
Learning Assisted Post-Manufacture Testing and
Tuning of RRAM-Based DNNs for Yield Recovery

Kwondo Ma, Anurup Saha, Chandramouli Amarnath, Abhijit Chatterjee
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA, USA

kma64@gatech.edu, asaha74@gatech.edu, chandamarnath@gatech.edu, abhijit.chatterjee@ece.gatech.edu

Abstract—Variability-induced accuracy degradation of RRAM-
based DNNs is of great concern due to their significant potential
for use in future energy-efficient machine learning architectures.
To address this, we propose a two-step process. First, an enhanced
testing procedure is used to predict DNN accuracy from a set
of compact test stimuli (images). This test response (signature) is
simply the concatenated vectors of output neurons of intermediate
and final DNN layers over the compact test images applied. DNNs
with a predicted accuracy below a threshold are then tuned based
on this signature vector. Using a clustering based approach, the
signature is mapped to the optimal tuning parameter values of
the DNN (determined using off-line training of the DNN via back-
propagation) in a single step, eliminating any post-manufacture
training of the DNN weights (expensive). The tuning parameters
themselves consist of the gains and offsets of the ReLU activation
of neurons of the DNN on a per-layer basis and can be tuned
digitally. Tuning is achieved in less than a second of tuning time,
with yield improvements of over 45% with a modest accuracy
reduction of 4% compared to digital DNNs.

I. INTRODUCTION

Among emerging technologies for implementing deep neu-
ral networks (DNNs), Resistive Random-Access Memory
(RRAM) has gained significant attention as a promising can-
didate [1] for accelerating DNN computations due to its fast
read/write speed, high density and lower power consump-
tion [2]–[5]. However, RRAM-based DNNs are vulnerable to
manufacturing process variations which impact their operating
reliability and manufacturing yield [6]. Such DNNs may ex-
perience significant accuracy degradation, up to 60%, for fully
connected and convolutional neural networks, due to RRAM
crossbar nonidealities induced by process variations [7]. To
characterize these effects, recent studies have proposed circuit-
level macro modeling techniques [8] for evaluating memristor-
based accelerator performance (classification accuracy). These
have been leveraged in prior research to train RRAM based
DNNs in ways that factor manufacturing process variations
and defects into the training process itself. A variation-aware
training (VAT) scheme for addressing hardware limitations and
device variations was presented in [9], but is less effective
under large process variations. VAT for RRAM crossbar arrays
under random variability effects was discussed in [10]. Further,
crossbar column rearrangement and weight constrained train-
ing was used to resolve crossbar nonidealities in sparse DNNs
[11]. However, neither of these methods addresses the effects
of systematic process variations which have a significant
impact on DNN performance [12] (Fig. 1 shows accuracy
degradation of MobileNet on CIFAR10 dataset as a function

Fig. 1: Accuracy degradation under systematic variations with
variability-aware training.

of systematic variations when it is trained in a variability-
aware manner for both random and systematic variations).
Also, VAT techniques are not effective in enhancing the worst-
case performance of DNNs [13]. To address systematic process
variability effects, a post-manufacture tuning procedure was
proposed in [12] and requires the use of a column of the
RRAM crossbar with calibrated weights. Tuning is performed
digitally by scaling the input to each neuron by a scaling factor
determined by use of the crossbar column above. However, the
method is unable to fully recover yield as discussed later in
Section V-C. In contrast, the tuning approach developed in this
research is performed in the digital domain, offers significantly
better yield recovery (see Section V), and can be applied to
DNNs with negligible hardware modifications.

The proposed post-manufacture tuning approach consists
of two steps: (a) a testing step in which a compact subset
of test images from the DNN test dataset is applied to the
model and the performance of the DNN is predicted from the
DNN test response signature (consisting of the concatenated
vectors of averaged outputs of intermediate layers and outputs
of the final dense layer over compact test images applied)
and (b) a tuning step in which the optimal values of a set of
digitally tunable parameters of the DNN are predicted directly
(no tuning iterations required) from the same DNN signature.
The optimal values above, are determined by a prior off-
line back-propagation driven optimization procedure. The key
contributions and benefits of the proposed approach are:
(1) A predictive testing approach is developed which allows
determination of the classification accuracy of RRAM-based
DNNs that need to be tuned with high precision and low
test cost. This minimizes testing and tuning costs in volume
manufacturing.
(2) A digital tuning approach for RRAM-based DNNs. Only
the ReLU activations of neurons are tuned on a per-layer basis



Fig. 2: Architecture of RRAM-based DNN.

(gain and offset parameters). A DNN with L ReLU layers
requires tuning of only 2L parameters for yield recovery.
(3) The prediction of the optimal tuning knob values from the
DUT response signature is performed by a trained learning
algorithm (based on unsupervised response clustering) in a
single inference pass allowing testing and tuning for yield
recovery to be performed in less than a second (instead of 10s
of seconds or minutes as with other schemes) while achieving
accuracy drop within 2% to 4% of a digitally trained DNN.

II. PRELIMINARIES OF RRAM

A. Architecture of RRAM-based DNN

In RRAM-based DNN accelerators, vector-matrix multipli-
cation (VMM) is performed using a RRAM crossbar, while
pooling, batch normalization and activation operations are
carried out using digital computation units. Fig. 2a illustrates
the computation flow of a dense layer within the RRAM-based
DNN. The real-number inputs to the dense layer are converted
to analog voltages using Digital-to-Analog Converters (DACs)
and passed on to a VMM unit implemented using RRAM
crossbar. The VMM unit performs the multiplication of a
stored conductance matrix with the input voltages, resulting
in accumulated current outputs. Half of the crossbar columns
store positive weights while the remaining columns store
negative weights. We use HfOx based RRAM device [14] with
two states: High Resistance State (HRS) representing logic
’0’ and Low Resistance State (LRS) representing logic ’1’.
The output currents from the crossbar are converted back to
real numbers using Analog-to-Digital Converters (ADCs) and

shift/add units. The resulting outputs are then forwarded to the
batch normalization and activation functions of the DNN.

B. Variability Modeling Framework

The proposed variability modeling framework quantifies
how the weights represented by RRAM devices of a DUT
differ from pretrained DNN weights due to process variation.
As shown in Fig. 2b, we calculate a non-ideal weight wni

for each ideal weight w of the DNN. Corresponding to
each weight w, two weights w+, w− ≥ 0 are calculated
as w+ = I[w > 0]|w| and w− = I[w < 0]|w|, which
are programmed into the positive and negative sub-arrays of
the crossbar respectively (I[·] denote the Indicator function).
Assuming 16-bit fixed point weight representation, the binary
representation of w+ is calculated as {w+

15, · · · , w
+
0 } and the

j-th bit in the binary representation w+
j is stored using an

RRAM device with conductance g+j . We inject variations in
the gap dynamics fitting parameter γ+

j of each RRAM device
from its ideal value γ0 = 16.5 [14], [15], and calculate γ+

j

as γ+
j = γ0 + γsys + γrand

j , where γsys, γrand
j represent the

systematic and random components of the variation. Following
the variability modeling of [12], the systematic component
of variability (γsys) is sampled once and all RRAM devices
in the crossbar share the same γsys. For all RRAM devices,
γrand
j is sampled independently. The systematic and random

components of variation are drawn from two zero mean normal
distributions with variance σ2

sys and σ2
rand respectively, and

the total variance of the gap dynamics fitting parameter is
σ2
tot = σ2

sys + σ2
rand. Actual conductance of each RRAM

device gn+
j is calculated as a function of the expected con-

ductance (g+j ) and the gap dynamics fitting parameter (γ+
j )

using Hspice simulations. Similarly, non-ideal conductances
corresponding to all the bits in the binary representation of
w− are calculated as {gn−

15, · · · gn
−
0 }. We compute an effective

conductance gneff =
∑15

j=0(gn
+
j −gn−

j )×2j and the effective
conductance is mapped back to a non-ideal weight wni.

III. PREDICTIVE TESTING OF RRAM-BASED DNNS

The proposed predictive testing technique (also called alter-
native testing in [15]) is described in Fig. 3. For each of N
(statistically significant) RRAM-based DNNs, DNN i (1 ≤
i ≤ N), selected across diverse process corners, we construct
a vector Vj = [v1j , v2j , ...vNj ] corresponding to the j-th
image in the testing image dataset, such that vij = 1 if
the j-th image is classified correctly by the i-th DNN else
vij = 0. The vectors Vj corresponding to all the images in the
testing dataset are clustered using agglomerative hierarchical
clustering [16] into C clusters and the images corresponding
to the medoid of each cluster are selected to be included in the
compact test dataset (this is similar to the approach proposed
in [15]). The clustering algorithm is used to trade off the
number of clusters with cluster size and the euclidean distance
between the medoid elements of each cluster. Further, we
mix the down-selected images with randomly filtered images
and repeatedly perform down-selection to generate predictive
test image datasets while keeping the size of compact test



Fig. 3: Post-manufacture testing and tuning framework.

dataset fixed at the prior selected level. Specific filters used
include gaussian, median, and box filters along with brightness,
contrast, gamma correction and adjustments to hue and color
saturation. At each step, the accuracy of the regressor of
Fig. 3c is assessed and the compact image dataset which
achieves the best inference accuracy prediction is selected for
DNN testing. Using experiments on cluster size, we find that
only 10 images from the CIFAR-10 dataset of 10,000 testing
images (1000× saving) gives adequate test performance of our
proposed approach.

Once the compact test dataset is finalized, we observe
the averaged outputs of neurons of intermediate layers and
raw outputs of the final dense layer of the network under
application of the compact test dataset (this is different from
the approach of [15]). In Fig. 3, the DNN under test (DUT)
has L network layers and C is the number of classes for image
classification. The test response from single test image (stim-
ulus) is defined as, TR = [Y1, Y2, ..., YL−1, O1, O2, ..., OC ] ∈
RL−1+C where Yx represents the averaged output of all the
neurons in the x-th intermediate layer. Consequently, when we
apply a compact test image dataset of size K, the response sig-
nature vector is obtained by concatenating the test response as−→
sig = [TR1, TR2, ..., TRK ] ∈ R(L−1+C)×K . This signature
vector of the DUT is passed to an outlier detector (see Fig.
3b) to assess whether the DNN response signature vector is
consistent with the signature vectors of DNNs used to train
the regressor of Fig. 3c. In order to identify anomalous DUTs,
we employ an Elliptic Envelope (EE) technique [17] to fit
the high-dimensional test signature vectors. Outlier devices
undergo comprehensive testing using the entire testing dataset
within the outlier handler. Additionally, based on the derived
inference accuracy, we conduct offline ReLU layer tuning for
DUTs that fall below the accuracy threshold. The outcomes
of both testing and tuning procedures are subsequently em-
ployed to recalibrate the performance regressor and clustering
algorithm within the learning-assisted tuning scheme.

The regressor itself is trained to map test signature of DNN
under compact image dataset to corresponding DNN classifi-
cation accuracy values for RRAM-based DNNs, sampled from
diverse process corners. The trained multivariate regression
spline based regressor (MARS) [18] predicts the classification

Fig. 4: Trainable-ReLU activation function.

accuracy of a tested DNN as â, using the derived signature−→
sig above. We consider the accuracy prediction’s confidence
level, taking into account the inherent prediction error (err =
|â−a|), where a denotes the actual DNN accuracy. The error in
accuracy prediction is assumed to have a gaussian distribution
such that if the predicted accuracy of a specific DNN exceeds
the desired accuracy threshold by an acceptable confidence
margin, â ≥ ath + kσ, it is categorized as a good DNN.
All other DNNs are subjected to post-manufacture tuning. The
proposed predictive testing reduces the standard deviation of
prediction error of the RRAM-based DNN accuracy from 1.37
for the scheme of [15] to 0.92 for MobileNet on the CIFAR10
dataset. This reduction of prediction error results in lower
tuning costs during manufacturing.

IV. POST-MANUFACTURE TUNING

We introduce a novel post-manufacture tuning method for
RRAM-based DNNs, digitally adjusting the gain and offset
parameters of ReLU activation functions of the DNN to restore
accuracy. This is augmented by a learning assisted tuning
scheme using test signature clustering to discover optimal
tuning configurations for DUTs in a single step.

A. Digital ReLU Layer Tuning

We propose a digital ReLU layer tuning technique to address
process variability effects in RRAM-based DNNs. This method
involves transforming standard ReLU activation functions
within the DNN model into proposed trainable ReLU functions
with two global tuning parameters per layer. Fig. 4 illustrates
the standard ReLU function, where the x-intercept is 0 and
the slope is 1. Our tuning scheme introduces the ‘T-ReLU’
function, which incorporates a trainable offset (b) and gain
(a) as layer tuning parameters. Thus, the T-ReLU activation
function is defined as, T-ReLU(x) = max(0, (x− b)× a).

Algorithm 1 performs optimization of the cross-entropy
loss function using the Adam optimizer [19] for an assigned
learning rate (line 1). For each DUT that requires tuning, we
transform all L ReLU activation layers in the network into T-
ReLUs and freeze all weights in the DUT except for the tuning
parameters associated with these T-ReLUs (line 2-5). Here, p
represents the set of tuning parameters of our optimization,
containing the vectors of gain and offset for all T-ReLU
layers. For each training epoch, inference is performed using
the training dataset applied to the DUT, making predictions
based on the current T-ReLU configuration (line 7). The loss
is then calculated by comparing these predictions with the
training labels (line 8). For each layer in reverse order, we
calculate the loss gradient with respect to the layer’s T-ReLU



Algorithm 1 Optimization of T-ReLU tuning parameters
1: Assign learning rate (η), Loss function (L), Optimizer (F )
2: for DUT that requires a tuning do
3: Transform L number of ReLU activation functions to T-ReLU
4: Freeze all the weights except the set of tuning parameters (p =

{−→a ,
−→
b }) of T-ReLU activation functions

5: end for
6: for epoch = 1, 2, ... do
7: Perform inference under the stimuli from training dataset
8: Calculate loss L between DUT outcomes and true labels
9: for l = L, L− 1, ... , 1 do

10: Calculate the gradient with respect to p: ∂L
∂p(l)

11: Update p(l) using Optimizer: p(l) = F(p(l), ∂L
∂p(l)

, η)

12: end for
13: end for
14: return Optimized tuning parameters p∗

tuning parameters and update them using the optimizer (line 9-
12). After training, the algorithm returns the optimized tuning
parameters of the T-ReLU functions for the DUT (line 14).

Since the computation of activation functions in RRAM-
based DNNs occurs in the digital domain, we can seamlessly
integrate the tuning parameters into the network with almost
zero hardware modification. Moreover, our method only re-
quires a pair of tuning parameters for each ReLU layer,
effectively capturing the perturbations caused by systematic
variability effects. Our proposed digital ReLU layer tuning
thus significantly reduces the tuning cost, time, and parameter
complexity compared to traditional weight retraining.

Tuning on smaller training subset: The efficiency of the
proposed digital ReLU layer tuning approach can be enhanced
by utilizing a smaller training subset instead of the entire
training dataset. This approach involves a tradeoff between
the training cost and the model performance. We refer to this
method as ‘subset tuning’, where the size of the training data
subset used is represented as a proportion of the complete
dataset. For the CIFAR-10 dataset, using 5,000 train images
for subset tuning would be referred to as ‘10% subset tuning’
(considering the entire set of 50,000 training images).

B. Learning Assisted Tuning

The learning assisted tuning technique is based on the obser-
vation that the signatures obtained from predictive testing con-
tain enough information about the statistics of RRAM-based
DNNs for successful prediction of model accuracy. Algorithm
2 outlines a learning assisted approach (as shown in Fig. 3d)
to tuning new DUTs without offline back-propagation. This
approach significantly reduces the computational complexity
and effort required for tuning new DUTs while leveraging the
knowledge gained from previous tuning experiments.

Algorithm 2 begins by collecting the optimized tuning
parameters from previously post-tuned sample DUTs that have
undergone our proposed ReLU tuning process (line 1). Then,
we apply agglomerative hierarchical clustering [16] to cluster
the signature vectors of these post-tuned DUTs. The signa-
ture vectors capture essential characteristics of each DUT’s
tuning configuration. For each new DUT that requires online
tuning, we iterate through every cluster in the signature vector

Algorithm 2 Learning Assisted Tuning
1: Collect optimized tuning parameters of post-tuned sample DUTs
2: Cluster the signature vectors of these DUTs
3: for New DUT that requires tuning do
4: for Every cluster in signature vector space do
5: Calculate the distance between its medoid and

−→
sig of DUT

6: end for
7: Select the cluster which has the minimum distance
8: Find the nearest DUT∗ within this cluster with new DUT
9: end for

10: return Tuning parameters of DUT∗

space and calculate the distance between the medoid of the
cluster and the signature vector of the new DUT (lines 4-6).
This distance represents how closely the new DUT’s tuning
requirements match those of the clusters. The cluster with the
minimum distance is thus considered as the best match for
the tuning needs of the new DUT. Within this selected cluster,
we find the nearest tuned DUT to the new DUT based on
their signature vector distances. The algorithm then returns
the tuning parameters of this nearest tuned DUT. These tuning
parameters are then applied to the new DUT without the need
for expensive back-propagation.

V. RESULTS

This section presents experimental validation of our post-
manufacture testing and tuning approach on various RRAM-
based DNNs and compares it to the state of the art.

A. Experimental Methodology

Table I provides the datasets and architectural details (num-
ber of convolutional layers (#Conv), fully connected layers
(#FC), ReLU activation layers (#ReLU), and the ideal accuracy
(Ideal Acc)) for the DNNs tested. The ideal (reference) accu-
racy represents the classification accuracy of the models with
ideal weights in the digital domain. The variability modeling
framework is derived from HSPICE using the PTM model
[23] at 65 nm CMOS technology. We assume 50% contribution
from systematic and 50% contribution from random variability
components [12], [15], i.e., σsys = σrand = σtot/

√
2. We set

σtot between 3.5% to 4.8% of γ0 to generate perturbed RRAM-
based DNNs. For all benchmark DNN applications, we use
PyTorch for simulation using 16-bit fixed-point precision.

The variability modeling framework was used to generate
2000 DNNs across diverse process corners via statistical
sampling of the process space. 1000 of these devices were
used for test stimulus generation, training the outlier detector,
training the regressor for predicting DNN accuracy, and storing
the post-tuning data of the sampled DNNs for learning assisted
tuning. The other 1000 DNNs were utilized as the baseline
for evaluating yield loss due to process variations. We sub-
jected these DUTs to the predictive testing methodology while

TABLE I: Benchmark DNN applications

Dataset Network #Conv #FC #ReLU Ideal Acc

CIFAR-10 MobileNet [20] 27 1 27 83.53 %
VGG16 [21] 13 1 13 93.24 %

CIFAR-100 ResNet18 [22] 17 1 17 75.95 %
VGG16 [21] 13 3 15 72.36 %



(a) Average accuracy (b) Yield (c) Tuning time

Fig. 5: Evaluation results of MobileNet on CIFAR-10 dataset.

employing three different tuning techniques for comparison:
(a) Digital ReLU layer tuning utilizing the complete training
dataset, referred to as ‘exhaustive ReLU tuning,’ (b) Digital
ReLU layer tuning using only a randomly selected 10% subset
of the training dataset, and (c) Learning assisted (LA) tuning
leveraging the optimization results gained from tuning on
sampled DUTs.

B. Evaluation of Post-Manufacture Testing and Tuning

Fig. 5 shows the average accuracy of DNN devices (RRAM-
based MobileNet on CIFAR-10) after post-manufacture tuning
(all devices after the entire testing-tuning process of Fig.
3) with different acceptance accuracy thresholds for tuning.
The average accuracy of the perturbed DNNs on the RRAM
crossbar without tuning stands at 70%, resulting in an accuracy
loss of 13.5% (indicated by the solid line in Fig. 5a). Since no
tuning is performed, this is flat across all accuracy thresholds.
Three other plots for average accuracy vs. acceptance accuracy
threshold are shown: (a) exhaustive ReLU tuning (triangle
markers) in which all 50,000 training images are used to train
only the ReLU parameters of the DNN, (b) learning assisted
tuning (circle markers) and (c) tuning with only a randomly
selected 10% of the CIFAR-10 training dataset consisting of
5000 images used to train only the ReLU parameters of the
DNN. As the acceptance accuracy threshold increases, the
average accuracy also rises because devices below the thresh-
old are tuned. The results of 10% subset-tuning showcase the
feasibility of our proposed ReLU tuning approach, even with
a smaller training dataset.

The yield of a DNN manufacturing process is the (number
of DNNs above a specified threshold of classification accu-
racy)/(total number of DNNs manufactured). The yield of
DNNs without any tuning, rapidly decreases with increasing
accuracy thresholds, as shown by the solid line of Fig. 5b
. We see that more than 70% of RRAM-based DNNs are
deemed good with up to 14% drop in accuracy allowed,
but stricter testing criteria (up to 4% accuracy drop) limits
the percentage of good DUTs to just 2%. All three tuning
schemes demonstrate nearly perfect yield improvement for
acceptance accuracy threshold < 72%. For comparison, in
the high accuracy scenario with a 78.5% threshold, exhaustive

ReLU tuning (triangle markers) is the most effective, reaching
99.1% yield. It is followed by learning assisted tuning (circle
markers) at 89.4% yield, 10% subset-tuning (X markers)
achieves 77.3% yield.

Fig. 5c, shows the tuning time (measured as the number
of GPU clock cycles required for optimizing T-ReLU tuning
parameters through post-manufacture back-propagation) vs.
acceptance accuracy threshold for the three tuning schemes
discussed above. For learning assisted tuning, the CPU com-
putation time for clustering based inference was assessed. As
the accuracy threshold increases, the DNNs require increased
tuning time. The 10% subset ReLU tuning (X markers)
exhibits an 8.7× speedup in comparison to exhaustive ReLU
tuning (triangle markers). Furthermore, our proposed learning
assisted tuning (circle markers) achieves an exceptional 4245×
speedup compared to exhaustive ReLU tuning, while incurring
a minimal compromise of less than 4% in DNN yield. Note
that the evaluation of testing and tuning on VGG16 model
shows comparable results; thus we omit them for brevity.

C. Comparison with the State of the Art

Fig. 6 illustrates the yield of ResNet18 on CIFAR-100 with
respect to the acceptance accuracy threshold for exhaustive
ReLU tuning (triangular markers), learning assisted tuning
(circle markers), the broad training and tuning approach of
[12] (cited as VAT + ST in Fig. 6 with X markers) and no
tuning. VAT incorporates both random and systematic variabil-

Fig. 6: Yield comparison of ResNet18 on CIFAR-100.



TABLE II: Comparison with the state of the art

Post-manufacture Variability Tuning Yield Testretraining modela time (8% Acc drop)
ERTb 2 params per layer Ran+Sys < 20s 73.6% Yes
LATb None Ran+Sys < 1s 70.0% Yes
[12] None Ran+Sys < 1s 23.4% No
[24] 0.5−5% of weights Ran Large Not reported No
a. Ran and Sys represent random and systematic process variations, respectively.
b. LAT and ERT stand for learning assisted and exhaustive ReLU tuning, respectively.

ity during DNN training. VAT + ST refers to application of
the self-tuning (ST) technique described in [12] to the DNN
obtained after variability aware tuning. VAT + ST can partially
recover the yield loss of DNNs for accuracy threshold < 62%.
However, the yield of VAT + ST becomes worse than RRAM-
based DNNs without any tuning for accuracy threshold >
66%. In contrast, our proposed learning assisted tuning scheme
achieves yield of more than 60% for accuracy threshold of
70%, where the VAT + ST technique becomes completely in-
effective. Furthermore, our tuning scheme achieves 45% yield
improvement when the accuracy threshold is 72% (allowable
accuracy drop from ideal model = 4%) which is important for
safety-critical applications.

Table II provides a qualitative comparison of our proposed
tuning methods, referred to as Exhaustive ReLU Tuning (ERT),
and Learning Assisted Tuning (LAT), with two state-of-the-art
techniques for addressing the challenges posed by manufactur-
ing process variations in RRAM-based DNNs. In CorrectNet
[24], the effects of random variations are studied, and post-
manufacture re-training of 0.5 − 5% of the network weights
is performed. As per our own experiments, the tuning time of
this approach (the time taken to retrain the specific weights
using back-propagation) is relatively large when compared to
the proposed exhaustive ReLU tuning, which takes less than
20 seconds of tuning time and focuses on retraining only two
ReLU parameters per layer of the network. Both [12] and our
proposed learning assisted tuning do not require a retraining
process to recover model performance, and their online tuning
time is less than a second. However, when evaluating man-
ufacturing yield with an 8% allowable accuracy drop, [12]
achieves a modest yield of 23.4%. In contrast, the proposed
Exhaustive ReLU Tuning method (ERT) achieves yield of
73.6%, while Learning Assisted Tuning (LAT) achieves 70.0%
yield. Furthermore, our proposed tuning schemes incorporate
a compact testing procedure prior to post-manufacture tuning,
which is necessary for reducing testing and tuning costs, and
is not considered in prior research.

VI. CONCLUSION

This paper presented and validated a two-step approach
to address the impact of process variability in RRAM-based
DNNs. It consists of regressor-based testing to predict DNN
accuracy from image subsets and post-manufacture tuning us-
ing layer-by-layer adjustment of ReLU activation parameters.
An energy-efficient learning-assisted tuning scheme is also
presented and validated as a substitute for post-manufacture
tuning. Our approach achieves more than 45% yield improve-
ment with an accuracy drop of 4% compared to ideal digital
DNNs, outperforming the state-of-the-art.

ACKNOWLEDGMENT

This research was supported by the U.S. National Science
Foundation under Grant: 2414361.

REFERENCES

[1] M. Prezioso et al., “Training and operation of an integrated neuromorphic
network based on metal-oxide memristors,” Nature, vol. 521, no. 7550, pp.
61–64, 2015.

[2] S. Yu et al., “Emerging memory technologies: Recent trends and
prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 43–56,
2016.

[3] M. Hu et al., “Memristor-based analog computation and neural network
classification with a dot product engine,” Advanced Materials, vol. 30,
no. 9, p. 1705914, 2018.

[4] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016, pp. 14–
26.

[5] G. W. Burr et al., “Experimental demonstration and tolerancing of a large-
scale neural network (165 000 synapses) using phase-change memory as
the synaptic weight element,” IEEE Transactions on Electron Devices,
vol. 62, no. 11, pp. 3498–3507, 2015.

[6] S. Jain et al., “Rxnn: A framework for evaluating deep neural networks
on resistive crossbars,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 2, pp. 326–338, 2020.

[7] I. Chakraborty et al., “Technology aware training in memristive neuro-
morphic systems for nonideal synaptic crossbars,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no. 5, pp. 335–344,
2018.

[8] S. Roy et al., “Txsim: Modeling training of deep neural networks on
resistive crossbar systems,” IEEE Transactions on Very Large Scale In-
tegration(VLSI) Systems, vol. 29, no. 4, pp. 730–738, 2021.

[9] B. Liu et al., “Vortex: Variation-aware training for memristor x-bar,” in
Proceedings of the 52nd Annual Design Automation Conference, 2015, pp.
1–6.

[10] Y. Long et al., “Design of reliable dnn accelerator with un-reliable reram,”
in 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2019, pp. 1769–1774.

[11] A. Bhattacharjee et al., “Examining and mitigating the impact of crossbar
non-idealities for accurate implementation of sparse deep neural net-
works,” in 2022 Design, Automation Test in Europe Conference Exhibition
(DATE), 2022, pp. 1119–1122.

[12] Z. Deng et al., “Variability-aware training and self-tuning of highly quan-
tized dnns for analog pim,” in 2022 Design, Automation Test in Europe
Conference Exhibition (DATE), 2022, pp. 712–717.

[13] Z. Yan et al., “Computing-in-memory neural network accelerators for
safety-critical systems: Can small device variations be disastrous?” in Pro-
ceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design. IEEE/ACM, 2022, pp. 1–9.

[14] P.-Y. Chen et al., “Compact modeling of rram devices and its applications
in 1t1r and 1s1r array design,” IEEE Transactions on Electron Devices,
vol. 62, no. 12, pp. 4022–4028, 2015.

[15] K. Ma et al., “Efficient low cost alternative testing of analog crossbar arrays
for deep neural networks,” in 2022 IEEE International Test Conference
(ITC). IEEE, 2022, pp. 499–503.

[16] W. H. Day et al., “Efficient algorithms for agglomerative hierarchical
clustering methods,” Journal of classification, vol. 1, no. 1, pp. 7–24, 1984.

[17] P. J. Rousseeuw, “Least median of squares regression,” Journal of the
American statistical association, vol. 79, no. 388, pp. 871–880, 1984.

[18] J. H. Friedman, “Multivariate adaptive regression splines,” The annals of
statistics, vol. 19, no. 1, pp. 1–67, 1991.

[19] D. P. Kingma et al., “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[20] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[21] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[23] Nanoscale Integration and Modeling (NIMO) Group, ASU, “Predictive
Technology Model,” http://ptm.asu.edu, 2011, online; accessed 8 April
2022.

[24] A. Eldebiky et al., “Correctnet: Robustness enhancement of analog in-
memory computing for neural networks by error suppression and com-
pensation,” in 2023 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2023, pp. 1–6.


