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      Large eddy simulation (LES) is a popular approach for turbulent flow. The key issue is to find a proper 

sub-grid model to represent the filtered sub-grid scales (SGS). Currently, most people still use eddy viscosity 

to construct the SGS model. Smagorinsky sub-grid model is a popular and classical model for LES, which in 

general overestimates the eddy viscosity near the wall surface and creates a large discrepancy with direct 

numerical simulation (DNS) and experiment results. Liutex is a newly proposed vortex definition and 

identification method that can correctly represent flow rotation or vortex. A Liutex-based SGS model is applied 

in this paper to do the LES for the backward step flow, channel flow and flat plate boundary transition. 

Computational results show that Liutex-based SGS model outperforms the classic Smagorinsky model. Eddy 

is vortex and therefore can be measured by Liutex. Liutex can represent eddy viscosity more properly and 

accurately. The Liutex-based sub-grid model gives zero eddy viscosity in the laminar sublayer, which is 

consistent with physics while Smagorinsky model cannot as they partially use non-rotating shear to measure 

the eddy viscosity.  

I. Introduction 

      In turbulent flow, vortices or eddies are the main building blocks of the turbulent flows which consist of numerous 

numbers of vortices with different sizes and strengths. To understand turbulence mechanisms and structures, it is 

therefore important to define and identify vortices. However, people did not find a proper definition of vortex until 

the concept of Liutex, a third generation vortex identification method, [1] proposed  in 2018. Vortex identification 

methods are classified into three generations by Liu et al [2]. Vorticity and vorticity-related methods are the first 

generation (G1) methods. Eigenvalue-based methods such as Q criterion etc. are the second generation (G2) methods. 

1 Ph.D. Student, Department of Mathematics. 
2Assistant Professor of Research, Department of Mathematics. 
3 Professor, Department of Mathematics. 
4 Assistant Professor of Research, Department of Mathematics. 
5 Member Technical Staff, HyperComp, Inc. 
6 Assistant Professor, Mathematics & Statistical Science. 
7 Ph.D. Student, Department of Mathematics 
8 Ph.D. Student, Department of Mathematics 

D
o
w

n
lo

ad
ed

 b
y
 E

m
ra

n
 H

o
ss

en
 o

n
 M

ar
ch

 2
5
, 
2
0
2
5
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
5
-0

0
7
3
 

 AIAA SCITECH 2025 Forum 

 6-10 January 2025, Orlando, FL 

 10.2514/6.2025-0073 

 Copyright © 2025 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 

 AIAA SciTech Forum 



Liutex is the third generation (G3) method. G1 and G2 methods are contaminated by shear and/or stretching while 

Liutex represents the rigid rotation [3,4]. Liutex is an eigenvector-based vortex identification concept whose direction 

is parallel to the local rotation axis and whose magnitude is twice angular speed. Essentially, vorticity can be 

decomposed into rotating and non-rotating parts[5], with the rotational part being a Liutex vector. Liutex is defined[6] 

mathematically as follows: þ =  ý� = {+�, �, 2 :+�, �,2 2 4λĀÿ2    } � (1) 

where � is the vorticity vector and � is the eigenvector of the velocity gradient matrix, �Āÿ is the imaginary part of the 

complex eigenvalues of the velocity gradient matrix and +⋅,⋅, represents inner product. 

The Navier-Stokes equations, which characterize fluid flow, were developed by Claude-Louis Navier [7]  and George 

Gabriel Stokes [8]; however, solving them analytically is difficult because of their nonlinear terms. Despite the 

mysterious characteristics of turbulence, developments such as direct numerical simulation (DNS) have enhanced 

people’s comprehension, which is in general expensive, and the turbulent flow can be numerically modeled through 

several other computational methods, including large eddy simulation (LES) and Reynolds-averaged Navier-Stokes 

(RANS). DNS is a computational fluid dynamics (CFD) approach for solving the Navier-Stokes equations numerically 

without any turbulence model. This approach requires resolving all temporal and spatial scales of turbulence. In 

contrast, RANS computes time-average equations of motion for fluid flow. DNS provides more accurate results but 

has a high demand for computation resources while RANS is the opposite. LES is a compromise of DNS and RANS. 

It numerically resolves the large-scale vortices while using sub-grid stress models to account for the effects of 

unresolved small-scale vortices by resolved larger scales, resulting in lower computational expenses than DNS but 

higher accuracy than RANS.  In LES, the Smagorinsky model [9], Dynamic Smagorinsky model [10] and WALE 

model [11] are widely employed. The Smagorinsky model is especially favored for its simplicity. However, despite 

its simplicity and established reputation, the model has at least one significant drawback: it tends to overestimate eddy 

viscosity in the presence of strong background shear, resulting in a non-zero eddy viscosity at the wall. The 

Smagorinsky model is defined as follows: Āþ = �ýΔ2S� = �ýΔ:2þÿ̅Āþÿ̅Ā2  (2) 

where, Āþ is the eddy viscosity, �ý is a model coefficient, Δ is a characteristic length scale often determined by the 

filtering width of the mesh, and  þÿ̅Ā = 12 (∂ÿ�ÿ∂ĂĀ + ∂ÿ�Ā∂Ăÿ) represents the filtered rate-of-strain tensor. 

Since the eddy viscosity is caused by vortex and Liutex correctly represents vortex, Wang [12] introduced a Liutex-

based sub-grid stress model, utilizing a G3 method. The model is defined as follows:  Āþ = �ĀΔ2R� (3) 

where, �Ā is a coefficient, Δ is the filtering length scale and   R�  is Liutex magnitude, which is defined as, R� = :R�12 + R�22 + R�32  (4) 

where ý�1, ý�2 and ý�3 are filtered Liutex components.  

 

The purpose of this study is to apply the new Liutex-based sub-grid model in the backward facing step flow, the 

channel flow and flat plate boundary transition, compared with Smagorinsky model and LES with no model. It is also 

proved in this paper theoretically that Liutex is zero at the no-slip boundary so that the Liutex-based eddy viscosity is 

consistent with physics.  

II. Case Set Up 

A. Backward Step Flow 

      The turbulent flow over a backward step at Reynolds number ýÿ/ = 5000 is set up and the computational domain 

consists of streamwise length ĀĂ = 20/, spanwise length Āă = 4/ and normal length ĀĄ = 11/, where / is the step 

height. The coordinate system is oriented in the way that the x-axis represents the streamwise direction, the y-axis 

indicates the spanwise direction, and the z-axis corresponds to the wall-normal direction. 20,000 recorded data sets of 

turbulent flow obtained from DNS of a flat plate boundary transition [13] are imposed into to the inlet flow. In the 

spanwise direction, the periodic conditions are applied. Non-slipping conditions are imposed on both the wall at the 

bottom and the step. The LES grid dimensions are 960×64×120, corresponding to the number of grid points in the 

streamwise, spanwise, and wall-normal directions. Additionally, grids are locally refined in the wall-normal and 
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streamwise direction, while the spanwise dimensions remain uniform. Fig. 1 exhibits the computational domain and 

Fig. 2 shows the illustration of grids refinement near the step corner and bottom wall.   

 

Fig. 1 Computation domain of backward step flow 

 

Fig. 2 Grids refinement near the step corner and bottom wall 

At the streamwise and normal wall direction, a sixth-order compact scheme is used for spatial discretization. The 

sixth-order compact scheme is given as follows:                 13 Āÿ21′ + Āÿ21′ + 13Āÿ21′ = 1/ (2 136 Āÿ22 2 79Āÿ21 + 79Āÿ+1 + 136Āÿ+2)                                (5) 

Where ÿ = 3,& , Ă 2 2 for the internal points, Āÿ′ is the derivative at point i. The fourth-order compact scheme is used 

at points ÿ = 2 and Ă 2 1, and the third-order one-sided compact scheme is used at the boundary.  An implicit sixth-

order compact scheme for space filtering is applied to the primitive variables after a specified number of time steps. 

For time advancement, a third-order TVD Runge3Kutta scheme is applied as follows: ý(0) = ý� (6) ý(1) = ý(0) + ∆þþ(0) (7) ý(2) = 34ý(0) + 14ý(1) + 24∆þþ(1) (8) ý(3) = 13ý(0) + 23ý(2) + 13∆þþ(2) (9) ý�+1 = ý(3) (10) 

B. Channel Flow 
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     Fig. 3 shows the computational domain and grids of the channel flow. The lengths of the computational domain 

are 4m, 2m and 2m in the x, y, z directions respectively. This case is a statistically-developing internal flow through 

parallel walls. The Reynolds number based on the friction velocity is 395. The characteristic length (channel half-

height) is � = 1.0  m and the bulk velocity is Āÿ = 0.1335 �/ý . The kinematic viscosity of the fluid is � =2.0 × 1025 �2/ý . The grids include 80×70×60 points in the x, y, and z directions, respectively. The grids are 

uniformly distributed in the x and z directions, while it is refined near the walls in the y direction. The Δă+, ΔĂ+, and ΔĄ+ 

values of the first grid layer are 1.1, 49.6, and 15.1, respectively. No-slip boundary conditions are applied on the upper 

and lower walls (in the y-direction), while periodic boundary conditions are applied in the other two directions. The 

pressure term is adjusted during the numerical simulations to keep the flow rate constant. 

 

 

 

Fig. 3 Computational domain and grids of the channel flow 

 

C. Flat Plate Boundary Transition 

     Fig. 4 shows the physical domain of the simulation. In Fig. 4, Ăÿ� refers to the distance between the inlet of the 

domain and the leading edge. ĀĂ and Āă represent the streamwise and spanwise lengths of the domain respectively. ĀĄÿ� denotes the height of the inlet. 1920 × 128 × 241 grids are used for DNS simulation while 960 × 32 × 61 grids 

are used for LES simulations. The parameters of the simulations are as follows. Ăÿ� = 300.79�ÿ�, ĀĂ = 798.03�ÿ�, Āă = 22�ÿ�, where �ÿ� is the displacement boundary thickness of inflow. ā�∞ = 0.5, ýÿ = 1000, ÿā = 273.15ÿ 

and ÿ∞ = 273.15ÿ , where ā�∞  represents Mach number, ýÿ  represents Reynolds number, ÿā  represents wall 

temperature and ÿ∞ represents free stream temperature. The same numerical methods described in the backward step 

flow are used in this case. The inflow is the Blasius solution plus Tollmien-Schlichting waves. 
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Fig. 4 Physical domain of simulation 

 

III. Results and Discussions 

A. Result of channel flow and proof of Liutex being zero at no-slip boundary 

     Without losing generality, we assume that x-y plane is the no-slip boundary and z is the direction normal to the 

boundary plane. Because of the no-slip boundary condition, for a point at the wall surface,  �ÿ�Ă = �ÿ�ă = �Ā�Ă = �Ā�ă = �ā�Ă = �ā�ă = 0 (11) 

Thus, its velocity gradient tensor is: 

[  
   0 0 �ÿ�Ą0 0 �Ā�Ą0 0 �ā�Ą ]  

    (12) 

 

Apparently, Eq. 12 has three real eigenvalues leading to a zero Liutex. As a result, Liutex-based sub-grid stress must 

be zero. Based on the same velocity gradient tensor Eq. 12, the eddy viscosity estimated by Smagorinsky model is  Āþ = �ýΔ2S� = �ýΔ:(�ÿ�Ą)2 + (�Ā�Ą)2 + 2(�ā�Ą)22  (13) 

which is not guaranteed to be zero.  

The results of our simulation are consistent with theoretical analysis. Fig. 5 and Fig. 6 present the eddy viscosity 

distributions of Smagorinsky and Liutex-based sub-grid model for the channel flow respectively. One can clearly see 

that for Smagorinsky sub-grid model, eddy viscosity is large near the wall surface (the left and right sides) which is 

inconsistent with physics. On the contrary, for Liutex-based sub-grid model, eddy viscosity is zero near the wall 

surfaces (the left and right sides), which is consistent with the physics. A clearer comparison can be seen in Fig. 7 

which depicts the relation between eddy viscosity and y/h. The eddy viscosity of Smargorinsky sub-grid model is 

quite large near the wall while that of Liutex-base mode is zero.  
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Fig. 5 Eddy viscosity distribution of Smagorinsky sub-grid model for the channel flow. 

 

Fig. 6 Eddy viscosity distribution of Liutex-based sub-grid model for the channel flow. 

 

Fig. 7 Eddy viscosity distributions of different sub-grid models for the channel flow. 

Fig. 8 shows time- and spanwise-averaged streamwise velocity profiles in wall coordinates, clearly showing that 

Liutex-based model fits log law better than Smagorinsky model.  
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Fig. 8 Time- and spanwise-averaged streamwise velocity profiles in wall coordinates for the channel flow 

B. Result of the Backward Step Flow 

     The reattachment lengths of Smagorinsky model, Liutex-based model and using no model are 5.98h, 6.27h and 

5.8h. Le’s[14] DNS at a close Renolds number shows the reattachment length is 6.28h. Liutex-based model is the 

closet to Le’s DNS result. Fig. 9 shows the near-wall time- and spanwise-averaged velocity profiles plotted in semi-

logarithmic coordinates at x=18h. ÿ+ = ă+ and  ÿ+ = 10.41 ln(ă+) + 5 are also plotted for the comparison of log-law. 

After applying LES models, the curves are closer to the log law than using no model. Liutex-based model matches the 

log law better than Smagorinsky model and using no model.  

 

Fig. 9 Time- and spanwise-averaged streamwise velocity profiles in wall coordinates at � = ���. 
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Fig.10 to Fig. 12 exhibit the time- and spanwise-averaged streamlines of Smagorinsky model, Liutex-based model 

and using no model. The zoomed-in figures near the step corners are also provided. The secondary vortex can be seen 

in all of them. However, a third vortex can only be observed for Liutex-based model which shows Liutex-based model 

has higher resolution.  

 

 

                                                      (a)                                                                            (b) 

Fig. 10 Time- and spanwise- averaged streamlines of Smagorinsky model. (a) general. (b) near the step corner.  

 

 

                                                      (a)                                                                            (b) 

Fig. 11 Time- and spanwise- averaged streamlines of Liutex-based model. (a) general. (b) near the step corner.  
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                                                      (a)                                                                            (b) 

Fig. 12 Time- and spanwise- averaged streamlines of using no model. (a) general. (b) near the step corner.  

C. Result of Flat Plate Boundary Later Transition 

     Fig. 13 to Fig. 15 show the time- and spanwise-averaged velocity profiles near the wall as well as ÿ+ =2.75 ln(ă+) + 5.2, plotted in semi-logarithmic coordinates, at x=700, x=800 and x=900. For all locations, Liutex-

based model is the best one that matches the DNS result, while no model case is the worst and Smagorinsky model is 

better than no model. The DNS and Liutex-based model results fit the log-law very well while Smagorinksy model 

and no model overestimate ÿ+. 

 

Fig. 13 Time- and spanwise-averaged velocity profiles at x=700 
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Fig. 14 Time- and spanwise-averaged velocity profiles at x=800 

 

Fig. 15 Time- and spanwise-averaged velocity profiles at x=900 

IV. Summary 

     This paper applies Liutex-based LES model to turbulent flow over a backward step, the channel flow and flat plate 

boundary layer transition. The simulation results show that Liutex-based SGS model more accurately estimates the 

eddy viscosity at the wall boundary. The theoretical analysis also provides that the eddy viscosity estimated by Liutex-

based model is zero near the wall surface while that estimated by Smagorinsky is large which is inconsistent with 

physics. Any model which estimates non-zero eddy viscosity in the laminar sublayer near the wall surface is 

inconsistent with physics. The streamlines, velocity profiles and reattachment lengths for the simulations of backward 

step flow are also reported. Only Liutex-based model can resolve a third vortex near the step corner and the 

reattachment length of Liutex-based model is the closest to Le’s DNS result. The result of flat plate boundary transition 

shows that Liutex-based model is the one closest to DNS and only uses 
132 grids as DNS. In summary, the new Liutex-

based model is intrinsic consistent with physics and achieves good results in simulations. 
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