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ABSTRACT

This paper investigates energy guidance in generative modeling, where the tar-
get distribution is defined as ¢(x) o p(x)exp(—BE(x)), with p(x) being the
data distribution and £(x) as the energy function. To comply with energy guid-
ance, existing methods often require auxiliary procedures to learn intermediate
guidance during the diffusion process. To overcome this limitation, we explore
energy-guided flow matching, a generalized form of the diffusion process. We in-
troduce energy-weighted flow matching (EFM), a method that directly learns the
energy-guided flow without the need for auxiliary models. Theoretical analysis
shows that energy-weighted flow matching accurately captures the guided flow.
Additionally, we extend this methodology to energy-weighted diffusion models
and apply it to offline reinforcement learning (RL) by proposing the Q-weighted
Iterative Policy Optimization (QIPO). Empirically, we demonstrate that the pro-
posed QIPO algorithm improves performance in offline RL tasks. Notably, our
algorithm is the first energy-guided diffusion model that operates independently
of auxiliary models and the first exact energy-guided flow matching model in the
literature.

1 INTRODUCTION

Recent years have witnessed the success of applying diffusion models (Ho et al., 2020; |Song et al.|
2020) and flow matching models (Chen et al., 2018 [Lipman et al., 2022) to generative models.
Given this success, another important aspect is to guide generative models to achieve specific, con-
trolled outputs, such as generating images for a certain class (Ho & Salimans| 2021} [Dhariwal &
Nichol, |2021), designing molecular structures with desired properties (Wang et al.| |2024; Hooge-
boom et al.| [2022), or improving policies for reinforcement learning (Wang et al.| |2022; [Lu et al.|
2023). Guidance can come from various sources, such as classifiers, including both classifier guid-
ance (Dhariwal & Nichol,2021) and classifier-free guidance (Ho & Salimans,2021). In addition,|Lu
et al.| (2023) proposed using guidance from an energy function, where the distribution is generated
from ¢(x) o p(x)exp(—BE(x)), where the model is guided to generate data x with lower energy
&(x) from the original data distribution.

Several recent efforts have been made to learn and sample from the guided distribution ¢(x) using
diffusion models. |Chen et al. (2022)) performed rejection sampling from the learned data distribution
p(x).Lu et al.|(2023) introduced an intermediate energy function E;(-), allowing the score function
of ¢;(x) to be decomposed as V log ¢;(x) = Vx log pi(x) — V& (x) within the diffusion process.
Lu et al. (2023) also proposed contrastive energy prediction for training the intermediate energy &,
relying on back-propagation to calculate its gradient with respect to x. 'Wang et al.|(2024) proposed
to directly approximate the gradient of this intermediate energy function &; as the ‘force-field’ guid-
ance. However, all these methods require either additional neural networks, back-propagation, or
post-processing to compose the guided distribution ¢(x), which introduces unnecessary errors and
complexity. Therefore, the following question arises:

Q1. Can we directly obtain an energy-guided diffusion model without auxiliary models?

Another challenge for energy-guided generative models lies in providing guidance in flow matching
models (Chen et al.,[2018}; Lipman et al., [2022), which is a more general, simulation-free counter-
part to diffusion models. [Zheng et al. (2023) explored the use of classifier-free guidance for flow
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matching in offline RL. However, since flow matching models approximate the velocity field u;(x)
for the dynamics of the probability density path p;(x), it is highly non-trivial to obtain the guided
velocity field u;(x) for the distribution ¢;(x) under energy guidance. This presents the second key
question:

Q2. Can we inject exact energy guidance into general flow matching models?

In this paper, we answer the aforementioned two questions affirmatively by proposing an energy-
guided velocity field and an energy-weighted flow matching objective, with extensions to energy-
weighted diffusion models and applications in offline reinforcement learning. Our contributions are
summarized as follows:

* Inresponse to Q2., for general flow matching, we propose the energy-guided velocity field u;(x),
based on the conditional velocity field uy(x|xg). The proposed U, (x) is theoretically guaranteed
to generate the energy-guided distribution ¢(x) o p(x) exp(—BE(x)).

* We introduce the energy-weighted flow matching loss to train a neural network vf that approx-
imates U;(x). The energy-weighted flow matching only requires the conditional vector field
u:(x|x0) and the energy £(xq) for x¢ from the dataset. As the answer to Q1., we extend this
approach to diffusion models, proposing the energy-weighted diffusion model. Energy-weighted
diffusion model learns an energy-guided diffusion model directly without any auxiliary model.

* We apply these methods to offline reinforcement learning tasks to evaluate the performance of
the energy-weighted flow matching and diffusion models. Under this framework, we introduce an
iterative policy refinement technique for offline reinforcement learning. Empirically, we demon-
strate that the proposed method achieves superior performance across various offline RL tasks.

Notations. Vectors are denoted by lowercase boldface letters, such as x, and matrices by uppercase
boldface letters, such as A. For any positive integer k, the set 1,2, ...,k is denoted by [k], and

we define [k] = [k] U {0}. The natural logarithm of z is denoted by log x. We use p; to represent
the marginal distribution of x at time ¢, and py; to represent the conditional distribution of x( given
x4. Similarly, py denotes the original data distribution for the diffusion model at ¢ = 0, while p;q
represents the conditional distribution of x; given x in the forward process of the diffusion model.

2 RELATED WORK

Diffusion Models and Flow Matching Models. Diffusion models (Ho et al., |2020) and score
matching (Song et al.|, [2020) have emerged as powerful generative modeling techniques in tasks
such as image synthesis (Dhariwal & Nichol, 2021)), text-to-image generation (Podell et al.| |2023),
and video generation (Ho et al., 2022). In addition to these frontier applications, the success of
diffusion models has been further enhanced by accelerated sampling processes (Lu et al., 2022azb))
and the extension of diffusion models to discrete value spaces (Austin et al., 2021). Alongside the
success of diffusion models, flow matching models (Lipman et al., 2022 |Chen et al.| [2018) provide
an alternative for simulation-free generation. Unlike score-based approaches, flow matching models
aim to learn the velocity field that transports data points from the initial noise distribution to the target
data distribution. This velocity field can be viewed as a generalized form of the reverse process in
diffusion models and can be extended to optimal transport (Villani et al.,[2009), rectified flow (Liu,
2022), and more complex flows.

Guidance in Diffusion and Flow Matching Models. Beyond learning and generating the orig-
inal data distribution with diffusion or flow matching models, significant efforts have been made
to control the generation process to produce data with specific desired properties. Dhariwal &
Nichol (2021) introduced classifier guidance, which decomposes the conditional score function
V log p(x|y) into the sum of the data distribution gradient V log p(x) and the gradient from a classi-
fier V log p(y|x). To simplify this,[Ho & Salimans|(2021) proposed classifier-free guidance, which
directly integrates V log p(y|x) into the score function. |Sendera et al. (2024) studied diffusion-
structured samplers by introducing the inductive bias in Langevin process. [Lu et al. (2023)); |Chen
et al.| (2022) further explored energy-based guidance, where the target distribution is defined as
q(x) x p(x)exp(—BE(x)). Unlike classifier guidance, energy-based guidance extends to real-
valued energy functions £, making it particularly relevant for tasks such as molecular structure
generation. Specifically, |(Chen et al. (2022); Cremer et al. (2024) employed rejection sampling to
implement energy guidance, while|Lu et al. (2023); Wang et al. (2024)) used auxiliary models to esti-
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Table 1: Comparison between guidance methods. Exact Guidance? means if the model can generate
p(x)p®(c|x) when B # 1. w/o Auxiliary Model? means if the method can direct learn the guidance
without auxiliary model (v*) or not (x).

Guidance | Exact Guidance? | w/o Auxiliary Model?
Classifier-guidance (Dhariwal & Nichol, 2021)) X X
Classifier-free guidance (Ho & Salimans, [2021) X v
Contrastive energy prediction (Lu et al.||[2023) v X
Energy-weighted diffusion (ours) v v

mate the guidance from the energy function. We defer a more formal, technical comparison between
the energy-based guidance and classifier-based guidance in Table [1|in Section In the context
of flow matching, Zheng et al.| (2023)) introduced classifier-free guidance for flow matching in the
domain of offline reinforcement learning.

Diffusion and Flow Matching Models in Reinforcement Learning. Recent advances in diffusion
models and flow matching models have enabled a range of applications in reinforcement learning
(RL). Janner et al.| (2022)); Wang et al. (2022) explore modeling behavior policies using diffusion
models. Building on these results, /Chen et al. (2022);|Lu et al. (2023)) model the offline RL objective
as an energy-guided diffusion process, while|Ajay et al. (2022); Zheng et al. (2023)) apply the same
policy optimization using classifier-free diffusion and flow matching models. |(Chen et al.| (2023);
Hansen-Estruch et al. (2023) use diffusion models to regularize the distance between the optimal
policy and the behavioral policy, and [Fang & Lan|(2024); He et al. (2023)) leverage diffusion models
for constrained policy optimization. Another line of research (Jackson et al., 2024; |Lee et al., 2024;
Lu et al., [2024)) focuses on using generative models to augment synthetic datasets.

3 PRELIMINARIES

3.1 CONDITIONAL FLOW MATCHING FOR GENERATIVE MODELING

Continuous Normalizing Flows (CNFs) (Chen et al., 2018) considers the dynamic of the probability
density function by probability density path p : [0, 1] x R* — R which transmits between the data
distribution pg and the initial distribution (e.g., Gaussian distribution) p;. The flow ¢ : [0, 1] x R?
R is constructed by a vector field v : [0,1] x R? s R describing the velocity of the particle at

position x, i.e., <y (x) = v;(¢h(x)) where ¢ (x) = x.

In order to ensure that the vector field v generates the probability density path p;, the following
continuity equation (Villani et al.;2009) is required:

%pt(x) +div - [p(x)ve(x)] =0, Vx € R% (3.1

The objective of flow matching is to learn a neural network v to learn the ground truth vector field
u; by minimizing their differences, i.e., Lrni(60) = E; p, ) [[VE (x) — uy(x)[|3 with respect to the
network parameter 8. However, it is infeasible to calculate the ground truth vector field u;. To
address this issue, [Lipman et al.| (2022) suggests to match the conditional vector field uyo(x|x)
instead of the vector field u;(x), as presented by the following theorem:

Theorem 3.1 (Theorem 1, 2; [Lipman et al. [2022). Given the conditional vector field u:o(x|x0)
that generates the conditional distribution p:o(x|Xg), then the “marginal” vector field us(x) =
fxO pot (Xo|x)us (x]x0)dxo generates the marginal distribution p;(x). In addition, up to a constant
factor independent of 6, Flow Matching loss Lry(0) and Conditional Flow Matching loss Lcrm(0)
are equal, where

Lrm(0) = Erx|[vf (x) = ue(x)[3, Lorm(8) = Eexg x||v7 (%) = tro(x[x0) |3, (3.2)

where t ~ A(t), xo follows the data distribution po(-) and x ~ pso(:|X¢) where pyg is generated by
conditional vector field uzy. Hence Vg Lem(0) = Vo Lcpm(0).

"We adapt the notation of diffusion to unify the diffusion and flow matching. The notation here is dif-
ferent from flow matching notations in [Chen et al.| (2018); |[Lipman et al.|(2022), where p; represent the data
distribution. The flow matching result remains unchanged except switching ¢ = 1 with ¢ = 0.
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In practice, the conditional distribution p;o(x|x¢) is usually modeled as a Gaussian path with
pio(x|x0) = N (p4x0, 021). Zheng et al. (2023) suggests that in this case, conditional flow matching
is equivalent to the score matching (Song et al., 2020):

Lemma 3.2 (Lemma 1, Zheng et al.|2023). Let p;o(x|xo) be a Gaussian path with scheduler
(e, 0¢), ie., pro(x|x0) = N(usxo, o 1), then the velocity field ug(x|xo) is related to the score
function Vy log pio(x|x0) by

o (x[x1) = ﬂt,ut_lx + (fitor — Ntdt)atﬂt_lvx log pro(x[x0), (3.3)

where (i; and o, are both the derivative of y; and o with respect to time .

In addition, Zheng et al. (2023) proved that the reverse process of this diffusion process with Gaus-
sian path u., oy can be written by
dx /,it

. .\ O
a = EX + (fieoy — MtUt)ljivx log p¢(x) = ug(x). 34

3.2 ENERGY-GUIDED DIFFUSION MODELS

The standard diffusion model aims to learn and generate from the data distribution py,. However,
instead of generating from pg, there are a series of applications consider sampling from an energy-
guided distribution go(x) o< po(x) exp(—BE(x)) where £ : R? + R is the energy function and
B € R is the strength of the guidance. [Lu et al.[(2023) suggested to construct the score function
Vi« log g:(x) from the original score function Vy log p;(x) by introducing the intermediate energy
Sfunction £,(x) through the following theorem:

Theorem 3.3 (Theorem 3.1,[Lu et al. (2023)P). Let go(x) o< po(x) exp(—BE(x)) and define the for-
ward process as qq0(X|x0) = pro(x[x0) = N (11Xo, 021), and the marginal distribution g, (x), p;(x)
at time ¢ defined by

gu(x) = / deo(xIx0)do(x0)dxo,  pr(x) = / pro(x]x0)po (x0)dx.

Let the intermediate energy function be

Ei(x) = —log B, (x,|x) [exp(—BE(X0)], 3.5)
then the marginal distribution p; and ¢; satisfy
gt (x) o pe(x) exp(—E(x)), Vxlog ¢:(x) = Vxlog pt(x) — V&t (x). (3.6)

Therefore, [Lu et al.| (2023) suggests to firstly learn the intermediate energy function &; using con-
trastive energy prediction (CEP) and to learn the score function V log p;(x) using standard diffu-
sion models (e.g., DDPM (Ho et al.,2020)). Then the score function of the energy-guided distribu-
tion V log g:(x) can therefore be composed according to (3.6).

4 METHODOLOGY

In this section, we propose a energy-weighted method for training both CNFs and diffusion models
to generate the energy-guided distribution ¢(x) o p(x)exp(—FE(x)). Compared with [Lu et al.
(2023); [Wang et al.|(2024), the energy-weighted method provide a more straightforward way to ob-
tain the energy-guided generative models and removes the necessaries of estimating the intermediate
energy function &;(x) and its gradient V& (x).

4.1 ENERGY-WEIGHTED FLOW MATCHING

In this subsection, we construct a new energy guided flow to generate the energy-guided probability
distribution. We also proposed two equivalent loss function to train the neural networks for approx-
imating the energy-guided flow. We start by the first theorem suggesting a energy-guided flow to
generate the energy-guided probability distribution ¢ (x) o p;(x) exp(—&;(x)).

>We swap the notation p and ¢ to align with our notation systems.
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Theorem 4.1. Given an energy function £(-) and a conditional flow uo(x|x¢) that generates the
probability distribution p:o(x|x0), the energy guided distribution ¢:(x) o p:(x) exp(—E&:(x)) is
generated by the flow

ﬁt(x):/ pOt(XOX)ut(X|XO)M

which will generate distribution o (x) o po(x) exp(—BE(x)). The intermediate energy function is

defined in (3.5).

Remark 4.2. Theorem suggests a method to construct the vector field u;(x) from the condi-
tional vector field uo(x|x() and the intermediate energy function & (x) in the closed-form solution.
It holds universally to any conditional flow including the the optimal transport, Gaussian path or rec-
tify flow. We will extend the discussion on the diffusion models in the next subsection.

dxo, 4.1)

Despite the closed-form expression for the energy-guided flow, it remains challenging to learn a
neural network v? to match ; since the following two reasons. First, U; in (#.I) requires to sample
over data distribution xo. Secondly, the expression of U, still requires the estimation of the interme-
diate energy function &;. Previous methods are both using auxiliary neural networks to approximate
either &; (Lu et al.|[2023) or its gradient V& (x) (Wang et al.| 2024)). To overcome these two chal-
lenges, the following theorem suggests a weighted flow matching objective which can be directly
used to learn U, without the aforementioned procedures.

Theorem 4.3. Define the Energy-weighted Flow Matching loss Lgpy as
exp(—£&(x)) 0 - 2}
——[|[v?(x) — Uy (x , 4.2)
Ept(i)[exp(_gt(x))} H t ( ) t( )”2
and the Conditional Energy-weighted Flow Matching loss Lcgpym as

exp(—BE(x0))
Ep( [exp( ﬂg(

where the expectation on ¢ is taken over some predefined distribution A(t), xg is sampled from the
data distribution po(-) and x at time ¢ is sampled by p;(x) with conditional distribution p;o(x|x)
generated by the flow u(x|x0). Lerm(0) and Lcgrm (@) are equal up to a constant factor. Hence
VoLerm(0) = VoLcrrm(0)

Theorem suggests that minimizing Lcgpy i equivalent to minimizing Lgpy. It is obvious that
the global minimum of Lcgry is v& (x) = 1;(x), given enough neural network capacity and infinite
data. Therefore, one can use Lcgpy to directly learn the guided flow U, (x), without calculating the
intermediate energy function & (x) or its gradient.

Lerm(0) =E; x [

Lorr(8) = Ernx, [ VG0 - uto<x|><o>||§] L @)

Besides the aforementioned message Theorem [4.3| suggests several understandings and intuitions
in training the neural network v? which are discussed as follows

Remark 4.4 (Regarding the weighted energy guided loss Lgpm). Instead of directly minimizing
E; x|[v8(x) — 1;(x)||3, Lerm places higher weight on the input x with a lower intermediate energy
&(x). Intuitively speaking, exp(—£&(x)) can be viewed as a prior distribution in generating g;(x) o
p(x) exp(—&(x)). Therefore, for all time ¢, areas with higher exp(—&(x)) will be more likely
to be visited. As a result, it would be more efficient placing more importance on x in these areas
instead of learning U, (x) uniformly for all x € R,

Remark 4.5 (Regarding the conditional weighted energy guided loss Lcgrm). The weight
exp(—BE(xp)) suggests how the energy “guides” the conditional flow matching. Fixing ¢ and x
and changing the form of expectations in (4.3), Lcgrm(6) becomes

exp(—B€(xo)) W) (sl 2
E o (x5) lexp(—BE(x0))] v () — g0 (x[x0) 2

Intuitively speaking, velocity field u;o(x|x() will move the particle x to xg. Therefore, when the
energy guidance does not exist (i.e, £(x) = 0), v?(x) is essentially finding the “center” of all
x( possibly generated from x following p(x¢|x). In the presence of the energy function £(xg),
the learnt vector field v9(x) is biased to the conditional vector field u;o(x|xo) with higher weight
exp(—BE(xg)). As a result, the learnt velocity field v¥(x) will generate xq with lower energy
£ XO).

Lceerm(05t,%) = Ep, (xo[x)



Published as a conference paper at ICLR 2025

Remark 4.6 (Connection with the importance sampling). The conditional weighted energy guided
loss Lcgrpm can be also interpreted from the importance sampling techniques. Suppose we can
sample directly from the data go(x) x po(x) exp(—BE(x)), minimizing the following loss £, will
get a velocity field v; for generating distribution g

E(I(e) = Et,XONqo(x)»XNQto(ﬂxo)[”Vte(x) - utO(X|X0)||§]7

where ¢:0(x|x0) = pio(X|X0). Since , where Z is a constant, changing the data distribution from ¢
to po yields that

q
£0(6) = Buprptorcmatenn) | 20 1986) ~ w(xlx) ]

_E exp(—pE(xp))
om0 xp) | exp(—PE o)

where the second equation is given by go(x) = po(x) exp(—BE(x))/Ex, [exp(—BE(xo)] according
to Lemma[B.T.

Iv0 () - uto<x|xO>||§} — Leerm(0).

4.2 WEIGHTED DIFFUSION MODELS

Theorem [4.3|suggests a general method to learn an energy-guided flow v given any condition flow
uyo(x|x0), including diffusion flow (Song et al., 2020), optimal transport (Lipman et al., 2022),
rectified flow (Liu} [2022) or even more complicated u.o(x|Xo). In this subsection, we restrict the
analysis to the diffusion flow and present several useful analysis for the diffusion and score matching
models. The first corollary provides the closed-form score function Vy log ¢;:(x) for the energy-
guided distribution g;(x) o pi(x) exp(—E:(x)):

Corollary 4.7. Under the assumptions claimed in Lemma [3.2] when p; (x|x0) is a Gaussian path
with scheduler (p, 0¢), we have Vi log ¢:(x) = Vx log pi(x) — V& (x) an
BE(x
Vi logg:(x) = / Pot(Xo[x) Vx log Pto(x|xo)((g((xo))dxo7 4.4
X0 t

where Vy log pio(x|x0) = —(x — ix0)/0? = —€/0y, € ~ N(0,1,).

Corollary suggests a method to estimate the guided score function without calculating the gra-
dient of the intermediate energy function V& (x) as conducted in [Lu et al.| (2023). Then the
following corollary suggests a similar energy-weighted diffusion model to train this score function
Vi log ¢:(x) in practice.

Corollary 4.8. Define the Energy-weighted Diffusion loss Lgp and the Conditional Energy-
weighted Diffusion loss Lcgp separately as

. PEM0) 0 o
£ED(0) - Et,X [Em(;)[exp(é‘t(;{))] || t( ) Vil th( )||2:| ’

- exp(—BE(x0))
Lecen(0) = Eix,xo [Epo(?ca) [exp(—BE(X0))] ‘

where the expectation is taken from ¢ ~ A(t),xo ~ po(xg) and x ~ p;o(x|xp). Thus the marginal
distribution of x is is p;(x). Lgp(0) is equal with Lcgp(6) up to a constant and thus Vg Lgp (6) =
VeoLcen(0).

Remark 4.9. A similar approach is proposed in|Wang et al.[(2024)) for estimating V& (x) using a
neural network by

2
s?(x) — Vi IngtO(X|XO)H2:| ;

Epor (xolx) [€XP(=BE (x0)) (Vx log pi (%) — Vix log pro(x[%0))]
exp(—&;(x)) ’

and then plugging back to Vy log ¢:(x) = Vxlogpi(x) — V& (x) for generating the score
function Vy log ¢:(x). However, in order to obtain V& (x),[Wang et al. (2024) requires to estimate
exp(&:(x)) by sampling and approximate V& (x) via another neural network. In contrast, using
Lcep as discussed in Corollary removes the necessity of estimating both V& (x) and &;(x).
Therefore, Energy-weighted diffusion can directly obtain the score function for guided distribution
without additional sampling or back-propagation.

ngt (X) =

4.5)
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Algorithm 1 Training Energy-Weighted Diffusion Model

Input: Score function s%(-), schedule (1, o), guidance scale /3, batch size B, time weight \(t)
1: for batch {x},E(x%)}; do
2:  forindex i € [B] do

3 Calculate guidance g; = softmax(—3€(x})) = exp(—BE(x}))/ >, exp(—BE(x)))

4 Sample t; ~ U(0, 1), calculate y;,, oy,, sample €; ~ N'(0,1;) and x;, = 1, X} + 04, €;

5:  end for

6:  Calculate and take a gradient step using Lcep(0) = >, A(t:)gil|s? (x,) + €;/04,]|3.

7: end for

In the implementation of the diffusion models, since x ~ N (114X, 21), the conditional score func-
tion Vy log po(x|x0) = —€/0or where € = (x; — uxg)/or ~ N(0,I). In addition, the denominator
Ep (xo) [exp(—BE (x0))] can be approximated by the empirical average >, v exp(—B8E(x§))/N in
a batch. A practical algorithm is presented in Algorithm [T} The training process is similar with
the standard DDPM (Ho et al., |2020) or score matching (Song et al.,[2020). The only difference is
that we incorporate the weight by calculating a energy guidance g; using the softmax value of using
—BE(x}) from the current batch in Line

4.3 COMPARISON BETWEEN CEP AND CLASSIFIER (FREE) GUIDANCE

In this subsection, we compare our method with Contrastive Energy Prediction (CEP, |Lu et al.
2023)), Classifier-Guidance (CG, Dhariwal & Nichol|2021) and Classifier-Free Guidance (CFG, |[Ho
& Salimans|2021). We consider the guided distribution go(x) o< po(x)p®(c|x) where po(c|x) is the
classifier, 3 is the guidance scale, c is the desired class which we fix during the analysis. Comparing
with the formulation of the energy guidance ¢;(x) o< p1(x) exp(—BE(x)), the “energy function”
can be interpreted as £(x) = — log p(c|x). To begin with, the following lemma provides the closed-
form solution for the energy-guided diffusion and classifier-guided diffusion

Lemma 4.10. Given the same guidance scale 5 and the same diffusion process, let the energy
function be defined by £(x) = — log p(c|x), the score function for CG and CFG are both:

B
Vi log g:(x) = Vx log pi(x) + Vi 10g [Ep,, x5 P(c[X0)] (4.6)
while the score function for energy-weighted diffusion and CEP are both
Vi log g:(x) = Vx log pi(x) + Vi log Emt(xg|x)pﬁ (c|x0)- 4.7
B=10 Negative Positive
44 44 e q i
*1 ARRE RN .
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(a) Ground truth of p(x)p® (¢ = 1|x); the distribution of p(x|c = 0) (Negative), p(x|c = 1) (Positive).

B=0 B=1 B=3 B=10 B=1 8=3 8=10

i
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24l
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(b) Data sampled from classifier-free diffusion. (c) Data sampled from energy-weighted diffusion.

Figure 1: Visualization of the ground-truth distribution p(x)p®(c = 1|x) with different values of /3,
the posterior distribution p(x|c) with ¢ € {0, 1}, and the data sampled from classifier-free diffusion
and energy-weighted diffusion. The energy-weighted diffusion process demonstrates better perfor-
mance when 8 > 1. More examples and details of this experiments are provided in Appendix

The score function is exactly the score function that generates ¢o(x) x po(x) exp(—BE(x)) =
po(x)p(c|x)? according to Theorem In a sharp contrast, is not guaranteed to generate
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the desired distribution gy when 8 # 1 because [E,, (xox)P(c|%0)]? # Epg, (xo)P” (c|x0). As
demonstrated in Figure [I| when 8 = 1, the distributions generated by CFG and energy-guided
diffusion are both similar to the ground-truth distribution. However, when S > 1, the distribution
generated by CFG differs from the ground-truth distribution, whereas the energy-guided diffusion
can still generate the ground-truth distribution. Finally, the following lemma also verifies that when
B = 1, the energy-weighted diffusion process is the same with the classifier-free guidance to learn
the score function of the posterior distribution Vy log p;(x|c):

Lemma 4.11. Let 8 = 1 and assume that £(x) = — log p(c|x) for some fixed ¢, then Lcgp(0) is
Lcep(0) = By x xo/clls? (x) — Vi log pro(x]x0) 13, (4.8)

where the expectation is taken over t ~ A(t),xo ~ po(-|c) and x ~ pyo(-|x0). The global optimal

for (@.8) is s¥ (x) = V log p:(x|c).

In addition to the exact guidance provided by the CEP and energy-weighted diffusion, it is important
to highlight that the energy-weighted diffusion model eliminates the necessity for the intermediate
energy model. This advantage is similar to the simplicity provided by the CFG, compared with CG.
We summarized the difference and connection between energy-weighted diffusion, CEP, CFG and
CG in Table[ll

5 Q-WEIGHTED ITERATIVE POLICY OPTIMIZATION FOR OFFLINE RL

We consider the episodic Markov Decision Processes denoted by M(S, A, r, P, v) with S, A denot-
ing the state and action space respectively. r is the reward function, P(|s, a) is the transition kernel,
and 1y is the discount factor. In offline RL, the data is collected by a behavioral policy p. The policy
optimization with KL regularization (Peters et al., 2010; |Peng et al.,2019) is formulated as

argglaanNWe(_|x)Q(x,a) - %KL(TFG Il ), 3.1

where x denotes the state and a denotes the action. Q(x, a) is the estimation of the state-action value
function Q™ (x,a) = E[>_,2, 77 (x¢, a)|xo = xb, ag = a, 7]. The closed-form solution to (5.1) is
m(a|x) x p(alx) exp(BQ(x, a)). Following the procedure of the energy-weighted diffusion model
discussed in Sectionﬁl we propose learning the score function s? (a, x) or the velocity field v9(a, x)
that generates the optimal policy 7(-|x) using the Q-weighted diffusion loss Lop or Q-weighted flow

matching loss LqF, respectively, defined as:

exp(fQ(x, a)
[exp(BQ(

exp(BQ(x,a)
[

Eg (%) lexp(BQ(
where the expectation is taken over t ~ A(t), (x,a) is sampled from the offline RL dataset, and
a; ~ pyo(-|a). Two components are essential for training either (5.2) or (5.3): First, the behavioral
policy p(+|x) can be trained via standard diffusion or flow matching models Second, any () function
derived from offline RL algorithms can be used as Q(x, a) in (5.2) or (5.3).

LQD(Q) = I['Et,(x,a),at |:

2
] ‘ sf(a;;x) — Va, logpto(at|a0)HJ ,  (5.2)

] va(aﬁx) — uto(ata)Hj , (5.3)

Eamn(xle

N\-’N\-’

EQF(O) = IEt,(x,a),at |:

5.1 PROPOSED ALGORITHM

We present the algorithm sketch for the QQ-weighted diffusion process in Algorithm 2] and defer
the detailed implementation to Appendix [D! From a high-level overview, the algorithm first trains
the score model to match the behavioral policy p(a,x) for K; episodes, then trains the @) func-
tion for K5 episodes. The algorithm then performs the Q-weighted iterative policy optimization
(QIPO) as follows: First, in Line using the current score function s®, the algorithm samples
several support actions a,; to estimate the expectation Eg,.,(.jx) in (5.2). In Line the algorithm
optimizes @ with respect to the empirical estimation of Lop(@). Therefore, assuming the score
function s9(-|x) generates the behavior distribution 1(-|x) after the warm-up for K episodes, using
the sampled support action a;;, the optimal score function for Line (15| corresponds to the policy
71 = pu(-|x) exp(BQY (-|x)). When the number of episodes k = Kienew + 1, the algorithm revis-
its Line [10] with the new score function and regenerates the support action set with the new policy
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Algorithm 2 Q-weighted iterative policy optimization for offline RL (diffusion)

Input: Score function s?(-), schedule (i, o), guidance scale 3, batch size B, weight on time \(t)
Input: Offline RL dataset D = {(x,a,x’, )}, number of epochs K, K- and K3, Q function Q¥
Input: Support action set size M, support action set renew frequency Kiepew
1: for diffusion model warm-up epoch k € [K;] do

Train s? for each batch {(x;,a;,x/,7;)}; C D following standard diffusion model.
end for
for Q-learning warm-up epoch k € [K>] do

Train Q¥ for each batch {(x;,a;,x},7;)}; C D
end for
for policy improvement step k € [K3] do

for batch {(x;,a;,x},7;)}; C Ddo

if £ m0d Kyepew = 1 then
Sample support action set a;; using score function s9(-|x;) for all i € [B],j € [M]

Denote a;o = a;, sample t;; ~ U(0,1) and a;;1,; ~ N (e, a5, 07 1) forall j € [M]
exp(BQY (xi,a:5))

H
A B AR U A

—

12: Calculate guidance g;; = softmax, (3Q¥ (x;,a;;)) = ST exp(BQY (xs.a))

13: end if Iy )
14: Calculate loss Lop(0) = Zi:’m:o A(tij)9gi Hstei], (Qij,t,;3Xi) — Va, log pio(@ijt,; |aij) Hz
15: Update 6 using the gradient of Lop(6)

16:  end for

17: end for

m1. Thus the target score function for Lineto optimize is o (+|x) oc m (+]x) exp(BQY (-|x))
w(-|x) exp(28Q¥ (-|x)). As a result, denoting [ = (k — 1) mod Kiepew. the policy m; generated by

the score function sf"‘ is:

m1(alx) oc m(alx) exp(BQ¥ (a,x)) oc - -~ oc p(alx) exp((l + 1)5Q¥ (a, x)), (5.4)
which will implicitly increase the guidance scale /.

Similar weighted policy optimization approaches have been applied in [Kang et al.| (2024); Ding
et al. (2024). However, QIPO builds the relationship between the KL-regularized policy opti-
mization so that QIPO can iteratively improve the policy as described in (5.4). Compared with
directly setting a large guidance scale 8, QIPO makes the support action set a to be more con-
centrated in the space with higher () values. As a result, QIPO learns a more robust Q-weighted
score function s? compared to one-step Q-weighted diffusion with a larger 3. Second, QGPO (Lu
et al.| 2023) introduces a scaling factor s and composes the score function as V,, log 7 (a;|x) =
Va, log pi(a|x) + sVa, Q:(x,at), where Q; is the intermediate ) function, similar to the & in
Section However, as we discussed in Sectionabout the comparison of the CFG, since

sQi(ar, x) = —s1og By, (aja,) [exp(BQ(a, X)] # 10g Ep,, (aja,) [exp(s8Q(a, X)),

using a guidance scale s > 1 does not guarantee generating a policy strictly regularized by the
behavioral policy p(a|x). In contrast, as (5.4) suggests, our approach strictly follows the formulation
m(alx) oc u(alx) exp(sBQY (alx)) regularized by the behavioral policy.

5.2 EXPERIMENT RESULTS

We evaluate the performance of QIPO with flow matching and diffusion model on the D4ARL
tasks (Fu et al.,[2020) in this subsection.

Experiment configurations We implement the flow matching model QIPO-OT using the optimal-
transport conditional velocity fields (Lipman et al.,[2022) and the diffusion model QIPO-Diff using
VP-SDE (Song et al.| [2020). We use the same network structure as QGPO for a fair comparison of
the efficiency with QGPO. We defer the detailed experiment configurations in Appendix

We compare our results with other state-of-the-art benchmarks, including Diffusion-QL (Wang et al.|
2022), QGPO (Lu et al.,[2023), IDQL (Hansen-Estruch et al., 2023), SRPO (Chen et al.,[2023) and
Guided Flows (Zheng et al., [2023) and present the results in Table As the experiment results
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Table 2: Evaluation numbers of D4RL benchmarks (normalized as suggested by [Fu et al. (2020)).
We report mean =+ standard deviation of algorithm performance across 8 random seeds. The highest
performance is boldfaced highlighted. The performance within 5% of the maximum absolute value

in every individual task are highlighted.

Dataset Environment SfBC  QGPO IDQL SRPO Guided Flows QIPO-Diff (ours) QIPO-OT (ours)
Medium-Expert ~ HalfCheetah 92.6 93.5 95.9 92.2 97 94.14 +0.48 94.45 4+ 0.49
Medium-Expert ~ Hopper 108.6  108.0 108.6  100.1 105 112.12 £ 0.42 108.02 £ 5.19
Medium-Expert ~ Walker2d 109.8  110.7 112.7 114.0 94 110.14 £ 0.51 110.87 £ 1.04
Medium HalfCheetah 45.9 54.1 51.0 60.4 49 48.19 +0.20 54.16 + 1.27
Medium Hopper 57.1 98.0 65.4 95.5 84 89.53 + 9.96 94.05 £+ 13.27
Medium Walker2d 77.9 86.0 82.5 84.4 e 84.99 + 0.46 87.61 £ 1.46
Medium-Replay  HalfCheetah 37.1 47.6 45.9 514 42 45.27 +0.42 48.04 +£0.79
Medium-Replay ~ Hopper 86.2 96.9 92.1  101.2 89 101.23 £ 0.47 101.25 +2.18
Medium-Replay ~ Walker2d 65.1 84.4 85.1 84.6 78 90.08 +=4.53 78.57 £ 26.09

Average (Locomotion) 75.6 86.6 82.1 87.1 79.4 86.2 86.3
Default AntMaze-umaze 92.0 96.4 94.0 97.1 97.5+0.53 93.62 + 7.05
Diverse AntMaze-umaze 85.3 74.4 80.2 82.1 73.88 £+ 6.42 76.12 +9.93
Play AntMaze-medium = 81.3 83.6 84.5 80.7 82.75+3.24 80.00 + 13.66
Diverse AntMaze-medium = 82.0 83.8 84.8 75.0 86.00 £ 8.65 86.42 + 5.44
Play AntMaze-large 59.3 66.6 63.5 53.6 73.25 +10.90 55.5 4+ 29.39
Diverse AntMaze-large 45.5 64.8 67.9 53.6 40.5 £ 20.40 32.13 £ 23.16

Average (AntMaze) 74.2 78.3 79.1 73.6 7.3 71.96

suggests, QIPO-Diff and QIPO-OT consistently outperform the baselines in various tasks. We defer
more baseline algorithms for comparison to Table {f]in Appendix [E.

Among these benchmark algorithms, we would like to highlight the comparison between Guided
Flows (Zheng et al., [2023) and Q-Guided Policy Optimization (QGPO, |Lu et al. [2023). Firstly,
compared with Guided Flows (Zheng et al., |2023), QIPO-OT enjoys higher performance across
many different tasks. This improved performance is due to the fact that energy-based guidance will
provide more accurate guidance compared with classifier-free guidance, as discussed in Section[d.3]

Secondly, compared with QGPO (Lu et al., 2023),
QIPO-Diff directly learns the energy-guided score
function without estimating the intermediate energy
function. As a result, QIPO does not require the back-
propagation to calculate the gradient of the interme-
diate energy function V«&;(x) and therefore enjoys a

Table 3: Comparison of the running time
for action generation between QGPO (Lu
et al.,|2023) and QIPO, averaged over 1500
runs. The percentage reduction in time
compared to QGPO is also reported.

faster sampling speed compared with QGPO when us- Method | Time (ms)
ing the same score network, as presented in Table[3] In
addition, since the QIPO guarantees the strict formu- QGPO (Lu et al., [2023) 75.05

lation 7(a|x) o p(alx)exp(sBQ¥(alx)) as shown QIPO-OT (ours) 27.26 (63.68%)
in (5.4), QIPO enjoys better performance compared QIPO-Diff (ours) 55.86 (25.57%)
with QGPO on various tasks. We defer more detailed discussions on the advantage of QIPO-OT

to Appendix

Ablation Study. We conduct ablation study on changing the support action set M, policy renew
period Kenew and the guidance scale 3. We defer the detailed ablation study result in Appendix [E_3}

6 CONCLUSION AND FUTURE WORK

In this paper, we explored the energy guidance in both flow matching and diffusion models. We
introduced Energy-weighted Flow Matching (EFM) and Energy-weighted Diffusion (ED) by in-
corporating the energy guidance directly into these generative models without relying on auxiliary
models or post-processing steps. We applied the proposed methods in offline RL and introduced
Q-weighted Iterative Policy Optimization (QIPO), which enjoys competitive empirical performance
on the D4RL benchmark. To the best of our knowledge, this work is the first to present an energy-
guided flow matching model and the first algorithm to directly learn an energy-guided diffusion
model. While the current QIPO focuses on offline RL without interacting with the environment,
we leave the extension to online RL, where guidance from the @-function can be updated through
online interactions

10
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