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ABSTRACT

The massive and large-scale design of foundational semiconductor integrated cir-
cuits (ICs) is crucial to sustaining the advancement of many emerging and fu-
ture technologies, such as generative Al, 5G/6G, and quantum computing. Ex-
citingly, recent studies have shown the great capabilities of foundational mod-
els in expediting the design of digital ICs. Yet, applying generative Al tech-
niques to accelerate the design of analog ICs remains a significant challenge due
to critical domain-specific issues, such as the lack of a comprehensive dataset
and effective representation methods for analog circuits. This paper proposes,
AnalogGenie, a Generative engine for automatic design/discovery of Analog cir-
cuit topologies—the most challenging and creative task in the conventional man-
ual design flow of analog ICs. AnalogGenie addresses two key gaps in the
field: building a foundational comprehensive dataset of analog circuit topology
and developing a scalable sequence-based graph representation universal to ana-
log circuits. Experimental results show the remarkable generation performance
of AnalogGenie in broadening the variety of analog ICs, increasing the num-
ber of devices within a single design, and discovering unseen circuit topolo-
gies far beyond any prior arts. Our work paves the way to transform the long-
standing time-consuming manual design flow of analog ICs to an automatic
and massive manner powered by generative Al. Our source code is available at
https://github.com/xz-group/AnalogGenie.

1 INTRODUCTION

Semiconductor integrated circuits (ICs) are the foundational hardware cornerstone to advance many
emerging technologies such as generative Al, 5G/6G, and quantum computing. The demand for
and the scale of ICs are soaring to unprecedented levels with the ever-increasing information and
computing workloads (e.g., training foundation models with billions of parameters) (Achiam et al.,
2023). Thus, accelerating the design of advanced ICs is a key to sustaining the development of future
technologies. Excitingly, recent breakthroughs in generative Al have presented transformative op-
portunities to expedite the conventional design flows of ICs. Domain-specific large language models
(LLMs) have been developed to free human designers by automatically generating and correcting
Hardware Description Languages (HDL) (Zhong et al., 2023; Blocklove et al., 2023; Chang et al.,
2023; Thakur et al., 2024; 2023; Fu et al., 2023; Liu et al., 2023b; Wu et al., 2024; Liu et al., 2023a),
which can be seamlessly used to synthesize digital ICs with desired functionalities. As an example,
NVIDIA’s ChipNeMo (Liu et al., 2023a), a powerful domain-adapted LLM, can rapidly generate
valuable digital designs with just a few prompts. Yet, applying generative Al to speed up the de-
sign of analog ICs—essential in ubiquitous electronic systems to bridge the interfaces between the
physical world and cyberspace, ranging from enhancing performance in computing systems (e.g.,
high-speed memory interfaces and I/O links) to providing critical functionalities in communication
and sensing systems (e.g., 5G/6G and quantum computing)-remains significantly understudied.

The fundamental challenge arises from the intricate design complexities of analog ICs. Unlike
digital ICs that can be universally and hierarchically abstracted into Boolean logic representations
and easily described with high-level hardware description languages (e.g., Verilog and VHDL) or
programming languages (e.g., C), analog ICs remain intractable to such abstraction due to their
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lack of systematic hierarchical representation and the heuristic and knowledge-intensive nature of
their design process (Gielen & Rutenbar, 2000). This makes it extremely hard to automate the
design of analog ICs by developing programming languages similar to those used for digital ICs. As
such, domain experts have followed a longstanding manual flow to design analog ICs. This process
involves a number of time-consuming stages, such as selecting/creating an existing (new) circuit
topology (i.e., defining the connections between devices), optimizing device parameters based on
the topology to achieve desired performance, and designing the physical layout of the optimized
circuit for manufacturing. Importantly, the topology generation stage is the foundation and most
creative part of the analog IC design process, posing a formidable and perennial challenge to design
automation. Addressing it is the key to accelerating the development of analog ICs.

There have been several studies in tackling this problem with generative Al techniques. The early
pioneering work, CktGNN (Dong et al., 2023), formulates the topology design as a graph generation
task, as circuit topologies of analog ICs can be naturally represented as graph structures. It uses a
graph variational autoencoder (VAE) to generate various circuit topologies for a specific type of
analog ICs, i.e., operational-amplifiers (Op-Amps). More recently, foundational models have also
been explored for designing analog circuit topologies. LaMAGIC (Chang et al., 2024), a fine-tuned
masked language model (MLM), has been proposed to generate analog circuits with a fixed number
of graph nodes. It shows a high success rate in designing a specific type of analog ICs, i.e., power
converters (with fewer than 4 devices). AnalogCoder (Lai et al., 2024), another LLM-based work,
uses domain-specific prompt engineering to generate analog circuits from well-established LLM
models (e.g., GPT-4). Instead of directly generating circuit topologies, it generates PySpice codes
that can be converted to a SPICE (Simulation Program with Integrated Circuit Emphasis) netlist—a
textual high-level description of device connections used for circuit simulation. AnalogCoder can
generate a range of conventional analog circuits that often have a limited number of devices on the
order of ten. These methods have demonstrated the potential of applying generative Al to analog IC
design. Yet, a vast untapped frontier remains.

This work proposes, AnalogGenie, a Generative engine (model) for automatic discovery of analog
circuit topologies. In contrast to previous methods (Dong et al., 2023; Chang et al., 2024; Lai
et al., 2024) that are limited to a smaller scale of generation (e.g., generating a single type of ana-
log ICs, small-size analog ICs, or conventional analog ICs), AnalogGenie addresses the problem
of scalable and general design. It can significantly broaden the variety of analog ICs, increase
the number of devices within a single design, and discover unseen circuit topologies. A major ob-
stacle to advancing generative models for scalable analog circuit design automation is the lack of
a comprehensive dataset of analog circuit topologies. We bridge this gap by building a extensive
dataset that consists of more than 3000 distinct analog circuit topologies with diverse functionalities
(e.g., Op-Amps, Low Dropout Regulator (LDO), Bandgap reference, Comparator, Phase-Locked
Loop (PLL), Low Noise Amplifier (LNA), Power Amplifiers (PA), Mixer, Voltage-Controlled Os-
cillator (VCO), etc) from public resources (Razavi, 2000; Razavi & Behzad, 2012; Johns & Martin,
2008; Gray et al., 2009; Allen & Holberg, 2011; Camenzind, 2005). In addition, we apply data
augmentation techniques to expand these circuit topologies by over 70x. To the best of our knowl-
edge, this is the largest circuit dataset that effectively incorporates and enhances existing real-world
analog circuit topologies to the greatest extent. This enables AnalogGenie to effectively learn var-
ious analog topologies and significantly enhance its generation capabilities, surpassing all previous
methods (Dong et al., 2023; Chang et al., 2024; Lai et al., 2024).

Nonetheless, another key barrier to advancing the scalable design of analog circuits is short of a
scalable and unambiguous representation of circuit topologies. AnalogCoder (Lai et al., 2024)
relies on high-level text representations that use multiple tokens to describe a single connection
between devices, making the generation prone to errors. CktGNN (Dong et al., 2023) and LaM-
AGIC (Chang et al., 2024) use graph-based representations with a fixed number of nodes, where
each node represents a circuit device or subgraph. This ignores the critical low-level details essen-
tial in analog circuit design, leading to ambiguous and unscalable circuit generation. We propose a
scalable sequence-style data structure that captures fundamental analog circuit design details while
efficiently describing large circuit graphs. Specifically, we represent each circuit topology as an
undirected graph where each node is a device pin (Figure 3). We then sequentialize it into an Eu-
lerian circuit—a trail that visits every edge exactly once and starts and ends at the same node. This
unique representation allows AnalogGenie to generate circuit topologies in a scalable, flexible, and
efficient manner. These developed dataset and techniques can thus enable AnalogGenie with excep-
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Figure 1: Current states of analog circuit topology generation. (a) Typical data representation for
analog circuit topology. (b) Existing analog circuit topology generation paradigms. Graph provides
a clear one-to-one mapping between the graph generation process and the circuit design process.
PySpice code is a high-level representation, making its generation process more prone to error.

tional capabilities to produce diverse, large, and unseen analog circuit topologies. The advancement
holds both profound engineering and scientific significance, demonstrating that generative Al can
not only meet human expertise but also unlock the possibilities beyond human capability.

The key contributions in this paper are: (1) We propose a generative engine, AnalogGenie, built on
a GPT model to generate diverse analog circuits by predicting the next device pin to connect in the
circuit; (2) We introduce a sequence-based, pin-level graph representation that efficiently and ex-
pressively captures large analog circuit topologies; (3) We develop a comprehensive dataset of ana-
log circuit topologies to advance research in analog electronic design automation using generative
Al and introduce an augmentation scheme to enhance data diversity. (4) Experiment results show
that AnalogGenie is capable of automatically generating far more, large-scale, valid, unseen, and
high-performance topologies compared to existing graph generation and foundation model work.

2  PRELIMINARIES AND RELATED WORKS

2.1 DESIGN PROCESSES OF ANALOG CIRCUITS

The design process of analog circuits begins with creating the circuit topology, which involves de-
termining the device types (i.e., NMOS/PMOS transistor, capacitor, resistor, inductor, etc.) and the
number of devices, and defining how they are interconnected. Following this, designers perform
device sizing, i.e., optimizing the physical dimensions of devices to achieve desired performance.
Finally, the physical layout (i.e., mask design) is developed to prepare for manufacturing. Note that
a physical design is the representation of an IC in terms of planar geometric shapes corresponding
to the different stacked physical layers (e.g., metal, oxide, or semiconductor) during the fabrication
process. Of all these stages, topology design demands the most creative effort, as it needs to be
conceptualized from scratch by human designers. While significant progress has been made in au-
tomating device sizing (Wang et al., 2020; Cao et al., 2022; Gao et al., 2023; Cao et al., 2024) and
layout design (Kunal et al., 2019; Xu et al., 2019), the topology generation remains a challenging
problem due to its abstract and complex nature. This work aims to address this thorny issue.

2.2  GENERATIVE AI FOR ANALOG CIRCUIT TOPOLOGY GENERATION

An analog circuit topology can be naturally represented as a graph structure, providing a clear one-
to-one mapping between graph generation and topology design (Figure 1(a)). For instance, adding
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a node to a graph corresponds directly to adding a new device to a circuit topology, while adding
an edge between nodes represents a new connection between devices. This intuitive representation
has led most existing topology generation methods to focus on graph generation (Figure 1(b)), such
as CktGNN (Dong et al., 2023) and LaMagic (Chang et al., 2024). Yet, these approaches are often
limited to generating only a single type of circuit topology (e.g., Op-Amps or power converters).
This is because they rely on one-shot generation by predicting the adjacency matrix directly and
pre-define the number of nodes for generation, thereby suffering from low scalability (Zhu et al.,
2022). In contrast, our work employs sequential graph generation (Section 3), offering far greater
flexibility and more adaptability to various types of circuit designs.

An analog circuit can also be compiled into a SPICE (Simulation Program with Integrated Circuit
Emphasis) netlist (Figure 1(a)). A SPICE netlist is a text-based high-level description of the con-
nection between devices (i.e., nets) in a circuit topology, which is used in the process of circuit
performance simulation. Leveraging the powerful code and text generation capabilities of LLMs,
recent work, AnalogCoder (Lai et al., 2024), applies domain-specific prompt engineering to exist-
ing LLMs to generate Python-style SPICE (i.e., PySpice) netlists for analog circuits. However, the
availability of publicly accessible SPICE netlist data remains significantly limited compared to the
wealth of publicly available analog circuit topologies. This is because analog circuit topologies
are human-readable illustrations commonly found in textbooks and scientific publications, whereas
netlists are software-oriented representations often used together with confidential semiconductor
technologies to extract circuit performance by simulation tools. Another key challenge faced by
code generation approaches is their reliance on high-level text-based circuit topology representa-
tions. Specifically, to add a new device or connection, autoregressive models must predict multiple
tokens to generate a complete line of code (Figure 1(b)), making them more prone to errors com-
pared to graph-based methods, which require only a single action per step. AnalogCoder (Lai et al.,
2024) shows that even advanced models (e.g., GPT-4) struggle to correctly generate simple circuits
with fewer than 10 devices. Thus, our work focuses on graph generation to achieve a more robust
and scalable generation.

2.3 OPEN-SOURCE ANALOG CIRCUIT DATASETS

The lack of a comprehensive analog circuit dataset fundamentally hinders the development of gen-
erative Al-based methods to automate the design of analog ICs. While some circuit datasets exist
in the field, such as those provided by Align (Kunal et al., 2019), CktGNN (Dong et al., 2023), and
AMSNet (Tao et al., 2024), they are often limited to specific types of analog circuits (i.e., Op-Amp)
without any label (e.g., circuit performance). In addition, most of their topologies are synthesized
by permutating pre-defined template, resulting in non-unique designs. To address this fundamental
gap, we have created a thorough dataset by collecting 3350 distinct analog circuit topologies with di-
verse functionalities (e.g., LDO, Bandgap reference, Comparator, PLL, LNA, PA, Mixer, VCO, etc)
from public resources (Razavi, 2000; Razavi & Behzad, 2012; Johns & Martin, 2008; Gray et al.,
2009; Allen & Holberg, 2011; Camenzind, 2005). To ensure accurate connections, each schematic
is manually drawn in an industry-standard circuit design tool for performance simulation. We also
labeled each circuit with its performance metrics.

3 APPROACH

AnalogGenie is a domain-specific GPT model designed to generate various analog circuit topologies
with greatly improved scalability. To achieve this, we first introduce an expressiveness-enhanced
graph representation that models each device pin as an individual node, ensuring that every connec-
tion and interaction between circuit devices is explicitly represented. Next, we develop a sequence-
style data structure to effectively handle large-scale analog circuits that can be typically modeled
as large and sparse graphs. To further enhance the generation quality of AnalogGenie, we propose
a data augmentation technique to address both data scarcity and the permutation invariance issue
inherent in sequence data. Building upon these innovations, we customize a tokenizer to pre-train
AnalogGenie and perform finetuning afterward, enabling AnalogGenie to generate specific type of
high-performance circuits.
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Figure 2: Overview of AnalogGenie. AnalogGenie represents each topology as a sequence and
generates all sorts of analog circuit topology from scratch by predicting the device pin to connect.

3.1 EXPRESSIVENESS-ENHANCED GRAPH REPRESENTATION FOR TOPOLOGY MODELING

Prior works (Dong et al., 2023; Lu et al., 2023) rely on high-level graph representations to generate
circuit topologies, where each node represents a device or a subgraph. This method omits essen-
tial low-level device details, leading to the issue of ambiguous generation, i.e., a single generated
graph can be interpreted as multiple unique topologies. To understand this, consider that an NMOS
transistor (NM) has four device pins—drain (D), gate (G), source (S), and body (B). When an entire
device is abstracted into a single node, it becomes challenging to interpret to which pin an edge
connects (Figure 3(a)). Therefore, to ensure a unique one-on-one mapping between the graph and
the circuit topology—where every circuit connection is explicitly represented, an analog circuit has
to be represented at the pin level (Figure 3(b)). Furthermore, previous methods restricted the graph
representation of analog circuit topologies to directed acyclic graphs (DAGs), greatly limiting the
types of circuit topologies that can be learned and generated. In this work, we adopt a more expres-
sive and flexible representation of analog circuit topologies. Specifically, we represent the topology
of an analog circuit as a finite connected undirected graph G = (V, E), where V = {1,2,...,n} is
the node set representing each device pin with |V| = nand E € V x V is the edge set. For each
node i in a graph G, we let N'(v) = {u € V' | (u,v) € E} denote the set of neighboring nodes of v.

3.2 SEQUENTIAL GRAPH REPRESENTATION OF SCALABLE ANALOG CIRCUIT TOPOLOGIES

Previous methods (Dong et al., 2023; Lu et al., 2023) use adjacency matrices to represent circuit
graphs. Yet, an adjacency matrix requires O (ng) space to store n nodes, regardless of the number of
edges, which is inefficient for sparse graphs. Analog circuit topologies are typically sparse because
most devices are connected only to their immediate neighbors. As a result, the number of edges e is
far smaller than n?, leaving the adjacency matrix filled with zeros and wasting significant space on
non-existent edges. For example, the graph in Figure 2 has six nodes and six undirected edges or 12
directed edges. An adjacent matrix will need 66 matrices to represent them, wasting 24 elements
to store nothing. In contrast, our work represents the graph as an Eulerian circuit that stores only
existing edges, making it much more efficient than adjacency matrices, particularly for handling
large analog circuit topologies. More examples of the advantages of using the Eulerian circuit to
represent large sparse graphs can be found in Appendix A.3.



Published as a conference paper at ICLR 2025

Definition 3.2.1: Eulerian circuit is a graph trail that visits every edge exactly once and starts and
ends at the same node.

Theorem 3.2.1: Let G = (V, E) be a finite connected undirected graph. Construct a directed graph
D = (V, A) by replacing each undirected edge {u,v} € E with two directed arcs (u,v) and (v, u)
in A. Then, the directed graph D contains at least one Eulerian circuit starting from any node.

Proof. Since directed graph D = (V, A) is derived from a finite connected undirected graph G =
(V, E), all of D’s node will have even degree and directed graph D is connected. According to Euler
theorem (Biggs et al., 1986), if a graph is connected and every node has even degree, then it has at
least one Eulerian circuit. The Eulerian circuits can start at any vertex. Thus, the directed graph D
contains at least one Eulerian circuit starting from any vertex.

Theorem 3.2.1 clearly shows that all analog topologies have at least one Eulerian circuit once the
original finite connected undirected graph G is converted into a finite connected directed graph D.
Thus, we know that our Eulerian circuit can represent any analog circuits as long as they can be
represented as finite connected undirected graph (i.e., Eulerian circuit traverse each directed edge
exactly once when we convert finite connected undirected graph to finite connected directed graph).

3.3 DATA AUGMENTATION TO PREVENT OVER-FITTING AND REDUCE INDUCTIVE BIAS

Conventional graph-based generation circuit methods (Dong et al., 2023; Chang et al., 2024) rely on
synthetic circuit data to mitigate model overfitting by permutating circuit connections under a fixed
number of nodes. Models trained on such data fail to capture the full complexity and nuances of
real-world circuits, limiting their ability to generate only a single type of analog circuits. In addition
to the overfitting, another critical issue that significantly impacts the model’s learning ability is
the inherent bias in data representation. Permutation invariance is a fundamental inductive bias of
graph-structured data. For a graph with n nodes, there are up to n! different adjacency matrices that
are equivalent representations of the same graph. A well-designed circuit generative model should
assign the same probability to each of these equivalent representations.

To address these limitations, AnalogGenie learns from real-world circuits with diverse circuit types
and their augmented representations. Specifically, AnalogGenie learns diverse representations from
each analog circuit topology by generating multiple unique Eulerian circuits that represent the same
topology. This allows us to generate 70 x more data. Eulerian circuits ensure each sequence traverses
each directed edge exactly once. To enforce graph-level permutation invariance, AnalogGenie adopt
the approach used by GraphRNN (You et al., 2018), employing a breadth-first-search (BFS) algo-
rithm to assign node orders within each device type, ensuring that each circuit topology has a unique
graph representation. To further minimize permutation invariance at the sequence level, AnalogGe-
nie manually defines “VSS” (the ground node universal to all analog circuits) as the starting node for
all sequences. These techniques let AnalogGenie to learn a robust and generalizable representation.

3.4 CUSTOMIZING TOKENIZER TO PRE-TRAIN A DOMAIN-SPECIFIC GPT MODEL

Built on the above foundations, we customize a tokenizer to encode and decode our sequence that
represents the circuit topology to train AnalogGenie. Table 2 in Appendix A.2 shows an example
of a look-up table used for tokenization, where each token represent a device pin. The device type
and the maximum number of devices in each device type are determined through a data-driven
method by scanning the devices types and number in the training data. To allow AnalogGenie to
generate topologies with different numbers of devices, we introduce a special “Truncate” token and
use padding to ensure that all sequences have the same length.

With this customized tokenizer, we pre-train AnalogGenie to predict the next device pin in the
sequence. Unlike traditional pre-training of LLMs, which often involves randomly cropping se-
quences from text documents, AnalogGenie’s pre-training ensures that each sequence corresponds to
a complete circuit topology. Specifically, given an unsupervised corpus of tokens U = {u1, ..., un}
that represent one circuit topology, we aim to maximize the standard language modeling objec-
tive (Radford et al., 2018) to train AnalogGenie. During generation, AnalogGenie begins with a
single context token, “VSS” (the starting node for all Eulerian circuits) and completes the rest of the
sequence, ensuring it represents a valid circuit topology. The pre-trained AnalogGenie model is ca-
pable of learning from various circuit topologies without requiring knowledge of their performance
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Figure 3: Comparison between two different circuit graph representations. (a) An example showing
the limitation of device level graph representation used by previous graph generation work (Dong
et al., 2023; Lu et al., 2023), which oversimplified the analog circuit connection and led to non-
unique mapping from graph to circuit topology during generation. (b) Our device pin-level graph
representation ensures there is a unique mapping between each graph and circuit topology and is
able to explicitly represent every connection in a circuit topology.

or specific circuit types. We then can further fine-tune it to target high-performance, unseen circuits
for a particular task following the typical manner of reinforcement learning with human feedback.

4 RESULTS

4.1 EXPERIMENT SETUP

Dataset and AnalogGenie setup. Our circuit dataset contains 3350 distinct topologies, spanning
11 circuit types: Op-Amps, LDOs, Bandgap references, Comparators, PLLs, LNAs, PAs, Mixers,
VCOs, Power converters, and Switched Capacitor Samplers. The largest circuit comprises 54 de-
vices. The performance of circuits has been evaluated with circuit simulator and thus been labeled.
The detailed statistics are shown in Appendix A.1. During training, we first split the topology data
set into train and validation sets with a 9 to 1 ratio. Then, we leverage the data augmentation tech-
nique in Section 3.3 to generate 70x unique sequences of these circuit topologies. This ensures that
all the topologies in the validation set are unseen. Our AnalogGenie model is a decoder-only trans-
former consisting of 6 hidden layers and 6 attention heads with 11.825 million parameters in total.
The vocab size is 1029. The maximum sequence length is 1024.

Baselines. We compare AnalogGenie with recent approaches for analog circuit generation, i.e., Ck-
tGNN (Dong et al., 2023) based on VAE, and LaMAGIC (Chang et al., 2024) and AnalogCoder (Lai
et al., 2024) built on foundation models. These methods are different from AnalogGenie in circuit
representation, generation capability and scalability as introduced in Section 2.2. We follow the
original work to produce the baseline results.

Evaluation task and metrics. We focus on evaluating the generative capabilities of AnalogGenie
and baseline models. Specifically, we employ each model to generate topologies for various circuits,
including Op-Amps, bandgap references, and power converters, and assess the outcomes based on
four key criteria: correctness, scalability, novelty, and performance. (1) Correctness: We use a
standard circuit simulator to determine whether the generated circuits are simulatable with default
sizing, checking for issues such as floating and shorting nodes (i.e., open and short circuits). Circuits
that are simulatable are considered valid. (2) Scalability: We measure scalability by recording the
number of circuit types and the largest valid circuit generated by each model, based on the number of
devices. (3) Novelty: We assess the novelty of generated topologies by comparing them to existing
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Figure 4: Comparisons between AnalogGenie pretrained with unaugmented data and augmented
data. Our augmentation method is able to improve validation loss around 8.5 .

ones in the dataset. A topology is deemed novel if it differs from all known topologies in our
datasets. (4) Performance: We size each generated topology using a genetic algorithm and use the
figure-of-merit (FoM) that considers all major metrics (e.g., gain, bandwidth, power for Op-Amps),
as a comprehensive indicator to represent the circuit performance. We compare the best FoM of the
circuits generated by each model.

4.2 ENHANCED GENERATION CAPABILITIES WITH DATA AUGMENTATION

We begin by examining the impact of the proposed data augmentation technique on the learning
capabilities of AnalogGenie. The unaugmented training dataset consists of only 3015 unique se-
quences due to the train and validation split, with each sequence representing a distinct circuit
topology. Figure 4 compares the training performance of AnalogGenie using unaugmented data
(3015 sequences) against augmented data (227766 sequences). The results demonstrate that our
augmentation technique reduces validation loss by approximately 8.5x. We also evaluate how this
improvement influences the quality of circuit generation. The results indicate that without aug-
mentation, AnalogGenie struggled with overfitting, leading to failures in generating valid circuits.
In contrast, augmentation significantly enhances generation quality, increasing the number of valid
circuits by 73.5x as shown in Table 1.

Table 1: Performance comparison between AnalogGenie and existing analog circuit topology gen-
eration work.

Topology scale 1 FoM 1

Evaluation Metric Valid circuits (%) 1 Novel circuits (%) T

Topology type  Number of devices Op-Amp Power Converter Bandgap
CktGNN 67.5 1 22 93.1 10.9 -
LaMAGIC 68.2 1 4 12.7 - 2.2
AnalogCoder 57.3 7 10 8.9 1.7 -
AnalogGenie (unaug+pretrain) 1 >11 20 82.1 0 0 0
AnalogGenie (aug+pretrain) 735 >11 63 98.9 19.3 2.5 17.2
AnalogGenie (aug+pretrain+finetune) 93.2 >11 56 99 36.5 33 219

4.3 COMPARISONS WITH STATE-OF-THE-ARTS

Next, we compare AnalogGenie with existing VAE model (CktGNN (Dong et al., 2023)) and foun-
dation models (LaMAGIC (Chang et al., 2024) and AnalogCoder (Lai et al., 2024)) addressing the
problem of analog circuit topology generation. The comparisons are shown in Table 1.

Correctness: AnalogCoder generates only 57.3% valid circuits, primarily due to the error-prone
nature of code generation. CktGNN and LaMAGIC, which employ graph generation techniques,
achieve slightly better results, with 67.5% and 68.2% valid circuits, respectively. They rely on high-
level graph representations, which pose interpretability issues (i.e., ambiguous connections between
devices), as discussed in Section 3.1. In contrast, AnalogGenie uses an expressive device pin-level
representation, where each connection is explicitly defined, eliminating the mapping issues seen
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with the other models. As such, AnalogGenie demonstrates superior correctness, achieving 73.5%
valid circuits after pretraining and an impressive 93.2% after fine-tuning.

Scalability: CktGNN and LaMAGIC are developed for specific types of circuits, such as Op-Amps
or power converters, which limits their ability to generate beyond those particular types. Analog-
Coder is able to design 7 circuit types. AnalogGenie demonstrates a zero-shot capability to gen-
erate circuit types outside its training set, which includes 11 analog circuit types, as shown in Ap-
pendix A.4.2.

Beyond topology types, LaMAGIC is constrained by its graph representation, which contains only
four device nodes, preventing it from generating larger circuits. CktGNN has a similar limitation
with its fixed-node graph representation, which supports at most 22 devices. AnalogCoder also
struggles with scalability, making it capable of generating circuit topologies with a maximum of
10 devices. This restriction arises from its prompt template, which requires users to specify small
circuit examples with limited device counts, leading the GPT model to generate circuits of similar
size. In contrast, AnalogGenie benefits from a comprehensive dataset, which includes topologies
with over 50 devices. Its sequential representation efficiently captures these larger designs, enabling
AnalogGenie to generate circuits with up to 64 devices after pretraining and 56 devices after fine-
tuning, all within a limited sequence length.

Novelty (unseen designs): AnalogCoder generates only 8.9% novel circuits, as it is designed pri-
marily for task completion rather than exploring new topologies. LaMAGIC, limited to circuits with
just four devices, produces 12.7% novel circuits. CktGNN, with its graph model supporting up to 22
device nodes, achieves 93.1% novel circuit discovery. Remarkably, AnalogGenie generates nearly
100% novel circuits, leveraging its ability to design large circuits from scratch. Visualizations of
these novel circuits are provided in Appendix A.4.1

Performance: For Op-Amp design, AnalogCoder achieves a low FoM of just 1.7, constrained by
the limited design options available through its prompt engineering. CktGNN performs significantly
better with a FoM of 10.9, though it is still restricted by the lack of detailed low-level design con-
trol. AnalogGenie, with its expressive graph structure and flexible bottom-up generation method,
initially achieves a FoM of 19 after pre-training. However, following fine-tuning with a focus on
high-performance Op-Amp design, AnalogGenie makes impressive gains, reaching a FoM of 36.5.
In power converter design, AnalogGenie performs similarly to LaMAGIC, achieving a FoM of 2.5
compared to LAaMAGIC’s 2.2. After fine-tuning, AnalogGenie further improves, discovering topolo-
gies that achieve a FoM of 3.3, thanks to its larger design capacity. Lastly, AnalogGenie stands out
as the only model capable of designing bandgap reference circuits. Its pre-trained model achieves a
FoM of 17.2, while fine-tuning elevates this to an outstanding FoM of 21.9.

In conclusion, AnalogGenie demonstrates unmatched superiority over AnalogCoder, CktGNN, and
LaMAGIC across key metrics such as correctness, scalability, novelty, and performance. This ad-
vantage stems from its expressive device pin-level graph representation, which ensures precise and
accurate circuit generation, combined with its efficient sequential data structure that supports larger,
more complex designs. Additionally, its bottom-up generation approach allows for greater flexibility
and innovation in circuit topology, enabling AnalogGenie to explore beyond the limitations faced by
the other models. These strengths collectively make AnalogGenie a highly versatile and powerful
tool for analog circuit topology design.

5 CONCLUSION AND FUTURE WORK

In this paper, we have introduced AnalogGenie, a generative engine built on a GPT model to generate
diverse analog circuits by predicting the next device pin to connect within a circuit. AnalogGenie
addresses two key gaps in the field: building a comprehensive dataset of analog circuit topology
and developing a scalable sequence-based graph representation universal to analog circuits. Exper-
imental results across three types of analog circuit benchmarks demonstrate that our method can
efficiently discover previously unseen circuit topologies in a scalable manner. Given the expressive
nature of our representation and the bottom-up generative approach, we believe that our method has
broader applicability beyond analog circuit topology generation and can be generalized to digital
design as well. Ultimately, we consider our work to pave the way for the integration of generative
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Al into IC design, fostering a mutually beneficial relationship where IC design enhances generative
Al capabilities, while generative Al accelerates IC design advancements.

Limitations and future work. AnalogGenie is a comprehensive framework that combines a
domain-specific generative engine for discovering analog circuit topologies with a genetic algo-
rithm for optimizing the parameters (e.g., sizing and bias) of the generated topologies. The primary
focus of our work is on discovering topologies with a high likelihood of achieving a superior FoM
once sized. While the current sizing algorithm is effective, its sample efficiency can be improved by
exploring more advanced alternatives (Wang et al., 2020). Additionally, for digital circuit develop-
ment, we will consider combining AnalogGenie’s graph generation approach with code generation
work to enhance its ability.

6 REPRODUCEBILITY STATEMENT

The main theoretical backbone of our paper is Theorem 3.2.1. We have already shown its proof
in Section 3.2. Furthermore, we discussed our experiment setup and implementation details in Sec-
tion 4.1. We also provide open-source code in supplementary material, including data augmentation,
pretraining, and finetuning. The genetic algorithm sizing framework and Ngpsice simulation infras-
tructure are also provided in the supplementary material. For our open-sourced circuit dataset, we
provide its statistics in Appendix A.1. We will make our code and dataset public on Github in the
future.

7 ACKNOWLEDGEMENTS

This work was partially supported by NSF Award #2416375. We also thank Professor Lei Li of
Carnegie Mellon University for valuable discussions on graph generation.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Phillip E Allen and Douglas R Holberg. CMOS analog circuit design. Elsevier, 2011.

Norman Biggs, E Keith Lloyd, and Robin J Wilson. Graph Theory, 1736-1936. Oxford University
Press, 1986.

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges and
opportunities in conversational hardware design. In 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD), pp. 1-6. IEEE, 2023.

Hans Camenzind. Designing analog chips. Virtualbookworm Publishing, 2005.

Weidong Cao, Mouhacine Benosman, Xuan Zhang, and Rui Ma. Domain knowledge-infused deep
learning for automated analog/radio-frequency circuit parameter optimization. In Proceedings of
the 59th ACM/IEEE Design Automation Conference, pp. 1015-1020, 2022.

Weidong Cao, Jian Gao, Tianrui Ma, Rui Ma, Mouhacine Benosman, and Xuan Zhang. Rose-opt:
Robust and efficient analog circuit parameter optimization with knowledge-infused reinforcement
learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024.

Chen-Chia Chang, Yikang Shan, Shaoze Fan, Jing Li, Shun Zhang, Ningyuan Cao, Yiran Chen, and
Xin Zhang. Lamagic: Language-model-based topology generation for analog integrated circuits.
arXiv preprint arXiv:2407.18269, 2024.

Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang, Yinhe Han, Huawei Li,

and Xiaowei Li. Chipgpt: How far are we from natural language hardware design. arXiv preprint
arXiv:2305.14019, 2023.

10



Published as a conference paper at ICLR 2025

Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang. Cktgnn:
Circuit graph neural network for electronic design automation. arXiv preprint arXiv:2308.16406,
2023.

Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan, and
Yingyan Celine Lin. Gptdaigchip: Towards next-generation ai accelerator design automation
via large language models. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1-9. IEEE, 2023.

Jian Gao, Weidong Cao, and Xuan Zhang. Rose: Robust analog circuit parameter optimization
with sampling-efficient reinforcement learning. In 2023 60th ACM/IEEE Design Automation
Conference (DAC), pp. 1-6. IEEE, 2023.

Georges GE Gielen and Rob A Rutenbar. Computer-aided design of analog and mixed-signal inte-
grated circuits. Proceedings of the IEEE, 88(12):1825-1854, 2000.

Paul R Gray, Paul J Hurst, Stephen H Lewis, and Robert G Meyer. Analysis and design of analog
integrated circuits. John Wiley & Sons, 2009.

David A Johns and Ken Martin. Analog integrated circuit design. John Wiley & Sons, 2008.

Kishor Kunal, Meghna Madhusudan, Arvind K Sharma, Wenbin Xu, Steven M Burns, Ramesh
Harjani, Jiang Hu, Desmond A Kirkpatrick, and Sachin S Sapatnekar. Align: Open-source analog
layout automation from the ground up. In Proceedings of the 56th Annual Design Automation
Conference 2019, pp. 1-4, 2019.

Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping
Luo. Analogcoder: Analog circuit design via training-free code generation. arXiv preprint
arXiv:2405.14918, 2024.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, et al. Chipnemo:
Domain-adapted llms for chip design. arXiv preprint arXiv:2311.00176, 2023a.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1-8. IEEE, 2023b.

Jialin Lu, Liangbo Lei, Jiangli Huang, Fan Yang, Li Shang, and Xuan Zeng. Automatic op-amp gen-
eration from specification to layout. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. OpenAl blog, 2018.

Behzad Razavi. Design of Analog CMOS Integrated Circuits. McGraw-Hill, Inc., USA, 1 edition,
2000. ISBN 0072380322.

Behzad Razavi and Razavi Behzad. RF microelectronics, volume 2. Prentice hall New York, 2012.

Zhuofu Tao, Yichen Shi, Yiru Huo, Rui Ye, Zonghang Li, Li Huang, Chen Wu, Na Bai, Zhiping Yu,
Ting-Jung Lin, et al. Amsnet: Netlist dataset for ams circuits. arXiv preprint arXiv:2405.09045,
2024.

Shailja Thakur, Jason Blocklove, Hammond Pearce, Benjamin Tan, Siddharth Garg, and
Ramesh Karri. Autochip: Automating hdl generation using llm feedback. arXiv preprint
arXiv:2311.04887, 2023.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh

Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. ACM
Transactions on Design Automation of Electronic Systems, 29(3):1-31, 2024.

11



Published as a conference paper at ICLR 2025

Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung Lee, and Song Han.
Gen-1l circuit designer: Transferable transistor sizing with graph neural networks and reinforce-
ment learning. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1-6. IEEE,
2020.

Haoyuan Wu, Zhuolun He, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, and Bei Yu.
Chateda: A large language model powered autonomous agent for eda. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

Biying Xu, Keren Zhu, Mingjie Liu, Yibo Lin, Shaolan Li, Xiyuan Tang, Nan Sun, and David Z Pan.
Magical: Toward fully automated analog ic layout leveraging human and machine intelligence. In
2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1-8. IEEE,
2019.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pp. 5708-5717. PMLR, 2018.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao,
Qiang Xu, Mingxuan Yuan, and Junchi Yan. Llmd4eda: Emerging progress in large language
models for electronic design automation. arXiv preprint arXiv:2401.12224, 2023.

Yangiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications. In Learning on Graphs Conference, pp.
47-1. PMLR, 2022.

12



Published as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASET STATISTICS

Figure 5 and Figure 6 are the statistics of our open-source dataset. The total number of topologies
is 3350, and all of them are unique.
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Figure 5: Our analog circuit dataset’s device number distribution.
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Figure 6: Our analog circuit dataset’s circuit topology type distribution.
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A.2 TOKENIZER LOOKUP TABLE

Table 2 shows the tokenizer lookup table we used in our experiment. Specifically, our lookup table
does not only describe basic devices (e.g., NMOS, PMOS, etc.) but also describes logic gates (e.g.,
INV, XOR, etc.) that consist of multiple devices so it can scale up to describe large digital circuits
for constructing mixed-signal circuits.

Table 2: The tokenizer’s look-up table we used in our experiment for device to index mapping

Device Index Device Index Device Index Device Index
NM1 0 NM1.D 1 NMI1_G 2 NM1_S 3
NMI1_B 4 NM2 5 NM25_B 124
PM1 125 PM1.D 126 PM1_.G 127 PM1_S 128
PMI1_B 129 PM2 130 PM25_B 249
NPNI1 250 NPNI1_.C 251 NPN1_B 252 NPNI1_E 253
NPN2 254 NPN25_E 349 PNP1 350
PNP1_C 351 PNP1_B 352 PNP1_E 353 PNP2 354
PNP25_E 449 R1 450 RI_P 451
RIN 452 R2 453 R25N 524
Cl1 525 Cl1_P 526 CIN 527 C2 528
C25N 599 L1 600 LI1_P 601
LIN 602 L2 603 L25N 674
DIO1 675 DIO1_P 676 DIO1_N 677 DIO2 678
DIO25 N 749  XORI1 750 XORI1.A 751
XOR1B 752  XORI1_.VDD 753 XOR1_VSS 754  XORI.Y 755
XOR2 756 XOR5.Y 779 INV1 815
INV1_A 816 INVI1.Q 817 INV1_VDD 818 INV1_VSS 819
INV2 820 INV10_VSS 864 TGI 865
TG1_A 866 TGI_B 867 TG1.C 868 TG1_VDD 869
TG1_VSS 870 TG2 871 TGI10_VSS 924
VIN1 925 VIN2 926  VIN3 927 VIN4 928
VIN5 929 1IN1 930 IIN2 931
LOGICQBI1 1024 LOGICQB2 1025 VDD 1026  VSS 1027

TRUNCATE 1028

14
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A.3 MORE DETAILS ABOUT EULERIAN CIRCUIT AND DATA AUGMENTATION

As shown in Figure 7, since we need to represent a circuit topology in an expressive way (i.e., device
pin level), a small circuit with two devices can lead to a graph with 14 nodes. Using an adjacency
matrix to represent it will take 14 x 14 = 256 elements. On the other hand, the Eulerian circuit
only needs 43 elements, which is around 5.95x smaller than the adjacency matrix representation.
For our data augmentation, we permutate how the DFS algorithm explores its neighbor to generate
unique Eulerian circuits. The number of Eulerian circuits will drastically increase with the number
of devices.

VDD
PM1
VOUT1
VIN1o—] NM1
VSS
(a) Topology (b) Device pin level graph representation

[VSS' 'NM1_S''NM1' 'NM1_D''VOUT1''PM1_D''PM1' 'PM1_G' 'VOUT1"PM1_G''PM1_D''NM1_D' 'PM1_G''NM1_D'
'PM1_D''PM1_G' 'PM1''PM1_S''VDD' 'PM1_B' 'PM1' 'PM1_B''PM1_S' 'PM1_B''VDD' 'PM1_S' 'PM1' 'PM1_D' 'VOUT1'
‘NM1_D''NM1' 'NM1_G' 'VIN1' 'NM1_G' 'NM1' 'NM1_B' 'VSS' 'NM1_B''NM1_S' 'NM1_B''NM1' 'NM1_S' 'VSS']

['VSS''NM1_B''NM1' 'NM1_D''VOUT1''PM1_D''PM1' 'PM1_G' 'VOUT1"PM1_G' 'PM1_D''NM1_D' 'PM1_G''NM1_D'
'PM1_D''PM1_G' 'PM1''PM1_S''VDD' 'PM1_B' 'PM1' 'PM1_B''PM1_S' 'PM1_B''VDD' 'PM1_S' 'PM1' 'PM1_D' 'VOUT1'
‘NM1_D''NM1' 'NM1_G' 'VIN1' 'NM1_G' 'NM1' 'NM1_S' 'VSS' 'NM1_S' 'NM1_B' 'NM1_S' 'NM1' 'NM1_B' 'VSS']

['VSS' 'NM1_S''NM1_B''VSS' 'NM1_B''NM1' 'NM1_D' 'VOUT1' 'PM1_D' 'PM1' 'PM1_G' 'VOUT1' 'PM1_G''PM1_D'
'NM1_D''PM1_G' ‘NM1_D''PM1_D"'PM1_G''PM1"'PM1_S' 'VDD' 'PM1_B' 'PM1' 'PM1_B' 'PM1_S''PM1_B' 'VDD'
'PM1_S''PM1"'PM1_D''VOUT1"'NM1_D"'NM1' 'NM1_G' 'VIN1' 'NM1_G' 'NM1' 'NM1_S' 'NM1' 'NM1_B' 'NM1_S' 'VSS]]
['VSS' ‘NM1_B' ‘NM1_S''VSS' 'NM1_S' 'NM1' 'NM1_D' 'VOUT1' 'PM1_D' 'PM1' 'PM1_G' 'VOUT1' 'PM1_G' 'PM1_D'
‘NM1_D''PM1_G' ‘NM1_D''PM1_D''PM1_G''PM1"'PM1_S' 'VDD' 'PM1_B' 'PM1' 'PM1_B' 'PM1_S''PM1_B' 'VDD'
'PM1_S''PM1"'PM1_D' 'VOUT1"'NM1_D''NM1''NM1_G' 'VIN1''NM1_G' 'NM1' 'NM1_B' 'NM1''NM1_S''NM1_B' 'VSS]]

(C) Four Eulerian circuits we found by using DFS

Figure 7: An example of analog circuit topology, its device pin level graph representation, four
unique Eulerian circuits we found by using DFS.
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A.4 ANALOGGENIE’S GENERATED CIRCUIT TOPOLOGY VISUALIZATION

In this section, we show some of the novel circuits AnalogGenie generated and demonstrate its
zero-shot capability by generating circuits that belong to a type that is not included in the dataset.
Particularly, to visualize the circuit schematic, we manually draw all the examples in Cadence Vir-
tuoso, which is an industry-standard analog schematic edit tool.

A.4.1 NOVEL CIRCUITS

Figure 8: A novel Op-Amp circuit generated by AnalogGenie with GBW = 12 MHz, C, = 100 pF,
Power = 32.88 mW, and FoM = 36.5.

Figure 9: A novel DC converter circuit generated by AnalogGenie with Efficiency = 0.95, Voltage
conversion ratio = 2.35, and FoM = 3.3.
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Figure 10: A novel bandgap reference circuit generated by AnalogGenie with TC = 3 ppm/°C, Line
regulation = 0.196 %/V, PSRR = 70 dB, and FoM = 21.9.
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A.4.2 7ZERO-SHOT GENERATION

Figure 11: An example showing AnalogGenie’s zero-shot ability by generating a transconductance
amplifier which is a circuit type that is not included in our dataset.
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A.5 FAILED EXAMPLES GENERATED BY ANALOGGENIE PRE-TRAINED MODEL

Figure 12: Failed example 1.

Figure 13: Failed example 2.
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