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ABSTRACT

This paper investigates energy guidance in generative modeling, where the tar-
get distribution is defined as q(x) → p(x) exp(↑ωE(x)), with p(x) being the
data distribution and E(x) as the energy function. To comply with energy guid-
ance, existing methods often require auxiliary procedures to learn intermediate
guidance during the diffusion process. To overcome this limitation, we explore
energy-guided flow matching, a generalized form of the diffusion process. We in-
troduce energy-weighted flow matching (EFM), a method that directly learns the
energy-guided flow without the need for auxiliary models. Theoretical analysis
shows that energy-weighted flow matching accurately captures the guided flow.
Additionally, we extend this methodology to energy-weighted diffusion models
and apply it to offline reinforcement learning (RL) by proposing the Q-weighted
Iterative Policy Optimization (QIPO). Empirically, we demonstrate that the pro-
posed QIPO algorithm improves performance in offline RL tasks. Notably, our
algorithm is the first energy-guided diffusion model that operates independently
of auxiliary models and the first exact energy-guided flow matching model in the
literature.

1 INTRODUCTION

Recent years have witnessed the success of applying diffusion models (Ho et al., 2020; Song et al.,
2020) and flow matching models (Chen et al., 2018; Lipman et al., 2022) to generative models.
Given this success, another important aspect is to guide generative models to achieve specific, con-
trolled outputs, such as generating images for a certain class (Ho & Salimans, 2021; Dhariwal &
Nichol, 2021), designing molecular structures with desired properties (Wang et al., 2024; Hooge-
boom et al., 2022), or improving policies for reinforcement learning (Wang et al., 2022; Lu et al.,
2023). Guidance can come from various sources, such as classifiers, including both classifier guid-
ance (Dhariwal & Nichol, 2021) and classifier-free guidance (Ho & Salimans, 2021). In addition, Lu
et al. (2023) proposed using guidance from an energy function, where the distribution is generated
from q(x) → p(x) exp(↑ωE(x)), where the model is guided to generate data x with lower energy
E(x) from the original data distribution.

Several recent efforts have been made to learn and sample from the guided distribution q(x) using
diffusion models. Chen et al. (2022) performed rejection sampling from the learned data distribution
p(x). Lu et al. (2023) introduced an intermediate energy function Et(·), allowing the score function
of qt(x) to be decomposed as↓x log qt(x) = ↓x log pt(x)↑↓xEt(x) within the diffusion process.
Lu et al. (2023) also proposed contrastive energy prediction for training the intermediate energy Et,
relying on back-propagation to calculate its gradient with respect to x. Wang et al. (2024) proposed
to directly approximate the gradient of this intermediate energy function Et as the ‘force-field’ guid-
ance. However, all these methods require either additional neural networks, back-propagation, or
post-processing to compose the guided distribution q(x), which introduces unnecessary errors and
complexity. Therefore, the following question arises:

Q1. Can we directly obtain an energy-guided diffusion model without auxiliary models?

Another challenge for energy-guided generative models lies in providing guidance in flow matching
models (Chen et al., 2018; Lipman et al., 2022), which is a more general, simulation-free counter-
part to diffusion models. Zheng et al. (2023) explored the use of classifier-free guidance for flow
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matching in offline RL. However, since flow matching models approximate the velocity field ut(x)
for the dynamics of the probability density path pt(x), it is highly non-trivial to obtain the guided
velocity field ût(x) for the distribution qt(x) under energy guidance. This presents the second key
question:

Q2. Can we inject exact energy guidance into general flow matching models?

In this paper, we answer the aforementioned two questions affirmatively by proposing an energy-
guided velocity field and an energy-weighted flow matching objective, with extensions to energy-

weighted diffusion models and applications in offline reinforcement learning. Our contributions are
summarized as follows:

• In response toQ2., for general flow matching, we propose the energy-guided velocity field ût(x),
based on the conditional velocity field ut0(x|x0). The proposed ût(x) is theoretically guaranteed
to generate the energy-guided distribution q(x) → p(x) exp(↑ωE(x)).

• We introduce the energy-weighted flow matching loss to train a neural network vω
t that approx-

imates ût(x). The energy-weighted flow matching only requires the conditional vector field
ut(x|x0) and the energy E(x0) for x0 from the dataset. As the answer to Q1., we extend this
approach to diffusion models, proposing the energy-weighted diffusion model. Energy-weighted
diffusion model learns an energy-guided diffusion model directly without any auxiliary model.

• We apply these methods to offline reinforcement learning tasks to evaluate the performance of
the energy-weighted flow matching and diffusion models. Under this framework, we introduce an
iterative policy refinement technique for offline reinforcement learning. Empirically, we demon-
strate that the proposed method achieves superior performance across various offline RL tasks.

Notations. Vectors are denoted by lowercase boldface letters, such as x, and matrices by uppercase
boldface letters, such as A. For any positive integer k, the set 1, 2, . . . , k is denoted by [k], and
we define [k] = [k] ↔ {0}. The natural logarithm of x is denoted by log x. We use pt to represent
the marginal distribution of x at time t, and p0t to represent the conditional distribution of x0 given
xt. Similarly, p0 denotes the original data distribution for the diffusion model at t = 0, while pt0
represents the conditional distribution of xt given x0 in the forward process of the diffusion model.

2 RELATED WORK

Diffusion Models and Flow Matching Models. Diffusion models (Ho et al., 2020) and score
matching (Song et al., 2020) have emerged as powerful generative modeling techniques in tasks
such as image synthesis (Dhariwal & Nichol, 2021), text-to-image generation (Podell et al., 2023),
and video generation (Ho et al., 2022). In addition to these frontier applications, the success of
diffusion models has been further enhanced by accelerated sampling processes (Lu et al., 2022a;b)
and the extension of diffusion models to discrete value spaces (Austin et al., 2021). Alongside the
success of diffusion models, flow matching models (Lipman et al., 2022; Chen et al., 2018) provide
an alternative for simulation-free generation. Unlike score-based approaches, flow matching models
aim to learn the velocity field that transports data points from the initial noise distribution to the target
data distribution. This velocity field can be viewed as a generalized form of the reverse process in
diffusion models and can be extended to optimal transport (Villani et al., 2009), rectified flow (Liu,
2022), and more complex flows.

Guidance in Diffusion and Flow Matching Models. Beyond learning and generating the orig-
inal data distribution with diffusion or flow matching models, significant efforts have been made
to control the generation process to produce data with specific desired properties. Dhariwal &
Nichol (2021) introduced classifier guidance, which decomposes the conditional score function
↓ log p(x|y) into the sum of the data distribution gradient↓ log p(x) and the gradient from a classi-
fier ↓ log p(y|x). To simplify this, Ho & Salimans (2021) proposed classifier-free guidance, which
directly integrates ↓ log p(y|x) into the score function. Sendera et al. (2024) studied diffusion-
structured samplers by introducing the inductive bias in Langevin process. Lu et al. (2023); Chen
et al. (2022) further explored energy-based guidance, where the target distribution is defined as
q(x) → p(x) exp(↑ωE(x)). Unlike classifier guidance, energy-based guidance extends to real-
valued energy functions E , making it particularly relevant for tasks such as molecular structure
generation. Specifically, Chen et al. (2022); Cremer et al. (2024) employed rejection sampling to
implement energy guidance, while Lu et al. (2023); Wang et al. (2024) used auxiliary models to esti-
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Table 1: Comparison between guidance methods. Exact Guidance? means if the model can generate
p(x)pω(c|x) when ω ↗= 1. w/o Auxiliary Model? means if the method can direct learn the guidance
without auxiliary model (↭) or not (↘).

Guidance Exact Guidance? w/o Auxiliary Model?

Classifier-guidance (Dhariwal & Nichol, 2021) ↘ ↘
Classifier-free guidance (Ho & Salimans, 2021) ↘ ↭
Contrastive energy prediction (Lu et al., 2023) ↭ ↘
Energy-weighted diffusion (ours) ↭ ↭

mate the guidance from the energy function. We defer a more formal, technical comparison between
the energy-based guidance and classifier-based guidance in Table 1 in Section 4.3. In the context
of flow matching, Zheng et al. (2023) introduced classifier-free guidance for flow matching in the
domain of offline reinforcement learning.

Diffusion and FlowMatching Models in Reinforcement Learning. Recent advances in diffusion
models and flow matching models have enabled a range of applications in reinforcement learning
(RL). Janner et al. (2022); Wang et al. (2022) explore modeling behavior policies using diffusion
models. Building on these results, Chen et al. (2022); Lu et al. (2023) model the offline RL objective
as an energy-guided diffusion process, while Ajay et al. (2022); Zheng et al. (2023) apply the same
policy optimization using classifier-free diffusion and flow matching models. Chen et al. (2023);
Hansen-Estruch et al. (2023) use diffusion models to regularize the distance between the optimal
policy and the behavioral policy, and Fang & Lan (2024); He et al. (2023) leverage diffusion models
for constrained policy optimization. Another line of research (Jackson et al., 2024; Lee et al., 2024;
Lu et al., 2024) focuses on using generative models to augment synthetic datasets.

3 PRELIMINARIES

3.1 CONDITIONAL FLOW MATCHING FOR GENERATIVE MODELING

Continuous Normalizing Flows (CNFs) (Chen et al., 2018) considers the dynamic of the probability
density function by probability density path p : [0, 1]↘Rd ≃⇐ R→0 which transmits between the data
distribution p0 and the initial distribution (e.g., Gaussian distribution) p1. The flowω : [0, 1]↘Rd ≃⇐
Rd is constructed by a vector field v : [0, 1] ↘ Rd ≃⇐ Rd describing the velocity of the particle at
position x, i.e., d

dtωt(x) = vt(ωt(x)) where ω1(x) = x. 1

In order to ensure that the vector field v generates the probability density path pt, the following
continuity equation (Villani et al., 2009) is required:

d

dt
pt(x) + div · [pt(x)vt(x)] = 0, ⇒x ⇑ Rd. (3.1)

The objective of flow matching is to learn a neural network vω
t to learn the ground truth vector field

ut by minimizing their differences, i.e., LFM(ε) = Et,pt(x)⇓vω
t (x) ↑ ut(x)⇓22 with respect to the

network parameter ε. However, it is infeasible to calculate the ground truth vector field ut. To
address this issue, Lipman et al. (2022) suggests to match the conditional vector field ut0(x|x0)
instead of the vector field ut(x), as presented by the following theorem:
Theorem 3.1 (Theorem 1, 2; Lipman et al. 2022). Given the conditional vector field ut0(x|x0)
that generates the conditional distribution pt0(x|x0), then the “marginal” vector field ut(x) =∫
x0

p0t(x0|x)ut0(x|x0)dx0 generates the marginal distribution pt(x). In addition, up to a constant
factor independent of ε, Flow Matching loss LFM(ε) and Conditional Flow Matching loss LCFM(ε)
are equal, where

LFM(ε) = Et,x⇓vω
t (x)↑ ut(x)⇓22, LCFM(ε) = Et,x0,x⇓vω

t (x)↑ ut0(x|x0)⇓22, (3.2)

where t ⇔ ε(t), x0 follows the data distribution p0(·) and x ⇔ pt0(·|x0) where pt0 is generated by
conditional vector field ut0. Hence ↓ωLFM(ε) = ↓ωLCFM(ε).

1We adapt the notation of diffusion to unify the diffusion and flow matching. The notation here is dif-
ferent from flow matching notations in Chen et al. (2018); Lipman et al. (2022), where p1 represent the data
distribution. The flow matching result remains unchanged except switching t = 1 with t = 0.
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In practice, the conditional distribution pt0(x|x0) is usually modeled as a Gaussian path with
pt0(x|x0) = N (µtx0,ϑ2

t I). Zheng et al. (2023) suggests that in this case, conditional flowmatching
is equivalent to the score matching (Song et al., 2020):
Lemma 3.2 (Lemma 1, Zheng et al. 2023). Let pt0(x|x0) be a Gaussian path with scheduler
(µt,ϑt), i.e., pt0(x|x0) = N (µtx0,ϑ2

t I), then the velocity field ut0(x|x0) is related to the score
function ↓x log pt0(x|x0) by

ut0(x|x1) = µ̇tµ
↑1
t x+ (µ̇tϑt ↑ µtϑ̇t)ϑtµ

↑1
t ↓x log pt0(x|x0), (3.3)

where µ̇t and ϑ̇t are both the derivative of µt and ϑt with respect to time t.

In addition, Zheng et al. (2023) proved that the reverse process of this diffusion process with Gaus-
sian path µt,ϑt can be written by

dx

dt
=

µ̇t

µt
x+ (µ̇tϑt ↑ µtϑ̇t)

ϑt

µt
↓x log pt(x) = ut(x). (3.4)

3.2 ENERGY-GUIDED DIFFUSION MODELS

The standard diffusion model aims to learn and generate from the data distribution p0. However,
instead of generating from p0, there are a series of applications consider sampling from an energy-
guided distribution q0(x) → p0(x) exp(↑ωE(x)) where E : Rd ≃⇐ R is the energy function and
ω ⇑ R+ is the strength of the guidance. Lu et al. (2023) suggested to construct the score function
↓x log qt(x) from the original score function ↓x log pt(x) by introducing the intermediate energy
function Et(x) through the following theorem:
Theorem 3.3 (Theorem 3.1, Lu et al. (2023)2). Let q0(x) → p0(x) exp(↑ωE(x)) and define the for-
ward process as qt0(x|x0) = pt0(x|x0) = N (µtx0,ϑ2

t I), and the marginal distribution qt(x), pt(x)
at time t defined by

qt(x) =

∫

x0

qt0(x|x0)q0(x0)dx0, pt(x) =

∫

x0

pt0(x|x0)p0(x0)dx0.

Let the intermediate energy function be

Et(x) = ↑ logEp0t(x0|x)[exp(↑ωE(x0)], (3.5)

then the marginal distribution pt and qt satisfy

qt(x) → pt(x) exp(↑Et(x)), ↓x log qt(x) = ↓x log pt(x)↑↓xEt(x). (3.6)

Therefore, Lu et al. (2023) suggests to firstly learn the intermediate energy function Et using con-

trastive energy prediction (CEP) and to learn the score function ↓x log pt(x) using standard diffu-
sion models (e.g., DDPM (Ho et al., 2020)). Then the score function of the energy-guided distribu-
tion ↓x log qt(x) can therefore be composed according to (3.6).

4 METHODOLOGY

In this section, we propose a energy-weighted method for training both CNFs and diffusion models
to generate the energy-guided distribution q(x) → p(x) exp(↑ωE(x)). Compared with Lu et al.
(2023); Wang et al. (2024), the energy-weighted method provide a more straightforward way to ob-
tain the energy-guided generative models and removes the necessaries of estimating the intermediate
energy function Et(x) and its gradient ↓xEt(x).

4.1 ENERGY-WEIGHTED FLOW MATCHING

In this subsection, we construct a new energy guided flow to generate the energy-guided probability
distribution. We also proposed two equivalent loss function to train the neural networks for approx-
imating the energy-guided flow. We start by the first theorem suggesting a energy-guided flow to
generate the energy-guided probability distribution qt(x) → pt(x) exp(↑Et(x)).

2We swap the notation p and q to align with our notation systems.
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Theorem 4.1. Given an energy function E(·) and a conditional flow ut0(x|x0) that generates the
probability distribution pt0(x|x0), the energy guided distribution qt(x) → pt(x) exp(↑Et(x)) is
generated by the flow

ût(x) =

∫

x0

p0t(x0|x)ut(x|x0)
exp(↑ωE(x0))

exp(↑Et(x))
dx0, (4.1)

which will generate distribution q0(x) → p0(x) exp(↑ωE(x)). The intermediate energy function is
defined in (3.5).
Remark 4.2. Theorem 4.1 suggests a method to construct the vector field ût(x) from the condi-
tional vector field ut0(x|x0) and the intermediate energy function Et(x) in the closed-form solution.
It holds universally to any conditional flow including the the optimal transport, Gaussian path or rec-
tify flow. We will extend the discussion on the diffusion models in the next subsection.

Despite the closed-form expression for the energy-guided flow, it remains challenging to learn a
neural network vω

t to match ût since the following two reasons. First, ût in (4.1) requires to sample
over data distribution x0. Secondly, the expression of ût still requires the estimation of the interme-
diate energy function Et. Previous methods are both using auxiliary neural networks to approximate
either Et (Lu et al., 2023) or its gradient↓xEt(x) (Wang et al., 2024). To overcome these two chal-
lenges, the following theorem suggests a weighted flow matching objective which can be directly
used to learn ût without the aforementioned procedures.
Theorem 4.3. Define the Energy-weighted FlowMatching loss LEFM as

LEFM(ε) = Et,x

[
exp(↑Et(x))

Ept(x̃)[exp(↑Et(x̃))]
⇓vω

t (x)↑ ût(x)⇓22
]
, (4.2)

and the Conditional Energy-weighted FlowMatching loss LCEFM as

LCEFM(ε) = Et,x,x0

[
exp(↑ωE(x0))

Ep0(x̃0)[exp(↑ωE(x̃0))]
⇓vω

t (x)↑ ut0(x|x0)⇓22
]
, (4.3)

where the expectation on t is taken over some predefined distribution ε(t), x0 is sampled from the
data distribution p0(·) and x at time t is sampled by pt(x) with conditional distribution pt0(x|x0)
generated by the flow ut0(x|x0). LEFM(ε) and LCEFM(ε) are equal up to a constant factor. Hence
↓ωLEFM(ε) = ↓ωLCEFM(ε).

Theorem 4.3 suggests that minimizing LCEFM is equivalent to minimizing LEFM. It is obvious that
the global minimum of LCEFM is vω

t (x) = ût(x), given enough neural network capacity and infinite
data. Therefore, one can use LCEFM to directly learn the guided flow ût(x), without calculating the
intermediate energy function Et(x) or its gradient.
Besides the aforementioned message, Theorem 4.3 suggests several understandings and intuitions
in training the neural network vω

t which are discussed as follows
Remark 4.4 (Regarding the weighted energy guided loss LEFM). Instead of directly minimizing
Et,x⇓vω

t (x)↑ ût(x)⇓22, LEFM places higher weight on the input x with a lower intermediate energy
Et(x). Intuitively speaking, exp(↑E(x)) can be viewed as a prior distribution in generating qt(x) →
pt(x) exp(↑Et(x)). Therefore, for all time t, areas with higher exp(↑E(x)) will be more likely
to be visited. As a result, it would be more efficient placing more importance on x in these areas
instead of learning ût(x) uniformly for all x ⇑ Rd.
Remark 4.5 (Regarding the conditional weighted energy guided loss LCEFM). The weight
exp(↑ωE(x0)) suggests how the energy “guides” the conditional flow matching. Fixing t and x
and changing the form of expectations in (4.3), LCEFM(ε) becomes

LCEFM(ε; t,x) = Ep0t(x0|x)

[
exp(↑ωE(x0))

Ep0(x̃0)[exp(↑ωE(x̃0))]
⇓vω

t (x)↑ ut0(x|x0)⇓22
]
.

Intuitively speaking, velocity field ut0(x|x0) will move the particle x to x0. Therefore, when the
energy guidance does not exist (i.e, E(x) = 0), vω

t (x) is essentially finding the “center” of all
x0 possibly generated from x following p(x0|x). In the presence of the energy function E(x0),
the learnt vector field vω

t (x) is biased to the conditional vector field ut0(x|x0) with higher weight
exp(↑ωE(x0)). As a result, the learnt velocity field vω

t (x) will generate x0 with lower energy
E(x0).
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Remark 4.6 (Connection with the importance sampling). The conditional weighted energy guided
loss LCEFM can be also interpreted from the importance sampling techniques. Suppose we can
sample directly from the data q0(x) → p0(x) exp(↑ωE(x)), minimizing the following loss Lq will
get a velocity field vt for generating distribution q0

Lq(ϖ) = Et,x0↓q0(x),x↓qt0(x|x0)[⇓v
ω
t (x)↑ ut0(x|x0)⇓22],

where qt0(x|x0) = pt0(x|x0). Since , where Z is a constant, changing the data distribution from q0
to p0 yields that

Lq(ϖ) = Et,x0↓p0(x),x↓qt0(x|x0)

[
q0(x)

p0(x)
⇓vω

t (x)↑ ut0(x|x0)⇓22
]

= Et,x0↓p0(x),x↓pt0(x|x0)

[
exp(↑ωE(x0))

Ep0(x̃0)[exp(↑ωE(x̃0)]
⇓vω

t (x)↑ ut0(x|x0)⇓22
]
= LCEFM(ϖ),

where the second equation is given by q0(x) = p0(x) exp(↑ωE(x))/Ex0 [exp(↑ωE(x0)] according
to Lemma B.1.

4.2 WEIGHTED DIFFUSION MODELS

Theorem 4.3 suggests a general method to learn an energy-guided flow vω given any condition flow
ut0(x|x0), including diffusion flow (Song et al., 2020), optimal transport (Lipman et al., 2022),
rectified flow (Liu, 2022) or even more complicated ut0(x|x0). In this subsection, we restrict the
analysis to the diffusion flow and present several useful analysis for the diffusion and score matching
models. The first corollary provides the closed-form score function ↓x log qt(x) for the energy-
guided distribution qt(x) → pt(x) exp(↑Et(x)):
Corollary 4.7. Under the assumptions claimed in Lemma 3.2, when pt0(x|x0) is a Gaussian path
with scheduler (µt,ϑt), we have ↓x log qt(x) = ↓x log pt(x)↑↓xEt(x) and

↓x log qt(x) =

∫

x0

p0t(x0|x)↓x log pt0(x|x0)
exp(↑ωE(x0))

exp(↑Et(x))
dx0, (4.4)

where ↓x log pt0(x|x0) = ↑(x↑ µtx0)/ϑ2
t = ↑ϑ/ϑt, ϑ ⇔ N (0, Id).

Corollary 4.7 suggests a method to estimate the guided score function without calculating the gra-
dient of the intermediate energy function ↓xEt(x) as conducted in Lu et al. (2023). Then the
following corollary suggests a similar energy-weighted diffusion model to train this score function
↓x log qt(x) in practice.
Corollary 4.8. Define the Energy-weighted Diffusion loss LED and the Conditional Energy-
weighted Diffusion loss LCED separately as

LED(ε) = Et,x

[
exp(↑Et(x))

Ept(x̃)[exp(↑Et(x̃))]
⇓sωt (x)↑↓x log qt(x)⇓22

]
,

LCED(ε) = Et,x,x0

[
exp(↑ωE(x0))

Ep0(x̃0)[exp(↑ωE(x̃0))]

∥∥∥sωt (x)↑↓x log pt0(x|x0)
∥∥∥
2

2

]
,

where the expectation is taken from t ⇔ ε(t),x0 ⇔ p0(x0) and x ⇔ pt0(x|x0). Thus the marginal
distribution of x is is pt(x). LED(ε) is equal with LCED(ε) up to a constant and thus ↓ωLED(ε) =
↓ωLCED(ε).
Remark 4.9. A similar approach is proposed in Wang et al. (2024) for estimating ↓xEt(x) using a
neural network by

↓xEt(x) =
Ep0t(x0|x) [exp(↑ωE(x0)) (↓x log pt(x)↑↓x log pt0(x|x0))]

exp(↑Et(x))
, (4.5)

and then plugging (4.5) back to ↓x log qt(x) = ↓x log pt(x) ↑ ↓xEt(x) for generating the score
function↓x log qt(x). However, in order to obtain↓xEt(x), Wang et al. (2024) requires to estimate
exp(Et(x)) by sampling and approximate ↓xEt(x) via another neural network. In contrast, using
LCED as discussed in Corollary 4.8 removes the necessity of estimating both ↓xEt(x) and Et(x).
Therefore, Energy-weighted diffusion can directly obtain the score function for guided distribution
without additional sampling or back-propagation.
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Algorithm 1 Training Energy-Weighted Diffusion Model

Input: Score function sωt (·), schedule (µt,ϑt), guidance scale ω, batch size B, time weight ε(t)
1: for batch {xi

0, E(xi
0)}i do

2: for index i ⇑ [B] do
3: Calculate guidance gi = softmax(↑ωE(xi

0)) = exp(↑ωE(xi
0))/

∑
j exp(↑ωE(xj

0))

4: Sample ti ⇔ U(0, 1), calculate µti ,ϑti , sample ϑi ⇔ N (0, Id) and xti = µtix
i
0 + ϑtiϑi

5: end for

6: Calculate and take a gradient step using LCED(ε) =
∑

i ε(ti)gi⇓sωti(xti) + ϑi/ϑti⇓22.
7: end for

In the implementation of the diffusion models, since x ⇔ N (µtx0,ϑ2
t I), the conditional score func-

tion↓x log pt0(x|x0) = ↑ϑ/ϑt where ϑ = (xt↑µx0)/ϑt ⇔ N (0, I). In addition, the denominator
Ep0(x0)[exp(↑ωE(x0))] can be approximated by the empirical average

∑
i↔N exp(↑ωE(xi

0))/N in
a batch. A practical algorithm is presented in Algorithm 1. The training process is similar with
the standard DDPM (Ho et al., 2020) or score matching (Song et al., 2020). The only difference is
that we incorporate the weight by calculating a energy guidance gi using the softmax value of using
↑ωE(xi

0) from the current batch in Line 3.

4.3 COMPARISON BETWEEN CEP AND CLASSIFIER (FREE) GUIDANCE

In this subsection, we compare our method with Contrastive Energy Prediction (CEP, Lu et al.
2023), Classifier-Guidance (CG, Dhariwal & Nichol 2021) and Classifier-Free Guidance (CFG, Ho
& Salimans 2021). We consider the guided distribution q0(x) → p0(x)pω(c|x) where p0(c|x) is the
classifier, ω is the guidance scale, c is the desired class which we fix during the analysis. Comparing
with the formulation of the energy guidance q1(x) → p1(x) exp(↑ωE(x)), the “energy function”
can be interpreted as E(x) = ↑ log p(c|x). To begin with, the following lemma provides the closed-
form solution for the energy-guided diffusion and classifier-guided diffusion
Lemma 4.10. Given the same guidance scale ω and the same diffusion process, let the energy
function be defined by E(x) = ↑ log p(c|x), the score function for CG and CFG are both:

↓x log qt(x) = ↓x log pt(x) +↓x log
[
Ep0t(x0|x)p(c|x0)

]ω
, (4.6)

while the score function for energy-weighted diffusion and CEP are both

↓x log qt(x) = ↓x log pt(x) +↓x logEp0t(x0|x)p
ω(c|x0). (4.7)

(a) Ground truth of p(x)pω(c = 1|x); the distribution of p(x|c = 0) (Negative), p(x|c = 1) (Positive).

(b) Data sampled from classifier-free diffusion. (c) Data sampled from energy-weighted diffusion.

Figure 1: Visualization of the ground-truth distribution p(x)pω(c = 1|x) with different values of ω,
the posterior distribution p(x|c) with c ⇑ {0, 1}, and the data sampled from classifier-free diffusion
and energy-weighted diffusion. The energy-weighted diffusion process demonstrates better perfor-
mance when ω > 1. More examples and details of this experiments are provided in Appendix C.

The score function (4.7) is exactly the score function that generates q0(x) → p0(x) exp(↑ωE(x)) =
p0(x)p(c|x)ω according to Theorem 3.3. In a sharp contrast, (4.6) is not guaranteed to generate
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the desired distribution q0 when ω ↗= 1 because [Ep0t(x0|x)p(c|x0)]ω ↗= Ep0t(x0|x)p
ω(c|x0). As

demonstrated in Figure 1, when ω = 1, the distributions generated by CFG and energy-guided
diffusion are both similar to the ground-truth distribution. However, when ω > 1, the distribution
generated by CFG differs from the ground-truth distribution, whereas the energy-guided diffusion
can still generate the ground-truth distribution. Finally, the following lemma also verifies that when
ω = 1, the energy-weighted diffusion process is the same with the classifier-free guidance to learn
the score function of the posterior distribution ↓x log pt(x|c):
Lemma 4.11. Let ω = 1 and assume that E(x) = ↑ log p(c|x) for some fixed c, then LCED(ε) is

LCED(ε) = Et,x,x0|c⇓s
ω
t (x)↑↓x log pt0(x|x0)⇓22, (4.8)

where the expectation is taken over t ⇔ ε(t),x0 ⇔ p0(·|c) and x ⇔ pt0(·|x0). The global optimal
for (4.8) is sωt (x) = ↓x log pt(x|c).

In addition to the exact guidance provided by the CEP and energy-weighted diffusion, it is important
to highlight that the energy-weighted diffusion model eliminates the necessity for the intermediate
energy model. This advantage is similar to the simplicity provided by the CFG, compared with CG.
We summarized the difference and connection between energy-weighted diffusion, CEP, CFG and
CG in Table 1.

5 Q-WEIGHTED ITERATIVE POLICY OPTIMIZATION FOR OFFLINE RL

We consider the episodic Markov Decision Processes denoted byM(S,A, r,P, ϱ) with S,A denot-
ing the state and action space respectively. r is the reward function, P(·|s,a) is the transition kernel,
and ϱ is the discount factor. In offline RL, the data is collected by a behavioral policy µ. The policy
optimization with KL regularization (Peters et al., 2010; Peng et al., 2019) is formulated as

argmax
εω

Ea↓εω(·|x)Q(x,a)↑ 1
ωKL(ςω ⇓ µ), (5.1)

where x denotes the state and a denotes the action. Q(x,a) is the estimation of the state-action value
function Qε(x,a) = E[

∑↗
t=0 ϱtr(xt,at)|x0 = xb,a0 = a,ς]. The closed-form solution to (5.1) is

ς(a|x) → µ(a|x) exp(ωQ(x,a)). Following the procedure of the energy-weighted diffusion model
discussed in Section 4, we propose learning the score function sωt (a,x) or the velocity field vω

t (a,x)
that generates the optimal policy ς(·|x) using the Q-weighted diffusion lossLQD or Q-weighted flow
matching loss LQF, respectively, defined as:

LQD(ε) = Et,(x,a),at

[
exp(ωQ(x,a))

Eã↓µ(·|x)[exp(ωQ(x, ã))]

∥∥∥sωt (at;x)↑↓at log pt0(at|a0)
∥∥∥
2

2

]
, (5.2)

LQF(ε) = Et,(x,a),at

[
exp(ωQ(x,a))

Eã↓µ(·|x)[exp(ωQ(x, ã))]

∥∥∥vω
t (at;x)↑ ut0(at|a)

∥∥∥
2

2

]
, (5.3)

where the expectation is taken over t ⇔ ε(t), (x,a) is sampled from the offline RL dataset, and
at ⇔ pt0(·|a). Two components are essential for training either (5.2) or (5.3): First, the behavioral
policy µ(·|x) can be trained via standard diffusion or flow matching models. Second, anyQ function
derived from offline RL algorithms can be used as Q(x,a) in (5.2) or (5.3).

5.1 PROPOSED ALGORITHM

We present the algorithm sketch for the Q-weighted diffusion process in Algorithm 2, and defer
the detailed implementation to Appendix D. From a high-level overview, the algorithm first trains
the score model to match the behavioral policy µ(a,x) for K1 episodes, then trains the Q func-
tion for K2 episodes. The algorithm then performs the Q-weighted iterative policy optimization

(QIPO) as follows: First, in Line 10, using the current score function sω , the algorithm samples
several support actions aij to estimate the expectation Eã↓µ(·|x) in (5.2). In Line 15, the algorithm
optimizes ε with respect to the empirical estimation of LQD(ε). Therefore, assuming the score
function sωt (·|x) generates the behavior distribution µ(·|x) after the warm-up forK1 episodes, using
the sampled support action aij , the optimal score function for Line 15 corresponds to the policy
ς1 = µ(·|x) exp(ωQε(·|x)). When the number of episodes k = Krenew + 1, the algorithm revis-
its Line 10 with the new score function and regenerates the support action set with the new policy

8



Published as a conference paper at ICLR 2025

Algorithm 2 Q-weighted iterative policy optimization for offline RL (diffusion)

Input: Score function sωt (·), schedule (µt,ϑt), guidance scale ω, batch size B, weight on time ε(t)
Input: Offline RL dataset D = {(x,a,x↘, r)}, number of epochsK1,K2 andK3, Q function Qε

Input: Support action set sizeM , support action set renew frequency Krenew
1: for diffusion model warm-up epoch k ⇑ [K1] do
2: Train sωt for each batch {(xi,ai,x↘

i, ri)}i ↖ D following standard diffusion model.
3: end for

4: for Q-learning warm-up epoch k ⇑ [K2] do
5: Train Qε for each batch {(xi,ai,x↘

i, ri)}i ↖ D
6: end for

7: for policy improvement step k ⇑ [K3] do
8: for batch {(xi,ai,x↘

i, ri)}i ↖ D do

9: if kmodKrenew = 1 then

10: Sample support action set aij using score function sω(·|xi) for all i ⇑ [B], j ⇑ [M ]

11: Denote ai0 = ai, sample tij ⇔ U(0, 1) and aij,tij ⇔ N (µtijaij ,ϑ
2
tijI) for all j ⇑ [M ]

12: Calculate guidance gij = softmaxj(ωQε(xi,aij)) =
exp(ωQε(xi,aij))∑M

j=0 exp(ωQε(xi,aij))

13: end if

14: Calculate loss LQD(ε) =
∑B,M

i=1,j=0 ε(tij)gij
∥∥sωtij (aij,tij ;xi)↑↓at log pt0(aij,tij |aij)

∥∥2
2

15: Update ε using the gradient of LQD(ε)
16: end for

17: end for

ς1. Thus the target score function for Line 15 to optimize is ς2(·|x) → ς1(·|x) exp(ωQε(·|x)) →
µ(·|x) exp(2ωQε(·|x)). As a result, denoting l = (k ↑ 1)modKrenew, the policy ςl generated by
the score function sωk

t is:

ςl+1(a|x) → ςl(a|x) exp(ωQε(a,x)) → · · · → µ(a|x) exp((l + 1)ωQε(a,x)), (5.4)

which will implicitly increase the guidance scale ω.

Similar weighted policy optimization approaches have been applied in Kang et al. (2024); Ding
et al. (2024). However, QIPO builds the relationship between the KL-regularized policy opti-
mization so that QIPO can iteratively improve the policy as described in (5.4). Compared with
directly setting a large guidance scale ω, QIPO makes the support action set ã to be more con-
centrated in the space with higher Q values. As a result, QIPO learns a more robust Q-weighted
score function sωt compared to one-step Q-weighted diffusion with a larger ω. Second, QGPO (Lu
et al., 2023) introduces a scaling factor s and composes the score function as ↓at log ςt(at|x) =
↓at logµt(at|x) + s↓atQt(x,at), where Qt is the intermediate Q function, similar to the Et in
Section 4. However, as we discussed in Section 4.3 about the comparison of the CFG, since

sQt(at,x) = ↑s logEp0t(a|at)[exp(ωQ(a,x)] ↗= logEp0t(a|at)[exp(sωQ(a,x)],

using a guidance scale s > 1 does not guarantee generating a policy strictly regularized by the
behavioral policy µ(a|x). In contrast, as (5.4) suggests, our approach strictly follows the formulation
ς(a|x) → µ(a|x) exp(sωQε(a|x)) regularized by the behavioral policy.

5.2 EXPERIMENT RESULTS

We evaluate the performance of QIPO with flow matching and diffusion model on the D4RL
tasks (Fu et al., 2020) in this subsection.

Experiment configurationsWe implement the flow matching model QIPO-OT using the optimal-
transport conditional velocity fields (Lipman et al., 2022) and the diffusion model QIPO-Diff using
VP-SDE (Song et al., 2020). We use the same network structure as QGPO for a fair comparison of
the efficiency with QGPO. We defer the detailed experiment configurations in Appendix E.1.

We compare our results with other state-of-the-art benchmarks, including Diffusion-QL (Wang et al.,
2022), QGPO (Lu et al., 2023), IDQL (Hansen-Estruch et al., 2023), SRPO (Chen et al., 2023) and
Guided Flows (Zheng et al., 2023) and present the results in Table 2. As the experiment results
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Table 2: Evaluation numbers of D4RL benchmarks (normalized as suggested by Fu et al. (2020)).
We report mean± standard deviation of algorithm performance across 8 random seeds. The highest
performance is boldfaced highlighted. The performance within 5% of the maximum absolute value
in every individual task are highlighted.

Dataset Environment SfBC QGPO IDQL SRPO Guided Flows QIPO-Diff (ours) QIPO-OT (ours)

Medium-Expert HalfCheetah 92.6 93.5 95.9 92.2 97 94.14± 0.48 94.45± 0.49
Medium-Expert Hopper 108.6 108.0 108.6 100.1 105 112.12± 0.42 108.02± 5.19
Medium-Expert Walker2d 109.8 110.7 112.7 114.0 94 110.14± 0.51 110.87± 1.04

Medium HalfCheetah 45.9 54.1 51.0 60.4 49 48.19± 0.20 54.16± 1.27
Medium Hopper 57.1 98.0 65.4 95.5 84 89.53± 9.96 94.05± 13.27
Medium Walker2d 77.9 86.0 82.5 84.4 77 84.99± 0.46 87.61± 1.46

Medium-Replay HalfCheetah 37.1 47.6 45.9 51.4 42 45.27± 0.42 48.04± 0.79
Medium-Replay Hopper 86.2 96.9 92.1 101.2 89 101.23± 0.47 101.25± 2.18

Medium-Replay Walker2d 65.1 84.4 85.1 84.6 78 90.08± 4.53 78.57± 26.09

Average (Locomotion) 75.6 86.6 82.1 87.1 79.4 86.2 86.3

Default AntMaze-umaze 92.0 96.4 94.0 97.1 - 97.5± 0.53 93.62± 7.05
Diverse AntMaze-umaze 85.3 74.4 80.2 82.1 - 73.88± 6.42 76.12± 9.93

Play AntMaze-medium 81.3 83.6 84.5 80.7 - 82.75± 3.24 80.00± 13.66
Diverse AntMaze-medium 82.0 83.8 84.8 75.0 - 86.00± 8.65 86.42± 5.44

Play AntMaze-large 59.3 66.6 63.5 53.6 - 73.25± 10.90 55.5± 29.39
Diverse AntMaze-large 45.5 64.8 67.9 53.6 - 40.5± 20.40 32.13± 23.16

Average (AntMaze) 74.2 78.3 79.1 73.6 - 77.3 71.96

suggests, QIPO-Diff and QIPO-OT consistently outperform the baselines in various tasks. We defer
more baseline algorithms for comparison to Table 4 in Appendix E.

Among these benchmark algorithms, we would like to highlight the comparison between Guided

Flows (Zheng et al., 2023) and Q-Guided Policy Optimization (QGPO, Lu et al. 2023). Firstly,
compared with Guided Flows (Zheng et al., 2023), QIPO-OT enjoys higher performance across
many different tasks. This improved performance is due to the fact that energy-based guidance will
provide more accurate guidance compared with classifier-free guidance, as discussed in Section 4.3.

Table 3: Comparison of the running time
for action generation between QGPO (Lu
et al., 2023) and QIPO, averaged over 1500
runs. The percentage reduction in time
compared to QGPO is also reported.

Method Time (ms)

QGPO (Lu et al., 2023) 75.05
QIPO-OT (ours) 27.26 (-63.68%)

QIPO-Diff (ours) 55.86 (-25.57%)

Secondly, compared with QGPO (Lu et al., 2023),
QIPO-Diff directly learns the energy-guided score
function without estimating the intermediate energy
function. As a result, QIPO does not require the back-
propagation to calculate the gradient of the interme-
diate energy function ↓xEt(x) and therefore enjoys a
faster sampling speed compared with QGPO when us-
ing the same score network, as presented in Table 3. In
addition, since the QIPO guarantees the strict formu-
lation ς(a|x) → µ(a|x) exp(sωQε(a|x)) as shown
in (5.4), QIPO enjoys better performance compared
with QGPO on various tasks. We defer more detailed discussions on the advantage of QIPO-OT
to Appendix E.2.

Ablation Study. We conduct ablation study on changing the support action set M , policy renew
periodKrenew and the guidance scale ω. We defer the detailed ablation study result in Appendix E.3.

6 CONCLUSION AND FUTURE WORK

In this paper, we explored the energy guidance in both flow matching and diffusion models. We
introduced Energy-weighted Flow Matching (EFM) and Energy-weighted Diffusion (ED) by in-
corporating the energy guidance directly into these generative models without relying on auxiliary
models or post-processing steps. We applied the proposed methods in offline RL and introduced
Q-weighted Iterative Policy Optimization (QIPO), which enjoys competitive empirical performance
on the D4RL benchmark. To the best of our knowledge, this work is the first to present an energy-
guided flow matching model and the first algorithm to directly learn an energy-guided diffusion
model. While the current QIPO focuses on offline RL without interacting with the environment,
we leave the extension to online RL, where guidance from the Q-function can be updated through
online interactions
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