Journal of Cosmology
and Astroparticle

w’@:
&
PRt 4

Physics

PAPER You may also like

Two Watts is all you need: enabling in-detector Oiase-change bassd tunable waighing o
. . . . photonic tensor unit

real-time machine learning for neutrino telescopes Zvang Ye junbo Yang, sigeng Sun etal.

via edge computing " mplcations o oreciion meascrements

Sandip Pakvasa, Werner Rodejohann and
Thomas J. Weiler
To cite this article: Miaochen Jin et al JCAP06(2024)026

- Inter- and intra-observer variation of
patient setup shifts derived using the 4D
TPUS Clarity system for prostate
radiotherapy
E P P Pang, K Knight, M Baird et al.

View the article online for updates and enhancements.

This content was downloaded from IP address 146.75.253.249 on 30/04/2025 at 22:55

https://doi.org/10.1088/1475-7516/2024/06/026
/article/10.1088/1361-6463/aceb73
/article/10.1088/1361-6463/aceb73
/article/10.1088/1361-6463/aceb73
/article/10.1088/1126-6708/2008/02/005
/article/10.1088/1126-6708/2008/02/005
/article/10.1088/2057-1976/aa63fb
/article/10.1088/2057-1976/aa63fb
/article/10.1088/2057-1976/aa63fb
/article/10.1088/2057-1976/aa63fb

ournal of €osmology and Astroparticle Physics

An IOP and SISSA journal

RECEIVED: March 9, 202}
ACCEPTED: May 17, 202
PUBLISHED: June 12, 2024

Two Watts is all you need: enabling in-detector
real-time machine learning for neutrino telescopes via
edge computing

Miaochen Jin©@,* Yushi Hu’ and C.A. Argiielles ©¢

@Department of Physics & Laboratory for Particle Physics and Cosmology, Harvard University,
Cambridge, MA 02158, U.S.A.

®Department of Electrical and Computer Engineering & Natural Language Processing Group,
University of Washington,

Seattle, WA 98195, U.S.A.

E-mail: miaochenjin@g.harvard.edu, yushihu@uw.edu,
carguelles@fas.harvard.edu

ABSTRACT: The use of machine learning techniques has significantly increased the physics
discovery potential of neutrino telescopes. In the upcoming years, we are expecting upgrades
of currently existing detectors and new telescopes with novel experimental hardware, yielding
more statistics as well as more complicated data signals. This calls for an upgrade on the
software side needed to handle this more complex data in a more efficient way. Specifically, we
seek low power and fast software methods to achieve real-time signal processing, where current
machine learning methods are too expensive to be deployed in the resource-constrained regions
where these experiments are located. We present the first attempt at and a proof-of-concept
for enabling machine learning methods to be deployed in-detector for water/ice neutrino
telescopes via quantization and deployment on Google Edge Tensor Processing Units (TPUs).
We design a recursive neural network with a residual convolutional embedding and adapt
a quantization process to deploy the algorithm on a Google Edge TPU. This algorithm
can achieve similar reconstruction accuracy compared with traditional GPU-based machine
learning solutions while requiring the same amount of power compared with CPU-based
regression solutions, combining the high accuracy and low power advantages and enabling
real-time in-detector machine learning in even the most power-restricted environments.

KEYWORDS: Machine learning , neutrino detectors, neutrino experiments

ARX1v EPRINT: 2311.04983

© 2024 TOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2024,/06 /026

https://orcid.org/0000-0003-0487-5595
https://orcid.org/0000-0003-4186-4182
mailto:miaochenjin@g.harvard.edu
mailto:yushihu@uw.edu
mailto:carguelles@fas.harvard.edu
https://doi.org/10.48550/arXiv.2311.04983
https://doi.org/10.1088/1475-7516/2024/06/026

Contents

1 Introduction 1
2 Detector and data simulation 3
3 Hardware setup 5
3.1 Overview of architectures and power consumption 5
3.2 The Google Edge TPU 6
4 Software methods 6
4.1 Data and network input 6
4.2 Recursive network with convolutional embedding 7
4.3 Quantization procedure 9
5 Results and discussions 10
5.1 Reconstruction accuracy 10
5.2 Post-quantization accuracy 11
5.3 Inference frequency performance 13
6 Summary and outlook 14
A Data input and pre-processing visualization 16
B Network architecture 17

1 Introduction

Neutrino telescopes are large-scale neutrino detectors built in naturally occurring media such
as glaciers, mountains, lakes, and seas or even deployed in outer space. They aim to detect
high-energy neutrinos produced in the collision of high-energy hadrons with ambient gas or
radiation in astrophysical sources. The steeply falling (E~2% [1, 2]) flux of these neutrinos,
together with the smallness of the neutrino-nucleon cross-section [3], makes the detection of
these neutrinos challenging. Approximately ten years ago, the IceCube Neutrino Observatory,
a gigaton-ice-Cherenkov detector in Antarctica [4], discovered a diffuse astrophysical flux;
see [5] for a historical review.

More recently, driven by reconstruction and event selection improvements made possible
by the use of machine learning techniques, the IceCube collaboration has announced the
detection of the first steady-state extragalactic neutrino source, NGC 1068 [6], and the
observation of our galaxy in neutrinos [7]. These successes follow from prior searches for
astrophysical neutrino sources, which, among other things, found evidence for emission
from the TXS 05064056 Blazar [8] in IceCube and hinted at emission from our galaxy by
ANTARES [9], a smaller neutrino telescope which was deployed in the Mediterranean sea.

Detecting and studying these neutrinos can provide unique information about the cosmic
accelerators that produce them and potentially resolve the 100-year-old problem of the origin
of cosmic rays. Additionally, these neutrinos probe previously uncharted energy and distance
regimes and thus constitute a unique probe of new physics, see [10], e.g., refs. [11-26] for
specific examples. Furthermore, the field of neutrino astrophysics is growing with two optical
neutrino telescopes under construction: Baikal-GVD [27] in Russia and KM3NeT [28] in the
Mediterranean Sea. These are expected to be followed by next-generation optical neutrino
telescopes such as IceCube-Gen2 in Antarctica [29], TRIDENT and HUNT in China [30, 31],
and P-ONE [32] in Canada; as well as a breath of Earth-skimming neutrino detectors which
focus on finding evidence for tau neutrinos using Cherenkov light, TRINITY [33], particle
showers, TAMBO [34], or radio, Grand [35].

These experiments are expected to produce a large amount of data: IceCube currently
produces data at approximately 3 kHz with similar data rates expected at KM3NeT and
Baikal GVD. In the meantime, high-accuracy algorithms process these data at a much lower
rate, such that to achieve real-time processing, we need much more efficient algorithms. See
ref. [36] for a recent ML proposal to tackle these large rates. The large data rate is expected
to increase in next-generation experiments significantly, e.g., IceCube-Gen2 is expected to
have eight times the data rate of IceCube, while TRIDENT will be thirty times larger. For
the detectors to tell interesting events apart from the backgrounds or to send real-time
warnings on rare events, the need for real-time triggering and reconstruction algorithms
becomes more prevalent. Ref. [36] provides a solution based on sparse convolutions. However,
the problem of neutrino event reconstruction is not only that of large backgrounds; these
algorithms also need to operate in resource-constraint environments. For example, the IceCube
detector Main Array operates Digital Optical Modules (DOMs) at 5.7 watts per module [4];
additionally, other experiments, such as TAMBO or Grand, envision solar-power detection
units that generate limited power. Under these restrictions, machine learning algorithms
whose efficiency benefits from GPU parallelization cannot be deployed, and current real-time
triggering algorithms are CPU-based fast regression that fit under the power restriction
but are much less accurate: they serve only as a preliminary selection and more accurate
reconstructions are performed off-line.

Edge computing refers to low-latency computing solutions that happen close to the source
of the data, for example in real-time data processing situations. In 2018, Google announced
an edge computing micro-architecture: the Edge Tensor Processing Unit (Edge TPU) Dev
Board [37], which is a portable version of the TPU architecture that was developed and
announced earlier [38]. Inheriting the Matriz Multiplication Units that enable fast machine
learning inference from the TPU, this edge computing version runs inference on reduced
size models, consuming only 3 watts of power in total for the Dev Board, with only 2 watts
required by the TPU chip itself. The Edge TPU has since then enabled machine-learning-
inference capability on many mobile computing devices and is under further development
and optimization even today, see [39] and [40] for relevant discussions. With a versatile
architecture that allows for easy interfacing, compiling, and deployments, and boosted with a
software backend TensorFlow [41], the Edge TPU becomes a suitable edge computing solution
to achieving real-time in-detector machine learning inference for neutrino telescopes.

In this article, we introduce the first attempt at accelerating neutrino event reconstruction
on edge computing devices using a recursive neural network (RNN) method with a residual
convolutional input encoding, which enables an extremely low-power-consuming alternative
to GPU-based machine learning algorithms. We will discuss the specific data pre-processing,
network design, and quantization procedure that makes possible the deployment of this
algorithm on the Edge TPU. In section 2, we introduce the detector geometries and data
simulation used in this work; in section 3, we briefly discuss the various hardware architectures
we test our algorithm on and their reported power consumption specifications and layout,
specifically the constraints of the Edge TPU hardware, serving as the motivation of discussions
of the software methods; in section 4, we lay out in detail the data pre-processing and network
architecture in the context of edge-computing hardware limitations, and explain our methods
and solutions, including a fine-tuning training procedure; in section 5, we evaluate the
accuracy and power performance of our approach; finally, in section 6, we discuss the various
future directions this work opens up, and encourage further exploration in the direction of
low-power computing in neutrino detectors.

2 Detector and data simulation

In this work, we will test the performance and accuracy of our network on two example
detectors of the same geometry deployed in water and in ice, to which we assigned the
names of WaterHex and IceHex respectively, where the hexagonal geometry is inspired by
that of IceCube. As with traditional and upcoming optical neutrino telescopes, the optical
modules (OM) are arranged in vertical strings. The inter-string distance is set to 100 meters,
and the inter-OM distance along a string is set to 17 meters. The arrays of each of the
detectors constitute a total of 114 strings, which is similar to the expected KM3NeT final
configuration [28], with each string containing 60 OMs, summing to a total of 6840 OMs.

We use the open-source neutrino event simulation tool Prometheus [42] to generate
the neutrino events and simulate the corresponding detector responses, where the default
medium settings are employed. We generate all-sky muon neutrinos with cos Oy € [—1, 1]
and E, € [10%,10%] GeV with a power-law energy distribution that has a spectral index
of —1. In figure 1, we show the energy and cosine zenith distribution of the simulated
events at different levels. In each energy bin, we plot the fraction of all generated events
("generation level”) that reach “light level” and “trigger level” respectively, where the levels
are to be understood as follows:

e Generation level: includes all events generated by Prometheus. This is uniform in both
energy and cosine of the zenith angle. In generating the events we use the volume
injection option, where the neutrinos are injected such that they pass through a uniform
column depth sphere centered at the detector. More specifically, this spherical volume
is defined such that column depth is uniform in all directions, with a cutoff at the top
of the atmosphere. See [42] for detailed documentation of this option setting.

o Light level: includes the events that contain at least one photon deposition in the array
of OMs. The energy distribution as shown in figure 1 is because the injection of higher

—_
b
(=]
—_
b
o

0.8 0.8
5 0.6 = 0.6
£0.41 £0.47
= &

0.2+ 0.2

0.0 T T 0.0 T T T

4 5 6 —1.0 —0.5 0.0 0.5 1.0
logyy E, [GeV] cos(6,)
Trigger Level Light Level

Figure 1. Energy and Zenith angle distribution of data set at various selection levels. Plotted for
simulated WaterHex dataset with the IceHex data set being qualitatively similar.

energy neutrinos leads to the production of higher energy muons; these muons traverse
longer distances in matter and are more likely to reach the detector region and emit
more Cherenkov photons in the detector region thereon. The zenith distribution is
skewed significantly towards the down-going direction. As discussed in the previous
section, while Prometheus injection of neutrinos is configured such that the column
depth of neutrino propagation before reaching the detector volume is uniform in all
directions, the injector does have a hard cutoff at the top of the atmosphere. This
implies that down-going neutrinos (those that are injected from the direction of the
southern hemisphere atmosphere) traverse a much shorter column depth before reaching
the detector compared with the up-going ones coming from the core/mantle of the Earth.
Therefore, injected down-going muon neutrinos are more likely to interact and produce
muons that deposit light in the detector compared with the up-going counterpart. This
effect is boosted by the fact that the PMTs are assumed to face downwards and therefore
have a better angular acceptance for events that are down-going, resulting in the final
skewed zenith distribution as seen in the figure.

e Trigger level: this includes part of the light-level events that pass a trigger defined by a
global simultaneous observation of local coincidences, similar to treatments performed
in other relevant works [36]. In this work, as a proof of concept for edge computing,
we do not include background events (as opposed to muon neutrino signal events) or
background noise in muon neutrino events (such as *°/K in water) in our simulation of
photon deposition in the detector. Therefore, in ice and water mediums alike, we relax
the trigger criteria to the detection of at least 8 pairs of coincidental photon deposition
within a 5 ps time window. Here, 5 us is approximately the maximum time it takes
for a muon to traverse the entire detector region, considering also a buffer for photon
propagation, and coincidence is observed in OMs located at neighboring strings, at
most separated by 2 OMs apart in the vertical direction.

Hardware Architecture | Reported Efficiency | Total Power | ML Accelerator Power
A100 GPUY 165 TFLOPS 2400W 400W
on Lenovo Server
RTX3080 GPU on 29.8 TFLOPS 1000W 320W
Alienware Workstation
Apple MacBook Pro with
.3 TFLOP 1 1
M1Pro 16-core GPU >3 OPS 00w oW
Google Edge TPU 4TOPS 3W 2W

Table 1. Summary of the hardware utility data used in the evaluation of the model deployed by this
work. The power consumption specifications listed above are approximate values of peak consumption
taken directly from manufacturer specs [37, 43-45] and therefore should be taken as a rough estimate
and indication of the scale of the computing system to some extent of accuracy. Even considering this
limitation in precision, the comparison listed above still shows significant differences between different
classes of hardware architectures.

Using these definitions, for down-going muon neutrinos, approximately 33% deposit any
light in the detector OMs, and about 25% passes the trigger selection; for up-going muon
neutrinos, on the other hand, only about 10% deposits any light in the detector with 5%
passing the trigger selection. At 1TeV, about 50% of all simulated events deposit light in the
detector OMs, and about 20% of all events pass the trigger selection. We simulated 2 million
events for the WaterHex detector and 2.5 million events for the IceHex detector, out of which
300787 and 373079 events passed the trigger selection, respectively, both reaching about
15% passing rate. To facilitate cross-comparisons, we randomly choose 300000 events for
each detector and split the set of events randomly into 240000 and 60000 as their respective
training and validation datasets.

3 Hardware setup

3.1 Overview of architectures and power consumption

For this work, we evaluate the performance, both accuracy and power efficiency, of our
method on four different computing units. Each hardware unit serves as a representative
of a class of hardware architectures with different operating powers: server/cloud scale,
workstation/desktop scale, laptop scale, and edge computing scale. These architectures span
orders of magnitude in maximum power consumption. In table 1, we summarize the relevant
specification parameters of the different hardware architectures: specifically, we show the
reported Trillion Operations per Second (TOPS) / Trillion Floating Point Operations per
Second (TFLOPS), total power, and ML accelerator power consumption. “ML accelerator
power” counts only that of the GPU or TPU chip, whereas “total power” includes the
consumption of the accompanying CPU and other parts of the cluster, PC, or Edge TPU
Dev Board respectively for the hardware architectures.

3.2 The Google Edge TPU

Specifically of interest to this article is the inference performance on the mobile, low-power
machine learning accelerator: the Google Edge TPU. We devote this subsection to discussing
the capabilities and limitations of the Edge TPU, which, as shown in table 1, consumes only
2 watts of power, as contrasted to large computing center-scale GPU clusters.

The TPU architecture is capable of such efficient performance thanks to Matrix Multipli-
cation Units (MXU), which are systolic arrays, in place of Arithmetic Logic Units (ALU),
which are employed by CPU and GPU architectures. On the one hand, this architecture,
while applied on server-level scale, is capable of running at 68 x incremental performance per
watt compared to GPU-based servers [38]. On the other hand, the Edge TPU architecture
runs on integer operations instead of floating point operations and is optimized for low-power,
mobile computing, an important requirement for enabling online reconstruction work for
neutrino telescopes and other experiments alike, often found in power-limited environments.
While the Edge TPU inherits the performance advantages of its server-scale TPU relative,
the capabilities come with trade-offs and harsh limitations on the software that can be run
on it. While the Edge TPU documentation has an extensive list of requirements, including
enabled layer and operation types [46], the two main restrictions that are crucial to the

work of interest are as follows:

o Dimensionality: all tensors are restricted to D < 3, and in case where D > 3, the extra
dimensions can only have length 1. This also implies convolutional layers are restricted
to D < 2, which is very sup-optimal for optical module array type detectors where the
data is inherently a 4-dimensional counting array and the time axis. Furthermore, the
inability of the Edge TPU to handle high dimensional inputs disables batching, thereby
resulting in expensive operations if one attempts to reduce 3D convolution to a batch
of 2D convolutions. See section 4.2 for a detailed discussion.

e Quantization: for full utilization of the Edge TPU requires uint8 type accuracy
instead of floating point accuracy. This means mapping all input, output, as well
as network weights to integers within the range of 0 to 255. As one would expect,
this means decreased accuracy for the model, but luckily, benchmark examples show
that with proper treatments, quantized networks can also achieve very high accuracy
performances [47]. Various studies have also explored quantization methods that
minimally reduce accuracy for different algorithms [39, 48, 49|

To overcome the hardships brought about by the limitations, we adapt our architec-
ture design and employ a quantization procedure: these will be explored in section 4.2
and section 4.3 respectively.

4 Software methods

4.1 Data and network input

At the OM-level, water(ice)-Cherenkov detector data consists of the lowest level PMT
waveforms recorded by optical modules in water or ice. Some detectors choose to store

and send the entire waveforms to a centralized facility whereas others choose to process the
waveforms and store compressed data. In either case, with real-time, in-OM processing, we can
access a set of waveforms ({g,(t)}«) corresponding to each OM « located at (x4, Yo, 2o). For
machine learning algorithms to work with these data, at least some extent of pre-processing
is needed, the specific method of which differs per ML algorithm and architecture employed.
We take IceCube as an example, where the prominent reconstruction algorithm DNNreco [50]
is a Convolutional Neural Network [51] (CNN) approach, where data is pre-processed to form
a 4-dimensional tensor, treated equivalent to an “image.” Spatial coordinates are embedded
into a 3-dimensional tensor (Zq, Yo, 2a) — Y iesjaske) while for the time component, the PMT
waveforms ¢, (t) are extracted to give nine distinct temporal features from the waveform
of a DOM across the time of an event that describe the shape of the waveform. See [50]
for a detailed discussion. This results in a 4-dimensional input where the time dimension
vector. The network primarily sees the data as an image, where on each “pixel”, now an OM
location, the information of “color channels” is replaced by the discrete time parameters. In
this work, we rethink the formulation of this problem, phrasing it primarily as a time series
analysis and using Recursive Neural Network (RNN) architectures; this architecture choice
will be elaborated upon in section 4.2. We take the detector data after pulse extraction
to obtain the individual hit times of photons on OMs, {H; = (¢;, i, ¥i, 2i) }}~.1, and group
them imagining that we are taking snapshots of the event at a fixed timestep. For an event
consisting of IV hits that spans . nanoseconds, we break it into 1" separate frames each with
o = ¥/T nanoseconds, containing an aggregate of { N;}/_; hits with 3>, N; = N. This results
in T distinct three-dimensional arrays Ay, with each entry Ag 7 encoding the number of
total hits on the corresponding DOM within the time window. Here X,Y, Z are the three
dimensions of the OM array, such that the total number of photon hits in the entire detector
f’;;)zi(l’l’l) Af”’y’z) = N;. This data pre-processing
results in a network input that resembles “snapshots” of the detector at different times, as

within any specific time window is ZE

shown in figure 2. A more detailed visualization of the simulated detector response and
pre-processed data can be found in A.

Another advantage of such a data representation is the discrete nature of all the entries
in A(TX’Y’Z). For the network to be deployed on the TPU, not only the weights but also
the network inputs have to be cast as full integers in the range of [0,255]. This input
encoding design allows us to adapt the input to type uint8 without dealing with errors that
originate from mapping a continuous distribution to a discrete one to suit the Edge TPU
model requirements. A more detailed discussion on the full quantization of the network

input will follow in section 4.3.

4.2 Recursive network with convolutional embedding

In most currently deployed machine learning-based reconstruction algorithms for neutrino
telescopes, CNNs and graph neural networks [52] (GNNs) are employed. Given the data
encoding, these architectures are straightforward and intuitive and yield satisfactory results.
However, under the restrictions discussed in section 3, especially the restriction on input
tensor dimension and allowed types of operations, these architectures cannot be deployed
on the Edge TPU device.

time

[——
—4 . -
[] @ —— e e s s
—4 —
—4 —
—4 b—
a] —_— N oY (™ >
]] Zenith
- = > .
]] Azimuth
-] —— T
] a D=1 >
L LSTM Cell
—4 —
- = Cr T T T 1
—4 —
st CNN Encoder v
r_g —
~

Residual Connection

Figure 2. Recursive neural network with convolutional encoding. After input pre-processing, each
time-step of the input data is encoded by a CNN encoder before being processed by the LSTM cell to
generate a final prediction of the neutrino zenith and azimuth angles.

In figure 2 we show the network architecture developed in this work. This is a combination
of residual convolutional and recursive neural network architectures. The design can be
effectively summarized as a Long Short-Term Memory [53] (LSTM) time-series prediction
using residual convolution as the input encoder. For each input array at timestep ¢, the CNN

{A)EX’Y’Z) T, into a sequence of vectors {L;}

encoder transforms the array of image-like data
in the latent space, which becomes the input into the hidden layers of the RNN. Typically,
for an event that spans 3 us, choosing T" = 15, each time-frame will contain all photon
hits in a 20ns time window. The CNN encoder contains one initial convolution layer with
five residual convolution blocks, each containing two convolution layers. The LSTM cell
contains an LSTM layer and a dense layer that connects to the output. The output is the
azimuthal and zenith angles of the incoming neutrino, from which we calculated the error by
a dot product with the simulated true neutrino direction. See appendix B for the detailed
layout of the network architecture.

It is worth noting that in the CNN encoder, we employed a very peculiar way of treatment

AXY.Z) and breaks it apart into

that takes apart a 3-dimensional array of OM photons hits
{ACSYNZ L where the z component is treated as channels in the network. This is due to
TPU’s restriction on vector dimensions and time complexity considerations. On the one
hand, it is impossible to apply 3-dimensional convolution to the input data. On the other
hand, time complexity without parallelization capability forbids us to apply CNN on the z
component in parallel: an alternative way to the channel treatment is applying the same
two-dimensional CNN on all vertical slices {AEX’Y)} to obtain a set of output vectors and
concatenate them, followed by another 2D CNN that transforms the resulting 2D array into
a 1D vector, wrapping up the encoding process. While for a GPU, parallelization can be
applied to the first set of CNN, and the entire process will consume the same time required
for only two separate CNN networks, on the TPU architecture, where such parallelization

is not allowed, this will take the same time as evaluating (7'+ 1) CNN networks separately.
Due to these constraints and considerations, we resorted to the design shown in figure 2.
We have tested the channel treatment versus the parallel treatment and found negligible
differences in angular reconstruction accuracy on GPU architectures.

4.3 Quantization procedure

Quantization for Edge TPU deployment is a necessary step where all network operations
are cast into 8-bit full integer operations. This is a daunting process where we face a
trade-off between efficiency and accuracy. We use TensorFlow’s mobile library to realize
the quantization process.

To optimize for unsigned integer type operations, an important step during the conversion
from the full precision model to the reduced precision one, the Edge-TPU compatible model
must provide the converter with a representative dataset. This is a set of input data, which
we take from the training set, that helps the converter decide a reasonable mapping between
float32 and uint8 by providing information regarding the range and distribution of the
input, weights, and output. Therefore, it is important to have a set of inputs with similar
distributions and a narrow spread in value to ensure a smooth conversion to the reduced
precision format.

We initiate the quantization process by focusing on the inputs. Referring back to our
earlier discussions in section 4.1, the detector data is encoded using only integers. Notably,
there are key features essential to the quantization process. Firstly, as each entry represents
the number of photons deposited within a sufficiently small time frame, only a minute fraction
of entries surpass a certain threshold Agz’y’z) < 255. Consequently, implementing a cutoff
at 255 does not significantly impact the network’s performance. Secondly, in addition to a
simple cutoff, we uniformly map the entries of every input tensor to a Gaussian distribution.
This approach proves beneficial for the quantization process as it ensures a more evenly
distributed dataset.

The input quantization process is summarized as
2/ = Clipjg y55) (wint8(Flu0 (2))), (4.1)

where F{,, ;) maps the entire population {Agx’y’s)}(ﬂ x,v,7) to a Gaussian distribution centered
at p = 90 with standard deviation ¢ = 45. The choices of ¢ and p are selected after
several trials such that the data is widely spread enough but minimally exceeding the range
[0,255]. Although this pre-process quantization of the data is observed to impact the accuracy
performance of the network negatively, the original network that’s used for quantization and
deployment on the TPU will be trained directly on this processed dataset. In contrast, the
same network for GPU-based training and inference will be trained on the original data input;
a comparison between the two will be provided in section 5.1.

Ideally, quantization of the network weights will be performed by the converter from the
TFLite library [54]; however, stable releases of TensorFlow do not yet support full quantization
of networks with multiple subgraphs, such as the network developed by this work. Instead,
we divide the quantization process into steps to accomplish a successful conversion. In each

stage, we cast additional weights, activations, other layer components, and outputs to an

8-bit unsigned integer. These stages proceed as follows:

=

Stage 1: quantization of inputs. To begin with, we have the inputs into the CNN
encoder as uint8; all weights are float32.

Stage 2: quantization of CNN encoder. We quantize the CNN encoder by providing
a representative dataset that contains 1000 input samples. However, after the CNN
encoder evaluation, we use the reverse mapping to “fallback” from uint8 results to
float32 numbers, which then becomes the input to the LSTM. Worth noting is that
at this stage, while the input into the LSTM is indeed float32, there exists only
256 distinct numbers, as they were mapped back from uint8-quantized CNN encoder
outputs. At this stage, since the LSTM is unaware of the change of precision of the
CNN Encoder, even in the best-case quantization scenario, we would not be able to
recover the original reconstruction accuracy fully. This step, which is unnecessary if
direct quantization of a multiple subgraph model is allowed, brings about a loss of
accuracy that is avoidable with future software developments.

Stage 2.5: re-train the LSTM cell. At this stage, we perform a fine-tuning re-training
of the LSTM cell where the initial weights are directly transferred from the pre-trained
original model as a solution to the artificial accuracy loss problem discussed in the
previous stage. However, instead of training with the float-fallback CNN encoder
outputs, we directly perform training on the quantized output from the CNN encoder,
which is of type uint8. Upon finishing the re-training, the CNN encoder is fully
quantized, and so is the input to the LSTM cell, but the LSTM cell still contains
float32 weights.

Stage 3: quantization of LSTM and dense layers. At this final stage, we perform
the quantization of the LSTM cell, providing a representative dataset that contains
1000 samples of CNN encoder outputs of inputs selected from the training sample.
The output is naturally also represented by the network in uint8, which falls back to
float32 to provide us with the actual final prediction.

In section 5, we will show the network performance at each stage.

5 Results and discussions

5.1

Reconstruction accuracy

We first show the accuracy of the network as evaluated on GPU using double-precision

floating-point computations, without mapping or imposing the cutoff at 256 for the entries

of the input. This serves as a benchmark as it is the optimal reference of the algorithm.

In figure 3, we show the median error distribution of the angular, zenith, and azimuthal

reconstruction against true neutrino energy for both IceHex and WaterHex detectors at trigger

level.

We use the same architecture but train on both datasets separately. For the IceHex

detector, we see the angular error reaching as low as 4.0°; and for the WaterHex detector, we

,10,

IceHex WaterHex
---= SSCNN Benchmark

Reco Error (Degrees)
o
1
/
/
/
/

Reco Error (Degrees)
=N
(

! 0 T T
3 4 S 6 3 4 S 6

10810 E"/va [G(‘,V] 10g1“ E;\.lw [G(‘ /v]

Angular Error —— Zenith Error —— Azimuth Error

Figure 3. Neutrino angular reconstruction resolution on full accuracy network as a function of the
true simulated neutrino energy. Left panel shows the performance of the network trained on the
IceHex detector, right panel shows the performance of the network trained on the WaterHex Detector.
The Sparse Submanifold Convolutional Neural Network (SSCNN) [36] angular resolution is shown on
the IceHex performance plot as a benchmark.

see the angular error reaching as low as 5.6°. The performance for IceHex and WaterHex
are comparable, where we do observe the detector in ice to have events that are easier to
reconstruct, due to the uniform choice of 100 meters as the string spacing across the two
mediums, whereas photons in water have a smaller absorption length, resulting in Cherenkov
photons deposition in fewer, more clustered OMs. Additionally, the rising tail on the high
energy end is due to event selection at triggering, where higher energies allow for the more
poorly positioned track, cutting only the corner of the detector, for example, depositing fewer
photons. On the other hand, as shown in the bottom panel of figure 4, the reconstructed
error decreases monotonically with the increment in the number of photons hit depositions in
the OMs. While this network is designed with limitations in architecture to enable further
acceleration on TPUs, it is comparable in accuracy performance with other machine learning-
based reconstruction algorithms for similar, but not completely identical, detectors [36, 50] at
the trigger level. The recent high-speed algorithm using sparse submanifold CNN method [36]
at the trigger level is labeled as a dashed gray line in figure 3.

5.2 Post-quantization accuracy

In this section, we present and discuss the network performance at each stage after the
quantization sub-steps described in section 4.3 are applied. We show the energy distribution
of angular reconstruction error at various stages in figure 5.

For the IceHex detector, performance is nearly unaffected by the quantization of inputs,
keeping the network in floating point precision. At this stage, the median error is 4.6°, with
the high energy end of the spectrum reaching a 4.4° median error. Upon quantization of
the CNN encoder, applying a float fallback before inputting into the LSTM cell, which is
kept at floating point precision, the median angular error reaches 5.0°. Disabling floating
point fallback and thereby quantizing the entire CNN encoder as well as the LSTM inputs,

— 11 -

IceHex

20 10

— — 81
£157 g
: = o]
5 10 1 5 o
Q Q

2 4

0 . . . 0 . .
2 3 4 5 6 200 400 600
logy Egr”“ [GeV] Nhigs
—— Angular Error —— Zenith Error —— Azimuth Error

Figure 4. Neutrino angular reconstruction resolution on full accuracy network for IceHex a function
of the true simulated lepton energy and number of photon hits. Left panel shows the error as a function
of the muon, right panel shows that as a function of the number of photon hit deposition in OMs.

15 IceHex é 15 WaterHex
%3
a
s

10 e & 10

Reconstruction Angular Error (Degrees)

Reconstruction Angula

O T T 0 T T
3 4 5 6 3 4 5 6
log, B [GeV]
— Original Network ===- Fully Quantized CNN and LSTM Input
"""" Quantized Input —— Fully Quantized Network

Quantized CNN Encoder

Figure 5. Post-quantization accuracy of the network. Aside from the baseline performance of the
original network on the original input, we show the median angular reconstruction error of the network
after the quantization of input, input and CNN encoder, and the entire network, respectively. Dashed
lines show performances at intermediate quantization steps. For the IceHex detector, the dotted gray
line shows the IceCube reported median angular error using the LineFit algorithm [55] at trigger level,
the current real-time reconstruction method under the resources restrictions.

- 12 —

upon retraining the LSTM cell, we see the median reconstructed angular error reach 6.0°.
This increment in error is avoidable by bringing in software that is capable of quantizing
the entire network without having to quantize by parts and fine-tune. Upon quantizing the
entire network and evaluating the error after falling back from the integer prediction to their
respective original floating point numbers via the reverse quantization mapping, we see the
median error reach 6.1°. This still beats the median angular error of 9.9° of the currently
employed real-time solution employed by IceCube [55], which is a regression algorithm that
requires only CPU computing power, as opposed to the ML-based reconstruction we introduce
in this work. This implies a very well-tuned network that works well with the quantization
scheme since this error already accounts for the dead-weight loss that comes with low-power
edge computing: the prediction being discrete as opposed to the continuous nature of the
simulated ground truth.

For the WaterHex geometry, we observe a similar behavior across the different stages of
quantization. The median reconstructed angular error being 6.0°, 6.9°, 7.0°, 7.7° respectively
for the 4 quantization stages in order.

5.3 Inference frequency performance

With this benchmark network accuracy performance, we test the network on the various
hardware architectures and hereby report the inference frequencies. For the edge-inference
performance testing, we compile the fully quantized versions with the PyCoral compiler [56]
and deploy them on the Google Edge TPU DevBoard; for the GPU run-time measurements,
we run the full precision models on the various GPU architectures. It is important to note
that non-fully quantized versions with TPU-incompatible operations but integer precision
computations can be run on GPU architectures with a reduced run-time, but the model
developed for this work is specifically designed to be run on the Edge TPU, satisfying its
limitations, to tackle the power limitation problem. Therefore, while accelerating machine
learning inference on GPUs with quantization can be of interest to future work, in this
work we only focus on the comparison between the original performance on GPU with full
precision on the one end of the spectrum and fully quantized network performance on TPU.
Figure 6 shows how the performance per watt increases as the scale of the computing system
decreases for single-event inference.

In a real-time, in-detector environment, for a triggering task, inferences are made on
single events: this goes in the opposite direction of the strength of GPUs, which is its speed
on large batch size parallel computation. In figure 6, we are considering this scenario of single
event inference, which results in the very poor performance of large-scale computing systems
towards the left side of the plot, and favors the smaller-sized architectures on the other end
of the spectrum. We observe that for single event inference, the A100 GPU, RTX3080 GPU,
and the core GPU on M1 chip demonstrate similar inference speeds at around 13 milliseconds
per inference, the Google Edge TPU Dev Board hits 5 milliseconds in inference, reaching
100 Hz/watt performance while operating at 3 watts, accounting for the power consumption
of other hardware parts aside from the TPU chip itself. This enables us to perform machine
learning algorithms in real-time inside the detector, where power is limited to, for example for
IceCube, 5.7 watts per optical Module [4], while for KM3NeT it is 7 watts per module [57].

,13,

Total Power (Watts) B Inference Frequency per Watt (Total)
W Accelerator Power (Watts) B Inference Frequency per Watt (Accelerator)

10

""" 100

107!

Inference Power Efficiency (Hz/Watt)

1072

@

&"\2? \?J@’b

& R
4

Hardware Architecture

Figure 6. Network power efficiency when run on different architectures. lighter-colored, dotted bars
show the total and accelerator power, star-filled, darker-colored bars show the power efficiency in
inference frequency per watt.

Our work by no means undermines the capability of large-scale computing systems: if
we increase the batch size to 100, then we observe that the time per inference decreases
to 0.4 milliseconds for the A100 card, 1.7 milliseconds for the RTX 3080 card, and 3.8
milliseconds for the M1 Pro Chip. For algorithms with a more efficient data encoding, like
that of Sparse-Submanifold CNNs [36], that enables a very large batch size, A100 cards are
capable of performing inference at a rate of 9901 Hz on a batch size of 12288. Edge TPUs, on
the other hand, are incapable of performing inference on a batch, but it is exactly the gains of
power efficiency on single events that allow us to enable real-time in-detector machine learning
inference using these edge devices. Thus GPU-designed algorithms and associated hardware
are well-suited for off-line event filtering, and particle identification and reconstruction.

6 Summary and outlook

In this article, we have shown the accuracy and power efficiency of the TPU-tailored deep
neural network for water- and ice-Cherenkov neutrino telescope event reconstruction. Our
work serves as a proof of concept for the feasibility of real-time low-power in-situ machine
learning tuned for ongoing and next-generation neutrino experiments. We have demonstrated
the capability of a low-power machine learning algorithm following a specifically designed
input pre-processing and quantization procedure, capable of reaching peak power efficiency
while maintaining a competent accuracy, beating non-machine learning algorithms that are
currently being deployed in real-time reconstructions or trigger systems. However, our work
is far from a realization of the full potential of edge computing. To begin with, since the

— 14 —

outputs are quantized, angular reconstruction, a continuous value prediction problem in
nature, is not an optimal problem for such an algorithm to tackle. Alternatively, classification
problems are better suited for deployment on edge computing, which is a future direction left
for work. Additionally, the field of edge computing is under very fast development on both
the software and the hardware fronts, some recent developments include the recent release
of the PyTorch ExecuTorch that enables a new end-to-end solution for edge computing,
supporting more edge devices [58].

Looking forward, for next-generation detectors, a new variety of situations will appear
that calls out for the need for low-power real-time machine-learning-based data handling,
including but not limited to the following scenarios:

o Intelligent in-situ data encoding: in some detectors, real-time waveform information is
not completely saved and transmitted ashore, instead they are highly compressed [59].
In these scenarios, the deployment of such real-time machine learning accelerators will
allow for more intelligent compressing methods.

o Multiple-PMT optical modules: among designs of next-generation optical modules, many
have incorporated multiple PMTs into single modules [60]. This opens up the space for
an algorithm that processes the multiple waveforms of this single module as time series
data. In this scenario, the incorporation of an edge computing device would enable us
to deploy machine learning-based sophisticated algorithms assisting this processing of
local data.

e Real time triggering: next-generation neutrino telescopes will typically be much larger in
geometric and effective areas, looking at IceCube-Gen2, for example [29]. This implies
a larger amount of data transmission and storage requirement if we keep using the same
simple cutoff-like triggers. The inclusion of real-time machine learning capability will
allow us to instead develop machine learning-based triggering, which will not only help
us in detecting rare events in real-time but also assist us in data selection and therefore
alleviate the stressed data transmission and storage system.

o Other power-limited facilities: aside from water-/ice- Cherenkov neutrino telescopes,
there are other experiments in similarly, extremely, power-limited environments, such
as satellite detectors [61]. Enabling machine learning in such environments will allow
for a real-time data handling system in these scenarios as well.

o Other edge computing devices: many more edge computing alternatives are low-power and
efficient, and they usually face the same set of restrictions. Using similar quantization
ideas developed in this work, we can explore more variations of micro-architectures,
evaluating the pros and cons of each before incorporating them into the next-generation
intelligent detector hardware.

As such, through this first demonstration of machine learning effort on TPUs, we would
like to motivate similar further exploration into this direction of low-power computing
alternatives. Various other improvements and applications are waiting out there to be
explored along this newly opened gateway.

,15,

Code availability. The code used to train the network and produce the plots in this work
can be found in GitHub Repository.

Acknowledgments

We thank Simone Francescato for painstaking comments and suggestions. MJ would also
like to thank Nicholas Kamp, Felix Yu, Lihao Yan, Yidi Qi and Jinzheng Li for useful
discussions. CAA is supported by the Faculty of Arts and Sciences of Harvard University
and the National Science Foundation (NSF). Through part of this work, they were also
supported by the Alfred P. Sloan Foundation. MJ was supported by the Harvard Physics
Department Purcell Fellowship for part of this work. The NSF partially supported this work
under Cooperative Agreement PHY-2019786 (The NSF AI Institute for Artificial Intelligence
and Fundamental Interactions, http://iaifi.org/) Finally, CAA and MJ are supported by
NSF CAREER Award PHY-2239795.

A Data input and pre-processing visualization

Here in figure 7 we show a visualization of a typical event in the water detector with its
pre-processing. Here, the total number of timesteps is chosen to be T' = 6 for the sake of
simplicity. The left panel contains information equivalent to the 3-dimensional accumulative
photon hits tensor AY:2) while the right 6 panels are, respectively, the time-ordered

separated photon hits tensors AEX’Y’Z) for t € [0,6] with ACXY:2) = $°6 AgX’Y’Z).

Timestep 1 Timestep 2 Timestep 3
1 | “h
Timestep 4 Timestep 5 Timestep 6
gt ingt

Figure 7. FEwvent visualization. The left panel shows a visualization of the detector response to a
typical simulated event in Prometheus. Light gray dots are the locations of the OMs; colored dots
denote OMs that received photon hits: the red end of the spectrum signifies earlier hits, while the
blue end of the spectrum signifies later hits; the sizes of the dots denote the number of photons
seen. The right 6 panels are the photon hits received in each time step, respectively. For the right
panels, we keep the coloring (timing) information for better visualization, whereas, in reality, such
time information is no longer included in the pre-processed input data tensors.

,16,

https://github.com/MiaochenJin/RecoOnEdge
http://iaifi.org/

B Network architecture

Here we show in detail the network architecture developed in this work. Firstly, in table 2
we show a cellular basic component of the CNN encoder: the residual convolution block.
This block is used extensively in the CNN encoder, whose architecture and hyperparameters
are shown in table 3. We finally show the entire network architecture, consisting of tensor
reshaping layers, the CNN encoder, and the LSTM block together with a final fully connected
layer in table 4.

Layer Name Layer Specs

Input Xin

Conv2D; Kernel Size (kg, ky); Stride s1; Channels ¢; Padding

Conv2D, Kernel Size (kg, ky); Stride sp; Channles ¢; Padding

Addition Add(Xiy + Conv2D; (Conv2Dy(Xiy)))

Table 2. Residual block. Architecture of a single cellular residual block with given kernel size (ks, k),
stride (s1,s2), and some padding strategy, used extensively in the CNN encoder of the network.
s1 # So implies downsampling.

Layer Name Layer Specs

Input Xin

Conv2D; Kernel Size (3,3); Stride 2; Channels: 32; Padding: "same"

ResBlock; ky = ky = 3; s1 = s3 = 1; ¢ = 32; Padding = "same"
ResBlocks ky = ky = 3; s1 = 2,50 = 1; ¢ = 32; Padding = "same"
ResBlocks ky = ky = 3; s1 = s3 = 1; ¢ = 64; Padding = "same"
ResBlocky ky =k, = 3; s1 = 2,53 = 1; ¢ = 64; Padding = "same"
ResBlocks ky = ky = 3; s1 = s3 = 1; ¢ = 128; Padding = "same"

Table 3. CNN encoder. Architecture of the CNN encoding network that encodes the input at any
time step t: AEX’Y’Z) into a 1-dimensional vector in the hidden latent space, which in turn gets

processed by the LSTM Block.

,17,

Layer Name Layer Specs

Input {A%X’Y’Z) B
Reshape, Reshape({AS "N g [B x T, XY, Z))
CNN Encoder See table 2

Reshape, |Reshape(CNN Encoder(Reshape({A%X’Y’Z)}B, [BxT,X,Y, 7)), [B,T,128])

LSTM LSTM Dimension: 128; npigden: 128

Dense To Output

Table 4. Network architecture. Architecture of the entire network, with given input sizes depending
on the data pre-processing and detector geometry parameters T, X,Y, Z.

References

1]

2]

IcECUBE collaboration, A combined mazimum-likelihood analysis of the high-energy astrophysical
neutrino flur measured with IceCube, Astrophys. J. 809 (2015) 98 [arXiv:1507.03991] [INSPIRE].

ICECUBE collaboration, The IceCube high-energy starting event sample: Description and fluzx
characterization with 7.5 years of data, Phys. Rev. D 104 (2021) 022002 [arXiv:2011.03545]
[INSPIRE].

J.A. Formaggio and G.P. Zeller, From eV to EeV: Neutrino Cross Sections Across Energy Scales,
Rev. Mod. Phys. 84 (2012) 1307 [arXiv:1305.7513] [INSPIRE].

IceECUBE collaboration, The IceCube Neutrino Observatory: Instrumentation and Online
Systems, 2017 JINST 12 P03012 [Erratum ibid. 19 (2024) E05001] [arXiv:1612.05093]
[INSPIRE].

C. Spiering, Towards High-Energy Neutrino Astronomy. A Historical Review, Fur. Phys. J. H 37
(2012) 515 [arXiv:1207.4952] [INSPIRE].

IceECUBE collaboration, Fvidence for neutrino emission from the nearby active galaxy NGC 1068,
Science 378 (2022) 538 [arXiv:2211.09972] [INSPIRE].

IcECUBE collaboration, Observation of high-energy neutrinos from the Galactic plane, Science
380 (2023) adc9818 [arXiv:2307.04427] INSPIRE].

IceCUBE collaboration, Neutrino emission from the direction of the blazar TXS 0506+056 prior
to the IceCube-1709224 alert, Science 361 (2018) 147 [arXiv:1807.08794] [INSPIRE].

ANTARES collaboration, Hint for a TeV neutrino emission from the Galactic Ridge with
ANTARES, Phys. Lett. B 841 (2023) 137951 [arXiv:2212.11876] [INSPIRE].

C.A. Argiielles et al., Fundamental physics with high-energy cosmic neutrinos today and in the
future, PoS ICRC2019 (2020) 849 [arXiv:1907.08690] InSPIRE].

M. Bustamante and S.K. Agarwalla, Universe’s Worth of Electrons to Probe Long-Range
Interactions of High-Energy Astrophysical Neutrinos, Phys. Rev. Lett. 122 (2019) 061103
[arXiv:1808.02042] [INSPIRE].

C.A. Argiielles, T. Katori and J. Salvado, New Physics in Astrophysical Neutrino Flavor, Phys.
Rev. Lett. 115 (2015) 161303 [arXiv:1506.02043] [INSPIRE].

,18,

https://doi.org/10.1088/0004-637X/809/1/98
https://doi.org/10.48550/arXiv.1507.03991
https://inspirehep.net/literature/1382922
https://doi.org/10.1103/PhysRevD.104.022002
https://doi.org/10.48550/arXiv.2011.03545
https://inspirehep.net/literature/1828949
https://doi.org/10.1103/RevModPhys.84.1307
https://doi.org/10.48550/arXiv.1305.7513
https://inspirehep.net/literature/1236362
https://doi.org/10.1088/1748-0221/12/03/P03012
https://doi.org/10.48550/arXiv.1612.05093
https://inspirehep.net/literature/1504036
https://doi.org/10.1140/epjh/e2012-30014-2
https://doi.org/10.1140/epjh/e2012-30014-2
https://doi.org/10.48550/arXiv.1207.4952
https://inspirehep.net/literature/1123342
https://doi.org/10.1126/science.abg3395
https://doi.org/10.48550/arXiv.2211.09972
https://inspirehep.net/literature/2176154
https://doi.org/10.1126/science.adc9818
https://doi.org/10.1126/science.adc9818
https://doi.org/10.48550/arXiv.2307.04427
https://inspirehep.net/literature/2675798
https://doi.org/10.1126/science.aat2890
https://doi.org/10.48550/arXiv.1807.08794
https://inspirehep.net/literature/1681934
https://doi.org/10.1016/j.physletb.2023.137951
https://doi.org/10.48550/arXiv.2212.11876
https://inspirehep.net/literature/2617568
https://doi.org/10.22323/1.358.0849
https://doi.org/10.48550/arXiv.1907.08690
https://inspirehep.net/literature/1744769
https://doi.org/10.1103/PhysRevLett.122.061103
https://doi.org/10.48550/arXiv.1808.02042
https://inspirehep.net/literature/1685352
https://doi.org/10.1103/PhysRevLett.115.161303
https://doi.org/10.1103/PhysRevLett.115.161303
https://doi.org/10.48550/arXiv.1506.02043
https://inspirehep.net/literature/1375039

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

[32]

IcECUBE collaboration, Search for quantum gravity using astrophysical neutrino flavour with
IceCube, Nature Phys. 18 (2022) 1287 [arXiv:2111.04654] [INSPIRE].

I.M. Shoemaker and K. Murase, Probing BSM Neutrino Physics with Flavor and Spectral
Distortions: Prospects for Future High-Energy Neutrino Telescopes, Phys. Rev. D 93 (2016)
085004 [arXiV: 1512.07228] [INSPIRE].

M. Bustamante, J.F. Beacom and K. Murase, Testing decay of astrophysical neutrinos with
incomplete information, Phys. Rev. D 95 (2017) 063013 [arXiv:1610.02096] [INSPIRE].

N. Song et al., The Future of High-Energy Astrophysical Neutrino Flavor Measurements, JCAP
04 (2021) 054 [arXiv:2012.12893] [INSPIRE].

A. Abdullahi and P.B. Denton, Visible Decay of Astrophysical Neutrinos at IceCube, Phys. Rev.
D 102 (2020) 023018 [arXiv:2005.07200] [iNSPIRE].

Y. Farzan and S. Palomares-Ruiz, Flavor of cosmic neutrinos preserved by ultralight dark matter,
Phys. Rev. D 99 (2019) 051702 [arXiv:1810.00892] [INSPIRE].

M.M. Reynoso, O.A. Sampayo and A.M. Carulli, Neutrino interactions with ultralight axion-like
dark matter, Eur. Phys. J. C 82 (2022) 274 [arXiv:2203.11642] [INSPIRE].

C.A. Argiielles, K. Farrag and T. Katori, Ultra-light Dark Matter Limits from Astrophysical
Neutrino Flavour, PoS ICRC2023 (2023) 1415 [arXiv:2402.18126] [INSPIRE].

C.A. Argielles et al., Sterile neutrinos in astrophysical neutrino flavor, JCAP 02 (2020) 015
[arXiv:1909.05341] [INSPIRE].

K. Carloni et al., Probing Pseudo-Dirac Neutrinos with Astrophysical Sources at IceCube, PoS
ICRC2023 (2023) 1040 [arXiv:2212.00737] [ixSPIRE].

C.A. Argiielles et al., Snowmass white paper: beyond the standard model effects on neutrino
flavor: Submitted to the proceedings of the US community study on the future of particle physics
(Snowmass 2021), Eur. Phys. J. C' 83 (2023) 15 [arXiv:2203.10811] INSPIRE].

K. Murase and .M. Shoemaker, Neutrino Echoes from Multimessenger Transient Sources, Phys.
Rev. Lett. 123 (2019) 241102 [arXiv:1903.08607] [INSPIRE].

K. Murase and 1. Bartos, High-FEnergy Multimessenger Transient Astrophysics, Ann. Rev. Nucl.
Part. Sci. 69 (2019) 477 [arXiv:1907.12506] [INSPIRE].

C. Guépin, K. Kotera and F. Oikonomou, High-energy neutrino transients and the future of
multi-messenger astronomy, Nature Rev. Phys. 4 (2022) 697 [arXiv:2207.12205] INSPIRE].

BAIKAL-GVD collaboration, Baikal-GVD: status and first results, PoS ICHEP2020 (2021) 606
[arXiv:2012.03373] [INSPIRE].

KM3NET collaboration, Letter of intent for KM3NeT 2.0, J. Phys. G 43 (2016) 084001
[arXiv:1601.07459] [iNSPIRE].

IcECUBE-GEN2 collaboration, IceCube-Gen2: the window to the extreme Universe, J. Phys. G
48 (2021) 060501 [arXiv:2008.04323] INSPIRE].

Z.P. Ye et al., A multi-cubic-kilometre neutrino telescope in the western Pacific Ocean,
arXiv:2207.04519 [INSPIRE].

T.-Q. Huang et al., Proposal for the High Energy Neutrino Telescope, PoS ICRC2023 (2023)
1080 [INSPIRE].

P-ONE collaboration, The Pacific Ocean Neutrino Ezperiment, Nature Astron. 4 (2020) 913
[arXiv:2005.09493] [INSPIRE].

,19,

https://doi.org/10.1038/s41567-022-01762-1
https://doi.org/10.48550/arXiv.2111.04654
https://inspirehep.net/literature/1963152
https://doi.org/10.1103/PhysRevD.93.085004
https://doi.org/10.1103/PhysRevD.93.085004
https://doi.org/10.48550/arXiv.1512.07228
https://inspirehep.net/literature/1411053
https://doi.org/10.1103/PhysRevD.95.063013
https://doi.org/10.48550/arXiv.1610.02096
https://inspirehep.net/literature/1490635
https://doi.org/10.1088/1475-7516/2021/04/054
https://doi.org/10.1088/1475-7516/2021/04/054
https://doi.org/10.48550/arXiv.2012.12893
https://inspirehep.net/literature/1838099
https://doi.org/10.1103/PhysRevD.102.023018
https://doi.org/10.1103/PhysRevD.102.023018
https://doi.org/10.48550/arXiv.2005.07200
https://inspirehep.net/literature/1796529
https://doi.org/10.1103/PhysRevD.99.051702
https://doi.org/10.48550/arXiv.1810.00892
https://inspirehep.net/literature/1696713
https://doi.org/10.1140/epjc/s10052-022-10228-w
https://doi.org/10.48550/arXiv.2203.11642
https://inspirehep.net/literature/2056969
https://doi.org/10.22323/1.444.1415
https://doi.org/10.48550/arXiv.2402.18126
https://inspirehep.net/literature/2684395
https://doi.org/10.1088/1475-7516/2020/02/015
https://doi.org/10.48550/arXiv.1909.05341
https://inspirehep.net/literature/1753753
https://doi.org/10.22323/1.444.1040
https://doi.org/10.22323/1.444.1040
https://doi.org/10.48550/arXiv.2212.00737
https://inspirehep.net/literature/2724078
https://doi.org/10.1140/epjc/s10052-022-11049-7
https://doi.org/10.48550/arXiv.2203.10811
https://inspirehep.net/literature/2622891
https://doi.org/10.1103/PhysRevLett.123.241102
https://doi.org/10.1103/PhysRevLett.123.241102
https://doi.org/10.48550/arXiv.1903.08607
https://inspirehep.net/literature/1725973
https://doi.org/10.1146/annurev-nucl-101918-023510
https://doi.org/10.1146/annurev-nucl-101918-023510
https://doi.org/10.48550/arXiv.1907.12506
https://inspirehep.net/literature/1746660
https://doi.org/10.1038/s42254-022-00504-9
https://doi.org/10.48550/arXiv.2207.12205
https://inspirehep.net/literature/2122672
https://doi.org/10.22323/1.390.0606
https://doi.org/10.48550/arXiv.2012.03373
https://inspirehep.net/literature/1835662
https://doi.org/10.1088/0954-3899/43/8/084001
https://doi.org/10.48550/arXiv.1601.07459
https://inspirehep.net/literature/1417077
https://doi.org/10.1088/1361-6471/abbd48
https://doi.org/10.1088/1361-6471/abbd48
https://doi.org/10.48550/arXiv.2008.04323
https://inspirehep.net/literature/1811168
https://doi.org/10.48550/arXiv.2207.04519
https://inspirehep.net/literature/2109010
https://doi.org/10.22323/1.444.1080
https://doi.org/10.22323/1.444.1080
https://inspirehep.net/literature/2687776
https://doi.org/10.1038/s41550-020-1182-4
https://doi.org/10.48550/arXiv.2005.09493
https://inspirehep.net/literature/1796946

[33]

[34]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

A.M. Brown et al., Trinity: An Imaging Air Cherenkov Telescope to Search for
Ultra-High-Energy Neutrinos, in the proceedings of the 37th International Cosmic Ray
Conference, Berlin, Germany, 15-22 July 2021 [arXiv:2109.03125] [INSPIRE].

TAMBO collaboration, TAMBO: Searching for Tau Neutrinos in the Peruvian Andes, in the
proceedings of the 38th International Cosmic Ray Conference, Nagoya, Japan, 26 July—03
August 2023 [arXiv:2308.09753] InSPIRE].

GRAND collaboration, The Giant Radio Array for Neutrino Detection (GRAND): Science and
Design, Sci. China Phys. Mech. Astron. 63 (2020) 219501 [arXiv:1810.09994] [INSPIRE].

F.J. Yu, J. Lazar and C.A. Argiielles, Trigger-level event reconstruction for neutrino telescopes
using sparse submanifold convolutional neural networks, Phys. Rev. D 108 (2023) 063017
[arXiv:2303.08812] [INSPIRE].

The edge tpu dev board, https://coral.ai/products/dev-board.

N.P. Jouppi et al., In-Datacenter Performance Analysis of a Tensor Processing Unit,
arXiv:1704.04760.

H.-H. Chin, R.-S. Tsay and H.-I. Wu, A High-Performance Adaptive Quantization Approach for
Edge CNN Applications, arXiv:2107.08382.

C.J.S. Schaefer, S. Joshi, S. Li and R. Blazquez, Edge Inference with Fully Differentiable
Quantized Mized Precision Neural Networks, arXiv:2206.07741.

M. Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems, arXiv:1603.04467.

J. Lazar et al., Prometheus: An Open-Source Neutrino Telescope Simulation, arXiv:2304.14526
[INSPIRE].

A100 gpu specs, https://www.nvidia.com/content /dam/en-zz/Solutions/Data-Center/al00/pdf
/nvidia-a100-datasheet.pdf.

Rtz 3080 gpu specs,
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series /rtx-3080-3080ti/.

Apple macbook pro specs, https://support.apple.com/en-us/111901.

Edge tpu supported operations,
https://coral.ai/docs/edgetpu/models-intro/#supported-operations.

K. Seshadri et al., An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks,
arXiv:2102.10423.

W. Chen et al., Quantization of Deep Neural Networks for Accurate Edge Computing,
arXiv:2104.12046.

B. Jacob et al., Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference, arXiv:1712.05877.

R. Abbasi et al., A Convolutional Neural Network based Cascade Reconstruction for the IceCube
Neutrino Observatory, 2021 JINST 16 P07041 [arXiv:2101.11589] [INSPIRE].

L. Alzubaidi et al., Review of deep learning: concepts, cnn architectures, challenges, applications,
future directions, J. Big Data 8 (2021) 53.

F. Scarselli et al., The Graph Neural Network Model, IEEE Trans. Neural Networks 20 (2009) 61
[INSPIRE].

— 20 —

https://doi.org/10.48550/arXiv.2109.03125
https://inspirehep.net/literature/1918234
https://doi.org/10.48550/arXiv.2308.09753
https://inspirehep.net/literature/2689746
https://doi.org/10.1007/s11433-018-9385-7
https://doi.org/10.48550/arXiv.1810.09994
https://inspirehep.net/literature/1699998
https://doi.org/10.1103/PhysRevD.108.063017
https://doi.org/10.48550/arXiv.2303.08812
https://inspirehep.net/literature/2642403
https://coral.ai/products/dev-board
https://doi.org/10.48550/arXiv.1704.04760
https://doi.org/10.48550/arXiv.2107.08382
https://doi.org/10.48550/arXiv.2206.07741
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.2304.14526
https://inspirehep.net/literature/2655303
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://support.apple.com/en-us/111901
https://coral.ai/docs/edgetpu/models-intro/#supported-operations
https://doi.org/10.48550/arXiv.2102.10423
https://doi.org/10.48550/arXiv.2104.12046
https://doi.org/10.48550/arXiv.1712.05877
https://doi.org/10.1088/1748-0221/16/07/P07041
https://doi.org/10.48550/arXiv.2101.11589
https://inspirehep.net/literature/1842999
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1109/tnn.2008.2005605
https://inspirehep.net/literature/2702859

[53] S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Comput. 9 (1997) 1735
[[INSPIRE].

[54] Tensorflow lite library, https://www.tensorflow.org/lite.

[55] M.G. Aartsen et al., Improvement in Fast Particle Track Reconstruction with Robust Statistics,
Nucl. Instrum. Meth. A 736 (2014) 143 [arXiv:1308.5501] [INSPIRE].

[56] Pycoral edgetpu compiler, https://coral.ai/docs/edgetpu/compiler/.

[57] KM3NET collaboration, The Digital Optical Module of KM3NeT, J. Phys. Conf. Ser. 1056
(2018) 012031 [INSPIRE].

[58] Pytorch executorch, https://pytorch.org/executorch-overview.

[59] KM3NET collaboration, Characterisation of the Hamamatsu photomultipliers for the KM3NeT
Neutrino Telescope, 2018 JINST 13 P05035 [INSPIRE].

[60] ICECUBE collaboration, Design and performance of the multi-PMT optical module for IceCube
Upgrade, PoS ICRC2021 (2021) 1070 [arXiv:2107.11383] [INSPIRE].

[61] LITEBIRD collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave
Background Polarization Survey, PTEP 2023 (2023) 042F01 [arXiv:2202.02773] [INSPIRE].

[62] N.P. Jouppi et al., TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning
with Hardware Support for Embeddings, arXiv:2304.01433.

[63] ICECUBE collaboration, Graph Neural Networks for low-energy event classification &
reconstruction in IceCube, 2022 JINST 17 P11003 [arXiv:2209.03042] [INSPIRE].

[64] Edge tpu performance benchmarks, https://coral.ai/docs/edgetpu/benchmarks/.
5] Edge tpu quantization, https://coral.ai/docs/edgetpu/models-intro/#quantization.

[66] Tensorflow quantization aware training,
https://www.tensorflow.org/model__optimization/guide/quantization/training.

[67] M.Z. Alom et al., Effective Quantization Approaches for Recurrent Neural Networks,
arXiv:1802.02615.

[68] Q. He et al., Effective Quantization Methods for Recurrent Neural Networks, arXiv:1611.10176.

— 21 —

https://doi.org/10.1162/neco.1997.9.8.1735
https://inspirehep.net/literature/1701396
https://www.tensorflow.org/lite
https://doi.org/10.1016/j.nima.2013.10.074
https://doi.org/10.48550/arXiv.1308.5501
https://inspirehep.net/literature/1250731
https://coral.ai/docs/edgetpu/compiler/
https://doi.org/10.1088/1742-6596/1056/1/012031
https://doi.org/10.1088/1742-6596/1056/1/012031
https://inspirehep.net/literature/1683592
https://pytorch.org/executorch-overview
https://doi.org/10.1088/1748-0221/13/05/P05035
https://inspirehep.net/literature/1676345
https://doi.org/10.22323/1.395.1070
https://doi.org/10.48550/arXiv.2107.11383
https://inspirehep.net/literature/1892614
https://doi.org/10.1093/ptep/ptac150
https://doi.org/10.48550/arXiv.2202.02773
https://inspirehep.net/literature/2029403
https://doi.org/10.48550/arXiv.2304.01433
https://doi.org/10.1088/1748-0221/17/11/P11003
https://doi.org/10.48550/arXiv.2209.03042
https://inspirehep.net/literature/2148122
https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/docs/edgetpu/models-intro/#quantization
https://www.tensorflow.org/model_optimization/guide/quantization/training
https://doi.org/10.48550/arXiv.1802.02615
https://doi.org/10.48550/arXiv.1611.10176

	Introduction
	Detector and data simulation
	Hardware setup
	Overview of architectures and power consumption
	The Google Edge TPU

	Software methods
	Data and network input
	Recursive network with convolutional embedding
	Quantization procedure

	Results and discussions
	Reconstruction accuracy
	Post-quantization accuracy
	Inference frequency performance

	Summary and outlook
	Data input and pre-processing visualization
	Network architecture

