kB can be enough for the stage-
1 model to find ROIL However, as discussed earlier and shown in
Fig. 1, the resulting ROIs will be too small for the stage-2 model to
extract the rich features it relies on. As shown in Figure 6 (a), the
system quickly runs out of memory using in-processor scaling if
the pixel array size increases. On the other hand, the HiRISE can
support large pixel arrays since the high-resolution pixels are kept
off the digital hardware. Using scaling, the stage-1 image can be kept
under 114kB. Finally, when the high-resolution ROI is needed for
the stage-2 model, only the pixels related to that ROI are extracted.
Since the full-resolution image never leaves the analog domain,
the size of the image no longer exceeds our memory requirements
using pooling and selective ROI, as shown in Fig. 6 (b).



3 Baseline [ stage 1 S-P [ Stage 1 P-»S [ Stage 2 S-P

] 4915

5000

2
&

4000

3000

8

2000

Data Transfer Size (kB)

1000

o o o

PP e PP e Pt e® P e¥e® PP e® Pt
320x240 640x480 960x720 1280x960 1600x1200 1920x1440 2240x1680 2560x1920

PPPSE

Pixel Array Size / Pooling
Figure 7: Data transfer requirements for different pixel array
sizes with different pooling levels.

4.3 Data Transfer

Although the peak memory using in-sensor scaling and in-sensor
ROI is much lower, the data must go back and forth between the
sensor and the processor multiple times. To investigate the data
transfer requirements of our system, we evaluate the median data
transfer. In addition, we evaluate the median packet size, i.e., width
and height of RO, at various resolutions for each dataset. We find
that the Crowdhuman dataset has the largest total data transfer
size. As shown in Fig. 7, even though there is more back and forth
between the sensor and processor using the HiRISE system, the
total data transfer size is smaller in all cases.

For 2Xx2 pooling, there is a 1.9 reduction in data transfer over
the baseline. Sending the initial pooled image from the camera to
the digital hardware (D1s_,p) accounts for 48% of the data transfer,
while sending the cropped images for each bounding box from the
camera to the digital hardware (D2s_,p) accounts for 52% of the
data transfer. As mentioned in Section 2, the data transfer required
for sending the dimensions and coordinates of ROI from processor
to sensor (D1p_,g) is negligible compared to D1g_,p and D2g_,p.
For 4x4 pooling we have a 3X reduction in data transfer over the
baseline. D1s_, p accounts for 19% of the data transfer while D2g_,p
accounts for 81% of the data transfer. Finally, for 8x8 pooling, we
have a 3.5% reduction in data transfer over the baseline. D1g_,p
accounts for just 5% of the data transfer, while D2g_,p accounts
for 95% of the data transfer. These ratios hold for all resolutions,
and the total data transfer for different resolutions broken down
by each stage can be seen in Fig. 7. Thus, although HiRISE requires
moving the data from the sensor to the processor twice, using in-
sensor pooling along with in-sensor ROI selection, it can achieve a
significant reduction in the overall data transfer in all cases.

4.4 Energy Consumption

Although all the reduction in memory and data transfer corre-
sponds directly to savings in energy, these are not the only sources
of energy saving in the HiRISE system. Since the HiRISE system
enables converting fewer pixels from analog to digital, it requires
fewer ADCs which are a major source of energy consumption in
sensors. To evaluate the energy savings of HiRISE, we use HSPICE
and Synopsys Design Compiler to implement the analog compres-
sion/conversion units and digital control circuitry, respectively,
using 45nm transistor technology and 45nm 8-bit ADC [3].
Figure 8 shows the energy consumption of HiRISE for differ-
ent pooling sizes for both RGB and grayscale images across three
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datasets. For our experiments, we use a pixel array size of 2560x1920
for all datasets. In the figure, the baseline system is a 1-stage system
that converts the entire image and transfers it to the processor for
the end-goal task. The ADC energy consumption of stage 2 in the
HiRISE system varies for different images depending on the size
and number of ROIs detected in stage 1. Therefore, for each bar
shown in Fig. 8, we measure the median energy consumption for
the entire dataset except for the baseline which has a fixed energy
consumption of 1.85mJ per image. As shown, the Crowdhuman
dataset exhibits higher overall energy consumption compared to the
other two datasets. This is attributed to the substantial quantity of
objects present in each image, resulting in an increased intersection
over the union of ROI boxes.

For the Crowdhuman dataset, a HiRISE system with 2X2 pooling
can achieve roughly 3X energy reduction compared to the baseline
with 0.63m]J energy consumption. Of the 0.63mJ, 73% of the energy
(0.46mJ) comes from converting the initial pooled image (Stage 1),
while 27% of the energy is from converting pixels from the ROI
(Stage 2). For 4x4 pooling using the same dataset, a 6.5X reduction
is observed with 0.28mJ total energy consumption. Of the 0.28m],
41% of the energy (0.12m]) consumption comes from stage 1, while
59% of the energy is consumed for converting ROI pixels. Finally,
for 8x8 pooling, a 9.4 reduction is realized over the baseline model
with 0.2mJ energy consumption. Of the 0.2m]J, 15% of the energy
(0.03mJ) is consumed for converting the pooled image, while 85% is
consumed in stage 2. Across all experiments, the energy consump-
tion of analog pooling circuitry varies between 1.71 nJ and 91.4 nJ
which is several orders of magnitude smaller than ADC conversion,
thus having a negligible impact on the overall energy.

4.5 End-to-End System
Here, we provide a comprehensive analysis of the end-to-end sys-
tem using the Real-world Affective Faces Database (RAF-DB) dataset.
We compare results across two models, i.e., MobileNetV2 [12] and
MCUNetV2 [7], across different pixel array sizes. For each pixel ar-
ray size, we find the average ROI by analyzing over 100,000 ROIs for
head detection from the Crowdhuman dataset. Using these ROIs, we
train a facial expression recognition model on the RAF-DB dataset.
We train for 200 epochs using the same approach as POSTERV2
[10]. For each of the models, we report accuracy, peak memory of
the entire system, and data transfer and show the effect of using
HiRISE. We also show the energy consumption of the sensor both
with and without HiRISE. In all cases for HiRISE, we use pooling
such that the output resolution for the stage-1 model is 320x240.
From Table 3 it can be observed that for a pixel array size of
320240, the detected ROI size becomes very small (14x14). Since



Table 3: End-to-end system analysis for different pixel array sizes using 320x240 pooling resolution.

SRAM (kB)
Model  Pixel Array ROI Acc% Peak Act Image Memory Total Data Transfer (kB) Energy (m])
Baseline HiRISE Baseline HIiRISE Baseline HIiRISE Baseline HiRISE

320x240 14%x14 58.6 6.4 230 237 237 230 240 0.029 0.030
640x480 28%28 71.5 14.3 922 936 245 922 268 0.115 0.034

§ 960x720 42X42 76.8 28.1 2,074 2,102 258 2,074 315 0.259 0.039
E 1280960 56X56 78.0 46.6 3,686 230 3,733 277 3,686 381 0.461 0.048
8 1600x1200 70X70 80.8 69.7 5,760 5,830 300 5,760 466 0.720 0.058
= 1920x1440 84x84 80.3 97.6 8,294 8,392 328 8,294 569 1.037 0.071
2240%1680 98%98 81.1 130 11,290 11,420 361 11,290 691 1411 0.086
2560%1920  112x112 81.2 168 14,746 14,913 398 14,746 833 1.843 0.104
320240 14%x14 65.5 12.5 230 242 243 230 240 0.029 0.030
640x480 28%28 72.9 43.4 921 964 274 922 268 0.115 0.034

;_. 960x720 42x42 78.4 93.1 2,074 2,167 324 2,074 315 0.259 0.039
% 1280x960 56X56 81.0 161 3,686 230 3,848 392 3,686 381 0.461 0.048
.'E 1600x1200 70X70 82.4 249 5,760 6,009 479 5,760 466 0.720 0.058
§ 1920x1440 84x84 83.6 355 8,294 8,650 586 8,294 569 1.037 0.071
2240%x1680 98%98 84.4 480 11,290 11,770 711 11,290 691 1.411 0.086
25601920 112Xx112 84.7 624 14,746 15,367 854 14,746 833 1.843 0.104

there is not much information remaining for the stage-2 model, the
models struggle to recognize facial expressions, with accuracies
of 58.6% and 65.5% for MCUNetV2 and MobileNetV2, respectively.
The peak SRAM, data transfer, and energy at this pixel array size
are similar for both systems. For the pixel array size of 640x480,
the accuracy improves significantly for both models with 71.5%
and 72.9% accuracy for MCUNetV2 and MobileNetV2, respectively.
This indicates that they can extract more high-level features with a
larger ROIL Simultaneously, HiRISE utilizes 3.8 less SRAM than the
baseline and 3.4X less energy in-sensor. When the pixel array size is
doubled to 1280x960, an accuracy of 78% and 81% could be realized
for MCUNetV2 and MobileNetV2, respectively. For this array size
using MCUNetV2, we see that HiRISE achieves a 13.5% and 9.7X re-
duction in SRAM utilization and energy consumption compared to
the baseline, respectively. Finally, for the maximum pixel array size
investigated, i.e., 2560x1920, an 81% and 84.7% accuracy is obtained
for MCUNetV2 and MobileNetV2, respectively. At this array size,
HiRISE uses 37.5% less SRAM than the baseline for MCUNetV2,
while achieving a 17.7X reduction in energy consumption.

5 CONCLUSION

In this paper, we proposed HiRISE, a system that enables the de-
ployment of two-stage models that process high-resolution images
at resource- and energy-constrained edge devices. HiRISE achieves
this by ensuring that only the necessary information leaves the
sensor. This is made possible by designing a novel in-sensor pooling
circuit along with a selective ROI mechanism. Through comprehen-
sive end-to-end experiments, we have demonstrated that HiRISE
not only significantly reduces the memory demands of edge ML
applications, but also realizes considerable energy savings and re-
duction in the total data transfer compared to conventional systems.
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