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Abstract

We consider maximizing an unknown monotonic, submodular set function f :
2[n] → [0, 1] with cardinality constraint under stochastic bandit feedback. At each
time t = 1, . . . , T the learner chooses a set St ⊂ [n] with |St| ≤ k and receives
reward f(St) + ηt where ηt is mean-zero sub-Gaussian noise. The objective is to
minimize the learner’s regret with respect to an approximation of the maximum
f(S∗) with |S∗| = k, obtained through robust greedy maximization of f . To date,

the best regret bound in the literature scales as kn1/3T 2/3. And by trivially treating

every set as a unique arm one deduces that
√(

n
k

)
T is also achievable using standard

multi-armed bandit algorithms. In this work, we establish the first minimax lower

bound for this setting that scales like Ω̃(minL≤k(L
1/3n1/3T 2/3 +

√(
n

k−L

)
T )).

For a slightly restricted algorithm class, we prove a stronger regret lower bound

of Ω̃(minL≤k(Ln
1/3T 2/3 +

√(
n

k−L

)
T )). Moreover, we propose an algorithm

Sub-UCB that achieves regret Õ(minL≤k(Ln
1/3T 2/3 +

√(
n

k−L

)
T )) capable of

matching the lower bound on regret for the restricted class up to logarithmic
factors.

1 INTRODUCTION

Optimizing over sets of n ground items given noisy feedback is a common problem. For example,
when a patient comes into the hospital with sepsis (bacterial infection of the blood), it is common for
a cocktail of 1 < k ≤ n antibiotics to be prescribed. This can be attractive for reasons including 1)
the set could be as effective (or more) than a single drug alone, but each unit of the cocktail could
be administered at a far lower dosage to avoid toxicity, or 2) could be more robust to resistance
by blocking a number of different pathways that would have to be overcome simultaneously, or 3)
could cover a larger set of pathogens present in the population. In this setting the prescriber wants to
balance exploration with exploitation over different subsets to maximize the number of patients that
survive. As a second example, we consider factorial optimization of web-layouts: you have n pieces
of content and k locations on the webpage to place them±how do you choose subsets to maximize
metrics like click-through rate or engagement?

Given there are ≈ nk ways to choose k items amongst a set of n, this optimization problem is
daunting. It is further complicated by the fact that for any set St that we evaluate at time t, we only
get to observe a noisy realization of f , namely yt = f(St) + ηt where ηt is mean-zero, sub-Gaussian
noise. In the antibiotics case, this could be a Bernoulli indicating whether the patient recovered
or not, and in the web-layout case this could be a Bernoulli indicating a click or a (clipped) real
number to represent the engagement time on the website. To make this problem more tractable,
practitioners make structural assumptions about f . A common assumption is to assume that higher-
order interaction terms are negligible Hill et al. (2017); Chen et al. (2021). For example, assuming
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only interactions up to the second degree would mean that there exist parameters θ(0) ∈ R, θ(1) ∈ Rn,

and θ(2) ∈ R(
n
2) such that

f(S) = θ(0) +
∑

i∈S

θ
(1)
i +

∑

i,j∈S,i ̸=j

θ
(2)
i,j . (1)

However, this model can be very restrictive and even if true, the number of unknowns scales like n2

which could still be intractably large.

An alternative strategy is to remain within a non-parametric class, but reduce our ambitions to
measuring performance relative to a different benchmark which is easier to optimize. We say a set

function f : 2[n] → R is increasing and submodular if for all A ⊂ B ⊂ [n] we have f(A) ≤ f(B)
and

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B). (2)

Such a condition limits how quickly f can grow and captures some notion of diminishing returns.
Diminishing returns is reasonable in both the antibiotics and webpage optimization examples. It is
instructive to note that a sufficient condition for the parametric form of (1) to be submodular is for

maxi,j θ
(2)
i,j ≤ 0. But in general, f still has ≈ nk degrees of freedom even if it is monotonic and

submodular. And it is known that for an unknown f , identifying S∗ := argmaxS⊂[n]:|S|=k f(S)

may require evaluating f as many as nk times.

The power of submodularity is made apparent through the famous result of Nemhauser and Wolsey
(1978) which showed that the greedy algorithm which grows a set one item at a time by adding the
item with the highest marginal gain returns a solution that is within a (1−e−1)-multiplicative factor of

the optimal solution. That is, if we begin with Sf
gr = ∅ and set Sf

gr ← argmaxi∈[n]\Sf
gr
f(Sf

gr ∪{i})
until |Sf

gr| = k, then f(Sf
gr) ≥ (1 − 1/e)f(Sf

∗ ) where Sf
∗ := argmaxS∈[n]:|S|≤k f(S) if f is

increasing and submodular. This result is complemented by Feige (1998) which shows achieving any
(1− e−1+ ϵ)-approximation is NP-Hard. Under additional assumptions like curvature, this guarantee
can be strengthened.

Due to the centrality of the greedily constructed set to the optimization of a submodular function,
it is natural to define a performance measure relative to the greedily constructed set. However, as
discussed at length in the next section, because we only observe noisy observations of the underlying
function, recovering the set constructed greedily from noiseless evaluations is too much to hope for.
Consequently, there is a more natural notion of regret against a noisy greedy solution, denoted Rgr,
that actually appears in the proofs of all upper bounds found in the literature for this setting (see the
next section for a definition).

For this notion of regret, previous works have demonstrated that a regret bound of Rgr =

O(poly(k)n1/3T 2/3) is achievable (Nie et al. (2022), Streeter and Golovin (2007)). This T 2/3

rate is unusual in multi-armed bandits, where frequently we expect a regret bound to scale as T 1/2.
On the other hand, by treating each k-subset as a separate arm, one can easily adapt existing algorithms

to achieve a regret bound of
√(

n
k

)
T . This leads to the following question:

Does there exist an algorithm that obtains
√
nrT regret for r = o(k) on every

instance? And if not, what is the optimal dependence on k and n for a bound
scaling like T 2/3?

To address these questions, we prove a minimax lower bound and complement the result with an
algorithm achieving a matching upper bound. To be precise, the contributions of this paper include:

• A minimax lower bound demonstrating that Rgr = Ω̃
(
min0≤L≤k(L

1/3n1/3T 2/3 +
√(

n
k−L

)
T )

)
. In words, for small T , a T 2/3 regret bound is inevitable, for large T the

√(
n
k

)
T bound is optimal, with an interpolating regret bound for in between.

± For slightly restricted class of algorithms with non-adaptive greedy error threshold, we

have the improved Rgr = Ω̃(
(
min0≤L≤k(Ln

1/3T 2/3 +
√(

n
k−L

)
T )

)
.
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• We propose an algorithm that for any increasing, submodular f , we have Rgr =

Õmin0≤L≤k(Ln
1/3T 2/3 +

√(
n

k−L

)
T ). As this matches our lower bound, we conclude

that this is the first provably tight algorithm for optimizing increasing, submodular functions
with bandit feedback. Existing algorithms construct a set by greedily adding k items. Our
main insight is that it is actually optimal to build up a set up to a size i∗ and then for the
remaining stages play sets of size k that include the initial set of size i∗. Our choice of i∗ is
directly motivated by our lower bound.

In what remains, we will formally define the problem, discuss the related work, and then move on to
the statement of the main theoretical results. Experiments and conclusions follow.

1.1 Problem Statement

Let [n] = {1, . . . , n} denote the set of base arms, T be the time horizon, and k be a given cardinality
constraint. At time t, the agent selects a set St ⊂ [n] where |St| ≤ k, and observes reward f(St)+ ηt
where ηt is i.i.d. mean-zero 1-sub-Gaussian noise, and f : 2[n] → [0, 1] is an unknown monotone
non-decreasing submodular function defined for all sets of cardinality at most k.

Ideally, our goal would be to minimize the regret relative to pulling the best set S∗ :=
argmax|S|≤k f(S) at each time. In general, even if we had the ability to evaluate the true function f(·)
(i.e. without noise), maximizing a submodular function with a cardinality constraint is NP-hard. How-

ever, greedy algorithms which sequentially add points, i.e. S(i+1) = argmaxa ̸∈S(i) f(S(i) ∪ a), 1 ≤
i ≤ k guarantee that f(S(k)) ≥ αf(S⋆) with α ≥ 1− 1/e in worst-case. Unfortunately, since we do
not know f(·) and instead only have access to noisy observations, running the greedy algorithm on

any estimate f̂(·) may not necessarily guarantee an α = (1− 1/e)-approximation to f(S∗)1.

Consequently, a natural notion to address noisy observations is an ϵ-approximate greedy set for
ϵ ∈ [0, 1]k. We define the following collection of sets of size k

Sk,ϵ = {S = S(k) ⊃ · · · ⊃ S(1), |S(i)| = i,

max
a/∈S(i)

f(S(i) ∪ {a})− f(S(i+1)) ≤ ϵi}.

Intuitively, any S ∈ Sk,ϵ can be thought of as being constructed from a process that adds an element
at stage i which is ϵi-optimal compared to the Greedy algorithm run on f . Such a set naturally arises

as the output of the Greedy algorithm run on an approximation f̂ . This set enjoys the following
guarantee.

Lemma 1.1. (Theorem 6 in Streeter and Golovin (2007)) For any ϵ ≥ 0 ∈ Rk, and Sk,ϵ
gr ∈ Sk,ϵ, we

have
f(Sk,ϵ

gr
) + 1

T
ϵ ≥ (1− e−1)f(S∗).

Lemma 1.1 is a noise-robust analogous result to the approximation ratio of the perfect greedy

algorithm of Nemhauser and Wolsey (1978) that says f(Sk,0
gr ) ≥ (1− e−1)f(S∗). Note that |Sk,ϵ| is

non-decreasing in ϵi for all i ∈ [k], so identifying a set in Sk,ϵ is in some sense easier for a larger
1
T
ϵ. Thus, to define an appropriate definition of regret, the measure must balance the facts that

comparing with the noiseless greedy approximation in Sk,0 may be impossible, but should account
for identifying a set in Sk,ϵ is strictly easier for larger 1T

ϵ. Inspired by the above lemma we define
robust greedy regret

Rgr := min
ϵ≥0,Sk,ϵ

gr ∈Sk,ϵ

R(Sk,ϵ
gr ) + T1T

ϵ (3)

where

R(S) :=

T∑

t=1

f(S)− f(St).

1The gap between maximum gain and rest of the elements in the greedy path for lower cardinalities can be
arbitrary small, making them indistinguishable with T queries. Therefore, only making queries to sets of size k
would give any information on the greedy solution.
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Function Assumptions Stochastic Regret Upper Bound Lower Bound

Submodular+monotone ✓ Rgr kn1/3T 2/3

Pedramfar and Aggarwal (2023)
minL(L

1/3
n

1/3
T

2/3 +
√

(

n
k−L

)

T )
(This work)

Submodular+monotone × Rgr kn1/3T 2/3

Streeter and Golovin (2007)
minL(L

1/3
n

1/3
T

2/3 +
√

(

n
k−L

)

T )
(This work)

Degree d Polynomial × R(S∗) min(
√
ndT ,

√
nkT )

Chen et al. (2021)
min(

√
ndT ,

√
nkT )

Chen et al. (2021)

Submodular+monotone
(This work)

✓ Rgr minL(Ln
1/3

T
2/3 +

√

(

n
k−L

)

T ) mini(L
1/3

n
1/3

T
2/3 +

√

(

n
k−L

)

T )

Table 1: Best known regret bounds for combinatorial multiarmed bandits under different assumptions.
By lemma 1.1 our upperbound can also be stated for R1−e−1 . We note that our lower bound proven
for the stochastic setting immediately applies to the adversarial setting in the table.

This notion of regret captures the fact that if the algorithm plays a set in Sk,ϵ then they may be
incurring up to 1

T
ϵ extra regret. Note that when ϵ = 0 achieves the minimum (which can happen if

the ªgapsº between the greedily added element and all other elements at each stage is large) then this
notion of regret is relative to the greedy set constructed in the noiseless setting.

The definition of regret in (3) is not novel to our paper. This notion is implicitly used in Streeter
and Golovin (2007) in the proofs of Lemma 3 for the full-feedback setting and Theorem 13 for
the bandit feedback setting, Nie et al. (2022) in Theorem 4.1, Pedramfar and Aggarwal (2023) in
Theorem 1, Niazadeh et al. (2023) in Theorem 2 for the full-feedback setting and Theorem 4 for
bandit feedback, and Nie et al. (2023) in Theorem 1. However, readers of these papers will note
that they report their results not in terms of Rgr, but α-Regret: for an α ∈ [0, 1], define α-regret by,

Rα :=
∑T

t=1 αf(S
∗)− f(St) where S∗ := argmax|S|≤k f(S). Using Lemma 1, one immediately

has that Rα ≤ Rgr for α = (1− e−1). Thus, an upper bound on (3) immediately results in an upper
bound on Rα, which is precisely what previous works exploit to obtain their upper bounds on Rα.

To summarize: all the analyses of these previous works concentrate on showing an upper bound on
Rgr, and only at the last step argue that Rα ≤ Rgr, and report an upper bound on Rα. But Rα can
be a very loose lower bound on Rgr! For instance, when the function is modular (the inequalities of

submodularity are tight), and the gap between the best set and worst set is equal to ∆ < e−1, then a
random selection algorithm would get zero or even negative Rα regret, while Rgr would be linear
∆T , which is more natural. Thus, in studying regret against approximations attained by an offline
step-wise greedy procedure, Rgr can be a more appropriate measure than Rα

1.2 Related Work

There has been several works on combinatorial multi-armed bandits with submodular assumptions
and different feedback assumptions. Table 1 summarizes of the most relevant results as well as
the results of this paper. For monotonic submodular maximization specifically, previous work use
Lemma 1.1 with appropriate ϵ to prove an upper bound on expected Rα-regret when the greedy result
with perfect information gives an α-approximation of the actual maximum value.

Stochastic In the stochastic setting, when the expected reward function is submodular and monotonic,
Nie et al. (2022) proposed an explore-then-commit algorithm with full-bandit feedback that achieves

Rgr = O(k4/3T 2/3n1/3)2. Recently, Pedramfar and Aggarwal (2023) showed with the same explore-

then-commit algorithm with different parameters, Rgr = O(kn1/3T 2/3 + kn2/3T 1/3d) is possible
with delay feedback parameter of d. Without the monotonicity, Fourati et al. (2023) achieves

Rα = O(nT 2/3) with bandit feedback for α = 1/2. There have also been several works in the
semi-bandit feedback setting (Wen et al. (2017), Zhu et al. (2021)), and others such as getting the
marginal gain of each element after each query.

Adversarial In the adversarial setting, the environment chooses an arbitrary sequence of monotone
submodular functions {f1, . . . , fT }, and the goal is to minimize regret against an approximation of
the reward of the best set in hindsight (Golovin et al. (2014), Harvey et al. (2020), Streeter et al. (2009),

2Most previous works, Nie et al. (2022); Pedramfar and Aggarwal (2023), state their result in terms of Rα

however, a careful analysis of the proofs of their main regret bounds show a stronger result in terms of Rgr.
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Wan et al. (2023)). Streeter and Golovin (2008) showed O(k√Tn log n) R(1−e−1)-regret is possible

with partially transparent feedback(where after each round, f(S(i)) for all i is revealed instead of only

f(S(k))) and O(kn1/3T 2/3) R(1−e−1)-regret for the bandit-feedback setting. Niazadeh et al. (2023)

proposed a generalized algorithm with Õ(kn2/3T 2/3) R(1−e−1)-regret with full bandit feedback, and

showed all explore-then-commit greedy algorithms have Ω(T 2/3) regret, when applied to our setting.

Without the monotone assumption, Niazadeh et al. (2023) gets O(nT 2/3) R(1/2)-regret with bandit
feedback. The upper-bound results in the adversarial setting doesn’t naturally lead to results in the
stochastic setting as the function is submodular and monotone only in expectation in the stochastic
setting.

Continuous Submodular There are several works on online maximization of the continuous ex-
tensions of submodular set functions to a compact subspace such as Lovász and multilinear exten-
sions(Bach (2019), Feldman and Karbasi (2020)). With a stronger assumption of DR-submodularity,
it’s possible to achieve higher approximation ratio guarantees and lower regret bounds (Bian et al.
(2017a), Bian et al. (2017b), Sadeghi et al. (2021)). Wan et al. (2023) uses multilinear extension to

achieve O(T 2/3) R(1−e−1)-regret for adversarial submodular maximization with partition matroid
constraint.

Low-degree polynomial In general reward functions without the submodular assumption, Chen et al.

(2021) showed if the reward function is a d-degree polynomial, Θ
(
min(

√
ndT ,

√
nkT )

)
regret is

optimal.

2 LOWER BOUND

Theorem 2.1. For any n ≥ 4, k ≤ ⌊n/3⌋, satisfying 512k7n ≤ T ∈ N, let F denote the set of
submodular functions that are non-decreasing and bounded by [0, 1] for sets of size k or less, with
f(∅) = 0. Then

inf
Alg

sup
f∈F

E[Rgr] ≥
1

16
(k − i∗)1/3T 2/3n1/3e−8 +

1

4
T 1/2

√(
n− k

i∗

)
e−2

where the infimum is over all randomized algorithms and the supremum is over the functions in F ,

and i∗ ∈ [k] is the largest value satisfying 16
n2k6

(
n−k
i∗

)3 ≤ T .

The lowerbound is intuitively a mix of the greedy explore-then-commit algorithm for the first k − i∗

arms, and then a standard MAB algorithm between all superarms of cardinality k that include those

elements. For small T (i.e. T = O(n4)) the regret would be Ω(k1/3n1/3T 2/3), and for large T (i.e.

T = Ω(n3k−2)) the regret would be Ω(
(
n
k

)1/2
T 1/2). This lowerbound also immediately gives a lower

bound for the adversarial setting where fi = f +N (0, 1) is the function chosen by the environment
at time i.

Proof Sketch We construct a hard instance so that at each cardinality a single set gives an elevated
reward. Focusing on k = 2 for illustration, the instance would be the following:

H0 :=





f({i}) = 1/2 if i ∈ {1}
f({i}) = 1/2−∆ if i ∈ [n] \ {1}
f({i, j}) = 3/4 if (i, j) = (1, 2)

f({i, j}) = 3/4−∆ if (i, j) ∈
(
[n]
2

)
\ {(1, 2)}

where ∆ is the gap of the best set that we will tune based on T . Pulling any arm of cardinality less
than 2 would incur Ω(1) regret, however, since there are only n such sets (compared to

(
n
2

)
sets of

size 2), pulling these simple arms give more information on the optimal set.

For a set of alternative instances, we choose a set of size k and elevate its reward by 2∆. We also
elevate every prefix set of a permutation of this set by 2∆ so that the new set can be found by a greedy
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algorithm. Again, for k = 2, and any {̂i, ĵ} ∈ [n]\{1, 2}

Hî,̂j :=





f({i}) = 1/2 if i ∈ {1}
f({i}) = 1/2 + ∆ if i ∈ {̂i}
f({i}) = 1/2−∆ if i ∈ [n] \ {1, î}
f({i, j}) = 3/4 if (i, j) = (1, 2)

f({i, j}) = 3/4 + ∆ if (i, j) = (̂i, ĵ)

f({i, j}) = 3/4−∆ Otherwise

Note that, if ∆ < 1
16 for the k = 2 instance, All the functions are submodular, as f({a, b})−f({b}) ≤

1
4 + 2∆ ≤ 1/2−∆ ≤ f({a})− f({ϕ}) for any a, b ∈ [n].

For H0, if ϵi < ∆ for all i ∈ [2], then fH0
(S2,ϵ

gr ) =
3
4 as the noisy greedy finds the best arm, and

otherwise 1
T
ϵ ≥ ∆, so minϵ≥0 fH0

(S2,ϵ
gr ) + 1

T
ϵ = 3

4 . Similarly, minϵ≥0 fHî,ĵ
(S2,ϵ

gr ) + 1
T
ϵ =

3
4 +∆. So for these instances Rgr = R(S∗).

We show that if the KL divergence between an alternate instance and H0 is small, then the algorithm
cannot distinguish between the two environments and the maximum regret of the two would be
Ω(∆T ). Let Pî,̂j ,Eî,̂j be the probability and expectation under Hî,̂j , respectively when execut-

ing some fixed algorithm with observations being corrupted by standard Gaussian noise. Then

KL(P0|Pî,̂j) =
∆2

2

(
E0[Tî] + 4E0[Tî,̂j ]

)
for k = 2, where TS is the number of pulls of set S, and

E0[Rgr] + Eî,̂j [Rgr] ≥ 1
2

n∑

i=1

E0[Ti] +
∆T
2

(
P0(T1,2 ≤ T

2 ) + Pî,̂j(T1,2 > T
2 )
)

≥ 1
2

n∑

i=1

E0[Ti] +
∆T
4 exp(−KL(P0|Pî,̂j)) =

1
2

n∑

i=1

E0[Ti] +
∆T
4 exp

(
− 2∆2

(
E0[Tî] + E0[Tî,̂j ]

))
.

Since î, ĵ were arbitrary, the following Lemma shows that there exist a pair that are pulled for small
number of times in expectation (see Lemma A.2 for general k).

Lemma 2.2. There exists a pair î, ĵ such that

E0[Tî] + E0[Tî,̂j ] ≤
2
∑

i E0[Ti]

n− 2
+

T(
n−2
2

)

Proof. For a pair (i, j), define Q(i,j) := E0[Ti] + E0[Ti,j ]. Then the sum of this term for all pairs
not equal to 1, 2 would be

Q :=
∑

(i,j) ̸=(1,2)

Q(i,j) ≤ (n− 3)
∑

i ̸=(1,2))

E0[Ti] +
∑

i,j ̸=1,2

E0[Ti,j ] ≤ (n− 3)
∑

i

E0[Ti] + T

Then by Pigeonhole principal there exist a pair î, ĵ such that

Q(̂i,̂j) ≤
Q(

n−2
2

) ≤ 2

n− 2

∑

i

E0[Ti] +
T(

n−2
2

)

Using the lemma, for some (̂i, ĵ), we have

E0[Rgr] + Eî,̂j [Rgr] ≥
1

2

n∑

i=1

E0[Ti] +
∆T
4 exp

(
− 2∆2

( 2

n− 2

∑

i

E0[Ti] +
T(

n−2
2

)
))

We choose an appropriate ∆ based on value of i∗.
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• If i∗ = 1, then for ∆ = T−1/3n1/3, we have 2∆2T

(n−2
2 )
≤ 1. So either the KL divergence is less

than 2, then the regret is lowerbounded by ∆Te−2 = T 2/3n1/3e−2 , or for KL divergence

to be larger than 2 we would have
∑

i E0[Ti] ≥ 1
4T

2/3n1/3, which from the above equation

shows the regret is Ω(T 2/3n1/3). This can be extended for expected value of pulls of each
cardinality lower than i∗ + 1 for general k.

• If i∗ = 2, then it can be shown that the term 1
2

∑n
i=1 E0[Ti] + ∆T

4 exp
(
−

2∆2
(

2
n−2

∑
i E0[Ti] + (T −∑n

i=1 E0[Ti])/
(
n−2
2

)))
with ∆ =

√(
n−2
2

)
/T minimizes

when
∑n

i=1 E0[Ti] = 0 i.e. zero single arm sets being pulled in expectation, so the regret

would be T 1/2
(
n−2
2

)1/2
exp(−2).

This shows that the expected regret is Ω̃(mini(i
1/3n1/3T 2/3 +

√(
n

k−i

)
T )). The instance of general

k, and the detailed proof is in appendix A.1. □

We define an algorithm to be in non-adaptive greedy error-threshold class against Rgr regret, if
it selects ϵ′1, . . . , ϵ

′
k at the start only dependent on parameters T, n, k before any arm pulls, and

minimizes regret against f(Sk,ϵ′

gr ) + 1
T
ϵ
′. All the algorithms from previous work in the literature

fall within this restricted class, and with this extra assumption we can prove a stronger lower bound.

Theorem 2.3. For any n ≥ 4, k ≤ ⌊n/3⌋, satisfying 512k9n ≤ T ∈ N, let F denote the set of
submodular functions that are non-decreasing and bounded by [0, 1] for sets of size k or less, with
f(∅) = 0. Then

inf
Alg∈NAET

sup
f∈F

E[Rgr] ≥
1

288
(k − i∗)T 2/3n1/3e−10 +

1

4
T 1/2

√(
n− k

i∗

)
e−2

where the infimum is over all randomized algorithms with non-adaptive greedy error threshold
selection, and the supremum is over the functions in F , and i∗ ∈ [k] is the largest value satisfying
16

n2k6

(
n−k
i∗

)3 ≤ T .

3 UCB UPPER BOUND

Algorithm 1 SUB-UCB algorithm for set bandits with cardinality constraints

1: Input: T , m, greedy stop level l

2: Initialization: S(0) = ∅, TA = 0 for all A ⊂ [n]
3: For each a ∈ [n], pull {a} exactly m times and update T{a} ← m. Update t← mn.
4: for i = 1, 2, . . . , l do

5: Ua ←∞ for all a ̸∈ S(i−1)

6: while TS(i−1)∪argmaxUa
< m do

7: Pull arm St = S(i−1) ∪ argmaxa Ua, observe rt, and update TSt ← TSt + 1

8: for each a /∈ S(i−1) do
9: Sa ← S(i−1) ∪ {a}

10: µ̂Sa ← 1
TSa

∑

t:It=Sa
rt

11: Compute UCB: Ua = µ̂Sa +
√

8 log t
TSa

12: end for
13: t← t+ 1
14: end while
15: Update the base set: S(i) ← S(i−1) ∪ {ai} where ai := argmaxa Ua

16: end for
17: while t < T do
18: Run UCB on all size k super-arms A where S(l) ∈ A.
19: end while

A natural approach to minimizing regret is to take an Explore-Then-Commit strategy motivated by
the greedy algorithm. Such an algorithm would be the following - proceed in k rounds. Set S0 = ∅.
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In round i pull each set in the collection {Si−1 ∪ {a} : a ∈ [n] \ Si−1}, m times. Use these samples

to update our estimate f̂ of f on these sets, and set S(i) ← argmaxa∈[n]\Si−1 f̂(Si−1 ∪ {a}). This
approach has been pursued by existing works Nie et al. (2022), and with an appropriate choice of m
results in O(kn1/3T 2/3) regret.

The disadvantage of this approach is that it can not achieve the correct trade-off between
√
nkT

and kn1/3T 2/3 exhibited by the lower bound. Motivated by the statement of the lower bound, our
algorithm SUB-UCB attempts to interpolate between these different regret regimes. The critical
quantity is i∗. For the first k − i∗ cardinalities, our algorithm plays a UCB style strategy which more
or less follows the ETC strategy described in the previous paragraph. After that, it defaults to a UCB

algorithm on all subsets containing Sk−i∗ , a total of
(
n−k+i∗

i∗

)
possible arms.

Theorem 3.1. For any l ≤ k, SUB-UCB guarantees

E[Rgr] ≤ (1 + 4
√
2)lT 2/3n1/3(log T )1/3 + 65

√
T

(
n− k

k − l

)
log T +

32

15

(
n− k

k − l

)

when m = T 2/3n−2/3 log T 1/3.

Proof Sketch We show that for ϵ := 2
√
2 log(2knT 2)/m, the greedy part of SUB-UCB with

high probability adds an ϵ-optimal arm in each step. Defining event G to be |µ̂S − f(S)| ≤√
2TS log(2knT 2) for all iterations, we prove that this event is true with a probability of at least

1− 1
T .

On Event G, We show that an ϵ-good arm is selected at each step of the greedy algorithm for ϵ =

2
√

2 log(2knT 2)
m . Let a be a sub-optimal arm with expected reward value more than 2

√
2 log(2knT 2)

m

from the best arm in the i-th step i.e. ∆S(i),a := maxa′ f(S(i) ∪ {a′}) − f(S(i) ∪ {a}) ≥
2
√

2 log(2knT 2)
m . Then if arm a is added in i-th step, we have Ua(t) ≥ Ua∗(t) ≥ f(S(i))∪{a∗},

and therefore,

Ua(t)− f(S(i) ∪ {a}) ≥ ∆S(i),a > 2

√
2 log(2knT 2)

m
,

so µ̂S(i)∪{a} − f(S(i) ∪ {a}) >
√

2 log(2knT 2)
m . This is a contradiction with event G, so on event G

such an arm cannot be selected. Lastly, we expand the regret of two stages. As UCB in the second

part of the algorithm has the regret of 65
√
T
(
n−k
k−l

)
log T + 32

15

(
n−k
k−l

)
against the best arm containing

S(l)(see Lattimore and Szepesvari (2017)), it is an upper bound for the regret against the greedy
solution were the first l steps select an ϵ-good arm, and the last k − l steps select the best arm, so on
event G the regret can be written against a set in Sk,ϵ where

1
T
ϵ = lϵ+ (k − l)0 = 2l

√
2 log(2knT 2)

m
.

Therefore, the expected regret E[Rgr] on event G can be written as

2T l

√
2 log(2knT 2)

m
+mn(k − i∗) + 65

√
T

(
n− k

k − l

)
log T +

32

15

(
n− k

k − l

)
,

for any choice of m and l. So for m = T 2/3n−2/3 log1/3(2knT 2) the above term becomes

Õ(lT 2/3n1/3 +
√

T
(

n
k−l

)
). The detailed proof is in Appendix B □

4 EXPERIMENTS

For the experiments we compare SUB-UCB (l) for different greedy stop levels l, SUB-UCB (k − i∗)
which selects the best stop level based on the regret analysis, the ETCG (explore-then-commit greedy)
algorithm from Nie et al. (2022), and UCB on all size k arms. Each arm pull has a 1-Gaussian noise,
with 50 trials for each setting. The expected reward functions are the following.

8



Figure 1: Regret comparison for weighted set cover with n = 15 and k = 4

Functions:

• The Unique greedy path hard instance i.e.

f(S) =

{∑|S|
i=1

1
k+i S = {1, . . . , |S|}∑|S|

i=1
1

k+i +
1

100 S = {1, . . . , |S|}.

This function is inspired by the hard instance in the proof of our lower-bound. Note that this
particular parameterization is submodular when k ≤ 7, not for general k.

• Weighted set cover function i.e. fC(S) =
∑

C∈C w(C)1{S ∩ C ̸= ∅} for a partition C of

[n] and weight function w on the partition. For n = 15 and k = 4, we use the partitions of
size 5, 5, 4, 1 with weights of 1/10, 1/10, 2/10, 6/10 respectively.

Results: As illustrated in figure 1, we observe that our algorithm with the level selection of k − i∗

outperforms both ETCG and naive UCB on all size k arms, as it combines the advantages of greedy
approach for small T s and UCB on many super arms for large T . For smaller T s compared to

(
n
k

)
,

both SUB-UCB and ETCG outperform normal UCB as it doesn’t have enough budget to find optimal

sets of size k, so it gets linear regret(as the other two get O(T 2/3)). However, as T becomes larger the

reverse happens as
(
n
k

)
T 1/2 becomes smaller than T 2/3, but SUB-UCB adopts to T and continues to

outperform the two until it converges with naive UCB for very large T .

Figure 2: Comparison between all SUB-UCB greedy stop cardinality choices for the unique greedy
path function with n = 20 and k = 5. The worst-case optimal stop cardinality l = k − i∗ is
highlighted

9



In figure 2, we compare the performance of SUB-UCB for different choices of greedy stop cardinality,
and observe that the best choice gradually decreases from k to 0 as T gets larger, and k − i∗ is a
practical selection of the best stop cardinality before running the algorithm. Note that the defined
stop level was chosen to minimize the worst-case bound on the regret, and if the gaps between arms
on a particular instance are larger than the worst case, this stop level could be conservative. So k− i∗

is near the optimal stop level, and not the exact one as seen in these figures. Also, the empirical

standard derivation is much smaller than O(T 1/2) due to the regret symmetry of non-optimal sets at
each cardinality, and it’s not visible in the plots.

5 CONCLUSION

In this paper we showed that minL(L
1/3T 2/3n1/3 +

√(
n

k−L

)
T ), ignoring logarithmic factors, is a

lower bound on the regret against robust greedy solutions of stochastic submodular functions, and
a stronger lower bound if the algorithm class is slightly restricted. We also matched this bound
with an algorithm. This work is the first minimax lower bound for submodular bandits, and beyond

closing the k2/3 gap between the general lowerbound and upperbound, it remains open to prove
similar minimax optimal bounds in settings with different types of constraint such as matroid, or in
general, any offline-to-online greedy procedure that is robust to local noise (e.g. Non-monotonic
submodular maximization where the greedy approach gets a 1/2-approximation of the function, or
DR-submodular optimization for the continuous setting which also has a (1− e−1)-approximation).
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A Lowerbound proofs

A.1 Proof of Theorem 2.1

For any {x1, x2, . . . , xk} ∈
(
[n]\{1,...,k}

k

)
, define instanceH0,H(x1,...,xk),H(xi+1,...,xk) with reward

functions as follows:

fH0(S) :=

{
H|S|+k −Hk =

∑|S|
i=1

1
k+i S = {1, 2, . . . , |S|}

H|S|+k −Hk −∆ Otherwise

fH(x1,...,xk)
(S) :=





H|S|+k −Hk +∆ S = {x1, x2, . . . , x|S|}
H|S|+k −Hk S = {1, 2, . . . , |S|}
H|S|+k −Hk −∆ Otherwise

fH(xi+1,...,xk)
(S) :=





H|S|+k −Hk +∆ S = {1, . . . , i, xi+1, . . . , x|S|}
H|S|+k −Hk S = {1, 2, . . . , |S|}
H|S|+k −Hk −∆ Otherwise

where Hn =
∑n

k=1
1
k is the n-th harmonic number.

Lemma A.1. If ∆ ≤ (1/8k2) thenH0 andH(x1,...,xk) are submodular.

Proof. for any S ⊊ T ⊂ [n] where |T | < k (the function is only defined on sets of cardinality at
most k) and x /∈ T we have to show f(S + x)− f(S) ≥ f(T + x)− f(T ).

f(T + x)− f(T ) ≤ 1

|T |+ k + 1
+ 2∆ ≤ 1

|T |+ k + 1
+

1

4k2
≤ 1

|T |+ k
− 1

4k2
≤ 1

|T |+ k
− 2∆

≤ 1

|S|+ 1 + k
− 2∆ ≤ f(S + x)− f(S)

For H0 if ϵi < ∆ at each step i of the greedy arm selection, then Sk,ϵ
gr = {1, . . . , k}, otherwise

fH0
(Sk,ϵ

gr ) + 1
T
ϵ ≥ H2k −Hk +∆−∆ = H2k −Hk = fH0

({1, . . . , k}). So minϵ fH0
(Sk,ϵ

gr ) +
1
T
ϵ = fH0

({1, . . . , k}). This means that we can compute our regret against fH0
({1, . . . , k}).

Similarly, minϵ fH(x1,...,xk)(S
k,ϵ
gr ) + 1

T
ϵ = H2k −Hk +∆ = fH(x1,...,xk)({x1, . . . , xk}) showing

that we can compute our regret against {x1, · · · , xk}.
Let E0 and E(x1,...,xk) denote the probability law under H0 and H(x1,...,xk), respectively. For any

S ⊂ [n] let TS denote the random variable describing the number of time the set S is played by a
policy π. Define Ti :=

∑
S⊂[n]:|S|=i TS .

Then by the definition ofH0 we have

E0[Rgr] ≥
k−1∑

i=1

(fH0(1, . . . , k)− max
S:|S|=i

fH0(S))E0[Ti] +
∑

S:|S|=k

(fH0({1, . . . , k})− fH0(S))E0[TS ]

≥
k−1∑

i=1

( k∑

j=i+1

1/(k + j)
)
E0[Ti] + ∆

∑

{y1,...,yk}≠{1,...,k}

E0[T{y1,...,yk}]

≥
k−1∑

i=1

k − i

2k
E0[Ti] +

∆T

2
P0(T{1,...,k} ≤ T/2)
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Similarly forH(x1,...,xk) we have

E{x1,...,xk}[Rgr]

≥
k−1∑

i=1

(fH(x1,...,xk)
({x1, . . . , xk})−max

|S|=i
fH(x1,...,xk)

(S))E(x1,...,xk)[Ti]

+
∑

S:|S|=k

(fH(x1,...,xk)
({x1, . . . , xk})− fH(x1,...,xk)

(S))E0[TS ]

≥
k−1∑

i

(

k∑

j=i+1

1/(k + j))E{x1,...,xk}[Ti] + ∆
∑

{y1,...,yk}≠{x1,...,xk}

E{x1,...,xk}[T{y1,...,yk}]

≥ ∆T

2
P{x1,...,xk}(T{1,...,k} > T/2).

Lemma A.2. For any i ≤ k here exist a sequence (xi, . . . , xk), where

k∑

j=i

E0[T{1,...,i−1,xi,...,xj}]

≤ 1

n− k
E0[Ti] +

2

(n− k)(n− k − 1)
E0[Ti+1] +

4

(n− k)(n− k − 1)

k−1∑

j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) .

Proof. For i ≤ k and a sequence (xi, ..., xk), define Q(xi,...,xk) :=
∑k

j=i E0[T{1,...,i−1,xi,...,xj}].
Then we have

Q :=
∑

(xi,...,xk) ̸=(i,...,k)

Q(xi,...,xk) ≤
k−1∑

j=i

(n− k − j + i− 1)!(j − i+ 1)!

(n− 2k + i− 1)!
E0[Tj ]+((k−i+1)!)E0[Tk].

Then by Pigeonhole principle, the exists a sequence (xi, . . . , xk) such that

Q(xi,...,xk) ≤
Q

(n−k)!
(n−2k+i−1)!

≤
k−1∑

j=i

(n− k − j + i− 1)!(j − i+ 1)!

(n− k)!
E0[Tj ] +

(n− 2k + i− 1)!(k − i+ 1)!

(n− k)!
E[Tk]

≤ 1

n− k
E0[Ti] +

1

(n− k)(n− k − 1)

k−1∑

j=i+1

(j − i)(j − i− 1)(
n−k−2
j−i−2

) E[Tj ] +
1(

n−k
k−i+1

)E[Tk]

≤ 1

n− k
E0[Ti] +

2

(n− k)(n− k − 1)
E0[Ti+1]

+
4

(n− k)(n− k − 1)

k−1∑

j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) .

Lemma A.3. ForH0 andH(x1,...,xk) defined above, we have

KL(P0|P{xi,...,xk}) = 2∆2
k−1∑

j=i

E0[T1,...,i−1,xi,...,xj
]
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Proof.

KL(P0|P{xi,...,xk}) =
∑

S:|S|≤k

E0[TS ]KL(P0(S)|P{xi,...,xk}(S))

(lemma 15.1 in Lattimore and Szepesvari (2017))

=

k∑

j=i

2∆2E0[T1,...,i−1,xi,...,xj ]

where P0(S) = N (fH0(S), 1) and P{xi,...,xk}(S) = N (fH(xi,...,xk)
(S), 1) are the reward distribu-

tions of arm S inH0 andH(xi,...,Xk) respectively.

Using two above lemmas, we have,

2max
(
E0[Rgr], max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E{xi,...,xk}[Rgr]

)

≥ max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

E0[Rgr] + E{xi,...,xk}[Rgr]

≥ max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

∆T

2

(
P0(T{1,...,k} ≤ T/2) + P{xi,...,xk}(T{1,...,k} > T/2)

)

≥ max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

∆T

2
exp(−KL(P0|P{xi,...,xk}))

(Using Pinsker’s Inequality Lattimore and Szepesvari (2017))

≥ max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

∆T

2
exp

(
− 2∆2

k∑

j=i

E0[T{1,...,i−1,xi,...,xj}]
)

(Using lemma A.3)

≥ ∆T

2
max
1≤i≤k

exp
(
− 2∆2(

1

n− k
E0[Ti] +

2

(n− k)(n− k − 1)
E0[Ti+1]

+
4

(n− k)(n− k − 1)

k−1∑

j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) )
)

(Using Lemma A.2)

≥ max
1≤i≤k

1

2
(k − i∗)1/3T 2/3n1/3 exp

(
− 2T−2/3(k − i∗)2/3n2/3(

1

n− k
E0[Ti]

+
2

(n− k)(n− k − 1)
E0[Ti+1] +

4

(n− k)(n− k − 1)

k−1∑

j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) ))
)

(Setting ∆ := ((k − i∗)n/T )1/3)

For 1 ≤ i ≤ k − i∗ + 1, n2/3T 1/3

( n−k
k−i+1)

≤ 1 by definition of i∗; so either the maximum re-

gret is larger than 1
4T

2/3(k − i∗)1/3n1/3 exp(−8), which proves the theorem, or 1
n−kE0[Ti] +

2
(n−k)(n−k−1)E0[Ti+1] +

4
(n−k)(n−k−1)

∑k−1
j=i+2

k−j
2k E0[Tj ] ≥ 3(1/∆2). If the third term is larger

than 1/∆2, then
∑k−1

j=i+2
k−j
2k E0[Tj ] ≥ 1

16
n

(k−i∗)2/3
T 2/3n1/3 which proves the lowerbound as

n
(k−i∗)2/3

≥ (k − i∗)1/3. Therefore, the only remaining case is that either the first or second term

is ≥ 1/∆2. This means that for 1 ≤ i ≤ k − i∗ + 1, either E0[Ti] ≥ 1
4 (k − i∗)−2/3T 2/3n1/3 or

E0[Ti+1] ≥ 1
8 (n− k − 1)(k − i∗)−2/3T 2/3n1/3 ≥ 1

4 (k − i∗)−2/3T 2/3n1/3. Therefore, for at least

half of the 1 ≤ i ≤ k − i∗ + 1, E0[Ti] ≥ 1
4 (k − i∗)−2/3T 2/3n1/3, and

E0[Rgr] ≥
k−i∗+1∑

j=1

k − j

2k
E0[Tj ] ≥

1

8
(k − i∗)1/3T 2/3n1/3.

Note that since T ≥ 512k7n, we have ∆ ≤ (kn/T )1/3 ≤ 1
8k2 , so the functions with this selection of

∆ are submodular.
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We now lower bound the regret in a different way. Let λ :=
∑k−1

j=k−i∗+1
k−i
2k E0[Ti]

T , then λ ≤ 1, and
using lemma A.2 we have that there exists a selection of (xi, . . . , xk) such that,

k∑

j=i

E0[T{1,...,i−1,xi,...,xj}]

≤ 1

n− k
E0[Ti] +

2

(n− k)(n− k − 1)
E0[Ti+1] +

4

(n− k)(n− k − 1)

k−1∑

j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

)

≤ 4

n− k

k−1∑

j=i

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) =
4

(n− k)
λT +

T(
n−k

k−i+1

)

So

2max
(
E0[Rgr], max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E{xi,...,xk}[Rgr]

)

≥ max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

E0[Rgr] + E{xi,...,xk}[Rgr]

≥ min
λ∈[0,1]

max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

λT +
∆T

2
exp

(
− 2∆2

k∑

j=i

E0[T{1,...,i−1,xi,...,xj}]
)

≥ min
λ∈[0,1]

max
1≤i≤k

λT +
∆T

2
exp

(
− 2∆2

( 4

n− k
λT +

T(
n−k

k−i+1

)
))

≥ min
λ∈[0,1]

max
1≤i≤k−i∗−1

λT +
1

2
T 1/2

(
n− k

k − i+ 1

)1/2

exp
(
− 2

4λ
(

n−k
k−i+1

)

(n− k)
− 2

)

(Setting ∆ := (
(

n−k
k−i+1

)
/T )1/2)

≥ 1

2
T 1/2

(
n− k

i∗

)1/2

e−2

The last inequality holds as log(
4T 1/2( n−k

k−i+1)
3/2

(n−k)T ) ≤ 0, and the function relative to λ is convex, λ = 0

minimizes in the last inequality. Combining the two parts of the proof we have

max
(
E0[Rgr], max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E{xi,...,xk}[Rgr]

)

≥ max
(1
8
(k − i∗)1/3T 2/3n1/3e−8,

1

2
T 1/2

(
n− k

i∗

)1/2

e−2
)

≥ 1

16
(k − i∗)1/3T 2/3n1/3e−8 +

1

4
T 1/2

(
n− k

i∗

)1/2

e−2

A.2 Proof of Theorem 2.3

We generalize the lowerbound distance of Theorem 2.1 by having the gap ∆i in cardinality i. For

any {x1, x2, . . . , xk} ∈
(
[n]\{1,...,k}

k

)
, define instance H0,H(x1,...,xk),H(xi+1,...,xk) with reward

functions as follows:

fH0
(S) :=

{
H|S|+k −Hk =

∑|S|
i=1

1
k+i S = {1, 2, . . . , |S|}

H|S|+k −Hk −∆|S| Otherwise

fH(x1,...,xk)
(S) :=





H|S|+k −Hk +∆|S| S = {x1, x2, . . . , x|S|}
H|S|+k −Hk S = {1, 2, . . . , |S|}
H|S|+k −Hk −∆|S| Otherwise

fH(xi+1,...,xk)
(S) :=





H|S|+k −Hk +∆|S| S = {1, . . . , i, xi+1, . . . , x|S|}
H|S|+k −Hk S = {1, 2, . . . , |S|}
H|S|+k −Hk −∆|S| Otherwise
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The KL divergance between reward distribution of two instances is similarly:

KL(P0|P{xi,...,xk}) =

k∑

j=i

2∆2
jE0[T1,...,i−1,xi,...,xj

]

Lemma A.4. For any i ≤ k here exist a sequence (xi, . . . , xk), where

k∑

j=i

∆2
jE0[T{1,...,i−1,xi,...,xj}] ≤

1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i+1E0[Ti+1]

+
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2

+
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑

j=i+3

k − j

2k
∆2

jE0[Tj ] +
∆2

kT(
n−k

k−i+1

) .

Proof. For i ≤ k and a sequence (xi, ..., xk), define Q(xi,...,xk) :=
∑k

j=i ∆
2
jE0[T{1,...,i−1,xi,...,xj}].

Then we have

Q :=
∑

(xi,...,xk) ̸=(i,...,k)

Q(xi,...,xk) ≤
k−1∑

j=i

(n− k − j + i− 1)!(j − i+ 1)!

(n− 2k + i− 1)!
∆2

jE0[Tj ]+((k−i+1)!)∆2
kE0[Tk].

Then by Pigeonhole principle, the exists a sequence (xi, . . . , xk) such that

Q(xi,...,xk) ≤
Q

(n−k)!
(n−2k+i−1)!

≤
k−1∑

j=i

(n− k − j + i− 1)!(j − i+ 1)!

(n− k)!
∆2

jE0[Tj ] +
(n− 2k + i− 1)!(k − i+ 1)!

(n− k)!
∆2

kE[Tk]

≤ 1

n− k
∆2

iE0[Ti] +
1

(n− k)(n− k − 1)

k−1∑

j=i+1

(j − i)(j − i− 1)(
n−k−2
j−i−2

) ∆2
jE[Tj ] +

1(
n−k

k−i+1

)E[Tk]

≤ 1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i1E0[Ti+1]

+
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2

+
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑

j=i+3

k − j

2k
∆2

jE0[Tj ] +
∆2

kT(
n−k

k−i+1

) .

We now assign ∆i for lower cardinalities based on the value of ∆k. If 1T
ϵ
′ ≤ 2∆k, For i ≤ k−1, we

assign ∆i = ϵ′i, so a greedy procedure with ϵ
′ will retrieve the best set, hence fH0(S

k,ϵ′

gr ) + 1
T
ϵ
′ ≥

fH0
({1, . . . , k}) and fH(xi,...,xk)

(Sk,ϵ′

gr )+1
T
ϵ
′ ≥ fH(xi,...,xk)

({1, . . . , i−1, xi . . . , xk}). Otherwise,

since the gap of any set of size k and the best set is at most 2∆k for both H0 and H(xi,...,xk),

fH0
(Sk,ϵ′

gr )+1
T
ϵ
′ ≥ H2k −Hk −∆k +2∆k = fH0

({1, . . . , k}) and fH(xi,...,xk)
(Sk,ϵ′

gr )+1
T
ϵ
′ ≥

H2k −Hk −∆k + 2∆k ≥ fH(xi,...,xk)
({1, . . . , i− 1, xi . . . , xk}); so for i ≤ k − 1, and we assign

∆i =
∆k

k . Therefore, in both cases Rgr ≥ R(S∗), and we give a lower bound for R(S∗).

For the first part of the lower bound, we’ll assign ∆k = (k − i∗)( nT )
1/3. Now similarly to proof of

Theorem 2.1, we have
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2max
(
E0[Rgr], max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E{xi,...,xk}[Rgr]

)

≥ max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

∆kT

2
exp

(
− 2

k∑

j=i

∆2
jE0[T{1,...,i−1,xi,...,xj}]

)

≥ ∆kT

2
max
1≤i≤k

exp
(
− 2(

1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i+1E0[Ti+1]

+
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2 +
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑

j=i+3

k − j

2k
∆2

jE0[Tj ]

+
∆2

kT(
n−k

k−i+1

) )
)

(Using Lemma A.4)

≥ max
1≤i≤k

1

2
(k − i∗)T 2/3n1/3 exp

(
− 2(

1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i+1E0[Ti+1]

+
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2 +
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑

j=i+3

k − j

2k
∆2

jE0[Tj ]

+
(k − i∗)2n2/3T 1/3

(
n−k

k−i+1

) ))
)

(Setting ∆k := ((k − i∗)3n/T )1/3)

For 1 ≤ i ≤ k−i∗+1,
(k−i∗)2n2/3T 1/3

( n−k
k−i+1)

≤ k2n2/3T 1/3

( n−k
k−i+1)

≤ 1 by definition of i∗; so either the maximum

regret is larger than 1
4T

2/3(k − i∗)n1/3 exp(−10), which proves the theorem, or

1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i+1E0[Ti+1] +
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2

+
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑

j=i+3

k − j

2k
∆2

jE0[Tj ]∆
2
jE0[Tj ] ≥ 4

If the forth term is larger than 1, then

∆2
k

k−1∑

j=i+3

k − j

2k
E0[Tj ] ≥

k−1∑

j=i+3

k − j

2k
∆2

jE0[Tj ]

≥ (n− k)(n− k − 1)(n− k − 2)

12
≥ n3

96

So
∑k−1

j=i+3
k−j
2k E0[Tj ] ≥ n3

96
1
∆2

k
≥ 1

96 (k − i∗)n1/3T 2/3 which proves the lower bound.

Therefore, the only remaining case is that at least one of the first three terms is ≥ 1. This means
that for 1 ≤ i ≤ k − i∗ + 1, either E0[Ti] ≥ n

2∆2
i

, or E0[Ti+1] ≥ n
4∆2

i+1
(n − k − 1) ≥ n

4∆2
i+1

, or

E0[Ti+2] ≥ n
12∆2

i+2
(n− k − 1)(n− k − 2) ≥ n

12∆2
i+2

.

Therefore, for at least 1/3 of the 1 ≤ i ≤ k − i∗ + 1, E0[Ti] ≥ n
12∆2

i
. Let I be all cardinalities in

which this inequality holds(so |I| ≥ k−i∗

3 ); since
∑k−1

i=1 ∆i ≤ 2∆k, using Lemma C.1, we have

E0[Rgr] ≥
k−i∗+1∑

j=1

k − j

2k
E0[Tj ] ≥

∑

j∈I

k − j

2k

n

12∆2
j

≥ 1

288
(k − i∗)T 2/3n1/3.

For the second part of the lower bound, using ∆i ≤ 2∆k, we have

KL(P0|P{xi,...,xk}) ≤ 8∆2
k

k−1∑

j=i

E0[T1,...,i−1,xi,...,xj
]
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, and the rest of the argument follows the proof of 2.1.

B Proof of Theorem 3.1

Proof. We use the notation l = k − i∗ to match our lowerbound, however as k − i∗ is arbitrary, it

can be used for any other choice of l as well. Define the event G :=
⋂k

i=1

⋂
a∈[n]\S(i−1)

⋂T
t=1 gi,a,t

where

gi,a,t :=




∣∣∣

∑

s≤t:Is=S(i−1)∪{a}

(rs − f(S(i−1) ∪ {a}))
∣∣∣ ≤

√
2TS(i−1)∪{a}(t) log(2knT

2)



 .

Now note that if Xs are i.i.d. sub-Gaussian random variables then

P(Gc) ≤
k∑

i=1

P
( ⋃

a∈[n]\S(i−1)

T⋃

t=1

gci,a,t

)

=

k∑

i=1

∑

S∈( [n]
i−1)

P
( ⋃

a∈[n]\S

T⋃

t=1

gci,a,t|S(i−1) = S
)
P(S(i−1) = S)

≤
k∑

i=1

∑

S∈( [n]
i−1)

∑

a∈[n]\S

P
( T⋃

t=1

gci,a,t|S(i−1) = S
)
P(S(i−1) = S)

≤
k∑

i=1

∑

S∈( [n]
i−1)

∑

a∈[n]\S

P
( T⋃

t=1

{|
t∑

s=1

Xs| ≥
√
2t log(2knT 2)}

)
P(S(i−1) = S)

≤
k∑

i=1

∑

S∈( [n]
i−1)

∑

a∈[n]\S

T∑

t=1

1

knT 2
P(S(i−1) = S) ≤ 1/T.

Let Ei be the event that the arm selected at the i-th step of the algorithm is within 2
√

2 log(2knT 2)
m of

the best possible arm at that step, i.e.

Ei =
{

max
a/∈S(i−1)

f(S(i−1) ∪ {a})− f(S(i)) ≤ 2

√
2 log(2knT 2)

m

}
.

We prove that on event G, ∪i∈[k−i∗]Ei is true.

Let a be a sub optimal arm with value more than 2
√

2 log(2knT 2)
m from the best arm in the i-th step.

That is, if a∗ := argmaxa′ f(S(i) ∪ {a′}) and ∆S(i),a := f(S(i) ∪ {a∗}) − f(S(i) ∪ {a}), then

assume that ∆S(i),a ≥ 2
√

2 log(2knT 2)
m . Then on event G and arm a being added in i-th step,

Ua(t) ≥ Ua∗(t) ≥ f(S(i) ∪ {a∗}) = f(S(i) ∪ {a}) + ∆S(i),a

which implies

Ua(t)− f(S(i) ∪ {a}) ≥ ∆S(i),a > 2

√
2 log(2knT 2)

m
.

But this implies that

µ̂S(i)∪{a} − f(S(i) ∪ {a}) >
√

2 log(2knT 2)

m

which is a contradiction of event G. Thus, on event G such an arm cannot be selected.

20



As UCB in the second part of the algorithm has the regret of 65
√
T
(
n−k
k−l

)
log T + 32

15

(
n−k
k−l

)
against

S(k) which is the best size k arm containing S(k−i∗) (see Lattimore and Szepesvari (2017)), on event
G, it is an upper bound for the regret against the greedy solution were the first k − i∗ steps select an
ϵ-good arm, and the last i∗ steps select the best arm, so on event G the regret can be written against a
set in Sk,ϵ where

1
T
ϵ = (k − i∗)ϵ = 2(k − i∗)

√
2 log (2knT 2)

m
.

Therefore, we upper bound the regret relative to f(Sk) + 2(k − i∗)
√

2 log(2knT 2)
m , as by Lemma 1.1

it’s greater than 1
c (1− e−c)f(S∗). Let Ti be the set of times where we pulled a set of cardinality i.

From the while loop condition in the algorithm, we have |Ti| ≤
∑

a/∈S(i−1) min
{

1
∆2

S(i−1),a

,m
}
≤

(n+ 1− i)m for i ≤ k − i∗. For ϵ = 2
√

2 log(2knT 2)
m , we have

E[Rgr] ≤ P[Gc]T + E[Rgr1{G}] ≤
1

T
T + E[Rgr1{G}]

≤ 1 +

k−i∗∑

i=1

∑

t∈Ti

(f(S(k)) + (k − i∗)ϵ)− f(S(i−1) ∪ {at})) +
∑

t∈Tk

(f(S(k)) + (k − i∗)ϵ)− f(St)

≤ 1 + (k − i∗)ϵT +mn(k − i∗)f(S(k)) +
∑

t∈Tk

f(S(k))− f(St)

(f(S(i−1) ∪ {at})) ≥ 0)

≤ 2T (k − i∗)

√
2 log(2knT 2)

m
+mn(k − i∗) + 65

√
T

(
n

i∗

)
+

32

15

n− k

i∗
+ 1

≤ T 2/3n1/3(k − i∗)(log(2knT 2))1/3 +
√
8T 2/3n1/3(k − i∗)(log(2knT 2))1/3

+ 65

√
T

(
n

i∗

)
+

32

15

n− k

i∗
+ 1. (Setting m = T 2/3n−2/3 log1/3(2knT 2))

C Auxiliary Lemmas

Lemma C.1. For any sequence of numbers a1, . . . , an bounded between (0, 1], If
∑

i ai ≤ C ≤ 1,
then

n∑

i=1

1

a2i
≥ n3

C2

Proof. If there exists j, k ∈ [n] such that aj < ak, then for a new sequence a′i ={
ai i /∈ {j, k}
aj+ak

2 i ∈ {j, k} we have

∑
a−2
i −

∑
a′−2
i = a−2

j + a−2
k − 2

4

(aj + ak)2

=
2 +

>2︷ ︸︸ ︷
a2ja

−2
k + a−2

j a2k +2(

>2︷ ︸︸ ︷
a−1
j ak + aja

−1
k )− 8

a2j + a2k + 2ajak
> 0

Therefore, the infimum value of
∑

a−2
i over all such sequences is when all elements are equal, and
n∑

i=1

1

a2i
≥ n

( n∑
ai

)2 ≥ n3

C2
.

21


	INTRODUCTION
	Problem Statement
	Related Work

	LOWER BOUND
	UCB UPPER BOUND
	EXPERIMENTS
	CONCLUSION
	Lowerbound proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.3

	Proof of Theorem 3.1
	Auxiliary Lemmas

