
A Technique for Secure Variant Calling on Human
Genome Sequences Using SmartNICs

Praveen Rao
University of Missouri, USA

praveen.rao@missouri.edu

Khawar Shehzad
University of Missouri, USA
khawar.shehzad@missouri.edu

Abstract—Genome sequences of individuals constitute sensitive
data and must be safeguarded from unauthorized access or
disclosure. While encryption of human genome sequences at
rest and in transit is an attractive solution, the large size
of these genomes can introduce non-trivial cost for encryp-
tion/decryption of input/intermediate files consumed and pro-
duced during genome analysis. In this paper, we focus on a key
task called variant calling, which is used to identify variants in
an individual’s genome compared to the reference genome. We
present a novel technique for secure variant calling on human
genomes while safeguarding the privacy of individuals. Our
technique employs the Data Plane Development Kit (DPDK)
and SmartNICs (smart network interface cards) for offloading
the task of encryption/decryption. Using named pipes provided
by the underlying OS, our technique enables the SmartNIC
to communicate with existing bioinformatics tools without any
code modifications to them. As a result, all files consumed and
produced during variant calling are always encrypted rendering
them unreadable to an adversary if a data breach occurs. We
evaluated the efficiency of our technique on different genome
sequences and observed that our technique added little overhead
to the variant calling pipeline on encrypted sequences (about 1%
slower) compared to the normal approach of executing variant
calling on unencrypted sequences.

I. INTRODUCTION

With technological advances in whole genome sequencing
(WGS) and lower cost of sequencing [58], it is now feasible
to employ WGS for large-scale genomic studies and clinical
practice [8], [6]. It was predicted that by 2025, exabytes of
human genome data could be produced [64]. By analyzing the
genomes of individuals, medical professionals and scientists
can determine their risk for complex diseases (e.g., cancer)
and develop effective treatment protocols.

A whole genome sequence of an individual can consume gi-
gabytes (GBs) of storage space due to millions of reads, which
are short (overlapping) fragments of the deoxyribonucleic acid
(DNA) in the genome [31]. Variant calling is a key task that
involves identifying variants in an individual’s genome com-
pared to the reference genome [51]. There are different types
of variants such as single nucleotide polymorphisms (SNPs),
short insertions/deletions (indels), and structural variants1.
A variant calling pipeline involves several stages, namely,
reading the large sequence files, aligning the reads against the
reference genome, additional pre-processing steps to mitigate
sequencing errors, and finally invoking a variant caller [42].

1https://m.ensembl.org/info/genome/variation/prediction/classification.html

The pipeline execution is typically compute and I/O intensive
in nature due to the large size of human genomes [52],
[36]. The raw variants produced by a pipeline can be further
processed to obtain meaningful genomic insights.

Data breaches cost significant financial losses to organi-
zations globally. In 2023, the average cost of a data breach
globally was $4.45 million.2 Recently, 23AndMe, a genetic
testing company, confirmed a data breach that affected 6.9
million individuals. DNA information and other personal in-
formation were stolen by hackers [14]. Theft of genomic data
can also harm a country’s economic and national security [11].
In fact, an individual’s genome sequence is unique except
for identical twins [4]. A study showed that de-identified
genomic data can risk re-identification when combined with
publicly available geneology databases [33]. Hence, genomic
data are considered protected health information (PHI) [26].
Encrypting genomic data at rest and in transit can enable
compliance with laws such as the Health Insurance Portability
and Accountability Act (HIPAA) [10] and the General Data
Protection Regulation (GDPR) [16] with growing use of public
cloud service providers for analyzing genomic data [44], [62],
[17], [18], [19]. Note that cloud computing offers sufficient
compute and storage resources necessary for analyzing large-
sized human genome sequences.

Using encryption on genome sequences and other intermedi-
ate files produced during variant calling can cause non-trivial
overhead as GBs of data are read from/written to persistent
storage. For example, a small-sized whole human genome
(15 GB in compressed form) containing 199 million (short)
reads, caused a total of 63 GB to be read from and 50 GB to
be written to disk storage in plaintext during variant calling.
Fortunately, SmartNICs, which are programmable NICs, can
be used to offload cryptographic tasks, thus freeing up the host
processor cores to complete other tasks. They are used in data
centers for efficient networking, storage, and security [13].

Prior research efforts have explored the use of SmartNICs
for tasks such as packet processing [46], [22], [69], secu-
rity [50], [41], [65], [72], and distributed processing [48],
[32], [60]. Other efforts have investigated privacy-preserving
techniques for analysis in genome wide association studies
(GWAS) [45], [67], [23], [43]. Unfortunately, techniques such
as homomorphic encryption and secure multiparty computa-

2https://www.ibm.com/reports/data-breach

tion on large genome sequences can lead to high computa-
tional/communication cost [43], [28]. Some approaches for
secure processing of genomes require specialized computing
infrastructure (e.g., quantum secure cloud [28]). To the best of
our knowledge, no one has investigated how SmartNICs can
be effectively used for secure variant calling on individuals’
genomes in a cloud infrastructure while protecting their data
from adversaries.

Motivated by the aforementioned reasons, we present a
technique called SVC (Secure Variant Calling) for secure
variant calling on human genomes. The design goal of SVC
is to safeguard the genomes of individuals from unauthorized
users. Our key contributions are as follows:
• We developed SVC to perform the variant calling pipeline

on an encrypted human genome sequence such that all files
read from and written to persistent storage/disk during variant
calling are always encrypted. Only encrypted data can be
accessed by an adversary, thus safeguarding the privacy of
individuals’ genomes.
• SVC has a unique design consisting of a client and a server

module. The client module runs on a user’s machine that
has the human genome. After generating a random symmetric
key for a genome, it encrypts the genome and sends it to a
remote server machine (e.g., in a cloud environment). The
server module executes the variant calling pipeline on the
encrypted genome. It offloads the encryption/decryption tasks
to a SmartNIC using a custom DPDK application. It leverages
named pipes managed by the underlying OS to exchange data
between the SmartNIC and existing bioinformatics tools for
variant calling without any code modifications to these tools.
The encrypted output file of variant calling (containing raw
variants) is copied to the user’s machine and decrypted by the
client module using the same symmetric key for that genome.
• SVC introduced very little overhead to the variant calling

pipeline. On the tested whole genome sequences with the
Advanced Encryption Standard (AES) encryption, the variant
calling pipeline ran slightly slower on encrypted sequences
(i.e., about 1% slower) compared to executing on unen-
crypted/plaintext sequences. Hence, SVC is efficient for secure
variant calling on human genome data.

The rest of the paper is organized as follows: Sec-
tion II provides background/related work on variant calling
pipelines, privacy-preserving techniques for genomic data,
SmartNICs/DPDK, and our threat model. Section III presents
the design and implementation of SVC. Section IV presents the
performance evaluation of SVC, and we conclude in Section V.

II. BACKGROUND AND RELATED WORK

A. Variant Calling Pipelines

A typical variant calling pipeline for an individual’s DNA
sample [42] has a set of stages. It starts by reading of raw
unmapped reads (e.g., in FASTQ format [2]) output by a
sequencer. Then the alignment of the reads with a reference
genome (e.g., GRCh38 [51]) is performed using algorithms
such as BWA-MEM [47] to produce mapped reads that are
stored in the SAM/BAM format [12]. Sorting of aligned reads,

marking of duplicate reads, execution of base quality score
recalibration (BQSR) [15] and local realignment around the
indels are performed next. Finally, a variant calling method
(FreeBayes [30], HaplotypeCaller [15], DNAscope [27]) is
executed to produce raw variants in the VCF format [29].
The subsequent downstream processing steps include variant
filtering and annotation steps on the raw variants. GWAS can
also be performed for a specific disease once the VCF files of
a group of individuals have been computed.

There is continued interest in accelerating DNA vari-
ant calling pipelines using distributed computing, big data
technologies, and hardware accelerators. GATK4 [15] em-
ployed Apache Spark [70] for multithreading and paralleliza-
tion. NVIDIA’s Parabricks accelerated GATK pipelines using
GPUs [54]. Google’s DeepVariant [55] used deep learning for
variant calling and operated directly on aligned reads. Nothaft
et. al. [52] created ADAM [53] and Cannoli [7] for processing
large-scale genomic datasets using Spark’s primitives and
parallelization of the alignment process and variant calling
by reusing existing bioinformatics tools. Later, AVAH [57],
[56] and AVAH* [25] were developed to process a workload
of genomes faster using cluster computing and synchronous
computations. Illumina’s DRAGEN Platform accelerated the
variant calling pipeline using field-programmable gate arrays
(FPGAs) [59]. Sentieon [62] developed highly optimized
software-based algorithms for variant calling using CPUs.

The aforementioned approaches aimed at improving the
performance and efficiency of variant calling rather than data
security/privacy of genomes.

B. Privacy-Preserving Techniques for Genomic Data Analysis

Several privacy-preserving techniques have been proposed
for GWAS, which is performed after variant calling. Some of
these used secure multi-party computation for formation of
case-control groups and statistical testing [39]; homomorphic
encryption for statistical testing [45], [67], SNP search [63],
secure count querying [34], and ancestry inference [49];
and sketching techniques for achieving privacy [35], [43].
Some attempted specialized encryption techniques for pro-
tecting aligned reads [20], differential privacy for selecting
datasets in GWAS [73], secure distributed genome analysis for
GWAS [71], and cryptographic techniques for meta-analysis in
GWAS [68]. Trusted execution environments (TEEs) such as
Intel software guard extensions (SGX) have also been explored
for processing genomic data in GWAS [23], [43].

A few tools were developed to encrypt genomic data.
Cryfa [37] is a secure encryption tool for FASTQ, BAM, and
VCF files. It uses AES for encrypting files. Crypt4GH [61]
is a file format standard for native access to encrypted data
and uses envelope encryption. Both are suited for securely
transmitting and storing genomic data. However, existing
variant calling pipelines such as GATK4 would require code
modifications to use Cryfa/Crypt4GH. Although Crypt4GH is
natively supported by SAMtools [24], other software tools in a
variant calling pipeline (e.g., for alignment and variant calling)
require code modifications to use this file format. Alternatively,

if Cryfa/Crypt4GH are used without code modifications to
bioinformatics tools, then encrypted data should be first de-
crypted by these tools and saved to persistent storage before
being consumed by bioinformatics tools, thereby exposing the
data to an adversary.

The above efforts aim to protect an individual’s privacy
for (a) a particular file containing genomic data, (b) query-
ing of genomic data, (c) GWAS analysis after producing
the VCF file, or (d) require code modifications to existing
bioinformatics tools while hindering adoption. Hence, they
are insufficient/inapplicable to securely execute the entire
variant calling pipeline while protecting the genomes from data
breaches. Although Fujiwara et. al.’s work [28] is similar to
ours in terms of protecting genomic data against data breaches,
their quantum cloud infrastructure is highly specialized and
requires quantum key distribution.

C. SmartNICs and DPDK

SmartNICs are programmable NICs that are used for more
efficient data center networking, security, and storage [13].
They act as accelerators and contain computing elements (e.g.,
x86 cores, FPGAs). Tasks from server CPUs (e.g., network
packet processing, cryptographic operations) can be offloaded
to SmartNICs freeing up CPU cores for running other tasks
such as customer applications. DPDK [9] is a framework for
fast packet processing in data plane applications and supports
20+ SmartNIC vendors. NICs and virtual I/O devices are
accessed by polling as to avoid the performance overhead im-
posed by interrupt processing. A cryptography device library
is used to perform cryptographic operations, both in hardware
and software. Note that GPU-based encryption/decryption is
beyond the scope of our work.

D. Threat Model and Assumptions

We consider an attacker that has maliciously gained ac-
cess to a server (e.g., due to a compromised user account)
that is used to execute variant calling. The server can be
a bare-metal machine or a virtual machine (VM) hosted
in a cloud environment. The attacker attempts to steal the
FASTQ/BAM/SAM/VCF files of individuals on the server.
Using these files, the attacker can exploit the genomic data of
individuals to compromise their privacy or illegally advance
biotechnology. We assume that the server OS and bioinformat-
ics tools are trusted and cannot be exploited by the attacker.

III. DESIGN OF SVC

In this section, we present the novel design of SVC for
secure variant calling. We first discuss challenges in designing
SVC and then discuss its client-server architecture.

A. Challenges

Without loss of generality, we consider a typical DNA
variant calling pipeline shown in Table I. Each stage is de-
scribed briefly in the table, wherein S1 creates the interleaved
FASTQ file, S2 performs alignment, S3 does pre-processing,
and finally S4 invokes the variant caller. The intermediate files
can be used for quality control and generating useful statistics.

Fig. 1. Overall architecture of SVC

TABLE I
A TYPICAL DNA VARIANT CALLING PIPELINE

Stage Description
S1 Construct the interleaved FASTQ file for the paired-end

FASTQ files
S2 Align the interleaved FASTQ file against the reference

genome (e.g., using BWA-MEM) to produce a .sam file
S3 On the .sam file, sort the aligned reads (e.g., coordinate

order) and mark duplicate reads to produce a .bam file
S4 Invoke the variant calling method (e.g., FreeBayes) to produce

a .vcf file

Several challenges arise in designing SVC. First, widely-
adopted bioinformatics tools should not require code modifica-
tions to work with SVC. These tools operate on plaintext input
and produce plaintext output. (Use of TEEs or homomorphic
encryption would require code modifications to them.) Other-
wise, it will be difficult for bioinformaticians to adopt SVC.
Second, all files that can compromise an individual’s identity
(i.e., FASTQ, SAM/BAM, and VCF files), which are read
and written to disk during the execution of the variant calling
pipeline, should be encrypted. This means that each encrypted
file should be read by a SmartNIC, and the decrypted output
should be passed to a variant calling stage securely. Further,
the plaintext output produced by a bioinformatics tool should
be encrypted by the SmartNIC. The variant pipeline can
take several hours to execute depending on the size of the
input genome. So any unencrypted genomic data on persistent
storage creates the risk of being stolen by an adversary. Finally,
SVC should achieve good performance to be competitive with
variant calling on unencrypted sequences.

B. SVC-Client

The overall architecture of SVC is shown in Figure 1. The
client-side module is called SVC-Client, which executes
on the user’s computer that has a genome sequence. This
sequence will be processed by the remote server to compute
the raw variants. The main goal of SVC-Client is to (a)
securely transmit the genome to the server for variant calling,
and (b) securely obtain the VCF file from the server. Only
encrypted data are sent and received by SVC-Client to
avoid attacks over the network. (Note that SmartNICs are not
involved in the data transfer of the genomes/VCF files.)

Algorithm 1 shows the steps executed by SVC-Client.
The paired-end FASTQ files are first combined to create an
interleaved FASTQ file (Line 2) using a tool like SeqFu [66].

Algorithm 1 SVC-Client: Main Steps Performed
Input: F1, F2 - plaintext paired-end FASTQ files; m -

message size
Output: output.vcf - plaintext VCF file

1: Stage S1: Interleaved FASTQ construction
2: Construct interleaved FASTQ file G from F1 and F2
3: For G, generate a random AES key KG

4: IN ← “G”; OUT← “G.enc” /* Input and output files */
5: Open IN for reading; OUT for writing
6: while !end-of-file of IN do
7: Read a data block d of m bytes from IN
8: Randomly generate nonce /* 96 bits */
9: Let counter ← 0 /* 32 bits */

10: IV ← (nonce||counter) /* 128 bits */
11: Use AES (i.e., AES-CTR/AES-GCM) to encrypt d with

(KG, IV) and write o/p to OUT
12: Write IV to OUT
13: Close IN and OUT
14: Copy G.enc to server (e.g., using SCP)
15: Wait for the server to finish variant calling
16: Copy encrypted file output.vcf.enc from the server
17: IN ← “output.vcf.enc”; OUT ← “output.vcf”
18: Open IN for reading; OUT for writing
19: while !end-of-file of IN do
20: Read a data block d of m bytes from IN
21: Read IV ′ from IN
22: Use AES (i.e., AES-CTR/AES-GCM) to decrypt d with

(K, IV ′) and write o/p to OUT
23: Close IN and OUT
24: return output.vcf

SVC-Client randomly generates an AES key and initializa-
tion vector (Line 3). Note that a password-based key derivation
function [1] can be used to generate the AES key. For a chosen
message size m, each m-byte block of the interleaved FASTQ
file is encrypted using AES encryption. For each block, a
random initialization vector (IV) is chosen. This ensures that
the same key/IV is used only once for encryption, thereby
reducing the chance of attacks [40]. Each IV is appended after
the encrypted block, and both are written to the output file.
The steps are shown in Lines 6-12.

The encrypted file is transmitted to the server (e.g., using
SCP). Once the server completes the variant calling pipeline,
and the encrypted VCF file (containing raw variants) is trans-
mitted from the server to SVC-Client. The VCF file is
decrypted using the same AES key. The steps are shown in
Lines 19-22.

C. SVC-Server

Next, we present the design of the server-side module called
SVC-Server to overcome the challenges described earlier.

a) Use of Named Pipes: To address the first challenge
of avoiding modification to existing bioinformatics tools,
SVC-Server employs named pipes provided by the under-
lying OS for inter-process communication. Two processes can

exchange data where one serves as the producer and the other
serves as the consumer. By setting appropriate file permissions,
only authorized user names/processes can read from/write to
a named pipe. So existing tools (e.g., BWA-MEM, Picard [5],
SAMtools [24], FreeBayes) can now read (plaintext) input
from one named pipe (say Pipe1) and write (plaintext) output
to another named pipe (say Pipe2). A SmartNIC must now
do two tasks each time any of the aforementioned tools is
executed: (a) read the encrypted input file, decrypt it, and
write the plaintext output to Pipe1; and (b) read from Pipe2,
encrypt the data, and write to a file. The SmartNIC can have
one or more crypto devices. Due to the blocking nature of
reading from and writing to named pipes, our initial design
made with a single crypto device made it difficult to program
correctly as it caused the blocking of a variant calling pipeline
stage. Hence, we improved our design to use two crypto
devices on the SmartNIC: one will write to Pipe1 and the
other will read from Pipe2.

b) Use of DPDK: We developed a new DPDK module
to manage the SmartNIC during variant calling. This mod-
ule initializes and accesses the crypto devices for encryp-
tion/decryption tasks as well as reads from Pipe2 and writes
data to Pipe1. Algorithm 2 shows the initialization steps.
The DPDK Environment Abstraction Layer (EAL) is first
initialized (Line 1). The aforementioned named pipes Pipe1
and Pipe2 are created (Line 2). Assuming two Ethernet ports
and two crypto devices are needed, each port is mapped to
one crypto device. After that a DPDK Worker thread is pinned
to a logical core to manage one port/crypto device pair. One
named pipe is created for each DPDK Worker to receive input
instructions to either encrypt/decrypt, the location from where
to read input data, and the location to write output data. (See
Lines 3-6). The instruction format is “IN⇒OP⇒OUT”. The
value of IN (location to read) and OUT (location to write) can
be a regular file or a named pipe. The value of OP is either
ENCRYPT or DECRYPT.

Finally, SVC-Server prompts the user on standard input
to enter the AES key used for encryption to avoid saving the
key on storage. Recall that SVC-Client uses a random AES
key to encrypt a genome.

Algorithm 2 SVC-Server: DPDK Initialization
Input: N - number of crypto devices (N = 2)

1: Initialize DPDK Environment Abstraction Layer (EAL)
2: Create two named pipes, Pipe1 and Pipe2
3: for i in 1 to N do
4: Initialize Ethernet port/crypto device pair on the Smart-

NIC
5: Pin a DPDK Worker thread to a logical core to manage

the Ethernet port/crypto device
6: Create a named pipe Ipipei for the DPDK Worker to

receive instructions during variant calling
7: K ← Prompt the user to input AES key via standard input

Algorithm 3 shows the steps performed by a DPDK Worker
based on the input instructions received. The Worker i first

opens the named pipe Ipipei, performs a blocking read to
fetch the instruction from the pipe, and then closes the pipe
(Lines 2-4). Therefore, any write to this pipe (with new
instructions) will block as the pipe is closed by the Worker.
The instruction is parsed to identify the input location, output
location, and operation. The input location is read as fixed-size
blocks till the end of file is reached. For each m-byte block,
if the operation is ENCRYPT, then the block is encrypted
(using the AES key K and a randomly generated IV) by the
assigned crypto device and written to the output location. (See
Lines 9-15.) If the command is DECRYPT, then each block is
decrypted using the crypto device and written to the output
location. (See Lines 16-19.) Finally, the input/output locations
are closed (Line 20).

Algorithm 3 SVC-Server: DPDK Worker
Input: i - ID of DPDK Worker; IP ipei - Named pipe to read

instructions; m - message size
1: while True do
2: Open IP ipei
3: Read instruction “IN⇒OP⇒OUT” ← IP ipei
4: Close IP ipei
5: Let Ci denote the crypto device managed by Worker i
6: Open IN for reading, OUT for writing
7: while !end-of-file of IN do
8: Read a data block d of m bytes from IN
9: if OP = “ENCRYPT” then

10: Randomly generate nonce /* 96 bits */
11: Let counter ← 0 /* 32 bits */
12: IV ← (nonce||counter) /* 128 bits */
13: Enqueue d to Ci for encryption using AES (i.e.,

AES-CTR/AES-GCM) with (K, IV)
14: Dequeue encrypted output of d from Ci & write

to OUT
15: Write IV to OUT
16: else if OP = “DECRYPT” then
17: Read IV from IN
18: Enqueue d to Ci for decryption using AES (i.e.,

AES-CTR/AES-GCM) with (K, IV)
19: Dequeue decrypted output of d from Ci & write

to OUT
20: Close IN and OUT

c) Variant Calling Pipeline: Before we discuss the entire
variant calling pipeline of SVC-Server, we first present how
named pipes and crypto devices are synergistically used to
process a single pipeline stage. (This design enables us to
address the third challenge of achieving good performance.)
Without loss of generality, let us consider the alignment stage
(Stage 2). Figure 2 shows an illustration. The Variant Calling
Driver in SVC-Server sends one instruction to Ipipe1 to
decrypt the input file and another instruction to Ipipe2 to
encrypt the output of the alignment stage. The encrypted
interleaved FASTQ file is then read by the DPDK Worker
managing Crypto device 1. This device decrypts the encrypted
blocks using AES and writes plaintext FASTQ data into

Pipe1. The unmodified BWA [47] binary reads from Pipe1
(in a blocking manner) and processes the input sequence. The
plaintext SAM output produced by BWA is written to Pipe2.
The DPDK Worker managing Crypto device 2 reads from
Pipe2 in a blocking manner. It encrypts the plaintext blocks
using AES and writes ciphertext to a file. Our design is generic
and handles every pipeline stage the same way. All the files on
persistent storage are in ciphertext, thus addressing the second
challenge of safeguarding an individual’s privacy.

Fig. 2. Generic design using named pipes/crypto devices

The overall steps executed by the Variant Calling Driver are
shown in Algorithm 4. The input is an encrypted interleaved
FASTQ file sent by SVC-Client. The final output is an
encrypted VCF file containing raw variants. The unmodified
bioinformatics tool for a stage reads data from Pipe1 and
writes data to Pipe2. Stage 2 involving alignment is started
by first sending on instruction to Ipipe1 to decrypt the input
and another instruction to Ipipe2 to encrypt the output of
alignment (Lines 2-3). BWA is executed to read a pipe input
and write to a pipe output (Line 4). Stage 3 is executed
in two phases: In the first phase, sorting of aligned reads
is done. Two instructions are sent to Ipipe1 and Ipipe2 to
decrypt/encrypt and then the SAMtools binary is executed for
sorting (Lines 6-8). In the second phase, marking duplicates
is performed. Once again, two instructions are sent to the
named pipes and the Picard binary is executed (Lines 10-12).
Lastly, the variant calling method is executed (e.g., FreeBayes)
after the instructions to decrypt/encrypt are sent to the pipes
(Lines 14-16). The encrypted VCF file can now be transmitted
back to SVC-Client. (For security reasons, SVC-Server
can create new named pipes before executing the pipeline and
delete them after use.)

IV. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
SVC. Specifically, we measured the overhead incurred by
SVC-Server for the variant calling pipeline on encrypted
sequences compared to executing the pipeline on plain-
text/unencrypted sequences. We could not compare with tools
such as Crypt4GH [61] as this requires code modifications to
the bioinformatics tools used by the pipeline.

A. Implementation and Experimental Setup
We used C, DPDK, Python, and Bash for our implementa-

tion. The DPDK code was compiled and built using Meson.

Algorithm 4 SVC-Server: Variant Calling Driver
Input: IFQ.enc - encrypted interleaved FASTQ file; Pipe1,

Pipe2 - named pipes for passing data; Ipipe1, Ipipe2 -
named pipes for passing instructions

Output: output.vcf.enc - encrypted VCF file
1: Stage S2: Alignment
2: Send “IFQ.enc⇒DECRYPT⇒Pipe1” → Ipipe1
3: Send “Pipe2⇒ENCRYPT⇒SAM.enc” → Ipipe2
4: Run BWA (to align reads) by reading input sequence

from Pipe1 and sending output to Pipe2
5: Stage S3a: Sorting aligned reads
6: Send “SAM.enc⇒DECRYPT⇒Pipe1” → Ipipe1
7: Send “’Pipe2⇒ENCRYPT⇒BAM.enc” → Ipipe2
8: Using SAMtools, sort the SAM file by reading input

aligned reads from Pipe1 and writing the sorted output
to Pipe2

9: Stage S3b: Mark duplicates
10: Send “BAM.enc⇒DECRYPT⇒Pipe1” → Ipipe1
11: Send “Pipe2⇒ENCRYPT⇒DEDUP.enc” → Ipipe2
12: Using Picard, perform mark duplicates by reading input

from Pipe1 and writing output to Pipe2
13: Stage S4: Variant calling
14: Send “DEDUP.enc⇒DECRYPT⇒Pipe1” → Ipipe1
15: Send “Pipe2⇒ENCRYPT⇒V CF.enc” → Ipipe2
16: Run variant caller (e.g., FreeBayes) by reading from

Pipe1 and writing output to Pipe2
17: return output.vcf.enc

We conducted all our experiments on FABRIC [21], a testbed
for next-generation Internet design and scientific applications.
Note that FABRIC is available for academic research at no
charge. A slice containing VMs can be created on a site.
Hardware accelerators such as SmartNICs can be attached
to a slice/VM. We created a slice with one VM containing
one NVIDIA Mellanox ConnectX-6 VPI MCX653 dual port
(100 Gbps) SmartNIC. The VM had 10 cores, 32 GB RAM,
and 100 GB SSD storage running Ubuntu Linux (22.04 LTS).
DPDK 23.03, the MLNX OFED 23.04-1.1.3.0 driver, and
Intel Multi-Buffer Crypto Library 1.3 were installed. Note that
the chosen SmartNIC on FABRIC supported only software-
based crypto operations via DPDK’s cryptodev library. For the
single sample DNA variant calling pipeline, we used BWA-
MEM (0.7.17) [47], Picard (2.27.4) [5], SAMtools (1.18) [24],
and FreeBayes (1.3.6) [30].

B. Results

We chose three (paired-end) low-coverage genome se-
quences (of different sizes) from the 1000 Genomes
Project [3]. Table II shows the size of the interleaved FASTQ
file for each sequence. We used AES-CTR [38] with 128- and
256-bit key sizes for symmetric encryption in SVC-Server.
We measured the wall-clock time taken by SVC-Server to
execute different stages of the variant calling pipeline (i.e.,
S2, S3, and S4) while ensuring all files are encrypted. (Note
that stage S1 was performed by SVC-Client.) We also

measured the wall-clock time taken to execute the same stages
on plaintext input sequence producing plaintext intermediate
files and VCF file. (Of course, the SmartNIC and named
pipes were not used for plaintext data.) We refer to this
baseline approach as PlaintextVC. For correctness, we
ensured that the raw variants computed by SVC-Server and
PlaintextVC were identical. Table II shows the total time
taken by SVC-Server and PlaintextVC as well as the
time taken for different stages. The results demonstrate that
SVC-Server introduced very little overhead and was slightly
slower than PlaintextVC (i.e., about 1% slower). For
example, on the 15 GB interleaved FASTQ file, SVC-Server
took 5 h 22 m, whereas PlaintextVC required 5 h 19 m.
Thus, SVC’s unique design is efficient for enabling secure
variant calling on sensitive human genomes.

TABLE II
PERFORMANCE COMPARISON

Sequence ID Pipeline Time Taken (hh:mm:ss)
(Interleaved FASTQ Stage SVC-Server Plain

size, overhead) 128-bit 256-bit textVC

ERR062934 S2 0:26:46 0:26:59 0:26:17
(3.8 GB, S3 0:19:33 0:19:08 0:19:16

0.72% slower) S4 0:24:50 0:25:05 0:25:08
Total 1:11:09 1:11:12 1:10:41

ERR022463 S2 1:12:36 1:11:21 1:11:53
(8.5 GB, S3 0:57:11 0:58:15 0:56:11

1.07% slower) S4 0:48:27 0:48:31 0:48:16
Total 2:58:14 2:58:07 2:56:20

SRR111943 S2 2:26:58 2:27:18 2:26:08
(15.0 GB, S3 1:40:50 1:42:47 1:41:19

1.0% slower) S4 1:11:50 1:11:47 1:11:14
Total 5:19:38 5:21:52 5:18:41

V. CONCLUSION

We presented SVC, a new technique for secure variant
calling on human genomes. SVC’s client sends an encrypted
interleaved FASTQ file to SVC’s server, which executes the
variant calling pipeline. Using DPDK, SVC’s server leverages
a SmartNIC to offload the encrypt/decrypt operations during
variant calling. Named pipes are used to communicate between
the DPDK module and existing bioinformatics tools without
any code modifications to these tools enabling wider adoption.
The encrypted file containing raw variants is transmitted back
to the client. All files consumed and produced during variant
calling are always encrypted on storage rendering them un-
readable to an adversary if a data breach occurs. SVC achieved
competitive performance on different genome sequences with
very little overhead due to encryption/decryption. In sum-
mary, SVC enables users to efficiently and securely perform
variant calling on servers such as those managed by cloud
providers. The software is available at https://github.com/MU-
Data-Science/GAF/SVC.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under Grant No. 2201583. We thank the anonymous
reviewers for their suggestions and the FABRIC team.

REFERENCES

[1] The scrypt Password-Based Key Derivation Function. https://datatracker.
ietf.org/doc/html/rfc7914.html.

[2] FASTQ Format Specification. https://maq.sourceforge.net/fastq.shtml,
2000.

[3] 1000 Genomes Phase 3 Release. https://www.internationalgenome.org/,
2015.

[4] Privacy in Genomics. https://www.genome.gov/about-genomics/policy-
issues/Privacy, 2018.

[5] Picard Toolkit. https://broadinstitute.github.io/picard/, 2019.
[6] The “All of Us” Research Program. New England Journal of Medicine,

381(7):668–676, 2019.
[7] Big Data Genomics, 2020. https://github.com/bigdatagenomics/.
[8] The COVID Human Genetic Effort. https://www.covidhge.com/, 2020.
[9] Data Plane Development Kit. https://www.dpdk.org/, 2021.

[10] HIPAA Encryption: What You Should Know. https://compliancy-group.
com/hipaa-encryption/, 2021.

[11] National Counterintelligence and Security Center. https://www.dni.gov/
files/NCSC/documents/SafeguardingOurFuture, 2021.

[12] Sequence Alignment/Map Format Specification.
https://samtools.github.io/hts-specs/SAMv1.pdf, 2021.

[13] The Rise of SmartNICs. https://semiengineering.com/the-rise-of-
smartnics/, 2021.

[14] 23andMe Confirms Hackers Stole Ancestry Data on 6.9 Million
Users. https://techcrunch.com/2023/12/04/23andme-confirms-hackers-
stole-ancestry-data-on-6-9-million-users/, 2023.

[15] GATK4. https://github.com/broadinstitute/gatk, 2023.
[16] GDPR - Encryption. https://gdpr-info.eu/issues/encryption/, 2023.
[17] Genomics on AWS. https://aws.amazon.com/health/genomics/, 2023.
[18] Life Sciences Solutions. https://cloud.google.com/life-sciences-

solutions, 2023.
[19] Terra. https://terra.bio/, 2023.
[20] E. Ayday, J. L. Raisaro, U. Hengartner, A. Molyneaux, and J.-P. Hubaux.

Privacy-Preserving Processing of Raw Genomic Data. In Data Privacy
Management and Autonomous Spontaneous Security, pages 133–147.
Springer, 2014.

[21] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, and P. Ruth. FABRIC: A National-Scale Programmable Ex-
perimental Network Infrastructure. IEEE Internet Computing, 23(6):38–
47, 2019.

[22] A. Caulfield, P. Costa, and M. Ghobadi. Beyond smartnics: Towards a
fully programmable cloud: Invited paper. In 2018 IEEE 19th Interna-
tional Conference on High Performance Switching and Routing (HPSR),
pages 1–6, 2018.

[23] F. Chen, M. Dow, S. Ding, Y. Lu, X. Jiang, H. Tang, and S. Wang.
PREMIX: PRivacy-preserving EstiMation of Individual admiXture. In
AMIA Annual Symposium Proceedings, volume 2016, pages 1747–1755,
2016.

[24] P. Danecek, J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard,
A. Whitwham, T. Keane, S. A. McCarthy, R. M. Davies, and H. Li.
Twelve Years of SAMtools and BCFtools. GigaScience, 10(2), 2021.

[25] M. Das, K. Shehzad, and P. Rao. Efficient Variant Calling on Human
Genome Sequences Using a GPU-Enabled Commodity Cluster. In Proc.
of 32nd ACM Intl. Conf. on Information and Knowledge Management
(CIKM), pages 3843–3848, 2023.

[26] B. J. Evans and G. P. Jarvik. Impact of HIPAA’s Minimum Necessary
Standard on Genomic Data Sharing. Genetics in Medicine, 20(5):531–
535, 2018.

[27] D. Freed, R. Pan, H. Chen, Z. Li, J. Hu, and R. Aldana. DNAscope:
High Accuracy Small Variant Calling Using Machine Learning. bioRxiv,
2022.

[28] M. Fujiwara, H. Hashimoto, K. Doi, M. Kujiraoka, Y. Tanizawa,
Y. Ishida, M. Sasaki, and M. Nagasaki. Secure Secondary Utilization
System of Genomic Data Using Quantum Secure Cloud. Scientific
reports, 12(1):18530, 2022.

[29] GA4GH. The Variant Call Format (VCF) Version 4.2 Specification.
https://samtools.github.io/hts-specs/VCFv4.2.pdf, 2021.

[30] E. Garrison and G. Marth. Haplotype-Based Variant Detection from
Short-Read Sequencing, 2012. https://github.com/freebayes/freebayes.

[31] S. Goodwin, J. D. McPherson, and W. R. McCombie. Coming of Age:
Ten Years of Next-Generation Sequencing Technologies. Nature Reviews
Genetics, 17(6):333–351, 2016.

[32] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren. SmartNIC Perfor-
mance Isolation with FairNIC: Programmable Networking for the Cloud.
In Proc. of SIGCOMM 2020, page 681–693, 2020.

[33] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Er-
lich. Identifying Personal Genomes by Surname Inference. Science,
339(6117):321–324, 2013.

[34] M. Z. Hasan, M. S. R. Mahdi, M. N. Sadat, and N. Mohammed.
Secure Count Query on Encrypted Genomic Data. Journal of biomedical
informatics, 81:41–52, 2018.

[35] D. He, N. A. Furlotte, F. Hormozdiari, J. W. J. Joo, A. Wadia, R. Os-
trovsky, A. Sahai, and E. Eskin. Identifying Genetic Relatives Without
Compromising Privacy. Genome research, 24(4):664–672, 2014.

[36] J. R. Heldenbrand, S. Baheti, M. A. Bockol, T. M. Drucker, S. N. Hart,
M. E. Hudson, R. K. Iyer, M. T. Kalmbach, E. W. Klee, E. D. Wieben,
et al. Performance Benchmarking of GATK3.8 and GATK4. BioRxiv,
page 348565, 2018.

[37] M. Hosseini, D. Pratas, and A. J. Pinho. Cryfa: A Secure Encryption
Tool for Genomic Data. Bioinformatics, 35(1):146–148, 07 2018.

[38] R. Housley. Using Advanced Encryption Standard (AES) Counter Mode
With IPsec Encapsulating Security Payload (ESP). RFC 3686, Jan. 2004.

[39] L. Kamm, D. Bogdanov, S. Laur, and J. Vilo. A New Way to Protect Pri-
vacy in Large-Scale Genome-Wide Association Studies. Bioinformatics,
29(7):886–893, 2013.

[40] P. Kampanakis, M. Campagna, E. Crocket, and A. Petcher. Practical
Challenges With AES-GCM and The Need for a New Cipher. Third
NIST Workshop on Block Cipher Modes of Operation, 2023.

[41] D. Kim, S. Lee, and K. Park. A Case for SmartNIC-Accelerated Private
Communication. In Proc.of the 4th APNET Workshop, page 30–35,
2020.

[42] D. C. Koboldt. Best Practices for Variant Calling in Clinical Sequencing.
Genome Medicine, 12(1):91, 2020.

[43] C. Kockan, K. Zhu, N. Dokmai, N. Karpov, M. O. Kulekci, D. P.
Woodruff, and S. C. Sahinalp. Sketching Algorithms for Genomic Data
Analysis and Querying in a Secure Enclave. Nature Methods, 17(3):295–
301, Mar. 2020.

[44] B. Langmead and A. Nellore. Cloud Computing for Genomic Data
Analysis and Collaboration. Nature Reviews Genetics, 19(4):208–219,
2018.

[45] K. Lauter, A. López-Alt, and M. Naehrig. Private Computation on
Encrypted Genomic Data. In International Conference on Cryptology
and Information Security in Latin America, pages 3–27. Springer, 2014.

[46] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift, and
T. V. Lakshman. UNO: Uniflying Host and Smart NIC Offload for
Flexible Packet Processing. In Proc. of the 2017 Symposium on Cloud
Computing, page 506–519, 2017.

[47] H. Li. Aligning Sequence Reads, Clone Sequences and Assembly
Contigs With BWA-MEM. arXiv preprint arXiv:1303.3997, Mar. 2013.

[48] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta.
Offloading Distributed Applications onto SmartNICs Using IPipe. In
Proc. of the ACM SIGCOMM Conference, page 318–333, 2019.

[49] P. J. McLaren, J. L. Raisaro, M. Aouri, M. Rotger, E. Ayday, I. Bartha,
M. B. Delgado, Y. Vallet, H. F. Günthard, M. Cavassini, et al. Privacy-
Preserving Genomic Testing in The Clinic: A Model Using HIV Treat-
ment. Genetics in medicine, 18(8):814–822, 2016.

[50] S. Miano, R. Doriguzzi-Corin, F. Risso, D. Siracusa, and R. Sommese.
Introducing SmartNICs in Server-Based Data Plane Processing: The
DDoS Mitigation Use Case. IEEE Access, 7:107161–107170, 2019.

[51] NCBI. Genome Reference Consortium Human Build 38, 2013. https:
//www.ncbi.nlm.nih.gov/assembly/GCF 000001405.26.

[52] F. A. Nothaft. Scalable Systems and Algorithms for Genomic Variant
Analysis. PhD thesis, UC Berkeley, ProQuest, 2017.

[53] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yeksi-
gian, J. Kottalam, A. Ahuja, J. Hammerbacher, M. D. Linderman, M. J.
Franklin, A. D. Joseph, and D. A. Patterson. Rethinking Data-Intensive
Science Using Scalable Analytics Systems. In Proc. of the 2015 ACM
SIGMOD Conference, pages 631–646, 2015.

[54] K. A. O’Connell, Z. B. Yosufzai, R. A. Campbell, C. J. Lobb, H. T.
Engelken, L. M. Gorrell, T. B. Carlson, J. J. Catana, D. Mikdadi, V. R.
Bonazzi, and J. A. Klenk. Accelerating Genomic Workflows Using
NVIDIA Parabricks. BMC Bioinformatics, 24, 2023.

[55] R. Poplin, P.-C. Chang, D. Alexander, S. Schwartz, T. Colthurst, A. Ku,
D. Newburger, J. Dijamco, N. Nguyen, P. T. Afshar, S. Gross, L. Dorf-
man, C. McLean, and D. Mark. A Universal SNP and Small-Indel

Variant Caller Using Deep Neural Networks. Nature Biotechnology,
36(10):983–987, 2018.

[56] P. Rao and A. Zachariah. Enabling Large-Scale Human Genome
Sequence Analysis on CloudLab. In IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), pages 1–2, 2022.

[57] P. Rao, A. Zachariah, D. Rao, P. Tonellato, W. Warren, and E. Simoes.
Accelerating Variant Calling on Human Genomes Using a Commodity
Cluster. In Proc. of 30th ACM Intl. Conf. on Information and Knowledge
Management (CIKM), pages 3388–3392, 2021.

[58] A. Regalado. China’s BGI Says It Can Sequence a Genome for Just
$100. MIT Technology Review, February, 26:2020, 2020.

[59] K. Scheffler, S. Catreux, T. O’Connell, H. Jo, V. Jain, T. Heyns, J. Yuan,
L. Murray, J. Han, and R. Mehio. Somatic Small-Variant Calling
Methods in Illumina DRAGEN™ Secondary Analysis. bioRxiv, 2023.

[60] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy.
Xenic: SmartNIC-Accelerated Distributed Transactions. In Proc. of the
ACM SIGOPS 28th Symposium on Operating Systems Principles, page
740–755, 2021.

[61] A. Senf, R. Davies, F. Haziza, J. Marshall, J. Troncoso-Pastoriza, O. Hof-
mann, and T. M. Keane. Crypt4GH: A File Format Standard Enabling
Native Access to Encrypted Data. Bioinformatics, 37(17):2753–2754,
02 2021.

[62] Sentieon. Cost-effective and accurate genomics analysis with Sentieon
on AWS. 2023. https://www.nature.com/articles/d44224-023-00020-w.

[63] K. Shimizu, K. Nuida, and G. Rätsch. Efficient Privacy-Preserving String
Search and an Application in Genomics. Bioinformatics, 32(11):1652–
1661, 2016.

[64] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J.
Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson. Big Data:
Astronomical or Genomical? PLOS Biology, 13(7):1–11, 2015.

[65] K. Taranov, B. Rothenberger, A. Perrig, and T. Hoefler. sRDMA –
Efficient NIC-based Authentication and Encryption for Remote Direct
Memory Access. In 2020 USENIX Annual Technical Conference, pages
691–704, 2020.

[66] A. Telatin, P. Fariselli, and G. Birolo. SeqFu: A Suite of Utilities
for the Robust and Reproducible Manipulation of Sequence Files.
Bioengineering, 8(5), 2021.

[67] S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong,
and X. Jiang. HEALER: Homomorphic Computation of ExAct Logistic
rEgRession for Secure Rare Disease Variants Analysis in GWAS.
Bioinformatics, 32(2):211–218, 2016.

[68] W. Xie, M. Kantarcioglu, W. S. Bush, D. Crawford, J. C. Denny,
R. Heatherly, and B. A. Malin. SecureMA: Protecting Participant Privacy
in Genetic Association Meta-Analysis. Bioinformatics, 30(23):3334–
3341, 2014.

[69] J. Xing, Y. Qiu, K.-F. Hsu, S. Sui, K. Manaa, O. Shabtai, Y. Piasetzky,
M. Kadosh, A. Krishnamurthy, T. S. E. Ng, and A. Chen. Unleashing
SmartNIC Packet Processing Performance in P4. In Proc. of the ACM
SIGCOMM 2023 Conference, page 1028–1042, 2023.

[70] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster Computing with Working Sets. In Proc. of the 2nd
USENIX Conference on Hot Topics in Cloud Computing, pages 1–7,
Boston, 2010.

[71] Y. Zhang, M. Blanton, and G. Almashaqbeh. Secure Distributed Genome
Analysis for GWAS and Sequence Comparison Computation. BMC
Medical Informatics and Decision Making, 15(5):S4, Dec. 2015.

[72] J. Zhao, M. Neves, and I. Haque. On the (dis)Advantages of Pro-
grammable NICs for Network Security Services. In 2023 IFIP Net-
working Conference (IFIP Networking), pages 1–9, 2023.

[73] Y. Zhao, X. Wang, X. Jiang, L. Ohno-Machado, and H. Tang. Choosing
Blindly But Wisely: Differentially Private Solicitation of DNA Datasets
for Disease Marker Discovery. In JAMIA, 22(1):100–108, 2015.

