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Abstract

Recent advances in techniques for monitoring and perturbing neural populations
have greatly enhanced our ability to study circuits in the brain. In particular,
two-photon holographic optogenetics now enables precise photostimulation of
experimenter-specified groups of individual neurons, while simultaneous two-
photon calcium imaging enables the measurement of ongoing and induced activity
across the neural population. Despite the enormous space of potential photostimula-
tion patterns and the time-consuming nature of photostimulation experiments, very
little algorithmic work has been done to determine the most effective photostimu-
lation patterns for identifying the neural population dynamics. Here, we develop
methods to efficiently select which neurons to stimulate such that the resulting
neural responses will best inform a dynamical model of the neural population activ-
ity. Using neural population responses to photostimulation in mouse motor cortex,
we demonstrate the efficacy of a low-rank linear dynamical systems model, and
develop an active learning procedure which takes advantage of low-rank structure
to determine informative photostimulation patterns. We demonstrate our approach
on both real and synthetic data, obtaining in some cases as much as a two-fold
reduction in the amount of data required to reach a given predictive power. Our
active stimulation design method is based on a novel active learning procedure for
low-rank regression, which may be of independent interest.

1 Introduction

Neural population dynamics describe how the activities across a population of neurons evolve over
time due to local recurrent connectivity and inputs to the population from other neurons or brain areas.
Identifying these population dynamics can provide critical insight into the computations performed
by a neural population [1]. Dynamical systems models have enabled neuroscientists to generate and
test a multitude of hypotheses about how specific neural populations support the neural computations
that underlie, for example, motor control [2—4], motor timing [5, 6], decision making [7-10], working
memory [11], social behavior [12], and learning [13—16].

The traditional approach to data-driven modeling of a neural population typically involves two sep-
arate stages. First, neural population activity is recorded while an animal performs a task of interest.
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Then, a dynamical systems model is fit to the recorded neural responses [17-33]. This approach
suffers from two key limitations. First, any inferred structure is purely correlational, and cannot be
interpreted with any notion of causality. Second, the experimenter has limited control over how the
neural population dynamics are sampled, which can lead to inefficient data collection—oversampling
in some parts of neural activity space while altogether missing others. Given constraints on time
and resources in neurophysiological experiments, there is a strong need for techniques that minimize
the amount of experimental data required to identify the neural population dynamics.

We seek to overcome these limitations by actively designing the causal circuit perturbations that
will be most informative to learning a dynamical model of the neural population response. For
circuit perturbations, we employ two-photon holographic photostimulation (Figure 1), which provides
temporally precise, cellular-resolution optogenetic control over the activity of ensembles of neurons
[34-41]. When paired with two-photon calcium imaging, photostimulation protocols can provide
insight into network connectivity by enabling the measurement of the causal influence that each
perturbed neuron exerts on all other recorded neurons [36, 39, 42—46]. This platform enables targeted
excitation of the neural population dynamics, thus providing the experimenter with unprecedented
control over the data collected for informing a model of the neural population dynamics.

Here, we develop active learning techniques for designing photostimulation patterns that allow for
efficient estimation of low-rank neural population dynamics and the underlying network connectiv-
ity. First, we introduce a low-rank autoregressive model that captures low-dimensional structure
in neural population dynamics and allows inference of the causal interactions between recorded
neurons. We then propose an active learning procedure which chooses photostimulations to target
this low-dimensional structure, and demonstrate it in two settings: estimating the underlying causal
interactions when using the learned autoregressive model as a simulator of the true dynamics, and
adaptively selecting which samples to observe from our dataset of neural population activity recorded
via two-photon calcium imaging of mouse motor cortex in response to two-photon holographic
photostimulation. In both cases, we show that our active approach obtains substantially more accurate
estimates with fewer measurements compared to passive baselines. Our methodology is based on a
novel analysis of nuclear-norm regression with non-isotropic inputs. To the best of our knowledge,
this is the first approach to demonstrate significant gains applying active learning to low-rank matrix
estimation problems, and thus we believe this may be of independent interest.

2 Related Work

Modeling Neural Responses to Stimulation. Many studies have applied direct electrical or optical
stimulation to neural populations to probe the dynamical properties of neural circuits and their
relation to circuit function [4, 10, 26, 47-49]. Howeyver, these stimulation techniques lack the spatial
specificity needed to precisely probe the causal influence of individuals neurons on the population
dynamics, and these experimental designs were passive in that the stimulation protocols were specified
prior to data collection (with [44, 48] as notable exceptions). Other work has explored a related but
separate problem of minimizing off-target effects when photostimulating individual neurons [41].

Low-Rank Matrix Recovery. Low-rank matrix recovery has been intensively researched over the
last decade and a half [50-52]. However, existing analyses rely critically on the assumption that the
set of measurements taken are highly symmetric and satisfy some notion of the restricted isometry
property (RIP) or incoherence. The matrix recovery problem of our setting departs from the classical
literature in several ways. First, the set of feasible measurements we can take is constrained by the
physical limits of the photostimulation system. Second, as we aim to adapt and actively learn these
matrix coefficients, we should expect that our resulting set of measurements should be highly skewed
by design. Motivated by this, we develop, to the best of our knowledge, the first bounds on low-rank
estimation using the nuclear norm heuristic that gives a quantification of the estimation error in terms
of the precise individual measurements taken (i.e., in contrast to a more global property like RIP).

Active Learning and Low-Rank Estimation. The active learning literature is vast, and a full survey
is beyond the scope of this work. We focus in particular on active learning for dynamical systems, and
problems with low-rank structure. The estimation of dynamical systems—the system identification
problem—is central to many areas of engineering and science [53]. The problem of actively designing
inputs to effectively estimate the parameters of a dynamical system has been studied extensively for
decades [54-61]. More recently, a variety of provably efficient approaches have been developed for



(@) two-photon holographic stimulation (b)  in-vivo neural population dynamics recording (c)  singular values of neural activity data
stimulation  imaging stirmrulation inputs
laser l laser B

3
3

— singular values of neural activity
singular values of shuffled neural activity

w
&

neuron index

o

3
8
singular value

- AFF k

&% :
° =0 neural activity recordings
5 %

y o,
p :‘ /‘4 N i &

(8 A

Sy 4 iR
AT HARNNA — 0

I 100
o 5 time (s) 1° 15 singular value index

Figure 1: (a) Two-photon imaging and holographic photostimulation platform (left) and a representative image
frame (right). Purple circles indicate neurons photostimulated immediately before frame acquisition. Red
and blue indicate increases and decreases of firing activity, respectively, relative to before photostimulation.
(b) Example time series photostimulation inputs (top) and neural responses (bottom) from 100 randomly
selected neurons (out of d = 663 recorded neurons identified in the FoV). (c) Neural responses y; occupy
a low-dimensional subspace. Singular values from a representative dataset’s demeaned neural activity data
matrix (blue) indicate substantially more data variance residing in a few dozen dimensions (out of the full
d = 663 dimensional neural activity space) than is expected by chance (orange, singular values when removing
low-dimensional structure by shuffling time indices independently for each neuron; note clipped horizontal axis).
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both linear [62, 63] and nonlinear [64, 65] systems. Other related work has considered active learning
for latent variable models [66], which are often effective models of neural dynamics. As compared
to these works, a key feature of our setting is the low-rank structure present in the data, which to
our knowledge has not been previously studied within the active system identification literature.

Beyond dynamical systems, some attention has been devoted to active learning with low-rank struc-
ture, in particular works on low-rank bandits [67—70]. While the setting considered in these works is
somewhat different—they aim to solve a bandit problem, while we are interested in regression—they
similarly seek to develop active learning approaches which make efficient use of low-rank structure.
Also related is the work of [71], which shows that in the related sparse estimation setting, there
does not exist more than a logarithmic gain to being adaptive. The results of this work are minimax,
however—only applying to certain “hard” problems—and do not address the matrix recovery problem.

3 Preliminaries

Dataset Details. Neural population activity was recorded in mouse motor cortex using two-photon
calcium imaging at 20Hz of a Immx Imm field of view (FoV) containing 500-700 neurons. Each
recording spanned approximately 25 minutes and 2000 photostimulation trials. In each trial, a 150ms
photostimulus was delivered and was followed by a 600ms response period before the next trial began.
Each photostimulus targeted a group of 10-20 randomly selected neurons, and a total of 100 unique
photostimulation groups were defined for each experiment (= 20 trials per group). We evaluate our
techniques on four such datasets.

3.1 Fitting Low-Rank Dynamical Models

We first seek to develop effective dynamical models of the neural activity in our photostimulation
datasets. Obtaining such models will provide insight into which photostimuli are most informative,
and gives us a means to evaluate the effectiveness of our active learning methods. We consider three
classes of models: autoregressive (AR) models, low-rank AR models, and nonlinear RNN models.
Results from fitting these models are shown in Figure 2. We describe the model details next.

At discrete time ¢t € N, we denote the true neural activity across the d imaged neurons as x; € R4,
the noisy, measured activity as 1, € R%, and the photostimulus intensity applied across those
same d neurons as u; € R?. Applying stimulus u; influences the measured neural activity at the
next timestep ¥;41. However, just the snapshot y; may not capture the full true state of the neural
population, which may include not just the current neural activity, but potentially also multiple orders
of temporal derivatives. To capture these effects, we consider an AR-k model defined as:

Tir1 = Zf;é(Asxt—s -+ Bsut_s) -+ v, Yt = Ty -+ we with wy ~ N(O,O’QId), (31)

where A, € R and B, € R?*? describe the coupling between neurons and stimulus at the time
lag of s timesteps, s = 0, ...,k — 1, and offset v € R? accounts for baseline neural activity. Given
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Figure 2: Example data and cross-validated model predictions. (a) Roll-out predictions of the activity
of an example neuron 7 using low-rank AR-k models (k¥ = 4) and GRU networks for 22 example
data segments (3.3s per segment; segments separated by brief horizontal spaces). Each model’s
predictions are seeded with the first k& = 4 timesteps (200ms) of activity from d = 663 neurons and
are then unrolled to predict the activity across all d neurons over the next 66 timesteps, given the full
70-timestep sequence of photostimulation to all d neurons. Most responses of neuron i are tied to
“direct” photostimulation of neuron ¢ (pink, first row of panels). Several “indirect responses” are tied
to stimulation of other neurons j # ¢ that influence neuron ¢ through the population dynamics. To
avoid showing all indirect stimuli (to d — 1 neurons), only select indirect stimuli are shown (green,
second row of panels). (b) Receiver operator characteristic (ROC) curve of true-positive rate and
false-positive rate for response detection are calculated on indirect responses only (left) and all direct
and indirect responses (right). (c) Area under ROC curve (AUROC) and (d) mean square error (MSE)
for all predictions.

input-observation pairs {(u¢, y¢) }+, the coefficients {(As, B)*Z}, v} of (3.1) can be fit using least
squares. Despite its simplicity, this linear model reproduces the recorded neural activity remarkably
well (see “full rank” model of Figure 2).

Neural population dynamics are frequently reported as residing in a subspace of lower dimension
than the total number of recorded neurons [2, 7, 17, 72-77]. The population dynamics in our datasets
are consistent with such low-dimensional structure, as indicated by the singular value spectrum in Fig-
ure 1(c). Inspired by this observation, we introduce a set of low-rank dynamical models, where each
matrix of {(A,, Bs)*Z31 is re-defined as diagonal plus low-rank. Explicitly, we parameterize A, =
Dy, +Ua V) and B, = Dp, +Up, Vg, where D € R¥*? with D;; = 0 forall i # j, U € R¥",
and V' € R?*" for predefined rank 7. The diagonal matrices account for substantial autocorrelation
in each neuron’s activity (D 4_) and for the reliable response of each neuron to direct photostimu-
lation (D3, ), whereas the low-rank matrices (UV ") confer coupling between neurons. To fit these
parameters, we optimize the following objective function with gradient descent over all parameters:

T T k—1 k—1 2
minimize > (Y1 — Dy AsYr—s — Do Bsup—s — v)%. 3.2)
Ay, By€RIXd 5=, ... k—1,0eRd =1 (vr+ s=0 HsYt—s s=0 Bstii—s = V)

Figure 2 shows that these low-rank models perform comparably to the full rank versions in terms of
predictive performance; indeed the rank » = 35 model appears almost indistinguishable from the full
rank model. From a statistical perspective, low-rank models have far fewer degrees of freedom, and
hence require less data to fit.



To assess whether more expressive nonlinear models could be advantageous, we also fit a gated
recurrent unit (GRU) network model, adapted from [22], as shown in Figure 2. Interestingly, the
GRU model did not perform as well as the AR-k models, potentially due to the complexities of
hyperparameter tuning. Therefore, we focus on linear models in the analysis that follows. Additional
details on model fitting are provided in Appendix B.2.

3.2 The Causal Connectivity Matrix

While we require dynamical models to predict the temporal evolution of the neural population activity,
we are also interested in inferring how the activity of one recorded neuron causally influences the
activity of the other recorded neurons. To address this need, we define a causal connectivity matrix,
H € R4 to be the mapping such that Hu € R? quantifies the total response (across time) of
each neuron to a single-timestep photostimulus w. That is, Y ,—, x; = Hu, where z1, 22, T3, ... are
the neural activities generated by the population dynamics if ug = u, u¢>1 = 0, and 24<g = T 15
the steady state or resting state of the system subject to no photostimulation. If the dynamics are
linear, or more specifically follow (3.1), such a matrix H is guaranteed to exist, and can be formed by
simply rolling out (3.1) with the appropriate initializations. While H is not explicitly constrained to
be low-rank, if it is obtained from a low-rank AR-k model, it too will exhibit low-rank structure.

In our experimental paradigm, photostimulation acts as a causal perturbation to the population
dynamics, and as such, our statistical framework is able to capture causal interactions, as opposed
to merely correlative interactions. This is in contrast to the majority of work on neural population
dynamics, which involves fitting dynamical models to passively obtained data. Due to the lack of
causal manipulations in these studies, one cannot distinguish whether statistical relationships arise
between neurons due to correlation (e.g., due to a shared upstream influence) versus causation (e.g.,
neuron ¢ directly influences neuron j). Such correlative relationships are typically referred to as
“functional connectivity”’; we instead use the term “causal connectivity” to convey the additional
causal interpretability afforded in our setting.

To fit H, we could first fit { A,, B, }*Z} and then use these as plug-in estimates for their true values to
compute H. Alternatively, we take a more direct approach inspired by the definition of H itself. By
inspecting the raw data of Figure 2(a) and observing the rate at which each stimulated neuron returns
to baseline activity, it is clear that the system mixes (i.e., forgets the past) quickly. This suggests that
the total response due to input u asymptotes after some finite number of timesteps 7. Thus, we can
apply some photostimulus u € R? at time ¢ = 0 and then measure the total response z = P
where 3; € R? is the noisy measurement of the true neural response ;. If we repeat this for many
pairs {(un, zn) }» then we can approximate H as
H:=argming Y., [|zn — H'u,||3.

In this work we adopt this latter approach. Since we believe H to be low rank, this amounts to a
low-rank matrix recovery problem with matrix-vector observations. In the next section, we will
describe how to adaptively choose {u,, }, to estimate H using as few (stimulus, response) pairs as
possible. Subsequently in Section 5, we will demonstrate that actively designing inputs to accelerate
the learning of H effectively accelerates the learning of the full dynamics as well.

4 Active Learning of Low-Rank Matrices

In the previous section, we saw that estimating the causal connectivity matrix H induced by the neural
population dynamics amounts to low-rank matrix recovery, where we apply some photostimulus
u € R? and observe the neural population response z ~ Hu plus noise. In this section we seek to
understand how we should choose the photostimuli to estimate the causal connectivity as quickly as
possible. To this end, in Section 4.1 we present novel results characterizing the estimation error of the
nuclear norm regression estimator, and in Section 4.2 present an algorithm motivated by these results
which seeks to actively estimate low-rank matrices. These results will directly motivate a procedure
for designing photostimulation inputs.

To demonstrate the generality of our results, in Section 4.1 we consider a general matrix regression
setting. In particular, let ©, € R%*92 be a rank r (potentially non-square) matrix, ¢,, € R4 *d2
some input matrix, and assume scalar observations:

Zn = <®*a90n>+77n7 nnNN(071)> 4.1)



where (0., ¢,) = tr(0] ¢,) for tr(-) the trace of a matrix. Note that the setting considered in
Section 3.2 is a special case of this observation model with ©,. <— H and, for each input stimulation
u, measuring the response of (4.1) to d inputs ¢; of the form ¢; = ejuT forj=1,...,d.

Matrix Notation. Welet || - ||, || - ||op, || - ||« denote the Frobenius, operator, and nuclear norm of
a matrix, respectively. T denotes the pseudo-inverse of a matrix. vec(-) denotes the vectorization of a
matrix, and mat(-) the inverse of the vectorization. We also let A, denote the simplex—the set of
distributions—over a set .

4.1 Constrained Nuclear Norm Estimator under Non-Isotropic Measurements

We are interested in understanding how we can effectively take into account the low-rank structure
of ©,, if our goal is to estimate ©, from the observations of (4.1). To this end, we consider the
following nuclear-norm constrained least-squares estimator for ©,:

6= argenllcinll‘P(@) — 2[5 =0 (¢, ©) = 2)* for K:={0:]0]. < [6,].}, “2)

where here we let ®(0,) € RY denote the vector where the nth element is (¢,,,0,), and z =
®(O,) + 7 the vector of observations, for 7 the vector with elements 7,,. Define ©, = ULV T as
the skinny SVD such that U € R4*", V' € R%*" and consider the linear projection operators
P, Py : Rhxd2 — Rxd2 defined as:

P (M)=(I-UU")YM(I-VV") and P|(M):=M — P (M),

for any M € R%*d2 We call Py the projection onto the tangent space of ©,. Note that the
dimension of the range of P is equal to just r(d; + d2) — r? < dydy. We are now ready to state our

main result on the estimation error of (:), for © as defined in “4.2).
Theorem 1. Define pu := ||(®*®)Y/2((P@*®P)")Y/?| op. Then with probability at least 1 — 26:

A 4
[© — O4lr < m\/tr((P”@*@PH)T) +2[|(Py®*® Py) | op log L

+ 4| PL(®"®)2lop [|(P 2" @) [lop(v/d1 + /d2 + 4 /210g 3),

where here D*® (M) := " @n{n, M) and tr(-) describes the sum of the eigenvalues of the linear
operator (]—"HCIJ*CIJP”)T : Rduxdz _y Rd1xdz

Theorem 1 provides a precise bound on the estimation error of the nuclear norm estimator under
arbitrary inputs {(,, },,. To the best of our knowledge, this is the first such characterization of this
estimator. This characterization is particularly essential in active learning problems, such as the prob-
lem considered here, where it is critical that we understand precisely how the estimation error scales
with different inputs, in order to determine which inputs will most effectively reduce the estimation
error. As the observation model of Section 3.2 is a special case of the setting considered in (4.1) with
O, < H, Theorem 1 provides a quantification of how quickly we can estimate the causal connectivity
matrix given some set of inputs; we expand on the implications of this connection in Section 4.2.

Theorem 1 states that the estimation error of the estimator (4.2) scales (predominantly) with the
strength of our inputs ,, in the tangent space of O,. Indeed, if [w1, ..., wq,] and [v1, ..., v4,] are

the left and right singular vectors of the full SVD of ©,, and L € Ré1dzx7(d1+d2) =% i5 4 matrix with
orthonormal columns vec(w;v, ) for (i, ) : {i <r} U {j <r}, then

tr((Pj@*eP))") = tr((LTZgzlvec(gon)vec(@n)TL)T),

so we see that the estimation error depends only on the scaling of Zlevec(gpn)vec(gpn)T in
the space spanned by Vec(uiv;—) for i < ror j < r—the tangent space to ©,. As an example

of how this scales, assume that for n = 1,..., N the entries of each ¢, are IID A/(0,1) and
N > r(dy + d2) — 2. Then p ~ 0, tr((P@*®P)t) ~ "t (oo p))i|,, ~ 4,

and || P (®*®)"/2|,, ~ v/N. This translates to a bound of [|© — ©, |2 < T(d1+d2)7;\’,2+1°g(1/5).




Critically, we see that this does not scale with the total number of parameters, d; ds, but instead with
r(dy + dg), which could be much smaller. The following result, due to [78], provides a lower bound
on the estimation error of any unbiased estimator, and shows that the rate obtained by Theorem 1 is
essentially unimprovable.

Theorem 2 (Corollary 1 of [78]). For unbiased estimator ©, E[[|© — ©,|2] > tr((P|®*®P)1).

4.2 Active Learning for Low-Rank Matrix Estimation

Given the above characterization, we turn now to the active learning problem: how can we best
choose our inputs ¢, to speed up estimation error of ©,? For simplicity, rather than the general
matrix regression setting of (4.1), we consider here the vector regression case, as this is the setting of
interest in learning the causal connectivity. In particular, assume that we play some u,, € R% and
observe z,, = Oy, + Ny, for n, ~ N(0, I, ). A single vector observation corresponds to observing
d observations from (4.1), the responses to the matrix inputs ¢; = ejuz forj =1,...,d;. Assume
that O, is rank 7 and let V) := [vy, ..., v,] denote the first r right singular vectors of the full SVD of
©,. Then we have that:

tr((P@*®P)) = (dy — ) - tr((V Sn Vo)) + - tr((En)T), Ewv o= SN junu, . (43)

This calculation, combined with Theorem 1, shows that the estimation error of O, scales with a weight-
ing of two terms: one quantifying the amount of input energy we put into directions spanned by the top-
r right singular vectors, and one that quantifies the amount of input energy played isotropically (that is,
in all directions). Note, however, that the input energy played in directions V|, is weighted by a factor
of dy —r = d;, much larger weight than the weight of r given to the term quantifying the isotropic in-
put energy. This suggests that, to minimize the estimation error of ©,, we should focus a large portion
of our sampling budget to target the directions spanned by the top-r right singular vectors of ©,.

This strategy admits a transparent intuition. If ©, is rank-r and some vector u is orthogonal to the top-
r right singular vectors of ©,, then ©,u = 0. Thus, if we know what subspace the top-r right singular
vectors of ©, span, playing u orthogonal to this subspace gives us no additional information about
O,; in this case we should instead play u aligned with this subspace. This is precisely what the first
term in (4.3) quantifies, while the second term reflects the fact that we must also estimate the subspace
spanned by the top-r right singular vectors of ©,, for which playing inputs isotropically is optimal.

In general, as we do not know ©,, we do not know Vj, and so cannot directly compute inputs minimiz-
ing (4.3). To circumvent this, we consider the following iterative procedure, which alternates between
obtaining an estimate of ©,, ©, and then playing the inputs that would minimize the estimation
error—minimize (4.3)—if © were the true parameter. We present this procedure in Algorithm 1.

Algorithm 1 Active Estimation of Low-Rank Matrices
1: input: horizon N, feasible inputs U, rank r, feasible set /C
2: él — 1,90 1]
3: for=1,2,3,...,[logy N| do
4: Let V; denote the top-r right singular vectors of ©, and A(X) =3 ey Awun ', solve:

A} < argminyca,, tr((\A/OTA()\)‘A/O)T), At e arg miny ¢ p,, tr(A(N)T)

5 For 2° steps, play input u, ~ 3} + $Ap™, add observations to ©
6:  Update estimate of ©,: O¢41 + argmingex Y, )en 12 — Oullf

7: return Oy 4.

At every iteration £, Algorithm 1 computes two distributions over inputs: A}, which targets the
top-r right singular vectors of our current estimate of ©,, and )\zmif, which plays inputs isotropically,
covering all directions. Rather than playing these distributions according to the precise weighting
given in (4.3), we instead found it most effective to mix them at an equal rate. As we do not initially
know which directions are spanned by the top-r right singular vectors of O,, /\}/ is not guaranteed
to target the correct directions, especially in early iterations. Ay™!f plays inputs in every direction,
however, and thus, even if /\X is not aligned to the top-r right singular vectors of O, will ensure



sufficient energy is still being played in the correct directions to allow for learning. Given this, we
increase the weight of playing )\sz relative to that prescribed by (4.3).

Note that the computation of the optimal inputs is a form of A-optimal experiment design [79], which
in general can be efficiently solved by, for example, the Frank-Wolfe algorithm [80]. Furthermore,
efficient procedures for solving nuclear-norm regression problems exist, allowing us to estimate ©,, 1
on line 6 efficiently [81]. We remark that Algorithm 1 takes as input r, the rank of ©,, and /C, which
requires knowledge of ||©,||.. In general, when these quantities are unknown, they can be chosen via
standard cross-validation procedures.

We emphasize again that the setting considered here corresponds precisely to the setting considered
in Section 3.2 with ©, < H, u,, the input stimulation patterns, and z,, the observed neural response
to input u,,. As such, if the causal connectivity H is low rank, Algorithm 1 and the preceding results
provide a methodology to select input stimuli to most efficiently estimate H. In the following section,
we will apply this to our photostimulation datasets.

5 Active Learning for Estimating Neural Population Dynamics

We return now to the problem of photostimulus design for learning neural population dynamics,
and seek to apply the insights of Section 4 to this setting. We present two sets of experiments. In
Section 5.1 we use real data to fit a model of the population dynamics, treat this fitted model as
a simulator for the true dynamics, and then demonstrate that we can learn the causal connectivity
matrix H of this simulator faster using active inputs versus passive inputs. Then, in Section 5.2 we
split our real data into 750ms long trials of (stimulus, response) pairs (see Section 3) and demonstrate
that our active learning algorithm is able to improve the performance of learning dynamical models
on real data by adaptively selecting which trials to observe, training a model on the observed trials,
and evaluating on a hold-out set of unseen trials. Here we find that our approach is able to learn an
accurate model of the dynamics more quickly than non-adaptive approaches.

5.1 Active Learning on Data-Driven Neural Population Dynamics Simulator

In Section 3.1, we demonstrated that photostimulation data can be effectively reconstructed using an
AR-k dynamics model. Given the effectiveness of these models at fitting our data, in this section we
treat them as a simulated representation of our true dynamics, allowing us to query them arbitrarily
as a stand-in for the ground truth dynamics, and seek to determine whether carefully choosing the
photostimulation pattern allows for efficient estimation of the causal connectivity matrix H.

Experiment Details. To obtain models of the population dynamics to use for simulation, we fit an
AR-k model to each dataset as described in Section 3.1. In all cases we use an AR-k model with
order k = 4. We do one run of the experiments using low-rank model parameters UV " with rank
r = 15, and then repeat the experiments using r = 35. In each case, we simulate N = 10000 trials,
where each trial corresponds to applying a photostimulus and observing the response for 7 = 15
timesteps, simulating our true data generation process. To simulate measurement noise and other
trial-to-trial variability in neural responses, we corrupt the observations with Gaussian random noise.
Motivated by the empirically observed fast decay of population dynamics in our datasets, we reset
the initial state of the simulator at each new trial.

In practice, both the magnitude of the stimuli and number of neurons stimulated at each timestep are
constrained by the photostimulation platform. To reflect this limitation in our simulator, we constrain
our inputs to lie in [0, 1], and also impose a sparsity penalty. Precisely, we choose the input set I/ in
Algorithm 1 tobe U := {u € [0,1]¢ : |jul|; < 7}, for some value y > 0 (which we set to v = 30).
While this does not explicitly constrain inputs to be sparse, it can be efficiently optimized over, and
we found in practice that the optimal inputs within this constraint set are in general at least 2-y-sparse.
As baseline methods, we consider the following:

* Random Stimulation: At each trial n, choose y neurons at random, and set corresponding elements
of u, to 1.

* Uniform Stimulation: Compute \"™ as in Algorithm 1 and play inputs wu,, ~ A" for all n.

Our goal is to estimate the causal connectivity matrix H induced by our learned dynamics (see
Section 3.2). In practice, we are most interested in estimating the off-diagonal elements of H, as
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Figure 3: Performance of active stimulation design on estimating learned dynamics model. For each
mouse dataset, we fit a low-rank AR-k model as described in Section 3.1 (for ranks of 15 and 35, and
k = 4). Treating this as a simulator of the true dynamics, we compare our active stimulation design
procedure (Active, Algorithm 1) to randomly choosing groups of neurons to excite (Random), and
uniformly allocating stimulation across all neurons (Uniform), and plot how effectively each is able
to estimate the connectivity of the simulator dynamics. For each figure and method we average over
20 trials, and plot the mean performance with error bars denoting 1 standard error (note that the error
bars are barely visible as the standard deviation is very small).

these correspond to causal interactions between different neurons. To this end, we consider the error

metric W, for H our estimate of H , M a matrix with all entries 1 except its diagonal,

which is 0, and ® element-wise multiplication.

Experiment Results. We present our results in Figure 3. As can be seen, across all learned
simulators and rank levels, our active learning approach yields a non-trivial gain over both baseline
approaches. In particular, on Mouse 1 and both datasets for Mouse 3, we observe a gain of between
1.5-2x over baselines—that is, to achieve a given estimation error, our approach requires between
1.5-2x fewer samples than baseline methods. This demonstrates the effectiveness of our active
learning procedure for estimating low-rank matrices—our method is able to exploit the low-rank
structure present in the underlying dynamics to speed up estimation, as compared to methods which
do not take into account this structure. Furthermore, it shows that on a realistic simulation of neural
population dynamics, we can effectively design stimuli to speed up the estimation of the dynamics.

5.2 Active Ranking of Real Data Observations

As described in Section 3, each of our datasets consist of roughly 2000 (stimulus, response) trials.
In an online photostimulation experiment, we would choose the photostimulus actively for each
trial. Here we seek to simulate this process using real experimental data, but offline, by choosing
the ordering of the trials available in our pre-collected datasets. This serves as a testbed for active
learning procedures: if we can more efficiently learn models in this offline setting, that is a strong
indication that we should also see gains in online experiments. Indeed, those gains may be even
greater online because in our offline setting we are severely restricted to choosing from only 100
candidate stimulation patterns. Thus, we interpret the results in this section as a lower bound on the
performance we might expect online.

To validate this approach, we randomly choose 20 (out of the 100 total) unique photostimulation
patterns and set aside a test set containing all 20 repeated trials of those photostimuli. This creates an
80%/20% train-test split of non-overlapping stimulus patterns. For D¢, and Dyest Our train and
test datasets, respectively, we consider the following query model:

D0

: fortrialsn = 1,2, ..., |Dipain| do

Choose input trajectory T € Dirain, set D < D U {T}, Dirain ¢ Dtrain \{T}
Estimate model using data in ®, and compute prediction MSE of model on © gt
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Figure 4: Performance of active learning estimating photostimulation response on held-out trials.
Each mouse dataset is split into trials corresponding to a stimulus-response pair, and we consider
how these trials might be ordered to obtain more effective estimates with fewer training data trials,
simulating the active learning process. Our approach (Active) is motivated by the low-rank excitation
criteria of Algorithm 1 (see Appendix B.4 for more details) and we compare with randomly choosing
which trial to observe next (Random). We plot the accuracy of the learned model in predicting neural
responses on held-out test trials. We consider 20 different train-test splits (with 20 trials per split),
and include plots of average performance across these splits, as well as splits where Active has the
largest and smallest improvement over Random. We plot error bars denoting 1 standard error (note
again that the error bars are barely visible as the standard deviation is very small).

We fit a dynamics model to the current set of observed trials, as described in Section 3.1, and use
this model to predict the response of the true system on the held-out test inputs, computing the
mean-squared error of these predictions as our metric. We apply a variant of Algorithm 1, described
in more detail in Appendix B.4, and adapted to the query model above. In particular, to apply
Algorithm 1 to learning a full dynamical system, we choose our inputs to target the right singular
vectors of By in (3.1). As a baseline method, we consider the procedure which randomly chooses an
unobserved segment from ®y,,i, at each iteration.

We run the above experiment for 20 different randomly generated train-test splits on each dataset, and
present our results in Figure 4, providing the results for the average performance over the train-test
splits, as well as the best- and worst-case splits for active learning performance. As these results
illustrate, though active learning does not give a substantial gain in all cases, in many cases it is able
to give a gain of up to a factor of 2 x in the number of samples required over the random baseline, and
in the worst case, matches the baseline performance. This further confirms that taking into account
low-rank structure when choosing which measurements to take can improve estimation rates, and, we
believe, is a strong indicator that our active learning procedure would speed up estimation of neural
population dynamics in online settings.

6 Discussion

In this work, we have developed a principled approach to active learning of photostimulation inputs for
the identification of neural population dynamics and connectivity. We discuss three limitations of our
approach, which each suggest potential future directions. First, we have considered active learning of
the causal connectivity matrix and minimization of prediction error, both uniformly across all recorded
neurons. Future work may focus on more specific scenarios, such as targeting particular dimensions of
the neural activity space or changes in connectivity due to learning. Second, while we found that linear
dynamics fit our data remarkably well, this may not always be the case. Does our methodology effec-
tively scale to nonlinear dynamics? Finally, our real-data experiments were performed offline. Future
work may explore running our algorithm online during closed-loop photostimulation experiments.
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A Proof of Theorem 1

As © is a minimizer, we have that | ®(0) — z||2 < ||®(,) — z||2. Consequently,

®(0,) — 2|2 < i PO, +A)— 2|2 — OO, +AcK:|Alp >
[2(0.) — 22 @*Mg&h”@pll( +A) - 2|3 Z {0, + IAllr > p}

= ||© — O,]|r < p.
Thus, our strategy will attempt to find a minimum p > 0 that makes the first expression true.
Equivalently, we show that the following quantity is non-positive
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N M+AeI?CE}\T(AHsz2<(I)(A)’n> —[le(a)]3
2(0(A),m) — [|2(A)]f3.

Intuitively, when ¢ is large, the quadratic term will dominate the inner product making the entire
expression non-positive. We will employ a geometric fact about the nuclear norm ball.

Lemma A.1. Let K = {0 : |0, < ||O4|l+}. If O, + A € K then ||PL(A)]l. < —(A,UVT) <
12 (A) -

= max max
t>p M+AcK:||A|p=t

Proof. If [|©, + Al > ||O«||« then ©, + A & K. By the convexity of the nuclear norm ball, we
have that

10, + All > (|04l + (A, UVT) +(A,W) YW :W =P (W),
Consequently, as the dual norm to || - ||2 is the nuclear norm || - || we have
184 + Allx 2 04l + (A, UVT) +[|PL(A)ls

Thus, if (A, UVT) 4 ||PL(A)|l« > 0 then ©, + A ¢ K. Consequently, if O, + A € K then
(A, UVT) +[PL(A)]. 0. O

Wi <1

Recalling that || M||¢ < ||M||. for any matrix M, an interesting consequence of the above lemma is
that | Py (A)[|p < [|Pj(A)||r which implies || P (A)||3 < [[Al|f < 2||P;(A)||3. That is, the total
error is dominated by the error in the tanget space of ©,.

Applying this lemma, we have that

2D(A), n)—|| (A2 < max 2D(A),n) — || P(A)]|?
@ALROEE s 2(@(8), )~ [2(8)]3

= max 2(D(P)(A)) + B(PL(A)),n) — ||P(A)]2
AP (A A o (@(P(A)) + 2(PL(A)),n) — [(A)]3

2(Q(Py(A)),m) — l2(A)]13

22 (PL(A)),m)

max
M+AEK:||Al|lp=t

< max
A PLA) <N Py (A e[ Alle=t

max
A PL(A) [l <Py (M) g | Alle =t

where the equality uses the fact that A = P (A) + Py (A) and the linearity of ®. For any v € RY
we have

N
(2(A),0) = (A, ) Xpvy) =t (A, 9" (v))
n=1

where ®* denotes the adjoint of ®. We also recognize that the operator ®*® : R%1xd2 _; Rd1xd2
is also linear, defined as ®*®(M) = O*({(X,, M)},) = Zgil Xn(X,, M). Consequently
(®*®)'/? is well-defined and is the same operator as ®*® after taking the square root of its eigenval-
ues.

The next three lemmas bound the two terms of above. Combining them yields the result of the
theorem.
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Lemma A.2. With probability at least 1 — § we have

2(B(PL(A)), ) < 26| PL(®*®)"?|lop (V1 + V/dz + v/210g(1/5)).

max
A PL(A) [ <Py (D) [ Alle=t

Proof. Computing this term amounts to bounding a Gaussian width. Begin by recognizing that by the
non-expansive property of projections, || P(A)||r < [|A[|r < ¢ which results in the simplification:

max 2(®(PL(A)),n) < max 2(®(PL(A)),
A P[NP Q) lIrs I Alle=t ((PLA)m) A PL(A)[L<t (LAY,

N
2<Z N Xn, PL(A))

max
A PL(A)]l-<t

:Aua(a e <t Zﬁ" n), PL(A))

< 21| P Znn lop

n=1
using the fact that the operator norm and nuclear norm are dual to each other, and that the projection
P, is non-expansive. Note that

N N
Z N Xn = mat(z npvec(X;)) = mat(( Z vee(Xp )vee(X,) ") 2vec(n')) =: (8*®)/2(n)
n=1 n=1

where i/ € RT1*%2 with ] ; ~ N(0,1). We then observe that
N

N
[1PL( Z llop = 1P (mat((D_ vee(Xn)vee(X,) 1) 2vee(n))) lop

n=1
< |PL(®* D) lop 11 llop
which completes the proof of the first claim. Recognizing that ||1’||,p is just the largest singular value

of a Gaussian matrix, we find that E[SUPHquSLHszél<UUT’ n)] < +/di + +/dz2 by Exercise 5.14 of
[52]. Applying a sub-Gaussian tail bound completes the proof. O

Lemma A.3. Define ju := [|(*®)Y/2((Pj@*®P))") /2 ||op. Then
2(@(Py(A), ) — @(A)]3

< max 2(Q(Py(A)),m) — (1= w|@F(A))]3
APy (D) lr2t/ V2

max
A PLA) <Py (A [l Alle=t

Proof. Recognizing that ®(A) € RY we have
IR(A)]5 = [2(P(A) + Pu(A))]3
= [2(P)(A)) + 2(PL(A))]3
= [2(PI(ADZ + 12(PLA)E + 2(2(P|(A)), 2(PL(A)))-
To aid in readability, we make a number of notational modifications. First, we drop parentheses so that

®(Py(A)) is just notated as P A. Second, we define M /% := (MT)1/2 where M is the pseudoin-

verse. If *® is invertible restricted to the range of Py, then PjA = (P|®*®P))1/2(2*®)1/2P A
for all A. Thus,

(2(P(A)),2(PL(A)))| = (2PA, 2P LA)|

(27 @) PLA)|

“0)2PA, (2* )2 P A)|

)12 Py (P @t P2 (0 0) 2 PIA, (97 ®) /2 PLA))

)2 (P @ e P 2(9*®) 2P| Alp [|(2* @)/ PLA|p

)2 (P P 1/2|op [|(2* D)2 P Allr [|(2* @)/ PL Al
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where the last two lines follow from Cauchy-Schwartz. Observe that for 4 < 1 we have
a? +b% — 2abp = (1 — p)a® + (1 — p)b® + pa® + pb® — 2abp
= (1 —p)a’® + (1 — p)b* + pla — b)?

> (1 — p)a*.
Thus, if y¢ := [|(®*®)Y/2(P&*®P))1/?|,p then
[2(A)[13 = |2(P (A3 + |2(PLIA)IE — 2{B(P(A)), ®(PL(A)))]
> [|@(P (A5 + [B(PLA))3 — 21l (2*@) /2 PjA|le [|(2*®)/2PL Al
> (1 p)leP(A)]3
Thus,

2((P)(A)),n) — |2(A)]3
2(@(Py(A)),n) — (1 — )| 2P (A)]13
= A:Hm(A)HFSIFI%)%A)HF,HAH@Q@(P”(A))’m — (=l A))]z

< max 2((P(A)),n) — (1= (P (A)]3
A Py (A) e >t/ V2

max
AIPLAY <Py (D) llp [ Allp=t

< max
A[PLA) <Py (A)[r: | Allr=t

where we've used the facts that || - ||, < || - [|r and 2 = [|A]IE = [|P(Q)]|E + [|[PL(A)]E <
2012 (A)[- O

Lemma A4. Let K = min{logy(N),d1ds}. Then for any a > 0, if

20| (Py@*®P)) | op
I—p

1
> — H\/ 16tr((P|@*®P))1 ) + 321|(P @+ Pyl log(K/0) +

then with probability at least 1 — 6 we have

ot max 2@(Py(A).) — (1 - @R A3 <0,
AP (A)[r>t/V2

Proof. The linear operator ®P : R%1*% — RN can be decomposed as PP = S0, Bwnihn,

where {w,},, are orthonormal on R”, {1, },, are orthonormal linear operators on R% <9z and
Bn > 0 are decreasing. For k = 0,1,... ,min{log,(N),d1da} — 1 let Wy = [wok, ..., Wor+1_1]
so that

T T T
= max u W, ®P(A) > min uw W, OP (A) >
B = A B @ Ve ORIA) 2 || mim o W @A) 2 Fae
Then

max _ _ %
A:I\PH(A)Hth/\/ﬁQ@(HI(A))v77> (L=l Al

= oy Mzz Wl (P (2)),m) — (L= | Wi @(Fy (&)}
1P P>t

_ max 2W (P ( ,WTn—l_'u W (P A2
AHPMA)Hp»/fZ TB(P)(A), W) — (1 — ) [W (P (A))]2

K

< omax o 2WIS(R(A) | Wl — (1= m) Wi (P (A))]3
om0 APy (A)lle>t/ V2

K

< Zt\/iﬁ Wl — M@
< 2k+1 kM2 B) k1
k=0

18



where the first inequality holds by Cauchy-Schwartz, and the second holds for all ¢ >
T 2
maxg—o. K Wy nll22v2 Moreover, tv/2Bqk+1 |[W, n]l2 — Mﬁgkﬂ < —atif

= (I—p) Byrot1
W, nll22v/2 2« 8| W, nl3 20
t> max ———"—— 4+ max —————— = X —0 2 4 max -——————
k=0, K (1 — 1) Borsr  k=0,...K (1 — p) B2, k=0, K (1= p)2B2 0y k=0,.K (1 — p)B2,,

Note that for K’ = min{log,(N), d1d2} we have
P(UIS {IW) nll2 > V2 + /2108 (K/6)}) < PUL {IW nll2 = E[|W nll2] + V/21og(K/8)}) < 4.

On this good event, we have that

W o e (V25 v/ TR(RTO)"
k=0,....K ﬂgkﬂ = k=0,..K /8§k+1
2L 4log(K /6
“m - 0g2( /6)
k=0,. K 211 Baiia

ZN: 1 . Alog(K/0)

1m.
2 p=1,..,N B2

where we use the fact that

N K 2Ftl_1 K—-1
1 1 S ok . ok
-5 — -5 max —.
Z 2 Z Z 2 = 2 = 2
n=1 Bn k=0 n=2F Bn k=0 62’“‘*'1 k=0,....K—1 62’“‘*'1

B Additional Details on Experiments

B.1 Further Details on Dataset

The photostimulation data were collected from transgenic reporter mice Ai229, which express Cre-
recombinase-dependent cytosolic GCaMP6m and soma-targeted ChRmine, crossed with the Vglutl-
cre mouse line. Imaging and photostimulation experiments were performed on a Bergamo (Thorlabs)
microscope equipped with a 16x (0.8 NA) Nikon objective. Post-hoc motion correction and neuron
segmentation were performed with the Suite2p package [82] (https://github.com/MouseLand/suite2p).

B.2 Further Details on Experiment of Section 3.1

We split each of our photostimulation datasets into non-overlapping training and test datasets. All
models were trained exclusively using the training dataset and were then evaluated (as shown in
Figure 2) using the test dataset. To build our test datasets, we randomly chose 5 (out of the 100 total)
unique photostimulation patterns and then included all 70-timestep windows about each of the 20
instances of those 5 unique photostimuli. The resulting test set amounted to ~20% of each dataset. In
Figure 2, all models were evaluated using these 70-timestep test sequences of the form {y;, us}72,
where y; € R is the recorded neural activity and u; € R? is the photostimulation delivered at time ¢.
During evaluation on a given test window, all models were provided {y; }7_; and {u;}72; to predict

{ye}i2s.
Autoregressive-k models: We fit the full-rank AR-%£ models to training datasets via linear regression
by expressing

k—1 k-1
Y1 = Z Asye—s + Z Bsug—s +v (B.1)
s=0 s=0
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asY = XW, where

Y1 Yo Y-1 .- Y-k U U1 ... Ui_g 1
Y2 Y1 Yo .. Yok Uy Ug o Ug_f 1

—_

Yr+1 yr Yr—-i ... Yr+i—-k UrT UT—1 ... UTH1-k

and the closed-form solution is W = (X7 X)~1X7Y. For the low-rank AR-k models, we fit all
parameters via gradient descent using Adam [83] over 100 training epochs with a learning rate of
0.01. Gradient descent was implemented in PyTorch and ran on a single NVIDIA Tesla T4 GPU.

During evaluation of the AR-k models, for each test window we first computed 75,1 1 given {y;, us }_;
using (B.1). Then for all subsequent predictions, on the right-hand side of (B.1) we replaced all
instances of y; with g; for ¢ > k. In this manner, each entire roll-out prediction of {yt}zg k1 used all

photostimulation inputs {u; }7°;, but only the first k& timesteps of neural activity {y;}_,. All AR-k
models in this paper used k = 4.

Gated recurrent unit (GRU) networks: GRU networks were loosely based on the sequential
variational autoencoders of [22]. Each model consisted of an encoder GRU network that encodes
k = 4 initial timesteps of recorded neural activity into a bottlenecked initial state for a decoder GRU
network. The decoder then unrolls an entire predicted timeseries of recorded neural activity given
(as input) all photostimulation that was delivered over that time period. Model fitting proceeded by
optimizing the evidence lower bound (ELBO) with respect to all model parameters. Both encoder
and decoder GRUs had 512 hidden units. We used Adam optimization with a learning rate of 0.001
over 4000 training epochs of batch size 100. Models were implemented with PyTorch, and optimized
on a single NVIDIA Tesla T4 GPU.

Evaluation metrics: We evaluated all models using roll-out predictions on held-out test windows. We
quantified performance with mean squared error between recorded and predicted neural activity for
each neuron. We also performed thresholded response detection, whereby detections were defined as
timesteps at which a given neuron’s measured calcium fluorescence exceeded a predefined threshold.
To calculate a receiver operator characteristic (ROC) curve, we enumerated a range of thresholds,
normalized by the standard deviation of each neuron’s empirical activity distribution, and performed
threshold detection separately on the real and model-predicted neural activity traces. We then compute
the overall false-positive rate and true-positive rate at each threshold level to trace out an ROC curve.
We calculate area under the ROC curve (AUROC) to quantify the accuracy of each model.

Longer roll-out evaluations: To assess AR-k models’ ability to predict over longer time horizons,
we implemented another train-test strategy, where the first 80% of timesteps in a recording are used
for training, and the last 20% of timesteps (6736 steps) are used for testing. During the test phase, we
use the same procedure described above, providing only the k£ = 4 initial timesteps of neural activity
and then unrolling predictions over the remainder of this long test window. We report these results in
Figure 5.
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Figure 5: Longer roll-out evaluations. Same format as in Figure 2.

B.3 Further Details on Experiment of Section 5.1

To fit the H parameter in this experiment, we generate observations as described in Section 5.1. We
then estimate [ as:

H « argmin Z |z — Hul/?
HEK (4 2)em

for v our input, and z = 22:1 x; the observed response, where here x; are the observations generated
from playing input u, and 7 = 15.

As K is defined with respect to the nuclear norm of the true parameter, which we do not assume is
known, we run each method with a range of possible values for the nuclear-norm constraint, and plot
the performance of each method for the constraint value that has minimum error. We state the value
of the nuclear-norm constraint used for each plot below:

Active | Random | Uniform
Mouse 1, rank 15 10 10 10
Mouse 1, rank 35 10 10 10
Mouse 2, rank 15 5 5 5
Mouse 2, rank 35 5 5 5
Mouse 3 (FoV A), rank 15 25 25 25
Mouse 3 (FoV A), rank 35 25 25 25
Mouse 3 (FoV B), rank 15 50 100 100
Mouse 3 (FoV B), rank 35 100 100 100

Table 1: Nuclear-Norm Constraint Settings for Results of Section 5.1

To choose the input rank of Algorithm 1, we ran our experiment with several different ranks and
provide results for the best-performing rank. We found, however, that results are typically robust to
the setting of the rank parameter of Algorithm 1, and our choice of r did not significantly impact
performance. Furthermore, we believe this could effectively be chosen adaptively. We state our
chosen values of r below.

For all experiments, we add observation noise distributed as N'(0,0.4 - I) to z = >, _; @;.

21



Input Rank r
Mouse 1, rank 15 10
Mouse 1, rank 35 10
Mouse 2, rank 15 5
Mouse 2, rank 35 5
Mouse 3 (FoV A), rank 15 25
Mouse 3 (FoV A), rank 35 25
Mouse 3 (FoV B), rank 15 25
Mouse 3 (FoV B), rank 35 50

Table 2: Input Rank r for Results of Section 5.1

o o o o
100 100 100 100
200 200 200 200
0 300 300 300
0 w0 a0 a0
0 00 00 00
600 600 600 600

20 a0 00 600 0 w0 20 ;0 40 00 60 0 w0 200 ;0 <0 0 600 o w0 20 ;0 40 S0 600

(a) Ground Truth (b) Error =0.1 (c) Error =0.2 (d) Error=0.3 (e) Error=0.4

) 00 0 40 50 600 00 w0 w0

(f) Error = 0.5 (g) Error =0.6 (h) Error=0.7 (i) Error =0.8 () Error=0.9

Figure 6: Causal connectivity matrix for Mouse 3 FoV B with different levels of estimation error
(corresponding to Figure 3).

To ground the estimation error values shown in Figure 3, in Figure 6 will illustrate the causal
connectivity matrix for Mouse 3 FoV B with different levels of estimation error.

B.4 Further Details on Experiment of Section 5.2

For this experiment, on the data © we observed thus far, we fit the AR-k model described in
Section 3.1 with k = 1. We found that for this experiment, simply using the least squares estimator
with no low-rank penalty produced the best results. We use the same estimation method for both our
method and the baseline method.

Given a input response trajectory in the test set, (x1, ..., x15), with input u, to compute the test MSE,
we provide our learned dynamics model with the initial state z; and input u, and then roll this out for

15 timesteps to generate predictions Zs, . . ., Z15. Precisely, if A and B are our estimated parameters,
we let

.75\2 = Exl + EU,
/.’L'\t+1 = gfh t Z 1

We the compute the MSE on this segment as:
Tk
11 Z 7 — xtH%
=2

It is not immediately obvious how to apply Algorithm 1 to this setting, since we must choose each
trajectory sequentially, and once we have observed a trajectory it can no longer be chosen again.
Rather than solving the optimization of Algorithm 1 to find the best inputs, we instead seek to
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Figure 7: Estimated neural activity vs true neural activity on heldout trials for Mouse 2, Neurons 0, 3,
and 95, at different levels of overall MSE on heldout trials (corresponding to Figure 4).

iteratively choose the next input that would maximize “information gain” in some sense. In particular,
note that applying the Frank-Wolfe algorithm [80] to the objective, if we have inputs I/ available:

nin tr((VTANV) T,

the update is given by:
w1 =minu' V(VIAM)V) 2V Ty
ucl
Aig1 < (L =) +vil{u = w1}
for learning rate ;.

In this experiment, we simply choose u,, as above, with U/ the set of remaining active inputs in Dy;ain,
and A(),,) replaced with 22;11 usu, . This therefore approximates the solution to the experiment
design of Algorithm 1, and has the advantage of being very computationally efficient. Furthermore,
we set V' to be the right singular vectors of B. We believe this is reasonable in dynamical system
settings with fast decay.

The primary hyperparameter for this experiment is the choice of r, the rank of V. As in the previous
section, we did not find the results particularly sensitive to setting of r. For each dataset, we ran with
r € [25,50, 75,100,125, 150], and include results for the best-performing setting.

For both sets of experiments in Section 5, we ran on 56 Intel(R) Xeon(R) CPU E5-2690 v4 @
2.60GHz CPUs.

To ground the MSE values shown in Figure 4, in Figure 7 we plot the predictions from the estimated
model at different MSE values on heldout trials for Mouse 2.
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