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Large eddy simulation (LES) is a popular approach for turbulent flow. The key issue is to find a proper
sub-grid model to represent the filtered sub-grid scales (SGS). Currently, most people still use eddy viscosity
to construct the SGS model. Smagorinsky sub-grid model is a popular and classical model for LES, which in
general overestimates the eddy viscosity near the wall surface and creates a large discrepancy with direct
numerical simulation (DNS) and experiment results. Liutex is a newly proposed vortex definition and
identification method that can correctly represent flow rotation or vortex. A Liutex-based SGS model is applied
in this paper to do the LES for the backward step flow, channel flow and flat plate boundary transition.
Computational results show that Liutex-based SGS model outperforms the classic Smagorinsky model. Eddy
is vortex and therefore can be measured by Liutex. Liutex can represent eddy viscosity more properly and
accurately. The Liutex-based sub-grid model gives zero eddy viscosity in the laminar sublayer, which is
consistent with physics while Smagorinsky model cannot as they partially use non-rotating shear to measure
the eddy viscosity.

1. Introduction

In turbulent flow, vortices or eddies are the main building blocks of the turbulent flows which consist of numerous
numbers of vortices with different sizes and strengths. To understand turbulence mechanisms and structures, it is
therefore important to define and identify vortices. However, people did not find a proper definition of vortex until
the concept of Liutex, a third generation vortex identification method, [1] proposed in 2018. Vortex identification
methods are classified into three generations by Liu et al [2]. Vorticity and vorticity-related methods are the first
generation (G1) methods. Eigenvalue-based methods such as Q criterion etc. are the second generation (G2) methods.
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Liutex is the third generation (G3) method. G1 and G2 methods are contaminated by shear and/or stretching while
Liutex represents the rigid rotation [3,4]. Liutex is an eigenvector-based vortex identification concept whose direction
is parallel to the local rotation axis and whose magnitude is twice angular speed. Essentially, vorticity can be
decomposed into rotating and non-rotating parts[5], with the rotational part being a Liutex vector. Liutex is defined[6]

mathematically as follows:
R= Rr= {(w,r) - /(w,r)z — 422 }r (1)

where w is the vorticity vector and r is the eigenvector of the velocity gradient matrix, A.; is the imaginary part of the
complex eigenvalues of the velocity gradient matrix and (:,-) represents inner product.

The Navier-Stokes equations, which characterize fluid flow, were developed by Claude-Louis Navier [7] and George
Gabriel Stokes [8]; however, solving them analytically is difficult because of their nonlinear terms. Despite the
mysterious characteristics of turbulence, developments such as direct numerical simulation (DNS) have enhanced
people’s comprehension, which is in general expensive, and the turbulent flow can be numerically modeled through
several other computational methods, including large eddy simulation (LES) and Reynolds-averaged Navier-Stokes
(RANS). DNS is a computational fluid dynamics (CFD) approach for solving the Navier-Stokes equations numerically
without any turbulence model. This approach requires resolving all temporal and spatial scales of turbulence. In
contrast, RANS computes time-average equations of motion for fluid flow. DNS provides more accurate results but
has a high demand for computation resources while RANS is the opposite. LES is a compromise of DNS and RANS.
It numerically resolves the large-scale vortices while using sub-grid stress models to account for the effects of
unresolved small-scale vortices by resolved larger scales, resulting in lower computational expenses than DNS but
higher accuracy than RANS. In LES, the Smagorinsky model [9], Dynamic Smagorinsky model [10] and WALE
model [11] are widely employed. The Smagorinsky model is especially favored for its simplicity. However, despite
its simplicity and established reputation, the model has at least one significant drawback: it tends to overestimate eddy
viscosity in the presence of strong background shear, resulting in a non-zero eddy viscosity at the wall. The

Smagorinsky model is defined as follows:
v, = C,A%S = CSA2/2§ij§ij )

where, v, is the eddy viscosity, C; is a model coefficient, A is a characteristic length scale often determined by the

— . & 1fou; , 0uj . .
filtering width of the mesh, and §;; = 3 (a—;t‘ + D_xJ) represents the filtered rate-of-strain tensor.
j i

Since the eddy viscosity is caused by vortex and Liutex correctly represents vortex, Wang [12] introduced a Liutex-
based sub-grid stress model, utilizing a G3 method. The model is defined as follows:

v, = C,A’R 3)
where, C,, is a coefficient, A is the filtering length scale and R is Liutex magnitude, which is defined as,

R= /§§+ﬁ§+§§ 4)

where R;, R, and R; are filtered Liutex components.

The purpose of this study is to apply the new Liutex-based sub-grid model in the backward facing step flow, the
channel flow and flat plate boundary transition, compared with Smagorinsky model and LES with no model. It is also
proved in this paper theoretically that Liutex is zero at the no-slip boundary so that the Liutex-based eddy viscosity is
consistent with physics.

II. Case Set Up

A. Backward Step Flow

The turbulent flow over a backward step at Reynolds number Re, = 5000 is set up and the computational domain
consists of streamwise length L, = 20h, spanwise length L, = 4h and normal length L, = 11h, where h is the step
height. The coordinate system is oriented in the way that the x-axis represents the streamwise direction, the y-axis
indicates the spanwise direction, and the z-axis corresponds to the wall-normal direction. 20,000 recorded data sets of
turbulent flow obtained from DNS of a flat plate boundary transition [13] are imposed into to the inlet flow. In the
spanwise direction, the periodic conditions are applied. Non-slipping conditions are imposed on both the wall at the
bottom and the step. The LES grid dimensions are 960x64x120, corresponding to the number of grid points in the
streamwise, spanwise, and wall-normal directions. Additionally, grids are locally refined in the wall-normal and



Downloaded by Emran Hossen on March 25, 2025 | http://arc.aiaa.org | DOI: 10.2514/6.2025-0073

streamwise direction, while the spanwise dimensions remain uniform. Fig. 1 exhibits the computational domain and
Fig. 2 shows the illustration of grids refinement near the step corner and bottom wall.

Turbulent flow
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Fig. 1 Computation domain of backward step flow

OO Ires

X

Fig. 2 Grids refinement near the step corner and bottom wall

At the streamwise and normal wall direction, a sixth-order compact scheme is used for spatial discretization. The
sixth-order compact scheme is given as follows:

1, , 1, 1 1 7 7 1

Sflat fia+3 0 = 5 (~5g g fin +gfinn + 3¢ fin2) ®)

Where i = 3,..., N — 2 for the internal points, f; is the derivative at point i. The fourth-order compact scheme is used
at points i = 2 and N — 1, and the third-order one-sided compact scheme is used at the boundary. An implicit sixth-
order compact scheme for space filtering is applied to the primitive variables after a specified number of time steps.

For time advancement, a third-order TVD Runge—Kutta scheme is applied as follows:

Q© =¢q" 6)

stl) = Q(°1> + AtR(;) @)

@ —20©® 1 oW L ZARD 8
Q ‘1}0 + %Q + ‘1} (8)
Q(3) - 5 Q(O) + § Q(Z) + gAtR(z) (9)
Q"' = Q® (10)

B. Channel Flow
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Fig. 3 shows the computational domain and grids of the channel flow. The lengths of the computational domain
are 4m, 2m and 2m in the X, y, z directions respectively. This case is a statistically-developing internal flow through
parallel walls. The Reynolds number based on the friction velocity is 395. The characteristic length (channel half-
height) is § = 1.0 m and the bulk velocity is U, = 0.1335m/s. The kinematic viscosity of the fluid is v =
2.0 x 1075 m?/s. The grids include 80x70x60 points in the x, y, and z directions, respectively. The grids are
uniformly distributed in the x and z directions, while it is refined near the walls in the y direction. The AY, Af, and A}
values of the first grid layer are 1.1, 49.6, and 15.1, respectively. No-slip boundary conditions are applied on the upper
and lower walls (in the y-direction), while periodic boundary conditions are applied in the other two directions. The
pressure term is adjusted during the numerical simulations to keep the flow rate constant.

Fig. 3 Computational domain and grids of the channel flow

C. Flat Plate Boundary Transition

Fig. 4 shows the physical domain of the simulation. In Fig. 4, x;,, refers to the distance between the inlet of the
domain and the leading edge. L, and L,, represent the streamwise and spanwise lengths of the domain respectively.
L, denotes the height of the inlet. 1920 x 128 X 241 grids are used for DNS simulation while 960 X 32 X 61 grids
are used for LES simulations. The parameters of the simulations are as follows. x;,, = 300.796;,, L, = 798.036;,,
L, = 228;,,, where &, is the displacement boundary thickness of inflow. Ma,, = 0.5, Re = 1000, T,, = 273.15K
and T, = 273.15K, where Ma,, represents Mach number, Re represents Reynolds number, T, represents wall
temperature and T,, represents free stream temperature. The same numerical methods described in the backward step
flow are used in this case. The inflow is the Blasius solution plus Tollmien-Schlichting waves.
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Fig. 4 Physical domain of simulation

III. Results and Discussions

A. Result of channel flow and proof of Liutex being zero at no-slip boundary
Without losing generality, we assume that x-y plane is the no-slip boundary and z is the direction normal to the
boundary plane. Because of the no-slip boundary condition, for a point at the wall surface,
dJu Ou OJv Jdv OJdw OJw

dx dy o0x dy o0x Oy an
Thus, its velocity gradient tensor is:
0 0 ou
0z
v
0 0 — 12
o (12)
aw
0z

Apparently, Eq. 12 has three real eigenvalues leading to a zero Liutex. As a result, Liutex-based sub-grid stress must
be zero. Based on the same velocity gradient tensor Eq. 12, the eddy viscosity estimated by Smagorinsky model is

— s = |2 +(2) 2 (XY 13)
Ve = EAS =58 oz 0z 0z

which is not guaranteed to be zero.

The results of our simulation are consistent with theoretical analysis. Fig. 5 and Fig. 6 present the eddy viscosity
distributions of Smagorinsky and Liutex-based sub-grid model for the channel flow respectively. One can clearly see
that for Smagorinsky sub-grid model, eddy viscosity is large near the wall surface (the left and right sides) which is
inconsistent with physics. On the contrary, for Liutex-based sub-grid model, eddy viscosity is zero near the wall
surfaces (the left and right sides), which is consistent with the physics. A clearer comparison can be seen in Fig. 7
which depicts the relation between eddy viscosity and y/h. The eddy viscosity of Smargorinsky sub-grid model is
quite large near the wall while that of Liutex-base mode is zero.
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Fig. 7 Eddy viscosity distributions of different sub-grid models for the channel flow.

Fig. 8 shows time- and spanwise-averaged streamwise velocity profiles in wall coordinates, clearly showing that
Liutex-based model fits log law better than Smagorinsky model.
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Fig. 8 Time- and spanwise-averaged streamwise velocity profiles in wall coordinates for the channel flow

B. Result of the Backward Step Flow

The reattachment lengths of Smagorinsky model, Liutex-based model and using no model are 5.98h, 6.27h and
5.8h. Le’s[14] DNS at a close Renolds number shows the reattachment length is 6.28h. Liutex-based model is the
closet to Le’s DNS result. Fig. 9 shows the near-wall time- and spanwise-averaged velocity profiles plotted in semi-
logarithmic coordinates at x=18h. u* = y* and u* = ﬁln(y*) + 5 are also plotted for the comparison of log-law.

After applying LES models, the curves are closer to the fog law than using no model. Liutex-based model matches the
log law better than Smagorinsky model and using no model.
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Fig. 9 Time- and spanwise-averaged streamwise velocity profiles in wall coordinates at x = 19h.
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Fig.10 to Fig. 12 exhibit the time- and spanwise-averaged streamlines of Smagorinsky model, Liutex-based model
and using no model. The zoomed-in figures near the step corners are also provided. The secondary vortex can be seen
in all of them. However, a third vortex can only be observed for Liutex-based model which shows Liutex-based model
has higher resolution.

(a) (b)

(a) (b)

Fig. 11 Time- and spanwise- averaged streamlines of Liutex-based model. (a) general. (b) near the step corner.
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(a) (b)

Fig. 12 Time- and spanwise- averaged streamlines of using no model. (a) general. (b) near the step corner.

C. Result of Flat Plate Boundary Later Transition

Fig. 13 to Fig. 15 show the time- and spanwise-averaged velocity profiles near the wall as well as ut =
2.75In(y*) + 5.2, plotted in semi-logarithmic coordinates, at x=700, x=800 and x=900. For all locations, Liutex-
based model is the best one that matches the DNS result, while no model case is the worst and Smagorinsky model is
better than no model. The DNS and Liutex-based model results fit the log-law very well while Smagorinksy model
and no model overestimate u*.
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Fig. 13 Time- and spanwise-averaged velocity profiles at x=700
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Fig. 14 Time- and spanwise-averaged velocity profiles at x=800

Velocity profile at strsamwiss location 800 for LES case 960°32°61
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Fig. 15 Time- and spanwise-averaged velocity profiles at x=900

IV. Summary

This paper applies Liutex-based LES model to turbulent flow over a backward step, the channel flow and flat plate
boundary layer transition. The simulation results show that Liutex-based SGS model more accurately estimates the
eddy viscosity at the wall boundary. The theoretical analysis also provides that the eddy viscosity estimated by Liutex-
based model is zero near the wall surface while that estimated by Smagorinsky is large which is inconsistent with
physics. Any model which estimates non-zero eddy viscosity in the laminar sublayer near the wall surface is
inconsistent with physics. The streamlines, velocity profiles and reattachment lengths for the simulations of backward
step flow are also reported. Only Liutex-based model can resolve a third vortex near the step corner and the
reattachment length of Liutex-based model is the closest to Le’s DNS result. The result of flat plate boundary transition

. . 1 . .
shows that Liutex-based model is the one closest to DNS and only uses = grids as DNS. In summary, the new Liutex-
based model is intrinsic consistent with physics and achieves good results in simulations.
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