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Abstract—Resistive random access Memory (RRAM) based
spiking neural networks (SNN) are becoming increasingly attrac-
tive for pervasive energy-efficient classification tasks. However,
such networks suffer from degradation of performance (as
determined by classification accuracy) due to the effects of
process variations on fabricated RRAM devices resulting in loss
of manufacturing yield. To address such yield loss, a two-step
approach is developed. First, an alternative test framework is
used to predict the performance of fabricated RRAM based
SNNs using the SNN response to a small subset of images from
the test image dataset, called the SNN response signature (to
minimize test cost). This diagnoses those SNNs that need to
be performance-tuned for yield recovery. Next, SNN tuning is
performed by modulating the spiking thresholds of the SNN
neurons on a layer-by-layer basis using a trained regressor that
maps the SNN response signature to the optimal spiking threshold
values during tuning. The optimal spiking threshold values are
determined by an off-line optimization algorithm. Experiments
show that the proposed framework can reduce the number of
out-of-spec SNN devices by up to 54% and improve yield by as
much as 8.6%.

Index Terms—Spiking Neural Network, Yield Recovery, Alter-
native Test, Post-manufacture Tuning

I. INTRODUCTION

Compute-in-memory (CIM) leveraging Memristive Cross-
bar Arrays (MCAs) is attractive for implementing spiking
neural networks (SNNs) due to low energy consumption
[1]. MCAs can be implemented using emerging non-volatile
memories such as Resistive Random Access Memory (RRAM)
[2]. However, during manufacturing RRAM devices in a
crossbar suffer from device-to-device (random) and chip-to-
chip (systematic) variations, which alter the weights of an
SNN implemented with such devices from their ideal values,
degrading SNN performance (classification accuracy).

Prior research has addressed testability and error resilience
of SNNs under hard failures and transient errors. The work of
[3] proposes fault models for analog neuron circuits. In [4],
training with dropout and fault hopping are investigated for
failure recovery. A bound-and-protect technique is presented
in [5] to address soft errors in SNNs. In [6], a fault-aware
retraining of neuron firing threshold voltages is proposed to
mitigate accuracy degradation in the presence of hard faults
in systolic arrays and in [7], the impact of non-idealities in
memristive crossbars on the accuracy of SNNs is evaluated.
The work of [8] investigates the impact of neuron threshold
variations on the accuracy of SNNs. In [9], an online test is
developed to detect anomalous operation caused by hardware
level faults and in [10], a novel test methodology is presented
for detecting open and short defects as well as slow and fast
integration faults. To address Stuck-at-faults in RRAM based

neuromorphic chips, fault aware weight mapping is proposed
in [11].

However, the problem of mitigating the impact of random
and systematic process variations on RRAM crossbar based
SNN performance (as determined by SNN classification ac-
curacy) has remained largely unexplored. The work of [12]
shows that accelerators based on compute-in-memory can
suffer significantly from process variability effects resulting in
loss of performance. Due to such effects, many chips manufac-
tured with RRAM crossbar technology are unusable, resulting
in loss of manufacturing yield. To resolve this, solutions to
two relevant problems are developed in this research. First, a
methodology for testing manufactured RRAM crossbar based
SNNs is developed that allows prediction of SNN performance
from its response to a compact image dataset (as opposed to
the complete test image dataset of 10,000 images for CIFAR-
10, for example). The combined response of the SNN to the
applied compact image dataset is called its response signature.
This minimizes SNN test costs and efficiently isolates SNN
chips that are out-of-spec and need tuning. Second, a fast
post-manufacture tuning technique is developed that uses the
response signature to modulate a (small) number of tuning
knobs in the SNN hardware to restore SNN performance to
the maximum extent possible for yield recovery.

While prior work has developed compact functional tests
for SNNs using image ranking [13] and Fast Gradient Sign
Method [14], these tests do not address the problem of
predicting SNN performance (accuracy) from its response to
the applied tests. To address systematic process variations
in RRAM based DNNs, online digital calibration has been
proposed in [15]. However, to the best of our knowledge,
the problem of tuning RRAM based SNNs under the impact
of systematic and random process variations has not been
addressed in prior research. In summary, the key contributions
of our work are:

(a) Performance-predictive alternative test methodology for
RRAM based SNNs: A compact image dataset is designed in
such a way that the classification accuracy of an SNN can be
directly predicted from its response signature using a trained
regressor. This is used for efficiently isolating SNNs that need
to be tuned for yield recovery.

(b) Fast SNN Tuning Methodology: The same response sig-
nature used for testing is used to directly predict the optimal
tuning knob parameters of the RRAM based SNN for restora-
tion of SNN performance (called signature driven tuning).
The tuning parameters consist of the neuron spiking threshold
values of individual layers of the network (one per layer).
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Figure 1: Testing and Tuning Framework

II. APPROACH OVERVIEW

Fig. 1 describes the proposed testing and tuning framework.
Post-manufacture, SNN chips are subjected to the proposed
alternative test framework. This allows prediction of the
classification accuracy of the SNN from its response to a
compact image dataset (called its response signature) using
a trained alternative test regressor (ATR). If the predicted
accuracy is below a predefined cutoff, the chip undergoes
post-manufacture tuning. During tuning, the spiking threshold
voltages of the SNN neurons are used as tuning parameters
on a layer-by-layer basis (one per layer) and these are re-
calibrated to recover SNN accuracy. Note that the spiking
threshold voltage of a neuron is defined as the value of the
membrane potential of a neuron above which it produces
a spike at its output. In analog implementations of spiking
neurons, this is implemented as an external input to the neuron
from a reference voltage source [8] (which can be modulated
for tuning purposes). During signature driven tuning, a Tuning
Regressor is trained to predict the optimal spiking threshold
value for the neurons in each layer of the SNN. These
optimal spiking threshold values are determined by an off-line
optimization algorithm using calibrated simulation models of
the SNN (as described in Section III-C). Consequently these
spiking threshold values are re-programmed into the SNN
hardware.

III. PRELIMINARIES AND VARIABILITY MODELING
A. Preliminaries of SNN

Analog implementations of spiking neurons typically use
the Integrate and Fire (IF) model due to its simplicity [16].
Here, the input spikes to an IF neuron are integrated in its
membrane potential and when the membrane potential exceeds
the spiking threshold T'h, the neuron emits a spike and its
membrane potential is reset. At any timestep t, the membrane
potential of a spiking neuron is m(t) = m(t—1)+i(t), where
i(t) is the input to the neuron. If m(t) exceeds Th, then its
output is high i.e., its output y(¢) = 1 and m(t) is reset as
m(t) = m(t) — u,st, where u,.s; is the reset potential.

For image classification tasks, an SNN has one neuron per
class in its output layer. When an image is applied to an SNN,
it predicts the class corresponding to the output neuron which
emits the most number of spikes.

B. Hardware Overview of SNN

In RRAM based memristive SNNs, weights are pro-
grammed as conductances in memristive crossbar arrays
(MCA). Fig. 2(a) shows how a weight matrix is mapped to an
equivalent conductance matrix. Each weight w;; is mapped
to a positive weight wzf; and negative weight w;;. If w;; is
positive, we set wj; = |w;;| and w;; = 0. Otherwise, we set
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j; = 0 and w;; = |w;;|. The positive weight w;; is mapped

to an equivalent conductance gl"; and the negative weight w;;
is mapped to g;;.

Fig 2(b) shows how input currents to IF neurons are com-
puted using a RRAM crossbar. Input spikes {x1, 22, - Zpr}
are applied along the rows of the crossbar. If the input spike
along m-th row is x,, and the conductance of (2n — 1)-th
column in m-th row is g;\., then the output current from the
(2n —1)-th column of m-th row is (., x g;., ) and the output
current from (2n — 1)-th column is, i} = Z?if:l(xm X gh).
Similarly, the output current from 2n-th column is i, =
Zf\,{:l(xm X ¢r-.). The input current to the n-th spiking
neuron S, is, i, = z:{ — 4, . Inside the neuron, the current
is integrated and the integrator output (membrane potential)
is compared with the spiking threshold. All neurons in a
layer of SNN share the same spiking threshold 7'h, which
is re-calibrated during post-manufacture tuning (explained in
Section V-C).

w,

C. Variability Modeling

We use RRAM devices with two distinct states: a Low
Resistance State (LRS) representing logic 1’ and a High
Resistance State (HRS) representing logic *0’. The LRS is pro-
grammed using the set operation and the HRS is programmed
using the reset operation. We explain our proposed variability
model assuming a 6-bit fixed point representation for weights.
Each 6-bit weight is mapped to a positive and negative weight
(explained in Section III-B) which are represented using 6
RRAM devices each.

Process variation is modeled by varying the gap dynamics
fitting parameter () of each RRAM device [17] in a crossbar
as ¥ = Yo + Vsys + Vrand, Where 7 is the value of the gap
dynamics fitting parameter in the absence of any variation
and Ysys, Yrand capture the amounts of systematic and random
variations respectively. Following the approach of [15], we
assume that all RRAM devices in a crossbar have the same
systematic variation (¥sys). Random variation of each RRAM
device is sampled independently from a zero mean normal
distribution with variance o2, .

Algorithm 1 explains the proposed variability injection
framework. An SNN is initialized with trained weights in Line
1. The systematic component of variability 7y, is sampled

from a zero mean normal distribution with nys variance (line



Algorithm 1 DUT Generation using Variability Modeling

1: Initialize DUT with pretrained weights
2: Sample vsys ~ N(0, agys)
3: for each individual weight w in DUT do

4 if w > 0 then

5 =|wl,w” =0

6: else

7: wh =0, w” = ||

8: end if

9:  Convert w™ to binary representation {b,--- b}

10:  Convert w™ to binary representation {bg ,--- ,b] }

11: forj=1,2,...,6 do

12: Convert b;', b, to ideal conductances G’;’ and G

13: Sample 7 g and ;g ~ N(0, 0700a)

14: Set v = Y0+Ysys +Y; rana 4V, = Y0+Ysys +V)rand

15: Calculate actual RRAM conductance corresponding to b;r,
Gn = f(GF T F) and conductance corresponding to by,

Gm = f(G7. )

16:  end for i1 .
. . eff 4
17: Calculate effective conductance G7;" = 327, (Gnif —
Gniy ) x 27 -1

18: Convert G/7 to non-ideal weight wp;

nt

19:  Replace w with wpy;
20: end for

2). For each weight w in the SNN, we calculate w™* and w™,
which are stored using RRAM devices and find the equivalent
binary representation of w* and w~ (line 4-10). Next, each
bit in the binary representation of w™ and w™ is converted
to the corresponding ideal conductance of the RRAM device
storing that bit (line 12). For example, if the j-th bit of wj
is b;r = 1, then the equivalent conductance is G;r = GLRs.
Similarly, if the j-th bit of wj is b;L = 0, then the equivalent
conductance is Gj = Gpyprs- We then sample the random
component of the variability and calculate the gap dynamics
fitting parameter as a sum of its nominal value, systematic
component of variability and random component of variability
(line 13-14). The ideal conductances are then converted to
non-ideal conductances as a function f(.,.) of the ideal
conductance and gap dynamics ﬁtting parameter of the device
(line 15). The function f(G] Y ) is a polynomial function
of G;r and fyj and the polynomial is estimated using Hspice
simulations of RRAM devices. To quantify the impact of non-
ideal conductances, we introduce the effective conductance as
a weighted sum of the conductances corresponding to each bit
of the weight (line 17). Finally, the effective conductance is
mapped back to non-ideal weight w,,; and the ideal weight w
in the SNN is replaced with w,;.

IV. TESTING FRAMEWORK
A. Objectives of the Alternative Test Framework

The accuracy of an SNN trained using an image classifi-
cation dataset with N7 training images and N, test images
is A = N%z Z;\El Ilypred(z;) = y;], where x; is an image
in the test dataset, y; is the actual label of the image x; and
ypred(x;) is the label predicted by the SNN corresponding
to the image x;. Here I[.] refers to the Indicator Function.
The goal of the tuning framework is to tune an SNN chip
if its accuracy A is below a pre-defined cutoff Aut0fy, i-e.,
A < Acuofys. It is possible to measure the accuracy A of
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Figure 3: Alternative Test Framework (a) Generation of Sig-
nature (b) Training of Alternative Test Regressor (ATR) (c)
Accuracy prediction using ATR (d) Mitigating regression error

an SNN Device Under Test (DUT) using an Exhaustive Test
by applying N5 images from the test dataset to the DUT
and counting the number of correctly classified images. Such
an exhaustive test requires inference on a prohibitively large
number of images. To overcome the higher test complexity
of an exhaustive test, we propose an Alternative Test that
characterizes the performance of a DUT using a compact
subset of the test dataset. The alternative test has three steps:
(1) Signature Generation from a DUT, (2) Training Alternative
Test Regressor (ATR) to predict accuracy of a DUT from its
signature and (3) Performance prediction using the ATR.

B. Steps of the Alternative Test

Fig. 3(a) shows how the signature 1is generated
corresponding to a DUT. We first construct a Compact
Image Dataset (CID) C = {imq,ima, -+ ,imy} consisting
of N images. The images are randomly chosen from the test
dataset such that the CID includes images from all classes.
During the alternative test, we apply each im; € C and
observe the number of spikes emitted by each neuron in the
output layer of the DUT. If the k-th output neuron emits
;% spikes when the j-th image of the CID, im; is applied,
and the output layer has total K neurons then we define
the signature of the DUT as a vector of integers, sig =
[2/1,1 Y12 - "Y1,k Y2,1 Y22 - Y2 K ""YN,1 YN2" Z/N,K],
sig € ZNK

As shown in Fig. 3(b), the ATR’s training data consists
of the signatures of first D, DUTs and the corresponding
accuracy of each DUT (measured using an exhaustive test).
The ATR is then trained to map the DUT signature to its
accuracy. We provide implementation details of the ATR in
Section VI-A. As shown in Fig. 3(c), once the ATR is trained,
the accuracy of a newly manufactured DUT (Ap) is predicted
from its signature (sigx) by applying only N images in the
CID to the DUT. For example, if a dataset has 10,000 test
images and we choose N = 32, a chip can be tested using
only 32 images resulting in a 10000/32 = 312.5x reduction in
test complexity compared to the exhaustive test.

If the accuracy of a DUT is Ay, and the accuracy predicted
by the ATR is Ay, the regression error A" = |Ak — Al
can affect the efficacy of this alternative test, necessitating
mitigation of its impact. For example, if Ay < Acuto rf < Ap,
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then the DUT does not require tuning, whereas the regression
output predicts that the DUT requires tuning. On the other
hand, if Ay < Acutors < A}, then the DUT needs to undergo
tuning whereas the test predicts the opposite. To avoid such
incorrect labeling, we introduce a confidence interval €,,q,
such that if the predicted accuracy is sufficiently close to the
cutoff accuracy, i.e., flk — Acutof f| < €maz, We discard the
prediction of the ATR and estimate the accuracy Ay of the
DUT using all N5 images in the test dataset. To estimate €4,
we compute A" (1 < k < D,) for the D, DUTs used
for training the ATR. If the mean and standard deviation of
{Af™ AS™ - AR} are p"" and 0" respectively, we set
Emar = Iuer'r + 2% o',

In summary, as shown in Fig. 3(d), if |Ak—Acutoff| > €maz
(region 1 and 2), the ATR result determines whether the DUT
requires tuning. Otherwise (region 3 in the figure), the actual
accuracy Ay is estimated using the entire Test Image Set and
the DUT undergoes post-manufacture tuning if Ay < Acurofy

V. POST-MANUFACTURE TUNING

A. Steps of Signature Driven Tuning

If an SNN has total L layers and the spiking threshold of
the I-th layer is Th("), then the goal of the tuning process
is to find the optimal spiking threshold of the [-th layer
Th(®", which maximizes the manufactured chip’s accuracy
for I € {1,2,---,L}. Fig. 4(a) shows how an SNN chip is
tuned using Signature Driven Tuning. The signature generated
during the alternative test is passed to the Tuning Regressor
which predicts the optimal tuning parameters from the signa-
ture.

Fig. 4(b) shows how training data for the tuning regressor
is obtained from D; DUTs. For each of these D; chips, we
generate its signature sig, and obtain the optimized tuning
parameters of the chip Th,(j) (1 <1 < L) by applying images
from the training dataset to the SNN. An optimizer uses the

output response of the SNN to the training images to compute
Thg) . The set of signatures and optimized spiking thresholds
obtained from D number of chips are used as the training data
to map the signature of a DUT to optimal tuning parameters.
We implement the tuning regressor using Nearest Neighbor
regression and we use L; norm as a measure of distance. To
tune a DUT which has a signature sig;, we find the SNN chip
k* out of the first Dj chips which has the closest signature to
sig;. Mathematically, we find:

k* = argmingeqi,a,... p,}15i95 — sigr|l (D

Here ||.||1 denotes L; norm of a vector. The tuning regressor
predicts that the spiking thresholds of the DUT which is being
tuned (Th(l) ) are equal to the spiking thresholds of the k*-th

DUT (Th,{lf), ie, TR =Th{)" wvie{12-. L}

B. Details of Optimization

Algorithm 2 Optimization of Tuning Parameters

1: fix batch size = S, number of epochs = E, number of images in
training dataset = N1, number of batches B = %

2: for epoch = 1 upto E: do

3:  for batch id = 1 upto B: do

4: Get S images from the training dataset and their corre-
sponding labels

5: Perform inference with the DUT

6: Calculate Loss £ from output response of the DUT and the
actual label of images

7 for [ = 1 upto L: do

8: Calculate % using backpropagation

9: end for

10: for [ = 1 upto L: do

11: update ThY = f(Th®, %) using Adam Optimizer

12: end for

13:  end for

14: end for

Algorithm 2 explains how the optimizer in Fig. 4(b) opti-
mizes the spiking thresholds of an SNN. In every iteration of
the optimization, we choose S images from the training dataset
and the SNN performs inference on those images (line 4-5).
Cross-entropy loss is calculated from the output of the DUT
and the actual label of the images. The gradient of the loss with
respect to each T'h(") is calculated using backpropagation (line
7-9). Once the required gradients are calculated, all spiking
threshold values are updated using the Adam Optimizer [18]
(line 10 - 12).

C. Hardware Implementation

In Fig. 2(b), we showed that all neurons in a layer share
a common spiking threshold. Fig. 4(c) shows how a pro-
grammable spiking threshold Th can be generated from a
reference voltage V... s, a fixed resistor Ry and another variable
resistor Ry. Using virtual ground principle, it can be shown
that Th = Viey x (1+ #2). As shown in Fig. 4(c), Ry is
realized as a parallel combination of six resistors and switches
S[0 : 4], where Ry is the effective resistance between node
A and B. For S[0 : 4] = 00000, the effective resistance

between A and B is Ry = R. For S[0 : 4] = 11111,
we obtain Ry = 3—}%2. In general, for different values of

S[0 : 4], we can obtain Ry = g, where 1 < a < 32. So,



Vih = Veer x (1 + o‘gl ), where the value of « depends on
S[0 : 4]. As a result, once the regressor predicts the value of
the spiking threshold of a layer, it can be set just by changing
5 digital bits S[0 : 4].

VI. RESULTS

A. Experimental Methodology

We evaluate the proposed testing and tuning framework on
a VGG-9 Convolutional Spiking Neural Network (CSNN),
trained on the CIFAR-10 [19] dataset using the SNNTorch
framework [20]. We choose VGG-9 architecture to ensure
that the proposed framework is scalable to Deep Spiking
Neural Networks. We use 7' = 25 timesteps and an initial
learning rate of 2x 10~%. The network is trained for 50 epochs
using the Adam optimizer [18]. Each weight of the CSNN is
quantized to a 6-bit fixed point representation. The baseline
accuracy of the network is Apgserine = 85.36%. Variability
injection is performed using PyTorch. If standard deviations
of systematic, random and total variability are o,ys, 0ranq and
Otor tespectively, then o7, = o2,  + 02,4 Following the
work of [15], we assume 50% contributions from systematic
variability and 50% contribution from random variability, i.e.,
Osys = Orand = ‘”—"Zt We choose o to be 1.6% of the
nominal value of gap dynamics fitting parameter 7y = 16.5
[21] [17]. All Hspice simulations are performed using [22].

We implement the Alternative Test Regressor (ATR) using
the Gradient Boosting Regressor from Scikit-Learn library
[23]. We gather training data for the ATR and the Tuning
Regressor from D, = 1000 and D;, = 400 DUTS respectively.
We evaluate the alternative test and the signature driven
tuning framework on another 500 DUTs generated using the
variability injection framework.

B. Evaluation Metrics

The classification accuracy of the 500 DUTs used for
evaluation are predicted using the ATR. The performance
metric of the ATR is the Mean Absolute Error (MAE)
computed between the actual accuracy (A) and predicted
accuracy (fl) of the DUTs. We use Yield as the metric to
evaluate the tuning framework. For a fixed accuracy drop 4,
if a DUT has accuracy A > Apgsetine — 0, it is deemed
a good device. If A < Apgseline — 9, it is deemed a bad
device. Out of the 500 DUTSs used for evaluation, if there
are (G; good devices and B; bad devices, then we define
pre-tuning yield as Y, = ﬁ x 100%. After applying
post-manufacture tuning, if the number of ”good” and “bad”
devices are G2 and By respectively, then the post-manufacture
yield is Yo = % x 100%. We define yield improvement
as AY =Y, — Y.

We compare the results of the signature driven tuning with
a baseline method in which the spiking thresholds of each bad
device are optimized using Algorithm 2. If post-manufacture
tuning was not constrained by computational resources and
tuning time, the baseline method would provide the best
possible yield achievable using spiking threshold calibration.
However the baseline method is impractical for real time
tuning due to very high tuning time. The purpose of this
comparison is to evaluate the effectiveness of signature driven
tuning compared to the baseline method.
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Figure 6: Impact of Tuning on Yield

C. Alternative Test

To choose the size of the Compact Image Dataset IV, we
sweep N from 4 to 64. Fig. 5(a) and Fig. 5(b) show how the
alternative test fares for N = 4 and 32 respectively. As we
increase N from 4 to 32, the performance of the regressor
improves and A approaches A. Table I shows the MAE of
the regressor as a function of N. Initially, for very small N,
the regressor has a large MAE of 1.03%. As N increases
(increasing test complexity), the MAE reduces. Doubling NV
from 32 to 64 reduces the MAE by only 0.02%, indicating
marginal gains from the additional test complexity. As a result,
for our testing and tuning framework, we choose N = 32.

Table I: Number of Images in Compact Image Dataset vs
Mean Absolute Error of the ATR

N 4 8 16 32 64
MAE | 1.03 | 0.77 | 0.70 | 0.54 | 0.52

D. Impact of Tuning on Yield

Fig. 6 shows the impact of post manufacture tuning. Reduc-
ing the allowable accuracy drop & causes more DUTs to have
accuracy in the range [0, Apgserinetine —0), reducing yield. The
trend is similar in presence of tuning as well. For § = 3%,
signature driven tuning improves yield from 74% to 82.6%
resulting in a yield improvement of 8.6%. Yield improvement
due to tuning increases as J is reduced. For large values of
0 (10%), signature driven tuning matches the baseline, with
both achieving 97.2% yield. For small values of §, the yield
of signature driven tuning is within 1.2% of the baseline.

Table II shows how many bad devices the tuning framework
is able to recover for a range of § values. For a fixed ¢ if the
number of bad devices before tuning is By and after signature
driven tuning is Bo, then the percentage recovery is defined as
(BIB;lBQ) x100%. As shown in Table II, signature driven tuning
can recover up to 54.83% of bad devices. The percentage
recovery is within 4.62% of the baseline (for § = 3).

E. Overhead

For the VGG-9 network, the proposed tuning scheme re-
quires reprogramming total 9 5-bit registers (one register per



Table II: Recovery of Bad Devices using Post Manufacture
Tuning

Before Signature Driven Baseline
Tuning Tuning Method
Accuracy Bad Bad Percentage Bad Percentage
Drop Devices | Devices Recovery | Devices Recovery
@ | B | B | (BpE | (B | (Bl
x100%) x100%)
10 31 14 54.83 14 54.83
5 68 45 33.82 43 36.76
4 88 57 35.22 54 38.63
3 130 87 33.07 81 37.69

layer). Since the ATR and the Tuning Regressor are both
implemented off-chip, they do not add any area overhead.
Tuning time of signature driven tuning is measured as the
time required by the Tuning Regressor to predict the spiking
thresholds. Tuning time of the baseline method is measured
as the time required by the optimization algorithm running
on a NVIDIA V100 GPU. Tuning times of signature driven
tuning and the baseline method are 0.1 seconds 1070 seconds
respectively. In summary, the proposed signature driven tuning
achieves 10,700x speedup compared to the baseline method
while compromising only 1.2% of the yield.

VII. CONCLUSION AND FUTURE WORK

In this research, we address the challenge of manufacturing
yield loss stemming from process variations in RRAM based
SNNs. A learning assisted post-manufacture tuning framework
predicts the optimal values of a set of tuning knobs (spiking
threshold voltage of each layer in the SNN). Tuning effort is
reduced by performing post-manufacture tuning only on SNN
chips which suffer accuracy degradation beyond a tolerable
limit. These out-of-spec SNN chips are isolated by an alter-
native testing framework. The proposed testing framework,
enabled by a trained regressor, achieves orders of reduction in
test complexity compared to exhaustive test.

In future, we plan to extend the tuning framework to more
complicated spiking neuron models as well as time to first
spike (TTFS) encoded SNNs.
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